
PROCEEDINGS

SEKE 2015

The 27​th​ International Conference on

Software Engineering &

Knowledge Engineering

Sponsored by
KSI Research Inc. and Knowledge Systems Institute Graduate School, USA

Technical Program
July 6 – 8, 2015

Wyndham Pittsburgh University Center, Pittsburgh, USA

Organized by
KSI Research Inc. and Knowledge Systems Institute Graduate School, USA

Copyright ​ⓒ​ 2015 by KSI Research Inc. and Knowledge Systems Institute Graduate School

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of the publisher.

ISBN: 1­891706­37­3

ISSN: 2325­9000 (print)

2325­9086 (online)

Additional copies can be ordered from:

KSI Research Inc. and Knowledge Systems Institute Graduate School

3420 Main Street

Skokie, IL 60076 USA

Tel: +1­847­679­3135

Fax: +1­847­679­3166

Email: ​seke@ksiresearch.org

Web: ​http://www.ksi.edu

Proceedings preparation, editing and printing are sponsored by KSI Research Inc. and Knowledge Systems Institute
Graduate School, USA.

Printed by KSI Research Inc. and Knowledge Systems Institute Graduate School

ii

mailto:seke@ksiresearch.org
mailto:seke@ksiresearch.org
http://www.ksi.edu/
http://www.ksi.edu/
http://www.ksi.edu/

FOREWORD

Welcome to the 27th International Conference on Software Engineering and Knowledge Engineering (SEKE), in Pittsburgh,
Pennsylvania, USA, the City of Champions. In over a quarter of century, SEKE has established itself as a major international forum to
foster, among academia, industry, and government agencies, discussion and exchange of ideas, research results and experience in
software engineering and knowledge engineering. The SEKE community has grown to become a very important and influential
source of ideas and innovations on the interplays between software engineering and knowledge engineering, and its impact on the
knowledge economy has been felt worldwide. On behalf of the Program Committee Co-Chairs and the entire Program Committee, it
is my great pleasure to invite you to participate, not only in the technical program of SEKE 2015 and its rich assortment of activities,
but also in enjoying the beautiful and historical Steel City and people of Pittsburgh.

This year, we received 238 submissions from 35 countries. Through a rigorous review process where a majority (90 percent) of the
submitted papers received three reviews, and the rest with two reviews, we were able to select 69 full papers for the general
conference (29 percent), and 80 short papers (34 percent). Out of that, 6 papers have been accepted for special tracks, and 128 papers
are scheduled for presentation in thirty-nine sessions during the conference. In addition, the technical program includes excellent
keynote speeches, poster and demo presentations, as well as special tracks: Software Assurance, Intelligent Transportation Systems,
and Testing.

The high quality of the SEKE 2015 technical program would not have been possible without the tireless effort and hard work of many
individuals. First of all, I would like to express my sincere appreciation to all the authors whose technical contributions have made the
final technical program possible. I am very grateful to all the Program Committee members whose expertise and dedication made my
responsibility that much easier. My gratitude also goes to the keynote speakers who graciously agreed to share their insight on
important research issues, to the conference organizing committee members for their superb work, and to the external reviewers for
their contribution.

Personally, I owe a debt of gratitude to a number of people whose help and support with the technical program and the conference
organization are unfailing and indispensable. I am deeply indebted to Dr. S. K. Chang, Chair of the Steering Committee, for his
constant guidance and support that are essential to pull off SEKE 2015. My heartfelt appreciation goes to Dr. Marek Reformat of
University of Alberta, Canada, the Conference Chair, for his help and experience, and to the Program Committee Co-Chairs, Dr.
Kehan Gao of Eastern Connecticut State University, USA, and Dr. Shihong Huang of Florida Atlantic University, USA, for their
outstanding team work.

I am truly grateful to the special track organizers, Dr. Dianxiang Xu of Boise State University, USA, Dr. Behrouz Far of University of
Calgary, Canada, Dr. Jerry Gao of San Jose State University, USA, and Dr. Genny Tortora of University of Salerno, Italy, for their
excellent job in organizing the special tracks.

I would like to express my great appreciation to all the Publicity Co-Chairs, Dr. Xiaoying Bai of Tsinghua University, China, and Dr.
Jun Suzuki of University of Massachusetts Boston, USA, for their important contributions, to the Asia, Europe, India, and South
America liaisons, Dr. Hironori Washizaki of Waseda University, Japan, Dr. Raul Garcia Castro of Universidad Politecnica de Madrid,
Spain, Dr. Swapan Bhattacharya of National Institute of Technology Karnataka, India, and Dr. Jose Carlos Maldonado of University
of Sao Paulo, Brazil, for their great efforts in helping expand the SEKE community, and to the Demo&Poster session Co-Chairs, Dr.
Farshad Samimi of Enphase Energy, USA, and Dr. Dragutin Petkovic of San Francisco State University, USA, for their work.

Last but certainly not the least, I must acknowledge the important contributions that the KSI staff members have made. Their timely
and dependable support and assistance throughout the entire process have been truly remarkable. It has been a great pleasure to work
with all of them. Finally, I sincerely thank you for finding your way to Pittsburgh to participate in SEKE 2015, and hope you will
enjoy this experience that may leave you long lasting memories.

Haiping Xu

SEKE 2015 Program Chair

iii

SEKE 2015

The 27​th​ International Conference on

Software Engineering &

Knowledge Engineering

July 6 – 8, 2015

Wyndham Pittsburgh University Center, Pittsburgh, USA

Conference Organization
CONFERENCE CHAIR

Marek Reformat, University of Alberta, Canada

PROGRAM COMMITTEE CHAIR

Haiping Xu, University of Massachusetts Dartmouth, USA

PROGRAM COMMITTEE CO­CHAIRS

Kehan Gao, Eastern Connecticut State University, USA
Shihong Huang, Florida Atlantic University, USA

STEERING COMMITTEE CHAIR

Shi­Kuo Chang, University of Pittsburgh, USA

STEERING COMMITTEE

Vic Basili, University of Maryland, USA
Bruce Buchanan, University of Pittsburgh, USA

C. V. Ramamoorthy, University of California, Berkeley, USA

iv

ADVISORY COMMITTEE

Jerry Gao, San Jose State University, USA
Swapna Gokhale, University of Connecticut, USA

Natalia Juristo, Universidad Politecnica de Madrid, Spain
Taghi Khoshgoftaar, Florida Atlantic University, USA

Guenther Ruhe, University of Calgary, Canada
Masoud Sadjadi, Florida International University, USA

Du Zhang, California State University, USA

PROGRAM COMMITTEE

Silvia Teresita Acuna, Universidad Autonoma de Madrid, Spain
Shadi Alawneh, C­CORE, Canada

Izzat Alsmadi, Boise State University, USA
Taiseera Albalushi, Sultan Qaboos University, Oman
Mark Allison, University of Michigan ­ Flint, USA
John Anvik, Central Washington University, USA

Omar El Ariss, Penn State University at Harrisburg, USA
Doo­hwan Bae, Korea Advanced Institute of Science and Technology, Korea

Ebrahim Bagheri, Ryerson University, Canada
Hamid Bagheri, George Mason University and Massachusetts Institute of Technology, USA

Xiaoying Bai, Tsinghua University, China
Purushotham Bangalore, University of Alabama at Birmingham, USA

Fevzi Belli, University of Paderborn, Germany
Ateet Bhalla, Oriental Institute of Science & Technology, Bhopal, India

Swapan Bhattacharya, NITK, Surathakl, India
Alessandro Bianchi, University of Bari, Italy

Ivo Bukovsky, Czech Technical University in Prague, Czech Republic
Raul Garcia Castro, Universidad Politecnica de Madrid, Spain

Chih­Hung Chang, Hsiuping University of Science and Technology, Taiwan
Keith Chan, Hong Kong Polytechnic University, Hong Kong
Kuang­nan Chang, Eastern Kentucky University, USA

Meiru Che, University of Texas at Austin, USA
Shu­Ching Chen, Florida International University, USA

Wen­Hui Chen, National Taipei University of Technology, Taiwan
Stelvio Cimato, University of Milan, Italy

Nelly Condori­fernandez, University of Twente, The Netherlands
Fabio M. Costa, Universidade Federal de Goias, Brazil
Maria Francesca Costabile, University of Bari, Italy

Jose Luis De La Vara, Simula Research Laboratory, Norway
Massimiliano Di Penta, University of Sannio, Italy

Scott Dick, University of Alberta, Canada
Junhua Ding, East Carolina University, USA

Fei Dong, Google Inc., USA
Derek Doran, Wright State University, USA

Weichang Du, University of New Brunswick, Canada
Philippe Dugerdil, HEG ­ Univ. of Applied Sciences, Switzerland

Christof Ebert, Vector Consulting Services, Germany
Ali Ebnenasir, Michigan Technological University, USA

Raimund Ege, NIU, USA
Magdalini Eirinaki, San Jose State University, USA

Mahmoud Elish, King Fahd University of Petroleum and Minerals, Saudi Arabia

v

Davide Falessi, Cal Poly, USA
Behrouz Far, University of Calgary, Canada

Liana Fong, IBM, USA
Ellen Francine Barbosa, University of Sao Paulo, Brazil

Fulvio Frati, University of Milan, Italy
Felix Garcia, University of Castilla­La Mancha, Spain

Ignacio Garcia Rodriguez De Guzman, University of Castilla­La Mancha, Spain
Swapna Gokhale, Univ. of Connecticut, USA

Wolfgang Golubski, Zwickau University of Applied Sciences, Germany
Desmond Greer, Queen's University Belfast, United Kingdom

Christiane Gresse Von Wangenheim, UFSC ­ Federal University of Santa Catarina, Brazil
Katarina Grolinger, University of Western Ontario, Canada

Hassan Haghighi, Shahid Beheshti University, Iran
Hao Han, National Institute of Informatics, Japan
Xudong He, Florida International University, USA

Miguel Herranz, University of Alcala, Spain
Rubing Huang, Jiangsu University, China

Shihong Huang, Florida Atlantic University, USA
Bassey Isong, North­West University, South Africa

Clinton Jeffery, University of Idaho, USA
Jason Jung, Chung­Ang University, Korea

Selim Kalayci, Florida International University, USA
Marcos Kalinowski, Fluminense Federal University, Brazil

Ananya Kanjilal, B.P. Poddar Institute of Technology and Management, India
Eric Kasten, Michigan State University, USA

Taghi Khoshgoftaar, Florida Atlantic University, USA
Claudiu V. Kifor, Lucian Blaga University of Sibiu, Romania

Jun Kong, North Dakota State University, USA
Aneesh Krishna, Curtin University of Technology, Australia

Vinay Kulkarni, Tata Consultancy Services, India
Jeff Lei, University of Texas at Arlington, USA

Meira Levy, Shenkar College of Engineering and Design, Israel
Bixin Li, Southeast University, China
Ming Li, Nanjing University, China

Xin Li, Google Inc., USA
Yuan­Fang Li, Monash University, Australia
Zhi Li, Guangxi Normal University, China

Jianhua Lin, Eastern Connecticut State University, USA
Xiaoqing Frank Liu, Missouri University of Science and Technology, USA

Shih­hsi Liu, California State University, Fresno, USA
Ting Liu, Xian Jiaotong University, China

Xiaodong Liu, Edinburgh Napier University, United Kingdom
Yi Liu, Georgia College & State University, USA

Luanna Lopes Lobato, Federal University of Goias, Brazil
Baojun Ma, Beijing University of Posts and Telecommunications, China

Ivan do Carmo Machado, Federal University of Bahia, Brazil
Marcelo de Almeida Maia, Federal University of Uberlândia, Brazil

Beatriz Marin, Universidad Diego Portales, Chile
Riccardo Martoglia, University of Modena and Reggio Emilia, Italy

Santiago Matalonga, Universidad ORT Uruguay, Uruguay
Hong Mei, Peking University, China

Hsing Mei, Fu Jen Catholic Unicersity, Taiwan
Andre Menolli, Universidade Estadual do Norte do Parana (UENP), Brazil

Ali Mili, NJIT, USA
Alok Mishra, Atilim University, Turkey

Manuel Mora, Autonomous University of Aguascalientes, Mexico

vi

Kia Ng, ICSRiM ­ University of Leeds, United Kingdom
Allen Nikora, Jet Propulsion Laboratory, USA

Amjad Nusayr, University of Houston­Victoria, USA
Edson OliveiraJr, State University of Maringá, Brazil

Xin Peng, Fudan University, China
Oscar Pereira, University of Aveiro, Portugal
Antonio Piccinno, University of Bari, Italy

Alfonso Pierantonio, University of L'Aquila, Italy
Daniel Plante, Stetson University, USA

Rick Rabiser, Johannes Kepler University, Austria
Filip Radulovic, Universidad Politécnica de Madrid, Spain

Damith C. Rajapakse, National University of Singapore, Singapore
Rajeev Raje, IUPUI, USA

Henrique Rebelo, Universidade Federal de Pernambuco, Brazil
Marek Reformat, University of Alberta, Canada

Robert G. Reynolds, Wayne State University, USA
Elder Macedo Rodrigues, Pontifical Catholic University of Rio Grande do Sul, Brazil

Daniel Rodriguez, Universidad de Alcala, Spain
Ivan Rodero, The State University of New Jersey, USA

Samira Sadaoui, University of Regina, Canada
Masoud Sadjadi, Florida International University, USA

Claudio Sant'Anna, Universidade Federal da Bahia, Brazil
Akila Sarirete, Effat University, Saudi Arabia

Abdelhak­Djamel Seriai, University of Montpellier 2 for Sciences and Technology, France
Andreas Schoenberger, Siemens AG, Germany
Michael Shin, Texas Tech University, USA

Martin Solari, Universidad ORT Uruguay, Uruguay
Qinbao Song, Xi'an Jiaotong University, China

George Spanoudakis, City University, United Kingdom
Jing Sun, University of Auckland, New Zealand

Yanchun Sun, Peking University, China
Gerson Sunye, University of Nantes, France
Jeff Tian, Southern Methodist University, USA
Genny Tortora, University of Salerno, Italy

Mark Trakhtenbrot, Holon Institute of Technology, Israel
Peter Troeger, TU Chemnitz, Germany

T. H. Tse, The University of Hong Kong, Hong Kong
Burak Turhan, Oulu University, Finland

Christelle Urtado, Ecole des Mines d'Alès, France
Sylvain Vauttier, Ecole des Mines d'Alès, France

Silvia Vergilio, Federal University of Parana (UFPR), Brazil
Sergiy Vilkomir, East Carolina University, USA
Aaron Visaggio, University of Sannio, Italy

Arndt Von Staa, PUC­Rio, Brazil
Gurisimran Walia, North Dakota State University, USA
Huanjing Wang, Western Kentucky University, USA

Jiacun Wang, Monmouth University, USA
Linzhang Wang, Nanjing University, China

Xiaoyin Wang, University of Texas at San Antonio, USA
Ye Wang, Zhejiang Gongshang University, China

Yong Wang, New Mexico Highlands University, USA
Hironori Washizaki, Waseda University, Japan

Victor Winter, University of Nebraska at Omaha, USA
Guido Wirtz, Bamberg University, Germany

W. Eric Wong, University of Texas at Dallas, USA
Franz Wotawa, TU Graz, Austria

vii

Dianxiang Xu, Boise State University, USA
Frank Weifeng Xu, Gannon University, USA

Haiping Xu, University of Massachusetts Dartmouth, USA
Zhiwei Xu, University of Michigan ­ Dearborn, USA

Guowei Yang, Texas State University, USA
Hongji Yang, Bath Spa University, United Kingdom

Huiqun Yu, East China University of Science and Technology, China
Jiang Yue, Fujian Normal University, China
Du Zhang, California State University, USA
Yong Zhang, Tsinghua University, China

Zhenyu Zhang, Institute of Software, Chinese Academy of Sciences, China
Jiang Zheng, ABB US Corporate Research Center, USA

Jianlin Zhu, South­Central University for Nationalities, China
Xingquan Zhu, Florida Atlantic University, USA
Eugenio Zimeo, University of Sannio, Italy

DEMO&POSTER SESSIONS CO­CHAIRS

Farshad Samimi, Enphase Energy, USA
Dragutin Petkovic, San Francisco State University, USA

PUBLICITY CHAIR

Xiaoying Bai, Tsinghua University, China
Jun Suzuki, University of Massachusetts Boston, USA

ASIA LIAISON

Hironori Washizaki, Waseda University, Japan

EUROPE LIAISON

Raul Garcia Castro, Universidad Politecnica de Madrid, Spain

INDIA LIAISON

Swapan Bhattacharya, National Institute of Technology Karnataka, Surathakl, India

SOUTH AMERICA LIAISON

Jose Carlos Maldonado, ICMC­USP, Brazil

viii

Keynote
Model Checking Hybrid Systems

Edmund M. Clarke

(Joint work with Sicun Gao and Soonho Kong)
Carnegie Mellon University

Pittsburgh, USA

Abstract: Although every undergraduate in computer science learns about Turing Machines, it is not well known
that they were originally proposed as a means of characterizing computable real numbers. For a long time, formal
verification paid little attention to computational applications that involve the manipulation of continuous quantities,
even though such applications are ubiquitous. In recent years, however, there has been great interest in
safety-critical hybrid systems involving both discrete and continuous behaviors, including autonomous automotive
and aerospace applications, medical devices of various sorts, control programs for electric power plants, etc. As a
result, the formal analysis of numerical computation can no longer be ignored. In this talk, we focus on one of the
most successful verification techniques, bounded model checking. Current industrial model checkers do not scale to
handle realistic hybrid systems. We believe that the key to handling more complex systems is to make better use of
the theory of the computable reals and computable analysis. We argue that new formal methods for hybrid systems
should combine existing discrete methods in model checking with new algorithms based on computable analysis. In
particular, we discuss a model checker that we are currently developing along these lines.

 ​About the Speaker

Edmund M. Clarke is the FORE Systems University Professor of Computer Science at Carnegie Mellon
University. He received his Ph.D. from Cornell University and taught at Duke and Harvard Universities before
joining CMU in 1982. His research interests include hardware and software verification and automatic theorem
proving. In particular, his research group developed Symbolic Model Checking using BDDs, Bounded Model
Checking using fast CNF satisfiability solvers, and pioneered the use of
CounterExample-Guided-Abstraction-Refinement (CEGAR). He is a co-founder of the conference on Computer
Aided Verification (CAV). He has received numerous awards for his contributions to formal verification of
hardware and software correctness, including the IEEE Goode Award, the ACM Kanellakis Award , the ACM
Turing Award, and the CADE Herbrand Award. Dr. Clarke is a member of the National Academy of Engineering
and the American Academy of Arts and Sciences. Most recently he received the 2014 Franklin Institute Bower
Award and Prize for Achievement in Science for verification of computer systems.

ix

Keynote
Development of Active Safety Assurance Technologies for Rail Intelligent

Transportation System in China

Yong Qin
State Key laboratory of Rail Traffic Control and Safety

Beijing Jiaotong University
Beijing, China

Abstract: China has built the largest scale of high-speed railway in the world in recent years and will continuously
invest in rail infrastructure for intra-city and inter-city transportation. For improving the efficiency and safety of
these large-scale of rail network operation, rail intelligent transportation system (RITS) based on the advanced
information and knowledge engineering techniques is a good solution. In this talk, the definition, architecture and
key techniques of RITS are introduced. Because the railway operation safety is the most important field in RITS and
focus on accident preventive ability now, many new active safety assurance technologies have been studied and
applied into the practice of China railway. The intelligent fault diagnosis method based on safety region and support
vector machine(SVM) algorithm is introduced to the online monitoring of the train operation status. The intelligent
optimization method based on fuzzy particle swarm optimization algorithm is produced to the train traffic plan
adjustment. And the risk assessment method based on fuzzy-TOPSIS is introduced to the rail network real time risk
analysis. The relative China railway applications will be demonstrated in this talk.

 ​About the Speaker

Yong Qin is the Dr., Professor of State Key laboratory of Rail Traffic Control and Safety, Beijing Jiaotong
University. He also is the vice director of Beijing Research Center of Urban Traffic Information Intelligent Sensing
and Service Technologies, the vice dean and secretary general of Rail Transportation Electro-technical Committee
of China Electro-technical Society, the vice dean and secretary general of Rail Intelligent Transportation Systems
Committee of China Intelligent Transportation Systems Society, and the member of IEEE. His research interests are
in the area of intelligent transportation systems, railway operation safety and reliability, rail network management
and traffic model. He has authored or coauthored more than 100 publication papers and 5 books, has 10 patents
granted, also won 7 science and technology progress award of ministry.

x

Keynote
Open Product Innovation

Guenther Ruhe

University of Calgary
Canada

Abstract: Offering innovative products or services is the ultimate goal of any software system development. The
paradigm of Open Innovation opens a new door how this can be achieved. Leveraging all the emerging
opportunities of open sourcing, outsourcing, off-shoring, crowdsourcing and social media represents a significant
paradigm shift in gathering information. It facilitates the usage of external knowledge and resources. However,
more information does not automatically imply making things better. Continuously analyzing data is part of the
whole innovation processes. Very specific and up-to-date information from different sources needs to be
synthesized to create innovative products. The talk discusses and illustrates how this analytics driven processes is
designed and how is is applied for software product development.

 ​About the Speaker

Guenther Ruhe is a Professor at the University of Calgary in Canada. He received a doctorate rer. nat. degree in
Mathematics with emphasis on Operations Research from Freiberg University and a doctorate habil. nat. degree
(Computer Science) from University of Kaiserslautern (Germany). From 1996 until 2001, he was the deputy
director of the Fraunhofer Institute for Experimental Software Engineering Fh IESE. Since 2007, he serves as an
Associate Editor of the Journal of Information and Software Technology. His main research interests are in the areas
of Product and Project Management, Data Analytics, Open Innovation, Decision Support in Requirements
Engineering and Empirical Software Engineering. Guenther is the Founder and CEO of Expert Decisions Inc., a
University of Calgary spin­off company created in 2003.

xi

 xii

Panel Discussion

SEKE vs. Big Data

Session chair and moderator
 Shi-Kuo Chang, University of Pittsburgh, USA (chang@cs.pitt.edu)

 Panelists

Alexandros Labrinidis, University of Pittsburgh, USA (labrinid@cs.pitt.edu)
 Zewyu Gao, San Jose State University, USA (jerry.gao@sjsu.edu)

Gregory Kapfhammer, Allegheny College, USA (gkapfham@allegheny.edu)

Panel Description: Although there are many interesting
new approaches and techniques in software engineering and
knowledge engineering, it is as yet unclear how SEKE can
fruitfully incorporate recent research advances in Big Data.
There can be many different viewpoints. One can discuss
emerging research, give examples of happy marriage of SEKE
and Big Data, and also provide horror stories of unfruitful
application of Big Data to SEKE or vice versa. The panelists
will present their views. Comments from the audience are also
welcome.

Position Statements from the Panelists

Alexandros Labrinidis: The Big Data - Same Humans
Problem Big data is transforming all aspects of the human
experience, be it everyday life, scientific exploration and
discovery, medicine, business, law, journalism, and decision-
making at all levels of government. Despite the increases in
computing technology and availability/demand for data in the
last few decades, the performance of one critical component in
the data processing pipeline has remained roughly the same.
Namely, the ability of humans to process data has not changed
significantly in the last few decades. We refer to this disparity
as: ``the big data - same humans problem.'' Therefore, when
talking about the scalability aspect of big data, we need to
make the distinction between two different types: (a)
scalability from a systems point of view – i.e., traditional
calability/performance measures such as response time,
throughput, scale-up, scale-out, etc., and (b) scalability from a
human’s point of view – i.e., how well the system is making
sure that human users do not get lost in a sea of data. We
believe that scalability from a human’s point of view will soon
become a requirement for successful big data systems and
applications, and that it will soon be used as an optimization
metric for both end-users and application programmers alike.

Zewyu Gao: Engineering Secured, Reliable and High
Quality Big Data Real-Time Application Systems and
Services - Emergent Issues and Needs in Quality of Services
According to IDC, the big data and analytics market will reach
$125 billion worldwide in 2015. The fast advances of Big
Data Technology, Analytics Solutions, and Application
Systems provide great business opportunities and strong

demands in building secure and reliable high-quality big data
application systems and services. This raises many important
issues and needs in system quality assurance for big data
applications and services. Unfortunately, conventional
software validation methods and QoS techniques are not
adequate to cope with the special features of big data
application and analytics systems. This panel discussion will
pay attention to the major differences and features in
QoS between conventional software systems and big data
analytics systems. This talk will focus on these issues,
challenges and needs, and provide related research topics and
directions in future

Gregory Kapfhammer: Is Big Data a Big Deal? Not
Without Correct Software! Big data analytics software allows
researchers and practitioners to create descriptive models and
make predictions. Often characterized by the "three Vs" of
volume, velocity, and variety, big data systems must
respectively handle large amounts of data that arrive rapidly
and take many different forms. In fields such as evidence-
based medicine and the detection of financial fraud, big data
software is poised to, and indeed already is, making important
contributions. However, there is an additional "V" that is often
overlooked by both researchers and practitioners: veracity.
That is, if there is a lack of correctness in the software and
data that make up a big data analytics system, then the data
models and the resulting predictions may be compromised —
with serious consequences.

The challenge for software testing researchers is to develop
and empirically evaluate new methods that can accommodate
the volume, velocity, and variety that is characteristic of big
data systems. While some preliminary work (e.g., the testing
of both data mining systems and database applications) has
recently been published, few software engineering researchers
have focused on big data testing. Since veracity is not always
considered by big data researchers, the challenge for these
individuals is to create and assess new techniques that,
whenever possible, holistically consider all of the "four Vs". If
not already doing so, practitioners in both of these fields
should start to establish a confidence in the correctness of both
their software and data through the disciplined use of testing.

SEKE2015 Table of Contents

Table of Contents

Foreward...iii
Conference Organization...iv
KeyNote 1: Model Checking Hybrid Systems, Professor Edmund M. Clarkeix
KeyNote 2: Development of Active Safety Assurance Technologies for Rail Intelli-
gent Transportation System in China, Professor Yong Qin....................................x
KeyNote 3: Open Product Innovation, Professor Guenther Ruhexi
Panel Discussion: SEKE vs. Big Data, Professor Shi-kuo Chang, Professor Alexan-
dros Labrinidis, Professor Zewyu Gao, Professor Gregory Kapfhammer...............xii

Requirements Engineering I

Towards Building Knowledge on Causes of Critical Requirements Engineering Problems . . 1

Marcos Kalinowski, Rodrigo Spinola, Tayana Conte, Rafael Prikladnicki, Daniel
Méndez Fernández and Stefan Wagner

Identification and Classification of Requirements from App User Reviews (S) 7

Hui Yang and Peng Liang

MoLVERIC: An Inspection Technique for MoLIC Diagrams (S) . 13

Adriana Lopes, Anna Beatriz Marques, Simone Barbosa and Tayana Conte

Self-Adaptive Software

A Middleware Framework for Leveraging Local and Global Adaptation in IT Ecosystems . 18

Soojin Park and Young B. Park

A Framework Based on Learning Techniques for Decision-making in Self-adaptive
Software (S) . 24

Frank José Affonso, Gustavo Leite, Rafael A. P. Oliveira and Elisa Yumi Nakagawa

Towards Knowledge-intensive Software Engineering Framework for Self-Adaptive
Software (S) . 30

Hyo-Cheol Lee and Seok-Won Lee

Software Project Management I

How to Teach the Usage of Project Management Tools in Computer Courses: A
Systematic Literature Review (S) . 36

Rafael Gonçalves and Christiane Gresse von Wangenheim

Soft Skills in Scrum Teams. A survey of the most valued to have by Product Owners
and Scrum Masters (S) . 42

Gerardo Matturro, Carina Fontán and Florencia Raschetti

Reflecting, adapting and learning in small software organizations: an action research
approach (S) . 46

Suzana Sampaio, Marcelo Marinho, Alexandre Luna and Hermano Moura

Slow Intelligence System

xiii

SEKE2015 Table of Contents

Application of Slow Intelligence Framework for Smart Pet Care System Design 51

Shi-Kuo Chang, Wen-Hui Chen, Wen-Chyi Lin and Christopher Lee Thomas

A Slow Intelligence System Test Bed Enhanced with Super-Components 57

Shi-Kuo Chang, Sen-Hua Chang, Jun-Hui Chen, Xiao-Yu Ge, Nikolaos Katsipoulakis,
Daniel Petrov and Anatoli Shein

An Adaptive Contextual Recommender System: a Slow Intelligence Perspective 64

Francesco Colace, Luca Greco, Saverio Lemma, Marco Lombardi, Duncan Yung and
Shi-Kuo Chang

Testing I

An Automated Testing Framework for Statistical Testing of GUI Applications 72

Lan Lin, Jia He and Yufeng Xue

Test Model and Coverage Analysis for Location-based Mobile Services . 80

Tao Zhang, Jerry Gao, Oum-El-Kheir Aktouf and Tadahiro Uehara

Generating various contexts from permissions for testing Android applications (S) 87

Kwangsik Song, Ah-Rim Han, Sehun Jeong and Sungdeok Cha

Recommendation Systems

Context-aware Recommendation System with Anonymous User Profile Learning 93

Yan Liu, Yangyang Xu and Mei Chen

Recommendation in the Digital TV Domain: an Architecture based on Textual
Description Analysis . 99

Felipe Barbosa Araújo Ramos, Antonio Alexandre Moura Costa, Reudismam Rolim,
Gustavo Soares, Hyggo Oliveira de Almeida and Angelo Perkusich

A Collaborative Method to Reduce the Running Time and Accelerate the k-Nearest
Neighbors Search (S) . 105

Antonio Alexandre Moura Costa, Reudismam Rolim de Sousa, Felipe Barbosa Araujo
Ramos, Gustavo Araujo Soares, Hyggo Oliveira de Almeida and Angelo Perkusich

Cloud Computing: Security and Deployment

Achieving Efficient Access Control via XACML Policy in Cloud Computing 110

Xin Pei, Huiqun Yu and Guisheng Fan

A Reliable and Secure Cloud Storage Schema Using Multiple Service Providers 116

Haiping Xu and Deepti Bhalerao

Towards a Deployment System for Cloud Applications . 122

Ruici Luo, Wei Ye and Shikun Zhang

Empirical Software Engineering I

Impact of Unanticipated software evolution on development cost and quality: an
empirical evaluation . 128

Rodrigo A. Vilar, Anderson Lima, Hyggo Almeida and Angelo Perkusich

xiv

SEKE2015 Table of Contents

An empirical study on the impact of Python dynamic features on change-proneness 134

Beibei Wang, Lin Chen, Wanwangying Ma, Zhifei Chen and Baowen Xu

Evaluating Software Engineers’ Acceptance of a Technique and Tool for Web Usability
Inspection. 140

Luis Jorge Enrique Rivero Cabrejos, Auri Marcelo Rizzo Vincenzi, José Carlos
Maldonado and Tayana Conte

Knowledge Management

AMBIT: Semantic Engine Foundations for Knowledge Management in
Context-dependent Applications. 146

Riccardo Martoglia

Documenting Implementation Decisions with Code Annotations . 152

Tom-Michael Hesse, Arthur Kuehlwein, Barbara Paech, Tobias Roehm and Bernd
Bruegge

An Evaluation Study of Architectural Design Decision Paradigms in Global Software
Development . 158

Meiru Che and Dewayne Perry

An approach for classifying design artifacts (S) . 164

Sebastien Adam, Ghizlane El Boussaidi and Alain Abran

Data Mining for Knowledge Engineering

A Novel Hybrid Approach for Diarrhea Prediction . 168

Yongming Wang and Junzhong Gu

Are We Living in a Happy Country: An Analysis of National Happiness from Machine
Learning Perspective (S) . 174

Theresia Ratih Dewi Saputri and Seok-Won Lee

BiBinConvmean : A Novel Biclustering Algorithm for Binary Microarray Data (S) 178

Haifa Ben Saber and Mourad Elloumi

Intelligent Transportation Systems

Integration testing criteria for mobile robotic systems . 182

Maria Brito, Marcos Santos, Paulo Souza and Simone Souza

Embedded Real Time Blink Detection System for Driver Fatigue Monitoring 188

Soheil Salehian and Behrouz Far

A Smartphone-based System for Automated Congestion Prediction (S) 195

Lance Fiondella, Swapna Gokhale and Nick Lownes

Database and Information Systems

Endowing NoSQL DBMS with SQL Features Through Standard Call Level Interfaces 201

Oscar Pereira, David Simões and Rui Aguiar

xv

SEKE2015 Table of Contents

Optimizing of an Object–Oriented File System (OOFS) (S). 208

Ling-Hua Chang and Sanjiv Behl

An Evolution Mechanism for Dynamic Physical Applications in the Internet of Things (S) 213

Kaibin Xie, Haiming Chen, Dong Li and Li Cui

Software Product and Process Line

Architectural Evolution of a Software Product Line: an experience report 217

Marcelo Laser, Elder Macedo Rodrigues, Anderson Domingues, Flavio Oliveira and
Avelino F. Zorzo

Quality Evaluation of Artifacts in Tailored Software Process Lines (S) . 223

Camila Brondani, Gelson Bertuol and Lisandra Fontoura

BPMN* - A Notation for Representation of Variability in Business Process Towards
Supporting Business Process Line Modeling (S) . 227

Marcelo Terenciani, Debora Paiva, Geraldo Landre and Maria Istela Cagnin

An Architecture Description Language for Dynamic Service-Oriented Product Lines (S) . . 231

Seza Adjoyan and Abdelhak Seriai

Social Networks

Social Analysis of the SEKE Co-Author Network . 237

Swapna Gokhale and Rehab El-Kharboutly

A Rule-based Method for Discovering Trajectory Profiles . 244

Lucas Andre Alencar, Luis Otavio Alvares, Chiara Renso, Alessandra Raffaeta and
Vania Bogorny

A Balanced Method for Budgeted Influence Maximization . 250

Xinhui Xu, Yong Zhang, Qingcheng Hu and Chunxiao Xing

Using implications from FCA to represent a two mode network data (S) 256

Sebastiao M. Neto, Mark A. J. Song, Luiz E. Zarate and Sergio M. Dias

Programming Languages and Software Prototyping

How do developers use C++ libraries? An empirical study . 260

Di Wu, Lin Chen, Yuming Zhou and Baowen Xu

A Case Study Approach: Iterative Prototyping Model Based Detection of Macular
Edema in Retinal OCT Images (S) . 266

Sadaf Sahar, Sadaf Ayaz and M.Usman Akram

A metrics-based comparative study on object-oriented programming languages 272

Di Wu, Lin Chen, Yuming Zhou and Baowen Xu

TAGGINGSENSE: Method Based On Sensemaking For Object-Oriented Source Code
Comprehension (S) . 278

Daniel Schreiber, Andre Menolli, Sheila Reinehr and Andreia Malucelli

Software and Knowledge Visualization

xvi

SEKE2015 Table of Contents

Facilitating Peer Learning and Knowledge Sharing in STEM Courses via Pattern Based
Graph Visualization . 284

Emilio Zegarra, Shi-Kuo Chang and Jingtao Wang

Scaffolding MATLAB and Octave Software Comprehension Through Visualization (S) 290

Ivan Lessa, Glauco Carneiro, Miguel Monteiro and Fernando Abreu

To Enlighten Hidden Facts in The Code: A Review of Software Visualization Metaphors
(S) . 294

Yangyang Xu, Yan Liu and Jiabin Zheng

Software Quality and Reliability

Reliability-Based Software Rejuvenation Scheduling for Cloud-Based Systems. 298

Jean Rahme and Haiping Xu

Reporting an Experience on the Establishment of a Quality Model for
Systems-of-Systems (S). 304

Daniel Soares Santos, Brauner R. N. Oliveira, Adolfo Duran and Elisa Yumi Nakagawa

Experimental Frame Design Using E-DEVSML for Software Quality Evaluation (S). 310

Bei Cao, Huang Linpeng and Jianpeng Hu

Software Project Management II

Analysis of Risk Dependencies in Collaborative Risk Management(S) . 314

Catherine Barchet, Lúıs Alvaro Silva and Lisandra Fontoura

A Practical Approach to Software Continuous Delivery Focused on Application Lifecycle
Management (S) . 320

Everton Gomede, Rafael Thiago Da Silva and Rodolfo Miranda de Barros

Towards Effective Developer Recommendation in Software Crowdsourcing (S) 326

Shixiong Zhao, Beijun Shen, Yuting Chen and Hao Zhong

Requirements Engineering II

Creating User Scenarios through User Interaction Diagrams by Non-Technical Customers . 330

Douglas Hiura Longo and Patŕıcia Vilain

How Stakeholders’ Commitment May Affect the Success of Requirements Elicitation 336

Corentin Burnay, Ivan Jureta and Stéphane Faulkner

An Exploration of System Architecture on Integrating Building Management System in
High-Rise Building (S) . 342

Zunhe Liu and Yan Liu

Testing II

Analyzing Exceptions in the Context of Test Data Generation Based on Symbolic
Execution . 346

Marcelo Medeiros Eler, Vinicius Durelli and André Takeshi Endo

xvii

SEKE2015 Table of Contents

Automatically Evaluating the Efficiency of Search-Based Test Data Generation for
Relational Database Schemas . 352

Cody Kinneer, Gregory Kapfhammer, Phil McMinn and Chris Wright

Similarity-based regression test case prioritization (S) . 358

Rongcun Wang, Shujuan Jiang and Deng Chen

Software Safety and Security I

Secure, Dynamic and Distributed Access Control Stack for Database Applications 364

Oscar Pereira, Diogo Regateiro and Rui Aguiar

Specifying and Dynamically Monitoring the Exception Handling Policy 370

Joilson Abrantes and Roberta Coelho

DefDroid: Securing Android with Fine-Grained Security Policy (S) . 375

Chao Huang, Shuohong Wang, Haiyang Sun and Zhengwei Qi

Data Mining for Software Engineering

Developers’ importance from the leader perspective. 379

Guilherme Tangari and Marcelo Maia

Stability of Three Forms of Feature Selection Methods on Software Engineering Data 385

Huanjing Wang, Taghi Khoshgoftaar and Amri Napolitano

Building a Large-scale Software Programming Taxonomy from Stackoverflow 391

Jiangang Zhu, Beijun Shen, Xuyang Cai and Haofen Wang

Empirical Software Engineering II

An empirical study on predicting defect numbers . 397

Mingming Chen and Yutao Ma

Causes of Architecture Changes: An Empirical Study through the Communication in
OSS Mailing Lists . 403

Wei Ding, Peng Liang, Antony Tang and Hans Van Vliet

A Behavior Marker tool for measurement of the Non-Technical Skills of Software
Professionals: An Empirical Investigation . 409

Lisa Lacher, Gursimran Walia, Fabian Fagerholm, Max Pagels, Kendall Nygard and
Jürgen Münch

A Platform for Empirical Research on Information System Evolution . 415

Robert Heinrich, Stefan Gärtner, Tom-Michael Hesse, Thomas Ruhroth, Ralf
Reussner, Kurt Schneider, Barbara Paech and Jan Jürjens

Software Assurance

A JVM-based Testing Harness for Improving Component Testability . 421

Weifeng Xu and Omar Ariss

Detecting Reporting Anomalies in Streaming Sensing Systems . 427

Shiree Hughes, Yuheng Du and Jason Hallstrom

xviii

SEKE2015 Table of Contents

Fault-Based Testing of Combining Algorithms in XACML3.0 Policies . 433

Dianxiang Xu, Ning Shen and Yunpeng Zhang

Software Defect Prediction

Combining Feature Subset Selection and Data Sampling for Coping with Highly
Imbalanced Software Data . 439

Kehan Gao, Taghi Khoshgoftaar and Amri Napolitano

A Software Defect-Proneness Prediction Framework: A new approach using genetic
algorithms to generate learning schemes (S) . 445

Juan Murillo-Morera and Marcelo Jenkins

Using Time Series Models for Defect Prediction in Software Release Planning (S) 451

James Tunnell and John Anvik

Semantic Web

An Ontology for Describing Security Events . 455

Hossein Fani and Ebrahim Bagheri

CARP: Correlation Based Approach for Researcher Profiling (S) . 461

Hassan Noureddine, Iman Jarkass, Hussein Hazimeh, Omar Abou Khaled and Elena
Mugellini

APRImora: A Semantic Architecture for Patterns Reuse (S). 465

Angélica Aparecida de Almeida Ribeiro, Jugurta Lisboa-Filho, Lucas Francisco Da
Matta Vegi, Alcione de Paiva Oliveira, Regina Maria Maciel Braga Villela and Emı́lio
José de S. Fonseca

Topic Mining and Specification Mining

Mining Universal Specification Based on Probabilistic Model . 471

Deng Chen, Yanduo Zhang, Rongcun Wang, Xun Li, Li Peng and Wei Wei

Topic Matching Based Change Impact Analysis from Feature on User Interface of
Mobile Apps (S) . 477

Qiwen Zou, Xiangping Chen and Yuan Huang

Learning Folksonomies for Trend Detection in Task-Oriented Dialogues (S) 483

Gregory Wanderley and Emerson Paraiso

Towards Automatic Requirements Elicitation from Feedback Comments: Extracting
Requirements Topics Using LDA (S) . 489

Hitoshi Takahashi, Hiroyuki Nakagawa and Tatsuhiro Tsuchiya

User Experience and Organizational Learning

MAX: A Method for Evaluating the Post-use User eXperience through Cards and a Board 495

Emanuelle Cavalcante, Luis Rivero and Tayana Conte

Designing Personas with Empathy Map (S) . 501

Bruna Ferreira, Williamson Silva, Edson Oliveira and Tayana Conte

xix

SEKE2015 Table of Contents

An approach to identify relevant subjects for supporting the Learning Scheme creation
task (S) . 506

Huander Tironi, Andre Menolli, Sheila Reinehr and Andreia Malucelli

Software Measurement and Metrics

Using peak analysis for identifying lagged effects between software metrics (S) 512

Josee Tasse

Integration of Software Measurement Supporting Tools: A Mapping Study (S) 516

Vińıcius S. Fonseca, Monalessa P. Barcellos and Ricardo De A. Falbo

Toward using Business Process Intelligence to Support Incident Management Metrics
Selection and Service Improvement (S) . 522

Bianca Trinkenreich, Gleison Santos, Valdemar Confort and Flavia Santoro

Software Safety and Security II

Study on the Accident-causing Model Based on Safety Region and Applications in
China Railway Transportation System. 528

Yong Qin, Hui Ma, Miao Du and Limin Jia

Statically-Guided Fork-based Symbolic Execution for Vulnerability Detection (S) 536

Yue Wang, Hao Sun and Qingkai Zeng

How Does Defect Removal Activity of Developer Vary with Development Experience? (S) 540

Reou Ando, Seiji Sato, Chihiro Uchida, Hironori Washizaki, Yoshiaki Fukazawa,
Sakae Inoue, Hiroyuki Ono, Yoshiiku Hanai, Masanobu Kanazawa, Kazutaka Sone,
Katsushi Namba and Mikihiko Yamamoto

Model Transformation and Comparison

Model Comparison: a Systematic Mapping Study . 546

Lucian Gonçales, Kleinner Farias, Murillo Scholl, Toacy Oliveira and Mauricio Veronez

Exploring SOA Pattern Performance using Coupled Transformations and Performance
Models . 552

Nariman Mani, Dorina Petriu and Murray Woodside

On the Specification of Model Transformations through a Platform Independent
Approach (S) . 558

Ana Patricia Magalhaes, Aline Andrade and Rita Suzana Pitangueira Maciel

Testing III

Improved Metrics for Non-Classic Test Prioritization Problems (S) . 562

Ziyuan Wang

An Average Case Time Complexity Estimator for Black-box Functions 567

Duncan Yung, Bill Laboon and Shikuo Chang

xx

SEKE2015 Table of Contents

Automatic Detection of Parameter Shielding for Test Case Generation (S) 571

Jingjian Lin, Jun Yan and Jifeng Xuan

Petri Nets and Formal Methods

PIPE+Verifier - A Tool for Analyzing High Level Petri Nets. 575

Su Liu and Xudong He

SANGE – Stochastic Automata Networks Generator. A tool to efficiently predict events
through structured Markovian models (S) . 581

Joaquim Assunção, Paulo Fernandes, Lucelene Lopes, Angelika Studeny and
Jean-Marc Vincent

Modeling and Analyzing Adaptive Energy Consumption for Service Composition (S) 585

Guisheng Fan, Huiqun Yu and Liqiong Chen

Modeling and Analyzing Publish Subscribe Architcture using Petri Nets 589

Junhua Ding and Dongmei Zhang

Program Verification

Flexible and Extensible Runtime Verification for Java . 595

Chengcheng Xiang, Zhengwei Qi and Walter Binder

Improving the Accuracy of Integer Signedness Error Detection Using Data Flow Analysis . 601

Hao Sun, Chao Su, Yue Wang and Qingkai Zeng

Extracting More Object Usage Scenarios for API Protocol Mining . 607

Deng Chen, Yanduo Zhang, Rongcun Wang, Binbin Qu, Jianping Ju and Wei Wei

Domain-Specific Languages

NeoIDL: A Domain-Specific Language for Specifying REST Services . 613

Rodrigo Bonifacio, Thiago M. Castro, Ricardo Fernandes, Alisson Palmeira and Uirá
Kulesza

A Unified MapReduce Domain-Specific Language for Distributed and Shared Memory
Architectures . 619

Daniel Adornes, Dalvan Griebler, Cleverson Ledur and Luiz Gustavo Fernandes

Towards a Metamodel Design Methodology: Experiences from a model transformation
metamodel design . 625

Ana Patricia Magalhaes, Rita Suzana Pitangueira Maciel and Aline Andrade

Web Applications and Ontological Engineering

Finding and Emulating Keyboard, Mouse, and Touch Interactions and Gestures while
Crawling RIA’s . 631

Frederik Nakstad, Hironori Washizaki and Yoshiaki Fukazawa

An Oracle based on Image Comparison for Regression Testing of Web Applications 639

Akihiro Hori, Shingo Takada, Haruto Tanno and Morihide Oinuma

xxi

SEKE2015 Table of Contents

Towards the Anonymisation of RDF Data . 646

Filip Radulovic, Raúl Garćıa-Castro and Asunción Gómez-Pérez

An Information Retrieval Model using Query Expansion based on Ontologies in the
Computer Science Domain (S) . 652

Bonnie G. Carranza Chávez and Andrés Melgar

Requirements Analysis and Software Architecture

Toward an Architecture for Model Composition Techniques (S) . 656

Kleinner Farias, Lucian Goncales, Murilo Scholl, Toacy Oliveira and Mauŕıcio Veronez

JSAN: A Framework to Implement Normative Agents (S) . 660

Marx L. Viana, Paulo Alencar, Everton T. Guimarães, Francisco J. P. Cunha,
Donald Cowan and Carlos J. P. Lucena

Quantitative Reasoning of Goal Satisfaction in the i*Framework (S) . 666

Chitra M Subramanian, Aneesh Krishna, Arshinder Kaur and Raj P Gopalan

CQV-UML Tool: a tool for managing the impact of change on UML models (S) 670

Dhikra Kchaou, Nadia Bouassida and Hanêne Ben Abdallah

An evolution management model for multi-level component-based software architectures . . 674

Abderrahman Mokni, Marianne Huchard, Christelle Urtado, Sylvain Vauttier and
Huaxi Yulin Zhang

Empirical Software Engineering III

Using Learning Styles of Software Professionals to Improve their Inspection Team
Performance . 680

Anurag Goswami, Gursimran Walia and Abhinav Singh

How do software engineers apply an early usability inspection technique? A qualitative
study . 686

Natasha Valentim, Tayana Conte, Bernardo José and Rafael Prikladnicki

A Empirical Study on the Status of Software Localization in Open Source Projects (S) . . . 692

Zeyad Alshaikh, Shaikh Mostafa, Xiaoyin Wang and Sen He

Agile Software Development and User Interface

bibin-DA: An Agile Domain Analysis Process and its Industrial Evaluation (S) 696

Tassio Vale, Iuri Souza, Ivonei Silva and Eduardo Almeida

A Feature-Based Tool-Selection Classification for Agile Software Development (S) 700

Mohsen Taheri and S. Masoud Sadjadi

Adoption of Software Product Line Development to an Environment of Voice User
Interface (S) . 705

Diógenes R. F. Oliveira, Byron L. D. Bezerra, Elyda L. S. X. Freitas and Alexandre
M. A. Maciel

xxii

SEKE2015 Table of Contents

Adopting Agile Methods in the Public Sector: A Systematic Literature Review (S) 709

Isaque Vacari and Rafael Prikladnicki

Poster/Demo

Modeling Framework for Developing and Testing Network Security Techniques against
DDoS Attacks (P) . 715

Konstantin Borisenko, Ivan Kholod and Andrey Shorov

Natural Language Processing to Quantify Security Effort in the Software Development
Lifecycle (P) . 716

Constantine Aaron Cois and Rick Kazman

Towards Goal-Oriented Conformance Checking (P) . 722

Hiroki Horita, Hideaki Hirayama, Yasuyuki Tahara and Akihiko Ohsuga

Image retrieval based on structural and textual context (P). 725

Sana Fakhfakh Akrout, Mohamed TMAR and Walid MAHDI

Probabilistic Failure-causing Schema in Input-Domain Testing (P) . 726

Ziyuan Wang

CARE: A Computer-Aided Requirements Engineering Tool for Problem-Oriented
Software Development (P) . 727

Guoyuan Liu, Zhi Li and Zhaofeng Ouyang

ExpOse: Inferring Worst-case Time Complexity by Automatic Empirical Study (P). 730

Cody Kinneer, Gregory Kapfhammer, Chris Wright and Phil McMinn

Modeling China Metro Train Route Occlusion Operation Method Based on Time Petri
Nets (P) . 732

Ye Zhang

Modeling China Metro Train Route Occlusion Operation Method Based on Time Petri
Nets (D) . 735

Ye Zhang and Yatao Wang

System Architecture of a Train Sensor Network for Ubiquitous Safety Monitoring (P) 736

Guoqiang Cai and Mengchu Zhou

System Architecture of a Train Sensor Network for Ubiquitous Safety Monitoring (D) 739

Guoqiang Cai

Agile Practices in Maturity Model for Testing: an Experience Report (D) 740

Ana Paula Cavalcanti Furtado, Suzana Sampaio, Ermeson Andrade, Ivaldir Junior
and Marcos André Wanderley Gomes

Author’s Index..A-1
Program Committe Reviewers’ Index...A-11
External Reviewers’ Index...A-16
Note:
(S) indicates a short paper.
(P) indicates a poster, which is not a a refereed paper.
(D) indicates a demo.

xxiii

Towards Building Knowledge on Causes of Critical
Requirements Engineering Problems

 Marcos Kalinowski
 UFF

 Niterói, Brazil
 kalinowski@ic.uff.br

Rodrigo Oliveira Spínola
UNIFACS/Fraunhofer

Salvador, Brazil
rodrigo.spinola@pro.unifacs.br

Tayana Conte
UFAM

Manaus, Brazil
tayana@icomp.ufam.edu.br

 Rafael Prikladnicki
 PUC-RS
Porto Alegre, Brazil

rafael.prikladnicki@pucrs.br

Daniel Méndez Fernández
Technische Universität München

München, Germany
daniel.mendez@tum.de

Stefan Wagner
University of Stuttgart

Stuttgart, Germany
stefan.wagner@informatik.uni-

stuttgart.de

Abstract—[Context] Many software projects fail due to
problems in requirements engineering (RE). [Objective] The goal of
this paper is to gather information on relevant RE problems and to
represent knowledge on their most common causes. [Method] We
replicated a global family of RE surveys in Brazil and used the data
to identify critical RE problems and to build probabilistic cause-
effect diagrams to represent knowledge on their common causes.
[Results] The survey was answered by 74 different organizations,
including small, medium and very large sized companies,
conducting both, plan-driven and agile development. The most
critical RE problems, according to those organizations, are related
to communication and to incomplete or underspecified
requirements. We provide the full probabilistic cause-effect
diagrams with knowledge on common causes of the most critical
identified RE problems online. [Conclusion] We believe that the
knowledge presented in the diagrams can be helpful to support
organizations in conducting causal analysis sessions by providing an
initial understanding on what usually causes critical RE problems.

Keywords—Survey; NaPiRE; Knowledge Building; Requirements

Engineering; Problems; Causes; Causal Analysis.

I. INTRODUCTION

The importance of high-quality requirements engineering
(RE) has been widely accepted and well documented. Pfleeger
[1] states that efficient RE is one of the main factors to avoid
software project failure. RE constitutes a holistic key to
successful development projects [2]. However, industry is still
struggling to apply high-quality RE practices [3] and getting a
further understanding on common RE problems and their causes
is of great interest to both industry and academy. Therefore,
many researchers have addressed identifying and analyzing RE
problems faced by industry [4][5].

More recently, a project called NaPiRE (Naming the Pain in
Requirements Engineering) comprises the design of a family of
surveys on RE practice and problems, and it is conducted in joint
collaboration with various researchers from different countries
[6][7]. The goal of this project is to lay an empirical foundation

about the state of the practice in RE to allow steering future
research in a problem-driven manner [6]. Currently, the NaPiRE
survey is being conducted in several countries around the globe.

Conducting causal analysis sessions [8] is an efficient means
for organizations to improve their practice to overcome problems
faced during software development. In these sessions, the causes
of problems are identified and addressed to prevent their
recurrence in future projects.

Experience reports on conducting causal analysis sessions on
RE problems can be found in [9], [10] and [11]. One of the main
difficulties reported during those sessions concerns the absence
of a starting point for identifying potential causes. An initial
solution concept to address this problem has been proposed in
[12], where an approach for integrating knowledge of successive
causal analysis sessions is described. This approach introduced
the concept of a probabilistic cause-effect diagram, and of using
such diagrams to present accumulated knowledge on the
probabilities of causes based on the organization’s prior causal
analysis experiences on similar problems.

However, although this approach and the probabilistic cause-
effect diagram showed to be useful to support causal analysis
sessions in a proof of concept [13], an experimental study [14]
and an industrial experience [9], the knowledge depicted in the
diagram has to be generated based on intra-company data from
previous causal analysis sessions. Thus, it has to be built
gradually and from scratch for each context, as there is no
general documented and empirically grounded knowledge causes
of critical problems that could be used as a starting point.

In this paper, we aim at gathering information on relevant RE
problems and to represent knowledge on their most common
causes as reported by the industry. Therefore, we replicated the
NaPiRE survey in Brazil. We got answers from 74 different
Brazilian organizations, spread across the country. We then used
the data to identify the reportedly most critical RE problems and
organized knowledge on their common causes by building

(DOI reference number: 10.18293/SEKE2015-220)

1

mailto:kalinowski@ice.ufjf.br

probabilistic cause-effect diagrams for those RE problems and
making them available online1. Therefore, we enable
organizations to use the knowledge presented in these diagrams
as a starting point when conducting causal analysis by providing
a further understanding on common causes of RE problems.

As an initial evaluation, we interviewed an industry
representative of a Brazilian CMMI-Dev level 3 company who is
currently implementing causal analysis practices, showing her
the probabilistic cause-effect diagrams. The feedback was
positive and future work includes conducting a case study of
using those diagrams in industry while conducting causal
analysis sessions on RE problems.

The remainder of this paper is organized as follows. Section
II describes related work. Section III describes the NaPiRE
project and its replication in Brazil. Section IV presents the
survey results on the most critical RE problems and the
probabilistic cause-effect diagrams with knowledge on common
causes of those problems. Section V discusses the obtained
results and their limitations in the light of the diagrams and of an
informal interview conducted with an industry representative.
Section VI presents the concluding remarks and future work.

II. RELATED WORK

In this paper, we aim at identifying relevant RE problems and
building knowledge on their common causes, by replicating a
survey. We propose representing such knowledge using
probabilistic cause-effect diagrams. The following subsections
provide the related work on survey research on RE problems and
on probabilistic cause-effect diagrams.

A. Survey Research on RE Problems

Well-known surveys on causes for project failure include the
Chaos Report of the Standish Group on cross-company root
causes for project failures. While most of these causes are
related to RE, the survey has serious design flaws and the
validity of its results is questionable [15]. Moreover, it
exclusively investigated failed projects and general causes at the
level of overall software processes. Thus, it does not directly
support the investigation of RE problems in industry.

Some surveys have been focusing specifically on RE
problems in industry. These surveys include the one conducted
by Hall et al. [4] in twelve software organizations. Their
findings, among others, suggest that most RE problems are
organizational rather than technical.

Some country-specific investigations of RE problems include
the surveys conducted by Solemon et al. [16] and Liu et al. [17],
with Malaysian and Chinese organizations, respectively.
Khankaew and Riddle [5], more recently conducted semi-

1 http://www.ic.uff.br/~kalinowski/seke15

structured interviews with organizations from Thailand. In the
first results of the NaPiRE survey, the reported RE problems
were mainly identified from German companies [6].

These investigations provide valuable insights into industrial
environments. However, as each of them focuses on specific
aspects in RE or on specific countries, their results are isolated
and not generalizable. To address this issue, the NaPiRE survey
was designed in a joint collaboration as a continuous research
project with researchers from different countries [6]. The design
and interpretation of the results are aligned to a theory [6]. The
survey, being replicated in different countries, shall contribute to
an empirical basis to allow generalizable and problem-driven
research in RE [6].

Given this context, to gather data concerning RE problems,
the Brazilian authors of this paper decided to join the NaPiRE
team and to replicate this survey in Brazil. To facilitate the use
of this knowledge on common causes of RE problems it was
organized into probabilistic cause-effect diagrams [12]. More
details on these diagrams follow.

B. Probabilistic Cause-Effect Diagrams

Probabilistic cause-effect diagrams were introduced in [12] to
provide visual support in causal analysis sessions with
knowledge on common causes of problems gathered from
previous experiences. They have shown to be a useful instrument
in a proof of concept [13], an experimental study [14], and an
industrial experience [9].

An example of such a diagram, taken from the experience
reported in [9] is shown in Figure 1. The diagram extends the
traditional cause-effect diagram [18] by (a) showing the
probabilities for each possible cause to lead to the analyzed
problem, and (b) representing the causes using grey tones, where
causes with higher probability are shown closer to the center and
in darker tones. Following the suggestion of guidelines for
conducting causal analysis [8], it organizes the causes of
problems into five categories: Input, Method, Organization,
People, and Tool. The probabilities shown in Figure 1 were
calculated with data on causes gathered in successive causal
analysis sessions conducted in earlier iterations of the project.
Causes that happened more frequently have higher probabilities.

This representation can be easily interpreted by causal
analysis teams and highlights causes with greater probabilities of
creating the analyzed problem. It allows the teams to efficiently
answer questions during causal analysis sessions, such as:
“Given similar past projects within my organizational context,
with which probability does a certain cause lead to a specific
problem?”. During the causal analysis sessions, the team can use
the probabilistic cause-effect diagram, together with data on the
problem, as input to help building a new cause-effect diagram
with the causes identified in the current session. The newly
identified causes can then be used to update the probabilities for

2

the next session. This support has shown to be useful to support
efficient cause identification [9][14].

Figure 1. A probabilistic cause-effect diagram based on intra-company

industry data for incorrect facts in functional specifications, taken from [9].

However, the main shortcoming of using these diagrams is
that the knowledge on causes of problems is generated intra-
company and has to be built gradually. We believe that cross-
company data taken from a sufficiently wide range of data from
industry,with knowledge on causes of problems provides useful
initial input when analyzing those problems. The problems have
to be calibrated later with intra-company data containing the
specific causes identified in new causal analysis sessions.

To build the necessary inter-company knowledge on common
causes of critical RE problems, initially based on data from
Brazilian companies, we replicated the NaPiRE survey in Brazil.
Information on the NaPiRE project and on the conducted
replication in Brazil is described next.

III. NAPIRE BRAZIL

A. The NaPiRE Project

The NaPiRE project resulted in the design of a global family
of surveys to overcome the problem of isolated investigations in
RE that are not representative [6]. Thus, a long-term goal of the
project is to establish an empirically sound basis for
understanding trends and problems in RE [7].

The design of the survey and its instruments have been
extensively reviewed by several researchers [6]. In summary, the
NaPiRE survey contains 35 questions gathering the following
type of data from the responding organizations: (a) general
information, (b) RE status quo, (c) RE improvement status quo,
(d) RE problems faced in practice, and (e) RE problem
manifestation (e.g., causes, impact).

 The family of surveys is currently being conducted in several
countries. Further information on the project, including the
countries in which the survey is being replicated and a sample of

the questionnaire can be found online2. Concerning its results, so
far initial results from Germany have already been published [6].

B. NaPiRE Survey Replication in Brazil

When we decided to replicate the NaPiRE survey in Brazil, it
was already designed and all the instruments were available.
Therefore, in this section we focus on the details of how we
planned and operated the replication in Brazil. Further
information on the design of the surveys can be found in [6].

To plan the survey replication in Brazil, we held a couple of
meetings with the NaPiRE general organizers2. During these
meetings, the online environment (EFS survey tool3) was
presented and some general guidelines for conducting the survey
were provided. We decided to translate all instruments to
Portuguese, the participants’ native language.

Given the geographic dimensions of Brazil, to reach
organizations from different regions and to gather representative
data, the first author assembled a team of industry-focused
researchers spread across the country. The strategy consisted of
having researchers from the four main industry intensive regions
of the country involved. The resulting NaPiRE Brazil team2
comprises a researcher from the South of the country, one from
the Southeast, one from the North and one from the Northeast.

Additionally, we contacted Softex, the organization
responsible for the most widely adopted software reference
model in Brazil, the MPS-SW, with over 600 assessments in all
Brazilian regions [19]. They promptly trusted us contacts of 254
organizations with currently valid MPS-SW assessments so that
they could be invited to take part in the survey.

Including a set of 80 additional relevant industry contacts
from the authors (20 contacts per author on average), we created
a list with contacts of representatives from 334 software
organizations. We believe this set to be representative for the
Brazilian software industry. Given the size of this industry
(thousands of software organizations [20]), an extensive survey
to reach all of them would be almost impossible.

We then configured the environment and sent the invitations
with a link and password to the online survey to the list of
contacts by e-mail. The survey was sent in December 2014, with
reminders in January 2015 and February 2015. In total, 118 of
the 334 invited organization representatives logged in to answer
the survey. Out of these, 74 representatives answered the
questionnaire completely (9 only read the initial instructions, 18
dropped at the first page of the questionnaire, and 17 dropped
the survey in the middle). The median time to answer the survey
completely was 29 minutes.

2 www.re-survey.org
3 www.unipark.com/en

3

IV. TOWARDS BUILDING KNOWLEDGE ON CAUSES

OF CRITICAL RE PROBLEMS

In this section, we provide the initial survey results
concerning the identified critical RE problems and their common
causes as reported by industry. We also explain how the gathered
information was organized into probabilistic cause-effect
diagrams to provide a further understanding on common causes
of RE problems. We start by presenting the characterization of
the responding organizations as this information is crucial to
enable a correct interpretation of the results.

A. Characterization of the Responding Organizations

To provide a summary of the characterization of the
responding organizations, we will present information on their
size and the used process models and RE standards. We will also
present the roles of the participants within the organizations and
their experience in this role.

Concerning size, in Table I we can observe that the survey
included both extremes, small and medium-sized and very large-
sized organizations.

TABLE I. SIZE OF THE SURVEYED ORGANIZATIONS

Size* No. of Answers
1-10 Employees 11 (15.49%)

11-50 Employees 15 (21.13%)

51-250 Employees 17 (23.94%)

251-500 Employees 5 (7.04%)

501-1000 Employees 3 (4.23%)

1001-2000 Employees 5 (7.04%)
More than 2000 Employees 15 (21.13%)
Invalid (missing) answers 3 (N/A)

* Size including software and other areas.

Regarding the process model, Table II shows that most of the
surveyed organization adopt agile (mainly Scrum-based) process
models, followed by iterative and incremental process models
and the traditional waterfall model. It is noteworthy that some
organizations informed to use more than one process model to
handle different types of projects. One explanation for changing
process models is that organizations might have to follow a
waterfall model during a bidding procedure while adopting
scrum once the project is formally assigned.

TABLE II. PROCESS MODEL

Process Model No. of Answers
Scrum 45 (60.81%)

Waterfall 22 (29.73%)

Rational Unified Process (RUP) 19 (25.68%)

Extreme Programming (XP) 7 (9.46%)

V Model 4 (5.41%)

Others* 11 (14.86%)
* Others includes self-adapted process models (4), other iterative and
incremental development process models (4) and other process models based on
agile methods (3).

In Table III, we can observe that most of the surveyed
organizations follow reference-model-based standards, such as
MPS-SW and CMMI-Dev. This, of course, may have been
influenced by the strategy of also distributing the survey to the
organizations with valid MPS-SW assessments. Nevertheless,
many organizations answered that they follow the standards of
the adopted development process and their own standards.

TABLE III. RE STANDARD (OR REFERENCE MODEL)

RE Standard No. of Answers
SW reference model (e.g., CMMI-Dev, MPS-SW) 39 (52.70%)

Adopted development process (e.g., RUP, Scrum) 25 (33.78%)

Self-defined (including a process with deliverables,
milestones and phases)

19 (25.68%)

Self-defined (including a process with roles and
responsibilities)

18 (24.32%)

Self-defined (including artefacts and templates) 18 (24.32%)

None 1 (1.35%)

To characterize the participants, their roles in the
organization are shown in Table IV and their experience in these
roles is shown in Table V. It can be seen that participants are
mainly project managers and highly experienced.

TABLE IV. ROLES OF THE PARTICIPANTS

Role No. of Answers
Project Manager 32 (45.07%)

Business Analyst 8 (11.27%)

Developer 4 (5.63%)

Software Architect 4 (5.63%)

Test Manager / Tester 3 (4.23%)

Requirements Engineer 2 (2.82%)

Others* 18 (25.35%)

Invalid (missing) 3 (NA)
* Other informed values include development directors, program managers and
portfolio managers (7), quality assurance analysts (7), and people from the
software engineering process group (4).

TABLE V. EXPERIENCE OF PARTICIPANTS IN THEIR ROLES

Experience No. of Answers
Specialist (more than 3 years) 52 (73.24%)

Experienced (1 to 3 years) 15 (21.13%)

Newbie (up to 1 year) 04 (5.63%)

While we had no control over which organizations and
representatives would answer the survey, we were happy to
obtain such a representative characterization, including small,
medium and very large-sized organizations enrolled in both,
plan-driven and agile development methods, and to have our
answers provided mainly by highly experienced professionals.

B. Critical RE Problems

Based on a set of 21 precompiled general RE problems listed
in the NaPiRE questionnaire [6], the participants were asked to
rank the five most critical ones.

4

The most critical RE problems, as ranked by the survey
participants, are shown in Table VI. This table shows the 8 RE
problems that were cited between the five most critical ones by
more than 20% of the respondents. The table also shows how
often each of these problems was ranked as being the most
critical problem of all. We observe that communication problems
were often cited (problems #1 and #4), as well as incomplete and
underspecified requirements (problems #2 and #3).

TABLE VI. MOST CRITICAL RE PROBLEMS

RE Problems Cited* Ranked #1*

1 Communication flaws between the
project team and the customer

32 (43.24%) 9 (12.16%)

2 Incomplete and/or hidden requirements 31 (41.89%) 12 (16.22%)

3
Underspecified requirements that are too
abstract and allow for various
interpretations

31 (41.89%) 3 (4.05%)

4 Communication flaws within the project
team

26 (35.14%) 5 (6.67%

5 Insufficient support by customer 21 (28.38%) 5 (6.76%)

6 Inconsistent requirements 18 (24.32%) 2 (2.70%)

7 Time boxing / Not enough time in
general

17 (22.97%) 1 (1.35%)

8 Moving targets (changing goals,
business processes and/or req.)

15 (20.27%) 5 (6.67%

* The probabilities were calculated based on the overall amount of 74
participants although some of them (9) did not inform any of the problems. We
decided to keep the total amount as basis because we were not sure if they did
not find the problems relevant or if they did not want to think about it.

C. Causes of Critical RE Problems

After selecting the five most critical RE problems, we asked
our respondents to provide what they believe of being the main
causes for each of the problems. They provided the causes in an
open question format, with one open question for each of the
previously selected RE problems.

We analyzed the provided qualitative data and aggregated
similar causes even when textual descriptions differed; always
counting the number of times each cause was reported for a
given problem. Therefore, we used the constant comparative
method [21] to compare each textual cause description against
our already catalogued list of causes.

Thereafter, to build the probabilistic cause-effect diagrams
for each RE problem, we categorized the causes as suggested in
[8] and generated probabilities based on frequency counting.
Figure 2 shows the probabilistic cause-effect diagram for the
problem ‘Incomplete and/or hidden requirements’ (#2 in Table
VI). The 31 organizations that ranked this problem among the
most critical provided 34 instances of causes for it, which could
be mapped to a list of 20 catalogued causes with different
frequencies that were used as input to generate the diagram. It
can be seen that, according to the survey participants, the most
common causes for this problem are related to the people
category and the lack of skills in RE (29.41%), although the

Method and Input categories each were responsible for more
than 20% of the causes informed for this problem.

Due to space limitations, the remaining probabilistic cause-
effect diagrams for the five top ranked RE problems are
available online1, where the user can select the problem and then
look at the respective diagram to obtain a further understanding
on common causes.

Figure 2. Probabilistic cause-effect diagram based on problem ‘Incomplete

and/or hidden requirements’ based on the surveyed industry data.

V. DISCUSSION

Given our previous causal analysis experiences, the wide
range of organizations that participated in the survey and their
representative characterization (including, for instance,
differently sized plan-driven and agile-oriented organizations),
we believe that the resulting probabilistic cause-effect diagrams
generated from cross-company data should provide useful
additional input into causal analysis sessions for companies
working in same or similar project settings. This is especially
true for organizations that do not have any accumulated
knowledge on common causes of RE problems.

It is noteworthy that organization may also need to calibrate
the probabilities of the diagrams with the causes identified in
their own causal analysis sessions, by using an approach similar
to the one detailed in the experience described in [9]. Still, we
believe that the knowledge on common causes generated as a
contribution of this paper constitutes a useful starting point.

To provide some preliminary support for these claims, we
interviewed an industry representative of the software
engineering process group of a Brazilian CMMI-Dev level 3
company that is currently implementing causal analysis
practices. We showed her the probabilistic cause-effect diagrams
and she found the contained knowledge useful and was promptly
willing to use the diagrams to support causal analysis sessions in
her environment. This strengthens our confidence in the
suitability of our results to establish an intra-company knowledge
base on common RE problems and their causes.

5

VI. CONCLUDING REMARKS

In this paper, we gathered data on critical RE problems and
their common causes by replicating the NaPiRE survey in Brazil.
We presented the results concerning the most critical RE
problems and represented the knowledge on common causes of
these problems by building probabilistic cause-effect diagrams.

The chosen dissemination strategy enabled us to get answers
from a wide range (74) of Brazilian organizations. The
characterization showed a large diversity of the responding
organizations including differently sized plan-driven and agile-
oriented organizations.

The survey results allowed us to identify the most critical RE
problems according to the responding organizations (Table VI)
and to observe that they are mainly related to communication
problems and incomplete or underspecified requirements. In
addition, the probabilistic cause-effect diagrams (see Figure 2)
showed to be suitable for the presentation of knowledge on
common causes of the RE problems in an easily understandable
way. The probabilistic cause-effect diagrams for the RE
problems identified as the five most critical ones are available
online1. We believe that these diagrams provide useful input into
causal analysis sessions at specific organizations, especially for
organizations that do not have accumulated knowledge on
common causes of their RE problems. Case studies on this
matter form a high-priority scope of our future work.

Future work also comprises: (a) considering more NaPiRE
data (from different countries) to build the knowledge on
common causes based on a larger cross-company dataset, (b)
further exploring other data gathered as part of the NaPiRE
Brazil survey, such as RE problem mitigation actions, and (c)
integrating the overall survey results into an empirical software
engineering body of knowledge [22].

ACKNOWLEDGMENT
The authors would like to thank Softex and each of the 74

responding organizations. Thanks also to CNPq for financial
support (project #460627/2014-7).

REFERENCES
[1] S.L. Pfleeger, “Software Engineering: Theory and Practice”, 4th edition,

Prentice-Hall, 2009.

[2] M. Broy, “Requirements Engineering as a Key to Holistic Software
Quality”, In: International Symposium on Computer and Information
Sciences (ISCIS 2006), pp. 24–34, 2006.

[3] D. Méndez Fernández, S. Wagner, K. Lochmann, A. Baumann, H. de
Carne, “Field Study on Requirements Engineering: Investigation of
Artefacts, Project Parameters, and Execution Strategies”, Information and
Software Technology, vol. 54, pp. 162–178, 2012.

[4] T. Hall, S. Beecham and A. Rainer, “Requirements Problems in Twelve
Software Companies: an Empirical Analysis”, Empirical Software
Engineering, vol. 8, pp. 7-42, 2003.

[5] S. Khankaew and S. Riddle, “A review of practice and problems in
requirements engineering in small and medium software enterprises in

Thailand”, In: International Workshop on Empirical Requirements
Engineering (EmpiRE), pp.1-8, 2014.br

[6] D. Méndez Fernández and S. Wagner, “Naming the Pain in Requirements
Engineering: A Design for a Global Family of Surveys and Frst Results
from Germany", Information and Software Technology, vol. 57, pp. 616-
643, 2015.

[7] D. Méndez Fernández and S. Wagner, “Naming the pain in requirements
engineering: Design of a global family of surveys and first results from
Germany”, in: International Conference on Evaluation and Assessment in
Software Engineering (EASE), pp. 183–194, 2013

[8] M. Kalinowski, D.N. Card and G.H. Travassos, “Evidence-Based
Guidelines to Defect Causal Analysis”, IEEE Software, Vol. 29, Issue 4,
pp. 16-18, 2012.

[9] M. Kalinowski, E. Mendes and G.H. Travassos, “An Industry Ready
Defect Causal Analysis approach exploring Bayesian Networks”, In:
Software Quality Days, pp 12-33, 2014.

[10] O. Kovalenko, D. Winkler, M. Kalinowski, E. Serral and S. Biffl,
“Engineering Process Improvement in Heterogeneous Multi-Disciplinary
Environments with Defect Causal Analysis”, In: European Conference on
System, Software & Service Process Improvement (EuroSPI), 2014.

[11] M. Kalinowski, R.O. Spínola, A.C. Dias-Neto, A. Bott and G.H.
Travassos, “Inspeções de Requisitos de Software em Desenvolvimento
Incremental: Uma Experiência Prática”, In: VI Simpósio Brasileiro de
Qualidade Software (SBQS), Porto de Galinhas, Brazil, 2007.

[12] M. Kalinowski, G.H. Travassos and D.N. Card, “Towards a Defect
Prevention Based Process Improvement Approach”, In: Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),
pp. 199-206, 2008.

[13] M. Kalinowski, G.H. Travassos, E. Mendes and D.N. Card, “Applying
DPPI: A Defect Causal Analysis Approach Using Bayesian Networks”, In:
International Conference on Product Focused Software Development and
Process Improvement (PROFES), pp. 92–106, 2010.

[14] M. Kalinowski, E. Mendes, and G.H. Travassos, “Automating and
Evaluating the Use of Probabilistic Cause-Effect Diagrams to Improve
Defect Causal Analysis”, In: International Conference on Product Focused
Software Development and Process Improvement (PROFES), pp. 232-246,
2011.

[15] J. Eveleens and T. Verhoef, “The Rise and Fall of the Chaos Report
Figures”, IEEE Software, vol. 27, pp. 30-36, 2010.

[16] B. Solemon, S. Sahibuddin and A. A. Abd Ghani, “Requirements
Engineering Problems and Practices in Software Companies: An Industrial
Survey”, Advances in Software Engineering, vol. 59, pp.70-77, 2009.

[17] L. Liu, T. Li and F. Peng, “Why requirements engineering fails: A survey
report from china”, International Conference on Requirements Engineering
(RE), pp. 317-322, 2010.

[18] K. Ishikawa, “Guide to Quality Control”, Asian Productivity Organization,
Tokyo, 1976.

[19] M. Kalinowski, K. Weber, N. Franco, V. Duarte, G. Santos, and G.
Travassos, “Results of 10 Years of Software Process Improvement in
Brazil Based on the MPS-SW Model”, In: Int. Conf. on the Quality in
Information and Communications Technology (QUATIC), pp.28-37, 2014.

[20] Softex, “Software e Serviços de TI: A Indústria Brasileira em Perspectiva”,
Observatório Softex (ISSN 1984-6797), vol. 2, 2012.

[21] C. B. Seaman, “Qualitative methods in Empirical Studies of Software
Engineering”, IEEE Transactions on Software Engineering (TSE), vol. 25,
no. 4, pp. 557-572, 1999.

[22] S. Biffl, M. Kalinowski, R. Rabiser, F.J. Ekaputra and D. Winkler,
“Systematic Knowledge Engineering: Building Bodies of Knowledge from
Published Research”, International Journal on Software Engineering and
Knowledge Engineering (IJSEKE), vol. 24, No. 10, pp. 1–39, 2014.

6

Identification and Classification of Requirements

from App User Reviews

Hui Yang

State Key Lab of Software Engineering

School of Computer, Wuhan University, China

huiyang@whu.edu.cn

Peng Liang*

State Key Lab of Software Engineering

School of Computer, Wuhan University, China

liangp@whu.edu.cn

Abstract—Review function, as a feedback mechanism from users

to developers and vendors, is provided by most APP distribution

platforms that allow users to rate and comment an APP after

using it. User reviews are recognized as a valuable source to

improve APPs and increase the value for users. With the sharp

increase in the amount of user reviews, how to effectively and

efficiently analyze the user reviews and identify potential and

critical user needs from them to improve the APPs becomes a

challenge. In this paper, we propose an approach to

automatically identify requirements information and further

classify them into functional and non-functional requirements

from user reviews, using a combination of information retrieval

technique (TF-IDF) and NLP technique (regular expression) with

human intervention in keywords selection for requirements

identification and classification. We validated the proposed

approach with the user reviews collected from a popular APP

iBooks in English App Store, and further investigated the cost

and return of our approach: how the size of sample reviews for

keywords selection (cost) affects the classification results in

precision, recall, and F-measure (return). The results show that

when setting an appropriate size of sample reviews, our approach

receives a relatively stable precision, recall, and F-measure of

requirements classification, in particular for non-functional

requirements, which is meaningful and practical for APP

developers to elicit requirements from user reviews.

Keywords-requirements identification; requirements

classification; user review analysis

I. INTRODUCTION

Review function is provided by most APP distribution
platforms (e.g., Apple App Store, Google Play) that allow users
to rate and comment an APP after using it, which provides a
feedback mechanism from users to developers and vendors of
the APP. User reviews are recognized as a valuable source to
improve APPs and increase the value for users [9][18], as the
reviews help developers to better understand user needs as a
type of collective knowledge [19]. However, existing APP
platforms provide limited support for developers to
systematically filter, aggregate, and classify user feedback to
derive requirements [9]. User review and rating information
has been investigated for technical and business purposes (e.g.,
APP price prediction) [11]. Pagano and Maalej collected the
user reviews of the top 25 APPs from each of the 22 categories
from App Store [1]. Based on the review data, they studied the
content of user feedback and its impact on the user community.
Chandy and Gu proposed an approach to automatically identify
spam reviews in the iOS App Store [5]. However, there is little
work on systematically and automatically identifying and

classifying requirements information from user reviews, which
will significantly improve requirements elicitation and analysis
in APP development. To this end, we propose an approach to
automatically identify requirements information from user
reviews and further classify them into functional (FR) and non-
functional requirements (NFR), which are the basic
classification of software requirements. For the practical
application of the proposed approach, we further analyze the
cost and return of our approach: how the size of sample
reviews for keywords selection (i.e., the cost, described in
Section III) affects the classification results in precision, recall,
and F-measure (i.e., the return, presented in Section IV.C).

In the rest of this paper: Section II provides an overview of
our proposed approach and the tool support. Section III
describes the principles, TF-IDF technique, and process of
selecting keywords for automated requirements identification
and classification. Section IV presents the experiment material
(user reviews of a popular APP iBooks) and the experiment
results. The implications of the results are discussed in Section
V. The threats to validity are described and analyzed in Section
VII. Related work is discussed in Section VI. We conclude this
work with further work directions in Section VIII.

II. APPROACH AND TOOL SUPPORT

When developing and continuously updating APPs,
developers (especially requirements engineers) are responsible
for being very much concerned about user experience and
needs (e.g., privacy requirements [20]). If the requirements
information from user reviews can be automatically identified
and classified, it will significantly help developers and vendors
to improve the quality and satisfaction of the APPs, for
example, collecting critical and missing features for APP
update. To this end, we propose an automated approach with
tool support for identifying and classifying requirements from
user reviews (see Fig. 1). There are two components in this tool:
User Reviews Extractor is used to extract and collect user
review information from APP platforms as raw data to be
further processed, and Requirements Identifier and
Classifier is used to identify and classify requirements from
user reviews into FRs and NFRs.

APP URL ID APP Country ID

Comment of

User Review

User Reviews

Extractor
Title of

User Review

Requirements

Keywords

Requirements

Identifier and

Classifier

FR

NFR

Figure 1. Proposed approach and tool architecture

* Corresponding author
This work is sponsored by the NSFC under Grant No. 61170025.

(DOI reference number: 10.18293/SEKE2015-063) 7

A. User Reviews Extractor

User Reviews Extractor uses APP URL ID and APP
Country ID as input parameters to extract the user reviews of
an APP from a specific APP platform. In the experiment of this
work, we extracted and collected user reviews (including
comment and title of user reviews) from APPs in Apple App
Store. User Reviews Extractor uses the APIs provided by an
open source package AppReviews

1
 for accessing and retrieving

the user reviews from App Store, which provides individual
web portal in different countries with local languages. Each
country store has its own APP Country ID, which allows us to
access App Store for each country and retrieve the user review
data of a specific APP using APP URL ID.

B. Requirements Identifier and Classifier

Requirements Identifier and Classifier is used to
automatically identify requirements from user reviews and
further classify them into FRs and NFRs. The inputs of
Requirements Identifier and Classifier are the title and
comment of user reviews and the extracted keywords (detailed
in Section III) and the outputs are FRs and NFRs that are
automatically classified. Note that some input user reviews
may not contain any requirements information, which are
namely spam reviews. These spam reviews

2
 are roughly

filtered out in Phase 2 (i.e., pre-processing user reviews). The
execution process of this component is composed of five
sequential phases as shown in Fig. 2, which are further detailed
in this section.

Phase 1: Input User Reviews
(obtained by APIs of Apple App Store)

Phase 2: Pre-process User Reviews

(combine title and comment of review,

stop-word elimination, stemming)

Phase 3: Extract Keywords

(use TF-IDF technique with human

intervention)

Phase 4: Combine Keywords

(use regular expression)

Phase 5: Identify and Classify Reviews

(into FRs and NFRs)

Figure 2. Processing phases of Requirements Identifier and Classifier

Phase 1: Input User Reviews to be processed: Preparing
user reviews to be processed obtained by User Reviews
Extractor as the input of Requirements Identifier and
Classifier.

Phase 2: Pre-process User Reviews: User reviews obtained
by User Reviews Extractor are pre-processed by
automatically combining the title and comment of these

1 http://www.perculasoft.com/appreviews/
2 We are not intending to filter out all spam reviews, but only the obvious

spams to improve the efficiency of subsequent processing.

reviews as the target content, followed by eliminating
punctuation marks (such as “,” , “.”) and stop words in natural
language processing, like “a”, “the”, and “this”, filtering out
spam reviews (e.g., the reviews less than three words), as well
as word stemming [3].

Phase 3: Extract Keywords: In this phase, human experts
(e.g., requirements engineers) first manually identify and
classify a certain number of user reviews as NFRs or FRs,
which are regarded as correct classifications, and then these
classified NFRs and FRs are used as sample reviews to extract
requirement keywords for automated identification and
classification of NFRs and FRs respectively. These
requirement keywords are automatically extracted from the
sample reviews using TF-IDF technique [16] with human
intervention by following the keywords extraction procedure
detailed in Section III.B.

Phase 4: Combine Keywords: Requirements Identifier
and Classifier combines the extracted keywords, the
requirement keywords from each sample review (obtained from
Phase 3), in various logical relationships (e.g., OR “|”) of
regular expressions (e.g., bug|crash). These regular expressions
are used to match (identify and classify) user requirements
from user reviews in Phase 5. For example, for FR,
^is|are*choice$, which represents such phrases “is … choice”
or “are … choices”.

Phase 5: Identify and Classify User Reviews: User
requirements are identified and classified from the pre-
processed content of reviews (obtained from Phase 2) using the
regular expressions (obtained from Phase 4). A user review is
automatically identified as requirement and classified into a
NFR (or FR) using the regular expressions if the review can
match the regular expressions (obtained from Phase 3). Note
that, the identification and classification of requirements are
performed in one step.

III. KEYWORDS SELECTION

A. Sample Reviews

According to the description in [14], a functional
requirement specifies “a function that a system must be able to
perform”, “what the product/system should do”, and a non-
functional requirement is restricted to a set of specific qualities
other than functionality: such as usability, reliability, and
security. For example, a user review: “the loss of the bookshelf
look, the boring and ugly flat design plus the stark white
background make it extremely difficult to read anything on this
app.” can be manually classified by domain experts as a NFR
usability; another user review: “at least give me the option of
how I would prefer it to look.” can be categorized as a FR that
allows users to configure the style of UI. These manually
identified and classified NFRs and FRs are used as sample
reviews to extract keywords for NFR and FR identification and
classification.

B. Keywords Extraction

As shown in Fig. 1, the requirement keywords are used to
identify requirements information from user reviews and
further to classify them into FRs and NFRs. The selection of

8

http://www.perculasoft.com/appreviews/

the keywords is critical to the quality of the requirements
identification and classification results.

In the field of information retrieval, Term Frequency -
Inverse Document Frequency (TF-IDF) [16] is a statistic-based
technique used to reflect how important a word is to a
document in a collection or corpus. This technique has been
successfully applied to text mining and classification (e.g.,
[15]). We use TF-IDF to calculate and evaluate the importance
of a word extracted from each sample NFR (or FR) review to
the set of sample NFR (or FR) reviews that are manually
classified by domain experts. TF means the importance of a
word extracted from each sample NFR (or FR) review to the
sample review. The words that obtain a high TF-IDF score in
each sample review require further checking by human experts,
who judge and select the keywords which act as representative
keywords of the sample review. For example, “privacy” is not
considered as the keyword for FR, and “feature” is filtered out
from the keywords for NFR. The selection criteria employed
by human experts are very simple: for FR, the words which
typically represent the NFR information should be excluded
from the FR keywords (e.g., “privacy”, “security”, “usability”,
and “crash”); for NFR, the words which typically represent the
FR information should also be excluded from the NFR
keywords (e.g., “feature” and “choice”).

The formulas for calculating the TF-IDF score of each word
[16] are as follows (Formula (1) and (2) are used for
calculating the TF-IDF score of NFR and FR words
respectively), which are further explained below.

 (Rv, w) | R(w) | (w)
Score (w) log

| Rv | (w) (w)
nfr

freq Nnfr

Na Na
   

 (Rv, w) | R(w) | (w)
Score (w) log

| Rv | (w) (w)
fr

freq Nfr

Na Na
   

Each word w in a sample review (NFR or FR) will obtain a
TF-IDF score Scorenfr(w) or Scorefr(w), which represents the
importance of the word w in identifying and classifying user
reviews. freq(Rv,w)/|Rv| denotes the TF (term frequency)
section of TF-IDF, in which |Rv| refers to the quantity of all the
words contained in the review Rv and freq(Rv,w) represents the
frequency of word w appearing in the sample review Rv.
log(|R(w)|/Na(w)) represents the IDF (inverse document
frequency) section of TF-IDF, in which Na(w) denotes the
number of sample reviews that contain the word w, and |R(w)|
denotes the number of reviews to be classified that contain the
word w. Nnfr(w) or Nfr(w) represents the number of NFR or
FR sample reviews that contain the word w. Nnfr(w)/Na(w) in
Formula (1) or Nfr(w)/Na(w) in Formula (2) implies if the word
w is more densely distributed in the set of sample NFR or FR
reviews, the word w is more important (i.e., Score(w) is higher)
in identifying and classifying NFRs or FRs from user reviews.

According to the obtained TF-IDF score of each word, the
words are extracted from each sample review as representative
requirement keywords of this sample review, and they are
added into the requirement keywords set (duplicated keywords
are removed). When keywords are extracted from all sample
reviews and added to the keywords set, the keywords selection
process is finished. The requirement keywords set is then used

to identify and classify requirements from user reviews. One
user review can be classified as NFR or FR when it contains
(can match) the requirement keywords of NFR or FR in the
requirement keywords set.

IV. EXPERIMENT

A. Experiment Material

iBooks is a popular APP in the books category to read and
buy books online through various Apple devices. This APP is
provided for free in App Store. We decided to choose the user
reviews of iBooks APP in English App Store as experiment
material for the following reasons: (1) there are a large number
of users of iBooks APP, which provide rich review data for the
experiment; (2) the user reviews of this APP can be easily
classified without the necessity of much domain knowledge,
which improves the reliability of the experiment results (further
discussed in Section VI); and (3) the review data in English is
widely understandable which might act as benchmark data for
other researchers to repeat this experiment using their own
classification methods and tools.

B. Selected Keywords

As described in Section III, keywords are selected from a
set of manually classified sample reviews. To investigate the
cost and return of our approach, i.e., how the size of sample
reviews (cost) for keywords selection affects the classification
results (return), we provide increasing sizes of sample reviews
as follows: 1, 3, 5, 7, 9, 10, 20, 30, 50, and 100. It is worth
noting that these sets of sample reviews are independent of
each other (i.e., one user review cannot exist in two sample
sets). We then extracted the keywords from different size of
sample reviews for identifying and classifying user
requirements by following the keywords extraction procedure
(in Section III.B). We first extracted the keywords from the
latest “1” user review of iBooks APP, and then we iterated the
keywords selection steps towards the remaining latest 3, 5, 7, 9,
10, 20, 30, 50, and 100 reviews from iBooks. Finally, all the
selected keywords from each set of sample reviews are
collected in an XML file and used to identify and classify
requirements from the user reviews of iBooks. The requirement
keywords, extracted using TF-IDF for each set of sample
reviews, and further checked by human experts (see Section
III.B), are available online

3
.

C. Experiment Results

To investigate the effectiveness of our approach, we
compare the manual classification results by experts (the two
authors), which act as ground truth, with the identification and
classification results. The experiment use 1000 user reviews as
experiment material retrieved from iBooks APP in English App
Store. For the practical application of the approach, we further
analyze the cost and return of our approach as discussed in
Section IV.B, i.e., the experiment results are further evaluated
and compared with different sizes of sample reviews (cost)
using precision, recall, and F-measure of the classification
results (return). The experiment results are presented below.

3 http://www.cs.rug.nl/search/uploads/Resources/TF-IDF-Keywords.zip

9

http://www.cs.rug.nl/search/uploads/Resources/TF-IDF-Keywords.zip

In iBooks APP from English App Store, we obtained 217
(set B in Fig. 3) user reviews containing FR information and
622 user reviews containing NFR information among the 1000
user reviews (some user reviews may contain both FR and
NFR information) by manual classification (i.e., the ground
truth). To examine that how the size of sample reviews affects
the classification results, we provide the sizes of sample
reviews as follows: 1, 3, 5, 7, 9, 10, 20, 30, 50, and 100, which
is shown in the x-axis of Fig. 4 and Fig. 5.

We evaluate our approach through comparing automated
classification results with manual classification results. We use
F-measure which is a combination of precision and recall used
in the evaluation of information retrieval systems [2] to
measure the overall performance of the automated
classification results.

In this work, precision means the percentage of user
reviews that are correctly classified as FRs or NFRs compared
to all the classified results (i.e., set A divided by C as illustrated
in Fig. 3), and the recall refers to the percentage of user reviews
that are correctly classified as FRs or NFRs compared to the
manual classification results - the ground truth (i.e., set A
divided by B in Fig. 3).

B: Number of user reviews

containing FRs

(manual classification results

ground truth)

A: Number of user reviews that are

correctly classified as FRs

(part of automatic classification results)

C: Number of user reviews that are

classified as FRs

(automatic classification results)

RECALL = A / B PRECISION = A / C

Figure 3. Recall and Precision calculation for classification results evaluation

We calculate and get the evaluation results of FR and NFR
classification as shown in TABLE I and TABLE II respectively
(including the size of sample reviews, the number of extracted
keywords using TF-IDF, Precision, Recall, and F-measure for
FR and NFR classification). Fig. 4 and Fig. 5 show the trend
line of Recall, Precision, and F-measure for FR and NFR
classification results on iBooks user reviews along with
different sample sizes of user reviews. These two figures show
that the value of F-measure (represented in blue line) is
significantly increased as the size (number) of sample reviews
increases, but when the size of sample reviews reaches a
certain threshold, the value of F-measure tends to be stable.
The possible explanation of the experiment results and their
implications will be discussed in Section V.

TABLE I. RESULTS OF AUTOMATED FR CLASSIFICATION ON 1000

IBOOKS USER REVIEWS WITH DIFFERENT SIZES OF SAMPLE REVIEWS

Sample Size
No. of

Keywords
Precision Recall F-measure

1 5 0.000 0.000 0.000

3 15 0.406 0.129 0.196

5 18 0.454 0.184 0.262

7 20 0.469 0.207 0.288

9 24 0.404 0.281 0.332

10 26 0.394 0.249 0.305

20 53 0.385 0.525 0.444

30 56 0.356 0.710 0.474

50 75 0.383 0.636 0.478

100 116 0.350 0.760 0.479

Figure 4. Trend lines of Precision, Recall, & F-measure for FR classification
on 1000 iBooks user reviews with different sizes of sample reviews

TABLE II. RESULTS OF AUTOMATED NFR CLASSIFICATION ON 1000

IBOOKS USER REVIEWS WITH DIFFERENT SIZES OF SAMPLE REVIEWS

Sample Size
No. of

Keywords
Precision Recall F-measure

1 5 0.909 0.032 0.062

3 12 0.837 0.215 0.342

5 16 0.836 0.418 0.557

7 25 0.816 0.740 0.776

9 22 0.820 0.698 0.754

10 28 0.826 0.704 0.760

20 43 0.795 0.810 0.803

30 57 0.758 0.897 0.823

50 82 0.761 0.895 0.823

100 104 0.745 0.924 0.825

Figure 5. Trend lines of Recall, Precision, & F-measure for NFR classification

on 1000 iBooks user reviews with different sizes of sample reviews

10

V. DISCUSSION

We explain the experiment results and discuss their
implications according to the visualization in Fig. 4 and Fig. 5.

1) In both Fig. 4 and Fig. 5, the value of F-measure

dramatically increases when the sample size increases initially

(e.g., from 1 to 20 for FR classification, and from 1 to 7 for

NFR classification), and after that size (number) the value of F-

measure tends to be stable. This result implies that there is a

certain threshold of sample size that can achieve a comparably

good and balanced classification results without the necessity

to increase the sample size unceasingly.

2) The significant difference between the thresholds of

sample size for FR and NFR classification (20 vs. 7 in this

experiment) implies that NFR classification requires less

sample reviews to get a decent set of keywords reaching a

stable F-measure than FR classification, which is reasonable

since the FR keywords are more domain-dependent than the

NFR keywords. This may also explain a relatively higher F-

measure (e.g., when the sample size is 100) of the NFR

classification results (0.825) than the FR results (0.479).

3) From both Fig. 4 and Fig. 5, it can be found that the

three trend lines of Precision, Recall, and F-measure have an

intersection point (e.g., a sample size (number) between 10 to

20 for FR classification, and 20 for NFR classification), and

after that size (number) the value of F-measure tends to be

stable. This intersection point seems providing a reliable way to

decide the threshold of sample size as discussed in point (1) for

a balanced (cost vs. return) classification results. But this

conjecture should be validated with more experiments (APPs).

VI. THREATS TO VALIDITY

We discuss the threats to the validity by following the
guidelines in [4] and how they are partially mitigated.

Construct validity: We use F-measure from information
retrieval theory to evaluate the requirements classification
results. The automated requirements classification with our
approach is basically an information retrieval activity since
both of them use keywords to get results.

Internal validity focuses on the unknown factors that may
have an influence on the study results. This experiment is a
study about the performance of the proposed approach (to what
extend the approach can identify and classify requirements
from user reviews) using descriptive statistics. In other words,
we did not investigate and intend to establish any causal
relationship between the identification and classification results
and the factors that may impact the results in this study, and the
threats to internal validity are minimal.

External validity: We applied our approach to a popular
APP from the books category (application domain) in English
App Store with promising results. This experiment can be
repeated with APPs in other domains and languages to improve
the applicability and generalizability of the proposed approach.

Reliability: The manual requirements classification results
by experts are regarded as ground truth to be compared with
the automated classification results for the evaluation (in

Section IV.C), but the manual classification results might be
different when conducted by different experts, which makes the
evaluation results not reliable. We tried to mitigate the
influence of this issue by three measures: (1) we selected a
general APP iBooks and its reviews can be reliably classified
without the need of much domain knowledge. (2) the manual
classification results by the first author were checked by the
second author, and any disagreement on the classification
results was discussed and resolved. (3) the manual
classification results were further examined by 10 master
students, who major in software engineering through voting.
We also set criteria (see Section III.B) to select requirement
keywords by experts, and this mitigates the bias when different
experts select representative keywords from the keywords
obtained by TF-IDF.

VII. RELATED WORK

We summarize and discuss relevant work and their
relationship to our work in this section.

Chen and his colleagues proposed a method to
automatically mine informative reviews for APP developers,
and further rank these informative reviews [21]. Our work aims
to identify and classify the informative reviews that contain
requirement information as functional and non-functional
requirements.

Khalid and his colleagues [17] focused on low star-rating
user reviews of free iOS APPs, and identified 12 types of
complaints that users complain about. They found that
functional errors, feature requests, and APP crashes are the
most frequent complaints, which supports that user reviews are
indeed rich source of requirements.

Pagano and Maalej presented an empirical study on user
feedback in the App Store [1]. They mainly discussed the usage
of user feedback by the users, the content of user feedback, and
its impact on the user community in the App Store, through
analyzing the App Store review data with statistical approaches.
They also discussed the impact of user feedback to
requirements engineering, which inspires our work.

Galvis Carreño and Winbladh focused on changing
requirements and creating new requirements using the topics
identified from user reviews [13], while our work is different in
that we try to identify original requirements and classify them
from user reviews. The outcome of our approach can act as
input (identified and classified user requirements) of [13] for
topics identification in requirements evolution.

Chandy and Gu proposed an approach to automatically
identify spam reviews in the iOS App Store [5], which
compared the performance of a baseline Decision Tree model
with a novel Latent Class graphical model to the classification
results of App review spam. The difference of their work to our
work is that they employ data mining techniques and focus on
spam identification.

Finkelstein and his colleagues [11] introduced a method to
extract feature and price information of the APPs in the
Blackberry App Store for an analysis that combines technical,
business, and customer properties. The analysis results are
further used as the input to predict the prices of APPs with

11

case-based reasoning, while our work focuses on the extraction
of user requirements information from APP user reviews.

Sagar and Abirami investigated conceptual modeling of
FRs in natural language [10]. For the purpose of visualizing the
FRs, they focus on automated extraction of concepts and their
relationships to create a conceptual model based on linguistic
aspects of the English language. Their work could be useful to
develop the conceptual model for FR identification and
classification from user reviews.

The work on mining general and APP repositories focuses
on analyzing the feature information among user reviews, and
understanding their inter-relationships with other factors, e.g.,
rating, price, downloads, and code [6][7][11]. Our approach
tries to combine App Store reviews mining and requirements
engineering to help developers understand the trend of software
products in order to improve their APPs.

VIII. CONCLUSIONS AND FUTRUE WORK

In this paper, we present an approach, which can
automatically identify and classify requirements from user
reviews. We validated the proposed approach with user reviews
collected from a popular APP iBooks in English App Store,
and further investigated the cost and return of our approach:
how the size of sample reviews for keywords selection (cost)
affects the classification results in precision, recall, and F-
measure (return). The results show that when setting an
appropriate size of sample reviews, our approach receives a
relatively stable precision, recall, and F-measure of
requirements classification, in particular for non-functional
requirements, which is meaningful and practical for APP
developers to elicit requirements from user reviews. In the next
step, the approach can be improved in three promising aspects:

1) To validate our approach with user reviews of APPs

from other application domains (e.g., social networking,

finance) and languages (e.g., East Asian languages) and

perform comparative studies with other identification and

classification approaches (e.g., through data mining, machine

learning techniques) in order to mitigate the threats to the

external validity of the results.

2) The identified and classified requirements can be

further prioritized to show their importance when hundreds-

and-thousands of requirements flooding to developers [8]. The

potential factors for prioritizing requirements from user

reviews are different from those for general requirements

prioritization, for example, rating information, length of user

review, and stickiness or importance of the user who submitted

the review. All these factors are expected to have an influence

on prioritizing requirements from use reviews, and other

potential factors should also be considered depending on the

needs of requirements prioritization in context.

3) Functional and non-functional requirements are not

independent of each other [14], for example, one NFR may

impact many FRs, which is an important part of requirements

traceability. The potential relationships between classified FRs

and NFRs can be promisingly identified through their source

analysis, e.g., the user-review relationships.

REFERENCES

[1] D. Pagano and W. Maalej, “User feedback in the AppStore: An
empirical study,” In: Proceedings of the 21st International Conference
on Requirements Engineering (RE), IEEE, 2013, pp. 125-134.

[2] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
vol. 463. New York. ACM Press, 1999.

[3] J. B. Lovins, Development of A Stemming Algorithm. MIT Information
Processing Group, Electronic Systems Laboratory, 1968.

[4] F. Shull, J. Singer, and D. I. Sjøberg (Eds.), Guide to Advanced
Empirical Software Engineering. Springer, 2008.

[5] R. Chandy and Gu. H, “Identifying spam in the iOS app store,” In:
Proceedings of the 2nd Joint WICOW/AIRWeb Workshop on Web
Quality (WebQuality), ACM, 2012, pp. 56-59.

[6] M. Harman, Y. Jia, and Y. Zhang, “App Store mining and analysis:
MSR for App Stores,” In: Proceedings of the 9th Working Conference
on Mining Software Repositories (MSR), IEEE, 2012, pp. 108-111.

[7] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deursen,
“Mining software repositories to study co-evolution of production & test
code”. In: Proceedings of the 1st International Conference on Software
Testing, Verification, and Validation (ICST), IEEE, 2008, pp. 220-229.

[8] S. Gartner and K. Schneider, “A method for prioritizing end-user
feedback for requirements engineering,” In: Proceedings of the 5th
International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), IEEE, 2012, pp. 47-49.

[9] U. Abelein, H. Sharp, and B. Paech, “Does involving users in software
development really influence system success?” IEEE Software, IEEE,
30(6):17-23, 2013.

[10] V. Sagar and S. Abirami, “Conceptual modeling of natural language
functional requirements,” Journal of Systems and Software, Elsevier,
88(2):25-41, 2014.

[11] A. Finkelstein, M. Harman, Y. Jia, F. Sarro, and Y. Zhang, “Mining App
Stores: Extracting technical, business and customer rating information
for analysis and prediction,” Research Note, RN/13/21, 2013.

[12] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Automated
classification of non-functional requirements,” Requirements
Engineering, Springer, 12(2):103-120, 2007.

[13] L.V. Galvis Carreño, and K. Winbladh, “Analysis of user comments:
An approach for software requirements evolution,” In: Proceedings of
the 35th International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 582-591.

[14] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-functional
Requirements in Software Engineering. Springer, 2000.

[15] M.K. Dalal, and M.A. Zaveri, “Automatic text classification of sports
blog data”, In: Proceedings of the 2012 Computing, Communications
and Applications Conference (ComComAp), IEEE, pp.219-222, 2012.

[16] J. Ramos, “Using tf-idf to determine word relevance in document
queries,” In: Proceedings of the 1st Instructional Conference on Machine
Learning (iCML), 2003, pp. 119-122.

[17] H. Khalid, E. Shihab, M. Nagappan, and A. Hassan, “What do mobile
App users complain about? A study on free iOS Apps,” IEEE Software,
IEEE, DOI: http://dx.doi.org/10.1109/MS.2014.50, 2014.

[18] M. Bano and D. Zowghi, “User involvement in software development
and system success: A systematic literature review,” In: Proceedings of
the 17th International Conference on Evaluation and Assessment in
Software Engineering (ESEM), ACM, 2013, pp. 125-130.

[19] P. Liang, P. Avgeriou, K. He, and L. Xu, “From collective knowledge to
intelligence: pre-requirements analysis of large and complex systems,”
In: Proceedings of the 1st Workshop on Web 2.0 for Software
Engineering (Web2SE), ACM, 2010, pp. 26-30.

[20] K. Thomas, A.K. Bandara, B.A. Price, and B. Nuseibeh, “Distilling
privacy requirements for mobile applications,” In: Proceedings of the
36th International Conference on Software Engineering (ICSE), ACM,
2014, pp. 871-882.

[21] N. Chen, J. Lin, S.C.H. Hoi, X. Xiao, and B. Zhang, “AR-Miner: mining
informative reviews for developers from mobile app marketplace,” In:
Proceedings of the 36th International Conference on Software
Engineering (ICSE), ACM, 2014, pp. 767-778.

12

http://dx.doi.org/10.1109/MS.2014.50

MoLVERIC: An Inspection Technique for MoLIC
Diagrams

Adriana Lopes, Anna Marques and Tayana Conte
USES Research Group

Instituto de Computação, Universidade Federal do
Amazonas (UFAM)

Manaus, AM - Brazil
{adriana,anna.beatriz,tayana}@icomp.ufam.edu.br

Simone Diniz Junqueira Barbosa
Semiotic Engineering Research Group

Departamento de Informática, PUC-Rio
Rio de Janeiro, RJ - Brazil

simone@inf.puc-rio.br

Abstract During interaction design, interaction models are
developed to help design adequate user interaction with the
system. MoLIC (Modeling Language for Interaction as
Conversation) is a language used to represent an interaction
model, which can then be used as a basis for building other
artifacts, such as mockups. However, inspections are necessary to
verify whether the MoLIC diagrams are complete, consistent,
unambiguous, and contain few or no defects, to avoid
propagating preventable defects to derived artifacts. In this
paper, we present MoLVERIC, a technique for the inspection of
MoLIC diagrams that uses cards with verification items and
employs principles of gamification. Furthermore, we discuss the
results of a pilot study conducted to analyze the feasibility of this
technique.

Keywords-component; Interaction Design; Interaction
Modeling; Verification; Inspection Technique.

I. INTRODUCTION
Interaction design aims to design systems that are easy to

learn, effective when used and capable of providing a
rewarding experience to the user [1]. In this context, Semiotic
Engineering [2], a theory of Human-Computer Interaction,
deals with interaction as a communication process between the
user and the system, through its user interface. Based on
Semiotic Engineering, Barbosa and Paula [3] proposed MoLIC
(acronym for Modeling Language for Interaction as
Conversation), a language to model this interaction. MoLIC
diagrams can be used by different practitioners involved in the
development of systems for modeling a global view of the
application behavior. Moreover, MoLIC diagrams
can serve as a basis for the construction of other artifacts in the
development of interactive systems, such as mockups. Santana
et al. [4] proposed the use of a communication theory called
Grice's Cooperative Principle [5] for inspection of MoLIC
diagrams with the focus on user communication.

However, MoLIC diagrams should be also verified with
respect to their consistency, completeness and
comprehensibility in order to reduce the number of defects and
to prevent them from propagating to derived artifacts. To
investigate the quality of MoLIC diagrams, we conducted a
preliminary study that has identified several defects which had
been inserted during interaction modeling. Through such
inspection, the propagation of defects in MoLIC diagrams can

be avoided, reducing the cost of correcting such defects in later
stages of the software development process [6].

In this paper we present MoLVERIC, a technique for
inspecting MoLIC interaction diagrams. The MoLVERIC
technique was developed based on the defects that were found
in a preliminary study. The purpose of MoLVERIC is to
provide a simple way to identify defects in MoLIC diagrams,
so that the technique can be easily adopted by both academy
and industry. With this technique, we intend to prevent possible
defects from being transferred to artifacts that are constructed
based on the MoLIC diagrams. To assess whether MoLVERIC
can support inspectors in detecting defects, we conducted a
pilot study, whose results have provided evidence of the
feasibility of MoLVERIC to inspect MoLIC diagrams.

The remainder of this paper is organized as follows.
Section II presents the MoLIC language. Section III describes
the defect types found in MoLIC diagrams in our preliminary
study. Then, Section IV presents the MoLVERIC technique,
and Section V describes the pilot study conducted to evaluate
MoLVERIC. Finally, we present some concluding remarks and
discuss future work.

II. MOLIC
MoLIC is based on Semiotic Engineering [2], a theory of

HCI with particular focus on the communication between the
designer and the user mediated by interactive systems, through
the ty, which is the user interface. The

designer-to-
design decisions. Because the designer-to-user message is
about the messages users can exchange with the user interface,
it is called a metacommunication message. MoLIC was devised
to represent this message.

A MoLIC diagram can be created after the requirements
elicitation, within the analysis stage of the software
development process. The purpose is to promote

the interaction alternatives that
they intend to provide to the users [7]. To illustrate the MoLIC
diagrammatic notation [7], Figure 1 represents a diagram of a
simple system for calculating
(BMI). The basic elements of a MoLIC diagram are the
following:

DOI reference number: 10.18293/SEKE2015-069

13

mailto:@icomp.ufam.edu.br
mailto:simone@inf.puc-rio.br

Figure 1. A MoLIC diagrams example.

1. Opening point: Indicates where the interaction can start,
i.e., when the user accesses the system. It is represented
by a filled black circle.

2. Scene: Represented in the diagram as a rounded rectangle.
The scene shows the moment in the interaction where the
user decides how the conversation should proceed. The
top compartment contains the topic of the scene and
represents the . The second compartment
details the following elements:

a) Signs: represent the information involved in the
utterances issued by the user (i.e., user input) and by the

(i.e., system output) during the
dialogues. In Figure 1, we have the following signs in the
Access the application e-mail and password

b) Utterances: constitute the dialogue and specify who is
emitting the sign: whether it is the user (u) or the

deputy (d). The signs issued only by the

In Figure 1, we have the following signs and
utterances in the View scene, e.g.
d: name, d: BMI and d: weight goal , all emitted by the

 are just for providing
information to the user. When the designer allows the
user to talk about the signs, e.g., when it involves user
input, we say that both the designer and the user emit the
sign, which is then In Figure 1, we
have such signs in the c scene:
d+u: e-mail, d+u: password , for example.

c) Dialogues: compose a conversation about a topic, and
consist of utterances on signs. In Figure 1, one example
of dialogue is view the result

.
d) Structures of dialogues: in some cases, the dialogues
can be composed by other dialogues according to some
structure. In these cases, these structures can be
represented by the reserved words SEQ, XOR, OR or
AND. The SEQ structure represents the dialogues that
must be exchanged in the specified sequence. The XOR

structure represents mutually exclusive dialogues. The
structure OR represents the choice of exchanging one or
more dialogues. The structure AND represents the use of
all dialogs, but not in a predefined sequence. In Figure 1,
the AND structure represents the use of all dialogs
"inform personal data" and "inform account data".

3. Transition Utterance: Represents turn-taking, or rather

turn-
gives the turn to the other, for instance, to change the
topic of the conversation, as described below:

a) User Utterance:
proceed with the conversation in a given direction. It is
represented by an arrow in the diagram, labeled with a
user utterance indicator (u:), e.g. ok Figure 1.
b) Designer Utterance: represents the

answer to a user utterance, typically provided
after a system process. It is represented by an arrow in
the diagram, labeled with a designer utterance indicator
(d:) valid login

4. Precond: represents a necessary precondition in the
diagram. In Figure 1, the user can only create an account
if (s)he is not yet registered. This precondition is
represented before the user utterance through "precond:
user not registered".

5. System process: It is represented through a black box in
the diagram. It represents the internal processing (of a
user request) which needs to provide adequate feedback to
the user, i.e., when there are different outcomes possible.

6. Breakdown recovery utterance: is a type of utterance
provided to help the user recover from a communication
breakdown. It is represented by a dashed directed line in
the diagram with the corresponding utterance,
invalid data Figure 1.

7. Ubiquitous access: represents an opportunity for the user
to change the topic of the conversation from any other
scene, to achieve an objective different from the current
one. It is represented through a gray rounded rectangle.

2

1

3

4

5
6

7

8

14

8. Closing point: represents the end of the interaction, when
the user leaves the system. It is represented as a filled
black circle within a circle with no padding.

III. TYPES OF DEFECTS IN MOLIC DIAGRAMS
The types of defects that can be found in a MoLIC diagram

were defined based on the taxonomy presented by Travassos et
al. [6], as shown in Table I. Using a taxonomy of defects is
important in order to assist the inspectors (practitioners who
carry out the inspection) in the identification and categorization
of defects.

TABLE I. DEFECTS TAXONOMY FOR MOLIC DIAGRAMS

Types of Defects Description of Defects
Omission Omission or negligence of any information necessary to

solve the problem in the interaction diagram.
Ambiguity Unclear definition of a certain information in the interaction

diagram, which may lead to multiple interpretations.
Incorrect Fact Misuse of the interaction diagram elements.
Inconsistency Conflicting information between the interaction diagram

elements and the information needed to solve the problem.
Extraneous
Information

Unnecessary information included in the interaction diagram
(i.e., information that is not needed to solve the problem).

We conducted a preliminary study with 13 subjects in order
to evaluate the quality of some sample MoLIC diagrams. Study
subjects were undergraduate students (in their final year) and
graduate students in a Computer Science course. Before the
study, all subjects received training in using the MoLIC
language to model the interaction of a system, because the
subjects had no experience with MoLIC diagrams. Each subject
individually built the MoLIC diagram, using computers with a
MoLIC designer tool1 installed.

After the study execution, two experts in MoLIC diagrams
verified the produced diagrams. These experts found the
defects in the artifacts and categorized them according to the
taxonomy shown in Table I. During the analysis, the repeated
defects were united. In the total we identified: 13 omissions, 5
extraneous informations, 1 ambiguity, 7 incorrect factc and 5
inconsistencies.

TABLE II. DEFECTS FOUND IN MOLIC DIAGRAMS FOR EACH TYPE OF
DEFECT

Type of Defect Subjects
(S)

Example of Defect Found in the MoLIC
Diagram

Omission S2, S4,
S5, S12

Did not use the notation of the utterance for the
user :).

Ambiguity S12
Used two user transition utterances for the same
goal, thus providing multiple interpretations for
the user request.

Incorrect
 Fact

S4, S8,
S9, S11

Used verbs that do not represent the user goals.

Inconsistency S1, S5,
S6, S11,

Used a transition arrow direction inconsistent
with the sequence of interaction scenes.

Extraneous
Information S4, S8, Represented some scenes that were not in the

context of the interaction scenario.

In Table II, we present one detailed example of each type of
defect found in MoLIC diagrams. In addition, the defects are
associated with the subjects who developed the diagrams
containing the defects. As noted in this study, MoLIC diagrams

may contain defects, which can impair the understanding of the
practitioners involved during the development of the systems.
Therefore, it is important to perform inspections in MoLIC
diagrams before they are used in the next phases of the systems
development, for creating new artifacts such as mockups, for
instance.

IV. MOLVERIC
Inspection of system artifacts during development has been

shown to improve the quality of the system and reduce
development costs. An inspection is a method for identifying
defects in early stages of the development [6]. Conducting
inspections is essential because design defects can directly
affect the quality of the systems [6]. One of the most widely
used methods in the inspection is Checklist [8]. Checklists
provide support for inspectors during the defects detection
through verification items [8].

MoLVERIC is a checklist-based inspection technique,
developed with the goal of assisting practitioners in the
inspection of MoLIC diagrams. All verification items of
MoLVERIC were developed based on the defects found in the
preliminary study, as described in Section III. The verification
items assess both the consistency of MoLIC diagrams with the
interaction scenario/system requirements; and the notation used
in the MoLIC diagrams. To motivate the inspection of MoLIC
diagrams, MoLVERIC employs gamification [10] techniques.
Each card corresponds to a verification item and includes the
number of points awarded to the inspector each time he/she
finds the defect described in the card. Each verification item
assists the inspector in reporting the type of the identified
defect. With respect to the score, items that verify defects that
compromise the purpose or understanding of the diagram
award 20 points, whereas items that verify a syntax defect,
which does not compromise the objective or understanding of
the diagram, award 10 points. The verification cards are
divided into categories corresponding to the elements of the
MoLIC diagram, such as Scene, Transition Utterance and
Signs. During the development of the verification items for
each category of the MoLIC diagram elements, we noted that
some defects were related to more than one element. Therefore,
we developed different verification items for single elements
and for related elements. To do so, we developed two types of
cards: Regular Cards and High Cards.

Figure 2: Verification items from MoLVERIC: Regular Cards

1. https://code.google.com/p/molic-designer/

15

https://code.google.com/p/molic-designer/

Regular Cards have one-to-one correspondences to
elements of the MoLIC diagram. There are Regular Cards for
the following elements: Scene, System Process, Opening Point,
Closing Point, Ubiquitous Access, Precond, Dialogues and
Signs. In Figure 2, the Regular Cards are presented using the
following structure: (1) Description of the verification item, to
assist the inspector in the identification of defects; (2) Type of
defect to be reported; (3) Points of the card and (4) Code of the
verification item.

High Cards have verification items for elements related to
other elements in the MoLIC diagram. The goal of the High
Cards is reduce the inspection time for elements that are related
in the diagram. There are High Cards for the elements
Transition Utterance and Breakdown Recovery Utterance. A
Transition Utterance element is related to the elements: Scene,
System Process, Opening Point, Closing Point and Ubiquitous
Access. Figure 3 shows an example of an inspection using a
High Card for the Transition Utterance element, where the
following verification item is used for the related elements:
Do the utterances show who uttered them ("u:" for the user

Figure 3: Verification items from MoLVERIC: High Cards.

A Breakdown Recovery Utterance is related with the
elements: Scene, System Process and Ubiquitous Access. The
High Cards have the following structure in each card, as shown
in Figure 4: (1) Elements in the MoLIC diagram related with
the elements of the card; (2) Description of the verification
item, to assist the inspector in the identification of defects; (3)
Type of defect to be reported; (4) Points of the card and (5)
Code of the verification item. Furthermore, there are
instructions for the inspectors in order to show how to use
MoLVERIC.

V. PILOT STUDY OF MOLVERIC
In this pilot study, we did not use other inspection

technique for MoLIC diagrams to compare with the
MoLVERIC. The reason for this is that the only other known
technique (Grice's Cooperative Principle) has a different focus.
The pilot study activities are described as follows.

A. Pilot Study Planning
During the planning stage, we defined the resources needed

for implementing the study. Therefore, we planned the
execution environment, as well as the artifacts, as follows:

 Environment: The study was conducted in an academic
environment, where new technologies are tested before
being transferred to industry [11].

 Artifacts: (i) The MoLIC diagrams built in the preliminary
study described in Section III; (ii) forms for the subjects to
report the identified defects; (iii) instructions for using the
technique; (iv) post-study questionnaire to be answered by
each subject, to collect their opinions about the technique.

 Subjects: For the study, two subjects who had developed
MoLIC diagrams in previous projects were chosen to
inspect the diagrams. The subjects were graduate students
in Computer Science.

 Training: The subjects received training on the types of
defects and on the use of MoLVERIC.

B. Pilot Study Execution
During the study, each subject executed the inspection

individually. After the study, we analyzed the defects reported
in the forms and the post-study questionnaires.

C. Results Analysis
After the execution of the pilot study, we verified whether

the technique achieved the goal of detecting defects. The oracle
of defects contained a total of 24 defects (some defects are
repeated in the elements signs, scenes and transition utterance).
The number of defects, the inspection time and the indicators
of effectiveness and efficiency of each subject are described in
Table III. The effectiveness was calculated using the number of
defects found by the subjects divided by the total number of
defects from the oracle. The efficiency was calculated on the
number of defects found divided by the time of inspection of
each subject.

TABLE III. RESULTS PER SUBJECTS

Subjects Number
Defects

False
Positive

Time
Hours Effectiveness Efficiency

S1 17 1 1.61 70.83% 10.55

S2 16 3 1.15 66.66% 13.91

Analyzing the effectiveness indicator, we can see that the
inspectors were able to identify more than 66% of the defects.
This is a good result in terms of effectiveness when compared
to the indicators achieved by other inspection techniques [12]
and, as such, it indicates the feasibility of MoLVERIC.
However, it is still necessary to perform a controlled
experiment to compare the effectiveness of MoLVERIC with
other techniques for identifying defects in interaction models.
Regarding efficiency, the subjects found 10.55 and 13.91
defects per hour. However, as the number of defects is directly
dependent on the inspected models, is not suitable to compare
the results of efficiency from this pilot study with the results of
other techniques.

To understand the opinions of the subjects, the answers to
the post-questionnaire were analyzed. Regarding the ease of
use of the technique, the subjects indicated the following:

MoLVERIC helps to remember the elements that I should
verify and the types of defects I should inspect, for example:

16

Omission, Incorrect Fact, Inconsistency, Extraneous
Information and Ambiguity. S1)

n inspection guide. This guide
does not leave the inspector lost. The technique makes the
inspection process fun. (S2)

However, subjects also reported negative aspects regarding
the ease of use of the technique:

 I think that it takes a long time to learn to use the
technique. S1)

I had trouble remembering some terms. S2)

Regarding the quote from S1 about the negative aspects of
the technique, this can be related to the amount of categories
and the related items. However, due to the small number of
subjects in this pilot study, this result cannot be considered
conclusive. This aspect will be examined in future research
with MoLVERIC. To understand how the subjects use
MoLVERIC during the inspection, they answered the
following question in the post-questionnaire: Is the structure
of MoLVERIC suitable for the inspection of the MoLIC
diagrams in the way you

he structure of the
 (S1)

Yes, it directs the structure according to the MoLIC
diagram. S2)

However, during the study, the two subjects had difficulties
in understanding the Precond category, an element used to
specify a necessary precondition together with the Transition
Utterance element. Regarding the other categories during the
study, the subjects had no difficulty in the use of the other
cards. During the analysis of the defects reported by the
subjects, we verified that the subjects had no problems in
understanding each inspected element, i.e., they reported them
correctly according to the code for each card. However,
observing the quotation from S2 about the negative aspects,
there is a certain difficulty in understanding the term "issuer" of
the signs, which refers to the "d" for the designer and "u" for
the user. Furthermore, subjects responded positively to the
question "Would you recommend this technique for designers
who use the interaction modeling with MoLIC?" Both
inspectors indicated that they would recommend the use of
MoLVERIC. Based on the analysis of the results of this pilot
study, it was possible to obtain indicators of the feasibility of
using the technique.

VI. CONCLUDING REMARKS AND FUTURE WORK
The purpose of this paper was to present the results of the

pilot study to evaluate the feasibility of MoLVERIC. The
analysis study allowed us to identify problems during the use of
the technique, as well as terms which were not clear and
verification items that were not appropriate. Based on these
results, we are improving MoLVERIC, making the verification
items clearer. The results of the pilot study provided evidence
that MoLVERIC assists in detecting defects. However, these
results cannot be considered conclusive, and it is necessary to
carry out a controlled experiment with a larger quantity of
subjects. Analyzing the perception of the subjects on

recommending MoLVERIC, there was mostly positive
feedback from the subjects. This may be an indication that the
technique is suitable for the inspectors of MoLIC diagrams.
The results of the pilot study provided initial evidence to the
feasibility of MoLVERIC to inspect MoLIC diagrams.

As future work, we intend to carry out a controlled study
with MoLVERIC to reinforce the results obtained in the study
pilot. In this next study, we expect to evaluate more precisely
the effectiveness and efficiency of MoLVERIC, so that it can
be adopted by the industry and academy in the future.
Furthermore, we intend to conduct a empirical study to analyze
the quality of artifacts developed from the MoLIC diagrams,
after the inspection with the MoLVERIC.

ACKNOWLEDGMENT
We thank the two graduate students for their participation

in the experiment. We would like to acknowledge the financial
support granted by FAPEAM (Foundation for Research
Support of the Amazonas State) through processes numbers:
062.00146/2012; 062.00600/2014; 062.00578/2014;
01135/2011 and PAPE 004/2015; and CNPq processes
308490/2012-6, 453996/2014-0, and 460627/2014-7.

REFERENCES

[1] Y. Rogers, H. Sharp, J. Preece. Interaction Design: Beyond Human-Computer
Interaction, 4th Edition. John Wiley & Sons, 2015.

[2] C. S. De Souza, The Semiotic Engineering of Human-Computer Interaction
(Acting with Technology). The MIT Press, 2005.

[3] S. D. J. Barbosa, M. G. Paula, Designing and Evaluating Interaction as
Conversation: a Modeling Language based on Semiotic Engineering. In
Interactive Systems. Design, Specification, and Verification. 10th DSV-IS
Workshop, pp. 16 33, 2003.

[4] B.S. Silva, V.C.O. Aureliano, S.D.J. Barbosa. Extreme designing: binding
sketching to an interaction model in a streamlined HCI design approach. In
Simpósio Brasileiro sobre Fatores Humanos em Sistemas Computacionais,
pp. 101 109, 2006.

[5] B. L. Davies y. Journal of
Pragmatics 39, 2308 2331, 2007.

[6] G. H. Travassos, , F. Shull, , J. Carver, Working with UML: A Software Design
Process Based on Inspections for the Unified Modeling Language. Advances
in Computer, vol. 54, pp. 35 98, 2001.

[7] A. Lopes, A. B. Marques, S. D. J. Barbosa and T. Conte. Evaluating HCI
Design with Interaction Modeling and Mockups: A Case Study. In
Proocedings of International Conference on Enterprise Information Systems,
pp. 79-87, 2015.

 [8] G. H.Travassos , F. Shull, M. Fredericks, V. Basili. Detecting defects in
object-oriented designs: using reading techniques to increase software
quality. ACM SIGPLAN Notices, vol. 34, n. 10, pp. 47-56, 1999.

 [9] R. Cunha, T. Conte, E. S. Almeida, and J. C. Maldonado, A Set of Inspection
Techniqueson Software Product Line Models. In Proocedings of International
Conference on Software Engineering and Knowledge Engineering, pp. 657-
662, 2012.

[10] S. Deterding, M. Sicart, L. Nacke, K. D. Dixon, Gamification:
Using Game Design Elements in Non-Gaming Contexts. In Proceedings of
the 2011 Annual Conference Extended Abstracts on Human Factors in
Computing Systems, pp. 2425-2428, 2011.

[11] F. Shull, J. Carver, G. H. Travassos, An empirical methodology for
introducing software processes. In 9th ACM SIGSOFT international
symposium on Foundations of software engineering, pp. 288 296, 2001.

[12] L. Rivero, T. Conte, Improving Usability Inspection Technologies for Web
Mockups through Empirical Studies. In Proocedings of International
Conference on Software Engineering and Knowledge Engineering, pp. 172-
177, 2013.

17

A Middleware Framework for Leveraging Local and
Global Adaptation in IT Ecosystems

Soojin Park
Graduate School of MOT

Sogang University
Seoul, South Korea

psjdream@sogang.ac.kr

Young B. Park
Dept. of Computer Science & Engineering

Dankook University
Seoul, South Korea

ybpark@dankook.ac.kr

Abstract — Impressive advancements in recent smart devices
suggests that the direction of software engineering’s future is in
development of System of Systems (SoS). Among many
concepts that emerged from SoS, we focus on IT Ecosystem – a
type of SoS that evolves itself in response to unplanned
environment changes. Maintaining autonomy of its participant
systems while preserving controllability over entire ecosystem
involves various challenges that we need to solve. In this paper,
we propose a middleware framework for supporting global
adaptation of IT Ecosystem which guides how to determine the
optimal adaptation strategy for configuring available systems
to satisfy local constraints while achieving global goals. To
support the selection of optimal set of participant systems, we
have applied genetic algorithm. The effectiveness of our
approach is evaluated through analyzing the results of a
simulated unmanned forest management IT Ecosystem
running the proposed framework while undergoing various
environmental changes.

Keywords-self-adaptive systems; dynamic reconfiguration;
IT ecosystems.

I. INTRODUCTION
We live among numerous and constant interactions with

smart devices running software. Recent technologies such as
cloud computing and Internet of Things (IoT) herald a
paradigm shift in the operation of software systems, where its
focus is transiting from operation of a single system to
operation of System of Systems (SoS). A number of recent
researches built on the idea of SoS introduced the new
concept of IT Ecosystem [2][3]. An IT Ecosystem is a
complex system compound composed of interactive and
autonomous individual systems, adaptive as a whole based on
local adaptivity [1]. Individual component systems within an
IT Ecosystem must constantly monitor their environmental
contexts in their working territories. If an identified
environment change demands reactive change to the system
configuration in a participant, that participant dynamically
changes its configuration using predefined strategy or
knowledge accumulated from previous learnings. The local
adaptation loop can be identified as a MAPE-K [3] loop and
can be realized through application of adaptation frameworks
such as Rainbow [5], MUSIC [6], or DiVA [7].

To create a sustainable IT Ecosystem, we need more than
a local adaptation mechanism: we need a means for global

adaptation as to enable IT Ecosystem-wide dynamic
reconfiguration in reaction to environmental changes.
Unfortunately, existing adaptation frameworks mainly offer
benefits limited to local adaption of a single system,
restrictive in their applicability to ensuring sustainability
across entire IT Ecosystem. Therefore, in our research, we
propose a new adaptation middleware framework designed to
support both local and global adaptation mechanisms.

While the proposed framework is to be included in all
participant systems, not all components are always run.
Among the constituent components, those which implement
local adaptation mechanism in response to changes in
individual environments are always run. On the other hand,
components that execute global adaptation mechanism via
deploying new participant systems or dynamically
reconfiguring existing systems in response to drastic
environmental changes or significant performance drop
across the entire IT Ecosystem are only run on participant
system with <<Team Leader>> role. The role of Team
Leader is assigned dynamically, based on the environmental
situations of participant systems. The global adaptation
mechanism applies a genetic algorithm to make decisions
regarding where to place the most appropriate participant
system within a working environment, because genetic
algorithms can solve computational overhead problems when
IT Ecosystems grow in scale.

We have implemented our proposed adaptation
framework in a case study of IT Ecosystem for unmanned
forest management system, which is among the target
domains of our on-going research project. The case study will
help understand the benefits, along with the drawbacks, of the
proposed adaptation framework. The rest of the paper is as
follows: Section 2 introduces the proposed middleware
framework for IT Ecosystem adaptation. Section 3 illustrates
our proposed mechanisms in use for local and global
adaptations within the IT Ecosystem for unmanned forest
management. Section 4 discusses the effectiveness of the
global adaptation mechanism of the proposed framework
through analysis of experiment results. Section 5 reviews
related works addressing self-adaptation problems. Finally,
in Section 6, we present the conclusions for this study, along
with plans for our on-going work.

(DOI reference number: 10.18293/SEKE2015-131)

18

II. ADAPTABLE MIDDLEWARE FRAMEWORK FOR IT
ECOSYSTEM

In this section, we provide an overview of the proposed
adaptation middleware framework for IT Ecosystem. The
architecture of the framework is composed of five packages:
Felix, MAPE Core Bundle, Local Adaptation, ITE Global
Adaptation, and ITE Bridge (as shown in Fig. 1). Felix
package acts as the bridge between Android platform and
OSGi [4] which provides dynamic life cycle management
services for components. As depicted in Fig. 1, the proposed
framework targets Android platform because of the
platform’s support for mobility and for its flexibility in its
applicability to various application domains where it can
control a wide range of passive devices in individual
domain’s IT Ecosystems.

Felix package includes two major components:
Adaptation Bundle Activator which invokes bundle service
components required to run in higher level packages
according to system roles assigned at the participant system’s
initiation time, and Configuration Manager which manages
configuration changes when the need for internal component
reconfiguration arises due to external environment change.
Effectors implemented on Android follows instructions given
by Configuration Manager to carry out the actual
configuration change.

MAPE Core Bundle package includes MAPE-K cycle
managing components which enables applications to

perceive its environments and determine the next system
action to take. Components included in either ITE Global
Adaptation package and Local Adaptation package are
architecturally above MAPE Core Bundle package and
provided as OSGi bundles as to leverage basic component
lifecycle management services. All components included in
Felix package and MAPE Core Bundle package are domain
independent components. Local adaptation package, on the
other hand, includes different components depending on what
missions individual systems must carry out in order to
achieve the global goal of the ITE Ecosystem they participate
in. While basic skeleton components for maintaining MAPE
cycle operation threads are within MAPE Core Bundle
package, the domain-specific logic determining what to
monitor in order to analyze situational changes and what
action to execute are implemented by components included
in Local Adaptation package. In short, actual adaptation is
executed by binding Local Adaptation package components
to MAPE Core Bundle package components.

Information regarding the binding between MAPE Core
Bundle components and Local Adaptation components are
stored in Bundle Registry within Felix package. As
participant systems are activated, Adaptation Bundle
Activator is invoked to look up for information in Bundle
Registry to check which executable bundle should be bound
to MAPE Core Bundle, and thereafter activate its
corresponding bundles.

Figure 1. Overview of the proposed adaptable middleware framework for IT Ecosystem

19

While ITE Global Adaptation package is included in all
participant systems, it is only run on the participant system
assigned with <<Team Leader>> role, tasked to monitor the
collaboration performance of the entire IT Ecosystem. Where
Local Adaptation package components provide functional
services required to achieve domain goals, ITE Global
Adaptation package components measure the collaboration
efficiency among participant systems executing individual
local adaptations, triggering reconfiguration of participant
systems when the efficiency is below target threshold.

The core capability of maintaining overall-balanced and
sustained service across IT Ecosystem’s domain is provided
by the ITE Global Adaptation mechanism. Details of global
adaptation mechanism are introduced alongside a specific
case example in the next section. Components in Local
Adaptation package and ITE Global Adaptation package are
designed as plug-ins for the four components defined in
MAPE Core Bundle package. The components within the two
packages in Fig.1 illustrate components for unmanned forest
management IT Ecosystem, which will be introduced in
Section 3. However, the components are replaceable with
other components as the target domain changes.

Global ITE Knowledge package stores knowledge to be
shared among participant systems and includes ITE
Configuration Manager which provides the APIs for
accessing the knowledge. Knowledge stored at Global ITE
Knowledge includes environment model which reflects the
environment in which IT Ecosystem operates, profiles of
participant systems, and constraints or rules that must be
considered when mapping participant systems in their
working regions. In addition, the model for currently running
global configuration is also managed by this package. Such
global knowledge can be stored on a separate server or on a
cloud storage.

Finally, ITE Bridge package handles requests for remote
systems when required service components in demand are not
within the local system and provides protocols for activating
passive devices which are not directly controlled by local
systems.

III. A CASE OF ADAPTATION MECHAMISM APPLICATION:
UNMANNED FOREST MANAGEMENT IT ECOSYSTEM

To demonstrate the proposed framework, in this Section
we describe a simulated IT Ecosystem for unmanned forest
management (hereafter UFM IT Ecosystem). UFM IT
Ecosystem is a management system equipped with twelve
unmanned aircrafts, helicopters, and ground vehicles for the
purpose of managing nine forest zones each 100 km in size.
Unmanned vehicles assigned to each forest zone utilize
sensors and actuators to achieve their goals. In our simulated
case, we highlight the process of dynamic reconfiguration
within UFM IT Ecosystem in achieving its Monitor Drought
goal. Depending on the situation, twelve unmanned vehicles
are assigned to appropriate roles as to achieve the goal. An
unmanned vehicle with <<Chief Gardner>> role activates
UFM IT Ecosystem’s global adaptation cycle to maintain the
Ecosystem’s sustainability. On the other hand, nine

<<Surveillant>> vehicles adjust their driving routes in
response to the layout of obstacles in their assigned zones to
achieve their goal Monitor Drought. In this context, Fig. 2
illustrates an instance of dynamic sequence of adaptation
mechanisms in operation where a weather state change
triggers a constraint rule violation in a <<Surveillant>> role
vehicle, causing it to withdraw from its positioned forest zone,
leading to local adaptation mechanisms within the vehicle
along with global adaptation executed by a <<Chief
Gardner>> as to select the optimal candidate vehicle for
providing sustainable service in the zone.

A. Local Adaptation Mechanism for Dynamic
Reconfiguration of Individual Participant Systems
Initially, the forest zone[0][2] has fair weather, has a lake

in the zone, and has high forest density. An unmanned
helicopter HE2 has been selected as the appropriate
<<Surveillant>> for the environment in this zone and is
performing Monitor Draught goal. We define the paired
information of a participant and a zone in the form of (HE2,
zone[0][2]) as a chromosome. Such definition becomes
useful when genetic algorithm is later applied to select the
optimal configuration as part of the global adaptation
mechanism.

While HE2 is carrying out its goal, suddenly a turbulent
gale of 25 m/s blows in zone[0][2]. The change in weather is
detected by the sensors in the zone and the sensor installed on
HE2, and is updated to the local environment storage. As
HE2 is assigned a <<Surveillant>> role which is not <<Team
Leader>>, its MAPE Core Bundle components are bound
with Local Adaptation components.

As in Fig. 2 (2), local adaptation is carried out in the
following order: WeatherMonitor periodically reads sensor
data from LocalEnvironment storage, calculates gauge values
to reflect the current environment zone[0][2], and sends the
data to WeatherAnalyzer to diagnose if current environment
in zone[0][2] violates HE2 assignment. The diagnose results
is passed to PullOutPlanner as parameters. PullOutPlanner
creates a component reconfiguration plan for HE2 to land
safely in a safe region in zone[0][2] and sends the plan to
AdaptationExecutor. If any component specified in the
reconfiguration plan does not exist within the particular
system, AdaptationExecutor requests it from
ITEBridgeService by passing the required service features as
parameters. ITEBridgeService is an OSGi bundle which
provides access to external resources. The REST[8] style
services provided by ITEBridgeService enables the proposed
framework to share components, services or other resources
among all participants. When all components necessary to
land HE2 have been secured, the results of component
reconfiguration is delivered to ConfigurationManager within
HE2 as to update its LocalConfiguration storage. Effector in
HE2’s controller then reads the updated new configuration
and implements the actual component reconfiguration. Lastly,
the changed environmental information in zone[0][2] and the
service-incapable status of HE2 are updated to ITE Global
Knowledge through ITEConfigurationManager.

20

Figure 2. Local and global mechanism by applying the adaptable middleware framework and GUI form of simulated Unmanned Forest Monitor

B. Global Adaptation Mechanism for Dynamic
Reonfiguration of the Entire IT Ecosystem
In the given case, AP2(unmanned airplane) was assigned

the role of <<Chief Gardner>>. As HE2 implements its local
adaptation to land during turbulence, AP2 starts to find a new
optimal configuration against the changed situation as
depicted in Fig.2 (3). The following process is for the global
adaptation for finding a new optimal configuration:
CollaborationMonitor periodically reads the global
configuration and calculates the current configuration’s
global collaboration score. Global collaboration score is
obtained as the sum of all collaboration scores of gene
chromosomes (participant and environment zone pair)
comprising a configuration. The global collaboration score
represents how effective the particular assignment of the
selected participant to the zone was. Details of calculating
each collaboration score are not presented in this paper. The
result of global collaboration score calculation is passed on to
CollaborationAnalyzer as a gauge value. If the global
collaboration score is below a predefined threshold,
Collaboration Analyzer identifies gene chromosomes that
violate any constraints and passes them to Collaboration
Planner as its diagnosis result. Fig. 2 illustrates a case where
the gene chromosome (HE2, zone[0][2]) is passed on to
CollaborationPlanner.

First, CollaborationPlanner takes invalid gene
chromosomes passed on as a diagnosis result and generates
second generation population by mutating the unmanned
vehicle information with other possible candidates applicable
to the particular zone. Then collaboration scores for the
newly generated gene chromosomes are individually
calculated, and the chromosome with the highest score is
selected and included to the next configuration. Fig. 2 (3)
shows a case where the second generation population (UAV1,
zone[0][2]) and (JE2, zone[0][2]) have been generated to

replace the invalid gene chromosome (HE2, zone[0][2]).
After comparing their collaboration scores, in the next
configuration (UAV1, zone[0][2]) will replace (HE2,
zone[0][2]) because it has a higher collaboration score. If
multiple invalid gene chromosomes have been detected, the
above process is repeatedly applied to each invalid gene
chromosome as to obtain the optimal configuration with the
highest global collaboration score.

Reconfiguring or moving participant systems using
obtained optimal configuration requires a plan. In the current
example, the change of configuration from chromosome
(HE2, zone[0][2]) to chromosome(UAV1, zone[0][2])
implies that HE2 assigned at zone[0][2] must withdraw and
UAV1 must move to the zone[0][2]. AP2, now assuming
<<Team Leader>> role, issues orders to other participants
using ITEBridgeService as to move them sequentially
according to the adaptation plan. Then, ITEBridgeService
activates external ParticipantService to implement the
operation ordered by AdaptationExecutor. Lastly, the new
configuration obtained as the result of dynamic
reconfiguration is updated to ITE Global Knowledge.

The right-most part of Fig. 2 shows the captured GUI
form representing the status of nine forest zones in the
simulated IT Ecosystem for unmanned forest management,
along with the configuration of unmanned vehicles stationed.
As the result of the aforementioned mechanisms in operation,
we can visually confirm that UAV1 is newly stationed in the
forest zone[0][2] which is highlighted by a dashed box.

IV. EVALUATION
Here we look at the performance evaluation results. The

main objective of the proposed framework is to provide
efficient global adaptation mechanism to guarantee
sustainability in entire IT Ecosystem without requiring
human intervention. To evaluate the performance, we have

21

created a UFM IT Ecosystem that simulates continuous
weather change (wind velocity, weather type, etc.) to trigger
series of global system reconfigurations. Weather changes
are divided into two types: slow and rapid. Another element
of change introduced is fuel consumption: an internal status
of participant systems simulated in correspondence to the
distance covered by the participant. Fuel consumption
represents fuel efficiency determined for each vehicle.

Graphs in Fig. 3 trace the trends in cost, benefit, and
global collaboration scores (c.score in the graphs) of optimal
configurations selected at every monitoring interval. Cost
and benefit factors of each IT ecosystem naturally depend
on its corresponding domain. In this case, the required
amount of money for operating each unmanned vehicle is
calculated as a cost value, and the coverage of drought
monitoring work by an individual unmanned vehicle per unit
time is calculated as a benefit value. c.score is derived from
the cost and benefit values and represents the degree of
configuration efficiency of the 9 participants in the forest
zone; a higher c.score indicates a more efficient configuration.
Graphs (a) and (c) at the left of Fig. 3 depict the changes in
cost, benefit, and c.score values in such cases where the
proposed dynamic reconfiguration framework is not provided
to participant systems that become incapable of continuing
Monitor Draught goal due to weather changes or fuel
shortages. In case of graph (a) where weather changes were
mild, c.score decrease is found from the 6th monitoring
interval. This decrease indicates an event where one or more
participants in the forest zone, among 9 total, have become
unavailable. As time passes, the number of disabled
participants increases dramatically around the 8th monitoring
interval, and by the 9th interval all participants have become
disabled. Since all participants are disabled at the 14th interval,
further monitoring renders no additional information.
Therefore, in graph (a), and in all other graphs in Fig. 3, the

scope of trend tracing is limited from the first to the 15th
monitoring interval.

Like graph (a), graph (c) depicts the trends in cost, benefit,
and c.score values when initially positioned participant
systems operated statically. However, in contrast with graph
(a), graph (c) represents an environment in which weather
conditions change more rapidly. As the result, where graph
(a) shows gradual trends change, graph (c) shows acute
decrease in c.score starting from the second monitoring
interval where the participants begin to fall into service
unavailable status. The point of time when all participant
become unavailable remains the same at the 14th interval, but
the average c.score during 15 monitoring intervals was
significantly lower in the weather turbulence in the
environment of graph (c), measured at -3.3 which is much
lower than -1.09 of graph (a). Rapid weather changes
accelerated the occurrence of constraint violations in
participant unmanned vehicles, drastically reducing
collaboration efficiency among participants.

Unlike graph (a) and (c), the two graphs (b) and (d) on the
right side of Fig. 3 show collaboration scores of UFM IT
Ecosystem where the proposed global adaptation mechanism
is applied. In contrast with (a) and (c) where dynamic
reconfiguration is not in effect, it can be seen that measured
cost, benefit, and c.score values are stable at all monitoring
intervals regardless of weather conditions. Initial
configuration of participants in each forest zone was identical
as graph (a) and (c). Likewise, the first participant to become
unavailable occurs on the second interval, as the result of
local internal adaptations in each participant that leads to a
constraint violation. However, the values captured in graph
(b) and (d) indicate that the global adaptation executed by a
Team Leader participant ultimately ensured sustained service
where unavailable participants were replaced with the most
appropriate replacement participant.

Figure 3. Calculated results of cost-benefit value and collaboration score on selected optimal configuration extracted from each take: (a)(c) without global

adaptation mechanism vs. (b)(d) with global adaptation mechanism

22

In case of graph (b) where weather changes were relatively
mild, the value trends are stable without any major fluctuation
with average c.score at 4.36. This value is significantly higher
than the average of -1.09 in graph (a) where no global
adaptation cycles were applied. In case of graph (d) where
rapid weather changes took place, value changes in cost,
benefit, and c.score can be observed. However these changes
are minor in comparison with graph (c) where global
adaptation was not in use: the average in graph (d) is 2.76,
considerably higher than -3.3 in graph (c).

Even acknowledging the limited nature of simulated
environment test results, it can be safely assumed that the
proposed framework’s local adaptation and global adaptation
mechanism played a positive role in ensuring sustainability of
services that are vital in completing the goal of the entire IT
Ecosystem.

V. RELATED WORK
There are several frameworks for single self-adaptive

systems, such as Rainbow [5], MUSIC [6], and DiVA [7].
Such frameworks are invented to support MAPE-K adaptation
control loops. Rainbow [5] framework introduced a reusable
infrastructure as to separate concerns between adaptation and
application logic, thereby providing architecture-based self-
adaptability. While the reusable infrastructure enables self-
adaptation with relatively small cost and effort, the Rainbow
framework is limited in that its scope supports self-adaptation
only in certain situations when situation-specific action rules
are applicable. MUSIC [6] combines previous component-
based development methods with Service Oriented
Architecture (SOA) in that it breaks down all necessary
components of self-adaptation into business logic, context
awareness, and adaptation concerns as to respond to the
distributed and dynamic requirements in mobile environments.
However, MUSIC is limited in its need for manual adaptation
plan update or replacement because the framework does not
include goal management features in its MAPE-K self-
adaptation layers. DiVA [7] mainly provides methodologies
and framework for developing self-adaptive systems and for
managing variability of self-adaptive systems. Its architecture
is based on the characteristics of aspect-oriented programming
and supports self-adaptation through dynamic addition of
appropriate aspects in the form of plug-ins.

While existing works have differentiated benefits, they
share the common limitation that self-adaptation is limited to
single systems with focus on local adaptation. As their
architecture is proposed as conceptual models, developers
implementing self-adaptive applications in real-life must rely
on their own experiences to find working solutions in their
actual environments.

VI. CONCLUSIONS AND ON GOING WORK
In this paper, we have proposed an adaptation framework

supporting local adaptation for individual participant system
as well as global adaptation across the entire IT Ecosystem.
Where existing framework architectures mainly focus on the
concept of adaptation, our research details components at a

more concrete level. An IT Ecosystem literally creates an
ecosystem composed of individual systems assigned to
achieve a common goal even without human intervention. In
this context, reconfiguration is a core capability in maintaining
overall balance and sustainability in service operation across
domains covered by IT Ecosystem. Our work provides
optimal configuration in response to environmental changes.
Quantitative evaluation shows that the proposed dynamic
reconfiguration framework helps IT Ecosystem provide
sustainable services even in frequent environmental changes
and through successive failures in its participant systems.

In our future research, we plan to continue our designed
experiments to quantitatively verify how genetic algorithm
reduces the overhead from adaptation cycles to determine
optimal configurations. Further, we will continue to self-
evaluate as we extend our framework to other domains of IT
Ecosystems.

ACKNOWLEDGMENT
This work was supported by the Industrial Convergence

Foundation Technology Development Program of
MSIP/KEIT [10044457, Development of Autonomous
Intelligent Collaboration Framework for Knowledge Bases
and Smart Devices] and Next-Generation Information
Computing Development Program through the National
Research Foundation of Korea(NRF) funded by the Ministry
of Science, ICT & Future Planning [No. 2012M3C4A7033
348].

REFERENCES
[1] A. Rausch, J. Muller, D. Niebuhr, S. Herold, and U. Goltz, “IT

Ecosystems: A new paradigm for engineering complex
adaptive software systems,” In Digital Ecosystems
Technologies (DEST), 2012 6th IEEE International
Conference on, pp. 1-6, 18-20 June 2012.

[2] K. Manikas and K. M. Hansen, “Software ecosystems - a
systematic literature review,” Journal of Systems and Software,
vol. 86(5), pp. 1294-1306, 2013.

[3] IBM Autonomic Computing Architecture Team, “An
Architectural Blueprint for Autonomic Computing, Tech.Rep,”
IBM Hawthorne, NY, USA, June 2006.

[4] http://www.osgi.org/Specifications/HomePage
[5] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steenkiste.

“Rainbow: architecture-based self-adaptation with reusable
infrastructure,” , IEEE Computer, vol. 37(10), pp. 46-54, 2004.

[6] S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn, J.
Lorenzo, A. Mamelli, and G. A. Papadopoulos. “A
development framework and methodology for self-adapting
applications in ubiquitous computing environments,” Journal
of Systems and Software, vol. 85(12), pp. 2840-2859,
December 2012.

[7] A.Z, M. Araujo, F. Kuiper, D. Valente, J. Wenkstern, R.Z.
“DIVAs 4.0: A Multi-Agent Based Simulation Framework,”
Distributed Simulation and Real Time Applications (DS-RT),
2013 IEEE/ACM 17th International Symposium on, pp.105-
114, Oct. 30 2013-Nov. 1 2013.

[8] http://en.wikipedia.org/wiki/Representational_state_transfer

23

A Framework Based on Learning Techniques for
Decision-making in Self-adaptive Software

Frank José Affonso, Gustavo Leite
Dept. of Statistics, Applied Mathematics and Computation

Univ Estadual Paulista - UNESP
Rio Claro, SP, Brazil

frank@rc.unesp.br, gustavoleite.ti@gmail.com

Rafael A. P. Oliveira, Elisa Yumi Nakagawa
Dept. of Computer Systems

University of São Paulo - USP
São Carlos, SP, Brazil

{rpaes, elisa}@icmc.usp.br

Abstract—The development of Self-adaptive Software (SaS)
presents specific innovative features compared to traditional
ones since this type of software constantly deals with structural
and/or behavioral changes at runtime. Capabilities of human
administration are showing a decrease in relative effectiveness,
since some tasks have been difficult to manage introducing
potential problems, such as change management and simple
human error. Self-healing systems, a system class of SaS, have
emerged as a feasible solution in contrast to management
complexity, since such system often combines machine learning
techniques with control loops to reduce the number of situations
requiring human intervention. This paper presents a framework
based on learning techniques and the control loop (MAPE-K)
to support the decision-making activity for SaS. In addition, it
is noteworthy that this framework is part of a wider project
developed by the authors of this paper in previous work (i.e.,
reference architecture for SaS [1]). Aiming to present the viability
of our framework, we have conducted a case study using a
flight plan module for Unmanned Aerial Vehicles. The results
have shown an environment accuracy of about 80%, enabling
us to project good perspectives of contribution to the SaS area
and other domains of software systems, and enabling knowledge
sharing and technology transfer from academia to industry.

Keywords-Self-adaptive software; Reference Architecture;
Framework; Learning Techniques; Decision-making.

I. INTRODUCTION

Over recent years, one has observed a significant increase
in the complexity of software systems and their computa-
tional environments. In general, such systems share functional,
nonfunctional, physical, and virtual requirements. The human
ability to manage systems has shown as inadequate when their
complexity increases. Moreover, involuntary injection of faults
has often configured as one of the major causes of system
failures (especially in the context of Self-adaptive Software –
SaS). In SaS, the design decisions are moved towards runtime
to control dynamic behavior and individual reasons of such
systems about their states and environments.

Reference Architectures (RAs) refer to a special class of
software architecture that have become an important ele-
ment to systematically reuse architectural knowledge [2], [3].
Thus, in previous work [1], [4] we have proposed Reference
Architecture for SaS (RA4SaS) – an architecture that provides
a guideline set for SaS development and an automated ap-
proach for self-adaptation of the software entities1 at runtime

1 From this point onwards, SaS may be also referred to as software entities
or simply entities.

without human intervention.
Based on the presented context aimed at improving the

quality of development processes for SaS, this paper presents
a framework based on learning techniques (classifiers and
association rules) [5] and the MAPE-K (Monitor, Analyze,
Plan, Execute over Knowledge base) [6], [7] control loop for
decision-making in SaS. The main purpose of this framework
is to classify and analyze sensory data to autonomously detect
and mitigate faults at runtime. Thus, we believe that the needs
for systems to interface with human administrators may be
reduced, alleviating operational-human costs and, ideally, im-
proving upon existing mitigation techniques. Moreover, based
on the preliminary results, we believe that our framework may
be used in the knowledge management of other types of soft-
ware systems. For instance, we have applied this framework
in the monitoring and eventual corrections of flight plan for
Unmanned Aerial Vehicles (UAVs).

In this context, the primary propose of this paper is to
supply the industry with supporting strategies to systematize
and automate the functionalities of SaS, contributions from
Software Engineering (SE) and Knowledge Engineering (KE)
are necessary. Other contributions are: (1) the evaluation of
a solution for the problem of classifying and recommending
solutions at runtime; (2) a flexible strategy for SaS modeling;
and (3) regarding the adaptive module, a feasible strategy to
rebuild classifiers and rules from specific points where they
were interrupted.

Following the introduction, this paper is organized as fol-
lows: Section II presents the background and some related
work associated to our study; Section III provides a description
of RA4SaS and the framework for decision-making for SaS;
a case study designed to validate our approach is presented in
Section IV; and finally, Section V summarizes our findings,
conclusions, and perspectives for further research.

II. BACKGROUND AND RELATED WORK

This section presents the background (i.e., standard concepts
and definitions on SaS and RA) and related work on our study.
SaS has specific features in comparison to traditional systems
since this type of software system constantly deals with
adaptations at runtime, fixing new needs of both users and/or
execution environment. Moreover, the SaS development has

(DOI reference number: 10.18293/SEKE2015-125)(DOI reference number: 10.18293/SEKE2015-125) 24

boosted self-? properties in general-purpose software systems,
such as self-managing, self-configuring, self-organizing, self-
protecting, self-healing, and so on. These properties allow
systems to automatically react against users’ needs or to
respond as soon as these systems meet execution environment
changes [3], [8], [9], [10].

RA is a special type of architecture that provides major
guidelines for the specification of concrete architectures of a
class of systems [11]. Some studies [12], [13], [14], [15] have
established different investigations to systematize the design
of such architectures, guidelines, and processes. Moreover,
the effective knowledge reuse of RA depends not only on
raising the domain knowledge, but also documenting and
communicating this knowledge efficiently through an adequate
architectural description. Commonly, architectural views have
been used, together with UML (Unified Modeling Language)
techniques, to describe RAs. Considering their relevance as
the basis of the software development, a diversity of RAs has
been proposed and used, including for (self-?) software.

As related work, Schneider et al. [16] presented a survey
on self-healing systems frameworks. According to these au-
thors, these systems can combine machine learning techniques
and control loops to reduce human intervention, since such
systems are costly to develop and they can autonomously
detect and recover themselves from faulty states. The study
presented a classification of self-healing frameworks per three
categories (techniques): (i) learning methodology (supervised,
semi-supervised, and unsupervised); (ii) management style
(bottom-up and top-down); and (iii) computing environment
(n-tier traditional, cloud, virtualized, and grid/p2p). In Psaier &
Dustdar [7], a survey on self-healing systems was conducted.
This survey showed that the number of approaches for the
research on self-healing has been very active. Moreover, a
selection of current and past self-healing approaches was
addressed, as well as explanations for the origins, principles,
and theories of self-healing for such approaches. These two
studies provided the theoretical basis for the design of our
framework.

Qun et al. [17] stated that architecture-based self-healing
approaches were used in the architectural model as basis for
system adaptation. Such approaches were based on architec-
tural reflection, and their software architectures are observ-
able and controllable. Cheng et al. [18] purposed a software
architecture-based adaptation for grid computing. Technically,
the study designed a framework based on a software architec-
tural model. This model allows the analysis of the necessity
of adaption in an application, enabling repairs to be written
in the context of the architectural model and propagated
(applied/designated) to the running system. Zadeh & Seyyedi
[19] suggested an architecture based on failure-prediction in
architectures based on web services. The main goal of this
study is to repair the execution process after detection of a
failure. In a similar context, Psaier et. al [20] developed a self-
healing approach that enables recovering mechanisms to avoid
degraded or stalled systems. Thus, the study designed VieCure
– a framework to support self-healing principles in mixed

service-oriented systems. In this context, one can highlight that
the literature has revealed important initiatives for the context
of this paper.

III. REFERENCE ARCHITECTURE AND FRAMEWORK FOR
DECISION-MAKING

This section presents a brief description of our RA to
support the development of SaS [1]. Moreover, our approach
addresses a framework based on learning techniques and con-
trol loop for decision-making in such systems. This framework
is part of the aforementioned architecture, whose main purpose
is to support the identification of anomalies (symptoms), and
propose solutions (treatments) for SaS at runtime.

A. Reference Architecture: RA4SaS

Figure 1 shows the general representation of our RA4SaS
[1]. This architecture is composed of four external modules
and a core for potential adaptation (dotted line), which repre-
sents an “adaptation bus” of the software entities at runtime in
an automated approach. In short, our RA works with a con-
trolled adaptation approach, i.e., the software engineer must
insert annotations in each software entity so that the automatic
mechanisms in the environment execution can identify the
adaptability level of each entity. These levels contain param-
eters that determine where the new changes may be applied.
Thus, when an entity is developed, an automatic mechanism
performs a scan process, to inspect if such annotations were
correctly inserted. After a validation process, such entities can
be stored in the entities repositories (execution environment)
so that they may be invoked in future adaptations. Next, a brief
description of this architecture is addressed.

Fig. 1. Reference architecture for self-adaptive software [1]

The Development Module provides a guideline set for the
development of software entities (SaS). Such guidelines act on
requirement analysis, design, implementation, and evolution
(i.e., adaptation of the software entities at runtime). The
Action Plan Module aims at assisting in the adaptation
activity of software entities. This module must be able to
control:(i) dynamic behavior, (ii) individual reasons, and (iii)
execution state in relation to the environment. To do so,

25

a framework based on learning techniques (classifiers and
association rules) [5] and the MAPE-K control loop [6], [21] to
support the decision-making of SaS is also part of this module.
Section III presents details on the design and implementation
of this framework. The Adaptation Rules Module provides
a rule set (metrics) for adaptation of the software entities.
Such rules are stored in the repositories (rule base) and reused
when a search for adaptation is performed. The Infrastructure
Module provides support for software entities adaptation at
runtime, i.e., a mechanism set for the dynamic compiling
and dynamic loading of software entities. Finally, the core of
adaptation represents a logic sequence of well-defined steps so
that the adaptation of the software entities is conducted with
no human intervention, i.e., all activities of this process are
conducted by an automated process as an “assembly line”.

B. Framework for Decision-making
This section presents details of a framework for decision-

making in SaS. In short, this framework acts as a non-intrusive
supervision modality, i.e., a supervisor system (meta-level)
can be coupled to a software entity (base-level) to monitor
its internal state of operation or the execution environment in
which it is inserted. Besides such supervision modality, this
framework incorporates an extension of the MAPE-K control
loop and three modules were designed: (i) classification of
problems; (ii) recommendation of solutions; and (iii) test of so-
lutions. In addition, sensors and effectors are also components
of this framework, since they represent a means of interaction
between supervisor system and supervised entities. Sensors
are responsible for capturing parameters from the execution
environment for the supervised system. Next, the classification
module classifies these parameters to identify the changes
occurred in each software entity from within the execution
environment. Based on this classification and the collected
data, an adaptation plan is prepared by the recommendation
module to establish a solution for the identified problem.
Before it becomes an effective solution, such recommendation
must be tested in order to ensure that no “collateral effects”
will be propagated to the software system (i.e., other software
entities). Effectors deal with the “selected solution” after its
testing activities are performed, applying it to the system.
Figure 2 shows the control loop utilized in our framework.

Fig. 2. MAPE-K control loop (Adapted from [6])

Section III-B1 and Section III-B2 present operational details

of the classification and recommendation modules. Due to
space limitations, details on the framework testing module
are not widely detailed in this paper. However, in short, it
is possible to mention that the framework testing module
involves a test case selection based on information provided
by logs during the system adaption. Section III-B3 provides
details on the framework design.

1) Classification module: Figure 3 shows the classification
module of our framework, whose main purpose is to present
a classification for a set of data collected from sensors at
runtime. Preliminarily, software engineers must specify the
application domain, mapping the “main points” of a software
entity (i.e., software system or software architecture) that will
be monitored. This specification details the number of at-
tributes of an instance and values that can be assigned to them.
Such specification must be stored in a “.arff” file in the
“Specification” component and mapped to a database aiming
to store all interactions occurred during the execution cycle of
our framework. Based on this specification and a set of labeled
initial data (Step 1), an incremental classifier is generated (Step
2) in the “Incremental Classifier” component. Next, new data
can be collected from the execution environment and sent to
this classifier for identification of symptoms (Step 3). Finally,
these data are stored in the database as collected and classified
(Step 4) after the validation by the recommendation module.

Fig. 3. General representation of the classification module

In the following, we present a brief description of the
classification core: (i) Start: aims to initialize this module by
means of the “Engine” component. As result, an incremental
classifier is generated (“Incremental Classifier” component)
based on the specification and initial knowledge provided by
the specialist; (ii) Load: attempts to load data stored in the
database, which is organized in two types: (i) specification, i.e.,
initial knowledge provided by the specialist; and (ii) acquired
knowledge, i.e., data obtained during the execution cycle; (iii)
Engine: represents an abstraction of the incremental classifier
algorithm that performs the data classification collected from
the execution environment, or from the initial knowledge
provided by the specialist; and (iv) Update: updates the
database after new data has classified. Such update is per-
formed when a message from the recommendation module is
received indicating that both data and classification can be
stored.

26

2) Recommendation module: The recommendation module
supports the selection of an effective treatment for the problem
reported in the previous step (classification module). This
module has similar operations in comparison to the previous
one. In Step 1, an assumption is required: the specification
of the domain/problem must be provided by the specialist. To
do so, both database of symptoms and domain specification
(“Specification” component) must be reused from classifica-
tion module. Moreover, a treatment database must be created,
since it will store the solutions to the problems identified by
the previous module. From these databases (symptoms and
treatment) and specifications are generated a rule set (Step 2),
which intends to map the problems (symptoms) and solutions
(treatment). The main purpose for the use of association rule
[22] in this module is to detect more significant statistically
correlations, via support and confidence, among the symptoms
and treatments in order to operate the recommendation of
treatments for a symptom set [23]. Why? It is worth noting
that there is no interest in a specific attribute (i.e., in a
specific treatment), since a symptom set may present some
alternatives of treatments. After creation of the rule set, new
data (classification module) can be inserted (Step 3) in this
module so that one or more treatments may be identified (Step
4). At the end, this module may recommend one or more
treatments for the symptom identified. Whether there is more
than one treatment, the approach presents a list that must be
ordered by the support and confidence criteria of the rules.
Thus, one can select these rules one-by-one (i.e., from highest
to lowest criterion). After that, the cycle tests the solution as
a feasible solving for the identified problem (symptom).

Further, regarding the recommendation module, the internal
components of this module (Start, Load, and Update) have the
same functionalities as the classification module. Therefore,
such components are not presented in the same level of detail.
The “Engine” component represents an abstraction for the
rule algorithm. Similar to the classification module, other rule
algorithms can be coupled to this module as a strategy to
compare/evaluate results (i.e., statistical measures).

3) Framework Design: Figure 4 shows the main structure
of classes of our framework, which is organized in three layers:
(i) infrastructure for control loop, containing the core and
module packages; (ii) classification and rule algorithms, repre-
sented by the algorithms package; and (iii) external resources,
represented by the dotted line because they contain a package
set developed by third parties. Next, a brief description of these
packages in each layer is addressed.

The core package contains two interfaces (Observer
and Subject) and a class named AbstractObserver.
Such interfaces represent the observer and observed roles for
the classes of the module package (AbstractModule).
Finally, it is noteworthy that the AbstractObserver class
implements both interfaces of this package, i.e., implements
the methods of the Subject interface and delegates the im-
plementation of the Observer interface for classes inherited.

The module package is composed of a class set that
represents the MAPE-K implementation (Figure 2) for the

Fig. 4. Framework UML model

classification and recommendation modules. Such implemen-
tation is based on the Observer design pattern [24], i.e.,
all classes in this package are, at the same time, a sub-
ject and an observer. Thus, three configurations can be cre-
ated: (i) the MonitoringModule class is an observer
for the sensors of a software entity and a subject for
the AnalisysModule class; (ii) the AnalisysModule
class is an observer for the MonitoringModule class
and a subject for the PlanningModule class; and finally,
(iii) the PlanningModule class is an observer for the
AnalisysModule class and a subject for the test module.
This strategy enables the classes of this package to be decou-
pled, acting through event notification by the previous class
via a single interface (Module).

The algorithms package contains a class set that
represent the classification and recommendation algo-
rithms. Such classes implement the Adapter design pat-
tern [24] so that a common interface is available for
both algorithms. The classification module is composed
of an interface (ClassifierTarget) and a class
(ClassifierAdapter). This class is an abstraction for
the classification algorithm (HoeffdingTree class) imple-
mented in the trees package. Similarly, the recommendation
module was implemented using the aforementioned pattern.

Finally, the packages inside the dotted line represent the
concrete classes of our framework, which were developed
by third parties. According to Adapter design pattern [24],

27

the ClassifierTarget class is a Target class in
the pattern, ClassifierAdapter is an Adpter, and
HoeffdingTree is an Adaptee. Thus, other algorithms
can be coupled to our framework without additional implemen-
tation in our system; only the ClassifierAdapter and
RuleAdapter classes will be subtly modified. Moreover,
the new packages and classes should be represented in the
same format as the current ones (dotted lines).

IV. CASE STUDY

To evaluate the applicability, strengths, and weaknesses of
our framework this section presents a case study we have
conducted. As subject application for our empirical analysis,
we have selected an application addressed to the management
of an UAV in a simulated environment, as shown in Figure
5. In short, the UAV architecture is organized in three layers:
UAV, Communication, and Client. The UAV layer is composed
of a UAV set that contains the following components: 3D
glasses with radio frequency transmitter; autopilot; navigation
camera; day and night vision camera; parachute; solar board;
thermal sensor camera and so on. The communication layer
contains the servers for communication between UAVs and
clients, and time synchronization (NTP – Network Time
Protocol). The client layer represents the UAV controllers in
different operating systems.

Fig. 5. General architecture for UAV

Operationally, we have instantiated our framework into
server (Figure 5), enabling us to collect data from the environ-
ment via sensors, and transferring it for classification. In this
context, when a problem is detected, a set of useful solutions
is presented for correcting the flight plan. In extreme cases, the
system may exhibit a recommendation to abort the operation.
This last case is recommended when the UAV integrity may
be compromised. Then, the UAV location is provided for our
system, enabling the vehicle to be rescued. Modifications are
made in the flight plan when the collected data tell us that
something unplanned is changing in the environment. Thus,
even if no decision is taken, the mission of the UAV may be
compromised.

The UAVs used in the scope of this empirical study are
equipped with seven sensors: (i) altitude and direction, (ii)
barometer, (iii) battery level, (iv) humidity, (v) latitude and

longitude, (vi) speed, and (vii) temperature. Some of these sen-
sors provide numerical information that must be discretized,
since both algorithms (classification and recommendation) of
our framework require data in the form of categorical attributes
[5]. Due to space reasons, only one of the sensors was used
to show the discretization process. Thus, we have chosen the
battery level as our target sensor since it is the power source
for all components of an UAV. In addition, the information
provided by this sensor represents an estimation of the flight
range of the UAVs. Flight range is the time that an UAV can
remain flying and, consequently, through this trip autonomy,
one can get an estimate on feasible distance of flight. Table
I presents the categories for the battery level sensor. The first
column shows the range to classify the battery level (second
column) on a scale of six to seven percentage points (i.e., A
with six points and B and C with seven points). The third
column presents a classification in a scale of 20 percentage
points. However, it is noteworthy that a classification has three
levels, i.e., the A level is the best state of a classification, the
B level can be considered as a stability region, and the C level
represents a transition stage. Since the discretization process
requires a nominal category, we combine the first letter of each
classification with respective battery charge levels, as shown
in column 4. Finally, it is important to highlight that we have
applied the same strategy for the remaining sensors,

TABLE I
CLASSIFICATION FOR THE BATTERY LEVEL SENSOR

Interval Level Classification Class
95 - 100 A

Excellent
E.A

88 - 94 B E.B
81 - 87 C E.C
75 - 80 A

Good
G.A

68 - 74 B G.B
61 - 67 C G.C
55 - 60 A

Regular
R.A

48 - 54 B R.B
41 - 47 C R.C
35 - 40 A

Bad
B.A

28 - 34 B B.B
21 - 27 C B.C
14 - 20 A

Critical
C.A

7 - 13 B C.B
0 - 6 C C.C

After discretization of the variables, the modeling activity is
started. Thus, each sensor will be transformed into an attribute
and its respective class in values for this attribute. Next, an
initial knowledge must be provided to the databases of symp-
toms and treatment (i.e., classification and recommendation
modules), setting a limitation for our approach. When new
data were collected from the environment to be classified by
our framework, an environment accuracy rate of 80% was
obtained. However, it is noteworthy that although the number
may be expressive, this rate can be optimized depending on
the initial knowledge provided, since in previous studies this
rate ranged from 87 to 94%.

Although no validation process has been used to obtain
the results presented in this section, such percentages pro-

28

vide evidence that the imbalanced data may negatively af-
fect the behavior of both modules (i.e., classification and
recommendation). According to our expertise, the following
activities must be conducted to overcome such adversity:
(i) the domain specialist should conduct the modeling of
the problem, i.e., the selection of attributes and values as
shown in the discretization process for the battery level at-
tribute; (ii) next, an initial knowledge should be provided so
that both modules can be started. It is noteworthy that this
knowledge is closely related to the problem and must not
be generalized; and (iii) finally, a calibration process of such
data must be performed by the specialist, since each problem
has specific features and behaviors that should be considered
in the execution of both modules. According to [5], [7], [20]
this process can optimize the performance of the algorithms
of both modules. Finally, we consider the particularity of our
subject application as a threat to the validity of our results.
Practitioners have been exploring different adaptation rules
and creating SaS with different features, limiting the wider
generalization of empirical analysis.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a framework for decision-making in
SaS. The main contributions of this paper are: (i) SaS area
for providing a feasible solution for classification of problems
and recommendation of solution at runtime. Our study uses
learning techniques as a means to implement the MAPE-
K control loop [6], [21]. Moreover, the extension of this
loop must be highlighted, since all solutions must be tested
before being inserted into the execution environment to avoid
that collateral effects regarding to adaptation activity are
propagated; (ii) Development facilities with this framework,
since an application can be modeled and instantiated without
a high level of knowledge by the developers; (iii) Algorithm
coupling flexibility, since some applications may require other
information or measure for treatment of a problem; and (iv)
From operational view point, the reconstruction of classifier
and rules for the same point they were interrupted, since
all data are labeled as Initial Knowledge (IK) and Acquired
Knowledge (AK). Moreover, the databases (symptoms and
treatment) are updated when a solution is confirmed as feasi-
ble, otherwise the data must be evaluated by the specialist.

As future work, three goals are intended: (i) conduction
of more case studies intending to completely evaluate our
framework; (ii) evaluation of this framework with other algo-
rithms for both modules classification and recommendation;
and (iii) use of this framework in the industry, since it is
intended to evaluate its behavior when it is applied in larger
real environment of development and execution. Therefore, it
is expected that a positive scenario of research, intending to
have this framework become an effective contribution to the
software development community.

ACKNOWLEDGMENT

This research is supported by PROPe/UNESP and Brazilian
funding agencies (FAPESP, CNPq and CAPES).

REFERENCES

[1] F. J. Affonso and E. Y. Nakagawa, “A reference architecture based on
reflection for self-adaptive software,” in SBCARS’ 2013, 2013, pp. 129–
138.

[2] E. Y. Nakagawa, F. Oquendo, and M. Becker, “RAModel: A reference
model of reference architectures,” in ECSA/WICSA’ 2012, Helsinki,
Finland, 2012, pp. 297–301.

[3] J. Kramer and J. Magee, “Self-managed systems: an architectural
challenge,” in FOSE’ 2007, may 2007, pp. 259 –268.

[4] F. J. Affonso, M. C. V. S. Carneiro, E. L. L. Rodrigues, and E. Y.
Nakagawa, “Adaptive software development supported by an automated
process: a reference model,” Salesian Journal on Information Systems,
vol. 12, pp. 8 – 20, 2013.

[5] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,
(First Edition). Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 2005.

[6] IBM, “An architectural blueprint for autonomic computing,” [On-
line], World Wide Web, 2005, in http://www-03.ibm.com/autonomic/
pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf (Access in
03/13/2015).

[7] H. Psaier and S. Dustdar, “A survey on self-healing systems: Approaches
and systems,” Computing, vol. 91, no. 1, pp. 43–73, Jan. 2011.

[8] D. Weyns, S. Malek, and J. Andersson, “Forms: a formal reference
model for self-adaptation,” in ICAC’ 2010. New York, NY, USA:
ACM, 2010, pp. 205–214.

[9] L. Liu, S. Thanheiser, and H. Schmeck, “A reference architec-
ture for self-organizing service-oriented computing,” in ARCS’ 2008,
U. Brinkschulte, T. Ungerer, C. Hochberger, and R. Spallek, Eds.
Springer Berlin / Heidelberg, 2008, vol. 4934, pp. 205–219.

[10] D. Weyns, S. Malek, and J. Andersson, “On decentralized self-
adaptation: lessons from the trenches and challenges for the future,”
in SEAMS’ 2010. New York, NY, USA: ACM, 2010, pp. 84–93.

[11] S. Angelov, P. Grefen, and D. Greefhorst, “A classification of software
reference architectures: Analyzing their success and effectiveness,” in
WICSA/ECSA’ 2009, 2009, pp. 141–150.

[12] J. Bayer, T. Forster, D. Ganesan, J.-F. Girard, I. John, J. Knodel, R. Kolb,
and D. Muthig, “Definition of reference architectures based on existing
systems,” Fraunhofer IESE, Tech. Rep., 2004, technical Report 034.04/E.

[13] E. Y. Nakagawa, R. M. Martins, K. R. Felizardo, and J. C. Maldonado,
“Towards a process to design aspect-oriented reference architectures,”
in CLEI’ 2009, 2009, pp. 1–10.

[14] M. Galster and P. Avgeriou, “Empirically-grounded reference architec-
tures: a proposal,” in QoSA-ISARCS’ 2011, New York, NY, USA, 2011,
pp. 153–158.

[15] S. Angelov, P. Grefen, and D. Greefhorst, “A framework for analysis and
design of software reference architectures,” Information and Software
Technology, vol. 54, no. 4, pp. 417 – 431, 2012.

[16] C. Schneider, A. Barker, and S. Dobson, “A survey of self-healing
systems frameworks,” Software: Practice and Experience, pp. n/a–n/a,
2014.

[17] Y. Qun, Y. Xian-chun, and X. Man-wu, “A framework for dynamic
software architecture-based self-healing,” in ICSMC’ 2005, vol. 3, Oct
2005, pp. 2968–2972 Vol. 3.

[18] S.-W. Cheng, D. Garlan, B. Schmerl, P. Steenkiste, and N. Hu, “Software
architecture-based adaptation for grid computing,” in HPDC-11’ 2002,
2002, pp. 389–398.

[19] M. H. Zadeh and M. A. Seyyedi, “A self-healing architecture for web
services based on failure prediction and a multi agent system,” in
ICADIWT’ 2011, Aug 2011, pp. 48–52.

[20] H. Psaier, F. Skopik, D. Schall, and S. Dustdar, “Behavior monitoring in
self-healing service-oriented systems,” in COMPSAC’ 2010, July 2010,
pp. 357–366.

[21] S. Dobson, S. Denazis, A. Fernández, D. Gaı̈ti, E. Gelenbe, F. Massacci,
P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli, “A survey of
autonomic communications,” ACM Trans. Auton. Adapt. Syst., vol. 1,
no. 2, pp. 223–259, Dec. 2006.

[22] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’93, New York, NY, USA, 1993, pp. 207–216.

[23] C. Tew, C. Giraud-Carrier, K. Tanner, and S. Burton, “Behavior-based
clustering and analysis of interestingness measures for association rule
mining,” Data Mining and Knowledge Discovery, vol. 28, no. 4, pp.
1004–1045, 2014.

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

29

Towards Knowledge-intensive Software Engineering

Framework for Self-Adaptive Software

Hyo-Cheol Lee

Dept. of Computer Engineering, Ajou University

NiSE Research Group

Suwon, South Korea

mytion7@ajou.ac.kr

Seok-Won Lee

Dept. of Computer Engineering, Ajou University

NiSE Research Group

Suwon, South Korea

leesw@ajou.ac.kr

Abstract—A self-adaptive system reacts to the changing

environment by modifying its functionality in relation to the

encountered state of the environment. In order to adapt to a new

situation, such system goes through many decision points during

the adaptation process. Knowledge forms the basis of decision

making within the adaptation process. There are already many

existing self-adaptive system frameworks. However, these

frameworks have limitation in the way they represent the

rationale for adaptation and the semantics behind the knowledge

they use. This paper takes a step forward by proposing a

knowledge-intensive adaptation framework to both manage

knowledge and support the analytical decision making process.

The proposed approach represents the adaptation knowledge by

using ontology which helps to organize, analyze and extend

knowledge. Ontology is able to represent the semantics behind

knowledge and provide the evidence for the adaptation. The

proposed approach uses a special ontology named the Adaptation

Problem Domain Ontology. It specifies the system goals, features,

architectures, and the relationship between them. This ontology

is used to answer the problem of adaptation at each decision

point and determine the appropriate system structure by

reasoning the semantics behind knowledge. Thus, the system can

consider the semantics behind knowledge for adaptation, and

then the stakeholders can understand the adaptation process. We

apply the proposed framework to the smart grid domain and

show how the system adapts to a new situation using rationale for

adaptation and the semantics behind the knowledge.

Index Terms—Self-adaptive system, decision making, ontology,

goal model, feature model, role-based architecture

I. INTRODUCTION

As humans interact with changing environments, so a

system encounters many different situations which demand

different requirements or capabilities. Thus, a system should be

able to provide a specific functionality, which is appropriate to

the encountered situation, for the user. This has been a great

motivator for the development of self-adaptive systems. A self-

adaptive system can handle many situations by modifying the

system goals, architecture, and functionality in response to

changing environments without any human intervention [1].

For self-adaptation, the MAPE-K (Monitor/Analysis/Plan/

Execute and Knowledge) process is widely used [2]. Following

this process, the system encounters many decision points that

determine what is appropriate in a given situation and achieves

the emergent system objectives [3]. At that time, knowledge

plays a critical role as the foundation for decision making [4].

Many kinds of knowledge can be used to determine the results

and quality of the entire self-adaptation process. That is, the

way to use and represent knowledge is important in the self-

adaptation.

Many existing self-adaptive system frameworks already

regard knowledge as the basis for the adaptation. However, in

these frameworks, knowledge is considered as predefined rules,

logic and formulas mapping between input and system

structures and functionality [5][6][7]. The adaptation process is

therefore simplified as mapping between problem and

predefined solution. This is similar to the black box testing,

where the tester does not consider the internals of the system

during testing. This results in the semantics and rationale

behind the adaptation to be ignored and implicitly implied. The

rationale aspect behind adaptation is essential for stakeholders

to understand the reason behind decision making. Existing

frameworks are insufficient to illustrate the semantics and

rationale behind the adaptation process.

In this paper, we propose the NiSE (kNowledge-intensive

Software Engineering) framework for self-adaptive system.

The proposed framework adopts an ontological approach to

represent knowledge for the adaptation process. Various types

of knowledge needed for self-adaptation are systematically

organized, connected, and used in the form of ontology. So,

using this ontological approach, we are able to provide

knowledge-intensive adaptation process including the decision

making process which uses the rationale and semantics behind

the adaptation [8]. In this adaptation process, the decisions do

not just follow predefined logic or formulas as seen in existing

approaches [10][11][12], but infer the appropriate ones using

the relationship among knowledge. For that, the APDO

(Adaptation Problem Domain Ontology) is a key component.

APDO is special ontology containing adaptation knowledge

such as system goals, features, architecture, and their

relationships. During the adaptation, a system infers the

appropriate decision using APDO by answering a question at

each decision point. It gives support to know which knowledge

has been used in the adaptation process. Thus, the proposed

approach supports a comprehensive adaptation process through DOI reference number: 10.18293/SEKE2015-222

30

an ontological approach, and helps stakeholders to understand

the rationale and semantics behind the adaptation [9].

This paper is organized as follows: Section 2 introduces the

application domain, which is used to illustrate the proposed

approach. In Section 3, the proposed approach is described

with the help of a case study. We examine other frameworks in

Section 4. Section 5 concludes with future works.

II. APPLICATION DOMAIN

In order to verify the applicability of the proposed NiSE

framework, we have used a case study in the smart grid domain.

A smart grid is next generation electricity grid which

simultaneously interacts with demand and supply side using

their information [24]. The behavior of a smart grid

corresponds with that of a self-adaptive system. The smart grid

system also includes and manages many kinds of knowledge

such as domain, context, and system structure for adaptation.

This provides a domain that is suitable for us to test the

feasibility of the NiSE framework.

In this case study, APDO for the smart grid includes the

following knowledge: 1) goal model for what a smart grid

wants to achieve, 2) feature model to represent variability of a

smart grid behavior and component, 3) role-based architecture

model which a smart grid can have, and 4) other context and

policy related to the smart grid domain. These are correlated

with each others and used to make an appropriate decision.

We will use the electricity shortage scenario in this case

study [25]. In the smart grid, backup power is stored for

emergency situations and should be maintained with certain

proportions. Based on the amount of a backup power in a smart

grid, there are three states of power warning: Ready, Warning,

and Severe. Ready is safe state with enough backup power and

it maintains its goal and policy. Warning is careful state where

it needs volunteers to reduce electricity consumption. Severe is

the most critical state and it is compulsory to regulate

electricity consumption. In each state, there is a certain policy

to return to the Ready state. Thus, maintaining Ready state is

one of the goals of a smart grid. It means that if the backup

power is decreased and the power warning state is changed

from Ready to Warning or Severe, a smart grid should change

its behavior based on a policy in order to adapt to new situation.

In the case study, we assume that the energy consumptions

on the end-users side is suddenly increased due to unexpected

weather change. It causes the usage of a backup power to

resolve the emergent situation and changes power warning

state from Ready to Warning. A smart grid system monitors

these changes and reconfigures its goal, feature, or architecture

for return to Ready state without any failure. In the next section,

the details of NiSE framework is described and explained

based on this case study.

III. NISE FRAMEWORK FOR SELF-ADAPTIVE SYSTEM

NiSE framework for self-adaptive system is proposed to

deal with knowledge aspect in the adaptation process and

improve the stakeholders’ understanding of adaptation by

considering the rationale behind the adaptation. The NiSE

framework mainly focuses on two perspectives: 1) adaptation

knowledge and 2) associated adaptation process using that

knowledge.

A. Adaptation Knowledge Perspectives

In the perspective of adaptation knowledge, we introduce

APDO for the knowledge base of the self-adaptation. APDO is

a special ontology, which defines knowledge including system

structure, rules, and relationships between them [22]. Figure 1

describes the relationships among the various kinds of

knowledge. It shows not only the main system structures such

as goal, feature, and role architecture, but policy, software

engineering process, context, and domain knowledge as well.

These kinds of knowledge are used to determine the system

behavior and the system architecture. By using these multi-

dimensional relationships among many different types of

knowledge for the adaptation, we are able to understand the

internal process of decision making for the adaptation and

support for the stakeholders to comprehensively understand the

rationale behind the adaptation.

Behavior Feature ModelTarget System Goal Model

External

Self
Sufficiant

Control
Necessary

Regular
Shortage

Regular
Excess

Supply
Decrease

Demand
Increase

Unstable Inefficient

Supply
Collapse

Demand
Jump

... ...

Context

Internal

...

Context Model Policy Model

Target System
Architecture Model

Engineering Process Model

Monitoring
Adaptation

Trigger
Validation Reconfig.

Req.
Modeling

B.Feature
Extraction

C.Feature
Selection

Arch.
Organizatin

Player
Assignment

Action Control

Notify

...

Process
...

...

...

Target
System
Policy

...

...

P
ro

d
u

ce

C
o

m
p

lySe
le

ct

Component Feature
Model

Domain Goal Model

Feature Extraction

Goal Projection

D
o

m
ain

 G
o

al
P

ro
je

ctio
n

Targe
t G

o
al

Extractio
n

C
o

m
p

o
n

e
n

t
Fe

atu
re

P

ro
je

ctio
n

B
e

h
avio

r
Fe

atu
re

Extractio

n

Quality

Attribute

ExtractionGoal
Extraction

Capability
Extraction

Component
Feature

Projection

Figure 1 Overview of Adaptation Problem Domain Ontology

Among many types of knowledge, goal, feature and

architecture models are directly related to the system structure.

As we move from goal models to architecture model, the

degree of abstraction is decreased and the details of the system

structure are extracted. In order for each model to be associated,

we explain the meaning and characteristics of each model.

Goal is the objective that the system wants to achieve [5]. It

is used to represent the system’s functional and quality

requirements [14][15]. In NiSE framework, there are two types

of goal model: domain goal model and target system goal

model. Domain goal model has all possible goals that a system

can achieve. As a subset of domain goal model, target system

goal model only includes the goals that the system needs to

achieve in given situation.

Goal model is the highest level of abstraction in NiSE

framework. When a system goal changes, the purpose of a

31

system behavior also changes. If a system needs to change its

goal, it should find a new goal, which can resolve the problem

in a new situation, among domain goal model. Thus, setting

domain goal model is defining the available adaptation

strategies that a system can have.

Feature is defined as “A prominent or distinctive user-

visible aspect, quality, or characteristic of a software system or

systems” [16] and used to represent the system variability and

commonality [17]. In NiSE framework, feature model is used

not only to represent the variable points at which the system

can have diverse options of its functionalities or architectures,

but also to reduce the abstraction gap between goal model and

architecture model.

For this purpose, NiSE framework includes two types of

feature model: behavior and component feature model.

Behavior feature model represents atomic actions and

component feature model represents functional modules that

realize those atomic actions. Behavior feature model is close to

goal level and component feature model is close to architecture

level. Using these models, a system can connect goal problem

space and architecture solution space smoothly and represent

variability and commonality with specific articulation [7].

The NiSE framework includes the system architecture using

the role-based design approach [18]. It has many advantages to

specify adaptive architectural design. Role is the abstract

architecture unit, which does not exist in real world. The

system is composed with the organization, which is comprised

of several roles. The real system components play certain role

to make a complete organization. This mapping is separately

processed with constructing organization. Therefore, late

binding between role and player is possible. It makes loose

coupling between the system architecture and real

implementation, and flexible architecture to easily change the

system components [19][20].

Role model can represent quality requirements of the

system through a contract. A contract is the specification of the

interaction between roles [21]. A contract includes the process

and the measurement. A process describes how the roles

interact with each other and the measurement specifies

achieving a contract. By measuring the degree of satisfaction of

a contract, we can quantify the quality requirements as well.

Furthermore, knowledge of context, policy, software

engineering and etc. are able to be represented following

diverse models and standards. The form of these kinds of

knowledge is not strictly restricted. Furthermore, in APDO, the

system engineer can define and add new knowledge.

When a system encounters decision point, including a set of

decision questions, the system queries APDO using the above

mentioned knowledge as a form of ontology for determining

appropriate decision. For example, in order to answer the

question “Whether the current structure is in need of

adaptation?”, first of all, the system checks whether current

system structure is appropriate for a given context or not. For

that, the relations between context model and the system

structure models are used to infer the answer. If the situation is

changed, the system determines the level of adaptation based

on the different system structure models and starts adaptation

to satisfy new objective of the current situation by changing its

goal, feature, role-based architecture or all of them.

The advantages of APDO are 1) supporting intuitive way to

manage adaptation knowledge and 2) providing the evidence of

the decision making during the adaptation process. When

knowledge is extended and modified, the engineer has a trouble

to predict the available situation and architecture based on new

knowledge. Thus, it takes a lot of time and effort to infer the

available situations and appropriate architecture corresponding

to each situation [23]. However, if the engineer uses ontology,

the engineer just defines knowledge and relationship among

them in ontology. And then, the unpredictable and emergent

solutions, which were difficult to determine by human, can be

automatically inferred by the system. Besides, because many

kinds of knowledge are used, it is able to provide the evidence

of the adaptation to understand the rationale and semantics of

the adaptation. This enhances the traceability between the

situation and the adaptation outcome. It makes the stakeholders

understand the adaptation process and application result.

The system engineer or domain experts define APDO,

because it needs many kinds of knowledge of the system and

domain. The system structures such as goals, features and

architecture models have formalized engineering method which

helps to define them. All models are converted to ontology

classes using those meta-models and the relations between

them are represented as object and data properties in ontology.

Other knowledge such as policy and context are also illustrated

in ontology based on the engineer-defined models. Therefore,

the preprocessing of knowledge is required.

B. Adaptation Process Perspectives

Monitoring

Adaptation
Trigger

Verification
&

Validation

Reconfiguration

Target System

System Players

Domain Component
Features

Domain Behavior
Features

Requirement
Instances

...

Domain Goals

Domain Policy

Requirement
Modeling

Behavior
Feature

Extraction

Role-based
Organization

Modeling

Component
Feature

Selection

Player
Assignment

Adaptation
Process

Figure 2 NiSE Adaptation Process

With the purpose of making a proper decision based on

knowledge, Figure 2 shows the NiSE adaptation process. The

adaptation starts from monitoring the environmental factors to

reconfiguring current system architecture into the inferred

system architecture. By following this process and answering

the adaptation questions using knowledge, a system can make

an appropriate decision, and then consequently adapt to the

new situation. Each adaptation phase has unique decision

points and several adaptation questions for making a decision.

For instance, in the scenario described in Section 2, when the

weather suddenly changes, the system can raise a question such

as “Whether it is needed to adapt?” And then, through

32

Smart GridSmart Grid

Reward and
penalty
Control

Recruit
participant

Demand
Respond

Demand
respond

determine fee

Electricity
Market
Analysis

Recruit
voluntarily
participants

Construct
load control

plan

Control
manage
system

Smart Grid

Regional
Transmission
Organization

 Energy
Management

Demand
response

management
system

Distribution
Management

Systems

Demand
bidding

Direct load
control

requires

Customer
information

system

act

act
act

act

Smart Grid
System

Reward and
Penalty

Direct Load
Control

Demand Bidding

Load
Interruptible Circulation

Blackout

satisfy

satisfy

satisfy

Energy Controller

Distribution
manager

Energy
planner

Smart Grid Stable system

Recruiter
Energy

controller

Volunteer Recruiter

Customer
selector

Information
collector

Efficiency
Power

Stability

Economical
Efficiency

Power
Efficiency

convert

convert

convert

satisfy

Adaptation Process
and Questions

How to satisfy the goals
by behavior features?

Q

Which composition of
component feature is
appropriate for the
behaviors?

Q

Which roles are required
and How to organize the
system with the roles?

Q

Which player is proper to
play the roles in
organization? And why?

Q

Which goals are proper to
context and the system
policies?

Q

Whether it is needed to
adapt?

Q

Smart Grid System
Goal-based Requirement Model

Smart Grid System
Behavior and Component
Feature Model

Smart Grid System Role-based
Architecture Model

Plan to
support

electric rate

Gather
customer

information

Data
manager

Intelligent
core

convert

Figure 3 Example of NiSE Adaptation Process Using APDO

knowledge of context, policy and goals and the relationship

between them in APDO, the system answers these questions

and makes an appropriate decision. These decisions finally

affect the system structure in order to satisfy new policies,

contexts or requirements.

In order to understand the knowledge-intensive adaptation

process, we show a simple example of the adaptation process

using APDO. In this example, we define APDO with 70 classes,

68 object properties, and 25 data properties with respect to the

smart grid system’s context, policy, goal, feature and

architecture to answer the questions shown in Figure 3 in

accordance with the scenario in Section 2.

Figure 3 shows the adaptation process with questions at

each decision point. Main adaptation process including from

33

goal-oriented requirement modeling to role-based architecture

design is shown based on predescribed scenario. The blocks in

Figure 3 represent goals, behavior features, component features,

and organizations with roles. Each goal is satisfied by behavior

features. These behavior features are also performed by

component features. Based on selected goals, behaviors and

components, which are able to perform the given behaviors, are

determined. Lastly, these features are connected to organization

and role which are composed of the corresponding capabilities.

In the scenario, energy warning state is changed from

Ready to Warning. To address this change and return to a stable

state, the system should increase backup power and decrease

current usage of electricity. This is a smart grid domain policy

used when energy warning state is changed to Warning. For

this scenario, APDO includes several knowledge areas such as

knowledge of policy, context, and system structure with three

abstraction levels (Goal, Feature, and Role-based Architecture)

and the relationship among them.

At first, based on the policy, the smart grid system

determines that it needs to adapt, and through the defined

relationship between Warning state and Demand Bidding goal

in APDO, Demand Bidding goal is selected as the proper goal,

which are the answers of the first and second questions in

Figure 3. Demand Bidding goal has satisfy relations with

Recruit Participant, Plan to Support Electric Rate, Construct

Load Control Plan and Control Manage Systems behavior

features. These relations support that these four behavior

features become the answer of the third question. Using act

relation between behavior feature and component feature,

Customer Information System, Distribution Management

Systems, Energy Management, and Demand Response

Management System are selected as the appropriate component

features. It is the answer of the fourth question in Figure 3. In

the fifth and sixth questions, these component features are

converted to the roles and organization shown in the bottom of

Figure 3 via convert relation between them, and these roles or

organizations are played by the smart grid system components

capable to perform them to change its architecture and satisfy

the new goal. Consequently, during the adaptation process,

these decisions are addressed by answering the questions

shown in Figure 3 through APDO and the system changes its

goals, features, and architecture [13].

Using the proposed adaptation process, the system makes

an appropriate decision with convincing evidences to assure the

high quality of the adaptation based on the answer to decision

questions. It also support the stakeholders in understanding the

rationale behind the adaptation, as they are able to know why

the adaptation happens and how it is processed.

IV. RELATED WORKS

In related work, we examine existing self-adaptive system

frameworks. We will compare other frameworks with the one

proposed in this paper, especially in terms of decision making

in the adaptation process and knowledge representation.

Rainbow is a framework for developing customized self-

adaptive system [10]. It is composed of two components:

managed system and manage system. Managed system is the

system, which directly adapts to the environment. Manage

system controls managed system through MAPE-K process. In

rainbow, the strategies are defined as the adaptation unit, which

a system can take. A strategy contains the system architecture

and several tactics. And, it is defined through Stitch and Acme.

Using utility theory, a system is able to quantify which strategy

can achieve system objective with the highest utility value.

Based on these results, a system selects and changes its

architecture that is suitable for new situation.

As mentioned before, the adaptation unit for rainbow is

strategy. All the strategies that the system can take are already

defined at design time. Thus, a system cannot consider various

adaptation problems and provide enough flexibility of the

system architecture. However, proposed approach models only

knowledge for adaptation and a system infers the appropriate

decision using that knowledge at run-time. In other words, the

proposed approach does not determine the available

architecture, but design knowledge in order to determine

appropriate architecture at run-time. It supports high flexibility

and traceability by providing the evidence of the adaptation.

Proposed approach provides high understanding of the

adaptation process to the stakeholders as well.

MADAM (Mobility and Adaptation enabling Middleware)

is specially focused on the middleware for the self-adaptation

at mobile platform [11]. Through MDA (Model-Driven

Architecture), the user defines the system architecture model

and the system adapts to new situation by changing the

architecture model. In order to select the most suitable

architecture model, MADAM uses parameterization, which is a

method to apply the external variables to the predefined

adaptation formula. The adaptation is processed through

functionalized decision making process which means that the

situations which the system can face are mapped one-to-one

with each architecture model.

MADAM has adaptation middleware to manage system

architecture and adaptation process. Thus, the engineer defines

this middleware at design time. This adaptation is performed by

predefined mapping knowledge, therefore MADAM is not able

to consider run-time perspective in the adaptation such as

constructing new architecture model, which is more suitable

than other defined architecture model. In the proposed

framework, we refer MDA approach to represent system

architecture with various abstract level, but we infer the

adaptation result through knowledge at run-time in order to

make an appropriate decision. Namely, we define no direct

solution for each situation, but provide knowledge to support

decision making process and decide the solution for the system.

DiVA (Dynamic Variability in complex, Adaptive systems)

is the framework to support developing the self-adaptive

system using AOP (Aspect-oriented Programming) [12]. They

use base model and aspect model as the adaptation units for the

system adaptation. The base model is designed from the

essential components and the aspect model is designed based

on the optional component that is able to be added or modified.

Simultaneously using both the models, the engineer can easily

design the system variability and consider various situations.

At design time, not only base and aspect model, but

34

dependency between aspects in variable points, policy and

context are defined as well. Each context and policy is

connected to the available aspects, and the system is weaving

with base model and selected aspect models at runtime to

construct complete system architecture.

In DiVA, the adaptation units are defined at design time as

aspect models and it constructs complete system architecture

using these models at run-time. It is impossible that a system

uses undefined and new aspect for comprising new system

architecture. Therefore, it is impossible to consider semantic

dependencies when new dependency is defined or many

aspects are intertwined. However, proposed approach can

manage not only the syntactic relation, but also the semantic

relation through ontology by defining knowledge and reasoning

the semantics behind that knowledge. It also assures that a self-

adaptive system can make a more appropriate decision.

V. CONCLUSION AND FUTURE WORKS

In this paper, we propose a knowledge-intensive software

engineering framework for self-adaptive systems. The

proposed framework supports the decision making process and

the traceability of the adaptation knowledge through

knowledge-intensive inference and questions. Thus, the system

engineer and stakeholders are able to comprehensively

understand the adaptation process and analyze the problem and

solution to change non-adaptive systems to be self-adaptive.

The limitation of software adaptability is mitigated by

extending ontology to add new knowledge for the needed

adaptation such as new models or emergent relationships

between existing models.

In future works, we need to define an ontology-based

software development methodology. In this methodology, the

process of knowledge construction about the domain and target

system, and the fundamentals for self-adaptation should be

defined. Also, inference in decision making process should be

extended to resolve uncertainty problems. Uncertainty is an

emergent issue in the self-adaptive system. Lastly, the

verification and validation of the adaptation framework are

needed in order to determine the correctness of knowledge and

the decisions made during the adaptation.

ACKNOWLEDGMENT

This research was supported by Next-Generation

Information Computing Development Program through the

National Research Foundation of Korea (NRF) funded by the

Ministry of Science, ICT & Future Planning (No.

2013M3C4A7056233).

REFERENCES

[1] Betty H. Cheng et al., Software Engineering for Self-Adaptive Systems:

A Research Roadmap, Software Engineering for Self-Adaptive Systems,

Springer, 5525, Lecture Notes in Computer Science, 2009, 1-26.

[2] IBM, An architectural blueprint for autonomic computing, Autonomic

Computing White Paper, 2006

[3] De Lemos, Rogério, et al. "Software engineering for self-adaptive

systems: A second research roadmap." Software Engineering for Self-

Adaptive Systems II. Springer Berlin Heidelberg, 2013. 1-32.

[4] Kephart, Jeffrey O., and David M. Chess. "The vision of autonomic

computing." Computer 36.1 (2003): 41-50.

[5] Yijun Yu, et al. 2008, From Goals to High-Variability Software Design,

Foundations of Intelligent Systems, Springer, 4994, Lecture Notes in
Computer Science (2008), 1-46.

[6] Brice Morin, et al. 2009. Taming Dynamically Adaptive Systems using

models and aspects. In Proceedings of the 31st International Conference
on Software Engineering. IEEE Computer Society, Washington, DC,

USA, 122-132.

[7] Nelly Bencomo, et al. 2008, Dynamically Adaptive Systems are Product

Lines too: Using Model-Driven Techniques to Capture Dynamic

Variability of Adaptive Systems, 2nd International Workshop on
Dynamic Software Product Lines.

[8] Seedorf, Stefan. "Applications of ontologies in software engineering." In

2nd International Workshop on Semantic Web Enabled Software
Engineering held at the 5th International Semantic Web Conference.

2006.

[9] Gruber, Thomas R. "Toward principles for the design of ontologies used

for knowledge sharing?" International journal of human-computer

studies 43.5 (1995): 907-928.

[10] David Garlan, et al. "Rainbow: architecture-based self-adaptation with

reusable infrastructure," Computer, vol.37, no.10, pp. 46- 54, Oct. 2004

[11] Sebastiano Lombardo, “D.8.9: Mobility and Adaptation enabling

Middleware: Final Report”, MADAM final report, 2007

[12] DiVA Project Consortium, “D7.4: A Model-based Approach for
Construction and Run-time Management of Adaptive Systems: DiVA

practices and Lessons Learned”, DiVA White Paper, 2011.

[13] Brice Morin, et al., 2009, “Models@ Run.time to Support Dynamic

Adaptation”, IEEE Computer, 42, 10, 2009, 44-51.

[14] Goldsby H.J. et al. 2008. Goal-Based Modeling of Dynamically

Adaptive System Requirements. International Conference on

Engineering of Computer-Based Systems.

[15] Alexei Lapouchnian, Sotirios Liaskos, John Mylopoulos, Yijun Yu,

2005, Towards requirements-driven autonomic systems design,

Proceedings of the 2005 workshop on Design and evolution of

autonomic application software

[16] Kang, Kyo C., et al. Feature-oriented domain analysis (FODA)
feasibility study. No. CMU/SEI-90-TR-21. CARNEGIE-MELLON

UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST, 1990.

[17] Capilla, Rafael, Jan Bosch, and Kyo-Chul Kang. "Systems and Software
Variability Management.” pp. 25-32, 2013

[18] Colman, Alan Wesley. “Role oriented Adaptive Design”. Swinburne
University of Technology, Faculty of Information & Communication

Technologies, 2006

[19] Oreizy, Peyman, et al. "An architecture-based approach to self-adaptive
software." Intelligent Systems and Their Applications, IEEE 14.3

(1999): 54-62.

[20] Colman, Alan, and Jun Han. "Roles, players and adaptable

organizations." Applied Ontology 2.2 (2007): 105-126. Korea Power

Exchange, "Power market operating rule", 2013

[21] Colman, Alan, and Jun Han. "Using role-based coordination to achieve

software adaptability." Science of Computer Programming 64.2 (2007):
223-245. Korea Power Exchange, "Power market operating rule", 2013

[22] Lee, S.W. and Gandhi, R. A., Ontology-based Active Requirements

Engineering Framework, In Proceedings of the 12th Asia-Pacific
Software Engineering Conference, 2005. IEEE Computer Society

[23] Daniel M. Berry, Betty H. C. Cheng, Ji Zhang, 2005, The Four Levels of
Requirements Engineering for and in Dynamic Adaptive Systems, In

11th International Workshop on Requirements Engineering Foundation

for Software Quality.

[24] U.S Department-of-energy. ”Grid 2030: a national Vision for electricity’

second 100 years”. Tech. report, Department of energy, 2003

[25] Korea Power Exchange, "Power market operating rule", White Paper,

2013

35

DOI reference number: 10.18293/SEKE2105-019

How to Teach the Usage of Project Management
Tools in Computer Courses

A Systematic Literature Review

Rafael Queiroz Gonçalves
Department of Informatics and Statistics, Graduate

Program on Computer Science
Federal University of Santa Catarina, UFSC

Florianópolis, Brazil
rafael.queiroz@posgrad.ufsc.br

Christiane Gresse von Wangenheim
Department of Informatics and Statistics, Graduate

Program on Computer Science
Federal University of Santa Catarina, UFSC

Florianópolis, Brazil
c.wangenheim@ufsc.br

Abstract—Project management tools are mandatory to properly
manage a software project. The teaching of these tools is carried
out in superior computer courses, but often the instructional
strategies are used in an ad-hoc manner. This study aims to
analyze the literature about teaching of the usage of project
management tools and to identify the instructional strategies and
the utilized tools. We conducted a systematic literature review to
identify the most significant studies that report experiences on
this context. After analyzing more than 2700 studies a total of 5
primary studies were selected, and then others were manually
included. The instructional strategies and the utilized tools are
presented, highlighting the main functionalities and educational
features of these tools, as well as the instructional activities
carried out to meet the educational goals. Concluding with a
discussion of the advances and gaps that remain in this area.

Keywords-Project Management; Project Management Tools;
PMBOK; Systematic Literature Review; Teaching; Education.

I. INTRODUCTION

Project Management (PM) is a critical area for many
organizations in the software industry. A significant amount of
projects still fail due to a lack of proper management, causing
problems related to unaccomplished deadlines, budget overrun,
or scope coverage [1]. In this context a project is considered a
temporary endeavor to achieve a single result, and PM is the
use of knowledge, abilities, tools, and techniques that enable a
project to reach its goals [2].

Projects problems occur mainly because of the absence of a
PM process [3], resulting in a limited control over project
restrictions, resources, and stakeholders [1]. The adoption of a
PM process may be facilitated by the usage of a PM tool [4].
Despite many organizations still not using any PM tool, the
positive contributions that these tools have brought about have
increased the interest in their use [5].

The responsibility for the usage of these tools lies with the
project manager, who is accountable for the success of the
project, having the authority to direct its resources in order to
conduct the project in a systematic PM process [2].

Given that the usage of PM tools is not well rooted in
organizations, and that projects still fail, a possible cause for
this could be the teaching of project managers [1, 6, 7].

The teaching of PM has to addresses the knowledge on PM,
beyond general knowledge on administration, project
environment and application area, and interpersonal abilities
[2]. However, the teaching of PM should not just be focused on
theoretical knowledge, because it is not enough to effectively
apply the PM. It is necessary to develop the project manager
competencies, which include knowledge (theoretical), abilities
(practical), and attitudes (proactivity) [8]. In addition to this,
due to the complexity of contemporary software projects, the
PM is impracticable without the support of a PM tool, and the
usage of these tools is also among the project manager
competencies [4]. A PM tool is a software that supports the
whole PM process. Among its supported functionalities are:
schedule development, resources allocation, monitoring of
project performance, etc. [7].

The contribution of this research is the identification of
strategies that have been used to teach the usage of PM tools,
as well as, the tools adopted. These results may assist teachers
in the teaching of this topic, and also assist researchers in the
improvement of these strategies by the identification of
advances and gaps that remain in this area.

II. BACKGROUND

A. Project Management

The PM conducts the project activities and resources to
meet its requirements, since its initiating to its closing (Fig. 1).

Figure 1. PM processes groups [2].

(DOI Reference Number: 10.18293/SEKE2015-019) 36

DOI reference number: 10.18293/SEKE2105-019

Orthogonally to these process groups, the PM processes are
organized in 10 knowledge areas (Table 1).

Table 1. PM knowledge areas [2].

Knowledge
area

Processes to:

Integration Identify, define, combine, unify, and coordinate PM processes
and PM activities.

Scope Ensure that the project addresses the entire work and meets all
its requirements.

Time Plan, monitor and control the activities that will be carried out
during the project so it concludes within the deadline.

Cost Plan, estimate, and control project costs, so it concludes within
the approved budget.

Quality Define the responsibilities, goals, and quality policies so the
project meets the needs that have initiated it.

HR Organize and manage the project team.
Communication Ensure the generation, collection, distribution, storage,

recovery, and final destination of project information.
Risk Identify, monitor and control the project risks.
Acquisition Buy or contract products, services or any resources that are not

available as project internal resources.
Stakeholder Identify and manage the stakeholders and its expectations.

B. PM Tools

A PM tool is a software that supports the whole PM
process. Among its supported functionalities are: schedule
development, resources allocation, monitoring of project
performance, and other functionalities that may support any of
PM knowledge areas [4, 7].

Today, there are many PM tools available [9]. These tools
are typically classified according to its availability: proprietary
(the use of a license or acquisition is mandatory, and it is
maintained exclusively by an organization) or open-source
(free usage and maintained by the users community). The most
relevant proprietary PM tools are: MS-Project
(microsoft.com/project) and Primavera
(oracle.com/primavera) [4]. Some of most relevant open-
source PM tools are: DotProject (dotproject.net), Project.net
(project.net), and PhpCollab (phpcollab.com) [10]. The tools
also may be distinct by its platform, namely: stand-alone
(single user and accessed via desktop) or web-based (multi
user and accessed via web browser). Their supported
functionalities also vary significantly and may have different
approaches, for instance, it may support the whole PM
process, just a knowledge area, or, more specifically, just a
few activities, as the tracking of worked hours [11].

C. Teaching of PM Tools

The usage of PM tools is part of the project manager
competencies [2]. The need of Instructional Units (IUs) for
teaching this competency is addressed by the ACM/IEEE
reference curriculum for Computer Science [12]. It specifies
that students have to develop knowledge in all PM knowledge
areas, and have to learn the usage of a PM tool to develop a
project schedule, allocate resources, monitor the project
activities, etc. Based on these educational needs it is inferred
that the usage of a PM tool has to be taught in the application
level of the Bloom taxonomy (Table 2), once the knowledge on
PM have to be applied through the usage of a PM tool.

Table 2. Bloom taxonomy levels [13].

Level Refers to the students ability to:
Knowledge Identify or define some specific information based on

previous learning events.
Comprehension Demonstrate the understanding of an information, and

being able to reproduce it by ideas and own words.
Application Recognize and apply the information to solve concrete

problems.
Analysis Structure the information, fragmenting its parts and

establishing their relations and explaining it.
Synthesis Collect and relate information from various sources,

creating a new product.
Evaluation Make judgments about the value of something (products,

ideas, etc.), in relation to known criteria.

Often techniques taught in these IUs include [2, 7, 9]: the
Critical Path Method (CPM) – that identifies the project
activities that cannot be delayed without affecting the project
deadline; the Program Evaluation and Review Technique
(PERT) – that calculates the estimated effort to carry out an
activity based on three other estimates (worst case, most
common case, and best case); the RACI Matrix - describes the
participation by various roles in completing project activities;
the Resources Levelling - technique in which start and finish
dates are adjusted based on resource constraints, with the goal
of balancing demand for resources with the available supply;
amongst others. To teach these competencies some
instructional strategies (Table 3) may be adopted.

Table 3. Instructional strategies.

Instructional
Strategy

Description

Direct
Instruction

The teacher transmits concepts to students through expositive
classes.

Indirect
Instruction

The students carry out activities by themselves, and the
teacher provides feedback when necessary.

Interactive
Instruction

Based on the discussion and sharing of ideas among the
students. The teacher acts as a mediator.

Independent
Study

Refers to methods which are purposefully provided to foster
the development of individual student initiative.

Experimental
Learning

Student-centered and oriented to activities. It involves the
application of concepts in practical situations.

These IUs also have to evaluate the students learning, and
then different kinds of evaluations levels may be adopted
(Table 4).

Table 4. Four-level model for evaluation [14].

Level Evaluation
Level

Evaluation description and characteristics

1 Reaction Evaluates how the participants felt about the training or
learning experience.

2 Learning Evaluates the increase in knowledge or skills.
3 Behavior Evaluates the degree to which new learning acquired

actually transfers to the job performance.
4 Results Evaluation of the effect on the business environment by

the learner.

III. DEFINITION OF SYSTEMATIC LITERATURE

REVIEW

The methodology to conduct this research is the Systematic
Literature Review (SLR) following the method defined in [15].
A SLR is a study to identify, evaluate and interpret the studies
that are available and that are relevant to some research
question [15].

37

DOI reference number: 10.18293/SEKE2105-019

A. Research Question

This research aims to identify how to teach the usage of PM
tools in superior computer courses. Based on this motivation,
we performed a SLR focusing on three research questions:

a) RQ1: Which PM tools are taught in superior computer
courses?

b) RQ2: Which instructional strategies are used to teach
PM tools in superior computer courses?

c) RQ3: How the instructional strategies effectiveness
has been evaluated?

B. Inclusion/Exclusion Criteria

Aiming to select only significant studies, criteria for
including/excluding such studies were defined. It had been
selected just studies related to the teaching of PM tools, which
were published in English language, that are available in digital
libraries, and that were published between January 2004 and
June 2014. Other criteria restrict the search just for studies that
had passed by a peer review process, be it journals or
conference proceedings papers. In addition it was excluded: i)
Any study that does not use a PM tool (e.g. games, simulators,
and e-learning software); ii) Any study that explicitly does not
focus on PMBOK (e.g. agile methodologies or other PM
approaches), because it is the main reference in area and
worldwide accepted [4]; and iii) Any study external to the
computer area.

C. Data Sources and Keywords

The data sources had been chosen based on its relevance in
software engineering domain, namely: ACM Digital Library,
IEEEXplore, ScienceDirect, Scopus, SpringerLink, and Wiley
online library. The keywords were defined based on the
concepts in the SLR research questions (Table 5).

Table 5. Keywords.

Concept Keyword and synonymous

Education Education, teaching, and learning
Project Management Project management and PMBOK
Tool Tool, software, and system

IV. SLR EXECUTION

The SLR had been carried out in June 2014. It was
conducted by first author, a Computer Science PhD candidate,
and it had been reviewed by a senior researcher. The Table 6
presents the amount of returned results by each data source.

Table 6. Returned results by data sources.

Data source Results
ACM Digital Library (http://dl.acm.org/) 275
IEEEXplore (http://ieeexplore.ieee.org) 1,078
ScienceDirect (www.sciencedirect.com) 65
Scopus (www.scopus.com) 662
SpringerLink (www.springerlink.com) 537
Wiley online library (onlinelibrary.wiley.com) 140
Total 2,757

The returned studies were first analyzed just by their title.
The abstract was read only in cases that the titles did not
provide evidence of any exclusion criteria. The content of the

study was analyzed only in doubtful cases, for instance, when
it was not clear if it was used a PM tool or a simulator. Most
studies were excluded because they did not report the usage of
any PM tool, but other software (games, e-learning,
simulators, etc.). Many other studies were excluded because
they are not related to computer area. At the end, just 5
relevant studies were selected (Table 7).

Table 7. Selected studies.

ID Reference
S1 K. Reid, and G. Wilson, “DrProject: A Software Project Management

Portal to Meet Educational Needs,”. In: Proc. of the Special Interest Group
on Computer Science Education, Covington, 2007.

S2 Ž. Car, H. Belani, and K. Pripužić, “Teaching Project Management in
Academic ICT Environments,” In: Proc. of the Int. Conf. on “Computer as

a Tool”,Warsaw, 2007.
S3 G. Gregoriou, K.Kirytopoulos, and C. Kiriklidis, “Project Management

Educational Software (ProMES),” Computer Applications in Engineering
Education, vol. 21, n. 1, pp. 46–59, 2010.

S4 S. BHATTACHARYA, “Cooperative learning and website in Software
Project Management pedagogy,” In: Proc. of the Int. Conf. on Interactive
Collaborative Learning, Kazan, 2013.

S5 L. Salas-Morera, A. Arauzo-Azofra, and L. García-Hernández,
“PpcProject: An educational tool for software project management,”
Computers & Education, vol. 69, n.1, pp. 181–188, 2013.

Aiming to find more relevant studies, the state of the art
section of the selected studies was analyzed, and 3 more
relevant studies were found. Although some of these presented
tools did include simulation/game features, when analyzing
their functionalities it became evident that they may in fact be
characterized as PM tools.

Table 8. Manually included studies.

ID Reference
S6 A. Shtub, “Project management simulation with PTB project team builder,” In:

Proc. of the 2010 Winter Simulation Conference, Baltimore, 2010.
S7 F. Deblaere, E. Demeulemeester, and W. Herroelen, “RESCON: Educational

Project Scheduling Software,” Computer Applications in Engineering
Education,” vol. 19, n. 1, pp. 327-336, 2009.

S8 M. Vanhoucke, V. Vereecke, and P. Gemmel, “The Project Scheduling Game,”
Project Management Journal, vol. 36, n. 1, pp. 51-59, 2005.

V. DATA SYNTHESIS AND EXTRACTION

After selecting the studies, their data were systematically
extracted. The metadata to be extracted from studies were
defined based on each research question:

a) RQ1: tool name, classification (availability
(proprietary or open-source), platform (desktop or web-based)
and propose (general usage or educational)), main
functionalities, educational features, print screen.

b) RQ2: addressed process groups and knowledge areas,
educational goals, taught functionalities, instructional
strategies and activities, students evaluation method, discipline
hours.

c) RQ3: evaluation goals, instrument for data collection,
sample size, evaluation method and evaluation level.

Firstly, the general features of PM tools are presented in
Table 9. As the studies itself do not necessarily indicate these
information explicitly, some of the information has been
inferred based on the presented reports.

38

DOI reference number: 10.18293/SEKE2105-019

Table 9. General features of PM tools (RQ1).

ID Tool name Classifications Main functionalities Educational features Print screen
S1 DrProject Open-source,

web-based and
educational.

Tickets creation (analogue to project
activities creation and human resources
allocation), mailing lists for project
communication, and wiki for organizing the
project documentation.

-Mailing lists to facilitate the project communication
between team members and the teacher.
-The forms contain only the strictly necessary fields in
the context of the discipline.

S2 MS-Project Proprietary,
desktop, and
general usage.

Schedule development, project team
definition, hour/rate configuration for
human resources, project progress update
and monitoring, baselines control.

Does not apply.

S3 ProMES Open-source,

desktop, and
educational.

Supports the application of CPM, PERT,
and RACI matrix techniques.

-Provides scenarios and difficult levels to apply the
CPM, PERT, and RACI matrix techniques.
-Configuration of experience levels: trainee (student has
support of the tool) and professional (no help is
provided), and tutorial video.

S4 Gantt
project

Open-source,
desktop, and
general usage.

Schedule development, project progress
updating and monitoring.

Does not apply.

S5 PpcProject PpcProject: Open-

source, desktop
and educational.

Schedule development, support the CPM,
PERT, and resources levelling techniques.

The historic of all calculi are maintained on screen for
the student follow the calculation procedure.

S6 Project

Team
Builder -
PTB

Proprietary,
desktop, and
educational.

Work packages definition, schedule
development, and effort, resources, and cost
estimations.

Provides scenarios to simulate the execution of a project
plan, requiring the students to take decisions which
respect the project restrictions.

S7 RESCON Open-source,

desktop, and
educational.

Schedule development, resources
allocation, and CPM.

- What-if analysis for the students evaluating the effects
of resources inclusion in the project.
- Simulation of different schedule development
algorithms that solve resource constraint problems.

S8 Project

Scheduling
Game –
PSG

Proprietary,
desktop, and
educational.

Schedule development, resources
allocation, cost planning, and CPM.

Simulation of project execution requiring the students to
take decisions regarding the time/cost trade-off.

Information related to the instructional strategies for

teaching of PM tools usage (RQ2) are presented in Table 10.
As the studies itself do not necessarily indicate these

information explicitly, some of the information has been
inferred based on the presented reports.

Table 10. Data related to the instruction strategies (RQ2).

ID Process groups Knowle
dge

areas

Educational goals Taught
functionalities

Instructional strategies and activities Students evaluation
method

Discipline hours

S1 Initiation,
Planning,
Execution,
Monitoring &
Controlling,
Closing.

Time,
HR, and
commun
ication.

After the classes about PM
tool usage the students have
to use a PM tool to setup a
project, create its plan, and
keep its progress updated
while executing it.

Schedule
development,
organization of
documentation,
project
communication.

Classification: Experimental Learning
Activities: Elaboration of a project plan
using a PM tool, and execution of the
planned project in groups of students.

Not informed Not informed.
*It had 7 weeks of
duration.

S2 Initiation,
Planning,
Execution,
Monitoring &
Controlling,
Closing.

Time,
HR, and
commun
ication.

After the classes about PM
tool usage the students have
to use a PM tool to setup a
project, create its plan, and
keep its progress updated
while executing it.

Schedule
development
and monitoring.

Classification: Experimental Learning
Activities: Elaboration of a project plan
using a PM tool, execution of the planned
project in groups of students, and
production of project artefacts during its
life cycle.

-Delivery of exercise
carried out using the
PM tool.
-Theoretical test of
objective questions.

Not informed
*It had 7 weeks of
duration.

S3 Planning Time,
and HR.

After the classes about PM
tool usage the students have
to use a PM tool to apply the
CPM, PERT, and RACI
matrix techniques.

PERT, CPM
and RACI
matrix
techniques.

Classification: Experimental Learning
Activities: Resolution of problems using
CPM, PERT, RACI matrix techniques. For
each technique are carried out exercises
with ascending difficulty level.

Delivery of problems
resolution.

Not informed

S4 Initiation,
Planning,
Execution,
Monitoring &
Controlling,
Closing.

Scope,
time,
and HR.

After the classes about PM
tool usage the students have
to use a PM tool to setup a
project, create its plan, and
keep its progress updated
while executing it.

Schedule
development.

Classification: Experimental Learning
Activities: Elaboration of a project plan
using a PM tool, and execution of the
planned project in groups of students.

- 10 minutes project
presentation;
- Theoretical test of
objective questions.

40 hours
*20 meetings of 2
hours duration.

S5 Planning Time,
and HR.

After the classes about PM
tool usage the students have
to use a PM tool to apply the
CPM, PERT, and resources
levelling techniques.

CPM, PERT,
and resources
levelling
techniques.

Classification: Experimental Learning
Activities: Resolution of sequential
problems with ascending difficulty levels,
involving the application of CPM, PERT,
and resources levelling techniques.

Delivery of problems
resolution.

4 hours
*2 meetings of 2
hours of duration.

39

DOI reference number: 10.18293/SEKE2105-019

S6 Planning,
Execution,
Monitoring &
Controlling.

Scope,
time,
HR,
cost.

After the classes about PM
tool usage the students have
to use a PM tool to schedule
development, HR allocation,
and to analyze monitoring
and controlling reports.

Schedule
development
and HR
allocation.

Classification: Experimental Learning
Activities:
Elaboration of a project plan using a PM
tool, and management of HRs during the
simulation of the project execution.

Not informed 1 hour

S7 Planning Time,
HR.

After the classes about PM
tool usage the students have
to use a PM tool to develop
a project schedule using
strategies to solve resource
constraint problems.

Schedule
development,
HR allocation
and HR
levelling.

Classification: Experimental Learning
Activities: Definition of project activities,
and its estimations for effort and resources.
Execution of different algorithms for
schedule development and comparison of
their results.

Not informed Not informed
*It was used
during a semester.

S8 Planning,
Execution,
Monitoring &
Controlling.

Time,
HR,
cost.

After the classes about PM
tool usage the students have
to use a PM tool to schedule
development, HR allocation,
and to analyze monitoring
and controlling reports.

Schedule
development,
CPM and HR
allocation.

Classification: Experimental Learning
Activities: Elaboration of a project plan
using a PM tool, and management of HRs
during the simulation of the project
execution.

Punctuation
provided by the
educational PM tool,
based on project
completion and its
total cost at ending.

2 hours

Lastly, the data related to the evaluation of instructional

strategy effectiveness (RQ3) are presented in Table 11.

Table 11. Data related to instructional strategy evaluation (RQ3).

ID Evaluation goal Instrument for data
collection

Sample
size

Evaluation method Evaluation
level

S1 Evaluate if the students are able to manage and carry out
projects systematically with the support of a PM tool.

Observation and PM tool
database (to identify the
PM tool usage pattern by
tickets and wiki records).

Not
informed.
*Superior

to 25

Subjective observation in an ad-hoc manner. Reaction

S2 Evaluate if the students succeed to accomplish projects
according to defined processes and using appropriate PM
tools.

- Observation.
- Students oral
presentation.

130 Subjective observation in an ad-hoc manner. Reaction

S3 Evaluate the students learning of CPM, PERT, RACI
matrix techniques through the usage of an educational PM
tool.

Observation and students
feedback.

20 Subjective observation in an ad-hoc manner. Reaction

S4 Evaluate if the students are able to prepare and to present a
project plan with the support of a PM tool.

Written test and
questioner

47 Evaluation of students grade in the discipline, and
questionnaire answers.

Learning

S5 Evaluate among PpcProject and MS-Project PM tools,
which one is more appropriate for educational proposes.

Questioner 54 Each student has answered twice a questionnaire.
The first time about his experience when carried
out a few PM activities using PpcProject, and the
other after doing the same with MS-Project.

Reaction

S6 Evaluate if the students are able to manage resources in a
project respecting its constraints with support of a PM tool.

Observation and students
feedback.

Not
informed.

Subjective observation in an ad-hoc manner. Reaction

S7 Evaluate the students understanding about the CPM and
schedule development algorithms through the usage of an
educational PM tool.

Observation and students
feedback.

121 Subjective observation in an ad-hoc manner. Reaction

S8 Evaluate if the students are able to manage resources in a
project respecting its constraints with support of a PM tool.

Observation and students
feedback.

Not
informed.

Subjective observation in an ad-hoc manner. Reaction

VI. DISCUSSION

A discussion based on the extracted data of the SLR is
carried out aiming to answer the research questions.

In relation to the PM tools that are taught (RQ1), it had
been observed that the MS-Project is the most utilized tool. In
part it is because the students familiarity with MS-Office
environment and also by its availability on university labs.
However, many studies (S1, S3 and S5) points out the lack in
this tool for some PM processes, as well, the absence of
educational features. In an effort to cover this lack there had
been developed educational PM tools, such as DrProject,
ProMES, and PpcProject. These tools provide educational
features, for instance, the configuration of difficulty levels,
profiles for student assistance (step by step explanations) and
tutorial videos. In addition, the PM tool PpcProject was
compared to MS-Project, demonstrating to be as complete as
in relation to the supported functionalities, but superior in
educational aspects.

When analyzing the instructional strategies for teaching the
usage of PM tools (RQ2), it is observed that in all cases it is
classified as experimental learning, because involves the usage

of a PM tool during practical classes. Just few studies have
reported that some explanation about the PM tool usage is
provided before the students start to use it. In other cases, the
students need to learn about the PM tool by the exploratory
analysis of its functionalities. It also was observed that the
time management knowledge area was the most addressed.
The HR management was the next most addressed, mainly due
to the HR allocation process. It was identified three main
kinds of instructional strategies: The first one is related to the
execution of practical projects (students organized in groups,
build a software and use a PM tool for planning and
monitoring it) (S1, S2, S4); The second one focuses on the
application of specific techniques, such as CPM and PERT
(S3, S5, S7). In this case the instructor presents problems to
the students and they work for its resolution using a PM tool.
The first strategy covers, at least minimally, all PM process
groups, while the second one covers just the planning process
group. The last strategy is focused on the management of
project resources during the simulation of project execution
(S6, S8), requiring the students to make decisions based on the
analysis of project monitoring and controlling reports. About

40

DOI reference number: 10.18293/SEKE2105-019

the discipline hours, the first strategy requires more than
others, because it includes the project execution, instead of
just the application of specific techniques.

Regarding the evaluation of the effectiveness of these
instructional strategies (RQ3), all studies reported at least a
subjective evaluation, normally in an ad-hoc manner, based on
the authors opinion and in a few cases also the students
feedback. The evaluations have concluded that the
instructional strategies assist in the learning of PM concepts
and prepare the students for the professional career. Some
more systematic evaluations were carried out in S4, evaluating
its effectiveness based on the students grade, and S5 have
applied a questionnaire for students to identify their learning
experience. Yet, in most cases the evaluations were classified
in the reaction level, with focus on the students’ perspective.

It was evidenced that the teaching of PM tools assists the
students in the comprehension of PM concepts and provides
opportunities to the students to have practical experiences
through the application of concepts. However, it was noticed
that the instructional strategies are too focused on time and RH
management, minimally addressing other PM knowledge
areas. None of the studies addressed risk management, quality
management, acquisition management and others. In part it
may be justified by the lack of support of the PM tools to these
knowledge areas. Hence, it is evidenced that the developed
IUs for teaching the usage of PM tools does not contain
instructional strategies that cover the whole PM process, and
the gaps still existing in this area are highlighted.

A. Threats to Validity

A common threat in any SLR is the bias inherent to
scientific publications that in most cases reports the successes
of the experiences, and not its failures. This threat may have
hampered the identification of ways to measure the
effectiveness of a certain instructional strategy. It was
mitigated including a research question to identify how the
instructional strategies were evaluated. During the search
process the main threat is to not find relevant studies. A
migration for this threat includes the use of synonyms for all
search keywords. On the other hand, it returned a large amount
of results. For instance, the synonyms for the concept of tool
bring studies focused on e-learning, games, and simulators.
Other mitigating actions included the usage of many data
sources, in addition to the manual inclusion of studies based
on the state of the art sections of those selected. In the SLR
selection phase, the identified threat is related to the influence
of the researchers personal opinion. It was mitigated by
registering the exclusion criteria that motivated the disposal of
each study considered irrelevant, and by the discussion of the
results among the SLR participants. This threat also impact on
data analysis phase, because some information are not explicit
in the studies, and have been inferred by authors.

VII. CONCLUSIONS

This work aims to identify which instructional strategies
are been adopted in the teaching of PM tools usage in superior
computer courses. To reach this goal, it was carried out a SLR,
identifying the most relevant studies in the area. The results

show that, typically, the teaching of PM tools usage is carried
out in practical classes and the instructional strategies varies
from specific problems resolution or planning a software
project. The educational goals in general are focused on the
teaching of time and HR management, minimally or not
addressing other PM knowledge areas. In part it may be
justified by the lack of support of the PM tools to these
knowledge areas. Hence, despite the efforts, it is evidenced
that the teaching of PM tools usage still does not cover the
whole PM process, which is essential for a more efficient PM.
Future work may suggest other instructional strategies to fill
these gaps, through the adoption of a systematic PM process
that covers all knowledge areas, and the usage of a PM tool
aligned to such a process.

ACKNOWLEDGMENT

This work was supported by the CNPq (Conselho Nacional
de Desenvolvimento Científico e Tecnológico – www.cnpq.br),
an entity of the Brazilian government focused on scientific and
technological development.

REFERENCES
[1] The Standish Group, Chaos Manifesto 2013, Boston, 2013.

[2] PMI – Project Management Institute, A Guide to the Project
Management Body of Knowledge, 5. ed., Newtown Square, 2013.

[3] M. Keil, A. Rai, and J. Mann, “Why software projects escalate: The
importance of project management constructs,” IEEE Transactions on
Engineering Management, vol. 50, n.3, pp. 251–261, 2003.

[4] R. Fabac, D. Radoševic, and I. Pihir, “Frequency of use and importance
of software tools in project management practice in Croatia,” In: Proc. of
32nd Int. Conf. on Information Technology Interfaces, Cavtat, 2010.

[5] H. Cicibas, O. Unal, and K. Demir, “A comparison of project
management software tools (PMST),” In: Proc. of the 9th Software
Engineering Research and Practice, Las Vegas, 2010.

[6] T. Lethbridge, J. Diaz-Herrera, R. Leblanc, and J. Thompson,
“Improving software practice through education: Challenges and future
trends,” In: Proc. of Future of Software Engineering, Minneapolis, 2007.

[7] Ž. Car, H. Belani, and K. Pripužić, “Teaching Project Management in
Academic ICT Environments,” In: Proc. of the Int. Conf. on computer as
a tool, Warsaw, 2007.

[8] L. Spencer, and S. Spencer, Competence at Work: Models for Superior
Performance, 1st ed. John Wiley & Sons, 1993.

[9] L. Salas-Morera, A. Arauzo-Azofra, and L. García-Hernández,
“PpcProject: An educational tool for software project management,”
Computers & Education, vol. 69, n. 1, pp. 181-188, 2013.

[10] A. Pereira, R. Gonçalves, and C. Wangenheim, “Comparison of open
source tools for project management,” International Journal of Software
Engineering and Knowledge Engineering, vol. 23, n. 2, pp. 189-209,
2013.

[11] C. Wangenheim, J. Hauck, and A. Wangenheim, “Enhancing open
source software in alignment with CMMI-DEV,” IEEE Software, vol.
26, n. 2, pp. 59-67, 2009.

[12] ACM, and IEEE Computer Society, Computer Science Curricula 2013,
2013.

[13] B. Bloom, Taxonomy of educational objectives: The classification of
educational goals, 1st ed. Longmans, 1956.

[14] D. Kirkpatrick, and J. Kirkpatrick, Evaluating training programs: The
four levels, 4th ed. Berrett-Koehler Publishers, 2012.

[15] B. Kitchenham, “Systematic literature reviews in software engineering
– A tertiary study,” Information and Software Technology, vol. 52, n. 1,
pp. 792-805, 2010.

41

duncan
Typewritten Text

duncan
Typewritten Text

Soft Skills in Scrum Teams
A survey of the most valued to have by Product Owners and Scrum Masters

Gerardo Matturro
Software Engineering Department

Universidad ORT Uruguay
Montevideo, Uruguay

matturro@uni.ort.edu.uy

Carina Fontán
Software Engineering Department

Universidad ORT Uruguay
Montevideo, Uruguay
cpfontan@gmail.com

Florencia Raschetti
Software Engineering Department

Universidad ORT Uruguay
Montevideo, Uruguay

florencia.raschetti@gmail.com

Abstract—Software development requires professionals with
knowledge and experience on many different methodologies,
tools, and techniques. However, the so-called soft skills, such as
interpersonal skills, teamwork, problem solving and customer
orientation to name just a few, are as important as, or even more
important than, traditional qualifications and technical skills.
Members of scrum teams, particularly the ones performing the
roles of Product Owner and Scrum Master, are not exempt of
having these kind of skills because of the distinctive duties and
responsibilities of these roles in a Scrum team. In this paper we
report a field study in which we interviewed 25 experienced
Scrum practitioners from software companies in Uruguay to
know their points of view about what are the soft skills they
consider the most valued to have by the Product Owner and the
Scrum Master of a Scrum team. As a result, Communication
skills, Customer orientation, and Teamwork appear as the most
valued soft skills Product Owner should have, while
Commitment, Communication skills, Interpersonal skills,
Planning skills, and Teamwork are considered the most valued
ones for the Scrum Master.

Keywords- soft skills; scrum; product owner; scrum master

I. INTRODUCTION
Software development is a highly technical activity that

requires people performing diverse roles in software projects,
and with knowledge and experience on many different
methodologies, tools, and techniques.

However, as people in software projects have to work
together in order to achieve project goals, other kind of skills
and abilities are also needed, related to the execution of project
tasks such as interacting and communicating with teammates
and stakeholders, managing time, negotiating with customers,
writing reports, presenting project advances, problem solving,
and decision making, among others alike.

These skills are examples of a broad compendium of
several components like attitude, abilities, habits and practices
that are combined adeptly to maximize one’s work
effectiveness [1], and they are considered as important as, or
even more important than, traditional qualifications and
technical skills for personal and professional success [2].

This kind of skills are known in literature as “soft skills”,
"non-technical skills", "people skills", "social skills", "generic
competencies", or "human factors".

According to Capretz, the human factor is a make-or-break
issue that affects most software projects and thus, an
understanding of these factors is important in the context of the
practice of software engineering [3].

In a previous study [4], one of the authors identified 17 soft
skills that are usually demanded by software companies in
Uruguay when hiring new professionals to work in software
projects.

During recent years, several software companies in
Uruguay have been adopting agile methodologies, particularly
Scrum, for managing their software development projects.

Agile software development is carried out through the
collaboration between self-organizing, cross-functional teams.
Thus, agile teams depend greatly on efficient communication,
taking responsibility, initiative, time management, and
leadership [5], examples of the above mentioned soft skills.

As explained in [6], Scrum development efforts consist of
one or more Scrum teams, each made up of three roles: Product
Owner, ScrumMaster, and the Development Team. Of these
roles, in this paper we will concentrate on the two of them that
are unique and distinctive: Product Owner and Scrum Master.

The data used in the previous study reported in [4] was
collected from job ads published in a major national newspaper
of Uruguay, and from the database maintained by the Graduate
Office of Universidad ORT Uruguay, that receives jobs ads
directly from software companies looking for new staff.

In this paper, our purpose is to deepen that previous study
to have the "insider" voices of Scrum practitioners about what
are the soft skills they consider most valued to have by Scrum
team members. Specifically, we wanted to have the separate
perspectives of product owners, scrum masters, and team
members of Scrum teams about what are the soft skills they
consider of most value to have by their teammates, being either
the Product Owner or the Scrum Master.

 The remainder of this article is organized as follows. In
Section II we give an overview of the three Scrum roles. In
Section III, and since software engineering research in Uruguay
is scarce, we will give a brief overview of Uruguay and its
software industry. In Section IV we present the research
questions posed for this study, while in Section V we describe
the data collection process followed. In Section VI we present
the analysis of the collected data and we answer the research

42

duncan
Typewritten Text

duncan
Typewritten Text
DOI reference number: 10.18293/SEKE2015-026

questions. In Section VII we compare the points of view of
product owners, scrum masters and team members of Scrum
teams regarding the most valued soft skills to perform the
distinctive roles of Product Owner and Scrum Master. Finally,
in Section VIII we present our conclusions and further work.

II. SCRUM ROLES
Mainly based on [6], what follows is a brief description of

the three roles defined in the Scrum framework:

A. Product owner
The product owner is the empowered central point of

product leadership. He/she is the single authority responsible
for deciding which features and functionality to build and the
order in which to build them.

The product owner holds the product vision, and must
understand the needs and priorities of the organizational
stakeholders, the customers, and the users well enough to act as
their voice. In this respect the product owner acts as a product
manager, facilitating communication between the team and the
stakeholders to ensure that the right solution is developed.

B. ScrumMaster
The ScrumMaster helps everyone involved understand and

embrace the Scrum values, principles, and practices. He/she
acts as a coach, providing process leadership and helping the
Scrum team and the rest of the organization develop their own
high performance, organization-specific Scrum approach.

As a facilitator, the ScrumMaster helps the team resolve
issues and makes improvements to its use of Scrum, and is also
responsible for protecting the team from outside interference
and takes a leadership role in removing impediments that
inhibit team productivity. He/she also facilitates regular team
meetings to ensure that the team progress to its path to "done".

C. Development Team
Traditional software development approaches discuss

various job types, such as architect, programmer, tester,
database administrator, UI designer, and so on. Scrum defines
the role of a development team, which is simply a diverse,
cross-functional collection of these types of people who are
responsible for designing, building, and testing the desired
product.

III. URUGUAY AND ITS SOFTWARE INDUSTRY
With a population of 3.2 million people, Uruguay has

positioned itself in recent years as a leading exporter of
software in Latin America. In 2013, exports of software and
related services reached 300 million dollars, and CEOs of
leading companies expect to reach 1 billion dollars by 2020.
The main foreign markets are the United States, Argentina,
Brazil, Spain, and Canada. At present, there are about 250
companies that produce software, that employs about 4500
professional, and the unemployment rate in this industrial
sector is almost zero.

IV. RESEARCH QUESTIONS
We posed two groups of research questions for this study,

as depicted below:

• RQ. A: What are the most valued soft skills a Product
Owner must have, from the point of view of:

o A1: a Product Owner, A2: a Scrum Master,
A3: a development team member

• RQ: B: What are the most valued soft skills a Scrum
Master must have, from the point of view of:

o B1: a Product Owner, B2: a Scrum Master,
B3: a development team member

Table I shows the cross relationship between these six
research questions about Product Owner and Scrum Master.

TABLE I. RELATIONSHIP OF RESEARCH QUESTIONS

About...

 Product Owner Scrum Master

Point of view
of...

Product Owner A1 B1

Scrum Master A2 B2

Team Member A3 B3

V. DATA COLLECTION
To collect data for this study, we interviewed 25 software

engineering practitioners with working experience in Scrum,
from 8 software development companies in Uruguay. These 8
companies were selected from the set of companies that posted
the job ads used in the previous study mentioned above. Of
these companies, 6 declared to use Scrum as an agile
methodology and the other two a hybrid of iterative and agile
methodologies. Regarding the years in the Uruguayan market,
the youngest company is 4 years old, while the older is 23
years old, with an average of 10 years. With respect to the
quantity of employees directly involved in software
engineering tasks, the smallest company has 5 people, and the
biggest one has 390, with an average of 40 people.

As mentioned above, the software engineering
professionals interviewed for this work have working
experience in Scrum. Four of them have experience as a
Product Owner, seven as a Scrum Master, and the other
fourteen have experience only as a member of a Scrum team.

In Table II we show the interviewees' minimum, maximum,
and average years of experience in performing their respective
roles as part of Scrum teams.

TABLE II. INTERVIEWEES EXPERIENCE WITH SCRUM (YEARS)

Role Min. Max. Avg.
Product Owner 1 2 1.5

Scrum Master 0.75 4.5 3.1

Team Member 0.5 4.5 2.9

During the interviews, we gave the interviewees the list of
the soft skills identified in [4] along with a conceptual
definition of each skill.

43

To answer the six research questions, we requested the
interviewees to select from that list the soft skills that he/she
considers the most valued to have by a Product Owner (A’s
questions) and by a Scrum Master (B’s questions).

VI. DATA ANALYSIS
With the data obtained from the 25 interviewees, the

answers to the research questions posed for this study are as
follow:

A. The most valued soft skills a Product Owner must have.
To answer the research questions A1, A2, and A3, we asked

separately to product owners, scrum masters and team
members to select the soft skills considered most valued to
perform the role of Product Owner.

From the perspective of the four product owners
interviewed, the top five soft skills considered most valued to
have by a Product Owner (RQ. A1) are shown in Table III.

TABLE III. TOP FIVE SOFT SKILLS FOR PO (PO’S POINTS OF VIEW)

Soft skills Times selected %
Communication skills 4 100

Customer orientation 4 100

Interpersonal skills 3 75

Teamwork 3 75

Analytic, problem-solving 2 50

From the perspective of the seven Scrum masters
interviewed, the top five soft skills considered most valued to
have by a Product Owner (RQ. A2) are shown in Table VI.

TABLE IV. TOP FIVE SOFT SKILLS FOR PO (SM’S POINT OF VIEW)

Soft skills Times selected %
Communication skills 7 100

Customer orientation 7 100

Planning skills 7 100

Teamwork 7 100

Commitment, responsibility 6 85.7

Finally, from the point of view of the 14 team members
interviewed, the top five soft skills considered most valued to
have by a Product Owner (RQ. A3) are shown in Table V.

TABLE V. TOP FIVE SOFT SKILLS FOR PO (TM’S POINTS OF VIEW)

Soft skills Times selected %
Communication skills 14 100.0

Commitment, responsibility 10 71.4

Teamwork 9 64.3

Customer orientation 8 57.1

Motivation 8 57.1

B. The most valued soft skills a ScrumMaster must have
To answer the research questions B1, B2, and B3, we asked

separately to product owners, scrum masters and team
members to select the soft skills considered most valued to
perform the role of Scrum Master.

From the point of view of the four product owners
interviewed, the top five soft skills considered most valued to
have by a Scrum Master (RQ. B1) are shown in Table VI.

TABLE VI. TOP FIVE SOFT SKILLS FOR PO (SM’S POINTS OF VIEW)

Soft skills Times selected %
Communication skills 4 100

Interpersonal skills 4 100

Commitment, responsibility 3 75

Organizational skills 3 75

Planning skills 3 75

From the perspective of the seven Scrum masters
interviewed, the top six soft skills considered most valued to
have by a Scrum Master (RQ. B2) are shown in Table VII.

TABLE VII. TOP FIVE SOFT SKILLS FOR SM (PO’S POINTS OF VIEWS)

Soft skills Times selected %
Communication skills 7 100

Interpersonal skills 7 100

Motivation 7 100

Teamwork 7 100
Commitment, responsibility,
Planning skills 6 (each one) 85.7

Finally, from the point of view of the 14 team members
interviewed, the top five soft skills considered most valued to
have by a Scrum Master (RQ. B3) are shown in Table VIII.

TABLE VIII. TOP FIVE SOFT SKILLS FOR SM (TM’S POINTS OF VIEWS)

Soft skills Times selected %
Communication skills 13 92.9

Interpersonal skills 12 85.7

Leadership 12 85.7

Commitment, resposibility 10 71.4

Planning skills 10 71.4

VII. COMPARING THE POINTS OF VIEW OF PO, SM AND TM
Based on the data shown in Table III to VIII, we found

interesting to compare the points of view of product owners,
scrum masters and team members with regard of the most
valued soft skills for a Product Owner and for a Scrum Master.

In the next two sub-sections we show the results of these
comparisons.

44

A. Comparing the points of view of product owners, scrum
masters and team members about the most valued soft
skills a Product Owner must have.
For this comparison, we put together the data shown in

Table III (point of view of product owners, PO), Table IV
(point of view of scrum masters, SM) and Table V (point of
view of team members, TM).

TABLE IX. PRODUCT OWNER: POINTS OF VIEWS OF PO, SM AND TM

Soft skills PO SM TM
Analytic, problem-solving X

Commitment, responsibility X X

Communication skills X X X

Customer orientation X X X

Interpersonal skills X

Motivation X

Planning skills X

Teamwork X X X

Table XI shows the eight soft skills that appears in those
tables and, grayed, the ones that are in common from the three
perspectives.

From this comparison results that Communication skills,
Customer orientation, and Teamwork are the three soft skills
that appear as the most valued for a Product Owner, from the
perspectives of product owners, scrum masters and team
members.

B. Comparing the points of view of product owners, scrum
masters and team members about the most valued soft
skills a ScrumMaster must have.
For this comparison, we put together the data shown in

Table VI (point of view of product owners, PO), Table VII
(point of view of scrum masters, SM) and Table VIII (point of
view of team members, TM).

Table X shows the eight soft skills that appears in those
tables and, grayed, the ones that are in common from the three
perspectives.

TABLE X. SCRUMMASTER: POINTS OF VIEWS OF PO, SM AND TM

Soft skills PO SM TM
Commitment, responsibility X X X

Communication skills X X X

Interpersonal skills X X X

Leadership X

Motivation X

Organizational skills X

Planning skills X X X

Teamwork X X X

From this comparison results that Commitment,
responsibility, Communication skills, Interpersonal skills,
Planning skills, and Teamwork are the five soft skills that
appear as the most valued for a Scrum Master, from the
perspectives of product owners, scrum masters and team
members.

VIII. CONCLUSIONS AND FURTHER WORK
In this paper we reported a field study in which we

interviewed 25 software engineering practitioners experienced
in Scrum from 8 software companies in Uruguay to know their
opinions about what are the soft skills they consider the most
valued to have by the people performing the role of Product
Owner or of Scrum Master in a Scrum development team.

Based on the data collected on those interviews, to perform
the specific role of Product Owner of a Scrum development
team, the point of view of product owners, scrum masters and
team members are coincident in that Communication skills,
Customer orientation, and Teamwork are the most valued soft
skills for performing that role.

To perform the role of Scrum Master, the perspectives of
the product owners, scrum masters and team members
interviewed are coincident in that Commitment, responsibility,
Communication skills, Interpersonal skills, Planning skills, and
Teamwork are the most valued soft skills to perform this role.

Findings suggest that there are much more coincidences
than discrepancies between the perspectives of product owners,
scrum masters and team members regarding what are the most
valued soft skills software engineering professionals should
have to better perform those two specific and distinctive roles
defined in the Scrum framework.

As a further work, we are now working with the companies
involved in this study to investigate, among other things: a)
what impact have these soft skills of product owners and scrum
masters in their software projects outcomes, b) what soft skills
are found less developed in their product owners and scrum
masters, and what actions are the best to take in order to
develop those skills to enhance software projects outcomes, c)
whether there are other soft skills, beyond the ones used in this
study, that are important to perform those roles.

REFERENCES
[1] G. Ramesh and M. Ramesh, THE ACE of soft skills. Attitude,

communication and etiquette for success. New Dehli: Dorling
Kindersley, 2010.

[2] E. Kumar and P. Sreehari, Comunication skills and soft skills. An
integrated approach. New Dehli: Dorling Kindersly, 2011.

[3] L. F. Capretz, “Bringing the Human Factor to Software Engineering,”
IEEE Softw., vol. 31, no. 2, pp. 102–104, 2014.

[4] G. Matturro, “Soft skills in software engineering: A study of its demand
by software companies in Uruguay,” in 6th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE),
2013, pp. 133–136.

[5] L. Bender, G. Walia, F. Fagerholm, M. Pagels, K. Nygard, and J.
Münch, “Measurement of the Non-Technical Skills of Software
Professionals: An Empirical Investigation,” in 26th International
Conference on Software Engineering & Knowledge Engineering (SEKE
2014), 2014, pp. 478–483.

[6] K. S. Rubin, Essential Scrum: a practical guide to the most popular
agile process. Upper Saddle River, New Jersey: Pearson, 2013.

45

Reflecting, adapting and learning in small software
organizations: an action research approach

Suzana Cândido de Barros Sampaio, Marcelo L. M. Marinho , Alexandre J. H. de O. Luna, Hermano P. de Moura1
1Informatics Center – Cin, Federal University of Pernambuco

Recife, PE, Brazil
{scbs2, mlmm, ajhol, hermano}@cin.ufpe.br

Abstract— Software Engineering activities are context based
and carried out by people, within its culture and project
actuality. Consequently, it demands a great deal of social
relations. In order to better understanding these challenges faced
by software development projects, we have had to go beyond the
actual mindset, literature and bodies of knowledge. This paper is
a result of an empirical research, aligned with evidence-based
Software Engineering, about studies conducted on five software
development Micro and Small Enterprises in Brazil, during 22
months, between July-2012 and May-2014. We have adopted a
participant observer ethnographic study, resulting in
intervention based on action research. The interventions
happened several times, leading into continuous and constructive
process of reflecting and learning. As a result, we have observed
the emergence of a practical problem solving culture, from a
collaborative immediate situation, which expanding the actor’s

competencies in every cycle of its execution. Although every
organization had its own major problem to be dealt with, our
findings point out to some common problems and emerging
action strategies to handle with these challenges.

Keywords— action research, qualitative research, project
management, project actuality.

I. INTRODUCTION

Over the past 20 years, there has been a substantial
improvement in the quality and rigor of research in PM [1].
Project has become more relevant to organizational change
and growth as it is used to achieve business objectives.
According to Shenhar Dvir, Levy and Maltz, projects are a
unique way for organizational change, innovation and face the
competitive market’s reality [2]. Mintzberg [3] advocate that
Project Management (PM) is important to anyone who is
effected by its practice that means the entire organizational
world. In order to take full advantage from PM practice,
organizations, teams and practitioners must adopt new ways of
learning, thinking and reasoning in action.

Nowadays, research empirical method has become part of
the Software Engineering research practice. In the
experimental software engineering paradigm, the relationship
between practitioners and researchers is highly symbiotic,
where researchers need laboratories to observe and manipulate
variables in vivo, and project context seems as an ideal
environment to do that. In the other hand, practitioners feel the
need to understand how best they can build and maintain their
organizational system, and researchers can help them to

achieve this end [4]. In order to be more competitive, PM
practitioner must also understand how to step up and improve
its competencies, processes, overcoming their problems and
achieving better results. Indeed, action research has emerged
as a good strategy to accomplish that goal.

 In addition, Micro and Small Enterprises (MSEs) have a
great importance in any country´s socioeconomic scenario,
and in Brazil it is no different. A research conducted by the
Brazilian Institute of Geography and Statistics (IBGE) in 2010
depicted that this kind of organization represents more than
99% (5.7 million) of Brazilian companies and they represent
60% of the jobs across the country. However, it represents no
more than 20% (US 700 billion) of the Brazilian GDP1 [5]. In
fact, it is an expressionless percentage when compared to
other nations, showing that there is still much opportunity for
growth to this economic sector. Among ICT companies over
85% can be classified as Micro or Small Business [6].

 From this perspective, and aiming at addressing this
growth opportunity, as well as the expected benefits of
organization and PM practices enhancement, we have
conducted five action research studies in small software
development organization in the northeast of Brazil. It is
important to point out that the organizations in these studies
did not know their real problems, that is way ethnographic
techniques [7] were necessary in order to diagnosis the major
challenges. Each organization, team or project had its own
problems to solve. This is a part of a broader research [8] on
project actuality were exploratory and systematic literature
review [9] and ethnographic studies were conducted before the
action research. By facing project as our research field and by
involving the practitioners, with the real and major problems
identified, researchers and practitioners can embrace the
reflective practitioner in its actuality, willing to rethink, undo,
redo and learn.

This paper is organized as follows. Next section gives an
overview of the action research method, its main concepts,
steps and principles. Section 3 exhibit a brief sample’s
summary, and five organizational contexts. Section 4 presents
the research design and steps executed before the study.
Section 5 describes the approach used. In addition, Section 6
presents some actions and feedback obtained as studies result.

1 Gross Domestic Product.

(DOI Reference Number: 10.18293/SEKE2015-083)

46

Finally, in Section 7 final considerations and limitations are
discussed.

II. ACTION RESEARCH

Scientific methodology is necessary to make the research
results more reliable and reproducible by other researchers.
According to Zelkowitz [10], the social challenges dealt with
by researchers in Software Engineering investigations makes
Action Research (AR) a useful research methodology due to
its characteristics and possibility of obtaining relevant results.

While most empirical research methods attempt to observe
the world, as it currently exists, action researchers aim to
intervene in the studied situations for the explicit purpose of
improving the situation [11]. The knowledge gathered from
research empowers particular individuals or groups, and
facilitate a wider change. The AR’s application focus involves
solving organizational problems through interventions, while
at the same time contributes to teams and organizational
knowledge. In our studies, we had the purpose of improving
the organizations and its teams, by overcoming their problems
and helping team members to engage in reflection.

Davison, Martinsons and Kock [12], suggests a
unidirectional flow for AR, with diagnosis followed by
planning, intervention, evaluation and reflection. In order to
better suit to small enterprise and for teams’ reflection,
rethinking and learning, the major steps were adapted. In
addition, to avoid just focusing on the iceberg top or in a
specific effect (but not in its causes), we carried out the AR
after ethnographic based study. Using ethnography as a
technique to proceed the diagnosis stage from action research.

III. THE IN-VIVO SAMPLE

The research sample is comprised by MSE in the northeast
of Brazil. Four of them were from Recife (A, B, C and D), and
two of them were from a small city over 700km away (F and
G). Our research is context and time dependent, and was
conducted along from July, 2012 to May, 2014. Organization
A has nearly 10 years of experience in the IT industry,
founded in 2004 to provide solutions in managing industries,
services and trade. They have a product developed in Delphi
with firebird and one in Java JSP for another purpose. A team
of five developers took care of over ten clients. The owner
was centralizing and the ambient was noise and the Delphi
team was demotivated and tired. The room and machines were
new, clean and organized. The most expected problem to be
solved was to overcome not being able to estimate correctly
and precisely.

Organization B was the oldest and biggest one in the
sample with 25 years in the market, and two teams. The
organization had two solid products, with the biggest clients,
also partnership with other organizations that combined
presented an even more solid and wider solution. If a client
wants something different but still related to their products,
they would get the challenge to gain market. Both observed
teams worked in two distinct Delphi product. The biggest
challenge for their teams was to stop clients and manager
interference that generated lack of commitment and

motivation. In addition, the major challenge for the
organization was to overcome lack of visibility and trust on
teams work. The organization had level G of MPS-SW [13]
and already had their work organized as projects.

Organization D was the most mature one, used to have
MPS-SW [13] level G, but it expired. With 13 years in the
market, it had a nice renewed office. The owner was from IT
world, but along our research, we never saw him with the
team. It was a family business, although the manager was not
part of the family. The study initiated with one manager and
changed along the way. The change was freighting, but team
got more cohesive, less bureaucratic and productive after this
change and along our study. Besides de developers, one tester,
quality assurance that could also develop made the team. A
part time trainee tester was also involved along the project.

Organization F was the hardest one to commit to the
research. They had the nosiest room, the worst scenario and
took longer to build trust and finally engage in action. The
owner was really busy selling, but he originally messed
everyone’s plans. He gave a percentage in the society for his
two best men, both with over 15 years working with him.With
2 hours lunchtime, 100% of the organization went home to eat
and rest. The either walked home or used motorcycle to get
around. Many times the first researcher waited outside in over
35ᵒ degree Celsius, feeling 45ᵒ sun.

Out of them all, Organization G had the most technical
PM, one of the two owners. One owner dealt with sales, and
took care of the support team. The other, great researcher in
action and enthusiast of our research. He manage to learn
quick, try hard to rethink, reflect and move forward. He
counted as one developer, although his help was sporadically.
One developer was 30 hours only, but one of the best
programmer of the team. With two hours lunch, everyone
went home. A young nice and committed team.

IV. PREVIOUS TO THE ACTION

A. Planning the studies

The organizations were chosen by convenience, all of them
were indicated by SoftexRecife2. It supports micro small
software development organizations through training, process
improvement, testing and other services.

The authorization was written as an invitation letter-
consent form signed by the organization high management, or
site coordinator and the first researcher. The letter states
researchers’ names and affiliation, the research goal,
procedures and techniques and confidentiality rules. The end
criteria was a bit abstract, but the idea was to keep on
researching until the main problems are overcame, challenges
are dealt with and both parties involved are satisfied. In
addition, a research plan was presented to the team to
guarantee their understanding and commitment.

2 The Software Technology Excellence Center in Recife, a civil non-profit
association, established on Nov.8th, 1994 with a mission to increase the
competitiveness of ICT companies (http://www.recife.softex.br/).

47

B. Diagnosis – The Ethnografic Study
Schensul [14] presents ethnography as a scientific

approach to discovering and investigating social and cultural
patterns and meaning in communities, institutions, and other
social settings. Ethnographic studies in software engineering
are valuable for discovering what really goes on in particular
technical communities, and for revealing subtle but important
aspects of work practices [11]. We saw as way of unveiling
the major problems, faced by the team or project manager
independent of the source. All problems were grouped in a
backlog, prioritized by the manager, and always revised along
the intervention. Every finding came from several evidences
and a causality analysis made in the ethnographic study.

 Table I depicts the most common problems in between the
five organizations. The problem backlog was presented in
questions in order to confirm it and prioritize them. Moreover,
the idea was also empower the reflexive practitioner and the
practitioner-researcher. To each organization was also pointed
the evidences that pointed or corroborated each problem.

TABLE I. MOST COMMIN PROBLEMS

Org.
Problem Backlog

Problem Reflecting question

A, B, F
and G

(I) Absence of
Reflection

Does your team have any time to reflect
about what went wrong and what could
have been done better?

A, B
and F

(II) Blaming
Culture

Is the blaming mood around? Is your team
more worried about blaming someone for
the bug, problem or issue than to solve it?

A, B,
D, F
and G

(III) Blind
Capacity

Do you know what your team is capable
of? How much work can you do, how
much requirements can we compromise in
a week, a cycle, a month?

A, B,
D, F
and G

(IV) Living
the Problems

Are living the problems instead of solving
the problems?

A, B
and F

(V)
Unproductive
environment

Is your team ambient too noisy or the
interruptions are driving away your
productivity? What are nowadays our
team’s productivity villains?

A, B,
F and
G

(VI) Unclear
Goals

Do you have an unclear goal? Can’t your
team know or tell what must be done?

A, B, F
and G

(VII) Lack of
Quality

Is your product producing more bugs then
you can correct? Is your backlog of bugs
bigger then you requirements backlog?

A, B, F
and G

(VIII) Lack of
Visibility

Are you unaware of what is going on with
your team’s activity?

A, F
and G

(IX) Endless
Operation

Is your work with no end neither
beginning and seams to take forever with
no partials winnings?

A, B, F
and G

(X) Lack of
Commitment
and trust

Are all your initiatives top down? Is the
owner or team leader the only one doing
the talk? Is the goal always unrealistic?
Do you care to make sure that your team
buys what you say?

A, B
and F

(XI) Lack of
Motivation

Does your team never catch a break? Do
you remember that they are people? Does
your team’s fear slow them down? Cannot
see what can you do next?

V. THE APPROACH

 This section presents the approach that encompasses the
action research, team reflection and learning. Beginning with
the adaptation from the Cyclical AR Process Model [12]
followed by the reflection process.

A. Cyclical Research Action Process Model Adaptation
 The Diagnosis was substituted by the research setup and
the ethnographic study, as explained last section. In this stage
the research field was defined, an agreement is settled and the
problems are analyzed by the ethnographic study, similar to
what Davison, Martinsons and Kock [12] proposal. The Action
Planning stage uses the same idea as the one presented by the
authors, where actions are defined for the diagnosed problems,
although we included a reprioritization in each cycle,
accommodating new prioritized-disturbing problems.

 Intervention corresponds to the planned actions implemen-
tation exactly as idealized by the author [12]. The biggest
adaptation is surrounding the Reflection activity; it does not
only support the information flow between participants and
the organization as presented by Davison, Martinsons and
Kock [12]. As we deal with small organization, most
organization's member were involved as researchers in action
and just organization B needed to make the information flow,
all the others had all team members engaged and involved. In
our studies, reflections occurred before Action Planning, as
presented in Fig. 1.

Fig. 1. Action Research Strategy. Source: Own elaboration.

After the intervention, the Evaluation took place, following
the authors’ idea of using theoretical support to analyze
actions’ effects and results. It was followed by another cycle
started by reflection and learning activity.

B. Reflection Activity
 The reflection sections represented a learning trigger to
each context or problem discussed. It allowed the team to
familiarize with some theory and question their status quo, in
order to better see the problem and engage in overcoming it.
The reflection activity was carried with the help of a macro
activity and has the following goals: (i) conduct active
interview or participant observation [15], [16]; (ii) get those
who are being researched to play an active role in the process;
rather the being passive subjects [16]; and help team to engage

48

in reflection about the best way to overcome a problem, a
conflict or an improvement opportunity.

Every time an opportunity is identified, is a good time to
reflect, although we used the reflection to start the cycle, to
analyze the problems, situations and to rethink some ideas,
approaches and strategies, resulting in the action plan. The
steps necessary to accomplish this activity were:

 Identify conflicts, problems and singularities;

 Consider project actors researchers in action who must
continuously question their actions and intentions in
light of real-world situations [17];

 Evolve the reflection around questions [16], such as
How, When and Why;

 Talk about the identified problem, conflict,
singularities. Ask how can they overcome such
problem, or how could it be done in a different way;

 Stimulate reflection; invite them to challenge the status
quo, to analyze different ways of reasoning. And;

 Document findings. Always take notes, the quote
spoken, the actor involved, the situation it came out and
context it occurred.

As these activities’ result, we have identified actions from
project reflection, and an action plan was created.

VI. ACTIONS

Plenty where the actions we carried along the study. Some
of them target not just the problems but foundation for future
actions. For example, problem I, Absence of Reflection,
without overcoming this barrier, probably once the study
finished they would stop the reflection and rethinking. For
that, one of the first actions was to introduce a Retrospective
Meeting to all the organizations in the sample, except for D
that already used it. Each organization organized itself
differently as presented in Table II.

TABLE II. REFLECTION MOMENT.

Org. Reflection Moment chosen by each Organization

A
Meeting after each important deliverable - end of
implementation cycle.

B
Retrospective meeting after the sprint - two or three weeks
sprint.

D Meeting after two sprints of a weeklong.

F Meeting every milestone, monthly.

G Retrospective meeting in the end of every other sprint.

Another problem that we have faced was the Endless
Operation (IX). Only Organizations B and D were already
organized as projects. The problems effects were many. One
of the evidences for Organization G was an affirmation in a
meeting saying, “Today there are about four versions per
month or more. It is costly and takes too much time.” Every
organization reflected about their own project definition, such

as: new product version; a product gap to be accomplish in
order to meet customer needs; a slice of time, two to four
weeks of work, with demands from several clients or several
systems; a new system module delivery to meet legal demand;
among others more traditional. Even though Organization B
was already organized as projects, the reflection regarding the
project concept was necessary due another problem, blind
capacity, the difficulty on coordinating outside project with
inside projects. The reflection included the higher
management, the operational director and some other leaders
that were senior employees. They were only organized timely
(every 6 weeks a new official deploy), and the objective was
to synchronize with outside projects and the main strategic
goals. For that every two weeks they had their own "portfolio"
meeting and they initiated to prioritize demands that would
turn into projects. A few "outside small projects" (gaps to
implant a product in a new client, legal demands, new
demands from a strategic client) could turn into one project. In
addition, a medium "outside project" (new product) could turn
into a few projects. For the higher management this was the
best result from our research.

In response to problem VII, all organizations in the sample
reflected about the quality of their products and the return rate
(associated with number of requirements with bugs). Different
actions were conducted, although almost every team manage
to initiate or enhance their testing tasks and skills. Rethinking
the activities already done about the product's quality, some
organizations figure it out that they had no "done" concept for
their tasks and no success definition for their cycle or project.
Organization B found problems such as: “Deployment on the
client currently generates inconvenience to the elaborated
Project Plan. Several development and testing activities are
carried out in the field and sent to the team impacting business
goal and the quality of the issued release”; and “team
member's activity were submitted on branch of the Project,
authorized by the PO, impacting activities and quality of the
product and project”. Some actions tried to address this
misuse of the process and practice.

In resume, the organizations engage on several cycles of
rethinking in order to “Enhance the product’s quality”, with
the following derivate actions related to test: new test
activities (A, F, G); work with product risk analysis (A, F);
using support analyst for testing (A, F, G); hiring or allocating
new test force (B, D); acquiring New tools – Testlink3 (D).

Problem V, related to lack of productivity, had the most
unexpected and different actions. One of them was called
“Major changes in order to achieve productivity or cohesion
teams”. As an example, Organization B had a re-distribution
of the teams inside their room to sit together, reduce the noise
and facilitate the communication. Organization G had a total
change in the organization's physical structure. Coming from a
single room with a hybrid profile (developer + support
analyst) to everyone, but the owner, to separate rooms and
separate positions. After four years, the development team got
its own room and had only developing activities with three
people only, plus two open spaces. The senior developer, that
is also a small partner, took over the team management. One

3 http://testlink.org/

49

developer stayed in the support room, the only one really
divided in between teams (support and developer), but he
came to the room as demanded. The support team’s room was
divided with the owner, by a full brick-wall and some glass. A
huge task board was organized. In addition, 10 minutes break
every four hours to do whatever they want; better use of inside
phones and less yelling around, as well as a mobile phone
politics for a better-focused and productive group. In general,
the action was the definition of a good coexistence policy or
productivity policies, towards a productive team.

Many actions were executed facing the problems exhibit in
Table I. Always coming from a situation or problem and
aiming on overcoming it, such as: going from not knowing
what we are capable of and how much time is necessary to
accomplish some task, to estimative using complexity and
relative sizing; from living the problems to solving the
problems; from lack of behavior competence to
better leadership skills; from lack of visibility to a transparent
management system; and so on. Theories were used to present
during reflections section as possible strategies and
techniques.

Each organization took at least three formal cycles (D and
F) to six cycles (B). In each cycle, different problems were
faced and dealt with. Feedback from the AR, was qualitative.
We recorded the feelings of progress and evolution in all
problems reflected and treated. The most interesting ones
were:

 B – “The Portfolio vision was the best action of all. We
can finally be predictable and we can finally give some
pre-visibility to our clients”.

 D – “We had tried that once by ourselves and did not
work. We got more agile and threw away heavy-casted
process. You were our fairy godmothers”.

 G – “Every time you came here we learned something
new or we gain some new perspective. We are more
organized and predictable now; we will try to keep the
reflection at least every other month”.

VII. CONCLUSION AND FUTURE RESEARCH STUDIES

The idea of this study from the beginning was to help
small software development organizations to achieve better
results, stay competitive, enhance teams’ competences and do
not let projects be predestined to fail or to lack of its potential.
In order to go beyond the “out of the shelf solutions”, action
research helps to empowered reflexive practitioners to rethink
the status quo and overcome their problems. We encourage a
management thinking that inspires different ways of
reasoning, reflecting and learning.

This paper presented the action research approach used as
a reflecting, adapting and learning tool in small software
development organizations in the northeast of Brazil. This step
was primordial to a larger research within the experimental
Software Engineering; aiming on understanding project
actuality, and how to support small organizations to engage in
reflection and learning even after the researchers have left the

research field. Our findings denote that Software Engineering
is all about reflecting and learning as a team.

This study empowered a few organizations and teams to
work as reflexive practitioners. Great changes happened after
a few cycles of action research. Although this research is
context dependent, we sure believe that still leaves a great
opportunity for further work to improve small and medium
software development organizations, this large potential
market in Brazil.

ACKNOWLEDGMENT

This study would not have been possible without all the
support and believe from the five organizations that opened
their doors to us and engage themselves as researchers in
action, willing to listen to us and reflect. The authors also
would like to thank CAPES for supporting this research. And
to SoftexRecife for introducing us to the organizations in the
sample.

REFERENCES

[1] J. R. Turner (2010). Evolution of project management research as
evidenced by papers published in the International Journal of Project
Management, 28: 1-6.

[2] A. J. Shenhar, D. Dvir, O. Levy and A. C. Maltz (2001). Project success:
a multidimensional strategic concept. Long range planning, 34(6): 699–
725.

[3] H. Mintzberg (2009). Managing. Berrett-Koehler Publishers.

[4] V. Basili, R. Selby and D. Hutchens (1986). Experimentation in software
engineering. IEEE Transactions on, (7), 733-743.

[5] IBGE (2010). Reserach on Comunication and Information
Techonologies in organizations, 2010.
ftp://ftp.ibge.gov.br/Tecnologias_de_Informacao_e_Comunicacao_
nas_Empresas/2010/comentarios.pdf accessed in Ago 8th 2014.

[6] ABES, 2013. Brazilian Software Market: scenario and trends. 1Ed. São
Paulo: ABES.

[7] M. Hammersley and P. Atkinson (2007). Ethnography: Principles in
practice. Routledge.

[8] S. C. B. Sampaio, M. L. M. Marinho and H. P. Moura (2014). An
Approach to Understanding Project Actuality in Small Software
Development Organizations and Contribute to Their Success. ProjMAN
- International Conference on Project MANagement, 2014, Troia.

[9] S. C. B. Sampaio, M. L. M. Marinho and H. P. Moura (2014).
Systematic Review on Project Actuality. IJCSIT.

[10] M.V. Zelkowitz, D. Wallace (1997). Experimental validation in software
engineering. Information and Software Technology, 39 (11), 735-743.

[11] S. Easterbrook, J. Singer, M. Storey, D. Damian (2008). Selecting
empirical methods for software engineering research. Guide to advanced
empirical software engineering, 285–311.

[12] R. Davison, M. G. Martinsons, N. Kock (2004). Principles of canonical
action research. Information systems journal, 14(1), 65-86.

[13] SOFTEX (2012). MPS.BR General Guide. Mps.br guia geral 2012.

[14] Schensul, S. L. (1999). Essential ethnographic methods: Observations,
interviews, and questionnaires (Vol. 2). Rowman Altamira.

[15] S. Cicmil, T. Williams, J. Thomas and D. Hodgson (2006). Rethinking
project management: researching the actuality of projects. International
Journal of Project Management, 24(8), 675-686.

[16] S. Cicmil (2006). Understanding project management practice through
interpretative and critical research perspectives. Project management
journal, 37(2), 27-37.

[17] L. Crawford. Developing organizational project management capability:
theory and practice. Project Management Journal, 37(3):74–97, 2006.

50

ftp://ftp.ibge.gov.br/Tecnologias_de_Informacao_e_Comunicacao_

1

Application of Slow Intelligence Framework for

Smart Pet Care System Design

Shi-Kuo Chang1, Wen-Hui Chen2, Wen-Chyi Lin3 and Christopher Lee Thomas1
1Department of Computer Science, University of Pittsburgh, USA ({schang, clt29}@pitt.edu)

2Graduate Institute of Automation Technology, National Taipei University of Technology, Taiwan (whchen@ntut.edu.tw)
3Department of Electrical and Computer Engineering, University of Pittsburgh, USA (wel69@pitt.edu)

Abstract—This article presents the design of a smart pet care

system based on the slow intelligence framework for providing

pets with suitable living conditions that closely mirror their

natural habitat. By integrating heterogeneous information from

various sensing data, the smart environment-aware pet care

system can adaptively adjust the setting of temperature and

humidity that best fits for the pet through iterative slow

intelligence computation. Simulations of two case studies were

provided to illustrate the application of the proposed system for

pets such as snakes and dogs. The simulation results demonstrate

the feasibility of the proposed approach to the design of smart pet
care systems.

Keywords- Smart pet care systems; slow intelligence systems;

environment-aware software engineering

I. INTRODUCTION

Unlike human health care systems, pet care systems
require more autonomous mechanisms to perceive and
respond to the changes of environmental conditions as pets are
unable to alert their caretakers if an anomalous condition
arises. As pets have their specific living conditions to thrive, a
pet care system for one species may not suitable for another.
Therefore, component reuse software architecture is beneficial
for the design of a pet care system.

Software reusability is essential and plays an important
role in building a scalable system from software component
reuse and integration. In this study, we proposed a component-
based software framework based upon slow intelligence
systems to integrate existing software components into self-
regulating and adaptive systems. A slow intelligence system
(SIS) is a general-purpose system characterized by being able
to improve its performance over time [1]. An SIS is
characterized by employing super-components, in the sense
that multiple components can be activated either sequentially
or in parallel to search for solutions. We have developed a
visual specification approach using dual visual representations,
and the user interface to design a component-based system
based upon the dual visual representations [2].

The proposed software framework emphasizes the design
of reusable software components so that the developed system
can be easily applied to various pets. To implement an
environment-aware system for pet care, an adaptive control
strategy that adopted the principles of slow intelligence
systems was proposed. The proposed environment-aware
system can sense and react on the environment accordingly to

provide pets with a proper temperature and humidity setting
through continuous interaction with the environment by
evolutionary computation that carries out adaptive control
operations.

The caring system for a pet snake is different from the one
for a pet dog or a pet cat. To validate the proposed system is
appropriate for various pets, we used the dog care and the
snake care as two illustrative examples to demonstrate the
feasibility of the proposed framework for the application of a
smart pet care system.

The remainder of this article is organized as follows.
Section 2 introduces the framework of the proposed pet care
system. Section 3 describes the application of the proposed
framework for monitoring pet snakes and pet dogs. Section 4
provides simulation results and discussions. Conclusions are
drawn in Section 5.

II. THE FRAMEWORK OF SIS-BASED PET CARE SYSTEM

Considering the software usability and scalability, we
proposed a component-based software architecture for pet
care system design. The proposed framework, as shown in
Fig. 1, consists of eight software components, including
Universal Interface, SIS Server, System Interface, Alerter, Pet
Activities Monitor, Environment Sensor, Image Sensor, and
Image Processor.

SIS Server

Pet Activities

Monitor

System

Interface

Universal

Interface

Image Sensor

Environment

Sensor
Alerter

Pet Species

Knowledge base

Fig. 1. The software architecture of the proposed pet care system.

2.1 Slow Intelligence System (SIS) Server

The SIS server is responsible for routing and processing
messages among components. When the SIS server accepts a
request message from a component, the message will be
processed and routed to the designated components by the SIS
server as responses. All request and response messages are

DOI reference number:10.18293/SEKE2015-021

51

2

encoded in the XML format for usability across the Internet.
Some particular messages were defined for the SIS server to
execute specific operations. For example, messages Create,
Kill, and Activate are used to enable the SIS server to create,
kill and activate a user defined component, respectively.

2.2 System Interface (SI)

The System Interface component provides a graphic user
interface (GUI) for users to specify system properties,
including pet names, which e-mail address an alert should be
sent to, the thresholds used by Image Processor, and the
parameters required for reasoning algorithms. Note that this
component does not receive any messages from the SIS server,
and has no control logic inside it. It is only a GUI for users to
specify system properties. The properties set by this
component are stored in a shared database for other
components to access. Thus, there is no need to design extra
communication between this component and other
components. If the user does not set the properties, default
properties will be used.

2.3 Universal Interface (UI)

Universal Interface is used to simulate routing messages
among components. It is useful when testing the developed
system by observing routing messages. The user can enter a
message on the left panel, and observe the corresponding
output message on the right panel. Any message sent from one
component to another component will be displayed on the
right panel.

2.4 Pet Activities Monitor (PAM)

Pet Activities Monitor is designed to recognize pet
activities by analyzing sensor data from Environment Sensor
and Image Sensor. Different types of sensors require different
data processing. PAM consists of four units: a data preparation
unit, an image processing unit, an image recognition unit, and
a decision unit. The data preparation unit is to convert sensing
data to feature vectors. The image processing unit is to process
images captured from Image Sensor and perform feature
extraction for the image recognition unit, while the image
recognition unit is to recognize pet activities. The decision unit
is to make a decision of whether an alert needs to be sent to
the caretaker about an anomalous condition.

When an MSG 33 message is received by PAM, the image
processing unit will start to load the image captured from
Image Sensor and its timestamp described in MSG 33, and
perform specific activity recognition algorithms.

2.5 Alerter

The Alerter component is responsible for receiving an
MSG 38 message and sending an alert e-mail or text message
to the user to notify an anomaly is detected so that the user can
take action accordingly.

2.6 Environment Sensors (ES)

The Environment Sensors component is designed to read
and store all available sensor data, such as temperatures and
humidity for observing environmental conditions. In addition

to analog sensor readings, Environment Sensor also can
handle binary sensor data such as the status of limit switches.

2.7 Image Sensor (IS)

The Image Sensor component is designed to read and store
the image frames captured from the external camera. The
location where the camera is installed depends on the purpose
of applications. In the case of pet snake care, the camera could
be mounted atop the water bowl, while in the case of dog care,
the camera could be placed in a location where the dog can be
easily observed. When a new captured image is generated, a
message MSG 33 will be generated and sent to notify the SIS
server. The stored images are analyzed by the image
processing unit in Pet Activities Monitor. As the observed pet
may not sit near the server or may not even be in the same
building as the place where the pet lives, it is necessary for
Image Sensor to support different camera inputs, such as IP
cams and webcams for remote access.

III. APPLICATIONS OF THE PROPOSED FRAMEWORK FOR

PET CARE SYSTEMS

3.1 Description of Pet Snake Care

Snakes are poikilothermic animals and require
environmental heat for various bodily activities. Although
commercially available snake Vivaria can provide a housing
enclosure with heating, water bowl, and covering, most of
them lack of sensing and adaptive temperature control
mechanisms for snake habitat monitoring, which can lead to a
severe injury to pet snakes when the heater malfunctions.

The ideal habitat for pet snakes is not only monitoring the
temperature on the hot side or the under tank heater to avoid a
thermal burn, but also on the cool side to prevent the
temperature from dropping too low. In addition, the humidity
of the environment must also be monitored and kept in a
proper setting. Even with these constraints, pet snakes still
need the temperature lowered or raised according to their
activities at all times, such as during shedding, after eating, etc.

The activity of a pet snake reveals some information about
its status. For example, if it goes into the water bowl, it usually
indicates the snake either wants to cool off or it feels sick.
Although the information of living environment can be
obtained by acquiring data from environment sensors, it is
insufficient to adjust the temperature and humidity properly
merely according to the sensor readings. As the proper setting
may vary depending on their activities. In order to observe
basic activities of a pet snake, an IP camera atop the water
bowl is used.

A pet snake needs a suitable enclosure and some
essential equipment inside the enclosure, like under tank
heaters, water bowls and environmental sensors such as
temperature and humidity sensors. The size and material of
the enclosure may vary from one snake species to another.
So does the equipment inside the enclosure. For example,
some small snakes become anxious when living in a big
space. The selection of the hardware equipment for pet
snakes needs domain experts and beyond the scope of this
research. Therefore, we assume the hardware enclosure as

52

3

well as the required equipment have already properly
decided and installed, and only focus on the design of the
software system for a smart pet care system.

3.2 Pet Activities Monitor for Snake Care

The Pet Activities Monitor component for pet snake care
contains the fuzzy inference engine and fuzzy rule base for
making a decision under uncertainty. The fuzzy decision starts
with sensor data reading from environment sensors and goes
through the fuzzification process. The inference engine works
with attribute values that have fuzzy memberships defined,
and produces a fuzzy output using max-min of inference. The
output values are then de-fuzzified to a crisp value by the use
of centroid de-fuzzification. The fuzzy rules and the
parameters of membership functions are specified by users
through the SI component.

Image Sensor provide the information of whether or not
the observed snake is drinking out of the water bowl or lays in
the water bowl by analyzing the captured image through
vision-based scene analysis. In this experiment, we used the
speeded up robust features (SURF) algorithm as an example
for snake head detection to detect whether the head or the
body of the snake is present in the water bowl and specified a
value between 0 and 1 for these two possibilities.

The training images were collected and manually
annotated for SURF feature descriptors. The SURF descriptors
are feature vectors describing certain sections of an image.
The image processing unit first computes the SURF feature
descriptors over all the training images for both drinking and
soaking. Fig. 2 shows two sample images with SURF feature
descriptors for a Python Regius drinking and soaking in a
water bowl. This is done to avoid re-computation of these
values for each image received. The rationale is that images
whose SURF descriptors match given thresholds are likely to
be showing the same object.

When an MSG 33 message is received, the image
processing unit will start to load the image and perform the
SURF algorithm to detect whether the head or the body of the
snake is present in the water bowl. If either of these are true,
the probability of there being a problem is increased.

3.3 Iterative Slow Intelligence Computation

To determine an appropriate setting of temperature and
humidity, we adopted iterative slow intelligence computation
that contains four primitive phases, namely: enumeration,
adaptation, elimination, and concentration defined in slow
intelligence systems. A slow intelligence system is able to
observe and act on the environment to achieve adaptive
temperature and humidity control through the iterative
computation process.

Fig. 2: Sample images with SURF feature descriptors for a Python Regius
drinking and soaking in a water bowl.

In the proposed system, the possible combinations of
temperature and humidity settings are considered as candidate
control plans, which is the process of enumeration in slow
intelligence system. At first, a set of fuzzy rules was built
based on domain experts and was stored in the fuzzy rule base.
Elimination is the process of ruling out un-matched SURF
feature descriptors when comparing the query image with
training images. This makes the recognition process more
efficient as resources are only focused on matched descriptors,
which is a formation of concentration. The proposed system is
environment-aware by constantly interacting with the
environment. The setting of the under tank heater could cause
the changes of the temperature and humidity in the
environment, so an update of the setting according to sensing
data is required, which is the process of adaptation in slow
intelligence computation. In Fig. 3, The SIS framework is
shown where the circle and the timing control illustrates a
super-component of an iterative slow intelligence system [3].

Fig. 3. The SIS framework where the circle and the timing control illustrates a
super-component of an iterative slow intelligence system

The information obtained from Image Sensor is integrated
with the information from Environment Sensor as data fusion
so that the procedures performed by Pet Activities Monitor

53

4

can decide if an alert should be sent or not. The procedures
performed by PAM are described as follows.

Step 1: When a captured image is loaded, the SURF
descriptors are computed on that image to identify
regions of interest in the image.

Step 2: The SURF descriptors are matched using the k-nearest
neighbor algorithm against the pre-computed
descriptors of every training image in the training set.
In this study, we set k = 1 to find the closest matching
descriptor and then compute the distance. That is,
each vector associated with each descriptor in the
captured image will be matched with one vector of
the set on each training image. The matched vector is
the one that has the least Euclidean distance.

Step 3: For each of the matched sets, the overall normalized
match strengths are computed. The cosine distance
between each of the matched vectors was adopted as
similarity measure.

Step 4: Those matches whose distance is greater than the
experimentally determined threshold are considered
as bad matches and are discarded. Note that this step
is critical as it will eliminate many bad matches, but
also preserve the good matches as the process of
concentration. The image containing the most
matches is used and the other image matches are
discarded.

Step 5: The count of matches for the final image above the
threshold value is input into a sigmoid function which
translates the number of matches into a probability
value to be used by the fuzzy inference engine inside
the Pet Activities Monitor component.

3.4 Pet Activities Monitor for Dog Care

Living in an excessively cold or hot space can make a dog
feel uncomfortable or even become life-threatening. Not all
dogs are created equal. Different breeds of dogs have different
hair coats. Breeds from cold climates usually have a downy
coats and are much better at conserving heat than at cooling
themselves. Therefore, the range of comfortable ambient
temperatures for dogs to live varies from one breed to another.
It is not the temperature but also the humidity that can affect
dogs’ health. If the humidity goes too high, dogs are unable to
cool themselves, leading to their temperature raising to
dangerous levels. As such, the best temperature and humidity
settings in the dog housing environment should take dog
breeds into consideration.

As the proposed system is designed in the framework of
component reuse, only the PAM component in Fig. 1 needs to
be modified for the design of a dog care system. Therefore, in
this section, we only describe the dog breed recognition
algorithm implemented in the PAM component. With this
function, the proposed SIS-based pet care system can
adaptively adjust the ambient temperature and humidity to a
suitable setting for the pet dogs according to their breeds.

The knowledge required for proper temperature and
humidity settings can be extracted and collected in the
knowledge base through interviewing veterinarians and dog

experts. The PAM component comprises of several distinct
classifiers and is integrated with the SIS Server to identify a
dog breed from the camera. The information flow for dog
breed recognition in the pet care system is shown in Fig. 4.

System Interface

 Dog Breeds
Knowledge base

Dog Breed

Recognition

Pet Activities
Monitor

Pet Activities
Monitor

Fig. 4. The information flow of dog breed recognition in the pet care system.

The dog face detection and dog breed recognition
algorithms are adapted from the Haar feature-based cascading
classifier [4] and the FisherFace classifier, respectively. To
process images rapidly and achieve high detection rates, the
integral image is applied to compute the features used by the
Haar feature detector. The Haar features are a set of directional
filters that consist of different combination of rectangles.
Based on the integral image, different sizes of Haar feature-
based filters can be used to detect the region of interest (ROI)
rapidly from the background in an image.

The sample dog images are adopted from the Stanford
Dogs dataset [5] which contains images of 120 dog breeds. Fig.
5 shows four sample images and their cropped normalized
images to a size of 70×70 pixels. This normalization is used to
avoid extremely weights and maintain numerical stability.

(a) sample images (b) normalized images

Fig. 5: Sample images from the Stanford Dogs dataset

Fig. 6 shows that the eyes and nose of a Borzoi dog are
detected by two Haar feature filters and thus this sub-image
can be accepted for further processing.

54

5

Fig. 6: Eyes and nose of a Borzoi dog are detected by Haar feature filters

As a particular case of ensemble learning, we generated a
cascading classifier by combining increasingly more complex
classifiers to allow background areas of the image to be
quickly discarded while saving computing power on more dog
face-like regions. As illustrated in Fig. 7, in the first stage of
cascade, we remove the most unwanted backgrounds by using
a coarse grained filter to favor speed. The last stage of cascade
is a fine grained filter which can handle more detailed object
features, then the detected result is passed to the FisherFace
classifier for performing dog breed recognition.

Fig. 7. Schematic diagram of the cascading classifier

Based on the Fisher’s linear discriminant analysis, the
FisherFace is proved to be robust against variation in lighting
and facial expressions [6]. Fig. 8 shows three FisherFaces of
the dog images in Fig. 5 (b).

Fig. 8: Sample FisherFaces of dog images

IV. SIMULATION RESULTS

In this section, we describe the simulation results of the
proposed approach by using the SIS testbed developed by the
University of Pittsburgh. This testbed is a platform designed
for developing SIS projects, and is available online at
http://people.cs.pitt.edu/~chang/163/interface/SequenceSIS.ht
m

4.1 Simulation for Pet Snake Care

Before activating the system, some information needs to be
specified as system properties through the SI component. SI
provides a graphic interface for users to determine pet names,

alert e-mail address, the thresholds for Image Processor, and
the parameters for the fuzzy inference engine.

The camera at the time of experiment was sitting on top of
the snake enclosure pointed down towards the water bowl, and
the Image Sensor component polls the camera every five
seconds for a new image. Once the image is acquired from the
camera, it is saved to a temporary location for further analysis.
The message MSG 33 is broadcast to the SIS system to
acknowledge that the image processing unit can begin
processing the image.

The Environment Sensor component reads sensor data and
broadcasts it to the system. In this experiment, we prepared a
file with sensor readings as sensor data for simplicity.
Environment Sensor repeatedly reads temperature data from
the file to demonstrate the function of Environment Sensor. In
the practical system, it would read from the real sensors.

The image processing unit begins processing images when
it receives the message which contains the path to the captured
image file from Image Sensor. The image has the keypoint
descriptors calculated over it, which are then matched with the
soaking and drinking data sets. After processing, it outputs
two probabilities (in bowl probability and drinking probability)
which are sent to Pet Activities Monitor.

The drinking probability and the in-bowl probability are
obtained from the result of the image processing unit, and are
used directly as membership values via one-to-one
membership function mapping. The membership functions for
the linguistic variables (warm, cold, hot) of temperature values
and the centroid de-fuzzification are illustrated in Fig. 9.

Fig. 9: The membership functions for evaluating temperature values and
centroid de-fuzzification

Pet Activities Monitor will send an MSG 38 message if an
anomalous condition exists. When an anomaly is detected,
Alerter will send an alert to notify the pet owner, if no
anomalous condition exists, the message MSG 38 will not be
generated. Note that the fuzzy inference engine waits until it
receives MSG 31 and MSG 34. To demonstrate the system, we

55

6

set the temperature to 80 degrees Fahrenheit and took an
image of a Python Regius drinking from the water bowl to
represent the captured image from Image Sensor, as shown in
Fig. 10. The drinking probability is obtained from Image
Processor, and indicates the drinking probability is 0.6 which
is higher than the in-bowl probability. Therefore, the system
detects the snake is drinking from the bowl.

When Alerter receives the message MSG 38 from Pet
Activities Monitor to indicate that the condition is anomalous
enough to warrant the user’s attention. When we check the e-
mail inbox of the e-mail address specified in System Interface,
we can find the email message describing that an anomaly is
detected.

Fig. 10: The image used to represent the snake drinking from the water bowl.

4.2 Simulation for Pet Dog Care

Fig. 11 illustrates the information flow for the dog breed
recognition. In this experiment, we use dog images as the pet
dog in front of the webcam to demonstrate the effectiveness of
the proposed system. Once the system recognizes the dog, the
GUI will display the message contains the resulting dog breed
less than 1/20 second. The system is working at 20 frames per
second and can be adjusted according the hardware capability.
The program is implemented as a joint effort of Java, OpenCV,
Python, and C++ languages.

Fig. 11: The information flow for the dog breed recognition.

In this experiment, seven photos from four dog breeds,
including the Eskimo, Shetland sheepdog, Borzoi, and
Schnauzer are examined. A snapshot of the experimental
results is shown in Fig. 12.

Fig. 12: A snapshot of the experimental results from a live demo.

V. CONCLUSIONS

In this study, a smart environment-aware pet care system
has been established for providing pets with suitable living
conditions by the fusion of heterogeneous sensors and the
iterative slow intelligence computation. The proposed
framework has component reuse and scalable features that
make the proposed system can be easily extended and
transferred to various pet care systems. The experimental test
was performed using the SIS testbed and has shown that the
proposed system could provide potential benefits for pet care.

While the system was currently developed in the
simulation stage, it demonstrated the abilities to detect
anomalous conditions and alert caretakers. The largest
obstacle to generalizing the system is the specificity of the
training image dataset required for the computer vision
routines to work accurately. The results of this study provide a
good case study in automatic caretaking which may have
implications for autonomous healthcare systems for other
animals. The scope of the system can be expanded by
incorporating with spatially distributed sensors to monitor pet
conditions and serve as a caregiver to manage the
environmental conditions, watch for particular behaviors, feed
pets and cooperatively pass messages through the network to
specified locations.

REFERENCES

[1] S. K. Chang, “A general framework for slow intelligence systems,”

International Journal of Software Engineering and Knowledge

Engineering, vol. 20, pp. 1-15, 2010.

[2] S. K. Chang, Yao Sun and Yingze Wang, “Component-based Slow
Intelligence System”, Journal of Internet Technology http://jit.niu.edu.tw,

January 2013.

[3] S. K. Chang, W. H. Chen, Bin Kao, L. Kuang, and Y. Z. Wang, “The
design of pet care systems based upon slow intelligence principles,” Int’l

Journal of Software Engineering and Knowledge Engineering, 2014.

[4] Paul Viola and Michael Jones, "Rapid object detection using a boosted
cascade of simple features," In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, vol. 1, pp 511-518, 2001.

[5] http://vision.stanford.edu/aditya86/ImageNetDogs/

[6] P. N Belhumeur, J. P. Hespanha, and D. J. Kriegman, "Eigenfaces vs.

Fisherfaces: recognition using class specific linear projection," IEEE
Trans. Pattern Analysis and Machine Intelligence, v.19 n.7, p.711-720,

July 1997.

56

http://jit.niu.edu.tw/
http://vision.stanford.edu/aditya86/ImageNetDogs/

1

A Slow Intelligence System Test Bed
 Enhanced with Super-Components

Shi-Kuo Chang, Sen-Hua Chang, Jun-Hui Chen, Xiao-Yu Ge, Nikolaos Katsipoulakis, Daniel Petrov and Anatoli Shein
Department of Computer Science

University of Pittsburgh, Pittsburgh, USA
{schang, sec104, juc52, xig34, nik37, dpp14, aus4}@pitt.edu

Abstract—The slow intelligence system (SIS) technology is
a novel technology for the design of a complex information
system that is aware of the environment through multiple
sensors and capable of improving its performance over
time. In this paper we describe a practical slow intelligence
system test bed where super-components can be specified
to describe interactions among components. These super-
components are automatically transformed into time
controllers for components so they can be managed by the
SIS test bed. We illustrate our methodology on personal
healthcare system design using this SIS test bed enhanced
with super-components.

Keywords- slow intelligence system, environment-aware
software engineering, super-component, SIS test bed,
personal healthcare system.

I. Introduction

The slow intelligence system (SIS) is a general-purpose
system characterized by being able to improve its performance
over time in iterative computation cycles through a process
involving enumeration, propagation, adaptation, elimination
and concentration. An SIS continuously learns, searches for
new solutions and propagates and shares its experience with
peers [1].

The slow intelligence system (SIS) technology is a novel
technology for complex information system design and a base
for Environment-Aware Software Engineering (EASE),
which is the methodology and practice to design and/or
improve a complex information system that is aware of the
environment through sensors and capable of improving its
performance over time in a changing environment. Such
complex information systems have the following
characteristics: connected, multiple sourced, knowledge-based,
personalized, hybrid and prodigious.

The design of complex information systems faces the
following challenges: (1) the operating environment,
individual/collective user behavior and underlying technology
base of such complex information systems are constantly
changing; (2) there is never a stable and static solution for an
“optimal” complex information system; and (3) there are no
general techniques for the design of complex information
systems. We believe that the SIS technology can be exploited
to address these challenges.

There are many interesting theoretical issues concerning the
design of slow intelligence systems [1]. To make the SIS
technology useful to the practitioners, in this paper we
describe a practical test bed for Slow Intelligence Systems
enhanced with super-components, i.e., multiple components
that can be activated either sequentially or in parallel and have
complex interactions to search for better solutions.
Furthermore these super-components can be automatically
transformed into time controllers for components so they can
be efficiently managed by the SIS test bed.

This paper is organized as follows. Section 2 introduces the
essential characteristics of an SIS test bed enhanced with
super-components. To illustrate our methodology, the
essential components and super-components of a personal
healthcare system are described in Sections 3 to 7.
Background for slow intelligence system is presented in
Section 8. Further research issues and applications of the SIS
test bed to the design and analysis of sentient networks are
discussed in Section 9.

II. SIS Test Bed with Super-Components

To design SIS-based systems, a practical SIS test bed is
illustrated in Figure 2.1. The SIS test bed is a component-
based software system. The center-piece of the test bed is the
SIS server responsible for specification/creation/management
of components and passing messages to/from components in
the test bed. This test bed is implemented in Java and can run
either under Windows or in the Eclipse environment.

Figure 2.1. A slow intelligence system test bed.

The essential components of the basic SIS test bed include the
Graphical User Interface (GUI) to interact with the end user,
the InputProcessor to process input data from sensors and
transform them into XML formatted messages, the Uploader
to upload messages to the Internet, the Propagator to
communicate with other SISs to propagate information and the
SIS operators suite (Enumerator, Adaptor, Eliminator and
Concentrator) to generate, adapt, eliminate and concentrate
solutions. For the advanced SIS test bed enhanced with super-

(DOI Reference Number: 10.18293/SEKE2015-029) 57

2

components, there is also a Time Controller to initiate and
control iterative computation cycles through guard predicates.
The control and management of heterogeneous sensors
requires a slow intelligence system with iterative computation
cycles so that different sensors with different characteristics
such as resolution, sampling rate, accuracy, etc. can be
monitored and properly dealt with. During each computation
cycle, the SIS operators suite is employed to optimize the
processing of application data obtained from the environment
through multiple sensors. The Time Controller determines the
invocation and timing of the components in the computation
cycles. A super-component is therefore a structured set of SIS
operators to perform the computation cycles under the control
of the Time Controller. A formal model of the computation
cycle is introduced in [10]. To specify and create a super-
component, a Create-Super-Component (CSC) message can be
sent to the SIS server. An example of the CSC message
structure is shown in Table 2.1.

Table 2.1. The Create-Super-Component message structure.

In the above CSC message, the component description can
be in the form of a PNML specification (if the computation
model is a Petri net) or an XML document (if UML diagrams
such as sequence diagrams, etc. are employed). In Table 2.2 a
simple example of a (partial) PMNL specification of a super-
component is shown.

After a super-component is formally specified (such as Table
2.2), the Time Controller and other components of the super-
component can be automatically generated from this
specification. As mentioned above the super-component is
controlled by the Time Controller, which sends messages to
the constituent components to coordinate their execution.
When a computation cycle is completed, the Time Controller
decides whether to start another iteration of the computation
cycle, or send messages to other super-components (or
ordinary components) of the SIS system, depending on the
guard predicate.

Multiple super-components with their respective Time
Controllers may co-exist in an SIS system and interact with
one another. The SIS server enhanced by the SC transformer
is illustrated in Figure 2.2. All input messages except the new
message 21 to create super-component are sent to the original
SIS server. The new message 21 is processed by SC
transformer that generates the Time Controller and sends a
message 20 to SIS server to create the Time Controller
component.

Table 2.2. A partial PNML specification.

Figure 2.2. A super SIS server.

58

3

To illustrate the practical application of this methodology, an
experimental personal healthcare system is shown in Figure
2.3. Although this is a specific application it nevertheless
exhibits many important characteristics of a complex
information system. Foremost among these characteristics is
that heterogeneous multiple sensors are constantly changing
due to technological advances or other reasons. Each monitor
in a personal healthcare system can be a simple component in
the simplest case, but more often than not it is a super-
component to perform iterative computation cycles for the
personal healthcare system. With our approach, the
specification and upgrade of a super-components due to
technological advances can be easily accomplished.

Figure 2.3. A personal healthcare system.

In the following sections we will describe the super-
components, monitors and other novel components of the
experimental personal healthcare system.

III. Temperature/Blood Pressure Super-
Component

A personal healthcare system can assist a senior citizen who
may not be computer-literate to deal with various monitors.
For example, a Temperature Monitor can prevent a senior
citizen from suffering from freezing or burning temperatures,
and a Blood Pressure Monitor can monitor the person’s blood
pressure. With super-components, these monitors can
exchange messages and work together to determine whether
there is a need to send an alert message via the Internet to the
Emergency Management System (EMS) or the responsible
physician in case of an emergency. The situation is illustrated
by Figure 3.1, which is a sub-network of Figure 2.3. The
interacting monitors are in yellow color.

Once the SIS system is running, the GUI component is
launched and the temperature settings such as start-monitor-
time, end-time, refresh-time, high-temperature threshold and
low-temperature-threshold can be set or adjusted, as shown in
Figure 3.2.

Figure 3.1. Interactions among Temperature and Blood
Pressure Monitors.

Figure 3.2. Temperature settings.

The Blood Pressure Monitor can then be launched to check
whether the person’s blood pressure is normal. In addition to
working individually, these monitors can work together as a
super-component to detect more complex conditions and
upload and send Complex Alert messages to EMS as shown in
Figure 3.3, where the e-mail contains the alert message that
the blood pressure may not be normal perhaps due to the rising
ambient temperature.

Figure 3.3. Complex alert from Blood Pressure Monitor and
Temperature Monitor.

In Figure 3.4, the Petri-net description of a super-component
involving the Temperature Monitor and the Blood Pressure
Monitor is shown. The corresponding PNML specification can
then be transformed into Time Controller to coordinate the
interacting components.

59

4

Figure 3.4. The Temperature/Blood Pressure super-component.

IV. Kinect/EKG Super-Component

A Kinect monitor is a component that accepts a series of
messages from the Kinect sensor and sends out alerts to
certain components when an emergency happens. The Kinect
sensor and monitor together can detect and analyze motion
patterns such as a person’s fall (see Figure 4.1 and Figure 4.2),
and the fall detection algorithm is incorporated into the Kinect
monitor.

Figure 4.1. Skeleton figure of a person standing.

Figure 4.2. Skeleton figure of a person falling.

To achieve fall detection, we need to estimate the real-time
position of the person. Kinect SDK software based upon
Kinect sensor can track a person’s skeleton consisting of more
than 20 joints. Once we get a series of skeletons, we can easily
extract the coordinates of joints. A frame is generated for each
time interval, so we can calculate the difference between two
consecutive frames and the speed of movement.

In the experimental personal healthcare system, we try to first
track head movement and then estimate the positions of other
joints to detect the motion of a person and in particular the fall
of a person. When the position of the head cannot be reliably
estimated, we can still use other available information to
detect the person’s movement pattern. We currently don’t deal
with multiple persons.

Fall detection alone is meaningless if it cannot be propagated
and acknowledged by other components. We can send this
information to the Uploader, which is the component
responsible for collecting information from all other
components and informing EMS and the physician in charge,
and possibly building a knowledge base along the way. We
can also send this information to other monitors responsible
for the monitoring of different type of sensors so that they can
make more accurate decisions. Likewise the Kinect monitor
can also receive information from other monitors and work in
a similar way.

As an example of such complex communication, if a

person falls and the Kinect monitor also receives alerts from
EKG monitor, it could mean this patient not only fell but also
suffered heart problems. An alert can be generated either by
Kinect monitor or EKG monitor or both, depending on the
messaging sequence.

V. Location Monitor

In this section we discuss a Location Monitor for the SIS
personal healthcare system, whose objective is to process the
information about the location of the person, to track the

60

5

person’s movements in real-time and to act accordingly in
case of an emergency.

Dementia is a broad category of brain diseases. The number of
patients, who suffer from dementia, is increasing in the United
States of America for the last couple of years. Thus the mortal
rate of fatalities, caused by dementia is increasing as well. The
most common type of dementia is Alzheimer’s disease. Some
of the other more popular types are vascular dementia,
Dementia with Lewy, Frontotemporal labor degeneration,
mixed dementia, Parkinson’s disease and Creutzfeldt-Jacob
disease. One in three seniors dies with Alzheimer’s or another
dementia. The statistics shows that 15.4 million caregivers
provided an estimated of 17.5 billion hours of unpaid care,
valued at more than 216 billion USD in 2012 [2].

The physicians measure what they call Clinical Dementia
Rating (CDR), which changes between zero and three or more.
The first stage is called CDR =0. There is no impairment for
the patient at this stage. The next one is called Questionable
Impairment; the value of CDR for it is -0.5. The third one is
called Mild impairment and it is the last one, where the patient
is capable of taking care of himself/herself. The value for it is
1. At this stage the patient gets geographically lost. For all
CDR values beyond that point (2 and 3 – moderate and severe
impairment), the person should have a personal caregiver. On
the other hand, for all cases of CDR with value 1 or less, an
automated monitor, such as the Location Monitor, can take
over the responsibility of tracking the movements of the
person and his/her location.

The Location Monitor communicates directly with four other
components of the SIS Personal Healthcare System – GUI
component, Input Processor component, Uploader and
Hospital Finder component. The Location Monitor introduces
four new messages to the system – GPS Reading, GUI
Address Request, GPS Coordinates Request and GPS
Coordinates Response. Location Monitor is using two
different APIs of Google, Directions API and GmailAPI, to
provide the desired functionality. The developers of Google
Inc. provided a Java wrapper library for those APIs to be used.

Three basic scenarios involve the Location Monitor. The first
one is the supply of data about the current location of the
patient. The Input Processor receives the raw data from a
sensor, which typically is a smart phone, which has a GPS
receiver and some capability of reporting the data, obtained
from the receiver, back to the system – Wi-Fi connection,
GPRS, WCDMA, LTE or a combination of them. The Health
Sensor sends the raw information, marshaled in a Sensor Data
Input message. The Input Processor module processes it and
sends the information further to the Location Monitor. The
next scenario covers the case, when a physician sends the
destination of the person to Location Monitor, which starts
tracking the person. The third scenario involves the delivery
of the last location of the patient, known by Location Monitor,
to other components of the SIS system.

Once the Location Monitor receives an Address Request
message, it contacts the Google Maps, using Directions API in
order to receive a route for the person from his/her current
location to the destination, received in the GUI Address
Request message. The route contains a polyline, which is the
smoothened polyline, which pins the route on the map. The
Location Monitor tracks the location of the person for
deviations from the received predefined route in the following
way - upon every receiving of new location data information
(i.e. GPS Reading message), the Monitor determines if the
point, representing the received coordinates is within no more
than 0.2 miles distance from every rectangle, formed by two
consecutive points of the polyline of the route.

In case the location is outside the boundaries, the Location
Monitor sends a short text message (SMS) to the person,
informing him/her to stay where he/she is and letting him/her
know that the help is on the way. An alert message is also sent
to the uploader module and a mail is sent to the EMS and the
physician on duty.

The Location Monitor was tested in SIS test bed for the
Personal Healthcare system. The GPS Reading messages as
well as the GUI Address Request messages were emulated
with the Universal Interface component.

VI. Hospital Finder
Since there are an increasing number of sensors utilized to
monitor the health conditions of senior citizens in today’s
world, it is possible to receive alert messages instantly when a
person is in a dangerous state. This Hospital Finder component
reacts to these messages by locating the person on the map,
providing directions from the nearest hospitals to the person,
and providing the contact information of these hospitals in
order to rescue the person in a timely fashion. This
component fits well with the rest of the Personal Healthcare
System, and provides a useful enhancement that could
potentially help save human lives. In what follows we will
explain the system model of this Hospital Finder component
and give an example of its operation using a real life scenario.
The following scenario will utilize the Location Monitor
component that monitors the person’s location when he or she
is out for a walk, and generates alert message 38 if the
person’s route drastically changes in an unexpected way.

When the Hospital Finder component receives alert message
38, it quickly reacts and opens the map based Graphical User
Interface (GUI). The operator who is monitoring the person’s
health using the SIS system at this point knows that the person
is in an emergency state. The operator should be looking for
the closest hospitals to deliver help to the patient immediately.

The map-based GUI of the Hospital Finder component offers a
variety of ways of locating the person. In this specific scenario,
assuming the person has a GPS sensor with him/her, the
easiest way to locate the person is by clicking the “Acquire
GPS location” button. The other options include locating the

61

6

person (a) by address, (b) by coordinates, (c) by position on
the map and (d) by GPS coordinates and so on.

In order to place the person’s location on the map, the operator
clicks the button “Acquire GPS location”. The person’s
location is immediately requested with message 47
(Coordinates Request). The Location Monitor component
receives this message and quickly sends the person’s last
location reading from the GPS sensor back to the Hospital
Finder component. The incoming message 48 (Coordinates
Response) is handled by the Hospital Finder component by
populating the Latitude and Longitude fields on the map-based
GUI, and placing an icon of the person on the map:

Figure 6.1. The person’s last known location is displayed.

Now, since the operator has received the person’s location, he
or she can click the “Search” button next to the person’s
coordinates to find the closest hospitals:

Figure 6.2. Closest hospitals with routes are displayed.

When the search button is clicked, the GUI requests the three
nearest hospitals using the Google Maps Places API from the
Google database. When the locations are received, the
Hospital Finder component requests the directions from
Google using the Google Maps Directions API to get to the
person from these hospitals. As soon as the directions are
received, the Hospital Finder component draws them on the
map, and displays an information window above each one of
the hospitals stating the distance and the time that it would
take to get to the person from each hospital.

VII. Recommender Engine
The Recommender Engine for the Personal Healthcare System
is capable of making elaborate decisions and proactively
generate alert messages. This way, unwanted situations can be
avoided in which the person may be in a state of imminent
health deterioration. In what follows we will describe the
design of the Recommender Engine, and usage scenarios in a
real-life situation.

The Recommender engine waits for messages produced by
sensors and mediated by the InputProcessor. Specifically, in
its current state the Recommender Engine receives messages
from: (a) blood pressure, (b) blood sugar, (c) EKG, and (d)
SPO2 sensors. In the event that the Recommender Engine
detects an imminent dangerous state, it produces alert
messages and disseminates them in the SIS system.

The different components inside the Recommender Engine are
as follows. First, the message parsing interface is responsible
for handling input messages and produce alerts in the SIS
network. The data transformation logic receives sensor data
and turns them into a binary form that is readable by the
recommender logic. The latter is responsible for building
prediction models in order to implement the prediction logic
needed for identifying dangerous situations in a proactive
manner. Finally, the Recommender Engine keeps an internal
storage module for storing user-defined Rules (conditions
under which an alert should be generated) and pre-computed
Prediction Models. Information are stored in the form of
tuples (records) so that the system is able to predict dangerous
situations.

The Recommender Engine works by using Collaborative-
Filtering Algorithms to predict users' preferences. This
approach is more generic compared to the Context-based
approach of other recommendation systems. Hence, it can be
easily modified to work with different scenarios. The only
information to be stored should be tuples of the form:

user-id, item-id, preference

The user-id refers to a user showing interest (or a general
connection) for a specific object (item-id). The interest can
represent any kind of connection among two entities. For
instance, it can represent how much a user likes a product, or it
can represent that a user has had a characteristic represented
by a specific id (object). Preference models the intensity of the
connection of a user with an object. A preference can take
values from 1 to 5, but it can also have a binary interpretation
if a binary recommendation system is needed (i.e. yes or no
answer). By forming the data accordingly, one can
approximate any kind of situation and have the Recommender
Engine produce successful predictions.

The Recommender Engine can be used when we need to
predict dangerous situations for people. For any person we
have sensor input for blood pressure, blood sugar, SPO2 and
an EKG. The Engine's responsibility is to combine readings

62

7

from the aforementioned sensors, and by consulting user-
defined rules, produce alert messages to the system. The
Apache Mahout library (http://mahout.apache.org), which is a
complete framework for recommendation systems, is used in
implementation. Three scenarios are presented, each using
different rules:
1. A patient is in alert if blood pressure and blood sugar are
in near-dangerous levels.
2. A patient is in alert if blood pressure and SPO2 levels are
in near-dangerous levels.
3. A patient is in alert if blood pressure, blood sugar and
SPO2 levels are in neardangerous levels.

The Alert message produced by the Recommender Engine has
the following form:

Name Value MsgID 64
Descriptiom Recommender System Alert
AlertType Recommender Alert
DateTime Current Date (i.e. “2014-10-30 15:05:10”)

VIII. Related Work
The slow intelligence approach was first proposed by Shi-Kuo
Chang [1]. In this section we will briefly review recently
published papers in this area. The visual specification of
component-based Slow Intelligence Systems is described in
[3]. This work introduces the visual description of super-
components by Petri nets or other UML diagrams. It provides
the foundation of the present work. Component-based Slow
Intelligence Systems has been applied to many areas,
including social influence analysis [4, 5], topic and trend
detection [6], high dimensional feature selection [7], image
analysis [8], swimming activity recognition [9], and most
recently pet care systems [10] and energy control systems [11].
In [10] the notion of an abstract machine for computation
cycle was introduced. Our current approach is based upon it.

IX. Discussion

The super-component transformation algorithm can be
extended to handle parallel/distributed processing of super-
components in multiple computation cycles. At the
implementation level we introduce one additional pair of tags,
<parallel> and </parallel>, into the pnml specification to
signify levels of parallel computation. Therefore the SC
translator will append the super-component type as the suffix
to the message that this transition represents. For example if
the original message id is 1002 and a super-component
<parallel> 03</parallel> is specified inside the related pair of
transition tags of message 1002, then this message will
become 1002.03. We can extend this technique to define
messagetype.SCsubtype.SCtype and so on, so that messages
are exchanged at different levels. At the theoretical level, we
envision complex information systems as iterative slow
intelligence systems with multiple and interacting computation
cycles. In Wiener’s Theory of General Resonance, he
envisioned the interaction of multiple computation cycles. We

can call such general systems Sentient Nets. With the above
proposed different levels of computation cycles and messages,
we propose to continue the investigation of the properties of
such general systems.

References
[1] Shi-Kuo Chang, "A General Framework for Slow
Intelligence Systems", International Journal of Software
Engineering and Knowledge Engineering, Volume 20, Number
1, February 2010, 1-16.

[2] Alzheimer’s Disease Facts and Figures,
www.alz.org/downloads/facts_figures_2013.pdf, 2013.

[3] Shi-Kuo Chang, Yingze Wang and Yao Sun, "Visual
Specification of Component-based Slow Intelligence Systems",
Proceedings of 2011 International Conference on Software
Engineering and Knowledge Engineering, Miami, USA, July
7-9, 2011, 1-8.

[4] Shi-Kuo Chang, Yao Sun, Yingze Wang, Chia-Chun Shih
and Ting-Chun Peng, "Design of Component-based Slow
Intelligence Systems and Application to Social Influence
Analysis", Proceedings of 2011 International Conference on
Software Engineering and Knowledge Engineering, Miami,
USA, July 7-9, 2011, 9-16.

[5] Yingze Wang and Shi-Kuo Chang, "User Profile
Visualization to facilitate MSLIM-model-based Social
Influence Analysis based upon Slow Intelligence Approach",
Proceedings of 2014 International Conference on Software
Engineering and Knowledge Engineering (SEKE 2014),
Vancouver, Canada, July 1-3, 2014.

[6] Ji Eun Kim, Yang Hu, Shi-Kuo Chang, Chia-Chun Shih
and Ting-Chun Peng, "Design and Modeling of Topic/Trend
Detection System By Applying Slow Intelligence System
Principles", Proc. of DMS2011 Conference, Florence, Italy,
Aug. 18-20, 2011, 3-9.

[7] Yingze Wang and Shi-Kuo Chang, "High Dimensional
Feature Selection via a Slow Intelligence Approach", Proc. of
DMS2011 Conference, Florence, Italy, Aug. 18-20, 2011, 10-
15.

[8] Shi-Kuo Chang, Li-Qun Kuang, Yao Sun and Yingze
Wang, .Design and Implementation of Image Analysis System
by Applying Component-based Slow Intelligence System.,
Proc. of DMS2012 Conference, Miami, USA, Aug. 9-11, 2012.

[9] Wen-Hui Chen and Shi-Kuo Chang, "Swimming Activity
Recognition Based on Slow Intelligence Systems", Proc. of
SEKE2013 Conference, Boston, USA, June 27-29, 2013.

[10] S. K. Chang, W. H. Chen, Bin Kao, L. Kuang, and Y. Z.
Wang, “The design of pet care systems based upon slow
intelligence principles,” Int’l Journal of Software Engineering
and Knowledge Engineering, 2014.

[11] Wen-Hui Chen and Shi-Kuo Chang, "Applications of
Slow Intelligence Frameworks for Energy-Saving Control",
Proceedings of 2014 International Conference on Software
Engineering and Knowledge Engineering (SEKE 2014),
Vancouver, Canada, July 1-3, 2014.

63

An Adaptive Contextual Recommender System: a
Slow Intelligence Perspective

S.K. Chang, Duncan Yung
Computer Science Department

University of Pittsburgh
Pittsburgh, USA

{chang, duncanyung}@cs.pitt.edu

F. Colace, L. Greco, S. Lemma, M. Lombardi
DIEM

Università degli Studi di Salerno
Salerno, Italy

{fcolace, lgreco, slemma, mlombardi}@unisa.it

Abstract — This paper introduces an Adaptive Context Aware
Recommender system based on the Slow Intelligence approach. The
system is made available to the user as an adaptive mobile
application, which allows a high degree of customization in
recommending services and resources according to his/her current
position and global profile. A case study applied to the town of
Pittsburgh has been analyzed considering various users (with
different profiles as visitors, students, professors) and an
experimental campaign has been conducted obtaining interesting
results.

Keywords — Recommender System - Slow Intelligence Approach
– Smart Adaptive System - Context-aware computing

I. INTRODUCTION
Recommender Systems represent a meaningful response to the
problem of information overload since the mid-1990s [28]
when early works on this topic have been proposed. The aim
of such systems is to predict user’s preferences and make
meaningful suggestions about items that could be of interest
[29]. In literature, there are various approaches for
recommending systems. In the content-based approach, the
system recommends an item to a certain user relying on the
ratings made by the user himself for similar items in the past
[26]. In recent times, some improvements, such as a deeper
user profile analysis [33] and the use of probabilistic methods
[35], have been introduced together with some attempts to
apply the content based approach to multimedia data [23, 18,
24]. However, a critical drawback of this approach is
overspecialization, since the systems only recommend items
similar to those already rated by the user. Another interesting
approach is the collaborative filtering [1]. In this case, the
recommendation is performed by filtering and evaluating
items with respect to ratings from other users [33]. Ratings can
be attributed in different ways and collected by explicitly
asking users or implicitly tracking their actions [2]. Two basic
methods, passive and active filtering, are exploited for
filtering and recommending items together with nearest
neighbor techniques [27, 21]. An important limitation of
collaborative filtering systems is the cold start problem:
situations in which a recommender is unable to make
meaningful recommendations due to an initial lack of ratings.

A particular kind of collaborative approach is the collaborative
competitive filtering that aims at learning user preferences by
modeling the choice process in recommender systems [34].
Content-based filtering and collaborative filtering may be then
combined in the so-called hybrid approach that helps to
overcome limitations of each method [30]. In general, a
recommendation strategy should be able to provide users with
relevant information depending on the context [15, 19, 20]
(i.e. user location, observed items, weather and environmental
conditions, etc.) as in Context Aware Recommendation
Systems. In the Contextual Pre-filtering techniques context
information is used to initially select the set of relevant terms,
while a classic recommender is used to predict ratings. In
Contextual Post-filtering approaches context is used in the last
step of the recommending process to contextualize the output
of a traditional recommender. An important improvement for
traditional recommender systems is in the possibility to embed
social elements into a recommendation strategy [38]. In fact,
the great increase of user-generated content in social networks,
such as product reviews, tags, forum discussions and blogs,
has been followed by a bunch of valuable user opinions,
perspectives or tastes towards items or other users, that are
useful to build enhanced user profiles. In such context,
customer opinion summarization and sentiment analysis [39,
13] techniques represent effective improvement to traditional
recommendation strategy, for example by not recommending
items that receive many negative feedbacks [38]. Indeed, a lot
of attention is nowadays being payed from vendors to
consumer’s voices because of the great influence they may
have on the opinions and decisions of others [32] and some
companies already provide several opinion mining services
(e.g., Amazon, Epinions, etc.). In recent times, some works
have been proposed to extend traditional collaborative filtering
with the use of sentiment analysis techniques, thus providing
effective improvement to system performances [22]: most of
them make use of Part Of Speech (POS) tagging techniques
and aim at refining standard collaborative filtering ranking
outcomes in terms of numerical scales to take into account
user community opinions. The work in [31] proposes a
recommender system for movies that combines collaborative

DOI reference number: 10.18293/SEKE2015-080

64

filtering with sentiment: here sentiment classification is
performed through both Naıve Bayes classifier and
unsupervised semantic orientation approach. Given this
scenario, we propose a Recommender System based on the
Slow Intelligence Approach [10]. The Slow Intelligence
System is a general-purpose system characterized by being
able to improve performance over time through a process
involving enumeration, propagation, adaptation, elimination
and concentration. A Slow Intelligence System continuously
learns, searches for new solutions and propagates and shares
its experience with other peers. Slow Intelligence Systems
typically exhibit the following characteristics:
- Enumeration: In problem solving, different solutions are
enumerated until the appropriate solution or solutions can be
found.
- Propagation: The system is aware of its environment and
constantly exchanges information with the environment.
Through this constant information exchange, one SIS may
propagate information to other (logically or physically
adjacent) SISs.
- Adaptation: Solutions are enumerated and adapted to the
environment. Sometimes adapted solutions are mutations that
transcend enumerated solutions of the past.
- Elimination: Unsuitable solutions are eliminated, so that only
suitable solutions are further considered.
- Concentration: Among the suitable solutions left, resources
are further concentrated to only one (or at most a few) of the
suitable solutions.
In the next paragraph, the general architecture of the
recommender system is introduced and each module is
described in details. In particular, the Context Aware Module
and the Content Dimension Tree (CDT) approach is described.
An example scenario and an experimental campaign close the
paper.

II. A FRAMEWORK FOR CONTEXTUAL RECOMMENDATION
BASED ON A SLOW INTELLIGENCE APPROACH

In this section, the System Architecture is introduced and
described. Four modules compose the system: the context
aware module, the recommender system module, Re-Ranking
Module Based on Sentiment Analysis and the Re-Ranking
Module Based on User Features. The architecture, depicted in
figure 1, reflects the Slow Intelligence approach; in particular
the context aware module and the recommender system
module implement the adaptation and the enumeration phases,
the Re-Ranking Module Based on Sentiment Analysis
implements the propagation phase, the Re-Ranking Module
Based on User Features implements the elimination phase. A
“Contextual App” implements the concentration phase. In the
following paragraphs more details about the various modules
will be given.

A. The Enumeration and Adaptation stage

This stage aims at defining the user’s problems and the main
strategies that have to be pursued for solving them. The
combination of the Context Aware Module (CAM) and of the
Recommender system can implement the Adaptation and the
Enumeration phases. In the following paragraphs the two
modules will be described:

1) The Context-aware module(CAM)
The purpose of this module is to provide a mechanism of
dynamic and automatic invocation of services according to the
context[11]. Since the purpose of this module is to deal with
contextual changes that occur at runtime, there should be a
mechanism that is concerned with the choice of the item to be
invoked during the execution of the specific instance of the
program, instead of associating a specific and concrete item to
every activities in the design phase. Dynamic invocation of

Figure 1 System architecture

65

items is implemented by context aware module configuration,
in response to a user abstract request and according to the
measured parameters at runtime. The concrete item to be
invoked is chosen during the execution of the application. In
general, we can divide the CAM module in two submodules:
the High Level and the Low Level modules. The first one
defines the problem and the resources or service at a high level
of abstraction, while the second one gives the resources that
contains concrete items or services.
The inputs of CAM are:

• Contextual Information: the user’s position, which is
collected from GPS sensor.

• Resources: all the resources that can furnished in
each context. The resources are identified by the
definition of a Point of Interest.

• User Profile: user’s information, which are collected
during the registration phase, e.g. user interests.

• Context Dimension Tree [3,4] is a model used to
represent context in an extensible and orthogonal
way, using the 5W-1H method. We realize a generic
CDT, named Meta CDT, for all possible contexts and
a specific CDT on the basis of the resource user
choice.

For representing the scenario, the Context Dimension Tree
(CDT) model shown in Fig.2 was used: the structure consists
of two different types of nodes - the black nodes, which
describe the context dimensions, i.e. the different points of
view from which the system's situation can be observed, and
the white nodes which describe the values that constitute the
context; each node has a label with the name of the
corresponding node. The CDT has a special white double
circled node that represents the root of the tree. In addiction,
each leaf of the tree is a value node and they may feature
parameters. The parameters are described by a white square
and they are used as special filters helpful when a value has
many instances.

This way of representing the context through the CDT allows
the designer to characterize the relevant aspects of the
considered scenario and to choose the dimensions and values
of the tree in a correct way. It is important to underline how

the hierarchical structure of the CDT allows the description of
the context with different levels of abstraction and granularity.
The output of CAM High Level is:

• Contextual Resources: all the resources that can
furnished in a specific geographical area. User will
choose a specific resource.

The input of CAM Low Level is:
• Resource: resource selected by user.

When the user chooses a resource, in CAM Low Level block,
we know Location Dimension and we have a specific CDT
with information associated to resource useful for representing
current context and providing contextual services. The output
of the system is a set of contextual items of current resource.
CAM module follows a methodology consists of three phases.
Methodology has been realized in order to define all relevant
contexts for the considered application, in order to provide
contextual services managing database and performing
reductions of their content based on the context.

• Design phase of contexts tree requires the design and
use of CDT to represent and identify significant
elements of context.

• Objective of definition phase of partial views is to
identify each element of the context, then the value of
each top dimension (child black node of root).

• Composition phase of views generates the global
view associated with each context, which is made
from union of partial views. The objective is to
obtain a valid and specific query for the current
context.
Then, it will be possible to interrogate the system in
order to obtain the corresponding contextual items.

2) Recommender System

The developed recommender system is a content/service
recommender system able to recommend a list of objects
(contents or services), given the user profile and the contextual
resource to which the objects belong. It can also dynamically
update user profile. The resource is used for customizing our
general recommender system to a particular, domain specific,
recommender system. A resource can be a Cinema, a
Museum, etc. The CAM sends to recommender system an
identifier of the resource and through it the recommender
system can recover, from a configuration database, some
parameters that allow personalization of general recommender
system in a domain specific way. In particular, every domain
of interest has a specific database storing local informations
and the similarity files, on objects of the domain, are
generated once from a sub-system created ad hoc, as discussed
later. CAM sends to recommender system also the user
identifier. In fact, CAM maintains an high level user profile,
with many interests for different domains, the recommender
system instead maintains a low level user profile with specific

Figure 2 A Meta CDT example

66

interests for the domain. These last interests are obviously a
subset of the first. The proposed recommender system is
actually an hybrid recommender system that has common
features with Content-based and Collaborative systems. In
particular it considers:

• User Similarity;
• Object Similarity;
• Users behaviour in the system;
• Users history.

We will now discuss each aspect in more detail.

User Similarity
User profile is used for clustering users and then creating
groups of similar users. The clustering here is based on
Jaccard Similarity [37] performed on user’s interests for a
specific domain. The interests for each user are represented
through a binary vector. User similarity is a first important
aspect to compute since it is fundamental for the calculation of
the global browsing matrix, whose elements contain the ratio
of the number of times object 𝑜! has been accessed by any user
immediately after 𝑜! to the number of times any object in O
has been accessed immediately after 𝑜!.
Object Similarity
Object similarity is based on high-level information of the
contents/services to recommend. A sub-system computes
similarity indexes between objects through Wu-Palmer’s
metric[2]. For every domain there is a taxonomy, describing
the most important features of the objects, that allows objects’
comparison. The used metric allows to compute a similarity
matrix (similarity files that are generated off-line). The object
similarity is very important not only for the evaluation of the
candidates but also for the location of the set of good
candidates for recommendation.
The proposed recommender system is however independent
from the way of computing the object similarity, so the sub-
system designed, using taxonomies, is only one of the possible
ways for computing object similarity.
Users behaviour in the system and Users history
The recommender system uses differents structures to
maintain users behaviour and users history. In particular, the
following matrices are defined:

• local Connection matrix. Its generic element is
defined as the number of times the object 𝑜! has been
selected by user 𝑢! immediately after 𝑜!.

• global Connection matrix. Its generic element is
defined as the number of times object 𝑜! has been
selected by any similar user immediately after 𝑜!.

User’s history and behaviour are stored and retained in the
local Connection matrix, where the occurrences and the order
of what user prefers are stored. The global Connection matrix,
instead, is used to retain dynamically the general behaviour of
the similar users in the system. User profile is updated through
the observation of the behaviour of the user in the system and
by inferring the interests associated with chosen objects.
Practically we analyze the local Connection matrix and when a
generic element goes over a certain threshold, we analyze the
related objects. From these objects, the related interests are
extracted and user profile is updated. So we obtain implicit
feedback from user’s behaviour in the system. Now that we
have a complete view of the system, we can summarize the
process of the recommendation. The CAM module enumerates
some recommendable objects to the recommender module
starting from the user position. For each object, the most
similar objects are obtained from the similarity matrix and the
system adds all the objects 𝑜! that have been selected by user
in two steps after 𝑜!, the ‘init’ objects. On this set a ranking
vector is calculated, based on global browsing matrix and
similarity matrix through Power Method’s invocation. Finally
from the ranked list of objects, obtained after this step, the first
50 objects are selected as recommendations for the current
user.

B. Propagation stage
This module aims to involve the experience of other peers in
the resolution of the problems. In particular, various policies
can be defined (for example: the system can consider only
peers that have profiles similar to the user, or with similar
interests). For the selection of point of interests and resources,
we consider only those having good reviews from users with
similar profiles. This result can be obtained by the use of a
module based on the sentiment analysis approach. In
particular, this module can work on reviews that can be
collected from Tripadvisor, Facebook or Twitter.
At the end of this stage a list of re-ranked resources/services is
obtained.

1) Re-Ranking Module Based on Sentiment Analysis
 This subsection describes the proposed methodology for the
sentiments’ extraction from user comments/reviews and its
integration in the proposed recommendation strategy.
In particular, the used sentiment extraction technique is an
improvement of the approach presented by some of the
authors in a previous work [5], where the Latent Dirichlet
Allocation (LDA) has been adopted for mining the sentiment
inside documents. In our view, the knowledge within a set of
documents can be represented in a compact fashion by the use
of a complex structure: the Mixed Graph of Terms (mGT).
This graph contains the most discriminative words and the

67

probabilistic links between them. More in details, we define a
structure made of weighted word pairs, which has proven to be
effective for sentiment classification problems as well as text
categorization and query expansion problems [7, 8, 9]. The
main reason of such discriminative power is that LDA-based
topic modeling is essentially an effective conceptual clustering
process and it helps discover semantically rich concepts
describing the respective affective relationships. Using these
semantically rich concepts, that contain more useful
relationship indicators to identify the sentiment from
messages, it is possible to accurately discover more latent
relationships and make fewer errors in the predictions. The
mGT is built starting from a set of comments belonging to a
well-defined knowledge domain and manually labeled
according to the sentiment expressed within them. In this way
the mGT contains words (and their probabilistic relationships)
which are representative of a certain sentiment for that
knowledge domain. The LDA approach allows to obtain an
effective graph by using only few documents. A mGT graph
includes two kinds of nodes: the aggregate roots nodes,
defined as the words whose occurrence is most implied by the
occurrence of all other words in the training corpus, and the
aggregate nodes, defined as the words most related to
aggregate roots nodes from a probabilistic point of view.
In [5] the LDA approach and the mGT formalism have been
used for the detection of sentiment in tweets. The approach
aims at using the mGT, obtained by LDA based analysis of
tweets, as a filter for the classification of the sentiment in a
tweet. The sentiment extraction is obtained by a comparison
between document and the mixed graph of terms according to
the following algorithm:
• Input of the algorithm:
– A set of comments, reviews about items or social posts;
– The sentiment oriented mixed graphs of terms mGT+ and
mGT− obtained analyzing the (positively and negatively)
training comments;
– An annotated lexicon L.
 • Output of the algorithm:
– The average probabilities P + and P − which express the
probability that a sentiment, extracted from the set of
comments or posts, is “positive” or “negative”.
• Description of the main steps:
1. For each word in the mGT+ and the mGT− their
synonymous are retrieved through the annotated lexicon L.
2. For each comment 𝑐! the probabilities 𝑃!!

! and 𝑃!!
! are

determined as:

𝑃!!
!/! =

(A + B + C + D)
4

A being the ratio between the sum of occurrences in the
comment of words that are Aggregate Root Nodes and the

total number of the Aggregate Root Nodes in the
(positive/negative) mGT; B the ratio between the sum of
occurrences in the document of words that are Aggregates
Nodes and the total number of the Aggregates Nodes in the
(positive/negative) mGT; C the ratio between the sum of the
co-occurence probabilities of Aggregate Root Nodes pairs that
are in the document and the sum of all the co-occurence
probabilities of Aggregate Root Nodes pairs in the
(positive/negative) mGT; D the ratio between the sum of the
co-occurence probabilities of Aggregate Nodes pairs that are
in the document and the sum of all the co-occurence
probabilities of Aggregate Nodes pairs that are in the
(positive/negative) mGT; 3. For each item the probabilities P
+ and P − are determined as:

𝑃! =
𝑃!!
!

𝑛𝑢𝑚_𝑜𝑓_𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠
!

𝑃! =
𝑃!!
!

𝑛𝑢𝑚_𝑜𝑓_𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠
!

C. Elimination

This module aims to find the best resource/service according to
some contextual features that characterize the user. In this
phase, we propose to maintain a global resource/service quality
table that keeps tracks of the quality of all resources/services in
different aspects (e.g. service quality, price, transportation etc.)
and a top-k function for each user so as to reflect his/her own
preferences. Based on the quality table and the top-k function,
each resource/service input of this module is ordered based on
its top-k score. Furthermore, the user is asked to offer feedback
after visiting the resources/services. Then, the top-k function is
refined based on the feedback. More details will be presented
below.

1) Global Resource Quality Table

The global resource/service quality table contains scores of all
resources/services in all pre-defined aspects. It reflects the
quality of resources/services. The value of each aspects is the
median of all feedbacks from all users. Median Voter
Theorem states that setting the value to be the medians of n
feedbacks can satisfy most people in the population, where n
is the population size. We believe that a value that can satisfy
most people can truly reflect the quality of a resource. Hence,
when the number of feedbacks increase along with time, the
global resource/service quality table can gradually reflect the
true quality of resources/services. For example, the global
resource/service quality tale below contains 3 resources and 4
aspects (score of each aspect ranges from [0-10]). The input
order is not part of the table. It is given as the input of this
module.

68

Resource Service.
Quality

(SQ)

Price
(P)

Transportation
(T)

Content
(C)

Input
Order
(IO)

Carnegie
Museum

9 10 1 5 2

Botanic
Garden

9 5 9 2 1

Cathedral of
Learning

2 3 8 7 3

Table 1: Global Resource/Service Quality Table

2) Top-k Function and Top-k Score
The top-k function is a personalized function which reflects
the preference of a user. It takes into account all aspects in the
global resource/service quality table and the input order.
Hence, the number of coefficients of the top-k function is the
number of aspects in the global resource quality table plus 1
and the sum of all coefficient equals to 1. Initially, all
coefficients have the same value.

For example:
𝑓 = 𝑎×𝑆𝑄 + 𝑏×𝑃 + 𝑐×𝑇 +d×C + e×IO_Score
where a,b,c,e,e are coefficients and a + b + c + d + e=1.
For a new user, we assume that a=b=c=d=e=0.2.

The top-k score of a resource/service is computed based on the
top-k function, every aspect of the resource/service, and the
input order of the resource. The input order score (IO_Score)
is computed based on Definition D1.

Definition D1 [Input Order Score]: IO_Score is defined as:

IO_score=
10 − 𝑖 − 1 𝑓𝑜𝑟 𝑅 ≤ 10

10 − !" !!!
!

 𝑓𝑜𝑟 𝑅 > 10

where |R| is the size of resource/service input and I is the input
order (IO in Table 1).

All input resources/services are ordered base on their top-k
scores (high to low) and top-k resources/services are returned
to users.

3) Update of Top-k Function based on User Feedback
After the top-k resources/services are sent to the user, the user
is asked to offer feedback to the system. The user can choose
to offer feedback of any aspects of any resource/service to this
module. Based on the feedback, this module computes the
difference of each aspect between offered feedback and values
in the global resource/service quality table and average the
difference for each aspect. We propose to increase/decrease
the top-k coefficient based on the average difference. We first
recomputed the value of aspects that needed to be refined
using this formula- !"#.!"##

!"
×𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡. Then, we normalize

all coefficients so as to make their sum to be 1.

D. Concentration

This module aims to shows the outputs obtained from the other
khmodules of the system. In particular, by this module the user
can interact with the personalized services and resources. In
this scenario, the concentration module has been built as a
mobile contextual app that collects the outputs of the others
modules and offers them by a friendly interface. The main
feature of this app is that for each user it shows the ability to
change services and contents depending on the context in
which he/she is located. The app can also send information to
the other modules that can update their information and refine
the selected contents and services.

III. EXAMPLE SCENARIO

In this paragraph an example of how the proposed approach
works is provided. Luca is a researcher and he is going to
Pittsburgh for a two days business trip. During his spare time
in Pittsburgh, he wants to visit some places. He has on his
smartphone the contextual app that implements the Adaptive
Contextual Recommender System approach. When he arrives
at Pittsburgh, the app collects his current location and sends
this information to the server. According to his profile, the
Context Aware Module (CAM) retrieves a list of possible
domains of interest from the context’s database. In other
words, the Context Aware Module selects a set of the possible
domains that can be interesting for the user in a certain
context. In this case, for example, if Luca has interests in
nature and history the system will furnish resources that are
linked to these domains. If Luca selects “Nature” the system
will furnish all the resources that are related to this domain
(e.g. Parks, Museums, Historical Buildings). At this point
Luca can select Museum and the Recommender Module
returns a list of resources or services related to this topic (e.g.
Carnegie Museum of Natural History, the Heinz History
Center, a booking web-site and so on). Luca can reorder the
list of resources by the use of the sentiment analysis module.
In this case the resources and the services selected by the
recommender system can be re-ordered according to the
sentiment retrieved in internet about them. In particular, the
sentiment analysis module collects posts related to the selected
resources from the famous social network “trip advisor” or
from their official web sites. The SIS module receives the list
of recommendations from the sentiment analysis module and a
top-k function of Luca is used to re-rank the result of all
recommendations from all domains. The top-k function
reflects Luca’s needs and preferences, and it is updated
gradually based on Luca’s feedbacks. The top-k score is
computed based on Luca’s current top-k function and a global
resource score table, which is updated according to users’
feedback of recommendations. Given the list of
recommendations, Luca’s top-k function
y=0.8*worth_visit+0.2*price reasonable, and the global
resource score table, the SIS module computes the top-k

69

scores of all resources in all domains and return
recommendations to Luca.

IV. EXPERIMENTAL RESULTS
For the experimental stage, 50 user profiles have been
considered. Each user profile is defined as a vector of interests
and can be dynamically updated according to user choices or
feedbacks. The following set of possible interests has been
considered: study, sport, courses, administrative services,
transport, religion, food, useful services, fun. In our
experimental campaign, we assumed profiles to contain at
most three main interests. We identified about 126 geo-
localized resources and services in Pittsburgh area, grouped in
29 points of interests such as: Cathedral of Learning, Sennott
Square, Restaurants area, Petersen Events Center, The Pitt
Shop, Barco Law Library, Holland Hall, Carnegie Museums,
Carnegie Mellon University, Phipps Conservatory and so on.
Depending on user profile and position, the CAM module and
the Recommender System module provided a set of ranked
results corresponding to recommended services or resources
for each user. This ranking has been first refined by the
sentiment analysis module and then the top-50 results for 50
users were given as input for the Elimination module. We
assumed the global resource/service quality table to contain 4
features - service quality, price, transportation, and content,
and they were all initialized to 7/10. Every features of the top-
k function of all users was initialized to 0.2 (There are actually
5 features- service quality, price, transportation, content, and
input order). Before we generated the top-5 result for all 50
users, we modeled the evolution process of the SIS module:
1. We defined a set of high quality services.
2. We randomly generated feedback from a user.
3. The randomly generated value was discount by 30% if the
service was not in the high quality service set.
4. Then, the global resource/service quality table and top-k
function of the user were updated based on the feedback.
5. We did this for all 50 users and repeat 2-4 for 30 times for
all 50 users.
By doing that, we could model the randomness of user
feedback while still penalizing poor quality services/resources.
After that, top-5 results for 50 users were obtained by using
results from recommender module and the current global
service quality table and top-k functions in the Elimination
module.
Relevance assessment was made by 150 students from the
University of Salerno grouped in 50 sets (one for each
profile): each student in a group assigned a binary relevance
level to each of the top-5 retrieved results for the given profile;
in this way, the relevance of each item was assessed through a
majority vote rule. Once relevance levels have been assigned
to the retrieved results, information retrieval performance
measures were used to assess the quality of system's output. In
particular, precision@5 (Fig.3), average precision and
standard deviation on precision values for different profiles
were calculated as shown in Table 2.

Figure 3 Precision@5 for each user profile

Average Precision@5 Standard Deviation
80,40% 16,41%

Table 2 Global performance evaluation

V. CONCLUSIONS
In this paper, an original approach to recommendation has
been introduced. In particular, the proposed system is based on
the Slow Intelligence Approach and integrates methodologies
as the context aware approach and the sentiment analysis. The
CDT formalism has been adopted for the context
representation and a real case has been investigated
developing a Contextual App for the Pittsburgh city. The
results obtained by the experimental campaign are satisfying
and show the good perspective of this kind of approach.
Further developments involve the application of the proposed
approach in various contexts and an improvement of the
recommender approach according to an effective collaboration
approach thanks to a closest integration with the most
important social networks.

REFERENCES
[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the
next generation of recommender systems: A survey of the state-of-
the-art and possible extensions. IEEE Transactions on Knowledge
and Data Engineering, 17:734–749, 2005.
[2] Massimiliano Albanese, Antonio d’Acierno, Vincenzo Moscato,
Fabio Persia, and Antonio Picariello. A multimedia recommender
system. ACM Trans. Internet Technol., 13(1):3:1–3:32, November
2013.
[3] Bolchini, C., Schreiber, F. A., and Tanca, L. A methodology for
very small database design. Information Systems, 32(1):61–82,
March 2007.
[4] Cristiana Bolchini, Carlo Curino, Fabio A. Schreiber, Letizia
Tanca: Context integration for mobile data tailoring. SEBD 2006:
48-55.
[5] Francesco Colace, Massimo De Santo, and Luca Greco. A
probabilistic approach to tweets’ sentiment classification. In
Affective Computing and Intelligent Interaction (ACII), 2013
Humaine Association Conference on, pages 37–42, 2013.

70

[6] Francesco Colace, Massimo De Santo, and Luca Greco. E-
learning and personalized learning path: A proposal based on the
adaptive educational hypermedia system. International Journal of
Emerging Technologies in Learning (iJET), 9(2):pp–9, 2014.
[7] Francesco Colace, Massimo De Santo, and Luca Greco. An
adaptive product configurator based on slow intelligence approach.
Int. J. Metadata Semant. Ontologies, 9(2):128–137, April 2014.
[8] Francesco Colace, Massimo De Santo, Luca Greco, and Paolo
Napoletano. Text classification using a few labeled examples.
Computers in Human Behavior, (0):–, 2014.
[9] Francesco Colace, Massimo De Santo, Luca Greco, and Paolo
Napoletano. Weighted word pairs for query expansion. Inf. Process.
Manage., 51(1):179–193, 2015.
[10] "Francesco Colace, Massimo De Santo"(2011). A Network
Management System Based on Ontology and Slow Intelligence
System. INTERNATIONAL JOURNAL OF SMART HOME. Vol. 5-
3. Pag.25-38 ISSN:1975-4094.
[11] Dey, A. K. Understanding and Using Context. Personal and
Ubiquitous Computing 5, 1 (2001), 4-7.
[12] Dey, A. K., and Abowd, G. D. CybreMinder: A Context-Aware
System for Supporting Reminders. In Proc. HUC '00 (2000), pp. 172-
186.
[13] Xiaowen Ding, Bing Liu, and Philip S. Yu. A holistic lexicon-
based approach to opinion mining. In Proceedings of the 2008
International Conference on Web Search and Data Mining, WSDM
’08, pages 231– 240, New York, NY, USA, 2008. ACM.
[14] Ruihai Dong, Michael P. O’Mahony, Markus Schaal, Kevin
McCarthy, and Barry Smyth. Sentimental product recommendation.
In Proceedings of the 7th ACM Conference on Recommender
Systems, RecSys ’13, pages 411–414, New York, NY, USA, 2013.
ACM.
[15] Paul Dourish. What we talk about when we talk about context.
Personal and ubiquitous computing, 8(1):19–30, 2004.
[16] Andrea Esuli and Fabrizio Sebastiani. Sentiwordnet: A publicly
available lexical resource for opinion mining. In In Proceedings of
the 5th Conference on Language Resources and Evaluation (LREC
2006, pages 417–422, 2006.
[17] Gayatree Ganu, Yogesh Kakodkar, and Am ́eLie Marian.
Improving the quality of predictions using textual information in
online user reviews. Inf. Syst., 38(1):1–15, March 2013.
[18] Yoshinori Hijikata, Kazuhiro Iwahama, and Shogo Nishida.
Content- based music filtering system with editable user profile. In
Proceedings of the 2006 ACM symposium on Applied computing,
SAC ’06, pages 1050–1057, New York, NY, USA, 2006. ACM.
[19] Katerina Kabassi. Personalisation systems for cultural tourism.
In Multimedia services in intelligent environments, pages 101–111.
Springer, 2013.
[20] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and
Nuria Oliver. Multiverse recommendation: n-dimensional tensor
factorization for context-aware collaborative filtering. In
Proceedings of the fourth ACM conference on Recommender
systems, pages 79–86. ACM, 2010.
[21] Yehuda Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proceedings of the 14th
ACM SIGKDD International conference on Knowledge discovery
and data mining, KDD ’08, pages 426–434, New York, NY, USA,
2008. ACM.
[22] Cane WK Leung, Stephen CF Chan, and Fu-lai Chung.
Integrating collaborative filtering and sentiment analysis: A rating
inference approach. In Proceedings of The ECAI 2006 Workshop on
Recommender Systems, pages 62–66. Citeseer, 2006.
[23] Veronica Maidel, Peretz Shoval, Bracha Shapira, and Meirav
Taieb- Maimon. Evaluation of an ontology-content based filtering
method for a personalized newspaper. In Proceedings of the 2008

ACM conference on Recommender systems, RecSys ’08, pages 91–
98, New York, NY, USA, 2008. ACM.
[24] Katarzyna Musial, Krzysztof Juszczyszyn, and Przemyslaw
Kazienko. Ontology-based recommendation in multimedia sharing
systems. System Science, 34:97–106, 2008.
 [25] Nikolaos Pappas and Andrei Popescu-Belis. Sentiment analysis
of user comments for one-class collaborative filtering over ted talks.
In Proceedings of the 36th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’13,
pages 773–776, New York, NY, USA, 2013. ACM.
[26] Michael Pazzani and Daniel Billsus. Content-Based
Recommendation Systems. pages 325–341. 2007.
[27] Naren Ramakrishnan, Benjamin J. Keller, Batul J. Mirza,
Ananth Y. Grama, and George Karypis. Privacy risks in
recommender systems. IEEE Internet Computing, 5:54–62,
November 2001.
[28] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter
Bergstrom, and John Riedl. Grouplens: An open architecture for
collaborative filtering of netnews. pages 175–186. ACM Press, 1994.
[29] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B.
Kantor, editors. Recommender Systems Handbook. Springer, 2011.
 [30] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and
David M. Pennock. Methods and metrics for cold-start
recommendations. In Proceedings of the 25th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’02, pages 253–260, New York, NY,
USA, 2002. ACM.
[31] Vivek Kumar Singh, Mousumi Mukherjee, and Ghanshyam
Kumar Mehta. Combining collaborative filtering and sentiment
classification for improved movie recommendations. In Chattrakul
Sombattheera, Arun Agarwal, Siba K. Udgata, and Kittichai
Lavangnananda, editors, MI- WAI, volume 7080 of Lecture Notes in
Computer Science, pages 38–50. Springer, 2011.
[32] Johann Stan, Fabrice Muhlenbach, Christine Largeron, et al.
Recommender systems using social network analysis: Challenges and
future trends. Encyclopedia of Social Network Analysis and Mining,
pages 1– 22, 2014.
[33] Xiaoyuan Su and Taghi Khoshgoftaar. A survey of collaborative
filtering techniques. Advances in Artificial Intelligence, 2009, 2009.
[34] Shuang-Hong Yang, Bo Long, Alexander J Smola, Hongyuan
Zha, and Zhaohui Zheng. Collaborative competitive filtering:
learning recommender using context of user choice. In Proceedings
of the 34th international ACM SIGIR conference on Research and
development in Information Retrieval, pages 295–304. ACM, 2011.
[35] Hilmi Yildirim and Mukkai S. Krishnamoorthy. A random walk
method for alleviating the sparsity problem in collaborative filtering.
In Proceedings of the 2008 ACM conference on Recommender
systems, RecSys ’08, pages 131–138, New York, NY, USA, 2008.
ACM.
[36] Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S Dhillon.
Parallel matrix factorization for recommender systems. Knowledge
and Information Systems, pages 1–27, 2013.
[37] Zheng, Nan, and Qiudan Li. A recommender system based on
tag and time information for social tagging systems. Expert Systems
with Applications 38.4 (2011): 4575-4587.
[38] Xujuan Zhou, Yue Xu, Yuefeng Li, Audun Josang, and Clive
Cox. The state-of-the-art in personalized recommender systems for
social networking. Artif. Intell. Rev., 37(2):119–132, February 2012.
[39] Li Zhuang, Feng Jing, and Xiao-Yan Zhu. Movie review mining
and summarization. In Proceedings of the 15th ACM International
Conference on Information and Knowledge Management, CIKM ’06,
pages 43–50, New York, NY, USA, 2006. ACM.

71

An Automated Testing Framework for Statistical Testing of GUI Applications

Lan Lin, Jia He, Yufeng Xue
Ball State University

Department of Computer Science
Muncie, IN 47396, USA

{llin4, jhe, yxue2}@bsu.edu

Abstract

It is known to be inherently more difficult and labor-
intensive to functionally test software applications that em-
ploy a graphical user interface front-end, due to the vast
GUI input space. We propose an automated testing frame-
work for functional and statistical testing of GUI-driven ap-
plications, using a combination of two rigorous software
specification and testing methods and integrating them with
an automated testing tool suitable for testing GUI appli-
cations. With this framework we are able to achieve fully
automated statistical testing and software certification. We
report an elaborate case study that demonstrates a pathway
towards lowered cost of testing and improved product qual-
ity for this type of applications.

1 Introduction

Software applications that employ a graphical user in-
terface (GUI) front-end are ubiquitous nowadays, yet they
present additional challenges to software testing. It is inher-
ently more difficult and labor-intensive to functionally test
a GUI-driven application than a traditional application with
a command line interface, due to the vast GUI input space
and the prohibitively large number of possible sequences of
user input events (each event sequence being a potential test
case) [13, 10, 11, 20]. Testing therefore needs to be auto-
mated in order to run a large sample of test cases to verify
correct functionality.

In this paper we propose an automated testing framework
for functional and statistical testing of GUI-driven applica-
tions, using two rigorous software specification and testing
methods in combination, namelysequence-based software
specification[12, 18, 19, 17] andMarkov chain usage-based
statistical testing[14, 16, 22, 21], and integrating them with
an automated testing tool suitable for testing GUI applica-
tions, that provides fully automated statistical testing and
software certification as a means to achieve high product

quality. Both methods and the supporting tools [1, 2, 3]
were developed by the University of Tennessee Software
Quality Research Laboratory (UTK SQRL). Although work
has been done in the past to combine these methods together
[8, 7, 9], it remains application and problem specific to work
out a seamless integration from original requirements to
fully automated statistical testing and software certification.
We present in this paper our efforts and experiences along
this path in solving a real world problem.

Sequence-based specification is a method for systemati-
cally deriving a system model from informal requirements
through asequence enumerationprocess [12, 18, 19, 17].
Under this process stimulus (input) sequences are consid-
ered in a breadth-first manner (length-lexicographically),
with the expected system response to each input sequence
given. Not all sequences of stimuli are considered since a
sequence need not be extended if either it is illegal (it can-
not be applied in practice) or it can be reduced to another
sequence previously considered (the sequences take the sys-
tem to the same state). Sequence enumeration leads to a
model that can be used as the basis for both implementation
and testing [8, 7, 9].

Markov chain usage-based statistical testing [14, 16, 22,
21] is statistical testing based on aMarkov chain usage
model. It is a comprehensive application of statistical sci-
ence to the testing of software, with the population of all
uses of the software (all use cases) modeled as a Markov
chain. States of the Markov chain usage model represent
states of system use. Arcs between states represent possible
transitions between states of use. Each arc has an associ-
ated probability of making that particular transition based
on a usage profile. The outgoing arcs from each state have
probabilities that sum to one. The directed graph structure,
together with the probability distributions over the exit arcs
of each state, represents the expected use of the software in
its intended operational environment. There are both infor-
mal and formal methods of building the usage model struc-
ture (sequence-based specification can be used as a formal
method). The transition probabilities among states come

(DOI reference number: 10.18293/SEKE2015-119) 72

Figure 1. The BlackBoard Quiz Editor

from historical or projected usage data for the application.
The paper is structured as follows. The next section in-

troduces our case study. Sections 3 and 4 illustrate how we
constructed a usage model for statistical testing and present
the model analysis results. Section 5 presents an automated
testing framework we have developed for fully automated
statistical testing of GUI applications, using the case study
as a running example. Section 6 discusses our test and cer-
tification plan. Section 7 illustrates how testing was per-
formed and presents results following a test case analysis.
Section 8 concludes the paper.

2 The case study: The BlackBoard Quiz Edi-
tor (BBQE)

Our chosen case study is a Java GUI application, the
BlackBoard Quiz Editor (BBQE, see Figure 1), that can au-
thor quizzes and save them in a format that can be imported
in BlackBoard [4] - a learning management system used by
Ball State University and many other institutions across the
country for course delivery and management. The applica-
tion was delivered in 2013 as a completed Ball State Com-
puter Science major capstone project, considered of good
quality by the client, and is being used by many faculty at
Ball State. We were interested in automated statistical test-
ing of this application to find bugs and to get a quantitative
measure of its projected reliability.

The BBQE interface contains three main areas: a main
toolbar, a quiz panel, and a question editor panel. It supports
eleven question types, including the essay question type, the
fill in the blank question type, the matching question type,
the multiple choice question type, the true or false question
type, the short answer question type, etc. Quizzes created
in BBQE can be saved as a text file and easily imported into
BBQE and BlackBoard.

To limit the testing problem to a manageable size, we
defined our testing scope such that the System Under Test
(SUT) contains only one question type: the essay question

Table 1. Stimuli for the BBQE under test
Stimulus Long Name Description Interface Trace
A Add button Click the add question button Main window req1
C Create button Click the create question but-

ton
Question creation window req2

CO Copy question Copy the question Mouse req4
CQ Cancel button Click the cancel question

button
Question creation window req2

D Down button Click the question down but-
ton

Main window req1

DQ Delete button Click the delete question but-
ton

Main window req1

E Essay question Select the essay question
type

Question creation window req2

F Favorite button Click the favorite question
button

Main window req1

FS Favorite checkbox Click (Check/Uncheck) the
favorite check box

Question creation window req2

H Help button Click the help button Main window req1
HC Help cancel button Click the help cancel button Help window req3
P Paste question Paste the question Mouse req4
QF Question fill Fill in the question edit box Question editor panel req6
U Up button Click the question up button Main window req1

type, but includes all GUI features. Other models can be
constructed similarly addressing other question types.

3 Usage modeling

In order to develop a usage model for statistical testing,
we adopted a formal approach and first developed a rig-
orous specification (that encodes a formal system model)
based on the requirements. As detailed requirements for the
BBQE could not be found, we re-engineered requirements
based on the user manual and the delivered application. We
applied sequence-based specification [12, 18, 19, 17] and
the supporting tool, the REAL [2], to developing a rigorous
specification of the SUT.

The resulting specification contains14 stimuli (inputs),
14 responses (outputs),48 distinct states,673 enumerated
stimulus sequences,9 original requirements, and13 derived
requirements. Figure 2 shows all the original (the top 9) and
derived requirements for the SUT. Table 1 and Table 2 list
all the stimuli and responses, respectively, across the sys-
tem boundary. Each stimulus (input) and response (output)
is given a short name (see the first columns) to facilitate
sequence enumeration, tied to an interface in the system
boundary, and traced to the requirements. Excerpts of an
enumeration for the SUT are shown in Table 3. Stimulus
sequences are enumerated in length-lexicographical order
(based on the alphabetical order of stimuli as shown in Ta-
ble 1) following the enumeration rules. Stimulus sequences
are represented by concatenating stimuli to string prefixes
with periods in the Sequence and the Equivalence columns.
Each row shows for an enumerated stimulus sequence what
should be the software’s response, if the sequence could be
reduced to a prior sequence (based on whether they take the
system to the same state), and traces to the requirements
that justify these decisions.

From the completed sequence enumeration we obtained
a state machine for the SUT. We further added a source state
together with an arc from the source to the state represented
by the empty sequence (λ), and a sink state together with an

73

Figure 2. Requirements for the BBQE under test

Table 2. Responses for the BBQE under test
Response Long Name Description Interface Trace
EQC Essay question created Create an essay question Questioncreation win-

dow
req2

EQFS Essay question type set
as

Set the essay question
type as the favorite

Question creation win-
dow

req2

favorite question type question type
EQS Essay question favorite

checkbox
Check the checkbox to
set the essay question

Question creation win-
dow

req2

checked type as the favorite ques-
tion type

FSC Favorite set checkbox
unchecked

Uncheck the check box
for favorite question set

Question creation win-
dow

req2

HW Help window opened Open the help window Help window req3
HWQ Help window closed Close the help window Help window req3
MD Current question moved

down
Move the current ques-
tion down by one ques-
tion

Main window req1

MU Current question moved
up

Move the current ques-
tion up by one question

Main window req1

QC Question copied Copy the question Right click menu req4
QD Question deleted Delete the question Right click menu req4
QIP Question input Input the question Question editor panel req6
QP Question pasted Paste the question Right click menu req4
QW Question window opened Open the question win-

dow
Question creation win-
dow

req2

QWG Question window closed Close the question win-
dow

Question creation win-
dow

req2

arc from each state (except the source) leading to the sink.
For the lack of compelling information to the contrary re-
garding the usage profile, we took the mathematically neu-
tral position and assigned uniform probabilities to transi-
tions in the usage model. The constructed usage model is
diagrammed in Figure 3 using a graph editor (with 50 nodes
and 619 arcs the visualization becomes very cluttered). Al-
though not readable unless one zooms in, it illustrates the
size of our testing problem.

4 Model analysis

We performed a model analysis using the JUMBL [3].
Table 4 shows the model statistics, including the number of
nodes, arcs, and stimuli in the usage model, the expected
test case length (the mean value, i.e., the average number of
steps in a randomly generated test case) and variance.

Table 3. Excerpts of an enumeration for the
BBQE under test

Sequence Response Equivalence Trace
λ 0 Method
A QW req1, req2
C ω req20
CO 0 λ req11
CQ ω req20
D 0 λ req12
DQ 0 λ req13
E ω req20
F 0 λ req14
FS ω req20
H HW req3
HC ω req20
P 0 λ req15
QF ω req20
U 0 λ req12
A.A 0 A req7
A.C EQC req2
A.CO 0 A req9

· · ·

A.FS.C.CO.A.FS.H.A 0 A.FS.C.CO.A.FS.H req7, req9
A.FS.C.CO.A.FS.H.C EQFS, EQC A.FS.C.CO.H req2, req21
A.FS.C.CO.A.FS.H.CO 0 A.FS.C.CO.A.FS.H req9

· · ·

The following statistics are computed for every node, ev-
ery arc, and every stimulus of the usage model:

- Occupancy. The amount of time in the long run that
one will spend testing a node/arc/stimulus.

- Probability of Occurrence. The probability of a
node/arc/stimulus appearing in a random test case.

- Mean Occurrence. The average number of times a
node/arc/stimulus will appear in a random test case.

- Mean First Passage. The number of random test
cases one will need to run on average before testing
a node/arc/stimulus for the first time.

74

Figure 3. A state machine for the BBQE under
test (with the source and the sink marked in
green and red respectively)

Table 4. Model statistics
Node Count 50 nodes
Arc Count 619 arcs
Stimulus Count 18 stimuli
Expected Test Case Length 11.573 events
Test Case Length Variance 47.776 events
Transition Matrix Density (Nonzeros) 0.1056 (264 nonzeros)
Undirected Graph Cyclomatic Number 215

These statistics are validated against what is known or be-
lieved about the application domain and the environment of
use.

5 An automated testing framework

Following the model analysis we developed an auto-
mated testing framework for fully automated, statistical
testing of BBQE. This required (1) finding an automated
testing tool suitable for our chosen application, and (2) in-
tegrating it with our statistical testing tool, the JUMBL, for
automated test case generation, automated test case execu-
tion, and automated test case evaluation.

After some research we chose HP’s Quick Test Profes-
sional (QTP) [5] as an automated testing tool for BBQE be-
cause it is HP’s successor to its WinRunner and X-Runner
software supporting functional and automated GUI testing
and it also works for 32-bit machines. We created an object
repository in QTP that registers all the static GUI objects of
the SUT, and used QTP’s Test Scripting Language (TSL) (a
subset of VBScript) to write test cases that can run automat-
ically in QTP.

Our constructed usage model was written in The

Figure 4. An Excerpt of the usage model for
the BBQE under test before annotation (writ-
ten in TML)

Modeling Language (TML) [6] (Figure 4 shows a tiny
piece). State names (representing usage states) are en-
closed in square brackets and arc names (representing us-
age events/expected software’s responses) are enclosed in
quotation marks. For each state the list of event/expected
response - next state pairs is given following the sate name.
For instance in Figure 4 there is an arc from state [A] trig-
gered by usage event “A” with expected response “null” go-
ing back to state [A].

Using labels the TML model can include test automa-
tion information, which can be extracted when JUMBL au-
tomatically generates test cases of all types from the usage
model using theGenTest command. The challenge was
how we should annotate the states and arcs of the usage
model with test scripts that could be understood by QTP
such that when these test scripts are extracted and concate-
nated into a generated test case they literally become a pro-
gram written in TSL that QTP could automatically execute.
To achieve this we accomplished the following steps:

- Stimulus generation with TSL. We wrote TSL scripts
that issue each possible stimulus (input) to the SUT.
For instance, to issue the stimulus “A” (for clicking the
add questions button in the main window), the follow-
ing function is called:

Function stim_A()
JavaWindow("Blackboard Quiz Editor") _
.JavaButton("add").Click

End Function

- Response checking with TSL. We wrote TSL scripts

75

that check each possible response (output) (including
the null response) is observed as expected. For in-
stance, the following function is called to verify the
response “EQC” (for having created an essay question
in the question panel):

Function check_EQC()
qnum = qnum + 1

Set props = JavaWindow("Blackboard Quiz Editor") _
.JavaStaticText("ESS(st)") _
.GetTOProperties

Set ChildObjects = JavaWindow(_
"Blackboard Quiz Editor") _
.JavaObject("JPanel_2") _
.ChildObjects(props)

ess = ChildObjects.Count

If qnum <> ess Then
returnValue = False

Else
returnValue = True

End If

qnum = ess

check_EQC = returnValue
End Function

- State verification with TSL. We wrote TSL scripts
that verify if the SUT is in any specific state as de-
scribed by the usage model, probing values from the
system’s state variables. For instance, the following
function is called to identify if the system is in the state
represented by the stimulus sequenceλ (each such se-
quence is a canonical sequence in the sequence enu-
meration):

Function verify_lambda()
If (check_var_EQ() = False) _

And (check_var_EQS() = False) _
And (check_var_HW() = 0) _
And (check_var_QW() = 0) Then

returnValue = True
Else

returnValue = False
End If

verify_lambda = returnValue
End Function

- Usage model annotation. We wrote Python code that
automates the usage model annotation with TSL. Each
state is annotated with a call to a state verification func-
tion. Each arc is annotated with a call to issue the
stimulus to the SUT followed by one or more calls to
check the observed responses. The rigorous specifica-
tion serves as the test oracle. Each state/arc after an-
notation is associated with testing commands that are
understood by QTP. When test cases are automatically
generated and exported using the JUMBL, each test
case literally becomes a TSL script that can automati-
cally execute in QTP.

- Result recording with TSL. We wrote Python code
that embeds TSL scripts in the annotated usage model
recording test results. A test case is considered suc-
cessful only if all its constituting steps are successful.

For any failed test case the test case number and all
failure step numbers are written to a text file, together
with information indicating whether each failure step
is a continue failure (the rest of the steps can still run to
completion after this failure step) or a stop failure (the
following test steps included in this test case cannot be
executed).

- Automated test case execution and evaluation. We
wrote a shell script that runs from command line, au-
tomatically executes a large sample of generated test
cases with our developed JUMBL-QTP interfaces, and
records test results in a text file.

- Reading failure data and recording it back in
JUMBL . We wrote a script that runs from command
line, reads the failure data after testing is completed
and records it back into the JUMBL for statistical anal-
ysis.

Figure 5 shows an excerpt of the usage model after anno-
tation. Test automation information is included with a label
(the text following a|$ up to and including the end of line)
in TML and an associated key (“a” in Figure 5 followed
with a colon (:) before the label). Test automation scripts
can be attached to a model (e.g., the lines following declar-
ing “model bbqmml” up to the next empty line; here we do
any needed test initialization and declare all stimulus gener-
ation/response checking/state verification functions), a state
(e.g., the lines following declaring state “[A]” up to the next
empty line; we verify if the SUT is in this state and if not
record the last step/event as a stop failure and exit the test),
or an arc (e.g., the lines following arc “A/null” up to declar-
ing the to-state “[A]”; we issue the stimulus and check the
response and if the observed and expected responses differ
record the current step as a failure step).

Figures 6 and 7 show excerpts of an automatically gen-
erated test case from the usage model. Before model an-
notation the exported test case is a sequence of events/steps
traversing the usage model starting from the source and end-
ing with the sink (see Figure 6). After annotation all the test
scripts associated with the states and arcs of the particular
path are extracted and concatenated into a TSL script that is
understood by QTP and automatically executable (see Fig-
ure 7).

6 A test and certification plan

We developed the following test and certification plan
for the SUT:

- Run48 minimum coveragetest cases that cover every
arc and every state of the usage model.

76

Figure 5. An Excerpt of the usage model for
the BBQE under test after annotation

Figure 6. An example test case that is au-
tomatically generated from the usage model
before model annotation

Figure 7. An excerpt of an example test case
that is automatically generated from the us-
age model after model annotation

77

- Run 200 weightedtest cases that represent the 200
most probable paths of the usage model.

- Run2, 000 randomtest cases that are generated from
the usage model based on the arc probabilities.

- Total testing consists of25, 577 transitions for the
above2, 248 test cases.

- If all tests run successfully, this will demonstrate em-
pirical evidence to support a claim of reliability> 0.90

given the defined protocol (of our usage model for the
SUT, our selection of test cases, the actual result of
testing, and the reliability model implemented in the
JUMBL).

7 Automated statistical testing and test case
analysis

Using the automated testing framework we had devel-
oped and the JUMBL, we were able to automatically gen-
erate, automatically execute, and automatically evaluate the
sample of2, 248 test cases. Our testing was done on a lap-
top with Intel CoreTM i-7-3630QM CPU with4 cores,2.40
GHz clock speed, and8 GB memory. It took 2 days, 15
hours, 8 minutes and 4 seconds to run the2, 248 test cases,
of which710 were successful and1, 538 were failed.

We did a test case analysis using the JUMBL based on
our testing experience. Excerpts of the test case analysis are
shown in Table 5. Some important statistics include:

- Nodes/Arcs/Stimuli Generated. The number of
states/arcs/stimuli covered in the generated test cases.

- Nodes/Arcs/Stimuli Executed. The number of
states/arcs/stimuli covered in the executed test cases.

- Arc/Stimulus Reliability . The estimated probability
of executing an arc / a stimulus in a test case success-
fully.

- Single Event Reliability. The estimated probability
that a randomly selected arc can be executed success-
fully in a test case.

- Single Use Reliability. The estimated probability of
executing a randomly selected test case successfully.

- Optimum Reliability . The estimated reliability if all
generated test cases were executed successfully.

- Relative Kullback Discriminant . A measure of how
close the performed testing matches the software use
as described by the usage model.

Table 5. Excerpts of the test case analysis:
Reliabilities

Single Event Reliability 0.726169681
Single Event Variance 2.72195572E-6
Single Event Optimum Reliability 0.985152717
Single Event Optimum Variance 394.383426E-9
Single Use Reliability 0.270545355
Single Use Variance 0.120506877
Single Use Optimum Reliability 0.907720385
Single Use Optimum Variance 38.7376831E-3
Arc Source Entropy 2.88 bits
Kullback Discrimination 0.6012524 bits
Relative Kullback Discrimination 20.879%
Optimum Kullback Discrimination 10.3936509E-3 bits
Optimum Relative Kullback Discrimination 0.360920256%

Of which the most important statistic, thesingle use relia-
bility, estimates “the probability of the software executing a
randomly selected use without a failure relative to a speci-
fication of correct behavior.” [15] The low single use reli-
ability observed in this example (0.270545355) was due to
the high number of failed test cases (1, 538 out of2, 248).

Tracing through some failed test cases we identified12

discrepancies between the specification and the code (see
Figure 8). This record of specification-implementation dis-
crepancies will be helpful in locating and fixing bugs in the
released code.

Figure 8. BBQE specification-code discrep-
ancies

78

8 Conclusion

In this paper we demonstrated an automated testing
framework for fully automated statistical testing of GUI ap-
plications. We applied two rigorous software specification
and testing methods and the supporting tools, and integrated
them with an automated testing tool suitable for GUI appli-
cations, and reported an elaborate case study. As the read-
ers might find out, working on any non-trivial real world
problem requires considerable efforts be made to work out
all the details needed for fully automated testing with no
human intervention, however, by the end of the process
we have the ability of running large numbers of tests, as
well as an automated testing facility for low-cost, quick-
turnaround testing and re-testing. All the artifacts we have
produced in this process, including the usage model, test
oracle, JUMBL-QTP interfaces, testing records, test plans,
test scripts, test cases, product measures and evaluation cri-
teria, all become reusable testing assets. Our experiences
demonstrated a pathway towards lowered cost of testing and
improved product quality for this type of applications.

Acknowledgements

This work was generously funded by Lockheed Martin
Corporation and Northrop Grumman Corporation through
the NSF Security and Software Engineering Research Cen-
ter (S2ERC).

References

[1] 2015. Prototype Sequence Enumeration (ProtoSeq). Soft-
ware Quality Research Laboratory, The University of Ten-
nessee. http://sqrl.eecs.utk.edu.

[2] 2015. Requirements Elicitation and Analysis with
Sequence-Based Specification (REALSBS). Software Qual-
ity Research Laboratory, The University of Tennessee.
http://sqrl.eecs.utk.edu.

[3] 2015. J Usage Model Builder Library (JUMBL). Software
Quality Research Laboratory, The University of Tennessee.
http://sqrl.eecs.utk.edu.

[4] 2015. http://www.blackboard.com.
[5] 2015. Quick Test Professional. Hewlett-Packard.

http://www8.hp.com/us/en/software-solutions/unified-
functional-testing-automation/.

[6] 2015. The Modeling Language (TML). Software Qual-
ity Research Laboratory, The University of Tennessee.
http://http://sqrl.eecs.utk.edu/esp/tml.html.

[7] T. Bauer, T. Beletski, F. Boehr, R. Eschbach, D. Landmann,
and J. Poore. From requirements to statistical testing of em-
bedded systems. InProceedings of the 4th International
Workshop on Software Engineering for Automotive Systems,
pages 3–9, Minneapolis, MN, 2007.

[8] L. Bouwmeester, G. H. Broadfoot, and P. J. Hopcroft. Com-
pliance test framework. InProceedings of the Second Work-
shop on Model-Based Testing in Practice, pages 97–106,
Enscede, The Netherlands, 2009.

[9] G. H. Broadfoot and P. J. Broadfoot. Academia and industry
meet: Some experiences of formal methods in practice. In
Proceedings of the 10th Asia-Pacific Software Engineering
Conference, pages 49–59, Chiang Mai, Thailand, 2003.

[10] T.-H. Chang, T. Yeh, and R. C. Miller. Gui testing using
computer vision. InProceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, pages 1535–
1544, Atlanta, GA, 2010.

[11] V. Chinnapongse, I. Lee, O. Sokolsky, S. Wang, and P. L.
Jones. Model-based testing of gui-driven applications. In
Lecture Notes in Computer Science: Software Technologies
for Embedded and Ubiquitous Systems, volume 5860, pages
203–214, 2009.

[12] L. Lin, S. J. Prowell, and J. H. Poore. An axiom system
for sequence-based specification.Theoretical Computer Sci-
ence, 411(2):360–376, 2010.

[13] A. M. Memon and B. N. Ngyuen. Advances in automated
model-based system testing of software applications with a
gui front-end.Advances in Computers, 80:121–162, 2010.

[14] J. H. Poore, L. Lin, R. Eschbach, and T. Bauer. Auto-
mated statistical testing for embedded systems. In J. Zan-
der, I. Schieferdecker, and P. J. Mosterman, editors,Model-
Based Testing for Embedded Systems in the Series on Com-
putational Analysis and Synthesis, and Design of Dynamic
Systems. CRC Press-Taylor & Francis, 2011.

[15] J. H. Poore, H. D. Mills, and D. Mutchler. Planning
and certifying software system reliability.IEEE Software,
10(1):88–99, 1993.

[16] J. H. Poore and C. J. Trammell. Application of statistical sci-
ence to testing and evaluating software intensive systems. In
M. L. Cohen, D. L. Steffey, and J. E. Rolph, editors,Statis-
tics, Testing, and Defense Acquisition: Background Papers.
National Academies Press, 1999.

[17] S. J. Prowell and J. H. Poore. Sequence-based software spec-
ification of deterministic systems.Software: Practice and
Experience, 28(3):329–344, 1998.

[18] S. J. Prowell and J. H. Poore. Foundations of sequence-
based software specification.IEEE Transactions on Soft-
ware Engineering, 29(5):417–429, 2003.

[19] S. J. Prowell, C. J. Trammell, R. C. Linger, and J. H. Poore.
Cleanroom Software Engineering: Technology and Process.
Addison-Wesley, Reading, MA, 1999.

[20] Z. U. Singhera, E. Horowitz, and A. A. Shah. A graphi-
cal user interface (gui) testing methodology.International
Journal of Information Technology and Web Engineering,
3(2):1–18, 2008.

[21] J. A. Whittaker and J. H. Poore. Markov analysis of software
specifications.ACM Transactions on Software Engineering
and Methodology, 2(1):93–106, 1993.

[22] J. A. Whittaker and M. G. Thomason. A Markov chain
model for statistical software testing.IEEE Transactions on
Software Engineering, 30(10):812–824, 1994.

79

Test Model and Coverage Analysis for

Location-based Mobile Services

Tao Zhang
School of software and

Microelectronic
Northwest Polytechnical University

Xi’an, China
tao_zhang@nwpu.edu.cn

Jerry Gao
Department of Computer

Engineering
San Jose State University

San Jose, USA
jerry.gao@sjsu.edu

Oum-EI-Kheir Aktouf
LCIS Laboratory

University of Grenoble,
France

Oum-El-Kheir.Aktouf
@grenoble-inp.fr

Tadahiro Uehara
Software Innovation

Laboratories
Fujitsu Laboratories LTD.

Japan
uehara.tadahiro @jp.fujitsu.com

Abstract—Location-based services (LBS) are very important
mobile app services, which provide diverse mobility services for
mobile users anywhere and anytime. This brings new demands,
issues, and challenges in mobile application testing. Today,
mobile applications provide location-based service functions
based on dynamic location contexts, mobile users and their travel
patterns to deliver location-based mobile data, and service
actions. Current software testing methods do not consider
location-based validation coverage. Hence, there is a lack of
research results addressing location-based mobile application
testing. This paper focuses on mobile LBS testing. A novel test
object model is proposed for quality validation of location-based
mobile information services. In addition, the related test coverage
metrics are also presented. These metrics can be useful for test
engineers in designing test cases. A case study based on student
testers is reported to demonstrate the potential application of the
proposed model.

Keywords-component; Location-based service; mobile app;
mobile testing; test model; test coverage; test metrics

I. INTRODUCTION

In recent years, more and more diverse mobile applications
(mobile apps) have been developed to support different
applications in social, news, tourism, health, business, and
other domains. Hundreds of new apps are released daily, e.g.
about 300 new apps appear on Apple's App Store each day. In
turn, 750 million Android and iOS apps are downloaded each
week [1].

Mobile Location-based services are services enhanced with
positional data, which are provided by mobile apps using GPS,
digit maps, and other techniques [2]. Many mobile apps
provide interesting and convenient location-based services and
functions. The mobile app Yelp (www.yelp.com) recommends
nearby shops, restaurants, etc. In the social network mobile app
Loopt (www.loopt.com), the users receive notifications
whenever their friends are nearby. The mobile app Waze
(www.waze. com) reports nearby traffic jams, policemen, gas
stations and friends.

Mobile LBS have been identified as the one of most
important features of mobile app services [3], and have become
one hot research topic in mobile computing domains. In the
recent years, there have been a number of published research
papers addressing LBS. However, most papers primarily focus
on the following areas:

 LBS infrastructure, framework, and architecture
[4][5][6][7];

 Privacy preserving for LBS [8][9][10];

 Positioning techniques for LBS [11][12];

 LBS databases [13][14].

Till now, there are a few publications discussing mobile
LBS testing. There is a lack of systematic and effective test
models and methods for test engineers to address LBS testing.
The test engineers often ask mainly the following questions
about LBS testing:

1) How to select and test a set of locations for LBS?

2) How to test different types of location objects?

3) How to test millions instances of location objects and
their information?

4) How to test moving objects with dynamical moving
paths and patterns?

This paper focuses on cost-effective mobile LBS testing
issues. The major contributions of this paper include four areas:
1) discussing the basic concepts, scope and challenges of
mobile LBS testing; 2) proposing a novel test object model for
mobile LBS testing; 3) some coverage metrics are defined for
evaluating quality of mobile LBS testing; and 4) providing case
studies to show the effectiveness of the proposed test model.

The rest of the paper is structured as follows. Section Ⅱ
discusses basic concepts and main challenges of LBS testing.
Section Ⅲ presents a novel test model and a test approach for
location-based mobile information services. Section IV reports

(DOI reference number: 10.18293/SEKE2015-199)

80

the results of a case study. Section Ⅴ reviews and discusses
published papers and related research work. Finally,
concluding remarks and future research directions are given in
Section Ⅵ.

II. UNDERSTANDING MOBILE LBS TESTING

A. What is Mobile LBS Testing?

Location-based services are information, entertainment,
services that are conveniently accessible by mobile users
through GPS-enabled portable devices and mobile networks
(e.g., 2G/3G/4G cellular telephones and Wi-Fi networks).
Some organizations and scholars have defined LBS, and the
classic definition is presented below.

Definition 1: LBSs are information services accessible with
mobile devices through the mobile network and utilizing the
ability to make use of the location of the mobile device [15].

Based on our recent literature survey, there is a lack of
published papers on LBS testing for mobile apps, and also no
precise definition of mobile LBS testing. Here we define it as
below.

Definition 2: Mobile LBS testing refers to testing activities
for native and Web apps on mobile devices to ensure quality in
location-based functions, behaviors, information, and quality of
service.

B. The Classifications of Mobile LBS

In recent years, mobile LBS have become more and more
popular, and many mobile LBS apps are developed in various
domains, such as navigation, information, emergency,
advertising, tracking, games, management, and leisure.
According to behavior characteristics of LBS, mobile LBS are
divided into three types: basic location services, location
context information services, and location context interactive
services. Those services have different characters and features,
and are compared in Table I.

TABLE I. MOBILE LBS SERVICES CHARACTERS

Basic location

services

Location context
information

Services

Location context
 interactive

services

Objects Mobile user Location objects Mobile objects

Positions Moving along paths Fixed positions
Moving along
different paths

Typical
Services

Map services,
Location services,

Navigation services

Search services,
Access services,
Update services

Interactive
services

Service
mode

Push way
Push way,
Pull way

Push way,
Pull way

Real-time
feature

High Low High

Infor-
mation

Digital map
information

Location context
information

Mobile Object
properties

Domain

Map
Navigation
Emergency

Information
Advertising

Tracking
Managements

Leisure

Game, Social
network,

Intelligent
automobile

Basic location services - The mobile apps provide basic
digital maps, location, and navigation services to help mobile
users find correct ways to their destination. Some early map
and navigation apps provide basic location services for mobile
users.

Location context information services - The mobile users
search nearby location objects and then access or update
information of location objects. Those location objects have
fixed positions, and provide static or dynamic information.
Mobile users access information with push or pull ways. Most
of information services are not real time services. The location
context information services are widely used in many domains,
for example, business, advertising, management, and leisure.

 Location context interactive services - The multiple
mobile objects interact with each other in same location
contexts. Those mobile objects may be mobile users, smart cars,
sensors, or other objects with positions. Location context
interactive services provide different behaviors or functions
according to locations or location relations between objects.
Most of location context interactive services are real-time
services, and are applied in some new domains, such as social
networks, games and intelligent automobile.

Today, there are hundreds of mobile apps with location-
based information services, such as, Yelp, Booking, etc. So this
paper focuses on testing location-based mobile information
services.

C. Why is Mobile LBS Testing Important?

Mobile LBS have been identified as killer services of
mobile apps, which provide many conveniences and interests
for mobile users. However, few published papers address the
importance of mobile LBS testing. Here, its primary reasons
and importance are listed as follows.

Reason #1: Multiple techniques for LBS - Mobile LBS
normally use many different techniques, such as mobile
computing, geographic information systems, GPS, cloud
computing, Internet, etc. Those techniques make mobile LBS
testing more complex.

Reason #2: Location impact for LBS - Location is the
most critical factor for mobile LBS, which affects information,
behaviors, functions, performance, dependability, privacy, etc.

Reason #3: Higher costs of LBS testing - Due to numerous
locations, different kinds of location objects with changing
information, and moving objects with unpredictable paths, the
test engineers have to spend a lot of time and effort on mobile
LBS testing.

D. Test activities and goals

Mobile LBS testing tends to focus on the following
activities and goals:

LBS functionality and behavior testing - activities that
validate location-based service functions, such as map and
navigation services, information services, interactive services,
etc.

81

LBS information and data testing - activities that validate
LBS information and data, such as, positions, information,
moving paths of mobile objects.

LBS QoS testing - activities that evaluate system load,
performance, reliability, availability, scalability, and
throughput in different location contexts.

LBS security and privacy testing - activities that check user
data security and location information privacy.

LBS compatibility and connectivity testing - activities that
assess mobile browser and platform compatibility, especially
compatibility with different location techniques, and diverse
wireless network connectivity.

LBS regression testing - Mobile LBS are updated
frequently for fixing faults, adapting to new devices and
platform versions, and enhancing functions. Regression testing
is continuous for mobile LBS.

E. Scope of mobile LBS testing

LBS testing focuses on testing and validating location
related functions and features of mobile apps. As shown in
Figure 1, the scope of LBS testing includes the following six
types of testing activities.

Figure 1. The Scope of Mobile LBS Testing

LBS test model and coverage - This refers to the activities
that analyze and model main factors of mobile LBS, such as
locations context, location object, location-related function and
behavior, etc. The test models are used to generate test cases,
and to analyze test coverage.

LBS test infrastructure and platform - This refers to the
study of solutions on how to build the infrastructure and
platform supporting automatic mobile LBS testing.

Crowd-based mobile LBS testing - This refers to the
crowd-based test approach for mobile LBS, which allows to
test mobile LBS in more extensive ranges.

Cloud-based mobile LBS testing - This refers to the cloud-
based test approach for mobile LBS, which provides dynamic
test resources and location simulation for mobile LBS testing.

LBS test emulation, simulation, and validation - This
refers to study and apply different mobile LBS testing
approaches.

Mobile LBS test tools - This refers to develop test tools to
support automatic testing of mobile LBS.

III. THE TEST MODEL AND COVERAGE

This section presents a novel test model for location-based
mobile information services. Based on this test model, a test
approach and some coverage metrics are proposed.

A. The Mobile LBS Test Model

1) Basic concepts and definitions

First, some basic concepts about location contexts are
defined. These concepts are important to design test cases for
mobile LBS.

Definition 3: A location  iii latlongl , is a pair of

real numbers representing the longitude and the

latitude of the location on the Earth surface.

Definition 4: The range denotes one

circular range, the center of the circular range is il , and the

radius of the circular range is .

Definition 5: A path denotes a

moving path through a set of location points .

2) Test object model

The test object model for mobile LBS is proposed to
represent the core objects and their relations. This model is
used to design test cases and help test coverage analysis for
mobile LBS. As shown in Figure 2, mobile LBS have four
types of core objects: location context, Map, location object
and location service.

Figure 2. Test object model for mobile LBS

The location context LC for location-based mobile services
is denoted as a 4-tulpe

 







rvicesLocationSejectsLocationOb

MapnContextsSubLocatio
LC

,

,,
 .

Location context defines the range of mobile LBS, which
includes map, a set of sub-location contexts, a set of location
objects, and a set of location services.

Sub-location context is part of the location context, and
represents a sub area. The location context contains many sub-

ilong

ilat

 iii rlrange ,

ir

 ikiii lll ,,,path 21 
 klll ,,, 21 

82

location contexts, and one sub-location context can contains
some smaller sub-location contexts.

Map is used to display location contexts, and positions of
location objects and mobile users. Map also has some basic
behaviors, such as zooming, moving, etc.

Location Objects are a set of objects with positions. There
are two types of location objects: static objects and mobile
objects. Static objects have fixed positions, such as point of
interest. Mobile objects have various moving patterns and paths.
Location objects can provide static or dynamic information.

Location Services are a set of services in a location context.
The main location context services include basic location
services, location-based information services and location-
based interactive services. Those location context services may
have various behaviors in different location contexts.

B. The Test Coverage Metrics

In order to analyze and ensure test quality, some test
coverage metrics are defined to evaluate mobile LBS testing.

Definition 6: The test range tRng is defined as the sum of
all tested sub-location context’s ranges. It is formulated as
below.





n

i
it RngRng

1

Here, iRng is the range of tested sub-location context

iSLC .

Definition 7: The range test coverage regCov is defined as

the ratio of the sum of all tested ranges tRng to all ranges

. It is formulated as below.

 (2)

In most situations, only a few ranges are tested because of
restricted test resources. Then how to select and prioritize test
locations and ranges is a critical issue for mobile LBS testing.

Definition 8: The location object type test coverage

LOtCov is defined as the ratio of the number of tested location

object types TLOtNum to the number of all location object

types . It is formulated as below.

 (3)

Location object type test coverage is used to ensure that all
types of location objects are tested at least once.

Definition 9: The location object test coverage is
defined as the ratio of the number of tested location objects

to the number of all location objects . It is
formulated as below.

 (4)

Location object test coverage is used to test and evaluate
information and behaviors of all location objects. However,
there may be thousands of location objects in the location
context, and then we have to select a small part of location
objects to test.

Definition 10: The services test coverage is

defined as the ratio of the number of tested services to

the number of all services . It is formulated as below.

 (5)

Definition 11: The object services test coverage is
defined as the ratio of the number of tested services for every

type of location object to the number of all services

for every type of location object . It is formulated as
below.

 (6)

The same services may concern different types of location
objects, and then we need test services for every type of
location object individually.

Figure 3. Model-driven test process for mobile LBS

C. Model-driven Test approach for Mobile LBS

The model-driven approach that we use for mobile LBS
testing consists of five steps. The first step is to model location
objects, location context Services for under-test mobile LBS

aRng

a

t
reg

Rng

Rng
Cov 

ALOtNum

ALOt

TLOt
LOt

Num

Num
Cov 

LOiCov

TLOiNum ALOiNum

ALOi

TLOi
LOi

Num

Num
Cov 

SrvCov

TSrvNum

ASrvNum

ASrv

TSrv
Srv

Num

Num
Cov 

OSrvCov

TOSrvNum

AOSrvNum

AOSrv

TOSrv
OSrv

Num

Num
Cov 

83

using the proposed meta-model. The second step is to select
some test locations according to mobile user contexts. The third
step is to design test cases according to the test models of
mobile LBS. The fourth step is to analyze test coverage of
mobile LBS. The last step is to execute test cases and analyze
test results. This process is shown in Figure 3.

The main difficulty for mobile LBS testing is to select and
prioritize test location contexts and location objects.
Simulation-based and emulation-based test approaches are
cost-effective to test different location contexts and location
objects for mobile LBS. However, field test is necessary for
mobile LBS. Then crowd-based testing is a novel and
convenient approach to test a large number of location contexts
and location objects for mobile LBS.

IV. CASE STUDY

To demonstrate the proposed approach for mobile LBS
testing, we applied the approach to test one selected mobile app
Tripadvisor. We conducted this case study in detail as
described below.

A. The Test Model for Tripadvisor

Tripadvisor provides location-based travel services, which
helps travelers to search and book hotels, flights, restaurants
based on their locations. The test model for Tripadvisor is
presented in Figure 4.

Figure 4. Test Object Model for Tripadvisor

TABLE II. TRIPADVISOR LBS DESCRIPTIONS

LBS Description

Location
context
Services

Search Services
Search nearby location objects, such
as: hotels, restaurants, tourist spots,
malls, and event centers.

Access Services
Access information of nearby location
objects, such as positions, phone
numbers, business hours, and remarks.

Remark Services
Mobile users remark some nearby
location objects by their experiences.

Tripadvisor provides some location objects, including
restaurants, hotels, tourist spots, malls, and event centers.
Those location objects have positions, remarks, and business
information. Tripadvisor provides some services for mobile

users to search, access, and remark location objects. Those
services are described in Table II.

B. Test approach for Tripadvisor

1) Selecting and specifying test locations

For testing LBS, we must select and specify test positions
and ranges firstly. Tripadvisor has been used in many countries
and cities, we only test Tripadvisor in San Francisco Bay Area
because of restricted test resources. Four different locations are
selected, which represent different kinds of location contexts.
The details about selected location contexts are described in
Table III.

TABLE III. LOCATION CONTEXTS FOR TRIPADVISOR

LC id LC1 LC2 LC3 LC4

Location San Francisco
City

San Jose
City

Carmel
Yosemite
Village

Description
Big city

Medium
city

Small city
Tourism

area

Position 37.805623
-122.406722

37.808517,
-122.411934

36.554986
-121.922041

37.742004,
-119.582939

Range 600.6 km2 466.1 km2 2.798 km2 3081 km2

Restaurants 5097 1953 150 28

Hotels 233 73 23 30

Tourist Spots 290 62 18 57

Events 419 46 36 14

Malls 247 20 65 1

Sum 6289 2154 292 130

Figure 5. Tripadvisor test cases and tested location objects

2) Designing test cases for Tripadvisor

Based on location contexts, test cases (TC) are designed for
mobile LBS testing. All types of location objects and location
context services should be tested at least once. We designed 58
test cases for Tripadvisor LBS in 4 location contexts based on
the proposed test model. The test cases and tested location
objects are shown in Figure 5.

 As shown in Figure 6, we design one test case for
Tripadvisor to test searching nearby hotels in San Jose. Then
the 29 hotel objects are shown in the map.

84

Figure 6. A test case example

3) Analyzing test results and coverages

The five types of location objects have been tested, and
three location context services have also been tested. We only
selected and tested four location contexts, so this is too small to
calculate range test coverage. There are millions of location
objects in Tripadvisor, we tested 516 location objects from
8862 located objects in the four selected location contexts.
Finally, 4 faults have been found. The test coverages are
described in Table Ⅳ, and a fault about losing mobile user
position is shown in Figure 7.

Figure 7. A fault for Tripadvisor

TABLE IV. TRIPADVISOR LBS TEST COVERAGE

Test
Cases

 Faults

58 5/5 516/8862 3/3 15/15 4

Using our proposed approach, the test engineers design test
cases for testing more location objects and services based on
the test model. According to table IV, all location objects and
services are tested fully. This approach helps to reach high test
coverage, to improve test effectiveness and save test costs.

V. RELATED WORK

Nowadays, mobile LBS have become one hot research
topic in mobile computing domain, and many papers have been
published to address different areas in mobile LBS.

Some mobile LBS frameworks and architectures have been
proposed. Chengcheng Dai proposes a LBS framework using
vehicular ad-hoc networks [4]. R. Gobi proposes a
communication framework for data management in LBS [5]. A
conceptual framework for personalized location-based tourism
apps leveraging semantic web to enhance tourism experience is
proposed by Mahmood [6]. Rui Jose proposes the AROUND
architecture for supporting location-based services in the
Internet environment [7].

The privacy issues are serious for LBS. Ben Niu proposes
two dummy-based solutions to achieve k-anonymity for
privacy-area aware users in LBSs by considering that side
information may be exploited by adversaries [8]. K. G. Shin
presents a comprehensive overview of the existing schemes for
protecting LBS users' privacy [9]. An adaptive location
privacy-preserving the system is presented, which allows a user
to control the level of privacy disclosure with different quality
of location-based services [10].

Position technique is the key for LBS. HuangChi Chen
proposes a novel indoor positioning technique based on neural
networks [11]. Al Nabhan presents a new strategy in achieving
highly reliable and accurate position solutions fulfilling the
requirements of Location-Based Services (LBS) pedestrians’
applications [12].

Suprio Ray presents an in-memory database technique for
location-based service, and introduces a parallel spatio-
temporal index to support historical, past and predictive (future)
location-based queries [13][14].

However, there are a few publications about mobile LBS
testing. Jerry Gao discusses the issues and difficulties of mobile
LBS testing [16]. Ke Zhai proposes a suite of metrics for
prioritizing test cases for regression testing of LBS [17].
Huichun Chu proposes a two-tier test approach for location-
aware mobile learning systems [18]. Solveig Bjørnestad
presents an example study about evaluation of a location-based
mobile news reader [19]. Jiang Yu analyzes test requirements,
and presents a scalable testing framework for mobile LBS [20].
However, those papers do not discuss test models for mobile
LBS.

LOtCov
LOiCov SrvCov OSrvCov

85

We have proposed an initial test model for function services
of mobile LBS [21]. In this paper, we improve and perfect the
test model by considering location context, range, location
objects, moving pattern and path, and some new metrics are
defined for evaluating mobile LBS test coverage.

VI. CONCLUSION AND FUTURE WORK

Recently, mobile LBS have become popular among
research groups. Because mobile LBS provide context-
sensitive functions based on location information, this brings
many new difficulties and challenges for mobile LBS testing.

This paper analyzes the main factors about mobile LBS
testing. A new test object model has been proposed, and some
metrics are defined to evaluate test coverage for mobile LBS.
The test object model and test metrics help test engineers to
design test cases for mobile LBS, and to improve test quality
by higher test coverage.

 Future research directions include four areas: a) selecting
and prioritizing location contexts and location objects for
mobile LBS testing; 2) enhancing the test approach to validate
and verify correctness and timeliness of location-based services;
3) designing and specifying moving paths for mobile objects;
and 4) developing automatic test tool supporting mobile LBS
testing with emulation and simulation.

ACKNOWLEDGEMENT

This research project was supported by National Natural
Science Foundation of China (Program No. 61103003). This
research project was jointly funded by Fujitsu Research Lab. on
Mobile SaaS Testing from 2013-2015.

REFERENCES

[1] Adrian Holzera, and Jan Ondrusb. “Mobile application market: A
developer’s perspective”, Telematics and Informatics, 2014, 28(1):
pp.22-31.

[2] Sergio Ilarri, Arantza lllarramendi, Eduardo Mena, Amit Sheth,
"Semantics in Location-Based Services," IEEE Internet Computing, vol.
15(6), 2011, pp.10-14.

[3] Shang-Pin Ma, Wen-Tin Lee, and Chia-Hsu Kuo, "Location Explorer
with information services: A mobile application to deliver location-
based web services", 2013 IEEE International Symposium on Next-
Generation Electronics (ISNE 2013), pp.283 - 286

[4] Chengcheng Dai, Chiyin Chow, and Jiadong Zhang. “Utilizing road-side
infrastructure for location-based services in vehicular ad-hoc networks”,
the 8th International ICST Conference on Communications and
Networking, 2013, pp.546-551.

[5] R. Gobi, Dr. E. Kirubakaran, and Dr. E. George Dharma Prakash Raj.
“ComFrame: A Communication Framework for Data Management in
Mobile Location Based Services”, International Journal of Computer
Science and Telecommunications, vol.3(7), 2012, pp.65-68.

[6] Mahmood, F.M., Bin Abdul Salam, Z.A. "A conceptual framework for
personalized location-based Services (LBS) tourism mobile application

leveraging semantic web to enhance tourism experience", the 3rd IEEE
International Conference on Advance Computing (IACC), 2013, pp.287
- 291

[7] Mohammad AL Nabhan, Suleiman Almasri, Vanja Garaj, Wamadeva
Balachandran, and Ziad Hunaiti, “Client-Server Based LBS Architecture:
A Novel Positioning Module for Improved Positioning Performance”,
International Journal of Handheld Computing Research, vol.1(3), 2010,
pp.1-18

[8] Ben Niu, Zhengyan Zhang, Xiaoqing Li, and Hui Li "Privacy-area aware
dummy generation algorithms for Location-Based Services ", 2014 IEEE
International Conference on Communications (ICC), 2014 pp.957 - 962

[9] K. G. Shin, X. Ju, Z. Chen, and X. Hu, "Privacy protection for users of
location-based services," IEEE Wireless Communications, vol.19(1),
2012, pp. 30-39.

[10] Zhu, I., K.-H. Kim, and P. Mohapatra. "An Adaptive Privacy-Preserving
Scheme for Location Tracking of a Mobile User." in IEEE Internation
Conference on Sensing, Communication, and Networking. New Orleans,
USA, 2013, no pp. 9.

[11] Chen HuangChi, Chen YuJu, Chen ChihYung, Wang Shuming T., Yang
JenPin, Hwang ReyChue, “A New Indoor Positioning Technique Based
on Neural Network”, Advanced Science Letters, Vol.19(5), July 2013,
pp. 2029-2033

[12] AL Nabhan, Mohammad Mousa, “Adaptive, reliable, and accurate
positioning model for location-based services”, Brunel University
School of Engineering and Design PhD Theses, 2009

[13] Ray S., Blanco R., Goel, A.K., “Supporting Location-based Services in a
Main-Memory Database”, 15th IEEE International Conference on
Mobile Data Management, 2014, pp.14-18

[14] Suprio Ray, Rolando Blanco, Anil K. Goel, "Enhanced database support
for location-based services", Proceedings of the 4th ACM SIGSPATIAL
International Workshop on GeoStreaming, 2013, p.22-25.

[15] Virrantaus, K., Markkula, J., Garmash, A., Terziyan, V., Veijalainen, J.,
Katanosov, A., Tirri, H., "Developing GIS-supported location-based
services," Proceedings of the Second International Conference on Web
Information Systems Engineering, 2001, vol.2, pp.66-75

[16] Jerry Gao, X. Bai, W. T. Tsai, and T. Uehara, “Mobile application
testing: a tutorial”, IEEE Computer, vol.47 (2), 2014, pp.26-35

[17] Ke Zhai, Bo Jiang, Chan, W.K., "Prioritizing Test Cases for Regression
Testing of Location-Based Services: Metrics, Techniques, and Case
Study," IEEE Transactions on Services Computing, 2014, vol.7, no.1,
pp.54-67

[18] Hui-Chun Chua, Gwo-Jen Hwangb, Chin-Chung Tsaib, Judy C.R.
Tsengc, ”A two-tier test approach to developing location-aware mobile
learning systems for natural science courses”, Computers & Education,
vol.55(4), 2010, pp.1618–1627

[19] Bjornestad, S., Tessem, B., Nyre, L., "Design and Evaluation of a
Location-Based Mobile News Reader," 4th IFIP International
Conference on New Technologies, Mobility and Security (NTMS), 2011,
pp.7-10

[20] Yu J, Tappenden A, Miller J et al., “A scalable testing framework for
location-based services,” journal of computer science and technology,
vol.22(2),2009,386-44

[21] Oum-EI-Kheir Aktouf, Tao Zhang, Jerry Gao, Tadahiro Uehara,
“Testing location-based function services for mobile applications”, The
First International Workshop on Mobile Cloud TaaS (MCTaaS 2015),
2015, in press.

86

Generating various contexts from permissions for
testing Android applications

Kwangsik Song, Ah-Rim Han, Sehun Jeong, Sungdeok Cha
Department of Computer Science and Engineering

Korea University
Seoul, South Korea

{kwangsik song, arhan, gifaranga, scha}@korea.ac.kr

Abstract—Context-awareness of mobile applications yields
several issues for testing, since the mobile applications should
be testable in any environment and with any contextual input.
In previous studies of testing for Android applications as event-
driven systems, many researchers have focused on using the
generated test cases considering only GUI events. However, it is
difficult to detect failures in the changes in the context in which
applications run. It is important to consider various contexts
since the mobile applications adapt and use novel features and
sensors of mobile devices. In this paper, we provide the method
of systematically generating various executing contexts from
permissions. By referring the lists of permissions, the resources
that the applications use for running Android applications can
be inferred easily. The various contexts of an application can
be generated by permuting resource conditions, and the permu-
tations of the contexts are prioritized. We have evaluated the
usefulness and effectiveness of our method by showing that our
method contributes to detect faults.

Keywords—Android application testing, permissions, various
contexts, context-aware application, mobile application testing

I. INTRODUCTION

The proliferation of the novel features and sensors of
mobile devices (i.e., operating systems, hardware platforms,
and device sensors) has enabled the development of mobile
applications that can provide rich, highly-localized, context-
aware content to users [1]. In particular, the market for disease
diagnostic systems is growing fast due to the development
of mobile applications that log personal health data (e.g.,
blood glucose, blood pressure, and heart rate) by using the
sensors, cameras, additional simple adapters (or accessories)
in mobile devices and sending the results to the system in
real-time. For instance, in the mobile application called Peek
Vision [2], medical images can be captured by using a clip-on
camera adapter that gives high quality images of the back of
the eye and can be sent to the system so diagnosis can be
done remotely. The mobile application has been designed to
be aware of the computing context in which it runs and to
adapt and react according to its findings; therefore, it belongs
to the category of context-aware applications [3].

The context-awareness of mobile applications yields sev-
eral issues for testing [4] because the mobile applications
should be testable in any environment and with any contextual
input [5]. These applications are notified of a change to their
context by means of events, and the variability in the running

DOI reference number: 10.18293/SEKE2015-118

conditions of a mobile application depends on the possibility
of using it in variable contexts. A context represents the
overall environment that the application is able to perceive
[6]. More precisely, Abowd et al. [7] define a context as: “any
information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is including
the user and applications themselves.”

In previous studies of testing of Android applications as
event-driven systems, many researchers focused on using the
generated test cases considering only GUI events. However,
it is difficult to detect failures in the changes in the contexts,
which can be influenced by context events, in which appli-
cations run. Even in studies that considered context events,
the specific event sequences generated based on a limited
number of scenarios were considered. This has limitations in
terms of finding bugs that occur in various complex contexts.
It is important to discover the unacceptable behaviors of an
app (such as crashes or freezes) that are often reported in
the bug reports of mobile apps and appear when the app is
impulsively solicited by contextual events, such as the alerts
for the connection/disconnection of a plug (e.g., USB and
headphone), an incoming phone call, GPS signal loss, etc.
Therefore, for testing mobile applications, we need a system-
atic testing method to take into account the various conditions
in context-aware systems. This is increasingly needed given
trends in mobile applications due to the advancement in the
novel features and sensors of mobile devices, which reveal new
types of bugs [8].

To access resources from Android devices,
each Android application includes a manifest file,
AndroidManifest.xml, which lists the permissions
[9] that the application requires for its execution and requests
permissions for the resources. By referring to the lists of
permissions, the resources that the applications use for
running Android applications can be inferred easily. The
context events occurred from/by those identified resources,
and the state for each condition can be changed by those
context events. Thus, we use the permissions to generate the
various contexts used for testing Android applications.

To test mobile applications in various contexts, we provide
a method for systematically generating various executing
contexts from permissions. In our paper, an executing context
represents a permutation of resource conditions that have
variable states, and Graphical User Interface (GUI) event based
generated test cases [10] can be run in those contexts. The state
of each condition can be changed/sensed/perceived according

87

to several types of context events, such as:

• events coming from the external environment and
sensed by device sensors (e.g., Wi-Fi and GPS);

• events generated by the device hardware platform
(e.g., battery and other external peripheral port, such
as USB, headphone, and network receiver/sender); and

• events typical of mobile phones (e.g., the arrival of a
phone call or a SMS message).

The brief procedure for generating various executing contexts
using permissions is as follows. First, the related resources and
their possible states are identified from the permissions. Then,
the various executing contexts are generated by permuting the
resource conditions that have variable states. Finally, the exe-
cuting contexts are prioritized and the part of those executing
contexts are selected. We applied our testing method to two
open-source projects, Open Camera [11] and Subsonic [12].
Experiments reveal that the proposed method is significantly
effective in detecting faults.

The rest of this paper is organized as follows: Section II
contains a discussion of related studies. Section III explains the
definition and the need to use permissions when testing An-
droid applications, and the related resources that can inferred
from the permissions are identified. Section IV explains the
procedure to generate various contexts from the permissions. In
Section V, we present an experiment to evaluate the proposed
approach and discuss the results. We conclude and discuss
future research in Section VI.

II. RELATED WORK

Mobile applications are event-driven systems, but, unlike
other traditional event-driven software systems, GUI [10],
[13]–[15] or web applications [16], they are able to sense and
react to a wide range of events. In the following subsections,
we discuss the related studies that provide methods for testing
Android applications as event-driven systems.

A. GUI Testing

Random testing. The UI/Application Exerciser Monkey [13]
is part of the Android SDK and generates random user input.
Originally designed for stress-testing Android applications,
it randomly generates pseudo-random streams of user events
such as clicks, touches, or gestures, as well as a number of
system-level events. Monkey testing is a random and auto-
mated unit test. The test is not scripted and is run mainly to
check whether a system or an application will crash. It is easy
to set up and can be used in any application. The cost of using
the testing is relatively small. However, detection of only a few
bugs is possible.

Model-based testing. AndroidRipper [14] is an automated
technique implemented in a tool that tests Android applica-
tions using a GUI model. AndroidRipper is based on a user
interface-driven ripper that automatically explores the applica-
tion’s GUI to exercise the application in a structured manner.
More specifically, it dynamically analyses the application’s
GUI for obtaining sequences of events that are fireable through
the GUI widgets. Each sequence provides an executable test
case. During its operation, AndroidRipper maintains a state

machine model of the GUI (called a GUI Tree). The GUI Tree
contains the set of GUI states and state transitions encountered
during the ripping process. However, by using generated test
cases that consider only GUI events, it is difficult to find
failures that could otherwise be detected by considering the
changes in the context, which can be influenced by context
events, in which applications run.

B. Context-aware Testing

Amalfitano et al. [6] took into account both context events
and GUI events for testing Android applications. They man-
ually define reusable event patterns—representations of event
sequences that abstract meaningful test scenarios. These event-
patterns are manually defined after a preliminary analysis is
conducted on the bug reports of open source applications.
Based on the defined event patterns, test cases are generated
using the three scenario-based mobile testing approaches that
(1) manually generate test cases, (2) mutate existing test cases,
and (3) support the systematic exploration of the behavior of
an application (an extension of the GUI ripping technique is
presented in [14]). For dynamically recognizing the context
events that the application is able to sense and react at a given
time, events can be deduced from event handlers. In this work,
they also use a set of Intent Messages to figure out the events
that are managed by other application components. This set
can be obtained by means of static analysis of the a Android
manifest file of the application.

The methodology proposed by Amalfitano et al. has some
limitations. The number of scenarios that define relevant ways
of exercising an application is limited because specific event
sequences are considered. By manual analysis by experts, the
events possibly trigger a faulty behavior may not be properly
identified. By analyzing bug history, a sequence of events that
has never occurred might not be chosen, but they may cause
catastrophic failures. These event patterns may need to be
redefined when testing other types of applications. From the
perspective of triggering the context events, the source codes
also need to be analyzed and altered. Moreover, the effective-
ness of the testing approach is evaluated only by measuring
the code coverage. Statement coverage may not be effective
and sufficient enough on fault detection capability [17]. In our
paper, we provide a systematic method of generating various
executing contexts. Since this method may cause to produce
many test cases to be run, we provide a prioritization technique
to rank the test cases in the order of the likelihood of detecting
faults.

III. INFERRING RESOURCES FROM PERMISSIONS

A. Permissions in Android Application

Android uses a system of permissions [9] to control how
applications access sensitive devices and data stores. More
specifically, to ensure security and privacy, Android uses a
permission-based security model to mediate access to sensitive
data (e.g., location, phone call logs, contacts, emails, or photos)
and potentially dangerous device functionalities (e.g., Internet,
GPS, and camera) [18].

To access resources from Android devices, each Android
app requests permissions for resources by listing the per-
missions. Each Android application includes a manifest file,

88

TABLE I: List of permissions and related resources with their possible states.

Permission Allows an App to Related Resources[Possible States] Android Version
ACCESS FINE LOCATION Access precise location from location sources Wi-Fi[on|off], GPS[on|off], Radio[on|off] Android 1.0 ~

INTERNET Open network sockets Wi-Fi[on|off], Radio[on|off] Android 1.0 ~
CAMERA Be able to access the camera device Camera [on|off], SD card[free|full] Android 1.0 ~

BLUETOOTH Connect to paired bluetooth devices Bluetooth[on|off] Android 1.0 ~
WRITE CALL LOG Write (but not read) the user’s contacts data Radio[on|off] Android 4.0.3 ~

WRITE EXTERNAL STORAGE Write to external storage SD card[on|off] Android 1.5 ~
BIND DEVICE ADMIN Ensure that only the system can interact with device Camera [on|off], Flash[on|off], SD card[free|full], Wi-Fi[on|off] Android 2.2.x ~

VIBRATE Access to the vibrator Vibrator[on|off] Android 1.0 ~
NFC Perform I/O operations over NFC NFC[on|off] Android 2.3 ~

FLASHLIGHT Access to the flashlight Flash[on|off] Android 1.0 ~
CHANGE NETWORK STATE Change network connectivity state Wi-Fi[on|off], GPS[on|off], Radio[on|off] Android 1.0 ~
CAPTURE VIDEO OUTPUT Capture video output LCD[on|off], Camera [on|off] Android 1.0 ~

AndroidManifest.xml [19], which lists the permissions
that the application requires for its execution. When the user
wants to install an app, this list of permissions is presented
and confirmation is requested. When the user confirms the
access, the app will have the requested permissions at all times
(until the app is uninstalled). If an application requests the
resource without having the appropriate permission, then the
Android OS may throw a Security Exception or simply not
grant the requested resource [20]. These permission-protected
resources are accessed through the Android API and other
classes resident on the phone. For example, having the AC-
CESS FINE LOCATION permission will give the application
access to a number of Android API calls that use resources
such as GPS, Wi-Fi, and Radio.

B. Identification of Related Resources from Permissions

We have used the permissions in an app’s manifest file for
generating various context used for testing Android applica-
tions. By referring to the lists of permissions, the resources
that the applications would (potentially) use for running An-
droid applications can be inferred easily. without analyzing
source codes of the applications. The context events occur
from/by those identified resources, and the state for each
condition can be changed by those context events. Thus, by
using permissions, we can generate various executing contexts
that represent permutations of resource conditions that have
variable states.

The latest Android platform release contains a list of
152 permissions. Among them, we focus on the permissions
related to communicating with the environments, because they
are more critical for making context-aware apps. For each
permission, the related resources with their possible states
are identified in Table I. It is intuitive to identify the related
resources in the permissions of BLUETOOTH or CAMERA.
Meanwhile, in the permission of ACCESS FINE LOCATION,
it covers multiple resources such as GPS, Wi-Fi, and Radio. To
consider the variable states of resource conditions, the possible
states are defined in terms of an availability (i.e., on or off).
It is also worth to note that the table is independent to the
features of an app and thus it is reusable.

IV. TESTING ANDROID APPLICATIONS IN VARIOUS
CONTEXTS

Fig. 1 represents the overall procedure for generating
various executing contexts using permissions.

Context 1 Wi-Fi ON/GPS OFF…

Context 2 Wi-Fi OFF/GPS OFF…

Rank 1: Context 3

Rank 2: Context 1

A. Inferring Resources

from Permissions

B. Generating Various

Executing Contexts

C. Prioritizing Contexts

Rank 3: …

GPS

WIFI

Permission A

AndroidMenifest.xml

Context 3 Wi-Fi ON/GPS ON…

Context 4 …

Possible combinations of

conditions having variable states

Permission B

Permission C

Bluetooth

Resources of

mobile phones

Camera

Permissions of

an application

Fig. 1: An overview for generating various contexts after
analyzing permissions.

A. Generating Various Executing Contexts

The executing contexts of an app can be generated by
permuting resource conditions. For instance, if the resources
that an app uses are r1, r2, ..., rn, and the number of
possible states for those corresponding resource conditions are
N(r1), N(r2), ..., N(rn), then the total number of generated
executing contexts is N(r1) × N(r2) × ... × N(rn). For
example, if an app’s permission has links with Bluetooth,
GPS, and Wi-Fi, then net executing contexts include eight
different permutations because each resource condition has two
candidate states.

B. Prioritizing Contexts

While the generation of executing contexts is straightfor-
ward and easy to automate, the number of generated executing
contexts increases as the number of considered resources
increase. An app is executed on every test case for all the

89

generated various contexts, and the test runs increase expo-
nentially. Thus, we need to prioritize the executing contexts to
select the contexts to be tested first.

We suggest the two-level prioritizing strategies to rank
the generated executing contexts. The first step is weighting
each resource condition according to the testing objectives
(e.g., testing normal or unacceptable behaviors). To test normal
behaviors of the apps, the executing contexts, in which more
resources are used, should be more highly ranked. Thus,
for example, weights can be assigned to resource conditions
as follows: Wi-Fi[on]=1, GPS[on]=1, Camera[on]=1, and SD
card[free]=1. If the objective of the testing is to detect unac-
ceptable behaviors of an app, then executing contexts related to
the exceptional scenarios should be more highly ranked; thus,
the resource conditions constituting those executing contexts
need to be weighted, such as Wi-Fi[off]=1, GPS[off]=1, Cam-
era[off]=1, and SD card[full]=1. To obtain the score of each
generated executing context, the weights of resource conditions
of the executing context are summed.

In the second step, to distinguish the executing contexts
that have the same scores, we provide the method to assign
weights to individual or combinatorial resources residing in an
executing context. We suggest three criteria—frequency, user
controllability, and minimum required resource conditions—as
follows.

• Frequency. It represents how much a resource is
required via permissions and is to be used in an app. It
counts the identified number of each resource over the
lists of permissions. For example, let an app have the
permissions in Table I, then the frequency of the Radio
resource is four. Thus, frequently identified resources
need can be weighted to test more used resource-
related behaviors of an app first.

• User controllability. It indicates how easily a user
can control a resource. For example, users can en-
able or disable GPS or Wi-Fi but do not control
hardware-related sensors directly. Thus, resources that
are more user controllable can be weighted to test
usable resource-related behaviors of an app first.

• Minimum required resource conditions. The cer-
tain combinations of resource conditions need to be
weighted to test permission-related behaviors first.
The rational of the idea comes from the observa-
tions that several permissions are related to multiple
resources and require minimum resource conditions
to provide expected services to an app. For exam-
ple, the ACCESS FINE LOCATION permission uses
three resources, GPS, Wi-Fi, and Radio; and among
the three resources, GPS[on] and Wi-Fi[on] are the
necessary and sufficient resource conditions to provide
the service which is to access precise location from
location sources. On the other hand, if we focus
on detecting faults, the combination of states that
could trigger a faulty behavior (e.g., GPS[on] and Wi-
Fi[off]) could be more highly weighted.

V. EVALUATION

We investigated the two research questions in our experi-
ment.

TABLE II: Characteristics for each experimental subject.

Name Open Camera (Ver. 1.21) [11] Subsonic for Android (Ver. 4.4) [12]

Description

Taking pictures and providing
various features (e.g., zooming,

focusing, flashing, and
coloring effects)

Playing music and video by receiving
media files from the stream server
(e.g., personal PC) and supports

offline mode and bitrates
Class # 61 265

Method # 399 1038
LOC # 3,790 16,064

TABLE IV: Bugs that can be detected using our approach.

Open Camera Subnonic
Fault No. Bug ID. (refer in [21]) Fault No. Bug ID. (refer in [22])

1 1 1 150
2 2 2 126
3 9 3 64
4 20 4 102
5 3 5 38
6 11 6 82
7 30 7 46
8 31 8 39
9 37 9 35
10 4 10 32
11 28 11 21
12 33 12 8

13 4
14 83

RQ1. Is our testing approach useful for detecting faults?

RQ2. Is our prioritization technique effective in detecting
faults?

A. Experimental Design

Two open source projects are chosen as experimental
subjects: Open Camera [11] and Subsonic [12]. We selected
these as subjects because they are open source projects and
their development histories (such as bug issues) are accessible.
They contain a relatively large number of classes and methods
(large size) as well. Table II summarizes characteristics of each
subject.

The testing is performed by running the test cases under
each context. In other words, the same test cases had run in a
iterative manner as much as the number of the (selected) con-
texts. We first execute test cases generated from the Android
GUI ripper tool [10]. They provide the sequences of events
associated with GUI tree paths that link the root node to the
leaves of the tree, but the results of statement code coverage
on the experimental subjects were low (i.e., average from 45%
to 47%). Since GUI-based approaches have limitations for
covering all components, we additionally performed testing by
focusing on the scenarios that users use more frequently and
faulty behaviors may be more occurred.

Table III shows the generated and used executing contexts
for Open Camera and Subsonic. As mentioned in Section IV-A,
the executing contexts to be tested first need to be prioritized
and selected because too many test runs are required, which is
computation-intensive. To test the normal scenario, we select
the context where all resources are on (active). On the other
hand, to test the exceptional scenario, we also select the context
where all resources are off (inactive). The contexts that might

90

TABLE III: Generated and used executing contexts from our approach.

Name Executing Contexts
Permission Resource[States] Total # Used #

Open Camera [11]

ACCESS FINE LOCATION Wi-Fi[on|off], GPS[on|off],
Radio[on|off]

32
= 25

Rank Wi-Fi GPS Radio SD card Camera
1 on on on free enable
2 off off off full disable
3 on on on full enable
4 off on off free enable

CAMERA Camera [on|off],
SD card[free|full]

WRITE EXTERNAL STORAGE SD card[free|full]

Subsonic [12]

INTERNET Wi-Fi[on|off], Radio[on|off]

128
= 27

Rank Wi-Fi Radio Bluetooth SD card Audio MIC CPU
1 on on on free enable on unlock
2 off off off full disable off lock
3 on on off free enable on unlock
4 on on on full enable on unlock
5 on on on free enable on lock
6 off on on free enable on unlock

BLUETOOTH Bluetooth [on|off]
RECORD AUDIO Audio[on|off], MIC[on|off]

READ PHONE STATE Radio[on|off]
WRITE EXTERNAL STORAGE SD card[free|full]

WAKE LOCK CPU[lock|unlock]
MODIFY AUDIO SETTINGS Audio[on|off]
ACCESS NETWORK STATE Wi-Fi[on|off], Radio[on|off]

READ EXTERNAL STORAGE SD card[free|full]

cause faulty behavior are also highly ranked. For example, the
faults may be more occurred on the situations when SD card is
full (it many cause a problem in file processing) and when GPS
is on while Wi-Fi is off (it may result in logging wrong location
information). When setting these contexts, other resources—
not involving these situations—are set to be inactivated. As a
result, we selected four among 32 and six among 128 executing
contexts in Open Camera and Subsonic, respectively.

Since the subjects are open source projects, we can access
the bug histories of Open Camera [21] and Subsonic [22].
We manually analyzed the issues in those repositories and
extracted the faults that could have been detected if our testing
technique had been used. Then, we execute the test cases
in the contexts generated using our approach and discover
unacceptable behaviors of the app (such as crashes or freezes).
These bugs are matched the corresponding faults extracted
from the repositories. For example, we found a crash (i.e.,
runtime exception: fail to connect camera service) by executing
test cases in the context where a camera is disabled. This
crash can be matched to the faults of camera malfunctions
or exceptions.

To evaluate the effectiveness of our method of prioritizing
contexts, we compare three different sequences of contexts in
which test cases run: the generated order T, the reversed order
Tr, and the prioritized order Tp (which is ranked according to
our prioritization method). The order T is the order generated
from our approach but not prioritized. The generated order
T and the reversed order Tr can be regarded as random
sequences.

To quantify the capability of the contexts on fault detection,
we use a metric called APFD (Average Percent Fault Detec-
tion) [23]. The APFD is calculated by taking the weighted
average of the percentage of faults detected over the life of the
suite. The higher numbers imply faster (better) fault detection
rate. Let T be a test suite containing n contexts in which test
cases run, and let F be a set of m faults revealed by T. Let
TFi be the fist context in ordering of T’ of T which reveals
fault i. The APFD for test suite T’ is given by the equation:

APFD = 1− TF1 + TF2 + ...+ TFm

nm
+

1

2n
.

We also measure the fault detection rate according to the order
of executing contexts.

B. Results

Number of detected bugs. We found 12 out of 38 bugs in
Open Camera, and 14 out of 151 bugs in Subsonic (see Table
IV). This results show that our testing is useful in detecting
faults.

APFD measure. For Open Camera, # of contexts running
with test cases (n) is 32, and # of faults (m) is 12. The APFD
for three orders (i.e., T (generated order), Tr (reversed order),
Tp (prioritized order using our approach)) are calculated as
follow:
T: 0.92 = 1-(6+1+1+1+1+9+9+3+1+1+1+1)/384,
Tr: 0.62 = 1-(3+9+17+17+17+1+1+1+32+17+17+17)/384,
Tp: 0.97 = 1-(4+1+1+1+1+2+2+2+1+1+1+1)/384.
For Subsonic, # of contexts running with test cases (n) is
128, and # of faults (m) is 14. The APFD for three orders are
calculated as follow:
T: 0.96 = 1-(2+1+1+1+1+2+1+1+6+6+1+1+1+1)/1536,
Tr: 0.92 = 1-(10 +1+1+1+1+10+1+1+5+5+1+1+1+1)/1536,
Tp: 0.98 = 1-(1+11+11+11+19+1+11+20+11+11+4+11+3+11)/1536.
In both projects, the APFDs for Tp represent the highest
scores. Note that, in Subsonic, the number of generated
executing contexts is large (i.e., 128) and many of the faults
are detected by small number of the executing contexts, thus,
the APFD measures are not much different in three orders.

Fault detection rate. We present the graphs of fault
detection rate for Open Camera and Subsonic in Fig. 2(a) and
in Fig. 2(b), respectively. The graphs show the percentages
of faults detected versus the fraction of the contexts used,
for each sequence of comparators. For Open Camera, we
(Tp) reached to 100% of fault detection rate after running
four executing contexts, while the generated order (T) and
the reversed order (Tr) required 9 and 32 executing contexts,
respectively. For Subsonic, our prioritized sequence (Tp)
reached to 100% of fault detection rate after running six
executing contexts, while the generated order (T) and the
reversed order (Tr) required 10 and 20 executing contexts,
respectively. From the results, we can conclude that the
order prioritized using our prioritization method results in the
earliest detection of the faults.

VI. CONCLUSION AND FUTURE WORK

In our paper, we provide a method for systematically
generating various executing contexts from permissions to

91

320 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

100

30

40

50

60

70

80

90

of Runned Executing Contexts with Test Cases (Total: 32)

F
a
u
lt

 D
e
te

c
ti

o
n
 R

a
te

 (
%

)

Generated Order (T)

Prioritized Sequence

using Our Approach

(Tp)

Reversed Order (Tr)

(a) Fault detection rate for Open Camera.

200 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

100

10

20

30

40

50

60

70

80

90

of Runned Executing Contexts with Test Cases (Total: 128)

F
a
u
lt

 D
e
te

c
ti

o
n
 R

a
te

 (
%

)

Generated Order (T)

Reversed Order (Tr)

Prioritized Sequence

using Our Approach

(Tp)

(b) Fault detection rate for Subsonic.

Fig. 2: Fault detection rate graphs.

test Android applications. To generate the various contexts,
the related resources and their possible states are identified
from the permissions. Then, the various executing contexts are
generated by permuting resource conditions, and the executing
contexts are prioritized and selected. We applied our testing
method to two open-source projects and showed the method
is effective in fault detection.

For future work, we plan to consider more permissions and
identify the relations between the resources and those permis-
sions. We also plan to perform the more detailed experiment
for showing the capability of using various contexts. Finally,
we plan to devise the method of considering sequences in our
contexts for simulating dynamically changing environment.

ACKNOWLEDGMENT

This research was supported by Basic Science Research Program
through the National Research Foundation of Korea(NRF) funded by
the Ministry of Education(NRF-2014R1A1A2054098). This research
was supported by the MSIP(Ministry of Science, ICT and Future
Planning), Korea, under the ITRC(Information Technology Research
Center) support program (IITP-2015-H8501-15-1012) supervised by
the IITP(Institute for Information & communications Technology
Promotion).

REFERENCES

[1] J. Dehlinger and J. Dixon, “Mobile application software engineering:
Challenges and research directions,” in Workshop on Mobile Software
Engineering, 2011.

[2] Peak Vision, http://www.peekvision.org/.
[3] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware

systems,” International Journal of Ad Hoc and Ubiquitous Computing,
vol. 2, no. 4, pp. 263–277, 2007.

[4] D. Amalfitano, A. R. Fasolino, P. Tramontana, and B. Robbins, “Testing
android mobile applications: Challenges, strategies, and approaches.”
Advances in Computers, vol. 89, pp. 1–52, 2013.

[5] H. Muccini, A. Di Francesco, and P. Esposito, “Software testing of
mobile applications: Challenges and future research directions,” in
Automation of Software Test (AST), 2012 7th International Workshop
on. IEEE, 2012, pp. 29–35.

[6] D. Amalfitano, A. R. Fasolino, P. Tramontana, and N. Amatucci, “Con-
sidering context events in event-based testing of mobile applications,” in
Software Testing, Verification and Validation Workshops (ICSTW), 2013
IEEE Sixth International Conference on. IEEE, 2013, pp. 126–133.

[7] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in Handheld and ubiquitous computing. Springer, 1999,
pp. 304–307.

[8] A. Kumar Maji, K. Hao, S. Sultana, and S. Bagchi, “Characterizing
failures in mobile oses: A case study with android and symbian,” in
Software Reliability Engineering (ISSRE), 2010 IEEE 21st International
Symposium on. IEEE, 2010, pp. 249–258.

[9] System Permissions,
http://developer.android.com/intl/ko/guide/topics/security/permissions.html.

[10] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
G. Imparato, “A toolset for gui testing of android applications,” in Soft-
ware Maintenance (ICSM), 2012 28th IEEE International Conference
on. IEEE, 2012, pp. 650–653.

[11] Open Camera, http://opencamera.sourceforge.net.
[12] Subsonic, http://subsonic.org/pages/apps.jsp#android.
[13] UI/Application Exerciser Monkey,

http://developer.android.com/tools/help/monkey.html.
[14] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and

A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. ACM, 2012, pp.
258–261.

[15] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A gui crawling-
based technique for android mobile application testing,” in Software
Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on. IEEE, 2011, pp. 252–261.

[16] M. Wang, J. Yuan, H. Miao, and G. Tan, “A static analysis approach
for automatic generating test cases for web applications,” in Computer
Science and Software Engineering, 2008 International Conference on,
vol. 2. IEEE, 2008, pp. 751–754.

[17] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014, pp. 435–445.

[18] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission evolution
in the android ecosystem,” in Proceedings of the 28th Annual Computer
Security Applications Conference. ACM, 2012, pp. 31–40.

[19] Menifest Permissions,
http://developer.android.com/reference/android/Manifest.permission.html.

[20] R. Johnson, Z. Wang, C. Gagnon, and A. Stavrou, “Analysis of
android applications’ permissions,” in Software Security and Reliability
Companion (SERE-C), 2012 IEEE Sixth International Conference on.
IEEE, 2012, pp. 45–46.

[21] Open Camera Bug Issues, http://sourceforge.net/p/opencamera/tickets/.
[22] Subsonic Bug Issues, http://sourceforge.net/p/subsonic/bugs.
[23] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test

cases for regression testing,” Software Engineering, IEEE Transactions
on, vol. 27, no. 10, pp. 929–948, 2001.

92

Context-aware Recommendation System with Anonymous User Profile Learning

Yan Liu
School of Software Engineering

Tongji University
Shanghai, China

Email: yanliu.sse@tongji.edu.cn

Yangyang Xu
School of Software Engineering

Tongji University
Shanghai, China

Mei Chen
Decision and System Group

United Technologies
Research Center (China)

Shanghai, China

Abstract—Recommendation system requests huge personal
data, including personal information, purchase history, so-
cial tag/network, professional/personal preference, etc. Pri-
vacy preservation gets more and more concern in modern
recommendation system. In this paper, we use surfing data
in single session with context-aware learning to generate an
anonymous user profile for recommendation, which yields very
encouraging results. User profile is generated based on pre-
learned hotel profile with pre-assigned weights. Two major
behaviors are captured to learn the temporary user profile,
which are search and view functions. A novel factor called
“irrelevance” is created to measure the sensitivity of user to
each item of hotel profile based on the surfing behaviors. A
case study on a flight/hotel inquiring and booking website with
different application scenarios and results are analyzed.

Keywords–Context awareness; recommendation system; e-
service; user profile

I. INTRODUCTION

A recommendation system (RS) is a Web technology that
proactively suggests item(s) to user based on side informa-
tion, which could be user historical records or explicitly
stated group preferences. It has been studied for more than
ten years in various application areas, including e-commerce,
e-health, and social network. Algorithms as content-based
filtering [1], [3], [4], collaborative filtering [2], and context-
aware prediction are widely applied [5], [7].

The main aim of a recommendation system is to support
the website adherence on its user and attract new customers,
which might be one of the most critical parameter for
modern e-business. Current recommendation system uses
user historical data to predict the blanks in the utility matrix
(content-based filtering) or historical data of group users
to understand potential options based on similar group of
people (collaborative filtering). Users might be not preferred
to be predicted or do not agree with the prediction, especially
when the search varies or the aim is ambiguous. Many
papers have discussed the challenge on privacy preserva-
tion [7], [8], which raise a big problem for learning algo-
rithm - how can we learn the user profile in an anonymous
way without or with limited historical data?

In this paper, we discuss a novel user profile learning
method, which conduct recommendation with no user his-
torical data. We utilize temporary user interaction (search

/ view) data, hotel profile, and environment information
with a context-aware learning method to understand user’s
intention, and develop anonymous but effective user profile
for recommendation. This anonymous user profile learning
recommendation system is applied in hotel recommendation
for a travel booking web site and obtained good results.
The article is organized as follows: first, we briefly discuss
existing research and challenge on recommendation system.
In section III we introduce the booking system and three
application scenarios, as well as the major problems and
challenges for hotel recommendation. Proposed learning
methods and recommendation algorithm is discussed in
section IV with results and comparison. Conclusion and
future work are in section V.

II. BACKGROUND

Content-based Recommender System focus on properties
of items, where the recommendation on items is based
on learning the user preference and constraints. It created
user specific item profiles (important characteristics of an
item) and calculate the similarity of items. It predicts items
that user is most likely to be interested in or has highest
tendency will accept. Collaborative-filtering RS focus on
the relationship between users and items. It measures user
similarity for any items to establish a group profile, which
recommend items to a user by voting on the group users.
Content-based RS needs historical data for single user, and
collaborative-filtering RS requires historical data from group
users. Both systems require large data for profile learning,
and might not work when the utility matrix is sparse.

Context-aware RS attracts more attentions as people
realized that taking into consideration on any contextual
information, such as time, place, is important. It might be
critical to incorporate the contextual information into the
recommendation process, especially under certain circum-
stances (i.e. location related recommendation). Context is a
multifaceted concept that has been studied across different
research disciplines [5], where RS utilizes the concept
from data mining, e-commerce personalization, information
retrieval, and other directly related fields. When R : User×
Items × Context → Rating, selecting proper item for
specific user at set up context environment will generate very

93

rabbitfoot
打字机
DOI reference number: 10.18293/SEKE2015-065

different rating. This is most interesting but challenging part
for a context-aware recommendation system.

III. APPLICATION SCENARIO, PROBLEM AND
CHALLENGES

In this paper, we develop an effective anonymous ho-
tel recommendation system for a travel booking web-
site who delivers recommendation through email. The
recommendation is based on transition information obtained
within an interaction session, which can be a flight ticket
booking procedure, or an ambiguous hotel inquiry. The main
aim is to increase the hotel booking rate and check-in rate
by applying certain recommendation system.

This booking website provides flight and hotel in-
quiring and booking services. It uses email to conduct
recommendation, which is quite efficient for following ap-
plication scenarios:

• New coming users, most of them are unwilling to
register or just have a quick search without booking.
We ask these users to leave their email address before
leaving. We believe that the user who has intent to
book a flight/hotel will leave a valid email. We already
observed it during daily operation.

• Registered user without log in, which is almost the
same situation as the new user until we found the
email address was registered. Actually, we found that
it made no difference no matter whether the registered
user log in or not. It is hard and almost impossible to
conduct effective on-line recommendation (very low hit
rate make the recommendation annoy).
The potential reasons lie in 2 aspects: one is that
the historical record is sparse for most user which
make the prediction matrix high sparsity with large
uncertainty, and large intra-group variance make the
recommendations deviate from real intention signifi-
cantly. Sometime, the users themselves might not have
clear target hotels before searching.

• Users inquiring but did not booking would like to
receive recommendations especially with promotion,
which means the recommendation through email gets
attention if it hits the needs truly. This is another
observed practice.

A. Scenarios

There are three different application scenario might trigger
the recommendation:

1) Promotion proposed by hotel, the RS will send email
to target users.

2) User search flight and finally book one or more
itineraries. This means that the user has logged in.

3) Anonymous user search flight or hotel information but
did not book anything. The email address will be asked
before inquiry and the email input is optional.

Scenario (1) and (2), user profile (UP) learning with
personal information and historical data is applicable. Price
sensitive customers with previous vacation trip(s) are target
user for scenario (1). RS sends out emails to potential
interested customer, which we call a passive RS. Applicable
strategies are:

• select price sensitive users;
• select users having past trips for holiday or vacation

within a time range (e.g. 6 months);
• focus on promotion before public holiday.
Scenario (2) and (3) are active RS, where the

recommendation is triggered by user actions. For scenario
(2), static UP will be created for recommendation based on
historical data. A context understanding model will generate
a dynamic UP, and the final recommendation will be rated
based on hybrid static & dynamic profiles. Scenario (1) &
(2) will not be discussed as we are interested in learning UP
with no historical data.

B. Problem and Challenges

We believe that scenario (3) is more applicable and
preferred by user, as most users do want a good
recommendation without leaking too much personal infor-
mation, especially when RS learns their profiles. We claim
that an anonymous UP learned with context in (3) can be
sufficient for RS. That is why we choose scenario (3) as our
typical case for analysis, and the percentage of scenario (3)
is dominant when analyzing the web visits.

In scenario (3), the setup conditions are: a) no historical
data, b) the user is anonymous, c) the destination city is
known, and d) side information such as viewed flights or
viewed hotels is also given. There are two kinds of inquiry
behaviors in scenario (3): 3.a) searching the flight itineraries;
or 3.b) searching hotels in a city (several cities).

In (3.a), useful inputs are: destination, viewed flight(s),
itineraries date/time, and the search date/time. We use BT
for “Business Trip” and PT for “Private Trip” in following
analysis. An item profile is created to learn the intention with
probability of “Business Trip” versus “Private Trip” based
on context understanding:

• Destination and/or any event related to destination
(i.e. a commercial show in the destination city) are
used to calculate P (BT |Destination,Events) and
P (PT |Destination,Events).

• Flights being viewed suggests the acceptable and
preferred class and price level. This helps to de-
termine P (BT |FlightClass, ItineraryT ime), and
P (PT |FlightClass, ItineraryT ime).

• Price sensitivity can be inferred from viewed flights
if the user viewed several itineraries. The differ-
ence between itineraries tells the priority of price vs.
time, and the itinerary date tells the flexibility on
the trip. P (BT |PriceSensitivity, T ripF lexibility),

94

and P (PT |PriceSensitivity, T ripF lexibility) are
learned.

• Viewed itineraries time also helps to learn
the P (BT |Distance on Itineraries T ime),
P (PT |Distance on Itineraries T ime) as the
business trip is more time sensitive than price.

• Searching date/time, esp. date help calculating
P (BT |Weekday/Weekend,Daytime/Nighttime),
and P (PT |Weekday/Weekend,Daytime/Nighttime).

All the user specific items help to understand the search
purpose and determine whether this is a user who might
be interested in hotel recommendation (with/without pro-
motion). We found that most user search flight itinerary will
make final booking, which suggests that (3.a) can be merged
to scenario (2) by learning context-aware item profile.

Scenario (3.b) is the most critical case and will be studied
in this paper. An anonymous user profile is developed by
combining information from hotel profile (HP) and tempo-
rary user interaction data through a context-aware learning
schema. Major problems and challenges in (3.b) are as
follows:

1) High variation and uncertainty on searching content,
with several times or dozens times of search.

2) There are 1000+ or 2000+ hotels in metropolis or
megapolis, such as Beijing, Shanghai, etc.

3) Hotel number varies from dozens to thousands in
different cities, where the room type and price range
vary for same star hotel in different cities.

4) City functionality and characteristics have high vari-
ance.

5) Identify target users from non-target users.
6) Learn user profile and understand user intention for

accurate recommendation.
For the challenge related to city own functionality, we are
not able to tell or utilize the city profile in our model and
we will not count this as side information.

IV. SYSTEM, MODEL AND RESULTS

Figure (1) shows the workflow on this anonymous user
profile learning system using hotel profile and temporary
user data. Hotel profile, including static and dynamic profile,
will be updated in a pre-set period. In parallel, the user
interaction data will be used to learn the user behaviors and
responds according to different hotel profiles. Through the
context understanding we can learn the user intention and
select target hotel(s) for recommendation.

In (3.b), the designed features for HP based on static data
and side information are: 1) GIS/Business Zone; 2) Hotel
Star; 3) Price; 4) Facility; 5) Transportation; 6) Rating; 7)
Room; 8) Promotion; 9) Event. Static and dynamic HP will
be learned from these features, where static feature could
be Business Zone, Hotel Star, etc.; and price, promotion are
dynamic features.

Figure 1. Content-Aware User Profile Learning Recommendation System
Architecture.

The inferred UP will be used to answer two questions:
1) whether we are going to send out email with hotels
recommendation; 2) what hotels should be recommended.
Before creating HP and UP we need to filter out inquires
made by agent software such as web crawler. The inquiry
with number lager than 100 times contains most random
inquires (such as random selected city names), which is very
likely to be the scans made by the agent software, and should
be removed. This kind of inquiry will be outliner in learning
UP and introduce large deviation to real user intention.

A. City and Hotel Profile

We generate HP with different feature sets and weights
according to the city. City type also determines how likely
we will send out the recommendation to potential user.
Table I shows the city category, size, classification rule,
features, and methods for HP generation. Category of a
city determines which feature set we would like to apply
in HP for hotels in that city. Here we use megapolis city
as example, which will have all features as we mentioned
before.

The HP development is a score calculating and weighting
process, where we treat each feature independently. The
correlation will be considered during learning the UP based
on HP:

• Hotel star is a simple but typical static feature, which

95

TABLE I
CATEGORY ON HOTEL PROFILE FEATURES ACCORDING TO THE DESTINATION CITY.

CATEGORY SIZE CLASSIFICATION FEATURES HOTEL PROFILE
RULE GENERATION
C0 MEGAPOLIS BEIJING, SHANGHAI, SHENZHEN, ALL FEATURES CB + CF

GUANGZHOU, TIANJIN, CHONGQING
C1 METROPOLIS N1 < NumHotel < N0 NO GIS/BUSINESS ZONE CB + CF
C2 CITY N2 < NumHotel < N1 NO GIS/BUSINESS RULE-BASED

ZONE/ROOM FILTERING
C3 TOWN NumHotel < N2 NO GIS/BUSINESS ZONE/ RULE-BASED

TRANSPORTATION/ ROOM/RATING FILTERING
C4 SPECIAL HONGKONG, MACAU, SANYA, TRANSPORTATION/ROOM/ CB

HOT SPOT OR SEASONAL HOT SPOTS PROMOTION /EVENT

is grouped into 4 ranges naturally (‘two star & below’
are put together in a single range). Each hotel can be
only assigned in one of the range.

• Price is a typical dynamic feature; and to be simple,
we put hard edge on the price range. There are total
10 ranges from 0 to ∞. Each hotel can have room in
multiple price range, and all occupied price range will
be marked for a hotel daily.

• Transportation is important but hard to quantize. We use
the time to any transportation center as score, where this
parameter has less impact than the GIS/Business Zone,
especially in metropolis or megapolis city. In our case
study, we will not use this feature for HP generation.

• Normalized rating score collected from Hotel Evalu-
ation Website is used directly. This feature has small
impact for HP.

• Facility only counts in WiFi, breakfast, parking, which
has 0/1 value, corresponding to yes/no.

• Business Zone (BZ) is a unique feature used in this
travel booking website, which can be treated as a
demographic GIS area. There are about 50 to 100 BZ in
metropolis or megapolis city. Each BZ has one unique
index number (in each city), where the index does not
have numerical meaning and cannot be grouped based
on the value.

B. User Profile and Ranking Model

We select user whose inquiry time is 10 - 50 as target
user. We define ‘behavior’ as the operator conducted in the
web page. In each successful inquiry, the UP will have
accumulated score updated based on the user’s ‘behavior’.
The detailed calculation will be discussed late, and ‘be-
haviors’ combined with HP will generate different scores.
‘Behaviors’ are:

1) ‘Search’: defined as Usearch(). Considered parameters
inclue price range (p), star (s), business zone (z), and
facility (f) as Usearch(p, s, z, f). The parameters and
the Usearch() expressions are:

• Usearch(P), where P = [minprice,maxprice] is
the price range from min to max.

• Usearch(star2) + Usearch(star3) if multiple
star hotels are selected.

• Usearch(z), where zone only has single value.
• facility has 3 categories, and the parame-

ters can be written as Usearch(facility1) +
Usearch(facility2) + Usearch(facility3).

2) ‘View’: defined as Uview() with only single parameter
‘Hotel’ as there is no specific information provide by
the user. We will use hotel profile in this parameter.

3) ‘Order’: contains historical data, which will not be
used in UP learning but for validation.

4) ‘Count’: defines the number of a specific ‘behavior’
happened in a user. The parameter is Usearch() and
Uview().

Users have both view and search record in single inquiry
(one event), and the score calculated by Usearch() will have
larger weight. Score tells how far the user is interested in
this feature and will be calculated for each feature based
on Usearch() and Uview(). The calculated individual feature
score will be normalized, weighted with user sensitivity on
this feature, and then summarized for final ranking. There
are 2 different score calculation methods:

• Unique feature for a hotel (i.e. star, zone), the search
will have twice counting on ‘search’ than ‘view’. For
example, the score for star i: Stari,Score = 2 ×
num(Usearch(stari)) + num(Uview(Hotel.star =
i)), where i ∈ [2, 5].

• Features having multiple parameters (i.e. price):
1) Each Usearch(p), a 10 element vector a (1×10) is

created based on price(minPrice,maxPrice).
The searched or viewed price ranges falling in
the (minPrice,maxPrice) is marked with 1 in
corresponding elements in a.

2) Each Uview(Hotel), vector b (1 × 10) is created
based on hotel profile, where the price ranges
learned from HP is marked with 1 in correspond-
ing elements in b.

96

3) Price score is the summary of all vectors:
Upricescore = ai + bj , i = 1, . . . ,M, j =
1, . . . , N .

• Hotel rating is summarized based on search and view
hotels, and normalized. Similar work for transportation.

• Other binary features (promotion and event) take value
of 0/1 based on hotel/city daily updated status, meaning
Yes/No.

Two weights wi and wj are applied to modeling the user
true intention upon the calculated feature scores; where wi

represents user sensitivity and wj represents confidence. We
use (‘zone’, ‘star’, and ‘price’) as example to calculate wi

and wj and explain the main ideas. Let’s assume a megapolis
city, which has zone index (1-70), hotel star (2-5), and price
range (1-10). A user UID ‘001’ has 20 view records.

• wi: no previous information on user preference, we
assume each feature set is uniform distributed.
Use ‘zone’ as example, the sensitivity can be calculated

as: wi,zone =

∑R

r=1
Izone(i,r)∑R

rr=1

∑N

k=1
Izone(k,rr)

, where N = 70,

R = 20, and Izone is the indicator function with
Izone(i, r) = 1 when the ith zone is selected in the
rth record.
wi for ‘star’ and ‘price’ are calculated in the same way.

• wj : variance level works as confidence.
1) Feature ‘star’ and ‘price’ have numerical mean-

ing on their values. We use inversed L2 dis-
tance between selected parameters as confidence.
wj,star = 1∑20

m,n=1
(starm−starn)2

.

2) Feature ‘zone’ has no numerical meaning on its
index. We use occurrence vector and standard
deviation to model the zone confidence. For
example, we have zonej view record mj =
{1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0},
where 1/0 means selected/no. Then the standard
deviation Dj represents how reliable this user
like zonej . Averaged all 70 Dj we can final
confidence D as wj,zone.

Ranking model is to calculate the likelihood of each hotel
that user might be interested. Given

• wi,
• wj ,
• features for destination city (Fct := {Fj , j =

1, . . . , nct});
where nct is the total number of features. We calculate
R(H) =

∑nct

j=1 wj ×
∑Nj

i=1 wi×HP (Fct); where HP (Fct)
is the hotel profile (given city and its specific features).

C. Validation and Results

Performance validations are conducted in two categories:
1) user inquires hotels and make the booking at the same
day (noted as Tuser ≡ 0); 2) user inquires hotels, does not
make booking instantaneously but book the hotel within

10 days (note as Tuser ≡ 1). We use Tuser ≡ 2 to
refer user never make the booking (including user did not
input email address). Category (2) is verified with UID
and associated email address, where the email address was
obtained during inquiry and late booking. Only users used
same email address are considered as same user and will be
used for validation as Tuser ≡ 1. The comparison is made
between the real booked hotel and our recommended top
9 hotels. It means anyone of our recommended 9 hotels is
the same hotel as the user booked hotel, we counted as a
successful hit.

Table II shows the number of people with 3 situations
stated above in a 7 days’ record. A clear pattern of weekday
vs. weekend is shown, especially for Tuser ≡ 2. This
information will be used in determine sending email time.

TABLE II
USER NUMBER AND DISTRIBUTION.

DAY TOTAL Tuser ≡ 0 Tuser ≡ 1 Tuser ≡ 2
1 1396 148 595 653
2 1329 175 591 563
3 1314 128 596 590
4 1311 142 573 596
5 1363 142 628 593
6 942 119 448 375
7 837 84 399 354

Table III shows the hit rate on hotels for 2 validation
tests. From this table we find that we have obtained pretty
good hit rate in a fully anonymous way, which means this
system is valuable. Also, the hit rate of Tuser ≡ 0 is less
than Tuser ≡ 1 (almost half) might due to fewer records
for Tuser ≡ 0. People make book at the same day always
have clear target with less inquiries. Actually, for our RS,
Tuser ≡ 1 is our target people and the hit rate is fairly good.
The calculated R(H) values also give us a clear boundary
on Tuser ≡ 1 and Tuser ≡ 2 people, which is useful to
determine whether we need to send out recommendation.

TABLE III
HIT RATE FOR Tuser = 0 AND Tuser = 1.

DAY Tuser ≡ 0 Tuser ≡ 1
1 21.62% 41.17%
2 28.00% 47.55%
3 26.56% 47.48%
4 26.35% 42.11%
5 23.24% 42.19%
6 26.05% 44.19%
7 26.19% 41.85%
AVERAGE 25.43% 43.65%

V. CONCLUSION AND FUTURE WORK

In this paper, we address several major challenges in
context-aware RS. An anonymous user profile-learning

97

schema allows we provide a recommendation with privacy
protection. Target users are separated from others success-
fully. The final hit rate from validation result indicates
that it is feasible to design RS in an anonymous way
under some circumstance. We also address challenges in
context representation and semi-structure log data analysis,
which are very critical in RS. Well-designed architecture
ensures the RS work in an efficient way providing real time
recommendation.

There are two major concerns for the future work. One is
designing sophisticated HMI to understand the user intention
(some initial work [9]), to explain the rationale behind
recommendation to end-user. The recommendation could
be a decision or action. The RS can have high risk in
determining what to recommend, especially smart decision
support. This requires integration on context awareness, user
intention understanding, and recommendation expression as
a whole picture. The other is Meta data design for map-
reduce structure to handle big data challenge. For a big data
flow on line processing system, it is necessary and important
to have parallel processing capability. Immigrate this RS to
a cloud based structure should be next step.

ACKNOWLEDGMENT

This work was financially supported by the Science
and Technology Commission of Shanghai Municipality
(12dz1507000).

REFERENCES

[1] Adomavicius, G., Tuzhilin, A.: Towards the next generation of recom-
mender systems: a survey of the state-of-the-art and possible extensions.
IEEE Trans. on Data and Knowledge Engineering, 17(6), 734–749
(2005)

[2] Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating
collaborative filtering recommender systems. ACM Trans. Inf. Syst.,
22(1), 5–53 (2004)

[3] Pazzani, M.J., Billsus, D.: Content-Based Recommendation Systems.
In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web.
LNCS, vol. 4321, pp. 325–341. Springer-Verlag, Springer (2007)

[4] Di Noia, T., Mirizzi, R., Claudio Ostuni, V., Romito, D., Zanker, M.:
Linked open data to support content-based recommender systems. In:
8th International Conference on Semantic Systems(ACM), New York
(2012)

[5] Adomavicius, G., Tuzhilin, A.: Context-Aware Recommendation Sys-
tems. In: Recommender systems handbook. pp. 217–253. Springer-
Verlag, Springer (2011)

[6] Wang, S.L., Wu, C.Y.: Application of context-aware and personalized
recommendation to implement an adaptive ubiquitous learning system.
Expert Systems with applications. 38(9), 10831–10838 (2011)

[7] Verbert, K., Manouselis, N., Ochoa, X.,; Wolpers, M., Drachsler, H.,
Bosnic, I. ; Duval, E.: Context-aware recommender systems for learning:
a survey and future challenges. IEEE Trans. on Learning Technologies.
5(4), 318–335 (2012)

[8] Jones, M. T.: Recommender systems, Part 1: Introduction toapproaches
and algorithms. Technical report, IBM (2013) http://www.ibm.com/
developerworks/library/os-recommender1/

[9] Pu, P., Chen, L., Hu, R., Hu: Evaluating recommender systems from
the user’s perspective: survey of the state of the art. User Modeling and
User-Adapted Interaction. 22(4-5), 317–355 (2011)

98

Recommendation in the Digital TV Domain:
an Architecture based on Textual Description

Analysis

Felipe Ramos
Federal University of Campina Grande

Campina Grande, Brazil
feliperamos@copin.ufcg.edu.br

Alexandre Costa
Federal University of Campina Grande

Campina Grande, Brazil
antonioalexandre@copin.ufcg.edu.br

Reudismam Rolim
Federal University of Campina Grande

Campina Grande, Brazil
reudismam@copin.ufcg.edu.br

Gustavo Soares
Federal University of Campina Grande

Campina Grande, Brazil
gsoares@computacao.ufcg.edu.br

Hyggo Almeida
Federal University of Campina Grande

Campina Grande, Brazil
hyggo@dsc.ufcg.edu.br

Angelo Perkusich
Federal University of Campina Grande

Campina Grande, Brazil
perkusic@dee.ufcg.edu.br

DOI reference number: 10.18293/SEKE2015-149

Abstract—Recommendation systems have been used in several
application domains, most recently for TV (Digital TV, Smart
TV, etc.). Several approaches can be used to recommend items,
tags, etc., mainly based on user feedback. However, in the Digital
TV domain, user feedback has to be done generally by using
the remote control, which should be avoided to improve user
experience, since assigning explicit feedback to items is restricted
by the characteristics of this domain (difficulties when typing with
the remote control, etc.). Moreover, in the Smart TV environment
several types of items can be recommended (movies, musics,
books, etc.). Thus, the recommendation should be generic enough
to suit to different content. To solve the problem of acquiring
explicit feedback and still generate personalized recommenda-
tions to be used by different Smart TV applications, this work
proposes a recommendation architecture based on the extraction
and classification of terms by analyzing the textual descriptions
of TV programs present on electronic programming guides. In
order to validate the proposed solution, a prototype using a real
dataset has been developed, showing that using the recommended
terms it is possible to generate final recommendations for different
Smart TV applications.

Keywords—Digital TV, Term Classification, Term Recommen-
dation.

I. INTRODUCTION

Due to the significant growth in recent years of medias
such as TV and Internet, the access to information has be-
come increasingly easy. Therefore, a new range of services
and information are available for users. However, given the
large amount of content available, it is difficult for users to
find relevant information [1]. In this context, recommendation
systems (RSs) are presented as important tools, because they
help users to select items and contents.

Recommendation systems work with the concept of items
and users, where “item” is the general term used to denote what
is recommended and “user” is the term used to represent who
consumes the recommendation [11]. To perform personalized
recommendations, in general, RSs need to identify the main

features of users or items (e.g., item descriptions, user histo-
ries, user ratings, etc.). These features are used to construct
profiles, which are generated from the extraction of dataset
information.

RSs can be used in different application domains to help
users make better choices [11], [8], especially in Digital TV
(DTV), where a large number of channels, programs and the
content diversity complicate the user decision making [9]. In
DTV, user profiles are usually generated by analyzing their TV
viewing history, whereas item profiles are usually generated
by extracting information from the electronic programming
guide (EPG) [15], which provides program details, such as
title, description, categories, etc. Besides the content diversity
of Digital TV, with the advent of Smart TVs, which integrate
features of the Internet and Web 2.0 on TV devices [3],
the range of options for users has become even greater,
since they can access information from multiple applications
with different types of items. In addition of programs and
channels, Smart TVs applications can recommend items of
distinct types, such as movies, news, videos, musics, etc.
Thus, given the heterogeneity of applications, the Smart TV
domain demands an approach that ensures interoperability of
recommendations, otherwise recommendation systems have to
be developed for applications of different contexts, or at least
different components of these RSs must be developed based
on item types or features, such as the profile managers, where
for each application an user would have a different profile.

Although some previous works focus on recommendation
architectures applied to DTV / Smart TV [2], [3], [7], they
normally deal with the recommendation of specific items (i.e.,
TV programs). However, many recommendation approaches
can be applied with different features and goals, such as
recommendation of terms, tags, etc.

In the recommendation of tags, for example, the model
based on user feedback is well known [16], where the user
assigns tags to several items, but this model is not suitable
for the domain of DTV, since the action of assigning tags
and giving explicit feedback in DTV is restricted by user

99

experience requirements, which demand the use of the remote
control as less as possible [2], because watching TV and typing
with it at the same time is a time consuming and difficult task.
So, ways of acquiring implicit information in DTV need to
be investigated, such as the extraction of terms from program
descriptions present on the EPG.

Hence, DTV / Smart TV domain presents two important
specifications that were not faced together in previous works,
all the information must be implicitly collected and the recom-
mendation must be generic enough to suit to different contexts.
In our work, we propose a recommendation architecture based
on the extraction and classification of terms from TV program
descriptions. The main steps of the proposed solution are as
follows:

• Profiles generation: despite the great number of
different types of application users can interact, they
consume the same type of item, TV programs. In our
work, we build user profiles based on their TV viewing
histories (i.e., programs they watched before), hence,
the users have a unique profile independent of the
applications they interact;

• Term extraction and classification: to represent the
items (i.e., TV programs) we extract terms from
program descriptions. In order to generate a generic
recommendation, we classify extracted terms based on
EPG categories, hence, it is possible to identify terms
related to a given application, for example, terms of
sports;

• Recommendation: instead of recommending pro-
grams only, we recommend classified terms based
on program recommendation. Our main goal is to
generate an intermediary recommendation, thus, it is
possible to recommend different items, since the final
recommendation for different applications can be pro-
cessed from the term recommendation, avoiding the
need to develop different RSs to different applications.

In order to validate the proposed solution, we developed
a prototype using a real dataset, recommending two types
of items, movies and books. The prototype consisted in the
generation of two recommendation adapters, where the final
recommendation was processed from the term recommenda-
tion. It showed that is possible to recommend for different
Smart TV applications based on terms classified by EPG
categories.

II. RELATED WORK

Similar to other areas, Digital TV suffers from information
overload due to the growth in the number of TV programs
and channels. Therefore, some studies are focused on this
application domain [2], [3], [7], [12].

Chang et al. [3] proposed a TV program recommender
framework for Smart TV, addressing several issues (such
as accuracy, diversity, novelty, etc.), which contains three
components: TV program content analysis module, user profile
analysis module and user preference learning module.

Bambini et al. [2] described the integration of a rec-
ommendation system into FastWeb, a large IP Television

(IPTV) provider. The recommendation system implemented
both collaborative and content-based techniques, in order to
recommend programs and videos on demand.

Krauss et al. [7] proposed a system (TV Predictor) that
includes recommendation mechanisms to Smart TVs, aiming
to generate personalized program guides, which consist of
personal channels for each user. Additionally, the TV Predictor
Autopilot enables the TV set to automatically change the
currently viewed channel, allowing the user to watch the
personalized programming without further user input.

Unlike previously mentioned works, which intended to
recommend specific items (i.e., TV programs), in this work
the main goal is to propose an architecture to recommend
terms that can be used by different Smart TV applications. The
terms are extracted from textual descriptions of programs and
classified based on program categories specified on the EPG.
Thus, additionally to the program recommendation (component
of the proposed architecture), which is processed by the
analysis of user viewing histories, the recommendation of
terms is also generated. Therefore, the proposed architecture
aims to make the process of generating recommendations for
applications of different contexts easier, and this is the main
difference among this work and others mentioned before.

As a large part of content available is presented in textual
format [13] (EPG, for example), some works focus on text
categorization [13], [16].

Rossi et al. [13] proposed a textual document categorization
algorithm to define a model inspired on a bipartite heteroge-
neous network. The network consists of two different types
of objects: documents and terms extracted from their textual
descriptions, in which the training set has some previously
classified documents, and the induction consists of assigning
weights to terms related to the known document classes.
In our work, we adapt the proposed approach to perform
the term classification phase, considering each program as a
document and program categories as bipartite network classes,
as illustrated in Figure 1. Each program on the EPG has
its predefined categories, so the adaptation aimed only to
identify the relationship between terms extracted from program
descriptions and categories.

Fig. 1: Bipartite heterogeneous network.

III. PROPOSED SOLUTION

In this section, we present the proposed recommendation
architecture, that aims to generate term recommendations by
following Digital TV domain specifications to maximize the
user experience while watching TV, which are as follows:

100

• Different applications: several kinds of Smart TV
applications can be added to the Digital TV domain,
featuring different types of items such as books,
movies, news, etc. Thus, the generated recommenda-
tion must be intermediary, i.e., it must be possible
to generate a final recommendation from it, ensuring
interoperability;

• Remote control as interaction source: user inter-
acts with TV through the remote control. Therefore,
to avoid the use of this device and maximize user
experience while watching TV, information must be
collected by implicit feedback;

• Implicit feedback: Digital TV implicit feedback cal-
culation is different from other domains (e-commerce,
etc.), since there is a period that a user can consume
an item. For example, if a program is presented once a
week, a given user can only watch it on the exact day
and moment of its transmission. Thus, we calculate
a user implicit feedback by dividing the number of
times a program was watched by the number of times
it was presented;

• EPG with predefined categories: unlike other do-
mains, items in Digital TV (TV programs) generally
present two categories specified on the EPG. There-
fore, with program descriptions and their respective
categories it is possible to identify the relationship
between terms extracted from descriptions and cate-
gories (action, sports, news, etc.). So, it is possible to
recommend terms of a specific category related to an
application, i.e., to personalize term recommendation
by categories (action terms, news terms, sport terms,
etc.).

An overview of the proposed architecture is shown in
Figure 2, with the following components:

Fig. 2: General architecture.

• Data Management: collect (1) and manage informa-
tion to generate user and item profiles (3 and 2);

• Text Classification: classify terms extracted from
textual descriptions present on the EPG based on
program categories;

• Recommendation Systems: generate program and
term recommendations based on user and item profiles
(3 and 2) and classified terms (4);

• Recommendation Adapters: generate final recom-
mendation (7) from the term recommendation (6);

• Repository: store and retrieve (5) information from
user and item profiles.

A. Data Collection and Management

The data collection of TV programs and users is performed
by the Data Collector (Figure 2), which is a common element
of recommendation architectures [2]. In the proposed archi-
tecture, program information is extracted from the EPG, while
user information is collected implicitly by the analysis of their
TV viewing history.

The Profile Manager (Figure 2) is responsible for managing
the information collected from the data sources (1) and aims to
create user and item profiles that are stored in the repository
(5) and, subsequently, used during classification and recom-
mendation phases.

Program profiles are formed by their textual features ex-
tracted from the EPG (e.g., title, description, categories, etc.).
On the other hand, to create user profiles we calculate the
implicit feedback by counting the number of times a user u
viewed a particular program p and how often this program is
weekly presented, and apply Equation 1.

rup =

⌈
vup
fp

⌉
× 5, fp > 0, (1)

where vup is the number of times the user u watched the
program p and fp represents the number of times the program p
is weekly presented. The obtained rating is a normalized value
from 1 to 5. An example of applying Equation 1 is shown in
Table I, for example, user 1 watched program 1 three times in
a week, and the program is presented three times in the same
period. Thus, the user implicit feedback is 5.

TABLE I: Implicit feedback examples
User Id Prog Id Prog week

freq
User watch
freq

Impl rat-
ing

1 1 3 3 5
1 2 1 1 5
2 1 3 1 2
...

2 3 7 5 4

User profile information (3) is used by the Recommen-
dation Systems component (Figure 2) to generate recommen-
dations. On the other hand, item profile information (2 and
3) is used by the Recommendation Systems and by the Text
Classification component (Figure 2), which processes term
extraction and classification.

101

B. Term Extraction and Classification

This step consists of extracting terms from TV program
descriptions (performed by the Term Extraction component
(Figure 2)) and classifying them based on program categories
(performed by the Network Builder component (Figure 2)).

The term extraction is performed by mining TV program
textual descriptions to retrieve representative terms. To accom-
plish this task, we first discard stop words (less significant
words such as prepositions, articles, etc.) [4]. Then, we perform
stemming (reduce words to roots) [4]. At the end, each program
will have a vector of terms where each position in this vector
corresponds to the frequency of the term on the program
textual description.

The term classification consists of categorizing previously
extracted terms into EPG categories. Since each program on
the EPG has usually two predefined categories, it is possible to
identify the relation between term and category through their
co-occurrence. At the end of this phase, each term will have
a weight assigned to the categories.

To perform the term classification, we construct a bi-
partite heterogeneous network, which consists of a network
G = (V,E,W) with different types of objects V , a set of
connections between objects E — no link between objects of
the same type is needed — and a set of connection weights
W [13].

Our bipartite network is an adaptation of Rossi et al.
[13] proposed one, including two types of objects: terms
and programs. The term weight set is given by the matrix
W = {wT1 . . . wTα}T , where α is the number of terms extracted
from program descriptions and wij is the weight of the term i
to the category j. The matrix W has dimension α× φ where
φ is the number of categories. The TV program categories
are represented by the vector c = {c1, . . . , c|C|}. The terms
extracted from program descriptions are represented by the
vector f = {f1, . . . , fα}. Each object of the program type
has a weight vector for the categories, which is represented
by the matrix Y = {yT1 , . . . , yTθ }T , where θ is the number
of programs available, and ykj receives the value 1 if the
program k has the category j, 0 otherwise. The weight of
the relation between programs and terms is given by the
matrix D = {dT1 , . . . , dTθ }T , each position dki represents the
frequency of a term i in the description of a program k. The
matrix D has dimension θ × α.

The goal of this classification step is to construct the
matrix W . To accomplish this task, we use the IMBHN
algorithm [13], which allows inferring the influences of each
term for program categories. The IMBHN algorithm performs
the process by minimizing the cost function given by Equation
2 [13]:

Q(W) = 1
2

(∑w
j=1

∑θ
k=1(class(

∑α
i=1 dkiwij)− ykj)2

)
= 1

2

(∑w
j=1

∑θ
k=1 error

2
kj

)
,

(2)

where,

class(
α∑
i=1

dkiwij) =

{
1 cj = argmax

cj∗∈c
(
∑α
i=1 dkiwij∗)

0 otherwise
(3)

The algorithm aims to minimize the squared error between
the predicted and real values of the program categories. Gradi-
ent descent (Least-Mean-Square [13]) adjusts matrix W until a
minimum error or a maximum number of iterations is reached
(i.e., algorithm stop conditions1).

C. Term Recommendation

Before generating the term recommendation, we analyze
user and item profiles to process program recommendation,
in order to identify appropriate items for users, this task is
performed by the Program Recommender component (Figure
2).

In this work, we generate lists of recommended programs
for users by using a hybrid recommendation system, which is
generally a combination of collaborative filtering and content-
based approaches, however, any recommendation techniques
can be applied. For collaborative filtering we used Matrix Fac-
torization2 (MF), in which learning is performed by stochastic
gradient descent [6]. Additionally, we analyze user profiles
and include into MF recommended lists, programs with ratings
greater or equal to 3 in user histories.

Finally, we generate term recommendation through the
Term Recommender component (Figure 2). As each recom-
mended program has a vector of terms extracted from its
descriptions (Term Extraction (Figure 2)) and classified by
EPG categories (Network Builder (Figure 2), the weight of
a recommended term t for a user u is given by:

rtu =
1

|Pu|

|Pu|∑
p=1

ftp × rpu, |Pu| > 0, (4)

where |Pu| is the number of recommended programs
containing the term t to the user u, and ftp is the number
of occurrences of the term t on program p description and
rpu is the recommended rating to the program p for the
user u. Thus, terms more frequent in recommended program
descriptions tend to receive a higher weight. Using this weight,
an application can use recommended terms according to its
own requirements.

D. Recommendation Adapters

Recommendation Adapters (Figure 2) are responsible for
generating the final recommendation (7), which is used by
the Client Applications (Figure 2). Thus, for each application
a corresponding adapter must be created, which uses (6) the
Recommendation Service (Figure 4.2).

1maximum number of iterations = 1000, minimum error = 0.01.
2We use MyMediaLite Recommender System Library -

http://www.mymedialite.net/.

102

We create a recommendation adapter based on categories
related to the corresponding application and its list of users
(7), which are reported to the recommendation service (6),
and then the lists of recommended terms to users are returned
(6), such as, terms of action, comedy, sports, etc.

A possible technique to generate final recommendation is to
compute the similarity between vectors of recommended terms
and vectors of extracted terms from textual information of
recommendable items (e.g., movies, books, news, etc.). Here,
we use the cosine similarity [14], which compute the angle
between two vectors (common terms) x and y of size m.

An illustration of the final recommendation generation is
shown in Figure 3, where we want to select the most suitable
drama movie to the user interest among three possible choices
(i.e., Movie 1,2,3). The first step is to obtain the user recom-
mended terms of drama (i.e., user feature vector for the drama
category), then, we extract terms from movie descriptions, in
order to create each movie vector of terms (i.e., movie feature
vectors). Finally, we calculated the cosine similarity among the
user feature vector and each movie feature vector. Thus, based
on the calculated similarity, Movie 3 is the best related to the
user interest, since it achieved the greatest similarity, which
means that Movie 3 feature vector and the user feature vector
present a greater number of common terms.

Fig. 3: Example of final recommendation generation.

IV. VALIDATION

In order to validate our solution we used a real dataset,
which consists of information about TV users and their view-
ing histories. To collect the data we conduct a survey, where the
participants filled a form3 with information about the programs
they usually watch and their corresponding frequency view
during a week. The dataset is composed of 63 users, 112
programs and 29 types of program categories.

The main goal of the validation is to proof the interop-
erability of recommendations, i.e., recommend different items
from the term recommendation. Thus, we developed a proto-
type, which consists in creating two recommendation adapters

3http://goo.gl/kEDKWt

to recommend for the 63 users two different items, books and
movies. The proposed architecture should be integrated into
a DTV architecture. However, for matters of validation the
process took place in a desktop environment.

To generate the final recommendation (books and movies),
we create two recommendation adapters, one for each type of
item, where the following steps were performed:

1) We specified EPG categories related to the book and
movie applications (e.g., action, adventure, comedy,
drama, police and thriller);

2) We determined the list of users of each application,
here we considered the 63 participants of the survey;

3) Then, we processed term recommendation by cate-
gory, i.e., for each user we got recommended term of
action, adventure, comedy, etc.;

4) After obtaining the recommended terms, we gener-
ated the final recommendation of books and movies.
The process was performed as follows: first, we
mined item descriptions to extract representative vec-
tors of terms. Then, we calculated the similarity (i.e.,
cosine similarity) between recommended terms by
category for each user and extracted term vectors,
recommending items with greater similarity.

The proposed approach can be used to recommend different
types of items (such as videos, news, products, etc.), since
they have textual description and related categories. Therefore,
the same way the movie and book recommendations were
processed it could be done for other types of items.

In order to evaluate our solution, we compare it with
a non-personalized approach (i.e., without classification and
recommendation), in which the user feature vector consists
of the occurrence of terms extracted from user histories, i.e.,
the weight assigned to each term here is given by its number
of occurences in program descriptions. The main research
question we want to answer is the following:

P1 - The use of our personalized approach (PA) improves
the precision of the final recommendation compared to the
non-personalized one (NP)?

To answer that, we formulate the following hypotheses:

H0: The precision of PA is greater then NP for category c
and item i.

Where c is a category of type action, adventure, comedy,
drama, police or thriller, and i is an item of type movie or
book. So that, we have 12 hypotheses.

Since the assumption of normality was not met based
on Shapiro-Wilk test, we used the non-parametric test of
Wilcoxon signed-rank (95% confidence, i.e., α = 0.05).

In Table II can be seen the results of movie recommenda-
tion precisions, i.e., the mean of the precisions (P@54) calcu-
lated for each user, and the p-value related to the hypothesis
tests, where we conclude that our solution outperformed the
NP approach for the categories action, police and thriller. For
the remainder, the two approaches are statistically equal.

4Given a category, how many of the top 5 recommended movies are of that
same category?

103

TABLE II: Movie recommendation precisions
Categories

Act. Adv. Com. Dra. Pol. Thr.
PA 66% 44% 34% 23% 44% 38%
NP 50% 45% 34% 26% 20% 30%

p-value 1e-06 0.44 0.22 0.82 4e-11 7e-06

In Table III can be seen the results of book recommendation
precisions, i.e., the mean of the precisions (P@45) calculated
for each user, and the p-value related to the hypothesis tests,
where we conclude that our solution outperformed the NP
approach for all studied categories, except for drama.

TABLE III: Book recommendation precisions
Categories

Act. Adv. Com. Dra. Pol. Thr.
PA 47% 33% 20% 7% 44% 74%
NP 42% 25% 14% 29% 23% 38%

p-value 0.04 0.001 0.01 1 1e-09 8e-11

Finally, we can conclude that the use of our solution of ex-
traction, classification and recommendation of terms achieved
better results for both, movie and book recommendations.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a recommendation architecture
based on the extraction and classification of terms from TV
program descriptions, applied to Digital TV domain. The
proposed approach for the term extraction is important to
overcome problems arising from the interaction constraints
between users and TV. Another significant contribution is
the term classification and recommendation approach, which
allows different applications to use the generated recommen-
dations, which is not possible in approaches that recommend
items.

The prototype showed the feasibility of the proposed so-
lution, ensuring that is possible to recommend different items
using the term recommendation approach. Thus, to generate
the final recommendation to a given application, it is only
necessary to create a corresponding recommendation adapter,
which uses the term recommendation based on the categories
from the EPG closely related to the application. So that, only
the recommended terms that have higher weight for these
categories are returned.

As future work, a study about different ways to extract
terms will be carried out. Some works have focused on
the extraction of product attributes [5], [17]. The proposed
approaches in these studies can be evaluated and integrated
to the current proposal with the aim to obtain a better repre-
sentation of TV programs, and hence, to get more significant
recommendations.

As the solution proposed in this paper is based on the
extraction of EPG content, which in some cases may contain
reduced information [10], a possible future work is to investi-
gate ways to obtain data from different sources to enrich the
EPG information, and improve the textual representation of
TV programs, for example, using information from Wikipedia6

[10].

5Given a category, how many of the top 4 recommended books are of that
same category?

6http://www.wikipedia.org/

ACKNOWLEDGMENT

The authors would like to thank CAPES for support this
work.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of
recommender systems: a survey of the state-of-the-art and possible
extensions. TKDE, IEEE, 17(6):734–749, 2005.

[2] R. Bambini, P. Cremonesi, and R. Turrin. A recommender system for
an iptv service provider: a real large-scale production environment. In
F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender
Systems Handbook, pages 299–331. Springer, 2011.

[3] N. Chang, M. Irvan, and T. Terano. A tv program recommender
framework. Procedia Computer Science, 22(0):561 – 570, 2013.
KES2013.

[4] A. Fariña, N. R. Brisaboa, G. Navarro, F. Claude, A. S. Places, and
E. Rodrı́guez. Word-based self-indexes for natural language text. ACM
Trans. Inf. Syst., 30(1):1:1–1:34, Mar. 2012.

[5] R. Ghani, K. Probst, Y. Liu, M. Krema, and A. Fano. Text mining for
product attribute extraction. SIGKDD Explor. Newsl., 8(1):41–48, June
2006.

[6] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37, Aug. 2009.

[7] C. Krauss, L. George, and S. Arbanowski. Tv predictor: Personalized
program recommendations to be displayed on smarttvs. In Proceedings
of the 2Nd International Workshop on BigMine, BigMine ’13, pages
63–70, New York, NY, USA, 2013. ACM.

[8] G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-
to-item collaborative filtering. Internet Computing, IEEE, 7(1):76–80,
2003.

[9] A. Martinez, J. Pazos Arias, A. Vilas, J. Duque, and M. Nores. What’s
on tv tonight? an efficient and effective personalized recommender
system of tv programs. Consumer Electronics, IEEE Transactions on,
55(1):286–294, 2009.

[10] C. Musto, F. Narducci, P. Lops, G. Semeraro, M. Gemmis, M. Barbieri,
J. Korst, V. Pronk, and R. Clout. Enhanced semantic tv-show repre-
sentation for personalized electronic program guides. In J. Masthoff,
B. Mobasher, M. Desmarais, and R. Nkambou, editors, User Modeling,
Adaptation, and Personalization, volume 7379 of Lecture Notes in
Computer Science, pages 188–199. Springer Berlin Heidelberg, 2012.

[11] F. Ricci, L. Rokach, and B. Shapira. Introduction to recommender
systems handbook. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,
editors, Recommender Systems Handbook, pages 1–35. Springer, 2011.

[12] R. Rolim, F. Barbosa, A. Costa, G. Calheiros, H. Almeida, A. Perkusich,
and A. Martins. A recommendation approach for digital tv systems
based on multimodal features. In Proceedings of the 29th Annual ACM
SAC, SAC ’14, pages 289–291, New York, NY, USA, 2014. ACM.

[13] R. Rossi, T. de Paulo Faleiros, A. de Andrade Lopes, and S. Rezende.
Inductive model generation for text categorization using a bipartite
heterogeneous network. In 12th ICDM, 2012, pages 1086–1091, 2012.

[14] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collabo-
rative filtering recommendation algorithms. In Proceedings of the 10th
WWW, WWW ’01, pages 285–295, New York, NY, USA, 2001. ACM.

[15] X. Shi and J. Hua. An adaptive preference learning method for future
personalized tv. In KIMAS’05, 2005. International Conference on, pages
260–264, 2005.

[16] Y. Song, L. Zhang, and C. L. Giles. Automatic tag recommendation
algorithms for social recommender systems. ACM Trans. Web, 5(1):4:1–
4:31, Feb. 2011.

[17] T.-L. Wong, W. Lam, and T.-S. Wong. An unsupervised framework for
extracting and normalizing product attributes from multiple web sites.
In 31st annual international ACM SIGIR, SIGIR ’08, pages 35–42, New
York, NY, USA, 2008. ACM.

104

A Collaborative Method to Reduce the Running
Time and Accelerate the k-Nearest Neighbors Search

Alexandre Costa
Federal University of Campina Grande

Campina Grande, Brazil
antonioalexandre@copin.ufcg.edu.br

Reudismam Rolim
Federal University of Campina Grande

Campina Grande, Brazil
reudismam@copin.ufcg.edu.br

Felipe Barbosa
Federal University of Campina Grande

Campina Grande, Brazil
feliperamos@copin.ufcg.edu.br

Gustavo Soares
Federal University of Campina Grande

Campina Grande, Brazil
gsoares@computacao.ufcg.edu.br

Hyggo Almeida
Federal University of Campina Grande

Campina Grande, Brazil
hyggo@dsc.ufcg.edu.br

Angelo Perkusich
Federal University of Campina Grande

Campina Grande, Brazil
perkusic@dee.ufcg.edu.br

DOI reference number: 10.18293/SEKE2015-153

Abstract—Recommendation systems are software tools and
techniques that provide customized content to users. The col-
laborative filtering is one of the most prominent approaches in
the recommendation area. Among the collaborative algorithms,
one of the most popular is the k-Nearest Neighbors (kNN)
which is an instance-based learning method. The kNN generates
recommendations based on the ratings of the most similar users
(nearest neighbors) to the target one. Despite being quite effective,
the algorithm performance drops while running on large datasets.
We propose a method, called Restricted Space kNN that is based
on the restriction of the neighbors search space through a fast
and efficient heuristic. The heuristic builds the new search space
from the most active users. As a result, we found that using only
15% of the original search space the proposed method generated
recommendations almost as accurate as the standard kNN, but
with almost 58% less running time.

Keywords—knn, recommendation systems, collaborative filter-
ing, space restriction.

I. INTRODUCTION

The emergence of Web 2.0 brought a significant increase in
the volume of information available on the Internet, contribut-
ing to the information overload problem [10], that overwhelm
the user with useless (in most cases) choices. Hence, recom-
mendation systems (RS) [15], [1], [17] gained prominence
and became very attractive for both the production sector and
academic field. These systems bring together computational
techniques in order to provide custom items (movies, music,
books, etc.) to users, thus facilitating their choices. In the rec-
ommendation area, a prominent approaches is the collaborative
filtering (CF) [22] that recommends items based on ratings of
users with common interests to the target user. The state-of-the-
art in recommendation field is formed by latent factor models
[18], where some of the most successful implementations are
based on Matrix Factorization (MF) [12]. In its basic form, the
MF characterizes users and items with vectors of latent factors
inferred from the pattern of the rated items. The latent factors
represent aspects of physical reality, but we can not specify
which aspects are these, therefore it is impossible to justify
the provided recommendation.

Considered state-of-the-art, before the emergence of latent
factor models, the k-Nearest-Neighbors (kNN) [11], [20], [21]
is an instance-based learning algorithm. In the recommendation
area this method is widely used as a collaborative technique
for rating prediction. In contrast to latent factor techniques,
the kNN recommendations can be justified, since they are
generated from the nearest neighbors data. The main limitation
of kNN is that its performance is inversely proportional to the
size of the dataset. As the number of users and items grows, the
computational cost to apply the method rises quickly, which
decreases its time performance.

In this paper, we propose a collaborative method to reduce
the running time and accelerate the nearest neighbor search,
called Restricted Space kNN (RS kNN). This method restricts
the search space to a percentage p of the original one, using a
heuristic based on selecting the most active users. As a result,
we found that with only 15% of the original space it is possible
to generate high accuracy recommendations, but with almost
58% less running time.

This paper is organized as follows: In Section II, we present
a background of the recommendation area. In Section III, we
describe the related work. In Section IV, the proposed method
is presented. Section V contains a description of the experiment
conducted and its results. Section 6 refers to the conclusion of
the work.

II. BACKGROUND

In this Section, we present basic concepts of the recom-
mendation area, that will allow to understand the proposed
method.

A. Collaborative Filtering

Collaborative Filtering is one of the most recurring ap-
proaches in the recommendation area. Its techniques recom-
mend items based on the ratings of other users. The ratings
can be implicit, when they are measured based on user’s
behavior (e.g, viewing time, number of hits, etc.), or explicit,
when users clearly express their interest on items through
numerical grades, for example. The idea behind CF is that
users with similar rating pattern tend to rate new items in a

105

similar manner. In CF, an instance is represented by a user
feature vector that records which items were evaluated and
which not. An advantage of collaborative techniques is the
object representation independence, since CF techniques use
only user ratings, which enables to work even with items in
which the content extraction can be complex, such as audio
and video. Another advantage refers to the recommendations
diversity, since CF can suggest items different from those the
user showed interest in the past.

Collaborative methods can be grouped as memory-based
or model-based algorithms. In memory-based algorithms the
dataset is loaded at the moment in which the recommendations
are generated. They are easier to implement and can better
adapt to changes of user interests. In contrast, model-based al-
gorithms generate recommendations using a model previously
constructed from the dataset. They can provide more accurate
recommendations, but the model construction is an expensive
step.

A common scenario in collaborative filtering is the rating
prediction, where a user rating to a given item is inferred. In
this scenario, it is assumed that items with higher values are
more interesting. Ratings can be represented in different scales,
usually in 1-5 stars. The quality of the prediction is normally
measured through error-based metrics, calculated from the
difference between the predicted value and the real user rating.
A common metric for this purpose is the Mean Absolute Error
(MAE) represented by Equation 1, where r(u, i) is the rating
of a user u to an item i, r′(u, i) corresponds to the prediction
generated for u about i and |Iu| is the size of the item set
evaluated by u.

MAE =
1

|Iu|
·
∑
i∈Iu

|r′(u, i)− r(u, i)| (1)

B. k-Nearest Neighbors

The kNN is a memory-based method, thus it is necessary
to have all the training set stored to do the recommendation
process. In larger datasets the kNN computational cost can
grow quickly. This occurs because as the number of users
and items grows the kNN demands more memory to store the
data, more similarity calculations and more time to perform the
neighbors selection (because the search space becomes larger).

Recommendations are based on the k nearest neighbors
ratings, where a similarity measure to select the nearest neigh-
bors must be defined. This measure has a direct impact on
the kNN results, because it is used to determine how close
two users are. The similarity between two users is calculated
from the items they have rated simultaneously. A popular
similarity measure in the recommendation field is the Pearson
correlation, represented by the Equation 2, where |Iau| is the
size of the item set simultaneously evaluated by users u and
a, x = r(u, i) and y = r(a, i). The Equation 2 differs from
the traditional form, because it is adapted to perform faster
calculations.

sim(a, u) =

|Iau|
∑

i∈Iau

xy −
∑

i∈Iau

x ·
∑

i∈Iau

y√
[|Iau|

∑
i∈Iau

x2 − (
∑

i∈Iau

x)2] · [|Iau|
∑

i∈Iau

y2 − (
∑

i∈Iau

y)2]

(2)

The recommendation process consists in making a prediction for
the set of items not evaluated by the user. One of the most common
ways to accomplish this goal is through the Equation 3, where Ua is
the set of nearest neighbors of the target user a and r(a) corresponds
to the average ratings of the user a.

r′(a, i) = r(a) +

∑
u∈Ua

sim(a, u) · (r(u, i)− r(u))∑
u∈Ua

sim(a, u)
(3)

III. RELATED WORK

Boumaza and Brun [3] proposed a method based on the restriction
of the nearest neighbors search space. In traditional search, it is
necessary to check the similarity among the target user with each other
user in the dataset, and then select the k nearest neighbors. On large
datasets, this task becomes expensive. In their work, Boumaza and
Brun used a stochastic search algorithm, called Iterated Local Search
(ILS) [13]. The ILS returns a subset of users, Global Neighbors (GN),
in which the neighbors are chosen. The idea is to accelerate the
neighborhood formation by seeking the neighbors in a smaller subset,
rather than search in the entire dataset. As a result, the proposed
method can reduce the search space to 16% of the original while
maintaining the accuracy of recommendations near to those achieved
by traditional search. We adapt their work by introducing a new
heuristic to perform a faster and less expensive GN selection, instead
of using the ILS algorithm.

Friedman et al. [5] proposed an optimization to k-Dimensional
Tree (kd tree). Originally proposed by Bentley [2], the kd tree is an
algorithm for storing data to be retrieved by associative searches. The
kd tree structure provides an efficient search mechanism to examine
only those points closer to the point of interest, which can reduce the
nearest neighbors search time from O(N) to O(logN). In Friedman’s
work, the goal was to minimize the number of points examined
during the search, that resulted in a faster search. Gother et al. [8]
developed a method which represents a slight variation of the work
done by Friedman et al. [5]. In the kd tree construction each node
is divided into two, using the median of the dimensions with greater
variance between the points in the subtree, and so on. As a result,
the method got 25% faster in the classification step. The kd tree
based methods differ from ours, because they accelerate the neighbor
selection using a non-linear search by partitioning the whole space
into non-overlapping regions.

Other works use the approximate nearest neighbors (ANN) con-
cept to deal with the kNN search problem. The ANN methods do not
guarantee to return the exact nearest neighbors in every case, but in
the other hand, it improves speed or memory savings. An algorithm
that supports the ANN search is locality-sensitive hashing (LSH).
According to Haghani et al. [9], the main idea behind the LSH is to
map, with high probability, similar objects in the same hash bucket.
Nearby objects are more likely to have the same hash value than those
further away. Indexing is performed from hash functions and from
the construction of several hash tables to increase the probability of
collision between the nearest points. Gionis et al. [7] develop a LSH
method to improve the neighbors search for objects represented by
the points of dimension d in a Hamming space {0, 1}d. Their method
was able to overcome in terms of speed the space partitioning tree
methods, when data are stored on disk. Datar et al. [4] proposed

106

a new version of the LSH algorithm that deals directly with points
in a Euclidean space. To evaluate the proposed solution experiments
were carried out with synthetic datasets, sparse vectors with high
dimension (20 ≤ d ≤ 500). As a result, they obtained performance
of up to 40 times faster than kd tree. The ANN methods are related
to ours, because they aim to accelerate the neighbor search by giving
up accuracy in exchange for time reduction.

IV. RESTRICTED SPACE KNN

In standard kNN, the nearest neighbors are selected by checking
the similarity of the target user with each other user in the dataset.
For every user, a distinct neighborhood has to be formed. When
the number of users and items in the training set grows, the kNN
running time decreases, because its computational cost rises quickly.
To minimize this problem we proposed a collaborative method derived
from the k-Nearest Neighbors for rating prediction. Our method is
based on the restriction of the neighbor search space. In Figure 1,
we can see the main idea of the proposed method in contrast to the
standard approach. The search space is reduced to a percentage p of
the original one, which is accomplished by selecting a subset of users
capable to offer ratings to generate accurate recommendations. Then,
the neighbor search is performed in the new space, which allows it to
be faster, since the space becomes smaller. Finally, the most similar
users to the target one are chosen to form his neighborhood.

Fig. 1: Standard search and restricted Search

The RS kNN was inspired by the work presented by Boumaza and
Brun [3]. Their method was able to achieve accurate recommendations
with a reduced search space that corresponds to 16% of the original
one. A stochastic search algorithm called Iterated Local Search does
the user selection. The ILS is an efficient algorithm for optimization
problems, but requires a considerable running time and expensive
operations to achieve its results. Given this limitation, we saw an
opportunity to improve Boumaza and Brun’s work [3]. Therefore,
instead of using the ILS algorithm, we propose a faster and accurate
heuristic to select the percentage p of users who will compose the
new search space.

Our approach aims to reduce computational cost and improve
running time, but it is susceptible to lose recommendation accuracy,
since it works with a considerably smaller amount of data. In order
to minimize such loss, it is necessary to define an efficient heuristic
for the user selection. In our work, we investigated the following
heuristics1:

• Similarity Average: users are selected according to their
similarity average. For each user, we calculate his similarity
with each other that remains in the dataset and then get the
average. Those with the highest averages are chosen;

• Number of Connections: select users according to their
ability to be neighbors. Each time a user shows a positive

1The Similarity Average and Number of Connections were already intro-
duced in [3]. The others were proposed in our work.

similarity with another he receives one point. In the end,
those with the highest scores are selected;

• Neighbors Recurring: users are scored according to the
number of times that arise between the k nearest neighbors
of a target user. For example, we check the k nearest
neighbors of a target user and then assign one point for
each neighbor. This process is repeated with all users in the
dataset and at the end, we have the list of the most common
neighbors;

• Most Active Users: it selects users according to the number
of items rated. Those with the largest quantities are chosen;

• Distinct Items: it corresponds to a variation of the previous
heuristic, with the aim of bringing together users with the
greatest possible number of distinct items. It selects users
that, together, offers the most distinct set of items.

V. EXPERIMENT

We conducted an experiment to evaluate the proposed method.
The experiment was divided into two stages. The first aims to
evaluate the heuristics described in Section IV, in order to choose
the most suitable to compose our method. The second corresponds
to the evaluation of the proposed method by comparing it with
implementations developed to accelerate the kNN search. In the
experiment, we focused on measuring time performance (in seconds)
and accuracy (error rate of the predictions, measured by the Mean
Absolute Error metric).

The experiment was executed on a machine with Core i7 2300K
(3.4 GHz) processor, 8GB of DDR3 RAM and Windows 7 64-bit.
We used the Java language and Eclipse2 (Kepler) in its 64-bit version
for developers. We also used two external libraries, the MyMediaLite
[6], which is specialized in recommendation systems methods, and
the Java Statistical Analysis Tool (JSAT) [16], which offers dozens
of machine learning algorithms.

A. Dataset

We choose two popular datasets that contain real data from movie
domain. The first one is the MovieLens 100K, which has 943 users,
1,682 movies and 100,000 ratings. The second has 6,040 users, 3,952
movies and 1,000,209 ratings. Both have ratings on a scale of 1 to 5
stars that represent the level of the user interest to an item.

The data were segmented following the 10-fold cross-validation
pattern, which consists in the separation of 90% of the data for
training and 10% for testing. This process was repeated five times
to provide a final amount of 50 samples for execution.

B. Setting Parameters

Before going on with the experiment we had to set some parame-
ters. Thus, we used the standard kNN algorithm for rating prediction,
whose implementation was based on the source-code available in
MyMediaLite library. We performed 10 execution on the MovieLens
100K dataset, focusing in accuracy. The parameters and their values
are listed below:

• Similarity measure: we compared the Pearson correlation
with another popular measure in the recommendation area,
the Cosine similarity [19]. As we can see in Table I, the
Pearson correlation provides a lower MAE, which means
more accurate recommendations. Therefore, we chose the
Pearson correlation as similarity measure for our approach.

2www.eclipse.org

107

• Number of nearest Neighbors (k): choosing the optimal
value for k is not a trivial task, because it can vary according
to the data. In Figure 2, we can see that for the MovieLens
100K the best k is 30, because it provided the lowest error
rate. We used the same k for the larger dataset to maintain
the speed gains. In addition, a greater k would increase the
running time.

• Percentage of the search space (p): we used the Most
Active Users heuristic to find the optimal value for p. A
greater p would give better MAE, but at the expense of
the running time. Thus, our choice was given by a trade-
off between the MAE and the running time. According to
the Figure 3 when p reaches 15%, it seems to be the best
trade-off. Besides it, we thought that should be important to
choose a p closer to the one in Boumaza and Brun [3], since
our work is inspired by theirs.

TABLE I: Comparison of Pearson Correlation and Cosine Similarity

Similarity measure MAE
Pearson 0.6813
Cosine 0.7100

Fig. 2: Variation of k and its respective error rates

Fig. 3: Variation of p and its respective error rates

C. Heuristic Evaluation

The heuristic evaluation process was based on the time needed to
select the users to compose the new search space and the accuracy that
they can provide. Tables II and III contain the results of each heuristic.
Similarity calculations are expensive, thus the heuristics Similarity
Average, Number of Connections and Neighbors Recurring demanded
the largest time to select their users. The others showed significantly

shorter times, because they use less expensive operations, since there
is no similarity computing. Regarding the accuracy, the results were
more homogeneous, there was even a decrease in error rate in the
larger dataset.

The results showed the heuristic Most Active Users as the best
option to compose the proposed method. It provided the smallest
error rate, resulting in more accurate recommendations. In addition,
the selection time was the best among the heuristics and remained
almost constant in the tests with the larger dataset.

TABLE II: Results of the heuristic evaluation on MovieLens 100K

Heuristic Time
(s)

Error
(MAE)

Most Active Users 0.001 0.6937
Distinct Items 0.072 0.6954
Similarity Average 1.604 0.7053
Number of Connections 1.591 0.7046
Neighbors Recurring 1.631 0.6994

TABLE III: Results of the heuristic evaluation on MovieLens 1M

Heuristic Time
(s)

Error
(MAE)

Most Active Users 0.002 0.6546
Distinct Items 1.097 0.6549
Similarity Average 92.713 0.6588
Number of Connections 92.652 0.6579
Neighbors Recurring 100.390 0.6553

D. Method Evaluation

To evaluate our method, we chose four approaches that cor-
respond to implementations derived from the kNN method. They
were developed to accelerate the nearest neighbor selection. Their
performance were measured under accuracy and running time and the
results are presented in Tables IV and V. The compared approaches
are:

• k-dimensional tree (kd tree): implemented in JSAT tool.
Corresponds to the traditional form [2];

• Locality Sensitive Hash (LSH): implemented in JSAT tool.
It was based on the algorithm presented by Dating et al. [4];

• Standard k-Nearest Neighbors (kNN): corresponds to the
kNN for rating prediction. We implemented it based on the
source code of the MyMediaLite library;

• Iterated Local Search (ILS) kNN: we implemented this
method based on the paper presented by Boumaza and Brun
[3].

Three of them (standard kNN, ILS and the RS kNN) are collabo-
rative techniques from the recommendation field that were developed
focusing on the rating prediction task. They usually deal with sparse
vectors and try to “fill” each missing value of the vectors. Regarding
the running time, our method achieved the best values, being almost
58% faster (in MovieLens 1M) than the standard kNN, which took
second place. The running time of ILS was much greater than the
others, because its fitness function needs to check the errors provided
by the subsets of users build at each iteration of the algorithm.
Furthermore, as a non-deterministic method, it is impossible to predict
the number of iterations needed to find the final subset. As expected,
the accuracy of the recommendations generated by our method was
a little lower than standard kNN, but considering the running time
gain, the results were very promising.

The kd tree and LSH methods were originally implemented for
the classification task. They generally work with dense vectors and

108

aim to label an unknown instance. In the proper domain, they are
capable to reduce the search time from linear to logarithmic level,
although in this experiment this behavior was not evidenced. The
classification methods presented poor performances in running time
and accuracy. The kd tree tends to lose great performance with high
dimension vectors (d ≥ 10) [7], [5], a problem known as the curse of
dimensionality [14], which contributes to the low performance, since
the datasets are composed of high dimension sparse vectors. The LSH
prioritizes time instead of accuracy, since it returns the approximated
nearest neighbors. This reason justifies the high error rate of the LSH.
The running time performance of the LSH was unexpected, because
this algorithm is designed to be fast even with high dimension data.
We believe the data sparsity was responsible, because it reduces the
probability of collisions, making difficult to group users in the same
hash bucket and consequently it increases the search time.

TABLE IV: Results on MovieLens 100K

Method Running Time
(s) MAE

kd tree 22.24 0.8333
LSH 11.13 0.7528
ILS 1233.15 0.7083
kNN 4.35 0.6826
RS kNN 2.45 0.6937

TABLE V: Results on MovieLens 1M

Method Running Time
(s) MAE

kd tree 1576.01 0,7875
LSH 454.42 0,7014
ILS 7892.7 0,6591
kNN 242.13 0,6500
RS kNN 100.87 0,6546

VI. CONCLUSION

In this paper, we presented the Restricted Space kNN, a collabo-
rative method to reduce the running time and accelerate the k-Nearest
Neighbors search. The RS kNN focuses on the idea of restricting the
nearest neighbors search space using a fast and efficient heuristic for
user selection. The method was capable to perform up to 58% faster
than standard kNN. The Most Active Users heuristic was quick in
reducing the search space, getting together a set of users able to
provide accurate recommendations. Using only 15% of the original
search space we have achieved an error rate just 0.7% higher than
the standard method.

The main limitation of our method refers to the validation process.
We evaluated it in only one domain, which makes difficult to general-
ize the results achieved. Our method showed great performance gains
in exchange for a small reduction in accuracy, however, we cannot
guarantee that the error rate will remain constant in other domains.

As future work, we intend to investigate the effects of the
proposed method in a larger dataset, because we noticed that the
accuracy gap between our method and the standard kNN became
smaller when the data increased. In the MovieLens 100K, we obtained
an absolute difference of 0.0111, whereas with MovieLens 1M, the
difference was reduced to 0.0046. In addition, we also intend to
investigate the proposed method in the item predicting scenario with
implicit feedback.

REFERENCES

[1] A. Azaria, A. Hassidim, S. Kraus, A. Eshkol, O. Weintraub, and
I. Netanely. Movie recommender system for profit maximization. In
Proceedings of the 7th ACM Conference on Recommender Systems,
RecSys ’13, pages 121–128, New York, USA, 2013. ACM.

[2] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, Sept. 1975.

[3] A. Boumaza and A. Brun. Stochastic search for global neighbors
selection in collaborative filtering. In Proceedings of the 27th Annual
ACM Symposium on Applied Computing, SAC ’12, pages 232–237, New
York, NY, USA, 2012. ACM.

[4] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the
Twentieth Annual Symposium on Computational Geometry, SCG ’04,
pages 253–262, New York, USA, 2004. ACM.

[5] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for
finding best matches in logarithmic expected time. ACM Trans. Math.
Softw., 3(3):209–226, Sept. 1977.

[6] Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme.
Mymedialite: A free recommender system library. In Proceedings of
the Fifth ACM Conference on Recommender Systems, RecSys ’11, pages
305–308, New York, USA, 2011. ACM.

[7] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. In Proceedings of the 25th International
Conference on Very Large Data Bases, VLDB ’99, pages 518–529,
San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[8] P. Grother, G. T. Candela, and J. L. Blue. Fast implementations of
nearest neighbor classifiers. Pattern Recognition, 30(3):459–465, 1997.

[9] P. C.-M. K. A. P. Haghani. Lsh at large – distributed knn search in
high dimensions. 2008.

[10] R. Janssen and H. de Poot. Information overload: Why some people
seem to suffer more than others. In Proceedings of the 4th Nordic Con-
ference on Human-computer Interaction: Changing Roles, NordiCHI
’06, pages 397–400, New York, USA, 2006. ACM.

[11] L. Jiang, Z. Cai, D. Wang, and S. Jiang. Survey of improving k-nearest-
neighbor for classification. In Proceedings of the Fourth International
Conference on Fuzzy Systems and Knowledge Discovery - Volume 01,
FSKD ’07, pages 679–683, Washington, USA, 2007. IEEE Computer
Society.

[12] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37, Aug. 2009.

[13] H. R. Lourenco, O. C. Martin, and T. Stutzle. Iterated local search.
In Handbook of Metaheuristics, volume 57 of International Series in
Operations Research and Management Science, pages 321–353. Kluwer
Academic Publishers, 2002.

[14] F. Murtagh, J.-L. Starck, and M. W. Berry. Overcoming the curse of
dimensionality in clustering by means of the wavelet transform. The
Computer Journal, 43(2):107–120, 2000.

[15] D. H. Park, H. K. Kim, I. Y. Choi, and J. K. Kim. A literature review
and classification of recommender systems research. Expert Syst. Appl.,
39(11):10059–10072, Sept. 2012.

[16] E. Raff. Java Statistical Analysis Tool. https://code.google.com/p/
java-statistical-analysis-tool/, Sept. 2013.

[17] R. Rolim, F. Barbosa, A. Costa, G. Calheiros, H. Almeida, A. Perkusich,
and A. Martins. A recommendation approach for digital tv systems
based on multimodal features. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing, SAC ’14, pages 289–291, New
York, NY, USA, 2014. ACM.

[18] M. Rossetti, F. Stella, and M. Zanker. Towards explaining latent factors
with topic models in collaborative recommender systems. In Database
and Expert Systems Applications (DEXA), 2013 24th International
Workshop on, pages 162–167, Aug 2013.

[19] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collabo-
rative filtering recommendation algorithms. In Proceedings of the 10th
International Conference on World Wide Web, WWW ’01, pages 285–
295, New York, USA, 2001. ACM.

[20] B. Wang, Q. Liao, and C. Zhang. Weight based knn recommender sys-
tem. In Intelligent Human-Machine Systems and Cybernetics (IHMSC),
2013 5th International Conference on, volume 2, pages 449–452, Aug
2013.

[21] L. Xiong, Y. Xiang, Q. Zhang, and L. Lin. A novel nearest neigh-
borhood algorithm for recommender systems. In Intelligent Systems
(GCIS), 2012 Third Global Congress on, pages 156–159, Nov 2012.

[22] J. Zhou and T. Luo. Towards an introduction to collaborative filtering. In
Computational Science and Engineering, 2009. CSE ’09. International
Conference on, volume 4, pages 576–581, Aug 2009.

109

Achieving Efficient Access Control via XACML
Policy in Cloud Computing

Abstract—One primary challenge of applying access control
methods in cloud computing is to ensure data security while
supporting access efficiency, particularly when adopting multiple
access control policies. Many existing works attempt to propose
suitable frameworks and schemes to solve the problems, however,
these proposals only satisfy specified use cases. In this paper, we
take XACML as the policy language and build up a logical model.
Based on this, we introduce the fine-grained data fragment
algorithm to optimize the policies, whose resource property
represents physical meaningful data blocks. Data are organized
in a tree structure, where each leaf node represents a minimal
physical meaningful data block, and internal nodes are combined
data types. This method can eliminate conflicts and redundancies
among rules and policies, thus to refine the policy set and achieve
fine-grained access control. Our approach can also be applied to
processing multi-types of data, and experiments are carried out
to show the improvements of efficiencies.

Keywords-Access control; Policy optimization; Data fragment;
XACML; cloud computing

I. INTRODUCTION

In the last several years, cloud computing brings us great
convenience on data outsourcing by providing nearly unlimited
storage resources on demand [1]. This allows content providers
to create, manage, and control the personal data remotely with
high efficiency. Moreover, the charge manner of cloud service
is pay-as-you-use which costs relatively lower prices compared
with self-maintenance. As promising as it is, cloud storage
service also involves many challenges [2], such as the problems
of fine-grained access control on multiple data types and the
confidentiality of private data. The traditional access control
methods are only applicable to rigid data objects, and the
policy decision on a request results in either permit or deny.

Motivated by the requirements of high performance and
flexible access control, XACML (eXtensible Access Control
Mark-up Language) [3] is proposed to solve data access
problem in cloud computing. XACML is an XML-based
language, and it contains a hierarchical logic model which is
applied to a particular decision request in access control
policies for Web applications and Web services. Meanwhile,
XACML offers a large set of built-in functions, data types,
combining algorithms, and standard profiles for defining
application-specific features. There are lots of prior works on
applying XACML as access control policy, which focus on
policy attesting, conflict detection and policy optimization, etc.

Mont and Pearson propose the ‘sticky policy’ based on
XACML to facilitate access control for outsourced data [4] [5],
and Trabelsi extends this policy to the cloud environment [6].
However, their proposals only focus on the system framework
and the shared data is considered in a single type. Hu and Ahn
introduce a description logic (DL)-based policy management
approach for Web access control policies, they adopt Answer
Set Programming (ASP) to formulate XACML [7], and they
further propose a method for conflict detection and resolution
in [8]. However, DL cannot fully cover XACML semantics,
and it fails to handle complex comparisons, multi-type of
decisions as well as combining algorithms. Wang and Feng
propose a rule redundant elimination method based on related
types of hierarchical attributes tree and provide an XACML
policy optimization engine [9], but the access efficiency
depends on the amount of rules. Said and Shehab propose a
framework for policy evaluation [10], and Lin and Rao
suggest a similarity measurement technique among policies
[11]. Meanwhile, Bertolino and Daoudagh propose an
automated testing method for XACML [12]. Their works are
worth well in policy attesting and measurement, but they do
not achieve a practical scheme for optimizing policy with
consideration of fine-grained access control. Many practical
models of XACML are built in [13] [14] [15], but these
models are not considerate in decision efficiency, especially
for large scale of policies.

Compared with existing policy models, XACML is more
comprehensive and intuitive for applying to cloud access
control. In this paper, we analyze the logic model of XACML
by taking account of all its components and internal functions.
Based on this model, we propose the data fragmentation and
policy refinement algorithms via building up a three-layers
resource access tree, so as to achieve fine-grained access
control over multi-types of outsourced data. In the end, we
discuss a case study on healthcare records management, and
the performances are illustrated by experiments using
XACML tools.

II. XACML ANALYSIS

XACML is standardized by the Organization for the
Advancement of Structured Information Standards (OASIS) in
2003. In XACML, the complete policy applicable to a
particular decision might be composed of a number of
individual rules, policies and policy sets, in which there exists
a target expression as the criteria for incoming requests, and

Xin Pei, Huiqun Yu, Guisheng Fan
Department of Computer Science and Engineering
East China University of Science and Technology

Shanghai 200237, China
Email: yhq@ecust.edu.cn

(DOI Reference Number: 10.18293/SEKE2015-037)
110

all these elements are organized in a hierarchical order [16].
To render an authorization, it must be possible to combine
multi-rules to form the single decision applied to the request,
and the final decision is either made by the rule ‘effect’ or the
combined decisions of children rules and policies.

A. XACML elements

We define the main elements policy set, policy, rule, target,
request, effect and combining algorithm (CA for short) of
XACML syntax as follows, where the values
' ' , ' ' , ' ', ' 'PO DO FA OOA represent for ‘permit-override’,
‘deny-override’, ‘first-applicable’ and ‘only-one-applicable’,
respectively.

*

:: ,{ | } ,

:: ,{ } ,

:: , , ,

:: { _ , _ , _ }

:: { _ ,

Policyset target Policyset Policy CA

Policy target rule CA

rule target effect condition obligation

target attr type attr value match id

request attr type





       

     

       

      

   _ }

:: ' ' | ' '

:: ' ' | ' ' | ' ' | ' '

attr value

effect permit deny

CA PO DO FA OOA

 





Additionally, XACML extends the decision values by
appending two extra status ‘not-applicable’ and
‘indeterminate’, based on the previous policy languages with
only ‘permit’ and ‘deny’. The status ‘not-applicable’
represents that the request does not match any rule in the
designated policy, while ‘indeterminate’ indicates errors in the
matching procedure (e.g., The request does not match a
‘critical’ attribute in the target).

B. Decision principles

We describe the principles of XACML to make a decision.
On receiving a request, the policy decision point (PDP)
executes target matching and results MR in the set

{' ', ' ', ' '}MRV T F IN , representing ‘match’, ‘un-match’ and

‘indeterminate’ respectively. If this matching procedure
happens in a rule, it leads to a decision according to the rule
‘effect’ and MR. Otherwise, if the target matching belongs to a
policy or policy set, the final decision is integrated by the
combining algorithm affecting on children rules and policies.

We denote a user request as a vector 1 2{ , ,..., }nreq a a a ,

each ia in req is an attribute value which belongs to the

attribute type iA pre-defined in XACML. The principles are
listed as below.

1) Target matching. The connection of elements in a
target can be either ‘AllOf’ or ‘AnyOf’, which indicates the
operations of AND | OR.

Assume a request matches with K elements in the target,
formally, 1 2() : ... K MRreq K A A A V    . The ‘AllOf’
property performs as in (1), and the ‘AnyOf’ property performs
as in (2).

1 2
1

, [1,],

... , [1,],

,

iK

i K i
i

T if i K m T

m m m m F if i K m F

IN error


  


       





(1)

1 2
1

, [1,],

... , [1,],

,

iK

i K i
i

T if i K m T

m m m m F if i K m F

IN error


  


       



 (2)

2) Rule decision. Regardless of obligation property, a
rule can be abbreviated as (, ,)rule t e c , where t, e, c are ‘target’,
‘effect’ and ‘condition’. The effect domain of a rule is

{' ', ' '}E permit deny . The condition is a list of constraints
that request must satisfy, and it shares the same matching
result domain MRV with target. We denote the rule decision

domain as {' ', ' ', ' ', ' '}DV P D N IN , corresponding to ‘Permit’,
‘Deny’, ‘Not-applicable’ and ‘Indeterminate’ respectively.
Thus, the mapping of rule decision domain can be represented
as (, ,) : MR MR Drule t e c V E V V   , and the decision is
illustrated in (3).

' '

' '
(, ,)

P if t c T and e permit

D if t c T and e deny
rule t e c

N if t c F

IN error

  


  
 

 


 (3)

3) Policy/Policy set decision. Denoting a policy as

 , ({ })policy t CA rule  and a policy set as

 , ({ | })policyS t CA policy policyS  . The combing algorithms

is a set {' ' , ' ' , ' ', ' '}CA PO DO FA OOA that operates on

decision domain DV , it combines all the decisions made by
children rules and policies into one final decision. Formally,
let S be a set, () :{ }S

D DCA S V V . Therefore, the policy and
policy set are similar and can be formalized as

 , () : MR D Dpolicy t CA S V V V  . According to different

combing algorithms, the policy and policy set decision are
concluded in (4).

 

()

, () ()

CA S if t T

policy t CA S N if t F or t IN and CA S N

IN if t IN




   
 

 (4)

C. A sample XACML

Fig. 1 illustrates a simple XACML policy example P1,
containing three rules r1, r2, r3. In this figure, we use brief
XML syntax to describe the policy rather than standard
XACML format. The resource property in rules reflects to
physical data, and the algorithm is mainly constructed on the
resource dimension. In this policy, four resources RS1, RS2,
RS3 and RS4 are considered, and they have intersections on
which rules may conflict and have redundancies.

111

<policy policyID="P1" CA="Deny-Overrides">
<target>
 <Actions>Read, Write</Actions>
</target>
<Rule RuleID="r1" Effect="Permit">

<target>
 <Subjects>Alice, Bob</Subjects>
 <Resources>RS1, RS2</Resources>

 <Actions>Read, Write</Actions>
</target>
<Condition> 8:00<= Time <=12:00 </Condition>

</Rule>
<Rule RuleID=" r2" Effect="Permit">

<target>
<Subjects>Bob</Subjects>

 <Resources>RS4</Resources>
 <Actions>Read</Actions>

</target>
</Rule>
<Rule RuleID=" r3" Effect="Deny">

<target>
 <Subjects> Bob, Jim</Subjects>
 <Resources>RS2, RS3</Resources>
 <Actions>Write</Actions>

</target>
<Condition>9:00<= Time <=15:00 </Condition>

</Rule>
</policy>

Figure 1. A simple XACML example.

We can formalize the rules into Boolean expressions, for
example, r1 is illustrated in (5).

 

 

 

 

1
' ' ' '

='RS1' 'RS2'

' ' ' '

rBoolExpression Subject Alice Bob

Resource

Action Read Change

AnyCondition

  

 

  



 (5)

Assuming a user Bob makes a request for writing to RS2 at
10:00 am. Formally, (' ', 'RS2',req Subject Bob Resource  -

' ', '10 : 00 .')Action Write Condition am  . On execution, the
target of P1 matches the request and returns T. Then, r1 checks
its target and conditions, and gives out the ‘permit’ decision as
defined in effect. However, it continues to match the next rules
because the CA of parent policy P1 is ‘Deny-override’.
Accordingly, r2 does not match the request (outputs ‘N’ as not-
applicable) while r3 returns ‘deny’ as its rule decision. Finally,
the policy combines the three results and gives the ‘deny’
decision according to its CA.

III. FINE-GRAINED POLICY OPTIMIZATION ALGORITHM

In this section, we introduce a data fragment algorithm for
resource isolation and policy refinement. We build up a three-
layer structure of resources, and map the effective policies to
each leaf data node so that fine-grained access control is
achieved.

A. Data fragmentation

Firstly, we give the definition of Disjoint set, based on
which we execute the policy projection algorithm.

Definition 1(Disjoint set) Let { }1 2 nS s ,s ,...,s be a resource

set. If  : ,i jres res s res s   and any operation on is will not

affect ()js i j , S is a disjoint set.

Taking the XACML policy in Fig. 1 as example, the four
resources (RS1, RS2, RS3, RS4) intersect with each other as
shown in Fig. 2. In order to obtain a disjoint resource set

(1, 2, 3, 4, 5, 6) ,RS s s s s s s we introduce the data fragment
algorithm in Algorithm 1.

RS3

RS1 RS2 RS4

s1

s2

s3 s4

s5

s6

Figure 2. Relationship of resources.

Algorithm 1: Data fragment algorithm

// INPUT: a policy.
// OUTPUT: a disjoint set.
Project(policy)

for each resGetResources(policy) do

for each sRS do
if res s then

RS.add(s\res);
RS.replace(s, res); break;

else if res s then
RS.replace(res, res\s); break;

 else if res s  then

 RS.add(s\res);
 RS.replace(s, res s);
 RS.replace(s,s\res);break;
RS.add(res);

Return the resource segment set RS;

B. Policy refinement

We build up a three-layer resource tree, in which the
physical layer contains all the segments in a disjoint set, while
the original policy effects on the logical layer. As shown in
Fig. 3, RS1, RS2, RS3 and RS4 relate to (r1), (r1 , r3), (r3) and
(r2), respectively. Based on this structure, we can assign rules
to each resource segment in consistency with the original
policy and refine policy on segment level.

s1 s2 s3 s4 s5 s6

RS1 RS2

RS3

RS4

ROOT

Logical layer

Physical layer

Service layer

(policy layer) P1

r1 r1,r3 r2

r3

Figure 3. Resource tree.

112

We define the notation of rule overlap (denoting ‘target
matching’ as ‘ | ’) and several RULEs used in the procedure
of policy refinement.

Definition 2 (Rule overlap). On a single resource segment, let

ir , jr be two parallel rules. If : ,| |i jreq req r req r   , then

ir overlaps with jr (denoted by i jr r), and the overlapped part

is a rule pair ,i jr r , consisting of
ir

 and
jr . Further, if i jr r

and . .i jr effect r effect , then
i jr r   .

If deleting
ir

 (
jr) does not affect the final decision, then

ir
 (

jr) is removable in this policy. The following RULEs

expound principles of removing redundant rules under
different combining algorithms.

RULE 1 (CA = Permit-Override)
If i jr r and .ir effect permit , then

jr is removable.

If i jr r and .ir effect deny , then
ir

 is removable.

RULE 2 (CA = Deny-Override)
If i jr r and .ir effect deny , then

jr is removable.

If i jr r and .ir effect permit , then
ir

 is removable.

RULE 3 (CA = First-Applicable)
Assuming the sequence of r in policy is ()seq r .

If i jr r and () ()i jseq r seq r , then
jr is removable.

If i jr r and () ()i jseq r seq r , then
ir

 is removable.

RULE 4 (CA = Only-One-Applicable)
If request on ,i jr r , the decision is ‘Not Applicable’.

If i jr r , remove
ir

 and
jr .

The proofs of above RULEs are similar, and we takes
RULE 1 for example, as shown in Fig. 4.

Proof
 i jr r  , : ,

i j i jr r r i r jr r     .

If .ir effect permit , while the CA is Permit-Overrides,
jr will be

shielded by
ir

 , no matter .jr effect is either ‘permit’ or ‘deny’. Thus,

removing
jr will not affect the decision, and

jr is removable.

If .ir effect deny , and if .jr effect deny , according to the

Definition 2, we have
i jr r   , remove any one of them is fine. However, if

.jr effect permit , and CA is Permit-Overrides, so
ir

 will be shielded

by
jr . Thus, in both conditions, removing

ir
 will not affect the decision,

and
ir

 is removable.

Figure 4. Proof of RULE 1.

According to these RULEs, we propose the policy
refinement algorithm, as illustrated in Algorithm 2. During the
refining procedure, policy is projected to the physical layer,
and rules might be refined, removed or kept still.

Algorithm 2:Policy refinement

// INPUT: a set of segments bound with rules, the policy CA.
// OUTPUT: refined set of resource segment.
Refine(G, CA)

for each ruleGetRule(policy) do //bind rules to segment
for each sS do

ifsGetRelatedResource(rule) then
bind(rule, s);

 G S with bound rules on each element;
 for each gG do //refine rules on each segment

for each pair(,i jr r)
2
ruleSetC do

if i jr r then

coupleSet.add(
,i jr r); //overlap of ,i jr r

for each
,i jr r coupleSet do

 case CA= Permit-override then
 Execute by RULE 1;
 case CA = Deny-override then
 Execute by RULE 2;

case CA = First-applicable then
 Execute by RULE 3;

case CA = Only-one-applicable then
 Execute by RULE 4;

Return the refined set G;

As for the situation of refining a policy set, the algorithm
could be specified recursively for each children policy.

C. Algorithm performance analysis

We analyze the fine-grained policy optimization algorithm
on computation overhead and storage overhead. Basically, we
suppose that a policy P contains K rules, N resources and M
resource segments, which are generated by the data fragment
algorithm, and on each segment i, there exist Hi rules and Ci
conflicts.

1) Computation overhead
In the data fragment algorithm, it costs 2(log)O N M to

obtain resource segmentation set, where M varies upon the
coupling degree among resources.

Nonetheless, in the procedure of policy refinement, the
cost of policy projection is ()O KM , which is decided by the

number of segments ii M
s

 and related rules kk K
r

 . The

overhead of refining an individual segment relies on finding
rule conflict pairs, which contributes to 2(log)i iO H H , while

resolving rule conflicts takes ()iO L . Thus, the complexity of
refining a resource segment set is the accumulation of cost on
each element, resulting in 2()logi i ii M

H H LO


 .

Finally, the computation overhead of our approach is

2 2(log l(og))i i ii M
O N M KM H H L


   .

2) Storage overhead
We define the function ()W R to measure the physical

storage size. When we execute the algorithm, the overhead of

storage is  () ()i i ii M i M
W R H W rule

 
    .

113

Our approach advances in storage compared with original
policies. In original policy, each resource is considered as a

single entity, and the total size of all resources is
1

()
N

ii
W R

 .

However, by developing the relationship among resources, we
extract the common parts of resources. As a result, the storage
size is reduced by

1 1
() ()

N M

i ii i
W R W S

 
  .

IV. A CASE STUDY

The policy based access control methods can be applied in
many fields such as banking, healthcare, ATM and market etc.
to achieve data security and user privacy [17] [18] [19]. We
apply the fine-grained policy optimization algorithm to data
access control in cloud computing, and Fig. 5 describes the
framework of a healthcare records management system.

Data

Policy

Users

Envelope

Cloud StorageCloud Serice

Cloud

Patiemt

Attributes and keys

Formulated requests

Trusted Authority (TA)

PEP

Request

PDP

Data
Decision

AA

Attribute
Center

Certificate
Center

CA
Inform

Confirm

Figure 5. Application scenario on healthcare system.

Assume that Alice is a patient, and she has well processed
her private healthcare record with policies before outsourcing
to the cloud. Bob is medical researcher in university, and he
needs patient’s health records for study. Once Bob requests to

cloud for the statistics with his identity and public attributes,
the cloud transforms the request into expressive XML format
and sends it to the TA. Then, the PDP in TA makes the
decision according to the defined policies and inform Alice of
the result. Upon receiving Alice’s acknowledgement, TA
sends the decryption key to Bob through secure channels.
Thus, Bob can have access to Alice private data under the
conditions defined in the policies.

To evaluate the performance of our proposal, we utilize the
policies with different amount of rules, different coupling
degree of rules and resources. The coupling of rules leads to a
certain number of conflicts, and the coupling of resources
decides the number of resource segments. Our experiments
were founded on the API of SUN-XACML and performed on
Intel(R) Core(TM) i3-2330M CP U 2.30 GHz with 2.67-GB
RAM running on Win7.

We generate synthetic policies for most situations and
compare the decision efficiency with the existing methods,
Simple PDP [3] and Melcoe PDP [20]. The Simple PDP
adopts a list structure to traverse rules for matching, and
Melcoe PDP employs category of data attributes. The statistics
of two representative situations are listed in Table I and Table
II. We use a triple <Few/Many, Few/Many, Few/Many> to
simply express the amount of rules, conflicts and segments.
Fig. 6 illustrates the experiment results of all the situations.

TABLE I. DECISION EFFICIENCY UNDER <FEW, FEW,FEW>

Policy parameters PDPs evaluation (ms)
Policy# Rule# Res# Seg# Simple PDP Melcoe PDP Our PDP

10 20 60 62 33.8608 26.7024 63.3365
20 40 60 62 51.6174 41.0145 65.0015
30 60 60 62 67.3090 54.8726 69.1087
40 80 60 62 82.0385 69.2740 75.7588
50 100 60 62 98.6908 81.0534 83.5972

(a) < Few, Few, Few > (b) <Many, Few, Few> (c) < Few, Few, Many> (d) <Many, Few, Many>

(e)< Few, Many, Few > (f)<Many, Many, Few> (g) < Few, Many, Many> (h)<Many, Many, Many>

Figure 6. Efficiency Impacts on amount of rules, conflicts and resource intersections.

114

TABLE II. DECISION EFFICIENCY UNDER <MANY, MANY,MANY >

Policy parameters PDPs evaluation (ms)
Policy# Rule# Res# Seg# Simple PDP Melcoe PDP Our PDP

10 300 60 155 276.5745 244.7562 135.6794
20 600 60 155 620.4870 509.0062 172.6407
30 900 60 155 1043.7546 761.0980 197.6577
40 1200 60 155 1319.8039 1117.6535 231.5092
50 1500 60 155 1602.8325 1259.0271 253.2671

Through the experiments, we conclude that the decision
efficiencies of Simple PDP and Melcoe PDP depend on the
amount of rules, with little concerning about the coupling
degree of rules and resources. In the contrast, our approach has
great advantages in the situation of large amount of rules. We
also exceed traditional methods in multi-resource requests,
since the redundancies of data are eliminated in the
segmentation phase.

V. CONCLUSION

We have proposed an innovative mechanism of facilitating
data security for cloud resource service. The fine-grained
policy optimization algorithm projects the policy to the
resource dimension, and refines rule on each individual
resource segment. We can encrypt the sensitive data and attach
sticky policy to ensure that the data is processed or handled
according to customers’ willing.

The fragmentation of resource decomposes data into
obfuscated segments to protect the physical entities, while
available services are provided in service layer and logical
layer. Cloud users may request resources by names, without
knowing the components or physical locations of the resources,
and they can only get those identity-permitted data. We have
discussed the performance of our proposal, in terms of the
amount of rules, conflicts and segments. Through the
experiment, we conclude that our approach has great
advantages in large scale of policies.

We would develop a prototype and explore how our
strategy can be applied to other fields concerning about access
control and security.

ACKNOWLEDGMENT

This work was partially supported by the NSF of China
under grants No. 61173048 and No. 61300041, Specialized
Research Fund for the Doctoral Program of Higher Education
under grant No. 20130074110015, and the Fundamental
Research Funds for the Central Universities under Grant
No.WH1314038.

REFERENCES
[1] W. Jansen and T. Grance, “Guidelines on Security and Privacy in Public

Cloud Computing”, NIST Special Publication, pp. 800-144, 2011.

[2] H. Takabi, J. Joshi, and G. J. Ahn, “Security and privacy challenges in
cloud computing environments”, IEEE Security and Privacy, vol. 6, no.
6, pp. 24-31, 2010.

[3] S. Godik and T. Moses, “eXtensible Access Control Markup Language
(XACML) Version1.1”, OASIS, 2003.

[4] M. Mont, S. Pearson, and P. Bramhall, “Towards accountable
management of identity and privacy: sticky policies and enforceable
tracing services”, Database and Expert Systems Applications (DESA),
pp. 377-382, 2003.

[5] S. Pearson and M. Mont, “Sticky policies: an approach for managing
privacy across multiple parties”, IEEE Computer, vol. 44, no. 9, pp. 60-
68, 2011.

[6] S. Trabelsi and J. Sendor, “Sticky policies for data control in the cloud”,
IEEE PST, pp. 75-80, 2012.

[7] G. Ahn, H.. Hu, J. Lee, and Y. Meng, “Representing and reasoning
about web access control policies”, IEEE Software and Applications, pp.
137-146, 2010.

[8] H. Hu and G. Ahn, “Discovery and resolution of anomalies in web
access control policies”, IEEE Dependable and Secure Computing, vol.
10, no. 6, pp. 341-354, 2013.

[9] Y. Wang, D. Feng, and L. Zhang, “XACML policy evaluation engine
based on multi-level optimization technology”, Journal of Software, vol.
22, no. 2, pp. 323−338, 2011.

[10] M. Said, M. Shehab, and S. Anna, “Adaptive reordering and clustering-
based framework for efficient XACML policy evaluation”, IEEE
Service Computing, vol. 4, no. 4, pp. 300-313, 2011.

[11] D. Lin, P. Rao, R. Ferrini, and E. Bertino, “A similarity measure for
comparing XACML policies”, IEEE Knowledge and Data Engineering,
vol. 25, no. 9, pp. 1946-1959, 2013.

[12] A. Bertolino, S. Daoudagh, and F. lonetti, “Automated testing of
eXtensible Access Control Markup Language-based access control
systems”, IET Software, vol. 7, no. 4, pp. 203-212, 2013.

[13] D. Agrawal, J. Giles, K. W. Lee, and J. Lobo, “Policy ratification”, IEEE
Policies for Distributed Systems and Networks, pp. 223-232, 2005.

[14] X. Wu and P. Qian, “A verification for PDAC model by policy
language”, ICCSE, pp. 14-17, 2012.

[15] G. Bruns, D. Dantas, and M. Huth, “A simple and expressive
semanticframework for policy composition in access control”, Formal
methods in Security Engineering, ACM, pp. 12-21, 2007.

[16] C. Ngo, Y. Demchenko, and C. D. Laat, “Decision Diagrams for
XACML PolicyEvaluation and Management”, Computers & Security,
vol. 49, no. 1, pp. 1-16, 2015.

[17] M. Ghorbel, A. Aghasaryan, and M. P. Dupont, “A multi-environment
application of privacy data envelopes”, Policies for Distributed Systems
and Networks, pp. 180-181, 2011.

[18] M. Li, S. Yu, and Y. Chen, “Scalable and secure sharing of personal
health records in cloud computing using attribute-based encryption”,
IEEE Parallel and Distributed Systems, vol. 24, no. 1, 131-143, 2013.

[19] Asela, “Banking sample with XACML”,
http://xacmlinfo.org/2014/03/11/atm-banking-sample-with-xacml/, 2014.

[20] Jajodia and P. Samarat, “A logical language for expressing
authorizations”, IEEE Security and Privacy, pp. 31-42, 1997.

115

http://xacmlinfo.org/author/xacmlinfo/

 A Reliable and Secure Cloud Storage Schema Using
Multiple Service Providers

Haiping Xu and Deepti Bhalerao
Computer and Information Science Department

University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
{hxu, dbhalerao}@umassd.edu

Abstract—Despite the many advantages provided by cloud-based
storage services, there are still major concerns such as security,
reliability and confidentiality of data stored in the cloud. In this
paper, we propose a reliable and secure cloud storage schema
using multiple service providers. Different from existing
approaches to achieving data reliability using redundancy at the
server side, we propose a reliable and secure cloud storage
schema that can be implemented at the client side. In our
approach, we view multiple cloud-based storage services as
virtual independent disks for storing redundant data encoded
using erasure codes. Since each independent cloud service
provider has no access to a user’s complete data, the data stored
in the cloud would not be easily compromised. Furthermore, the
failure or disconnection of a service provider will not result in the
loss of a user’s data as the missing data pieces can be readily
recovered. To demonstrate the feasibility of our approach, we
developed a prototype cloud-based storage system that breaks a
data file into multiple data pieces, generates an optimal number
of checksum pieces, and uploads them into multiple cloud
storages. Upon the failure of a cloud storage service, the
application can quickly restore the original data file from the
available pieces of data. The experimental results show that our
approach is not only secure and fault-tolerant, but also very
efficient due to concurrent data processing.

Keywords-Cloud storage; reliability; data security; erasure
codes; cloud service provider; integer linear programming.

I. INTRODUCTION

As an ever-growing data storage solution, cloud-based
storage services have become a highly practical way for both
people and businesses to store their data online. The pay-as-
per-use model of cloud computing eliminates the upfront
commitment from cloud users; thereby it allows users to start
small businesses quickly, and increase resources only when
they are needed. However, since data storage locations and
security measures at the server site are typically unknown,
most of the users have not yet become comfortable with
exploiting the full potential of the cloud. Many incidents
happened recently have made users question the reliability of
cloud storage services. For example, in May 2014, Adobe’s ID
service went down, leaving Creative Cloud users locked out of
their software and account for over 24 hours [1]. In early
2013, Dropbox service had a major cloud outage that kept
users offline and unable to synchronize using their desktop
apps for more than 15 hours [2]. Prolonged cloud data service
outages and security concerns can be fatal for businesses with

data critical domains such as healthcare, banking and finance.
Today, almost all the cloud service providers (CSP) have
implemented fault-tolerant mechanisms at their server sides to
recover original data from service failure or data corruption.
Such mechanisms are suitable at the time of scheduled
maintenance or for a small number of hard disk failures.
However, they are of no use for the end users to ensure the
reliability and security of their cloud data when major cloud
services fail or the cloud services have been compromised.
Hence, to achieve high reliability and security of critical data,
users should not depend upon a single cloud service provider.
In this paper, we propose an approach that can provide
security and fault tolerance to the user’s data from the client
side. In our approach, we decompose an original data file into
multiple data pieces, and generate checksum pieces using
erasure codes [3]. The pieces of data are spread across
multiple cloud services, which can be retrieved and combined
to recover the original file. We achieve data redundancy in our
approach using erasure codes at the software level across
multiple cloud service providers. Therefore, the original data
can be recovered even when there is a cloud outage where
some cloud service fails completely. Using this approach,
user’s data would not be easily compromised by unauthorized
access and security breach, as no single cloud service has the
complete knowledge of user’s data. Thus, users could have the
sole control of their cloud data, and do not need to rely on the
security measures provided by cloud service providers.
Finally, to improve the network performance of our approach,
we adopt the multithreading technology, and fully utilize the
network bandwidth in order to minimize the time required to
access data over the cloud.

There have been many research efforts on using erasure
codes at the server side to make cloud storage service reliable.
Huang et al. proposed to use erasure codes in Windows Azure
storage [4]. They introduced a new set of codes for erasure
codes called Local Reconstruction Codes (LRC) that could
reduce the number of erasure coding fragments required for
data reconstruction. Gomez et al. introduced a novel
persistency technique that leverages erasure codes to save data
in a reliable fashion in Infrastructure as a Service (IaaS) clouds
[5]. They presented a scalable erasure coding algorithm that
could support a high degree of reliability for local storage with
the cost of low computational overhead and a minimal amount
of communication. Khan et al. provided guidance for
deploying erasure coding in cloud file systems to support load
balance and incremental scalability in data centers [6]. Their
proposed approach can prevent correlated failures with data

(DOI Reference Number: 10.18293/SEKE2015-045) 116

loss and mitigate the effect of any single failure on a data set or
an application. Although the above approaches can
significantly enhance the reliability of cloud data at data
centers, they provide no support for end users to deal with
failures or cloud outage of the service providers. Different from
the existing approaches, we apply erasure-coding techniques at
the application level using multiple cloud service providers. By
deploying user’s encoded redundant data across multiple cloud
storage services, our approach is fault tolerant for cloud storage
when any of the cloud services fails.

There is also a considerable amount of work on securing
cloud data, to which this work is closely related. Santos et al.
proposed a secure and trusted cloud computing platform
(TCCP) for IaaS providers such as Amazon EC2 [7]. The
platform provides a closed box execution environment that
guarantees confidential execution of guest virtual machines on
a cloud infrastructure. Hwang and Li proposed to use data
coloring and software watermarking techniques to protect
shared cloud data objects [8]. Their approach can effectively
prevent data objects from being damaged, stolen, altered, or
deleted, and users may have their sole access to their desired
cloud data. The existing approaches to securing cloud data
typically assume that the cloud service providers are trustable
and they can prevent physical attacks to their servers. However,
this might not be true in reality, as service providers typically
tend to collect users’ cloud data for their commercial purposes
such as targeted adverting. Furthermore, there have been many
incidents that cloud service providers were compromised by
either internal or external hackers, and thousands of users’
critical data were compromised. Therefore, merely relying on
service providers’ security mechanisms is not a feasible
solution for both people and businesses to store their critical
data in the cloud. It is required that users should be allowed to
apply security mechanisms to their own data at the client side.
Different from the aforementioned methods to securing cloud
data at the server side, our approach does not rely on any
security measures supported by the service providers. Instead,
the cloud storage application running at the client side can split
users’ data into pieces, encode them using erasure codes, and
distribute them to multiple service providers. As no single CSP
has its access to a user’s entire data, user’s data are much
securer than those stored with a single cloud service.

In this paper, we extend the methodology and results of a
preliminary study on secure and fault-tolerant model of cloud
information storage [9]. In the previous work, we followed the
RAID (Redundant Array of Independent Disks) approach to
encode user’s data using XOR parity, and developed a
hierarchical colored Petri nets (HCPN) model for secure and
fault-tolerant cloud information storage systems. In this paper,
we adopted erasure codes to achieve fault tolerance for cloud
data, and presented a detailed design for a reliable and secure
cloud storage schema. To demonstrate the effectiveness of our
proposed approach, we implemented a prototype using three
major cloud service providers (i.e., Amazon, Google and
Dropbox), which allows users to securely, reliably and
efficiently store their critical data in the cloud.

II. RELIABLE AND SECURE CLOUD DATA STORAGE

To address the aforementioned major issues in cloud
storage services, we propose a reliable and secure cloud storage

schema using multiple CSPs. Figure 1 shows a framework for
such a system. The major component of the system is the cloud
storage application that uses erasure codes to encode and
decode file pieces at the client side, and upload and download
encoded file pieces concurrently at multiple cloud services. As
shown in the figure, when a user wants to upload a file into the
cloud, the application first splits the file into multiple data
pieces, say n pieces, and then encode them into an optimal
number of m checksum pieces using the erasure coding
technique. Once the data pieces and checksum pieces are ready,
they are concurrently uploaded into multiple cloud storages
maintained by different CSPs, noted as CSP_1, CSP_2, …, and
CSP_N in Fig. 1. As none of the CSPs has the complete
knowledge about the user data, this approach can effectively
defend against data breach from any single CSP.

Figure 1. A framework for reliable and secure cloud storage systems

On the other hand, when a user wants to download a stored
file, the application will first try to download the n data pieces
from the multiple cloud storages concurrently. If all data pieces
are available, they can be efficiently combined into the original
file without any additional decoding process. However, in the
case when one or more service provider fails, the application
must automatically download all available data pieces (n’) and
available checksum pieces (m’). As long as n’ + m’ ≥ n, due to
the erasure coding technique, the application can always
successfully decode the missing data pieces using the available
pieces of data, and restore the original file. Note that the
checksum pieces serve as the redundancy of the original file,
which makes our approach reliable and fault tolerant.

III. ERASURE CODES AND REED-SOLOMON CODING

A. Erasure Codes
In early days, fault tolerance of cloud data is commonly

achieved through simple data replication. Multiple copies of
original data have to be maintained on different cloud servers
in order to make data more reliable. However, data replication
now becomes highly unfeasible due to its low space efficiency
and the ever-increasing amount of cloud data. Erasure codes,
also known as forward error correction (FEC) codes, manage to
overcome the disadvantages of the data replication approach,
and can achieve a high degree of fault tolerance with a much
lower cost of physical storage [3]. An erasure code takes n data

117

words and transforms them into m code words such that any n
out of (n+m) words are enough to recover the original n data
words. Erasure codes use a mathematical function to convert
original data words into encoded words and to recover them
back. They can be very efficient in providing fault tolerance for
large quantities of data, hence they are quite suitable for large-
scale cloud storage systems.

Data redundancy through parity codes represents the
simplest form of erasure codes, which overcomes the drawback
of data replication. RAID-5 is the most commonly used
technique that uses parity codes. It calculates parities from the
original data to achieve fault tolerance. However, this
technique is typically used by CSPs at the hardware level, and
very few research efforts attempted to apply the RAID concept
at the software level to resolve issues related to the major data
failures of a service provider, which actually have become
quite common nowadays [9].

B. Reed-Solomon Coding for Cloud Based Storage

Use of error-correction codes for redundancy has become
prevalent due to its various advantages. Reed-Solomon (RS)
coding is a type of optimal erasure codes, which follows the
basic error-correction techniques. There are many different
ways to implement error-correction using erasure codes, but
RS technique is a good compromise between efficiency and
complexity [10]. Traditionally, RS technique has been used in
various applications such as error-correction in CD-ROM and
DVDs, satellite communications, digital television, and
wireless or mobile communications [11]. The use of RS
technique to provide fault tolerance over the cloud is a fairly
new idea. Our approach to distributing data and checksum
pieces with multiple cloud services could build a RAID-like
system with less storage overhead and more flexibility in the
degree of fault tolerance for the stored data. Here we first
briefly introduce the RS coding approach. Let there be n data
pieces, we encode all data pieces using RS algorithm into m
checksum pieces such that out of (n+m) pieces, any n pieces
are enough to recover the original n data pieces. If the (n+m)
pieces of data are distributed over (n+m) devices, this
algorithm can be used to handle m failures of the devices.

To simplify matters, we assume each data piece is an
unsigned byte ranged from 0 to 255. In order to calculate the
checksum bytes, we first create an (m+n)×n Vandermonde
matrix A, where the i, j-th element of A is defined to be
[11]. By this definition, when m rows are deleted from A, the
newly formed matrix is invertible. Then we derive the
information dispersal matrix B from A using a sequence of
elementary matrix transformation. The information dispersal
matrix B is defined as in Eq. (1), where I is an n×n identity
matrix, and F is an m×n matrix. Note that since elementary
matrix transformation does not change the rank of a matrix
and each row in A is linearly independent, the information
dispersal matrix B maintains the property that when m rows
are deleted from B, the newly formed matrix is invertible.

ji

⎥
⎦

⎤
⎢
⎣

⎡
=

F
I

B (1)

where (2)

,ED

F
I

BD =⎥
⎦

⎤
⎢
⎣

⎡
= ⎥

⎦

⎤
⎢
⎣

⎡
=

C
D

E

Let D be a vector of n-byte data d0, d1, ..., dn-1, and C be a
vector of m-byte checksum c0, c1, ..., cm-1. With the
information dispersal matrix B, we can calculate the checksum

vector C from the data vector D as in Eqs. (3), where fi, j (0 ≤ i
≤ m-1, 0 ≤ j ≤ n-1) are elements of the m×n matrix F. Based on
the calculation of C, Eq. (2) must hold.

c0 = f0, 0*d0 + f0, 1*d1 + ... + f0, n-1*dn-1
c1 = f1, 0*d0 + f1, 1*d1 + ... + f1, n-1*dn-1 (3)
...
cm-1 = fm-1, 0*d0 + fm-1, 1*d1 + ... + fm-1, n-1*dn-1

Now suppose k bytes, where k ≤ m, are missing from
vector D. By deleting the missing k elements from D as well
as any m-k elements from C, we derive a new n-byte vector E’
as in Eq. (4), where D’ is a (n-k)-byte vector ,
and C’ is a k-byte vector . Similarly, in Eq. (2), by
deleting m rows from B that correspond to the deleted rows in
E, we drive an n×n matrix B’ as defined in Eq. (5), where I’ is
an (n-k)×n matrix, and F’ is a k×n matrix. The matrix B’ must
be invertible as we have mentioned, and Eq. (6) must hold.

'
1

'
1

'
0 ,...,, −−knddd

'
1

'
1

'
0 ,...,, −kccc

⎥
⎦

⎤
⎢
⎣

⎡
=

'
'

'
C
D

E

(4) ='B (5) =' DB

By

⎥
⎦

⎤
⎢
⎣

⎡
'
'

F
I (6)

calculating the inverse matrix using Gaussian

elim he data

 (7)

...

Once the n-byte vector D is restored, the m-byte vector C
can

p i

IV. OPTIMAL NUMBER OF CHECKSUM PIECES

A. Calculating the Optimal Number of Checksum Pieces

our
app

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
'
'

'
'

C
D

D
F
I

 1'−= BG
ination method, we can recover t vector D as in

Eqs. (7), where gi, j (0 ≤ i ≤ n-1, 0 ≤ j ≤ n-1) are elements of the
n×n matrix G.

=
'

11,0
'
11,0

'
0,0

'
11,0

'
21,0

'
00,00

*,...,**

*,...,**

−−+−−

−−−−

+++

++++

knknkn

knkn

cgcgcg

dgdgdgd

'''

'
11,1

'
11,1

'
0,1

11,121,100,11

*,...,**

*,...,**

−−+−−

−−−−

+++

++++=

knknkn

knkn

cgcgcg

dgdgdgd

'
11,1

'
11,1

'
0,1

'
11,1

'
21,1

'
00,1

*,...,**

*,...,**

−−−+−−−−

−−−−−−−

+++

++++=

knnknnknn

knknnnnn

cgcgcg

dgdgdg d

 be recalculated as in Eqs. (3). Note that implementation of
the RS algorithm for data files requires to perform
com utat ons on binary words of a fixed length w. For
example, when the binary word is a byte, w equals 8. To
ensure that the RS algorithm works correctly for fixed-size
words, all arithmetic operations must be performed over
Galois Fields with 2w elements denoted as GF(2w) [11]. A
Galois field GF(2w) is also known as a finite field which
contains finitely many elements, namely 0, 1, ..., 2w-1.
Arithmetic operations performed over Galois Fields will result
in finite values in GF(2w). As such, all arithmetic operations
mentioned in this section, including the matrix inverse,
encoding and recovery of data, must be calculated using
Galois Fields arithmetic.

In order to achieve the highest space efficiency in
roach, we propose a procedure to compute the minimal

number of checksum pieces that allows the failures of multiple
cloud service providers. Let N be the number of service

118

providers, Г = {1, 2, ..., N}, and M be the maximal number of
services allowed to fail or become unavailable at the same
time, where 1 ≤ M ≤ N-1. We define a failure set Φ as follows:

Φ∈ P(Г), where P(Г) is the power set of Г, and |Φ| ≤ M.

The set of available CSPs Ω corresponding to Φ can be
defi

 (8)

dist

n = (9)

where n = n1 + n2 + ... + nN. Eq. (9) allows even distribution

CS

n e i n

minimize

for eac set Φ (10)

 where Φ ∈ P(Г) a

imal problem
aut

 (11)

As an example, let N = 3 and M = 1, the integ ear
pro

1 2 3
 // when Φ = {3} (12)

ho ir space
effi

stored at the other two CSPs.

ned as in Eq. (8).
Ω = Г - Φ
Let the number of data pieces of a file be n. In order to
ribute n data pieces evenly over N cloud service providers,

we calculate the number of data pieces n1, n2, ..., and nN stored
at CSP1, CSP2, ..., and CSP_N, respectively, as in Eq. (9).

i
⎡ ⎤

⎡ ⎤
⎪
⎪
⎩

⎪⎪
⎨

⎧

=−

<<+−−
=

∑
∑

−

=

−

=
1

1

1

1
1)1/()(

1/

N

j j

i

j j

Niwhennn

NiwheniNnn
iwhenNn

 of
n data pieces over N cloud service providers such that |ni - nj| ≤
1 for 1 ≤ i, j ≤ N. For example, when N = 3 and n = 7, the
number of data pieces distributed over three cloud service
providers CSP1, CSP2, and CSP3 will be 3, 2, 2, respectively.

As a major requirement for fault tolerance, when up to M
Ps become unavailable, the original data must be recovered

from the remaining CSPs from the available set Ω. Let m be
the number of checksum pieces required, and m1, m2, ..., mN
are the numbers of checksum pieces distributed over CSP1,
CSP2, ..., and CSP_N, respectively. Obviously, we have m =
m1 + m2 + ... + mN. To calculate the minimal number of
checksum pieces m, we can solve the integer linear
programmi g probl m as def ned i Eq. (10).

N

subject to h failure
∑=i im

1

 ∑∑ Φ∈Ω∈
≥

j ji i nm

 nd |Φ| = M

Note that a solution to the above opt
omatically satisfies the cases when |Φ| < M. The space

efficiency e of a solution can be calculated as in Eq. (11).
N N∑ ∑= =

==+−=
i i ii mmnnmnme

1 1
andwhere),/(1

er lin
gramming problem can be simplified as in Eq. (12).

minimize m + m + m
subject to m1 + m2 >= n3
 m2 + m3 >= n1 // when Φ = {1}

 m1 + m3 >= n2 // when Φ = {2}

Table 1 s ws the optimal solutions and the
ciency for the above example with n ranges from 2 to 14.

For instance, when n = 8 (n1 = 3, n2 = 3, n3 = 2), the optimal
solution is m1 = 1, m2 = 1, and m3 = 2, and the space efficiency
e = 1 - 4/(8+4) = 0.6667. In this case, if any service provider
becomes unavailable, the missing 4 pieces of data can always
be recovered from the remaining data and checksum pieces

Table 1. Optimal number of checksum pieces and space efficiency

Data
Pieces
(n)

(n1, n2, n3) (m1, m2, m3) Pieces
(m)

Checksum Space
Efficiency

(e)
2 (1, 1, 0) (0, 0, 1) 1 0.6667
3 (1, 1, 1) (0, 0, 1) 2 0.6000
4 (2, 1, 1) (0, 1, 1) 2 0 7 .666
5 (2, 2, 1) (1, 1, 1) 3 0.6250
6 (2, 2, 2) (1, 1, 1) 3 0.6667
7 (3, 2, 2) (1, 2, 1) 4 0.6364
8 (3, 3, 2) (1, 1, 2) 4 0.6667

9 (3, 3, 3) (2, 2, 1) 5 0.6429
10 (4, 3, 3) (1, 2, 2) 5 0.6667
11 (4, 4, 3) (2, 2, 2) 6 0.6471
12 (4, 4, 4) (2, 2, 2) 6 0.6667
13 (5, 4, 4) (2, 3, 2) 7 0.6500
14 (5, 5, 4) (3, 3, 2) 7 0.6667

B. ibu Pieces over

When dealing with a file with k bytes, if k is not a multiple
 the

end

Dist tion of Data and Checksum CSPs

of n, we first need to append r bytes with random values to
 of the file such that ((k + r) mod n) = 0. Then we group

the (k+r) bytes into n data pieces so that each of them contains
(k+r)/n bytes. By applying Eq. (9) and Eq. (10), we calculate
the distribution of the n data pieces and the optimal number of
checksum pieces. Finally, using the equations described in
Section III.B, we can calculate the checksum pieces. Figure 2
shows an example of file distribution at service providers
CSP1, CSP2 and CSP3 when N = 3, M =1, n = 8 and m = 4.

Figure 2. Distribution of data and checksum pieces at three CSPs

As shown in Fig. 2, we distribute 3, 3, 2 data pieces
ver

CSP

To demonstrate the feasibility of our proposed approach,
we developed reliable cloud storage

(denoted by the file names starting with the letter “D”) o
1, CSP2 and CSP3, respectively. Based on the optimal

solution given in Table 1, we also distribute 1, 1, 2 checksum
pieces (denoted by the file names starting with the letter “C”)
over CSP1, CSP2 and CSP3, respectively. When any of the
service providers fails, the original data can be recovered from
the remaining 8 pieces of data using Eq. (7). It is worth noting
that by the definition of the RS coding technique, when up to 4
pieces of data from multiple CSPs are missing or corrupted,
the original file can still be recovered using Eq. (7).

V. CASE STUDY

a prototype secure and
application in Java. We adopt three different cloud services
supported by major CSPs to store our data pieces and
checksum pieces in the cloud. The selected cloud services are
Amazon S3, Google App Engine, and Core Dropbox APIs

119

with free user accounts. All experiments have been conducted
with excellent Internet connections at University of
Massachusetts Dartmouth, where the download speed was
around 160 Mbps (~20MB/s) and the upload speed was around
400 Mbps (~50MB/s). Therefore, the network connection at
the client side will not become a bottleneck for all of our
experiments. As shown in Fig. 3, the user interface of the
application allows one to select a file to upload into the cloud.
After choosing the number of data pieces (n), the optimal
number of checksum pieces (m) can be automatically
calculated using integer linear programming. By clicking on
the “Encode and Upload” button, the selected file is divided
into n data pieces, and the application automatically encodes
them into m checksum pieces. Once all pieces of data become
ready, they are uploaded into the three selected cloud storage
services using multithreading techniques. The message box in
the user interface displays the encoding time, the uploading
time and the total processing time.

Figure 3. Encode and upload a file to multiple cloud storage services

Figure 4 shows the user interface for downloading and
e,

en
cho

data pieces set
by t

decoding an uploaded file in the cloud. As shown in the figur
a user first selects a file from the list of uploaded files, th

oses at least two cloud service providers as the maximal
number of failed cloud services M equals 1. By clicking on the
“Download and Decode” button, the available file pieces are
concurrently downloaded to the local computer, where the
original file is recovered using RS coding techniques.
Similarly, as shown in Fig. 4, the message box in the user
interface displays the downloading time, the decoding time
and the total processing time, as well as the location of the
downloaded file on the user’s local computer.

To analyze the performance of our approach, we selected a
video file with a file size of 156 MB. Figure 5 shows the
encoding and uploading time vs. the number of

he user. From the figure, we can see that when we increase
the number of data pieces from 2 to 8, the uploading time
drops down significantly; while the encoding time has slightly
increased. The significant performance improvement for

uploading is due to the use of multithreading techniques;
however, the increased number of data pieces along with more
checksum pieces result in more overhead for encoding. When
the number of data pieces n is further increased, the uploading
time dramatically goes up. Based on our further experiments
with the cloud service providers, the concurrent processing
capabilities of the service providers as well as their
bandwidths become a major issue when the number of
concurrent uploading reaches 5. Note that when n = 10, the
optimal number of checksum pieces m = 5, so the number of
concurrent uploading to each CSP is 5.

Figure 4. Download and decode a file from clouds with a failed service

Figure 6 shows the downloading and decoding time vs. the
n

to
9,

ata pieces. For
exa

 number of data pieces set by the user. From the figure, we ca

see that when we increase the number of data pieces from 2
the downloading time drops down significantly; while the

decoding time has slightly increased. Similar to the case of
uploading, the significant performance improvement for
downloading is also due to the multithreading techniques, and
the increased number of data pieces along with more
checksum pieces result in more overhead for decoding. When
the number of data pieces n is further increased, the
downloading time goes up slightly, which it is not as bad as in
the uploading case with dramatic performance change. This is
because major cloud service providers typically put more
restrictions on their upload bandwidths than their download
bandwidths, especially for free user accounts.

From the above experimental results, we can see that both
the uploading and downloading time can be significantly
reduced by selecting a reasonable number of d

mple, when a file size is between 100 to 200 MB, based on
our experiments, the number of data pieces should normally be
set to 8 as long as the network bandwidth is sufficient.
According to Table 1, when n = 8, the optimal number of
checksum pieces m = 4. In this case, the space efficiency e
reaches its highest value 0.6667. It is worth noting that when
no service provider fails, the application only needs to
download the data pieces, and no checksum pieces are needed

120

for restoring the original file. In this case, the downloading
time can be further reduced, and the decoding time becomes
merely the time needed to combine the data pieces into the
original file. Therefore, in a normal case with no failure of
service providers, the overall performance for file retrieval
will be better than the results demonstrated in Fig. 6.

Figure 5. Encoding & uploading time vs. number of data pieces

Figure 6. Downloading and decoding time vs. number of data pieces

In this paper, we addressed three major issues with cloud
storage, . Instead
of achieving data reliability using redundancy at the

 will consider other
ma

is Too
Big to Fail,” InfoWorld Retrieved on March 7, 2015
from http://www.infowo 8200/cloud-computing/adobe

N. J. A. Sloane, The Theory of Error-Correcting

VI. CONCLUSIONS AND FUTURE WORK

Fi

namely reliability, security and performance
server

[8] K. Hwang and D. Li, “Trusted Cloud Computing with Secure Resources
and Data Coloring,” IEEE Internet Computing, Vol. 14, No. 5, pp. 14-
22, 2010. side, we presented a reliable and secure cloud storage schema

for end users. In our approach, we view multiple cloud storage
services as virtual disks, and upload redundant data files into
multiple cloud storages. The redundant data files are calculated
using erasure codes techniques, which allow multiple failures
of the data pieces. By forming an optimal problem for
calculating the number of checksum pieces, we can achieve the
best space efficiency in our approach. Furthermore, we divide
the user data into pieces, and distribute them across multiple

cloud services; therefore, no single CSP can understand the
uploaded user data. As a result, our approach can effectively
protect user data from unauthorized access in the cloud, and
provide security at the software level for the end users. Finally,
the experimental results show that due to concurrent data
processing, our approach provides very good performance in
file uploading and downloading, with the cost of minor
overhead for encoding and decoding data.

For future work, we will investigate possible ways to
automatically select a suitable number of data pieces based on
the network condition and the file size. We

jor aspects of cloud data, such as data integrity and
confidentiality. For example, it would be feasible to adopt the
digital signature technique to verify the integrity of the data
stored in the cloud to ensure they were not altered by the
service providers. Furthermore, when large cloud files are
involved, the overhead for encoding and decoding may become
a concern. To improve the overall performance in this case, we
need to look into more advanced techniques for erasure codes,
such as regenerating codes and non-MDS codes [3]. Finally,
we will attempt to integrate our approach with cloud-based big
data analysis for reliable and secure data stored in the cloud.
This may also be considered as a worthy future direction.

REFERENCES

[1] Yegulalp, “Adobe Creative Cloud Crash Shows that No Cloud S.
, May 16, 2014.
rld.com/article/260

-creative-cloud-crash-shows-that-no-cloud-is-too-big-to-fail.html
[2] C. Talbot, “Dropbox Outage Represents First Major Cloud Outage of

2013,” Talkin’Cloud, Jan 15, 2013. Retrieved on May 18, 2014 from
http://talkincloud.com/cloud-storage/dropbox-outage-represents-first-
major-cloud-outage-2013

[3] J. S. Plank, “Erasure Codes for Storage Systems: A Brief Primer,”
Login: The USENIX Magzine, www.usenix.org, December 2013, Vol.
38, No. 6, pp. 44-50.

[4] C. Huang, H. Simitci, Y. Xu et al., “Erasure Coding in Windows Azure
Storage,” Proceedings of the 2012 USENIX Annual Technical
Conference, Boston, MA, USA, pp. 15-26 , June 13-15, 2012.

[5] L. B. Gomez, B. Nicolae, N. Maruyama, F. Cappello and S. Matsuoka,
“Scalable Reed-Solomon-based Reliable Local Storage for HPC
Applications on IaaS Clouds,” Proceedings of the 18th International
Euro-Par Conference on Parallel Processing (Euro-Par’12), Rhodes,
Greece, pp. 313-324, August 2012.

[6] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking
Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery
and Degraded Reads,” Proceedings of the 10th USENIX Conference on

le and Storage Technologies (FAST-2012), San Jose, CA, USA, pp.
20-33, February 2012.

[7] N. Santos, K. Gummadi, and R. Rodrigues, “Towards Trusted Cloud
Computing,” Proceedings of the Workshop on Hot Topics in Cloud
Computing (HotCloud09), Article No. 3, San Diego, CA, June 15, 2009.

[9] D. Fitch and H. Xu, “A RAID-Based Secure and Fault-Tolerant Model
for Cloud Information Storage,” International Journal of Software
Engineering and Knowledge Engineering (IJSEKE), Vol. 23, No. 5,
2013, pp. 627-654.

[10] C. K. Clarke, “Reed-Solomon Error Correction,” R&D White Paper,
British Broadcasting Corporation, July 2002.

[11] F. J. MacWilliams and
Codes, North-Holland Mathematical Library, Amsterdam, London, New
York, Tokyo, 1977.

121

Towards a Deployment System for Cloud Applications

Ruici Luo1,3, Wei Ye2,3∗ , and Shikun Zhang2,3

1School of Electronics Engineering and Computer Science, Peking University, China
2National Engineering Research Center for Software Engineering, Peking University, China

3Key Laboratory of High Confidence Software Technologies, Ministry of Education
{luoruici,wye,zhangsk}@pku.edu.cn

Abstract

A sophisticated deployment system plays an important
role in automating and improving the process of software
delivery, especially for cloud applications. Since cloud ap-
plications usually consist of many components run on differ-
ent virtual machines, i.e., EC2 instances, the deployment is
time-consuming and error-prone, which may involves man-
ual operations and complex scripts. We develop a deploy-
ment system aiming to accelerate cloud application deliv-
ery. First of all, we propose a component model and a con-
nector model involving cloud feature. Then we present a
component management system, in which component can
be configured and instantiated rapidly based component in-
heritance and composition. Finally, we develop a novel de-
ployment mechanism that can automate deployment process
across multiple cloud instances. Experiment shows that our
approach can reduce the build time and downtime so that it
can speed up the delivery process of software application.

Keywords: software architecture; application deploy-
ment; cloud computing; continuous delivery

1. Introduction

For enterprise applications, continuous integration is in-
creasingly seen as an effective tool for reducing the cycle
time from product backlog to receiving actual user feed-
back. This can result in real increases in developer and team
productivity when combined with cloud computing. One
key trend that is growing in importance daily is Continu-
ous Delivery[13]. More and more organizations are look-
ing to embrace an agile model in which stringent, auto-

∗Corresponding Author

mated testing allows enhancements or ”micro-releases” to
go live without the traditional waterfall release cycles. We
are seeing a major shift in enterprise software development
to cloud-based, continuous delivery, with fully automated
quality, coverage, functional and performance tests gating
live deployments. Thus, incremental deployment become
more critical since it is very expensive to rebuild and rede-
ploy the whole application. Meanwhile, cloud applications
usually consist of many components run on different virtual
machines making deployment time-consuming and error-
prone, which may involves manual operations and complex
scripts. It has become a common issue to reduce the build
time and downtime so that it can speed up the delivery pro-
cess of cloud application.

In the past two decades, application servers have been
designed to serve multiple applications, which means ap-
plications share identical runtime and deployment scenario.
With the advent of Cloud Computing the IT resources
can be rapidly and elastically delivered via Internet. Ex-
amples of compute Clouds are Amazons Elastic Compute
Cloud (EC2) and Google App Engine (GAE). Meanwhile,
the complexity of applications and servers grows rapidly.
Nowadays, the benefits of making the server immutable[14]
becomes more obvious and clear. If anything of an applica-
tion has been changed, a new immutable server instance will
be made next to the existing one, which will be destroyed
soon. One can request and release resources in a few sec-
onds with low costs, e.g. creating instances in EC2 and run-
ning applications in GAE. In this context, back-end infras-
tructure including middleware container has become one in-
tegral part of one specific application. LXC (Linux Contain-
ers) is an operating system level virtualization method for
running multiple isolated Linux systems (containers) on a
single control host, instead of creating a full-fledged virtual

(DOI reference number: 10.18293/SEKE2015-192)

122

machine. We see that it has become feasible in cloud envi-
ronment to make application deployment and runtime im-
mutable with virtualization and lightweight container tech-
nology like Linux Container. If each component has its own
infrastructure and isolated runtime, the cost of rebuild and
redeploy a single component will be relatively low. By im-
posing a well-organized connectivity and lightweight com-
munication mechanism between application components,
breaking down partial components will not terminate the
whole application. We could leverage the power of cloud in-
frastructure to support individual evolution, ensuring good
replaceability and upgradeability of components in software
system to achieve the goal of continuous delivery.

Application management is a key issue for successful
continuous delivery. Developer need to take care of evo-
lution of component configuration. Current solution for ap-
plication management dedicated to IaaS(Infrastructure as a
Service) and PaaS(Platform as a Service). Many config-
uration management systems such as Puppet[5], Chef[2],
which provide a DSL to model a virtual machine instance,
including files to present and application stack that should
be running. These configuration management systems man-
age the configuration of applications in a centralized server
and the work of deployment is assigned to operation teams,
not developers. Although virtual machine[9] based on IaaS
platform is a solution to deploy application, we also need
a simple and lightweight way to manage the deployment of
applications.

1.1. Contributions

This paper makes the following contributions:

• We present an component model from deployment per-
spective for accelerating continuous delivery process.
In our approach, components consist of business func-
tion code, configuration options and runtime software
stack(OS, middleware, dependencies library) defini-
tion which is called image. A image can be instantiated
to a instance.

• We also provide a system to manage the images and in-
stances. An inheritance mechanism ensures that each
component can evolve independently and reused in
many situations. Unlike all previous techniques and
systems of which we are aware, our approach makes
components immutable. If any changes occurs, a new
image of the specific component is generated and in-
stantiated to replace the old instance. Also the evolu-
tion process is recorded, i.e. the history of images is
maintained by our deployment system. It is easy to
rollback to any state of application.

• We present an system that automates the deployment
of distributed application based on this model in the

cloud. The deployment system processes the instanti-
ation and resolve the interconnections of components.

The rest of this paper is organized as follows. Section
2 presents a motivating example that illustrates how our
approach works. Section 3 describes a component-based
model and an application management system for cloud ap-
plication. Section 4 describes an automated deployment
system. Section 5 gives an example in practice to evalu-
ate our approach. Section 6 discusses related works. We
conclude in Section 7.

2. Component Model

To meet the challenges that applications in cloud should
be highly scalable and flexible, we propose a component
model as an abstraction of deployment elements. From the
business function perspective, following the object-oriented
principles of ”Single Responsibility” and ”Concerns Sepa-
ration”, a component should focus on a small, single and
independent business function that it is responsible for. So
parallel development can be organized straightforwardly
and incremental evolution could be performed smoothly.
From the infrastructure perspective, application changes are
not only about application itself. Changes that is about
environment should also be considered as part of evolu-
tion. Dynamic components interchangeability should be
supported. So adding or updating components will not re-
quire redeployment of the entire application.Using the com-
ponent model to abstract the target deploying application,
we are aiming to following features:

• Self-contained infrastructure: Each Component con-
tains the infrastructure required at the runtime. The
infrastructure includes but is not limited to middle-
ware and OS environments. This ensures the isolation
of components and also improves the reliability since
they do not affect each other.

• Individual Evolution: For the reason that each com-
ponent has its own infrastructure and isolated to each
other, they can be developed and maintained indepen-
dently at the time. This can greatly improve the pro-
ductivity of software and reduce the maintenance cost.

• Disposable Components: In cloud environment, virtu-
alized instance can be acquired cheaply and pirated.
The past method that deploying components into mid-
dleware or operating system is out of time.

We propose a component model, which is an extension
of BU(Business Unit) model from BuOA[15]. BU contains
presentation layer, business logic layer and data accessing
layer inside. BU also provides attributes, operations and

123

Figure 1. Extending infrastructure layer of BU

events as its external interface. Basically, attributes can
be treated as representations of BUs internal state; opera-
tions provide ways to query and change its internal state;
and events will indicate the changing of its internal state.
However, BU only concerns abstraction in application logic
level, lacking mechanism to support cloud features. Thus,
we add infrastructure layer in Business Unit model, which
includes middleware and OS environment. The extended
model is illustrated in Figure 1.

The component model has two levels, business level and
infrastructure level. Business level is not always necessary.
A image with a MySql database can be seen as having only
infrastructure level. Componentonnectivity between images
can be categorized into three categories base on the Two-
Level perspective.

Business dependency This kind of relationship can be
further divided into four categories: observing, injecting,
weaving and binding as well as BuOA. We will not cover
them in detail here.

Infrastructure dependency: This kind of relationship
defines the dependencies of infrastructure, e.g. application
server has dependencies of cache and database server.

Data sharing Another way to connect two components
is to share data between them. An example is that multiple
business components use a same database server.

3. Component Management

To support maintaince and evolution of components, we
present a system to manage components of cloud applica-
tions.

3.1. Image

Image is subject to describe the state of a component, in-
cluding hardware characteristics, software stack(OS, mid-
dleware, etc...) and applicative binaries. Each image has a
unique identifier(usually generated by system via hash algo-
rithms). There are many images generated in the evolution
process of a component. So we aggregate these images to
a repository. In analogy with Git version control system,
a image is a commit and a repository is correspond to the
same name. A repository potentially holds multiple vari-
ants of an image. In the case of our ubuntu image we can
see multiple variants covering Ubuntu 10.04, 12.04, 12.10,
13.04, 13.10 and 14.04. Each variant is identified by a tag
and you can refer to a tagged image like ”ubuntu:14.04”.

When developers decide to publish components for test
or release, the management system just generate a new im-
age with a unique identifier via the configuration about OS,
middleware and applicative binaries and it is pushed to the
central registry. The deployment system and other develop-
ers can pull this image and get an instance of it after push-
ing.

3.2. Instance

An instance is an instantiation of a image by assigning
concrete values to configuration, and it is deployed to the
IaaS platform as the runtime of a component. An instance
consists of software stacks and applicative binaries. An
instance has a global unique identifier as well as images.
The identifier could distinguish two instances instantiated
by one image.

3.3. Image Inheritance

To extend and reuse images for productivity, the image
could be inherited. For example, each portion of a web
application(web server, application server, cache, database,
etc...) is running in a Ubuntu linux operating system. So we
can make an ”abstract”(which could also be instantiated)
image for inheritance.

To extend base image, developers can add or override
dependencies and configurations to generate new images
which means that the configuration and the dependencies
are all inherited from a base image. On the other hand,
images with different versions of a same name should be
co-located in one repository.

3.4. Image Composition

Another way to extend and reuse existing images is com-
position. For example, if we need a image that consists of

124

Java runtime environment and mysql database and there ex-
ist independent images of JRE and mysql. We can compose
them and get a new image that has the java and mysql fea-
tures.

However, it is not appropriate to merge images in some
cases. If an image is based on ”ubuntu” and another image
is based on ”windows”, they can not be merged apparently.
So before merge, we would check if the images has the same
ancestor in the image tree, and then check if there are any
conflicts between them. After composition the images tree
becomes a Directed Acyclic Graph(DAG).

4. Application Deployment

4.1. Overview

To deploy the application to IaaS platform, we present a
deployment system which takes a deploy plan as following
configuration written by YAML:

web :
image : onboard−c o r e : 1 . 2
p o r t s :
− 8080

volumes :
− . : / code

l i n k s :
− r e d i s

r e d i s :
image : r e d i s : l a t e s t
command : r e d i s−s e r v e r −−appendon ly yes

This defines two components:

• web, which is built from an image called onboard-core
with a version number 1.2. It also says to expose 8080
port, connect up the redis component and mount vol-
umes for data sharing.

• redis which uses the redis image with latest version
directly.

Each element on the top of the YAML file describes a
component. It specifies the name and version of image and
the dependencies to other component.

4.2. Disposable Distribution

As we mentioned above, to avoid the issue that infras-
tructure has been patched again and again, we make the in-
frastructure as part of application distribution. This means
that any changes to the infrastructure is equivalent to the
application. In our new situation, we absolutely know a
system has been created via automation and never changed
since the moment of creation. A distribution of application

is never modified after deployed, and merely thrown away
after being replaced with a new distribution.

Another consideration is that the data related to an ap-
plication is not immutable and cannot be thrown away. A
practical way is shipping the data storage off of the BU dis-
tribution. Technically, sending log files to a central sys-
tem log server, using shared file system like NFS, choosing
mountable cloud service as storage devices are all feasible
practice to guarantee data integrity.

4.3. Individual Evolution and Development

Incremental deployment is critical in the software evolu-
tion since it is very expensive to rebuild and redeploy the
whole application. As we separate application into compo-
nents each of which has its own infrastructure and isolated
runtime, the cost of rebuild and redeploy a single compo-
nent is relatively low. Due to the lightweight communica-
tion mechanism between components, breaking down par-
tial BUs will not terminate the application. The individual
evolution can also ensure good replaceability and upgrade-
ability of components in software system.

To keep things simple, we consider two inter-related
components in an application. One component requires ser-
vices provide by another component and they are developed
in parallel. As the developer(s) of each component, they do
changes everyday with building and releasing SNAPSHOT
version of distribution. So the developer(s) of the compo-
nent that requires services of another does not need to get
the source code and build another component, he/she/they
only have to pull the SNAPSHOT of distribution and run
it locally. This greatly reduce the time cost of dependen-
cies building, testing and configuration. In summary, the
collaboration mechanism between components varies from
source code level to component with infrastructure level and
will give a huge boost to improve the quality, reliability and
productivity of software application.

5. Implementation and Evaluation

5.1. Component Implementation

We have implemented a prototype to verify our method
and evaluate its performance. We use Docker[3] to imple-
ment the infrastructure level of components. The imple-
mentation is based on Spring Boot[6]. Spring Boot provides
the ability to create stand-alone Spring based enterprise ap-
plication that embeds an application as the middleware and
can be run by itself. The prototype was tested on CentOS
6.4 and can also be applied or extended to the OS that sup-
ports Docker.

Application Logic Level of an image is the same
as the architecture proposed in BuOA. In the example

125

the component projectMg contains three bundles project-
Mgt.persistence, projectMgt.service, projectMgt.web, cor-
responding data accessing layer, business logic layer and
presentation layer respectively. They communicate with
each other based on contracted service interfaces, shielding
implementation details completely. For example, data ac-
cessing bundles can choose different Object-Relation map-
ping frameworks to do the persistence work as long as it
keeps the data accessing interface unchanged.

Infrastructure Level of an image is implemented as a
Docker container which contains a Spring Boot based ap-
plication. The Docker container is a virtualized and iso-
lated operating system, and the Spring Boot based applica-
tion is embedded application server like Tomcat or Jetty. It
is a stand-alone application which means no external server
is required. To describe the Docker container, we add a
Dockerfile to each BU. The Docker container is created via
Dockerfile with application build. The following text file is
an example description of infrastructure level of a image:

I n h e r i t from a b u i l t c o n t a i n e r
wi th Java e n v i r o n m e n t .
From koml jen / jdk6−o r a c l e
Get t h e l a t e s t v e r s i o n o f Maven
Run apt−g e t u p d a t e
Run ap t−g e t i n s t a l l −y maven
Run mvn c l e a n i n s t a l l
S t a r t u p t h e a p p l i c a t i o n
Cmd j a v a − j a r t a r g e t / sample −1 . 0 . 0 . j a r

5.2. Evaluation

Onboard[4] is an actual application which continuous
runs for about 2 year. To begin with, we develop with the
BuOA approach. All BUs are put into a virgo instance. At
that time, each BU only contains application code and is
not isolated to each other. Any little change of a BU will
cause the application to restart. More seriously, bugs in a
BU cause the JVM process down and the application halts.
The 10 components run in their own Docker container and
are isolated to each other. There is one JVM process run-
ning as the runtime of each component. For the evolution
perspective, each BU has its own individual evolutionary
process.

The evaluation is based on the build time and downtime
of each release. In the old architecture, the calculation is
very easy because each build is related to the entire appli-
cation and the downtime is the restart seconds of the appli-
cation server. We have an continuous integration server to
do daily release of application. We collect the logs from
servers and make a table to show the data below (The data
is up to June 2014).

Figure 2. Downtime costs with the evolution
of Onboard

Month LOC Change Times

July 2013 231137 4
Aug 2013 231251 5
Sep 2013 228879 3
Oct 2013 211297 4
Nov 2013 212132 6
Dec 2013 234853 4

The refactor separator
Jan 2014 232268 16
Feb 2014 239247 19
Mar 2014 241317 20

Before June 2013, the application scale was relatively
small, hence, newer data are shown in table above to keep
our test in a consistent way. As we can see, the change
times increased very fast when do the isolation of BUs. The
reason is that each BU has its own evolution and the times is
added by each of them. Developing with the new approach,
the iteration has a much higher frequency.

The most important factor that affect the build time and
downtime is the increment. With our new approach, incre-
ment of each release is quite small because upgrade a small
part of BUs will not affect the status of other BUs. The
test results are shown in Figure 2 and Figure 3. The data in
these figures confirms that our new approach can reduce the
build time and downtime so that it can speed up the delivery
process of software application.

6. Related Works

The problem of deployment of application has attracted
significant attention in the area of System Administration.
Many tools exist: Puppet[5], Chef[2], CFEngine[1]. The
goal of these systems is to simplify the management task
of large scale machines. However, they only consider the
configuration of systems or environments and not take the
configuration and interconnections of components in appli-
cation.

126

Figure 3. Build time costs with the evolution
of Onboard

Aeolus[7] component model is specifically designed to
capture realistic scenarios arising when configuring and de-
ploying distributed applications in cloud environments. It is
able to describe several component characteristics such as
dependencies, conflicts, non-functional requirements. The
Blender[10] toolchain extends [8] that automates the assem-
bly and deployment of complex component-based software
systems. By relying on a configuration optimizer and a de-
ployment planner, the final deployment satisfies not only
user requirements but also to be optimal with respect to the
number of used virtual machines.

Engage[11] is a deployment management system.
Throughout the paper the term resource is used as a syn-
onym of component. Resource consists of type and driver.
The former statically verifies deployment properties and
generates the deployment plan, while the latter installs and
manages the resource’s lifecycle. Engage introduces three
types of dependencies: Inside for nesting(e.g. application
code runs into an application server); Env for local de-
pendencies(Java programs need JRE); Peer for resources
deployed anywhere else. The present paper has a similar
idea to Engage: It separates the specification and runtime
of components and automated generates the right order of
deployment.

SmartFog[12] is a Java framework to manage deploy-
ment for distributed applications. It shares some concepts
with the Engage that each component has a declarative de-
scription and a driver called lifecycle manager.

7. Conclusion

To address the critical challenge of deploying distributed
application in the cloud, we present an component-based
model that aims to automated configure and deploy over
lightweight container. Base on the proposed model, we
introduce an application management system as well as
an inheritance-based mechanism that ensures each resource
can be evolved independently and reused in different sce-
narios. We also present a deployment system that could

process the dependencies and interconnected relationship of
components automatically. To evaluate our approach, we
implement a distributed application on an industrial IaaS
platform. As a result, we can decompose a cloud application
vertically into independent and cohesive modules which has
dynamic interchangeability and evolvability.

Acknowledgments: This work was supported by the Na-
tional Natural Science Foundation of China under Grant
No.61202070.

References

[1] Cfengine. http://cfengine.com/. Accessed: 2015-05-10.
[2] Chef. https://www.chef.io/. Accessed: 2015-05-10.
[3] Docker. https://docker.com/. Accessed: 2015-05-10.
[4] Onboard. https://onboard.cn/. Accessed: 2015-05-10.
[5] Puppet. https://puppetlabs.com/. Accessed: 2015-05-10.
[6] Spring boot. http://projects.spring.io/spring-boot/. Ac-

cessed: 2015-05-10.
[7] M. Catan, R. D. Cosmo, A. Eiche, T. A. Lascu, M. Lien-

hardt, J. Mauro, R. Treinen, S. Zacchiroli, G. Zavattaro,
and J. Zwolakowski. Aeolus: Mastering the Complexity of
Cloud Application Deployment. In K.-K. Lau, W. Lamers-
dorf, and E. Pimentel, editors, ESOCC - European Confer-
ence on Service-Oriented and Cloud Computing - 2013, vol-
ume 8135, pages 1–3, Malaga, Spain, 2013. Springer.

[8] R. Di Cosmo, M. Lienhardt, R. Treinen, S. Zacchiroli,
J. Zwolakowski, A. Eiche, and A. Agahi. Automated synthe-
sis and deployment of cloud applications. In Proceedings of
the 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, pages 211–222, New York,
NY, USA, 2014. ACM.

[9] X. Etchevers, T. Coupaye, F. Boyer, and N. de Palma. Self-
configuration of distributed applications in the cloud. In
Cloud Computing (CLOUD), 2011 IEEE International Con-
ference on, pages 668–675, July 2011.

[10] X. Etchevers, G. Salaün, F. Boyer, T. Coupaye, and
N. De Palma. Reliable self-deployment of cloud applica-
tions. In SAC 2014 - 29th ACM Symposium on Applied Com-
puting, Gyeongju, South Korea, Mar. 2014.

[11] J. Fischer, R. Majumdar, and S. Esmaeilsabzali. Engage: A
deployment management system. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’12, pages 263–274, New
York, NY, USA, 2012. ACM.

[12] P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. Farrell,
A. Lain, P. Murray, and P. Toft. The smartfrog configuration
management framework. ACM SIGOPS Operating Systems
Review, 43(1):16–25, 2009.

[13] J. Humble and D. Farley. Continuous delivery: reliable soft-
ware releases through build, test, and deployment automa-
tion. Pearson Education, 2010.

[14] K. Morris. Immutable server, June 2013.
[15] W. Ye, R. Luo, S. Zhang, X. Liu, and W. Hu. Buoa: An

achitecture style for modular web applications. In Software
Engineering Conference (APSEC), 2012 19th Asia-Pacific,
volume 1, pages 802–807. IEEE, 2012.

127

Impact of Unanticipated software evolution on

development cost and quality: an empirical evaluation

Rodrigo Vilar

Exact Sciences Department

Federal University of Paraíba

Rio Tinto, Brazil

rodrigovilar@dce.ufpb.br

Anderson Lima, Hyggo Almeida, Angelo Perkusich

Embedded Systems and Pervasive Comp. Lab.

Federal University of Campina Grande

Campina Grande, Brazil

anderson.lima, hyggo, perkusic@embedded.ufcg.edu.br

Abstract—Most techniques to aid maintenance and evolution of

software require to define extension points. Generally, developers

try to anticipate the parts that are more likely to evolve, but they

can make mistakes and spend money in vain. With Unanticipated

Software Evolution, developers can easily change any element of

the software, even those that are not related with an extension

point. However, we have not found empirical validations of

Unanticipated Software Evolution impact on development cost

and quality. In this work, we design and execute an experiment

for Unanticipated Software Evolution (specifically, using the

COMPOR platform), in order to compare its results metrics --

time, lines of code, test coverage and complexity -- using OO

systems as baseline. 30 undergraduate students were subjects in

this experiment. We concluded that COMPOR have significant

impact on the Lines of code and Complexity metrics, reducing the

amount of lines changed and the McCabe cyclomatic complexity

on evolution of a small system.

Keywords-Unanticipated Software Evolution, Cost, Quality,

Empirical software engineering, Software Evolution.

I. INTRODUCTION

Some studies estimate that maintenance and evolution tasks
spend between 50% and 90% of software development budget
[13, 8]. Thus, Software Engineering researchers invest
considerable resources in order to create new techniques that
ease and reduce the cost of software evolution. Most of these
techniques require developers to anticipate extension points
(EP), which are flexible structures to hold new functionality
and changes.

 However, there is a trade-off: defining an EP is abstract
and expensive; conversely, it is even more expensive to change
software pieces that are not prepared for it. So, for each EP
created, we expect a ROI (return of investment), deriving out of
reducing the cost of later changes that use the same EP. For this
reason, developers try to discern and isolate software chunks
inclined toward change. Nevertheless, sometimes they do not
predict EP correctly and ROI is zero.

 Unanticipated Software Evolution (USE) is a Software
Engineering approach, which aids developers to change any
software fragment, even without EP [12]. It considers that is
possible to reduce the cost of software evolution and preserve
its quality, even when there is not investment to create EP. As a

result, it would eliminate the trade-off we cited above and
developers would not worry to create EP.

 In an effort to confirm USE hypothesis, we have analyzed
all articles published on USE events [12, 10, 11]. Nevertheless,
none of these studies have validated the influence of USE on
software development metrics such as quality and cost. In face
of this gap, we define a business problem for this work.

Business Problem: There is no convincing evidence on how

USE influences software development metrics.

In this paper, we perform an early evaluation of COMPOR
[5, 6], a USE platform developed by Embedded Laboratory at
UFCG

1
, whose code is open source and is available online

2
.

COMPOR is a container for components that communicate
with each other indirectly, through a specific message
mechanism. So that components have weak coupling and can
be easily changed. In fact, COMPOR can even change
components at run time.

We have defined a technical problem, reducing our scope to
COMPOR and using more specific software development
metrics.

Technical Problem: There are not empirical studies that

investigate COMPOR influence on software development cost

and quality.

We propose an experiment to fulfill this gap on USE
validation. Since COMPOR is a USE platform, its
experimental outputs are also USE results. So, we try to
evaluate USE impact over software development through
COMPOR.

Cost and Quality are abstract metrics. So we choose
concrete metrics for our experiment. We measure Cost as the
time spent and lines of code changed in order to complete a
software evolution task. Likewise, we assess Quality being
Cyclomatic complexity and Test coverage of code after
evolution.

 In an ideal configuration, the experiment should use
professional developers to implement systems with two
alternatives – coding using only Object oriented code or using

1
 http://www.embeddedlab.org

2 http://bit.ly/COMPOR

DOI: 10.18293/SEKE2015-074
128

COMPOR – and compare the Time, LoC, Complexity and
Coverage results. This way we would infer COMPOR impact
on software development, considering OO results as baseline.

Due to resources and time limitations, we performed our
experiment with undergraduate students, during an OO Design
course. Carver et. al. [3] state that the risk of using
inexperienced students is justifiable for pilot experiments. This
kind of experiment would not be generalizable, but it
contributes to fix experiment design problems and to guide
future replications on professional development environments.

At this point, we can define our objective and hypotheses
using the GQM template.

Objective: The purpose of this study is to measure the
impact of COMPOR on evolution cost (time spent and lines of
code changed) and quality (tests coverage and complexity)
[16], from the point of view of software developers, in the
context of evolution tasks for a small system implemented by
undergraduate students, using plain Object Oriented
implementations as baseline.

Hypothesis 1: COMPOR systems require less time to
complete evolution tasks than plain OO systems;

Hypothesis 2: COMPOR systems change less lines of code
to complete evolution tasks than plain OO systems;

Hypothesis 3: COMPOR systems have better test code
coverage after evolution tasks than plain OO systems;

Hypothesis 4: COMPOR systems have lower cyclomatic
complexity after evolution tasks than plain OO systems.

In the remaining of this paper, we show the related work,

describe COMPOR features, detail the experiment design,

analyze the experiment results and point out our conclusions

and future work.

II. RELATED WORK

We have divided this section into two parts. Firstly, we review

the literature about USE, looking for concrete tools and their

empirical validation. After that, we show some experimental

works for software evolution, similar to our experiment.

A. Unanticipated software evolution

We have found some USE works in literature. Oreizy et. al.
defined an architecture for run-time software evolution [14].
Keeney and Cahill created a framework for dynamic adaptation
[9]. Wurthinger et. al. modified a Java virtual machine to allow
arbitrary runtime changes at any point at which a Java program
can be suspended [19]. Piechnick et. al. propose a role-based
composition system that enables the adjustment of
unanticipated, dynamic self-variation of applications in a fine-
grained manner [15]. However these works did not evaluated
empirically the impact of USE on software cost and quality.
Therefore, we expanded the scope of our literature review to
experimental evaluation of software evolution.

B. Software evolution experiments

While investigating software evolution literature, we found
several experimental studies that evaluated aspects of
evolution.

Arisholm and his partners worked three times with
alternative designs for a coffee machine simulator, which sells
and prepares drinks [4], in order to: evaluate changeability of
systems with good and bad design [2]; measure the effect of
sequence in which maintenance tasks are performed on the
time required to perform them and on the functional
correctness of the changes made [18]; evaluate the effect of
centralized versus delegated control design on software
maintainability [1].

Deligiannis et. al. have replicated the [1] study, using other
programming language, enhancing the evolution tasks and
collecting more metrics [7]. Sfetsos et. al. used the coffee
machine project to investigate the impact of developer
personalities and temperaments on communication, pair
performance and pair viability-collaboration [17].

In spite of not focusing on USE, these works helped us to
design a comparative experiment for COMPOR.

III. COMPOR

This section explains the Unanticipated Software Evolution
features of COMPOR that we evaluated in an experiment.
COMPOR has a generic and formal specification for a
component container. It defines the components structure and
their indirect communication, decoupling components and
easing their change. For example, in Fig. 1, a component A
needs to invoke a service of another component B, A does not
invoke B directly. Instead, B should declare a service named as
s and A could use the COMPOR API to invoke service s. The
COMPOR container discovers automatically where s is
declared and invokes it.

In a hypothetical evolution scenario, the system client
requires to change some functionality of s. The system
developer only needs to deploy another component C that also
declares a s service, replacing the former service from B. A and
other components that invoke s are not aware of that change,
since they do not know B and C components directly.

Currently, there are four COMPOR implementations, for
Java, C#, C++ and Python languages. In this experiment, we
used the Java Component Framework for COMPOR, which

defines two API classes: ComporFacade, that must be
extended to create the system entry point and to deploy

components; and Component, that must be extended too, in
order to declare services and invoke services of other
components.

IV. EXPERIMENT DESIGN

A. Experimental Units

With a view to run this experiment using evolution tasks,
we needed to choose a system to be implemented by the
experiment subjects. We decided to use a small system, which
can be completely implemented by just one developer, rather
than a big one that demands several developers working
together.

The coffee machine problem fits this small-system
requirement. It has also been replicated on several experimental
studies. So, we have decided to use the same project (with
some adaptations) for this experiment.

129

Figure 1. COMPOR: Declaring and invoking.

We planned its development as evolution tasks, which are
the Experimental Units of our experiment.

The original coffee machine problem has four phases [4]:
Payment with coins, four types of drink with the same price,
cancel drink and return coins; add a new drink type with
another price; use employees badges to directly debit the cost
of drink purchases from paychecks; dynamic drink
configuration.

We have partitioned these phases into 50 small tasks, so
that developers can achieve better success rates on evolution
tasks. Among these tasks there are also some new tasks that we
have added to fill some missing functionality, e. g., loading
coins on machine start in order to provide change.

Since COMPOR is a tool that starts operating from
software design, the experiment does not need to measure
COMPOR influence on requirements and analysis development
phases. Therefore, we have simulated that requirements and
analysis phases were already finished, and provided automatic
functional tests for each evolution task. The functional tests run
against a specific coffee machine Facade, which can be
implemented using COMPOR or plain object orientation.

Next subsections detail the treatments designed to run with
the experimental units.

B. Input: Independent variables

Factor: Technology
The main focus of this experiment is to compare result

metrics of evolution tasks, between implementations that used
COMPOR versus other versions that used plain OO. Therefore,

the experiment contains a simple design with only one
interesting factor, which has two levels: using COMPOR or
using plain OO. The other sources of variation are undesired.
So, we have designed the experiment in order to neutralize
their effect over dependent variables.

Undesired controlled variable: Participants
The experiment engaged 30 third-year students of

Licentiate in Computer Sciences at UFPB, which were taking
an OO Design course. The OO Design teacher used this
experiment to grade the students in a practical project. Each
student has different levels of experience in OO programming.
While some of them work as junior developers on start-ups,
others have almost no programming skills. Before the
experiment, all students already had classes of refactoring
techniques and design patterns.

To reduce the effect of developer experience, we have
allocated them into random pairs. In fact, when we compared
the final grading score in OO Design class, the score standard
deviation for individuals was 0.89. In other hand, the score
standard deviation for the experiment pairs was 0.61.
Therefore, we suggest that pair randomization really reduced
the developer experience effect. Each pair performed pair
programming during the evolution tasks. Moreover, the
experiment design uses replication for participants, because
each pair should carry out all evolution tasks. We divided the
15 student pairs randomly into two groups. The first five pairs
should use COMPOR in the coffee machine implementation
and the other ten pairs must use plain OO.

Undesired not controlled variable: Environment
There are some events that we cannot control and would

impact the experiment results, such as, climate, holidays,
students transportation problems, etc. In order to reduce the
environment effect, we have designed the experiment in a
controlled manner. All students worked in a laboratory at
UFPB with similar schedule, resources and instructions to
execute

C. Procedures

Preparing
We have prepared some guidelines to guide students

through experiment:

 An Experiment Manual
3

, explaining experiment
conditions, purpose, resources, steps, auxiliary
documentation and glossary;

 A Web Form to manually collect experimental unit
configuration and time spent metric;

 Auxiliary documentation containing pseudo code,
because instead of evaluating algorithms, we want to
analyze design decisions;

 A Github repository for a coffee machine specification,
containing a sequence of 50 tags (one for each
evolution task). Each tag defines the functional tests,

3
 http://bit.ly/CoffeeMachineExperiment

130

using jUnit
4
 and Mockito

5
 , for its respective evolution

task;

 A tutorial which we have used to give a class about
COMPOR;

 A Github repository with the last COMPOR version.

The students were also trained on: Git, to manipulate
Github repositories; Maven, to manage projects dependencies;
JUnit and Mockito, to understand and execute the functional
tests; Facade design pattern, which was used by the functional
tests.

Executing
In the Coffee machine Github repository, we have created a

tag for each evolution task, with an X.YY format. Where X
means the coffee machine phase (from 1 to 4) and YY is the
evolution task inside of the phase.

Beginning on tag 1.01 until tag 4.15, the student pair has to
follow this procedure:

a) Merge the current implementation code with the next

tag (except for tag 1.01, which has not implementation);

b) Set the task start time;

c) Evolve the code until all functional tests pass;

d) Set the task finish time;

e) Commit the task final code and send it to Github;
Submit the Web Form with task data, such as start and

finish times, pair id, task id, technology and subjective
questions about difficulties.

The results of first five evolution tasks were fragile, since
we consider it as training for experiment modus operandi.

D. Output: Dependent Variables

After the Executing procedure detailed above, we can
collect several data about each evolution task. Github provides
a diff report for each commit, so we can calculate the amount
of lines of code changed by the evolution task. The time spent
is collected from a spreadsheet populated by the web form.

Collecting Complexity and Coverage data is harder, since
we need to access each evolution task final code and run the
Cobertura Maven plugin

6
. It generates an HTML report with

total test code coverage and mean McCabe cyclomatic
complexity.

V. ANALYSIS

In this section, we show the experiment result data and its
transformations, in order to try to obtain normal-distributed
data. We also perform some statistical tests and interpret the
models results. After all, we check the hypotheses defined in
Section 1.

A. Results and Transformations

The initial 26 experiment tasks (1.01 to 1.26) represent the
first coffee machine requirement. While the subsequent ones
represent evolution tasks. Due to software evolution

4
 http://www.junit.org

5 http://code.google.com/p/mockito/
6 cobertura.github.io/cobertura/

importance and COMPOR evolution nature, we focused our
analysis on evolution tasks (2.01 to 4.15).

Each student pair worked 35 hours in this experiment, but
only one pair finished all evolution tasks successfully. All
teams submitted approximately 500 experimental task logs.

We have ignored some data due to the following reasons:

 After task 4.01 there is not enough data to perform
statistical tests;

 Three COMPOR teams used COMPOR poorly. Their
Facades are replete of OO code and invoke COMPOR
only three times. By comparison, the two remaining
teams have smaller Facades and invoke COMPOR 8
and 23 times, respectively;

 The 3.02 Task alone weakened all COMPOR metrics.
Since, in the 3.03 task, the metrics returned to normal
levels, we consider the former task as an outlier.

This resulted in 338 observations that we have analyzed
using the R statistical language. The tasks data, R code and
program output are available online

7
.

In the scope of this experiment, tasks size vary a lot and
absolute data for response variables did not tend to be normally
distributed. With this in mind, we have transformed raw
experiment data into relative values based on the mean OO
metrics for each task. For example, the mean Time for all OO
teams on task 1.01 was 35 minutes. So, instead of using the
absolute Time value for Team 01 on this task (106 minutes),
we have made statistical tests using the respective relative
value (302% of OO mean). The relative data became closer to
the normal distribution than the absolute data.

After that, we applied a log transformation into Time and
LOC metrics and they become almost normally distributed. We
did not find any transformation that made Coverage and
Complexity data normal. So, these variables were tested with
non-parametric methods.

Since the experiment generated a lot of observations, we
have decided to split the observations into seven sequential task
groups of about 50 observations. After that, we made separated
statistical tests for each task group. Therefore, we compared
OO and COMPOR metrics seven times during experiment
execution and got temporal conclusions for experiment results.

The task groups had different configurations for each
response variable (Time, LOC, Coverage and Complexity). We
made some group adjustments in order to find group
boundaries where response variables change behavior. This
approach optimized the results of statistical tests.

Firstly, we tested the normality and homoscedasticity of
data for each combination of task group and response variable,
for both OO and COMPOR teams. In the sequence of analysis,
we used t tests for normal data and Wilcox tests for non-normal
data, in an effort to discover significant relations between
COMPOR and OO data: Do COMPOR metrics differ of OO
metrics? Are COMPOR metrics lower than OO metrics? And

7
 http://bit.ly/ComporExperimentResults1

131

are COMPOR metrics greater than OO metrics? At least, we
performed Power tests to analyze the probability of type II
errors.

B. Interpretation

The relative Time spend to complete tasks (Table 1) had an
alternating behavior in the experiment beginning. Between 1.04
and 1.24 tasks, 12 tasks spent less time with OO and 9 tasks
spent fewer time with COMPOR. These results have
considerable significance (p-value < 0.03) and power above
0.7.

As the experiment reached evolution tasks, COMPOR and
OO metrics equalized. In spite of the low statistical power, this
data indicates the COMPOR Time spent for evolution tasks is
better than its own Time for development tasks. We should
replicate this experiment, in order to obtain sufficient data until
the 4.15 task and analyze the metrics trends. There still is one
question: will COMPOR Time tend to equate OO Time
infinitely or COMPOR will overcome OO?

In relation to the LOC metric, the relative amount of lines
changed is equal for both technologies until task 1.25. The last
9 (evolution) tasks demanded less lines for COMPOR versions.
As Table 1 shows, these data is significant and has statistical
power above 0.5.

Regarding Test Coverage, we gave equal and fixed tests,
mapping each task requirements, for all teams. So, low
coverage rates mean that a team created a lot of unnecessary
code, which reduces the code quality.

COMPOR teams had better coverage in the first 11 tasks
and equals coverage in the middle 23 tasks. However, in the
last 4 tasks, OO teams got better coverage results. This means
that COMPOR teams wrote more unnecessary code in the

experiment end and the use of COMPOR would impact system
quality.

Finally, we analyzed the Complexity metric, where the first
15 tasks had similar results for both technologies. In the 11
intermediary tasks, the COMPOR teams code complexity was
significantly lower than OO code. The last 8 (evolution) tasks
showed similar results again, but with low statistic power. This
means that there is a great probability that the statistical tests,
which are not significant for tasks 2.01 - 4.01, were wrong.
This data needs more replication to enhance the last tests power
and find out Complexity trends: does COMPOR continue to
generate code with lower complexity as system increases? This
answer can be found in a future work.

C. Hypothesis test

Hypothesis 1: Does COMPOR systems require less time to
complete evolution task than plain OO systems?

There is no significant trend on the impact of Technology
factor on the Time teams took to perform the evolution tasks.
So, we REJECT this hypothesis.

Hypothesis 2: Does COMPOR systems require less lines of
code to complete evolution task than plain OO systems?

COMPOR teams changed less lines of code to implement
evolution tasks. So, we ACCEPT this hypothesis.

Hypothesis 3: Does COMPOR systems have better test
code coverage after completing evolution task than plain OO
systems?

For almost all tasks, the Technology factor did not have
significant impact on test coverage after evolution tasks, in the
COMPOR versus OO comparison.

TABLE I. STATISTICAL TESTS FOR TIME, LOC, COVERAGE AND COMPLEXITY RESPONSES VARIABLES.

Variable Task group Normal data Equal variance
Statistical tests (p-value)

Statistical power
COMPOR != 0 COMPOR < 0 COMPOR > 0

T
im

e

1.04 - 1.07 Yes Yes 0.042 0.021 NS 0.78

1.08 - 1.11 Yes Yes 0.003 NS 0.001 0.96

1.12 - 1.16 Yes Yes 0.048 0.024 NS 0.73

1.17 - 1.24 Yes Yes 0.054 NS 0.027 0.75

L
O

C
 1.26 - 3.01 No NA 0.053 0.026 NS 0.51

3.03 - 4.01 Yes Yes NS 0.064 NS 0.59

C
o

v
er

ag
e

1.01 - 1.04 No NA 0.058 NS 0.029 0.74

1.05 - 1.07 Yes No 0.087 NS 0.043 0.46

1.08 - 1.11 No NA NS NS 0.091 0.63

3.03 - 4.01 No NA 0.016 0.008 NS 0.999

C
o

m
p

. 1.16 - 1.20 No NA 0.044 0.022 NS 0.999

1.21 - 1.26 No NA 0.021 0.01 NS 0.99

a. This table shows only significant statistical results.

132

Moreover, in the last evolution tasks, OO teams wrote code
with better coverage than COMPOR ones. So, we REJECT this
hypothesis.

Hypothesis 4: Does COMPOR systems have lower
cyclomatic complexity after completing evolution task than
plain OO systems?

In spite of the final evolution tasks inconclusive results,
COMPOR teams produced less complex code for 11
intermediary tasks. Therefore, we ACCEPT this hypothesis.

D. Threats to validity

Conclusion validity
Due to the low experience of the experiment subjects, we

have noticed that most pairs did not take care of system design.
They just want to finish the most tasks possible. These groups
have written bad code and randomly made some refactoring,
which could have influenced some results. We suggest, in
future replications of this experiment, to reserve a period of
time, after each task, only to perform refactoring.

Random irrelevancies can affect results, such as lack of
internet, hardware problems on PCs, etc. Another threat is
related to human experimental subjects who can easily change
their behavior over time, generating noise to the data.

External validity
The main threat to validity in this experiment is to

generalize the results, from the sample we have chosen –
undergraduate students – to the real population of
programmers. In the context of a company, it is expected that
employees have a reasonable leveling in relation to software
development. On the other hand, the academic environment is
very heterogeneous, in terms of ability and knowledge.

Another problem is the generalization of COMPOR results
to the whole class of Unanticipated Software Evolution tools,
because COMPOR good metrics could be result of another
COMPOR characteristic apart from USE. With this in mind,
we hid most COMPOR function, such as, run-time adaptation
and exposed only the inter-component communication.

VI. CONCLUSIONS

 In this work, we designed and executed the first
experiment, as far as we know, for Unanticipated Software
Evolution that measures the effects of this technique on
development cost and quality.

We consider the experiment design as a valid contribution,
because it can be easily replicated with better configurations in
order to obtain more relevant results. In the scope of this work,
we have obtained some significant results for USE influence on
development cost and code quality. While COMPOR
significantly reduces the amount of lines changed and code
complexity, it does not affect development time and code test
coverage.

As future works, we suggest the replication of this
experiment with other configurations: providing with sufficient
time to complete all evolution tasks, until task 4.15; inviting
professionals to perform evolution tasks and given them better
COMPOR training; and using other USE tools. After acquiring

stronger evidences of USE hypothesis, other works may also
measure COMPOR performance overhead.

REFERENCES

[1] E. Arisholm and D. I. Sjoberg. Evaluating the effect of a delegated
versus centralized control style on the maintainability of object-oriented
software. Software Engineering, IEEE Transactions on, 30(8):521–534,
2004.

[2] E. Arisholm, D. I. Sjøberg, and M. Jørgensen. Assessing the
changeability of two object-oriented design alternatives–a controlled
experiment. Empirical Software Engineering, 6(3):231–277, 2001.

[3] J. Carver, L. Jaccheri, R. Morasca, and F. Shull. Issues in using students
in empirical studies in software engineering education. In In IEEE
METRICS, page 239. Prentice Hall, 2003.

[4] A. Cockburn. The coffee machine design problem: Part 1 & 2. C/C++
Users Journal, may/june 1998.

[5] H. de Almeida, A. Perkusich, E. Costa, and R. Paes. Compor: a
methodology, a component model, a component based framework and
tools to build multiagent systems. CLEI Electronic Journal, 7(1), 2004.

[6] H. O. de Almeida, A. Perkusich, G. Ferreira, E. Loureiro, and E. de
Barros Costa. A component model to support dynamic unanticipated
software evolution. In Proceedings of the Eighteenth International
Conference on Software Engineering & Knowledge Engineering
(SEKE’2006), San Francisco, CA, USA, July 5-7, 2006, pages 262–267,
2006.

[7] I. Deligiannis, P. Sfetsos, I. Stamelos, L. Angelis, A. Xatzigeorgiou, and
P. Katsaros. Assessing the modifiability of two object-oriented design
alternatives– a controlled experiment replication. In Proceedings 5th
EUROSIM Congress on Modelling and Simulation, 2004.

[8] L. Erlikh. Leveraging legacy system dollars for ebusiness. IT
professional, 2(3):17–23, 2000.

[9] J. Keeney and V. Cahill. Chisel: A policy-driven, context-aware,
dynamic adaptation framework, 2003.

[10] G. Kniesel, P. Costanza, and J. L. Fiadeiro. Second international
workshop on unanticipated software evolution, Apr. 2003.

[11] G. Kniesel and T. Mens. First international workshop on foundations of
unanticipated software evolution, Mar. 2004.

[12] G. Kniesel, J. Noppen, T. Mens, and J. Buckley. First international
workshop on unanticipated software evolution, June 2002.

[13] B. P. Lientz and E. B. Swanson. Software Maintenance Management.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1980.

[14] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-based runtime
software evolution. In Proceedings of the 20th International Conference
on Software Engineering, pages 177–186. IEEE Computer Society,
1998.

[15] C. Piechnick, S. Richly, S. Gotz, C. Wilke, and U. Aßmann. Using role-
based composition to support unanticipated, dynamic adaptation
smart application grids. In ADAPTIVE 2012, The Fourth International
Conference on Adaptive and Self-Adaptive Systems and Applications,
pages 93–102, 2012.

[16] D. Racodon. Developers’ seven deadly sins, July 2014.

[17] P. Sfetsos, I. Stamelos, L. Angelis, and I. Deligiannis. An experimental
investigation of personality types impact on pair effectiveness in pair
programming. Empirical Software Engineering, 14(2):187–226, 2009.

[18] A. I. Wang and E. Arisholm. The effect of task order on the
maintainability of object-oriented software. Information and Software
Technology, 51(2):293–305, 2009.

[19] T. Wurthinger, C. Wimmer, and L. Stadler. Unrestricted and safe
dynamic code evolution for java. Science of Computer Programming, 7
2011.

133

An empirical study on the impact of Python dynamic

features on change-proneness

Beibei Wang, Lin Chen*, Wanwangying Ma, Zhifei Chen, Baowen Xu

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Abstract—The dynamic features of programming languages are

useful constructs that bring developers convenience and flexibility,

but they are also perceived to lead to difficulties in software

maintenance. Figuring out whether the use of dynamic features

affects maintenance is significant for both researchers and

practitioners, yet little work has been done to investigate it. In this

paper, we conduct an empirical study to explore whether program

source code files using dynamic features are more change-prone

and whether particular categories of dynamic features are more

correlated to change-proneness than others. To this end, we

statically analyze historical data from 4 to 7 years of the

development of seven open-source systems. We employ Fisher and

Mann-Whitney hypothetical test methods, along with logistic

regression model to solve three research questions. The results

show that: (1) files with dynamic features are more change-prone,

(2) files with a higher number of dynamic features are more

change-prone, and (3) Introspection is shown to be more

correlated to change-proneness than the other three categories in

most systems. This innovative work can give some inspirations

and references to researchers who are always focusing their eyes

on how and why the dynamic features are used. For practitioners,

we suggest them to be wary of files with dynamic features because

they are more likely to be the subject of their maintenance effort.

Keywords- dynamic features; change-proneness; Python;

empirical software engineering; open-source

I. INTRODUCTION

In recent years, many researchers have shown great interest
in the use of dynamic features or dynamic behaviors of
programming languages, such as Python, JavaScript and Ruby.
Previous works were conducted mainly to discuss whether
practitioners are willing to use dynamic features, the main
reasons that drive people to use them and how these features are
used [1], [2], [3], [4] . Besides, there is a long and ongoing
debate about the possible pros and cons of dynamic features in
programming languages. Some authors state that dynamic
features are of benefit for their flexibility, expressivity and
succinctness [5]. For example, the commonly available
reflective mechanisms include support for checking available
fields/methods, adding and removing fields/methods without
the need to restart or rebuild the running program. Others hold
the opposite view that the use of these features may hinder
software evolution and lead to difficulties in software
maintenance. For instance, the use of eval endows programmers
with the ability to extend applications, at any time, and in almost
any way they choose, but it will affect the optimizations that can
be applied to programs and significantly limit the kinds of errors
that can be caught statically and the security guarantees that can
be enforced [4].Hence, it is of great significance to investigate
the relation between the use of dynamic features and system
maintenance. However, to the best of our knowledge, little work

was focused on the effect of dynamic features on program
maintenance or evolution, let alone the use of Python dynamic
features. Therefore, we make an empirical study on the relation
between dynamic features and change-proneness which is well-
known to be an indicator of maintenance in the previous study.

Goal. We aim to investigate the effects of 18 Python built-
in dynamic features, classified into four broad categories, on the
three types of code evolution phenomena. First, we study
whether files with dynamic features have an increased
likelihood of changing compared to other files. Second, we
study whether files with more dynamic features than others are
more change-prone. Third, we study the relation between the
particular categories of dynamic features and change-proneness.

Contribution. This paper makes three contributions.

 This work is the first one to consider the effect of
dynamic features on change-proneness, especially
concerning Python language, and thus it will give some
inspirations and references for the successors.

 We analyze multiple historical releases of 7 open-
source systems to collect the occurrence of 18 Python
built-in dynamic features of each file and change
information between two versions. The data we gather
and publish1 are useful for the follow-up studies related.

 We get an instructive conclusion from the results of the
experiment that although developers are benefit from
the flexibility and convenience brought by dynamic
features, they should be prudent with them since these
features might contribute to more maintenance effort.

The remainder of this article is structured as follows. Section
II introduces an overview of related work. Section III provides
a description of the 18 Python dynamic features as well as the
classification and our detection approach for them. Section IV
describes the exploratory study definition and design. Section V
presents the study results. Section VI gives a detailed
explanation and discussion, along with threats to validity.
Finally, Section VII concludes the study and outlines the future
work.

II. RELATED WORK

Until now, as far as we know, there has been no study of the
relation between dynamic features and change-proneness.
Several works studied the usage of dynamic features of various
languages, such as JavaScript, Smalltalk and Python, by
dynamically or statically analyzing the source code. We will
summarize these works as well as works that aimed at relating
software quality with factors such as metrics, code smells and
language characteristics.

*Corresponding author: Lin Chen; E-mail: lchen@nju.edu.cn
1https://github.com/MG1333051/Detailed-Research-Results-.git

(DOI reference number: 10.18293/SEKE2015-097)
134

Previous research on the dynamic features concerned how to
collect them and why and how these features were used in
practice. Callaú et al. [1] studied the reflection feature in
Smalltalk and found that if a large portion of the usages of
dynamic features cannot be refactored, others work around
limitations of the programming languages. Richards et al. [4]
performed a large-scale study on the use of eval, the result of
which showed that eval was often misused and many uses were
unnecessary and could be replaced with equivalent and safer
code. Holkner and Harland [7] have conducted a study of the
use of 14 dynamic features in the Python programming language.
Their study focused on a smaller set of programs and concluded
that dynamic features occur mostly in the initialization phase of
programs and less so during the main computation. Further,
Åkerblom et al. [5] did a similar research to Holkner`s study.
They showed that dynamic behaviour is neither buried in library
code, nor predominantly occurs at program startup time, which
is in slight contrast to the results of Holkner`s study. In our study,
we were partly inspired by their classification of dynamic
features.

Some studies used metrics as quality indicators, such as
Basili et al.’s seminal work [9]. Cartwright and Shepperd [10]
performed an empirical study on an industrial C++ system,
supporting the hypothesis that classes in inheritance relations
are more fault prone. It followed that DIT and NOC metrics [11]
could be used to find classes that are likely to have higher fault
rates. Some studies chose code smells as predictor of change-
proneness. For example, Khomh et al. [12] [13] studied the
impact of code smells on software change-proneness and
showed that, in their corpus, classes with code smells are more
change-prone than others.

 Still others concentrated on the effect of programming
languages on software quality [14], [15], [16], [17]. For instance,
Baishakhi Ray et al. engaged a large scale study of
programming languages and code quality in Github. They found
that language features, such as static v.s. dynamic typing, strong
v.s. weak typing, do have a significant, but modest effect on
software quality. Bhattacharya and Neamtiu proposed a novel
methodology which controls for development process and
developer competence, and evaluates how the choice of
programming language affects software quality and developer
productivity. Fateman discussed the advantages of Lisp over C
and how C itself contributes to the “pervasiveness and subtlety
of programming flaws.” The author categorized flaws into
various kinds (logical, interface and maintainability) and
discussed how the very design of C, e.g., the presence of
pointers and weak typing, makes C programs more prone to
flaws.

Our study does not claim to compare which one is the best
predictor of software quality. On the other hand, we are
motivated by the previous work concerning the relation between
language features and software quality, and are enthusiastic
about how dynamic features may influence change-proneness
since they are claimed to have an effect on maintenance.

III. PYTHON DYNAMIC FEATURES

In this section, we first briefly introduce the 18 built-in
Python dynamic features we focus on. Then we describe the
method to collect them.

A. Dynamic Features Selection and Classification

Although there are multiple kinds of dynamic features in
Python language, we choose the 18 famous and most often used
and investigated [5], [6], [7] features, as shown in TABLE I,
which are thought to be representative and are classified as
Introspection, Object Changes, Code Generation and Library
Loading. For brevity, we refer to the Python Reference Manual
[8] and present the definition of each classification stated as
follows, instead of a description of the individual constructs.

Introspection is a mechanism to treat modules and functions in
memory as objects, getting information about them, and
manipulating them.

Object Changes is a category of features that can update or
change the state of an object, and that can update, add or remove
fields in a way that may depend on the program state.

Code Generation is a category of features that can execute code
generated or imported in text format during runtime.

Library Loading is a category of constructs that can load or
reload arbitrary libraries at runtime, which allows deferring
decisions such as what library should be loaded according to
user input or underlying hardware.

TABLE I. PYTHON DYNAMIC FEATURES OF FOUR CATEGORIES

Categories

Introspection
Object

Changes

Code

Generation

Library

Loading

hasattr isinstance setattr eval __import__

getattr issubclass delattr exec Reload

callable type del execfile

globals vars

locals super

B. Dynamic Features Collection

Previous works presented two popular methods to collect the
use of dynamic features. One is to statically analyze the source
code to identify the occurrence of a certain kind of dynamic
feature, e.g. Callaú O et al. [1] developed a framework in Pharo2
to trace statically the use of dynamic features of Smalltalk. The
other is carried out using trace-based dynamic data collection by
instrumenting an interpreter to record runtime data [5]. Tracing
is able to more precisely describe actual uses of a certain feature
than purely static analysis but is sensitive to different paths
taken in a program due to input.

In our study, we employ the static collection method instead
of the dynamic data collection, because it is difficult to choose
representative inputs or interaction strategies that will give
acceptable code coverage to figure out all files with or without
dynamic features. The specific code analysis and data collection
process are supported by a static analysis tool Understand3.For
each version of a system, we first filter non-Python source files
by using the Python Strict option in Understand to dispose of
files unrelated and then build an intermediate database which
stores information of entities (function, variable, file, class,
attribute et al.), the call graphs among these entities and so forth.
After that, we write Perl scripts to invoke Understand APIs to
mine all program points that use the built-in dynamic features
from the database. The algorithm contains three steps:

2http://www.pharo-project.org
3https://scitools.com/

135

TABLE II. SUMMARY OF THE CHARACTERISTICS OF THE ANALYZED SYSTEMS

Project Releases

(number)

Duration Files LOCs Description

Boto 2.0-2.28.0 (6) 2011.07-2014.04 217-617 29,246-104,967 interfaces to Amazon Web Services

Bzr 1.2-2.5.0 (9) 2008.02-2012.03 585-830 148,183-263,454 version control system

Django 1.0-1.6 (7) 2008.09-2013.11 956-1872 83,136-165,184 high-level Python Web framework

Matplotlib 0.99.0-1.3.1 (6) 2009.08-2013.10 767-1677 99,934-163,780 library for 2D plotting

Numpy 1.0.4-1.6.2 (8) 2007.12-2012.08 255-398 58,866-119,479 library for mathematics, science, engineering

Scipy 0.7.0-1.13.2 (8) 2009.02-2013.12 419-510 91,479-149,471 library for mathematics, science, engineering

Tornado 1.0.0-3.2.1 (8) 2010.07-2014.05 42-97 10,915-22,095 high-level Python Web framework

1) Firstly, for each function called in a database, the

algorithm checks whether it reflects one of the analyzed

dynamic features except for del, simply by comparing their

names. If it matches one, find out the name of the file that uses

this function, and thus the number of the matched dynamic

features in this file is increased by one.

2) Secondly, for each lexeme in a file recognized by

Understand, the algorithm checks whether its token is a

keyword and its text is equal to del. If it is, then record the file

name and increase the number of the del in this file.

3) Thirdly, for a kind of dynamic feature that does not

appear in a file, the algorithm sets the number of that dynamic

feature in the file to zero.

4) Finally, the algorithm makes a two-dimensional table

stored in .csv format for the subsequent data analysis, which

saves all of the file names of a system and the number of each

dynamic feature used in every file.

IV. STUDY DEFINITION AND DESIGN

Section four starts with an explanation of how to get change
information of each file. Then it presents an introduction of the
target systems. After that, it elaborates the research questions
and the analysis methods for solving each research question.

A. File Change Information

In the experiment analysis, we need the change information
of each file, specifically whether the file is changed or not. To
acquire such data, we first write a Perl script to invoke the Linux
system command 'diff' which can be used to compare two
arbitrary text files. The execution of the script can generate a
formatted difference report textfile that records the position of
all the changes and the number of changed lines (added,
modified or deleted). Then by writing another script to mine the
formatted difference report, we can easily get change data of
each file and store them in .csv format likewise. Furthermore,
for files that appear in the former version but disappear in the
latter version, we identify them as changed files.

B. Data Sets

The context of this study consists of the change history and
dynamic features of 7 most famous open-source projects, which
have a different size and belong to different domain. For each
target system, we regularly choose releases in the interval of 4
to 12 months. Characteristics of the analyzed projects are shown
in TABLE II, and the more detailed data are published online1.
On every considered release, we gather the change information

and dynamic features of each file, depending on the methods
mentioned earlier.

C. Research Questions

Based on the data collected from the above systems, our
study aims to answer 3 research questions.

 RQ1: What is the relation between dynamic features
and change-proneness? More specifically, we explore if
files with dynamic features are more change-prone than
others by testing the null hypothesis: H01: the
percentage of files exhibiting at least one change
between two releases does not significantly differ
between files with dynamic features and other files.

 RQ2: What is the relation between the number of
dynamic features in a file and its change-proneness? We
analyze whether files with a higher number of dynamic
features are more change-prone than others by testing
the null hypothesis: H02: the number of dynamic
features in change-prone files is not significantly higher
than the number of dynamic features in files that do not
change.

 RQ3: What is the relation between particular categories
of dynamic features and change-proneness? Since, we
are also interested to evaluate whether particular
categories of dynamic feature contribute more than
others to changes by testing the null hypothesis: H03:
files with particular categories of dynamic features are
not significantly more change-prone than other files.

D. Analysis Methods

To answer RQ1, we test whether the proportion of files
undergoing (or not) at least one change significantly varies
between files with dynamic features and other files by using
Fisher’s exact test [18].This test is appropriate for categorical
data that result from classifying objects in two different ways
and is used to examine the significance of the association
(contingency) between the two kinds of classification. To apply
the test, we divide the files of each release into four groups, that
is, (1) files undergoing at least one change and with at least one
dynamic feature; (2) files undergoing at least one change but
with no dynamic feature; (3) files undergoing no change but
with at least one dynamic feature; (4) files neither changing nor
using dynamic feature. In addition, we compute the odds ratio
(OR) [18]. The OR is the ratio of the odds p of an event occurring
in one group, i.e., the odds that files with dynamic features
underwent a change (experimental group), to the odds q of it
occurring in another group, i.e., the odds that files with no

136

http://en.wikipedia.org/wiki/Categorical_data
http://en.wikipedia.org/wiki/Categorical_data
http://en.wikipedia.org/wiki/Odds

dynamic features underwent a change (control group), more

intuitively: OR=
𝑝

1−𝑝⁄

𝑞
1−𝑞⁄

. An OR greater than 1 indicates that

changes are more likely to happen in files with dynamic features,
while an OR less than 1 means that changes are more likely to
happen in files without dynamic features. If odds ratio equals to
1, the event is equally likely in both samples.

In RQ2, we use the Mann-Whitney test to compare the
number of dynamic features in change-prone files with the
number of dynamic features in non-change-prone files. The
Mann-Whitney test is a non-parametric test that does not require
any assumption on the underlying data distributions, and thus is
suitable for our experiment. Other than testing the hypothesis, it
is of practical interest to estimate the magnitude of the
difference of the number of dynamic features in files with and
without changes, thus we use the Cohen`s d effect size [18]. A
d greater than 0 indicates that the number of dynamic features
are more in changed files than in not changed files, and less than
0, the contrary. It is worth mentioning that the effect size is often
considered small for 0.2 ≤ |d|< 0.5, medium for 0.5 ≤ |d|< 0.8
and large for |d| ≥ 0.8. For RQ2, we consider the files change or
not as the independent variable, and the number of dynamic
features in files as the dependent variable.

In RQ3, to relate change-proneness with the presence of
particular categories of dynamic features, we use a logistic
regression model which is widely used in many studies, e.g.,
[12], [19], to deal with similar problems. In the logistic
regression model, the dependent variable is commonly a
dichotomous variable and, thus, only two values {0, 1}, i.e., in
this article changed or not. The multivariate logistic regression
model is based on the formula:

π(X1, X2,……,Xn)=
eβ0+β1∙X1+…+βn∙Xn

1+eβ0+β1∙X1+…+βn∙Xn

where (a) Xt are characteristics describing the modelled
phenomenon, in our case, the number of dynamic features of
category t a file contains; (b) βt are the model coefficients; and
c) 0 ≤ π ≤ 1; the closer the value is to 1, the higher is the
likelihood that the file undergoes a change. For each category of
dynamic features, we count the number of times that, across the
analyzed releases of a target system, the p-values obtained by
the logistic regression are significant. If files participating in a
specific category of dynamic features are more likely to change
in more than 75% of the releases of a target system, then we say
that this category of dynamic features has a significant impact
on increasing the change-proneness in this system.

V. STUDY RESULTS

In this section, we present the results of our empirical study
which are further discussed in section six. More detailed results
and raw data are available online1.

A. RQ1: Dynamic Features and Change-Proneness

TABLE III reports the results of Fisher’s exact test and OR
values when testing H01. For each target system, it presents the
number of all the releases that are analyzed and the number of
releases whose p-values of Fisher’s test are significant (p-
values<0.05).To be specific, six of seven projects turn out to be
significant for more than 75% of their releases, and three
projects even prove to be significant for all the releases analyzed.
The only outlier is Tornado, five of eight releases turn out to be
significant. In summary, although the results sometimes depend
on systems analyzed, we can reject H01, i.e., the percentage of
files exhibiting at least one change between two releases does
significantly differ between files with dynamic features and
other files. Regarding the ORs of significant releases, they vary
across systems and, within each system, across releases. In 75%
of the releases of six systems, the ORs for files with dynamic
features to change are two times higher or more than for files
without dynamic features and thus odds to change is in general
higher for files with dynamic features. In very few releases of
some systems, as highlighted, ORs are close to 1,i.e, the odds
are even that a file with a dynamic features changes or not.

We therefore conclude that, in most cases, there is a negative
relation between dynamic features and change-proneness: a
greater proportion of files participating in dynamic features
change comparing to other files. Developers should be wary of
files with dynamic features, because they are more likely to be
the subject of their maintenance effort.

B. RQ2: Number of Dynamic Features and Change-

Proneness

TABLE IV presents results of the Mann-Whitney two-tailed
test and Cohen`s d effect size of the target systems, with the
purpose of comparing the number of dynamic features in files
that changed or not. More than 75% of the releases of all projects,
show significant p-values with relatively small to medium effect
sizes, except for Tornado, where only 4 out of 8 releases are
significant but with a medium effect size. Moreover, the releases
that prove not to have significant p-values confirm the findings
from RQ1 regarding the limited relation of dynamic features
with change-proneness for these releases. It is worth mentioning
that p-value of boto-2.6.0 is significant (p-value=0.02) in RQ2

TABLE III. SUMMARY OF FISHER TEST RESULTS AND OR VALUES FOR EACH TARGET SYSTEM

Project Number of

analyzed

releases

Number of

significant

p-values

Percent of

significant

p-values

OR
Max Min Mean 25%

quartile

50%

quartile

75%

quartile

Boto 6 5 83.3% 4.18 1.97 2.83 2.04 2.15 3.96

Bzr 9 8 88.9% 4.77 2.05 3.00 2.44 2.82 3.33

Django 7 7 100% 10.13 1.38 5.88 3.47 4.48 9.53

Matplotlib 6 6 100% 27.07 1.61 8.71 3.78 5.30 13.13

Numpy 8 8 100% 4.77 2.19 3.47 2.71 3.54 4.31

Scipy 8 6 75% 4.04 1.50 2.87 1.69 3.30 3.91

Tornado 8 5 62.5% 8.70 3.94 5.96 4.08 6.41 7.61

Sum 52 45 86.5% - - - - - -

137

TABLE IV. SUMMARY OF MANN-WHITNEY RESULTS AND COHEN`S D FOR EACH TARGET SYSTEM

Project Number of

analyzed

releases

Number of

significant

p-values

Percent of

significant

p-values

Cohen`s d
Max Min Mean 25%

quartile

50%

quartile

75%

quartile

Boto 6 6 100% 0.60 0.16 0.39 0.27 0.38 0.56

Bzr 9 8 88.9% 0.45 -0.01 0.34 0.30 0.38 0.44

Django 7 7 100% 0.61 0.07 0.35 0.28 0.36 0.41

Matplotlib 6 6 100% 0.82 0.12 0.45 0.21 0.40 0.73

Numpy 8 8 100% 0.55 0.05 0.38 0.29 0.43 0.51

Scipy 8 6 75% 0.55 0.33 0.44 0.38 0.45 0.50

Tornado 8 4 50% 0.75 0.54 0.64 0.56 0.64 0.73

Sum 52 45 86.5% - - - - - -

but not significant (p-value=0.14) in RQ1, yet we consider it a
tolerable abnormal phenomena that does not affect the whole
results. In summary, the results of most releases support that
change-prone files are those with a higher number of dynamic
features and thus we can reject H02.

C. RQ3: Categories of Dynamic Features and Change-

Proneness

TABLE V summarizes the results of the logistic regression
for the correlations between change-proneness and the different
categories of dynamic features. In particular, the table presents
the number of analysed releases for which each categories of
dynamic features is significant in the logistic regression model.
Boldface indicates significant p-values for at least 75% of the
releases in each system. Following our analysis method of RQ3
in section four, it is noticed that Introspection is shown to be
significantly correlated to change-proneness in 5 target systems,
and that Library Loading only has impact on Numpy project.
However, for Boto and Tornado, there are not enough releases
to support the relation between any category of dynamic
features and change-proneness. Therefore, we can partly reject
H03 for Introspection and Library Loading depending on the
results observed. On the whole, although only 5 of 7 analyzed
systems reject H03, we can conclude that there are categories of
dynamic features which are more related to others to change-
proneness in most cases and that the relation between particular
categories of dynamic features and change-proneness cannot be
completely ignored. What is more, the Introspection category
deserves extra attention for it turns out to be more related to
change-proneness than others.

TABLE V. NUMBER OF RELEASES WHERE EACH CATEGORY OF DYNAMIC

FEATURES SIGNIFICANTLY CORRELATES WITH CHANGE-PRONENESS.

VI. DISCUSSION

We now discuss the implications of the results reported in
section five, along with threats to validity.

A. Discussions and Implications

In this study, we investigate the impact of 18 built-in Python
dynamic features on file change-proneness. As analyzed in
section five, the results show that files with dynamic features
(and, in particular, those with a higher number of dynamic
features) are significantly more change-prone than others in
most releases of the analyzed systems, except for Tornado. And
dynamic features of Introspection are more related to file
change-proneness than the other three categories. Based on
these results, we can get some useful implications for both
research and practice.

For the research community, this work is the first one to
focus on the relation between dynamic features and
maintenance. The negative relation between dynamic features
and change-proneness promotes further investigations to be
conducted on the relation between dynamic features and other
maintenance related factors, such as fault-proneness. In sum,
our study inspires researchers to turn their attention from how
and why to use dynamic features to the effect that these features
have on maintenance. Additionally, we suggest that more work
should be focused on the category of dynamic features that
affect change-proneness most, in this work, the Introspection
category, and on how and why this kind of feature can be
constructed, in order to improve the quality of software and help
us better understand dynamic features as well.

For practice, we suggest that developers should be cautious
when using dynamic features, especially the Introspection,
because the presence of these features may lead to the
maintenance effort and cost. As for quality assurance personnel,
they need to pay extra attention to files with more dynamic
features, since these files may contribute to more maintenance
problems.

In addition to the foregoing, it is noticed that Tornado does
not exhibit an overwhelming significant relation (percent of

significant p-values ≥75%) of all the releases even if in one of

the three RQs. We deduce the reason for this fact lies in the
minor number of files of each release ranging from 42 to 97,
while file number of the other systems varies from hundreds to
thousands.

B. Threats to Validity

Internal threats in this work mainly concern whether the
hypothesis testing methods are properly used. Although in
practice the Fisher’s exact test is often employed when sample
sizes are small, it is also valid for all the sample sizes. Also, we

Project Number of

analyzed

releases

Proneness to Change of each category of

Dynamic features

Introsp

ection

Object

Changes
Code

Generation

Library

Loading

Boto 6 3 2 - -

Bzr 9 7 4 1 -

Django 7 6 2 1 1

Matplotlib 6 5 3 2 1

Numpy 8 6 - 2 6

Scipy 8 6 - 2 -

Tornado 8 3 1 - -

138

choose the non-parametric tests that do not require making
assumption about the data set distribution. To build the logistic
regression model, it is important to discard the independent
variables that are highly correlated to each other. We eliminate
such a threat by calculating the Spearman rank correlation
coefficient between any two different categories of dynamic
features. As expected, the results3 show that no two categories
of dynamic features are highly correlated (Spearman rank
correlation coefficient is higher than 0.8), and thus it is no need
to exclude any of the independent variables in our experiment.

Threats to external validity concern the possibility to
generalize our findings. Although we have tried our best to limit
such a threat and make the results general by choosing 7 open-
source systems of 5 different problem domains, as shown in
TABLE I, and by covering most of the built-in Python dynamic
features that are representative in each of the categories, yet the
generalization still requires further case studies including a large
number of Python systems from various domains and more
dynamic features as well. Besides, since covering all historical
versions for one project is a hard work, we select them regularly
by an interval of 4 to 12 months, which is a reasonable way.

Construct validity threats concern the relation between
theory and observation. In our context, they are mainly due to
errors introduced in measurements. In this work, the count of
changes occurred to files is based on comparing the difference
of files with the same name but from two versions. We are just
interested to check whether a file changes or not, rather than
quantifying the amount of change, which is however possible
based on rules in [20] and could be investigated in the future
work. In our detection algorithm, we ignore dynamic features
appearing in annotated codes. But we consider it does not
influence our results, for these circumstances are rare and are
often used for illustration purpose not for realizing functions.

VII. CONCLUSIONS AND FUTURE WORK

 In this paper, we explore how the use of dynamic features
affects file change-proneness. The whole study is undertaken by
choosing 18 most often used and studied Python dynamic
features [5], [6], [7] and 7 famous open-source Python systems
from Github and SourceForge online repositories. We find that
files with dynamic features are significantly more likely to be
the subject of changes, than other files. We also show that
dynamic features of Introspection are more likely to be of
concern during evolution. This exploratory study supports,
within the limits of the threats to its validity, the conjecture in
the literature that dynamic features may have a negative impact
on software evolution. Depending on the results observed, we
suggest practitioners that they should be cautions of treating
systems with a high prevalence of dynamic features during
development and maintenance, because those systems are likely
to be more change-prone: therefore, the cost-of-ownership of
such systems will be higher than for other systems. Additionally,
we call on researchers to pay more attention to dynamic features
of other languages concerning their impacts on software quality
and on the root causes of their negative impact, on the basis of
our work.

In the future work, we will replicate this study on more
systems and with more dynamic features considered to validate
the above-mentioned findings. Further, we are interested to

relate dynamic features to other phenomena such as the fault-
proneness.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (61472175, 61170071, 61472178), and the
National Natural Science Foundation of Jiangsu Province
(BK20130014). I express my sincere gratitude to all the teachers
and students who make contributions to this work.

REFERENCES

[1] Callaú O, Robbes R, Tanter É, Röthlisberger D. How (and why)

developers use the dynamic features of programming languages: the case
of Smalltalk. Empirical Software Engineering 18.6 (2013): 1156-1194.

[2] An, J. H. D., Chaudhuri, A., Foster, J. S., & Hicks, M. (2011). Dynamic
inference of static types for ruby (Vol. 46, No. 1, pp. 459-472). ACM.

[3] Richards, G., Lebresne, S., Burg, B., & Vitek, J. (2010, June). An analysis
of the dynamic behavior of JavaScript programs. In ACM Sigplan Notices
(Vol. 45, No. 6, pp. 1-12).

[4] Richards, G., Hammer, C., Burg, B., & Vitek, J. (2011). The eval that
men do. In ECOOP 2011–Object-Oriented Programming (pp. 52-78).

[5] Åkerblom, B., Stendahl, J., Tumlin, M., & Wrigstad, T. (2014, May).
Tracing dynamic features in python programs. In Proceedings of the 11th
Working Conference on Mining Software Repositories (pp. 292-295).

[6] Tratt, L. (2009). Dynamically typed languages. Advances in Computers,
77, 149-184.

[7] Holkner, A., & Harland, J. (2009, January). Evaluating the dynamic
behaviour of Python applications. In Proceedings of the Thirty-Second
Australasian Conference on Computer Science-Volume 91 (pp. 19-28).

[8] G. van Rossum and F.L.Drake, “PYTHON 2.6 Reference Manual”,
CreateSpace, Paramount, CA, 2009.

[9] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-
oriented design metrics as quality indicators. TSE, 22(10):751–761, 1996.

[10] M. Cartwright and M. Shepperd. An empirical investigation of an object-
oriented software system. TSE, 26(8):786–796, August 2000.

[11] Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object
oriented design. Software Engineering, IEEE Transactions on, 20(6),
476-493.

[12] Khomh, F., Di Penta, M., & Gueheneuc, Y. (2009, October). An
exploratory study of the impact of code smells on software change-
proneness. In Reverse Engineering, 2009. WCRE'09. 16th Working
Conference on (pp. 75-84). IEEE.

[13] Khomh, F., Di Penta, M., Guéhéneuc, Y. G., & Antoniol, G. (2012). An
exploratory study of the impact of antipatterns on class change-and fault-
proneness. Empirical Software Engineering, 17(3), 243-275.

[14] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar T
Devanbu. A Large Scale Study of Programming Languages and Code
Quality in Github. FSE’14, 16–22, 2014.

[15] S. Hanenberg. An experiment about static and dynamic type systems:
Doubts about the positive impact of static type systems on development
time. OOPSLA ’10, 22–35, 2010.

[16] Fateman, R. (2002). Software fault prevention by language choice: Why
C is not my favorite language. Advances in Computers, 56, 167-188.

[17] Pamela Bhattacharya and Iulian Neamtiu. Assessing Programming
Language Impact on Development and Maintenance: A Study on C and
C++. ICSE’11, 21–28, 2011.

[18] D. Sheskin. Handbook of Parametric and Nonparametric Statistical
Procedures (fourth edition). Chapman & All, 2007.

[19] Hosmer Jr, D. W., & Lemeshow, S. (2004). Applied logistic regression.
John Wiley & Sons.

[20] Yuming Zhou, Hareton Leung and Baowen Xu. Examining the
potentially confounding effect of class size on the associations between
object-oriented metrics and Change-Proneness. TSE, 607-623, 2009.

139

DOI reference number: 10.18293/SEKE2015-114

Evaluating Software Engineers’ Acceptance of a

Technique and Tool for Web Usability Inspection

Luis Rivero
1
, Auri Vincenzi

2,3
, José Carlos Maldonado

3
 and Tayana Conte

1

1
USES Research Group, Instituto de Computação, Universidade Federal do Amazonas, Manaus – Brazil

2
Instituto de Informática, Universidade Federal de Goiás, Goiânia – Brazil

3
Departamento de Ciência da Computação, Universidade de São Paulo (USP), São Carlos – Brazil

{luisrivero, tayana}@icomp.ufam.edu.br; auri@inf.ufg.br; jcmaldon@icmc.usp.br

Abstract— Usability is related to software quality, improving its

ability to be understood, operated and attractive to users. We

proposed the Design Usability Evaluation (DUE) technologies to

allow identifying usability problems earlier in the development of

Web applications, through the inspection of mockups. While we

found that the DUE technique and tool were effective and

efficient in the identification of usability problems, we saw the

need to investigate their acceptance in practitioners’ work

environment. This paper reports the results from a study

evaluating the acceptance of the DUE technologies from the point

of view of software engineers. We asked questions based on the

indicators from the Technology Acceptance Model and identified

that a majority of the software engineers who participated in the

study: (a) found the DUE technologies useful and easy to use for

supporting the usability inspection process; and (b) would

regularly use the DUE technologies for future inspections in their

job. Nevertheless, the practitioners indicated that the technique

should be refined in order to reduce the ambiguity and repetition

of some of its items, while the tool should become more intuitive.

Keywords- Web usability; software quality; inspection

technique; inspection tool; software testing tool; empirical study;

technology acceptance

I. INTRODUCTION

A Web Application is a software system based on
technologies and standards of the World Wide Web
Consortium (W3C

1
) that provides Web specific resources such

as content and services through a user interface, the Web
browser [1]. Due to their importance for presenting products
and services to customers, Web applications need to be usable
so that they can be effective, efficient and satisfying to users
[1]. In that context, usability subsumes aspects such as
learnability, operability, aesthetics, and others that affect the
quality of the developed applications [2]. Therefore, usability
plays a central role in their acceptance and adoption [3].

Usability inspection is one of the ways for identifying
usability problems, in which inspectors check the conformity of
software artifacts against a set of usability standards [1].
However, although the number of usability inspection methods
for evaluating Web applications has increased, only a short
number of these methods can be applied earlier in development
[4]. Methods applied later in the development process, or when
the application is released, can increase the cost of correcting

1 http://www.w3.org/

the identified problems since the source code of the application
will have already been written [5]. Also, the difficulty in
identifying usability problems increases if the inspectors are
not guided through the evaluation process or if they do not
have tool support for reducing cognitive effort while
performing an inspection [4].

The positive reports on the use of mockups (sketches of
how an application would look like after its development) to
support several early software engineering activities [6]
motivated us to develop a set of technologies for the usability
inspection of mockups of Web applications [4]. These
technologies, called Design Usability Evaluation (DUE),
provide a technique and tool. While the technique provides a
set of verification items that guide inspectors through the
evaluation process, the tool facilitates its application by
simulating interaction among the evaluated mockups and
allowing pointing usability problems and generating reports.

In our previous work, we conducted empirical studies,
showing indicators of the feasibility of the DUE technologies
in the usability inspection of mockups in terms of effectiveness
and efficiency in different conditions and when compared with
other techniques [7][8]. However, these studies were carried
out in academic environments or did not focus on the aspects
that needed to be improved to enhance the acceptance of DUE
the technologies in a real usage scenario. A good understanding
of real software engineers’ attitude towards the DUE
technologies is expected to help us decide whether and how the
technologies should be tailored to improve the results of the
usability inspection of the mockups of Web applications.

According to Shull et al. [9], studies in a particular
development lifecycle can help evaluating if new proposed
software engineering technologies are compatible with
software engineers’ work environment. The results from these
studies can reveal issues that did not arise during feasibility
studies, allowing fine-tuning or tailoring of the technology to
meet the needs of the software industry. This type of studies is
essential for the industry in order to decide whether they will
adopt or reject a specific technology. Therefore, following our
evaluation of the feasibility of the DUE technologies in terms
of effectiveness and efficiency [7], this paper presents a study
in a real lifecycle. In this study, software engineers with
experience in software verification and validation tried the
DUE technologies and reported their perceived usefulness and
perceived ease of use towards them. The goal of this paper is to

140

report on their perception of the DUE technologies and their
degree of acceptance. Additionally, we gathered data on what
would make practitioners adopt or reject the DUE technologies.

II. BACKGROUND AND MOTIVATION

According to Fernandez et al. [10], in order to assist the
identification of usability problems in Web applications, new
research has been performed in the field of usability
evaluations. Such evaluations can range from [4]: (a) User
Testing, in which users perform tasks so that an observational
team can identify communication gaps and usability problems
regarding the user interface; and (b) Usability Inspection
Methods (UIMs), in which inspectors verify the conformity of
software artifacts against a set of usability standards. The main
advantage of applying inspection methods is that they require
fewer resources to be applied. Since UIMs do not require
special equipment or laboratories to be executed, they can
lower the costs of the identification of usability problems [1].

In our previous work [4], we carried out an analysis over
the review by Fernandez et al. [10], gathering data on UIMs for
Web applications. Among the analyzed methods, Paganelli and
Paterno [11] proposed a UIM that compares the way in which a
Web system is expected to be used and the way in which it is
really used, to identify usability problems. Also, Allen et al.
[12] developed the Paper-Based Heuristic Evaluation, an
inspection method evaluating mockups of medical Web
applications in terms of consistency, minimalism, match,
memory and language. Finally, Molina and Toval [13]
proposed a method that provides a total of 50 metrics in order
to identify usability problems from a meta-model formed by
merging the navigational and requirements models.

Although the above methods provide means for identifying
usability problems in Web applications, there is still room for
improvement. For instance, methods such as the one proposed
by Paganelli and Paterno [11] require that the source code of
the application is available so users can experience it, which
increases the cost of correcting the identified problems [5]. In
fact, our analysis [4] showed that only around 15% of the
identified usability evaluation methods could be applied at
earlier stages of the development process. Moreover, from the
methods that can be employed earlier in development (e.g. the
Paper-Based Heuristic Evaluation), most of them do not
provide guidance for software engineers applying them and/or
do not provide tools to support inspectors in the evaluation of
Web applications [4]. It is necessary to develop technologies
(i.e. methods and tools) that address these issues in order to
enhance the performance of software engineers in the
evaluation of Web applications. The above needs have been
considered in the proposal of the DUE technologies.

III. THE DUE TECHNOLOGIES

We proposed the Design Usability Evaluation (DUE)
technologies in order to meet the needs of inspection methods
in the field of early usability evaluation of Web applications
[4]. In this sense, the DUE technologies are a technique and a
tool to guide software engineers in the identification process of
usability problems in mockups of Web applications.

To guide inspectors in the identification of usability
problems, the DUE technique suggests dividing mockups into

Web page zones, which are pieces of a Web page that contain
specific components to perform certain functionalities [4].
Examples of Web page zones are: the navigation zone, where
the user can find means to go from one part of the application
to another; the system state zone, where the user can find
information of his/her location in the application, how (s)he got
there and the available options in it; and others. Based on these
zones, the DUE technique provides a set of verification items
to check whether a usability problem can occur. For instance,
Table I shows some of the verification items of the DUE
technique for the data entry zone, while Fig. 1 shows a mockup
in which these items have been violated. When an inspector
verifies that there is a nonconformity, (s)he marks the item
within the mockup, identifying the problem. As an example,
problem P01 in Table I shows that in the data entry zone, the
Web application does not provide hints for filling the fields,
which can cause difficulties in inputting data (see Fig. 1 error
A). Also, problem P02 in Table I shows that the fields that are
mandatory are not highlighted, which can cause users to forget
to provide relevant information (see Fig. 1 error B). Interested
readers can find a complete description of the Web page zones
and verification items from the DUE technique, and more
examples of usability problems in our previous work [4].

TABLE I. A WEB PAGE ZONE AND SOME OF ITS VERIFICATION ITEMS.

Data Entry Zone: This zone is responsible for providing the user with

means of entering data into the application in order to allow the user to
perform operations. Later, the user will click in a “submit” like button that

will activate a function based on the entered data.

ID Usability Verification Item

P01 The interface indicates the correct format for a determined data
entrance (e.g. a “Date” entry field could have the next hint:

“mm/dd/yy”).

P02 The interface indicates which data must be mandatory filled (e.g.
mandatory input data is indicated with a “*” or a “mandatory” next

to the field).

The initial evaluation of the DUE technique [7] showed that
applying the technique on its own was tiring for inspectors, as
they were forced to simulate the interaction between the user
and the mockups. Therefore, we proposed the DUE tool to
facilitate the application process of the DUE technique. To
simulate navigation, the DUE tool allows inspectors to click on
previously added links that, when activated, show the mockups
in a sequence, to resemble a real application. Also, the DUE
tool embeds the verification items from the DUE technique and
shows them to the inspectors next to the set of evaluated
mockups. This way, inspectors can request further information
and details on the verification items while identifying usability
problems. Fig. 1 shows the DUE tool when employed in the
evaluation of a mockup. Using the tool, inspectors can point
errors and notes (see area of the screen indicated by 1), view
the verification items of the technique and simulate interaction
(see areas of the screen indicated by 2 and 3 respectively).

Although there are other tools for creating mockups and
simulating interaction (e.g. Mockingbird

2
, Balsamiq Mockups

3

and others), these tools do not provide specific support for the
usability inspection of the developed mockups. It is possible for

2 https://gomockingbird.com/
3 http://www.balsamiq.com/

141

inspectors to use these tools to simulate interaction, while
identifying usability problems. However, it would be difficult
to point the exact location of the encountered problems within
the mockups while navigating through the application using
these tools. In that context, the DUE tool allows inspectors to
save the data on the inspection without using a spreadsheet,
which would facilitate to pause and resume the inspection
process whenever it is necessary. These are the main
advantages of the DUE tool when compared to other tools.

Figure 1. The DUE tool in its evaluation mode: (1) functionality bar, (2)

verification items from the DUE technique, and (3) mockup being evaluated.

In order to complete an inspection using the DUE
technologies, the inspector must evaluate all the verification
items for all the zones present within the evaluated mockups.
Then, (s)he can generate an automatic report containing
information on the inspector and the identified problems. Later,
such report will be discussed by the development team in order
to verify which corrections are necessary and their priority.

IV. EMPIRICAL EVALUATION

In this study, we aimed at: (a) assessing the acceptance of
the DUE technologies by software engineers; and (b)
identifying constrains and improvement opportunities for
adopting these technologies in the software industry. To gather
data for evaluating the acceptance of the DUE technologies, we
applied a questionnaire based on the indicators from the
Technology Acceptance Model (TAM). TAM [14] aims at
assessing users’ beliefs about the usefulness and ease of use of
a technology that is expected to support their work. According
to Davis [14], the reason for focusing on those indicators is that
they are strongly correlated to user acceptance of a given
technology.

The empirical study to assess the DUE technologies was
conducted during a two-week professional training on software
verification and validation. The goal of the course was to teach
software engineering practitioners about new techniques and
tools for guaranteeing quality in the software development
lifecycle. One of the topics from the course was usability
evaluations and our research team was asked to provide
training on technologies for evaluating the usability of different
software applications and their suitability in different stages of
the development process. Thus, a training regarding the DUE
technologies was prepared as part of the course.

Table II shows the questionnaire we applied for evaluating
perceived usefulness and perceived ease of use on the DUE
technologies. We based our questionnaire on the one by

Laitenberger and Dreyer [15]. However, we selected only part
of the items that could provide information on what could be
improved in the development of the DUE technologies. In
order to apply the questionnaire, we:

- Replaced the “technology” investigated in the
questionnaire with the terms “DUE technique” or “DUE
tool” according to the technology we were evaluating.

- Replaced the process investigated in the questionnaire
with “usability inspection” with a focus on Web mockups.

- Employed a four-point scale asking for the degree of
agreement with the statements from the point of view of
software engineers: (1) Strongly Disagree, (2) Partially
Disagree, (3) Partially Agree and (4) Strongly Agree. We
did not use an intermediate level so the software engineers
would provide information regarding the side to which they
were inclined (either positive or negative) [15].

- For each of the statements within the questionnaire, we
included open questions, asking for the reason why a
subject chose a specific answer. This was done in order to
better understand the features that made the DUE
technologies useful (or useless), easy (or difficult) to use
and suitable (unsuitable) for a software engineer’s work.

At all, 20 software engineers from 5 different software
companies (at Manaus-Brazil) were enrolled in the training and
agreed to participate in the study. These software engineers had
a strong technical background (knowledge in the planning,
creation and documentation of test cases), and varying degrees
of work experience in the testing of software applications
(ranging from 2 to 10 years of experience – median 5 years).

The study took place in two days from the two-weeks
training. Each day, the subjects entered a lab room where they
had lectures and carried out real evaluations for a period of 4
hours with a 30 minutes break. During the first half of the
training of the first day, the subjects received training in the
application of different usability evaluation techniques (e.g.
user testing [1], the heuristic evaluation [16]). After that, the
subjects performed evaluations using these techniques over real
applications under development. Then, during the second half
of the course of the first day, the subjects were trained on the
DUE technique, applied on its own without tool support, for
inspecting the usability of the mockups of a Web application.
Next, they performed the evaluation of a set of mockups and
filled in the questionnaire statements regarding their acceptance
of the DUE technique. During the second day, the subjects had
training on the DUE tool. However, this time, they had to carry
out an inspection over a real application under development
comprising over 10 mockups. This was done in order to
resemble a real evaluation scenario in industry and let the
subjects experience the navigation functionalities from the
DUE tool. Finally, all subjects filled in the questionnaire with
statements regarding their acceptance of the DUE tool. We
highlight that we did not compare the DUE technologies with
other usability evaluation approaches as this study focused on
the acceptance of the DUE technologies by software engineers.
Studies comparing the DUE technologies to other approaches
can be found in our previous work [7].

142

TABLE II. QUESTIONNAIRE STATEMENTS ON: PERCEIVED USEFULNESS,
EASE OF USE AND FUTURE USE.

Statements regarding “Perceived Usefulness” (U):

U1
Using the “technology” in my job would improve my effectiveness
in a usability inspection of the mockups of a Web application.

U2
Using the “technology” in my job, I would be able to carry out a
usability inspection of the mockups of a Web application more
quickly.

U3
Using the “technology” in my job would improve my performance
in a usability inspection of the mockups of a Web application.

U4
I would find the “technology” useful to carry out a usability
inspection of the mockups of a Web application.

Statements regarding perceived “Ease of Use” (EoU):

EoU1
Learning to operate the “technology” to carry out a usability
inspection of the mockups of a Web application would be easy for
me.

EoU2
I would find it easy to get the “technology” to do what I want it to
do to carry out a usability inspection of the mockups of a Web
application.

EoU3
It would be easy to become skillful in using a usability inspection
technique/tool like the “Technology”.

EoU4
I would find a usability inspection technique/tool like the
“Technology” easy to use.

Statements regarding “Self-Predicted Future Use” (FU):

FU1
Assuming a usability inspection technique/tool like the
“Technology” would be available on my job, I predict that I will
use it on a regular basis in the future.

V. DATA ANALYSIS AND RESULTS

Usefulness and Ease of Use are important measures for
technology acceptance. We used the questionnaire to gather
software engineers’ opinion about their acceptance of the DUE
technologies. Table III shows the descriptive statistics for the
Usefulness statements (U1 to U4), Ease of Use statements
(EoU1 to EoU4) and Self-Predicted Future Use. We have
analyzed the results verifying the mean and standard deviation
of the scores as in the examples by Laitenberger and Dreyer
[15] and Babar et al. [17]. An average response between 3
(Partially Agree) and 4 (Strongly Agree) seems overall a
positive result. The overall score for perceived usefulness and
perceived ease of use has been calculated by summing the
individual scores of their respective items, thus the maximum
score is 16. Despite the cautiously positive results, some
subjects were not convinced about the usefulness and ease of
use of the DUE technologies. To better understand the reasons
that made the subjects answer positively or negatively, we have
analyzed the answers to the open questions.

Reasons that made software engineers believe that the DUE
technique was useful were regarding the guidance and
standards that were provided. For instance, one of the subjects
indicated that since the technique focused on specific parts of
the application and its attributes, it was easier to concentrate
and identify the usability problems (see quote from Inspector
I10). Furthermore, the verification items and their detailed
description according to the zones that were being evaluated
made software engineers believe that they would be able to find
more problems (see quote from Inspector I04).

“(…) it allows me to focus on different areas and inspect
them independently.” – Inspector I10.

“I believe it is effective as it supports identifying the defects
through its well described items.” – Inspector I04.

Overall, 5 inspectors disagreed with at least one of the
items on the usefulness of the DUE technique. The main
reasons for their disagreement was regarding the time it would
take to carry out the inspection due to the large number of
verification items (see quote from Inspector I08); and the
overlapping between some of the items, which could confuse
inspectors when looking for usability problems (see quote from
Inspector I17).

“It can be tiring and take a long time depending on how
many of the verification items you check.” – Inspector I08.

“The number of items and, in some cases, their ambiguity
makes it diminish my performance and it takes time.” –
Inspector I17.

TABLE III. MEAN AND STD. DEV. FOR USEFULNESS, EASE OF USE AND

SELF-PREDICTED FUTURE USE (FOUR-POINT SCALE: 1 TO 4).

 DUE Technique DUE Tool

Item Mean Std. Dev. Mean Std. Dev.

U1 - Effectiveness 3,70 0,46 3,58 0,49

U2 - Quick 3,15 0,79 3,50 0,65

U3 - Performance 3,60 0,49 3,50 0,50

U4 - Useful 3,40 0,73 3,08 0,86

Total Usefulness 13,85 1,68 13,67 1,37

EoU1 - Easy to learn 3,70 0,46 3,50 0,50

EoU2 - Controllable 3,50 0,67 3,33 0,62

EoU3 - Skillful 3,60 0,58 3,58 0,49

EoU4 - Easy to use 3,30 0,84 3,42 0,64

Total Ease of Use 14,10 2,14 13,83 2,07

Self-Predicted Future Use 3,50 0,50 3,50 0,65

Regarding the ease of use of the technique, the software
engineers indicated that it was easy to identify usability
problems as the technique pointed, for the different parts of the
application, what an application should provide to be usable
(see quote from Inspector I02). Furthermore, the software
engineers indicated that the organization of the technique made
it easier to learn and follow the inspection process (see quote
from Inspector I10).

“It makes it easier since the zones and items make it clear
what an application should provide, and what it actually
has/lacks.” – Inspector I02.

“Yes, using the zones makes it easier to follow the process
and identify specific problems in which we would not focus in
other circumstances.” – Inspector I10.

Despite the positive feedback on ease of use, around 4
software engineers disagreed with at least one of the statements
from the questionnaire regarding the DUE technique. Again,
the main problem was the overlap between some of the
verification items (see quote from Inspector I13). Moreover,
other inspectors indicated that initially, the zones were not that
intuitive, but as there were examples, one could learn how to
use the technique (see quote from Inspector I18). We highlight
that some inspectors suggested developing a tool support for
the DUE technique (see quote from Inspector I14). While using
the DUE technique, the software engineers participating in the
study did not know that a tool was available. Thus, it can be an
indicator supporting our results in our literature review and
previous studies [4][7], which suggest that a tool is important
for facilitating the use of UIMs.

143

“It was not that easy to use as some of the items are
ambiguous or overlap, which makes it confusing and take more
time” – Inspector I13.

“Initially, I had some difficulty in understanding the zones
and their items. However, the examples made me overcome
that problem, and I was able to apply it.” – Inspector I18.

“I believe that the technique is suitable if the evaluation is
short. However, in bigger applications, it would be better to
have a tool to facilitate its use.” – Inspector I14.

Regarding the DUE tool, and its use on the evaluation of
the mockups of a real Web application under development,
most software engineers provided positive feedback. When
asked about the reasons that made the tool useful and easy to
use, the inspectors indicated that the tool was useful as it made
the inspection process more agile and quick (see quote from
Inspector I13). Furthermore, the tool was perceived as intuitive
and easy to use as the provided functionalities were easy to
understand (see quote from Inspector I10).

“I believe it is a great tool, it makes the inspection process
more agile and it makes it easier. It is an adequate and useful
tool for the inspection.” – Inspector I13.

“In my opinion, the tool was useful and it was easy to
understand the provided options. Also, the way in which the
errors are documented helped me. It is very intuitive.” –
Inspector I10.

At least 4 software engineers disagreed with one or more
statements regarding the usefulness and ease of use of the DUE
tool. These inspectors indicated that since the technique had
many zones and verification items to be checked, finding them
in the tool was also difficult and make using the tool inefficient
(see quote from Inspector I08). Also, the appearance of the tool
and the way it presented some feedback to the inspectors were
not adequate in certain situations. For instance, Inspector I19
pointed out that the way in which the tool pointed the defects
made it hard to visualize an application with many defects. In
Fig.1 we can see that for each identified problem, the tool adds
an “X” mark next to the problem (the inspector can relocate the
X over the problem to make that problem easier to find in the
report). When a mockup has many problems, as the number of
marks increases, it turns difficult to view the mockup. Finally,
the inspectors indicated that the inspection report should be
reduced (see quote from Inspector I12), as it shows all the
evaluated mockup, even if usability problems were not
identified on them, thus wasting the time of the development
team, when reviewing the reports.

“Since it presents all the zones and items from the
technique, it is also tiring. Furthermore, it is difficult to identify
previous problems that were added when identifying a usability
problem.” – Inspector I08.

“When we report a problem, the tool adds an ‘X’ to point it
on the mockup. However, as the problems were being reported
I was forced to relocate them so they would not make it difficult
to navigate and view the mockups.” – Inspector I19.

“I think that the report contains too much information. It
could show the mockups in which problems have been found

instead of showing all of them and wasting time.” – Inspector
I12.

When asked if they would employ the DUE technologies in
their work environment, the majority of the subjects (strongly
or partially) agreed that they would use it. However, only
Inspector I19 disagreed with adopting the DUE tool in his/her
job. The reason for this answer was that (s)he did not like the
tool because of its design. Other inspectors indicated that the
tool could be improved by grouping its functionalities (and
buttons) according to their frequency of use, and providing
shortcuts to make it faster to use. Also, they indicated the need
for facilitating the navigation among the mockups and, perhaps,
allowing importing mockups from other tools, instead of
creating them elsewhere and mapping them into the tool.
Finally, they indicated that in the first use, the tool should
provide a quick introduction, so inspectors can be more
familiar with its functionalities before starting the inspection.
Regarding the DUE technique, the software engineers
suggested creating generic items for those that were repeated in
the zones. Also, they suggested making the ambiguous
verification items more clear, by adding further information
and hints on what a usable interface should provide.

VI. LIMITATIONS OF THE STUDY

Regarding the subjects’ need for training, it would have
been better if there was no need for it. However, the short
training time allows the DUE technologies to be applied by
software engineers with low experience in usability
evaluations. In that context, the moderator and training could
have caused an effect in the software engineers’ perception of
usefulness and ease of use. Nevertheless, the moderator did not
highlight the (dis)advantages of the DUE technologies. Instead,
he explained their application process and provided equivalent
examples for all methods described in the training.
Furthermore, when filling out the questionnaire, the moderator
highlighted that the goal of the study was to identify
improvement opportunities in the DUE technologies,
encouraging the software engineers to be as honest as possible.
Finally, besides the DUE technologies, the software engineers
applied different usability evaluation techniques to guarantee
that they could have a baseline to compare them. However, as
the duration of the study depended on the duration of the
training, we only gathered data on the acceptance of the DUE
technologies.

Regarding the generalization of our findings, the
representativeness of the inspected mockups can be a
limitation. Although these mockups might not be representative
of all types of applications [1] and inspectors may have
different results evaluating other applications, these mockups
were produced for a real system under development,
resembling a real industrial usability evaluation scenario.
Therefore, the results from this study must be considered
indicators and further studies evaluating different types of
applications should be executed. Also, since the number of
subjects is low, the data extracted from this study can only be
considered indicators and not conclusive. Nonetheless, it might
not be possible to get sufficient size of data sets. Therefore,
even with a small sample used, the results from this study are

144

good indicators for explaining the reasons why users would
accept or reject the DUE technologies.

A final limitation could be the instrument and measures
applied in this study for assessing technology acceptance.
However, we believe that applying questionnaires was more
suitable than applying interviews due to time constrains.
Furthermore, by evaluating perceived usefulness and perceived
ease of use, we intended to have an idea of users’ acceptance of
the DUE technologies and identify issues that should be
corrected to meet the needs of the software industry. Finally,
the questions we asked to the software engineers were based on
questionnaires applied in other researches [15][17] which have
been previously validated.

VII. CONCLUSIONS AND FUTURE WORK

We developed a set of usability inspection technologies for
the evaluation of mockups of Web applications earlier in their
development process. In this paper, we have studied the user
acceptance of these technologies for carrying out usability
evaluations. We used a questionnaire evaluating indicators
based on the TAM model, for gaining understanding of the
subjects’ attitude towards the DUE technologies for inspecting
the usability of mockups of Web applications. In that context,
we found out that:

1. A majority of the subjects found the DUE technique and
tool quite useful and easy to use for supporting the usability
evaluation of mockups of Web applications.

2. Most of the software engineers who participated in the
study would adopt the DUE technologies in their job.

3. The practitioners who disagreed with the statements from
the questionnaire in terms of usefulness and ease of use
indicated that to improve their performance, the DUE
technique should reduce or combine some of its verification
items and make them less ambiguous.

4. It is necessary to improve the design of the DUE tool to
make it easier in its first usage experience. Also, the way in
which problems are pointed should be improved so the
visualization and navigation among the mockups are not
affected.

As we had already evaluated the effectiveness and
efficiency indicators of the DUE technologies in different
contexts [7], this paper focused on the evaluation of their
acceptance by software engineers. However, we still need to
carry out further studies verifying to what extend previous
knowledge on usability evaluations and previous practical
experience affect the acceptance and performance of
practitioners when applying the DUE technologies. Thus, as
future work, we intend to replicate this study, but increasing the
number of subjects, and analyzing their actual effectiveness
and efficiency according to their experience. Also, in this new
study, it is necessary to implement the changes suggested by
the software engineers in order to improve the usefulness and
ease of use of the DUE technologies and their adoption in the
software industry. Furthermore, although we analyzed the
answers to the open questions, we still need to carry out further

qualitative analyses with other methods to better investigate the
aspects that need to be improved to enhance their adoption.

ACKNOWLEDGMENTS

We thank CNPq for the scholarship granted to the first
author of this paper and for its financial support through
process n° 460627/2014-7. Also, we thank the financial support
granted by FAPEAM through processes nº: 01135/2011;
062.00146/2012; 062.00600/2014; 062.00578/2014; and PAPE
004/2015. Finally, we thank the financial support granted by
FAPESP through processes nº 2014/15514-2.

REFERENCES

[1] G. Kappel, B. Proll, S. Reich, W. Retschitzegger, “An Introduction to
Web Engineering”, In: G. Kappel, B. Proll, S. Reich, W. Retschitzegger,
“Web Engineering: The Discipline of Systematic Development of Web
Applications”, John Wiley & Sons, pp. 1-17, 2006.

[2] International Organization for Standardization, ISO/IEC 25010,
“Systems and software engineering -- SQuaRE - Software product
Quality Requirements and Evaluation”, 2011.

[3] L. Olsina, G. Covella G. Rossi, “Web Quality”, In: E. Mendes, N.
Mosley, Web Engineering, Springer, pp. 109-142, 2006.

[4] L. Rivero, R. Barreto, T. Conte, “Characterizing Usability Inspection
Methods through the Analysis of a Systematic Mapping Study
Extension”, In Latin-american Center for Informatics Studies Electronic
Journal, 16(1), pp. 12-12, 2013.

[5] R. Charette, “Why software fails”, In IEEE Spectrum, 42(9), pp. 42-49,
2005.

[6] E. Luna, J. Panach, J. Grigera, G. Rossi, O. Pastor, “Incorporating
usability requirements in a test/model-driven web engineering
approach”, In Journal of Web Engineering, 9(2), pp. 132-156, 2010.

[7] L. Rivero, T. Conte, “Improving Usability Inspection Technologies for
Web Mockups through Empirical Studies”, Proc. 25th SEKE, pp. 172-
177, 2013.

[8] L. Rivero, M. Kalinowski, T. Conte, “Practical Findings from Applying
Innovative Design Usability Evaluation Technologies for Mockups of
Web Applications”, Proc. 47th HICSS, pp. 3054-3063, 2014.

[9] F. Shull, J. Carver, G. Travassos, “An empirical methodology for
introducing software processes”, In ACM SIGSOFT Software
Engineering Notes, 26(5), pp. 288-296, 2001.

[10] A. Fernandez, E. Insfran, S. Abrahão, “Usability evaluation methods for
the web: A systematic mapping study”, In Information and Software
Technology, 53(8), pp. 789-817, 2011.

[11] L. Paganelli, F. Paterno, “Automatic reconstruction of the underlying
interaction design of Web applications”. Proc. 14th SEKE, pp. 439-445,
2002.

[12] M. Allen, L. Currie, S. Patel, J. Cimino, “Heuristic evaluation of paper-
based Web pages: A simplified inspection usability methodology”, In
Journal of Biomedical Informatics, 39(4), pp. 412-423, 2006.

[13] F. Molina, A. Toval, “Integrating usability requirements that can be
evaluated in design time into Model Driven Engineering of Web
Information Systems”, In Advances in Engineering Software, 40(12), pp.
1306-1317, 2009.

[14] F. Davis, “Perceived usefulness, perceived ease of use, and user
acceptance of information technology”, MIS quarterly, pp. 319-340,
1989.

[15] O. Laitenberger, H. Dreyer, “Evaluating the usefulness and the ease of
use of a web-based inspection data collection tool”, Proc. 5th
International Software Metrics Symposium, pp. 122-132, 1998.

[16] J. Nielsen, “Finding usability problems through heuristic evaluation”,
Proc. CHI’92, pp. 373-380, 1992.

[17] M. Babar, D. Winkler, S. Biffl, “Evaluating the usefulness and ease of
use of a groupware tool for the software architecture evaluation
process”, Proc. 1st ESEM, pp. 430-439, 2007.

145

AMBIT: Semantic Engine Foundations for Knowledge Management
in Context-dependent Applications

Riccardo Martoglia

FIM Department, University of Modena and Reggio Emilia, I-41125 Modena, Italy,
E-mail: riccardo.martoglia@unimore.it

Abstract – Context-aware application and services propos-
ing potentially useful information to users are more and
more widespread; however, their actual usefulness is often
limited by the “syntactical” notion of context they adopt.
The recently started AMBIT project aims to provide a gen-
eral software architecture for developing semantic-based
context-aware tools in a number of vertical case study appli-
cations. In this paper, we focus on the knowledge manage-
ment foundations we are laying for the Semantic Engine of
the AMBIT architecture. The proposed semantic analysis
and similarity techniques: (a) exploit the textual informa-
tion deeply characterizing both users and the information
to be retrieved; (b) overcome the limits of syntactic methods
by leveraging on the strengths of both classic information
retrieval and knowledge-based analysis and classification,
ultimately proposing information relevant to the user inter-
ests. The experimental evaluation of a preliminary imple-
mentation in an actual “cultural territorial enhancement”
scenario already shows promising results.

Keywords – context-aware applications; information re-
trieval; text analysis; semantic knowledge and similarity.

1. Introduction
Nowadays, we are constantly supported by ICT systems and

applications that exploit ubiquitous services supporting differ-
ent kinds of human activities. However, the availability of a
large number of services can turn out to be confusing rather
than useful, since the users are often overwhelmed by the large
number of “proposals” which they are generally not able to con-
sider thoroughly to find what they really need. To overcome this
problem, many researchers have proposed to develop new appli-
cations with (or to incorporate in existing applications) context-
awareness capabilities ([2, 4]). A context-aware application is
one that “knows” the context in which the client is operating
and possibly also the profile/characteristics of the user who is
enjoying the corresponding service(s). Clearly, such knowledge
must be gathered (often under real-time constraints), stored in
well-organized fast-access data and information systems, and
effectively exploited with the goal of delivering “personalized”

(DOI reference number: 10.18293/SEKE2015-27)

high-quality context-dependent services. This is far from sim-
ple; the main limitations of existing efforts lie in the limited no-
tion of context they adopt, and especially in the almost complete
absence of any attempt to model the semantics of the context.

This is the challenging scenario of the recently started AM-
BIT (Algorithms and Models for Building context-dependent
Information delivery Tools) project1 [5] a regional project co-
funded by Fondazione Cassa di Risparmio di Modena and man-
aged by the Softech-ICT research center. The main goal of the
project is to study and implement a prototype software archi-
tecture for the development of context-dependent applications
and systems, i.e., tools that provide users with services that are
fully customized according to the context in which they oper-
ate. Preliminary steps will be the study of models, algorithms
and data structures for the representation and manipulation of
contexts. AMBIT will study and implement a very broad idea
of context, including (among others) the modeling of the exter-
nal environment, the users’ profile and the history of the actions
performed by them.

The AMBIT software platform will eventually provide an
API that can be personalized for the development of a number
of vertical context-dependent applications. Several case studies
have been identified by the project industrial partners; one of
the main application scenarios, and the one which will be the
reference in this paper, is the “cultural territorial enhancement”
one: through both on-demand and proactive services, users of
specific applications (including mobile ones) are empowered
with precious “suggestions” pointing to the information (e.g.
territorial activities, typical products descriptions, tourism in-
formation, etc.) which is the most relevant with respect to their
profile and needs. A very simple example could be the notifica-
tion of an event which is geographically close to the location of
the user (say, a country fair with local farm exhibitors), which
falls under the interests associated with his/her profile (e.g., gar-
dening enthusiast). Another example could be the monitoring
of tourists interests (e.g. through a dedicated mobile app where
tourists could browse information on Emilia-Romagna typical
products) and, based on their favorite browsed pages and/or on
explicit queries asking for specific information/topics, the re-
trieval of the pages that best capture their interest.

1http://www.agentgroup.unimore.it/ambit/

146

Figure 1. An overview of the AMBIT-powered Semantic Engine for information management

In order to achieve the AMBIT goals, several studies on
complementary techniques and research fields will have to be
performed. One of the most crucial among them, the key to
provide “intelligent” suggestions and answers to users, is cer-
tainly to have powerful ways of managing available informa-
tion and knowledge. In this paper, we focus on the foundations
we are laying for the Semantic Engine of the AMBIT archi-
tecture, and, in particular, for its knowledge management tech-
niques that are indeed one of the most challenging aspects of
the AMBIT project and should be ultimately able, together with
other AMBIT results, to deliver high-quality context-dependent
information. The techniques we propose:

• take advantage of textual information, certainly the pri-
mary component of the documents that should be pre-
sented / suggested to users, and also one of the major in-
formation characterizing user profiles (think, for instance,
to the contents of their browsing history, to the description
of their interests, and so on);

• are completely flexible and designed to be easily appli-
cable to the territorial enhancement scenario considered in
this paper, but also to all the application scenarios involved
in AMBIT (which also include, among others, context-
aware advertising, smart help-desk problem solving, etc.).

More specifically, Figure 1 shows an overview of the main
processes (and the related modules) of the semantic engine
which will allow AMBIT-powered systems and applications to:

1. manage document and profile information (Document
and user profile analysis, left part of Figure). This is
done by extracting and indexing the associated semantics
by means of ad-hoc semantic text processing and text clas-
sification techniques (described in Section 2), also exploit-
ing external knowledge sources;

2. provide useful answers/proactive suggestions to the user
(Relevant document retrieval, right part of Figure), by

retrieving the most relevant documents w.r.t. the user pro-
file and/or query. This is achieved thanks to novel and
specifically devised semantic similarity techniques (de-
tailed in Section 3).

Section 4 shows preliminary but already promising results
and the good effectiveness of the proposed techniques, by
means of an experimental evaluation done on a small-scale ac-
tual territorial enhancement scenario. Finally, Section 5 con-
cludes the paper also by briefly analyzing related works.

2. Document and user profile analysis
Document analysis. In this offline process, which is
propaedeutic to the online document retrieval process (Section
3), the available documents are processed and the information
which will be required in the actual retrieval is extracted, stored
and indexed in an ad-hoc Document DB by a Document man-
ager module (see left part of Figure 1). The input information
are the text documents relevant to the specific scenario instan-
tiation, including available web pages, product and service de-
scriptions, and so on. For instance, in our territorial enhance-
ment use case, these include descriptions of fairs and events
which have been or will be held in the area, descriptions of typ-
ical products, details on forthcoming initiatives and activities,
information on touristic points of interest, etc.

Since existing packages do not allow sufficient configuration
and extension options, we preferred to design a custom-made
Semantic analyzer tailored to the AMBIT environment. The
analyzer performs several steps which are needed in order to
extract the contents (and meaning) of the processed informa-
tion, including: Tokenization, the terms of the different sections
are identified and punctuation is removed; Stemming, the to-
kens are “normalized” and “stemmed”, i.e., terms are reduced
to their base form (managing plurals and inflections); POS (Part
of Speech) Tagging, the tokens are “tagged” with Part of Speech
tags (i.e., nouns, verbs, ...); Composite term identification, pos-

147

TERM SYNS IS_A DEFINITION IDF DOC_LIST
Expo Exhibition,

Exposition
Collection,
aggregation

A collection of things (goods or works
of art etc.) for public display

2.455 ['D07542-3', …]

Parmesan Cheese Hard dry sharp-flavored Italian cheese;
often grated

7.457 ['D03522-3',
'D08654-2', …]

CLASS IS_A DEFINITION DOC_LIST
Automotive
equipment

manufacturing&
engineering

Companies that produce components for
automobiles

['D04342', …]

Viniculture agriculture Production of wines from the vines to the
finished products

['D03265', …]

DOC TERM TF W
D00001-1 Ferrari 0.545 0.977
D00002-1 ModenaTour 0.210 1.131

DOC CLASS SCORE
D00001 Automotive equipment 0.645
D00002 Tour operator 0.410

a)

b)

c) d)

Figure 2. Sample portions of the extracted Document Semantic Index: global view for terms (a) and classes
(b), per-doc view for terms (c) and classes (d).

sible composite terms (such as “production area” or “wine tast-
ing”) are identified by means of a simple state machine and
of POS tags information; Filtering and enrichment, terms are
associated to additional information (such as definitions, syn-
onyms, ...) extracted from the thesaurus (i.e., WordNet2, [12]).

The extracted information will enable the retrieval of the
most relevant information for the user in the online phase. For
instance, by means of synonyms, documents about an “exhibi-
tion” will also be relevant to a query about an “expo”.

Moreover, a Semantic categorizer processes text in order to
tag each document with appropriate subject classes; we adopt
the text-centric Media Topic NewsCodes taxonomies and vo-
cabularies provided by IPTC3, a well-known taxonomy offering
a very good level of detail and coverage of the AMBIT topics.
Each class tag has a score (the higher the score the more relevant
the class is for the document). For instance, a document about
the typical “Lambrusco” wine will presumably have “vinicul-
ture” among its highest scoring associated tags.

By applying batch document analysis to the document col-
lection, the semantic index is automatically generated. Con-
ceptually, it consists of a global view (all terms/classes to-
gether with their occurrences and additional extracted data, see
Figures 2-a and 2-b for an excerpt) and a per-document view
(terms/classes occurrences in each document with their statis-
tics, Figures 2-c and 2-d). In particular, DOC LIST is the list of
the documents IDs in which each term/class occurs. Each oc-
currence is also associated to a weight reflecting its importance
and meaningfulness in the text (SCORE for classes and W for
terms, corresponding to the TF/IDF [14] model used in infor-
mation retrieval). As we will see, this will allow the similar-
ity functions of the Semantic Engine to draw useful knowledge
from both the semantic and the classic text retrieval worlds.
User profile analysis. The User profile DB is populated and
updated by the Profile manager each time a user connects. In
particular, user context data may include Profile data, i.e. per-
sonal data, likings, preferences, etc. explicitly submitted by
the user, Environment data, e.g. location data as extracted from

2http://wordnet.princeto n.edu/
3http://www.iptc.org/site/Home/

GPS sensors, time of day, ambient information such as lighting,
noise level, etc, and Action history data, i.e. information about
past user actions. This last kind of data is the one we mainly fo-
cus on in this paper and is particularly crucial for the semantic
engine: it may include, for instance, past accessed documents
(e.g. browsed from an ad-hoc AMBIT app), past actions per-
formed on some partner’s website (e.g. about typical Modena
products), and so on4. The intuition is that the documents from
the user history can be analyzed in a similar way to the scenario
documents, therefore exploiting all the power of the Semantic
analyzer and categorizer in order to associate meaningful terms
and classes to users (and thus enriching the user profile DB with
information analogous to the one discussed for document anal-
ysis and shown in Figure 2). Due to their complexity, such
analyses are performed offline and will be available for more
accurately processing future requests from the same user.

3. Relevant document retrieval
This is the phase where users connect and receive the re-

sults which are relevant to their status or need (see right part
of Figure 1). We encompass both the computation of proactive
suggestions (based on context data) and the retrieval of “on-
demand” personalized information to explicit user queries. For
instance, a user could submit an explicit query about “Typi-
cal food stores” and the engine, also based on the user’s past
actions (i.e. browsing specific food descriptions) and environ-
ment, will produce a list of nearby stores which (s)he could
find interesting, possibly personalized on the basis of its pref-
erences/browsing history. However, the retrieval process could
also work without any explicit user input. As an example, based
on the current Profile/Environment data and on the user profile
DB, the platform could detect that a user interested in sport cars
is traveling by train and is reaching a stop near an international
car fair; therefore, a proactive suggestion pointing to the fair
web page would be pushed to his mobile device.

4The information may be directly available from the websites’ logs or mo-
bile application data or, where applicable, it may be indirectly derived by means
of appropriate web tracking mechanisms ([1]).

148

In all cases, the Semantic retrieval engine module has to an-
alyze the profile, environment and/or the query, access both the
Document DB and the User profile DB data and produce a rank-
ing of the available documents. In case of an explicit query, the
ranking is directly presented to the user; in case of a proac-
tive scenario, the suggestion for the document(s) on top of the
ranking is sent to the user. We also plan to manage feedback
on the relevance/usefulness of the received results; the profile
manager will update the user profile information with typical
requests and result feedbacks in order to dynamically modify
preferences and, thus, avoid unwanted suggestions.

The computation of the document ranking is based on ad-hoc
similarity metrics:
• the similarity TextSim between the main terms of the

available documents (and their sections) and those associ-
ated with the user profile (e.g. past navigated documents),
possibly including explicit query terms;

• the similarity ClassSim between the document and user
classes;

• additional similarities on other aspects coming from pro-
file and/or environment data, such as explicit preferences
or likings, current time and location, etc.

As anticipated in the past sections, the need of effectively
and efficiently computing similarities between the terms/classes
characterizing user profiles and documents is crucial in AMBIT.
We will now deepen the discussion of these two similarities,
which are in the focus of the paper and are certainly key to the
semantic understanding and satisfaction of the user query.
Text similarity ranking. TextSim(U,D) quantifies, given a
user profile U and a document D, the similarity of the user
profile w.r.t. the document on the basis of their associated
terms tU ∈ U and tD ∈ D: In particular, the computation
of TextSim between a given profile U and each possible D
(i.e., each available document in the semantic index) involves
the following steps:

1. considering each term in U and finding the most similar
term or terms available inD by exploiting a term similarity
formula TSim;

2. inducing a ranking of the available documents (on the ba-
sis of TextSim), thus predicting which documents are rel-
evant and which are not w.r.t. U .

Equation (1) shows the text similarity formula: the similar-
ity is given by the sum (defined in (2)) of all term similarities
between each term in U and each term in D maximizing the
term similarity with the term in D:

TextSim(U,D) =
∑
tUi ∈U

TSim(tUi , t
D
j(i)

) · wUi · wDj(i) (1)

tD
j(i)

= argmaxtDj ∈D(TSim(tUi , t
D
j)) (2)

where wUi = tfUi · idfi and wD
j(i)

= tfD
j(i)
· idfj(i). In this

way, each term contributes to the final similarity with a dif-
ferent weight. Moreover, the limitations of standard syntacty-
cal techniques are overcome by computing TSim by means of

Equation (3), which considers synonyms (as extracted in the
semantic index) and semantically related terms:

TSim(ti, tj) =


1, if ti = tj or ti SY N tj

r, if ti REL tj
0, otherwise.

(3)

Besides equal terms and synonyms, the formula provides a
further case (REL) where the two terms are not equal or syn-
onyms, nonetheless they are in some way related from a seman-
tic point of view (i.e., broader/narrower terms etc.): such terms
will contribute with a similarity of r, where 0 < r < 1 is a
user-defined fixed similarity value. REL is computed in real
time by exploiting the relations between terms coming from the
WordNet thesaurus and, more in detail, the method proposed in
[8], a well established metric relying on the hypernym relations:
for instance, “pasta” will result related with “dish” and “pizza”.
Class similarity ranking. In addition to document terms, the
classes associated by the semantic classifier can also signifi-
cantly help in order to retrieve useful documents. This is ob-
viously true if both a user profile and a document are strongly
characterized by a common IPTC class (e.g. “Motor car rac-
ing”); however, also documents about Ferrari cars and tagged
with a similar class “Formula One” would be of interest. This
is achieved through ClassSim(U,D) which quantifies, given
a user profile U and a document D and in the same philoso-
phy as TextSim(U,D), the similarity of the user profile w.r.t.
the document, in this case on the basis of their associated IPTC
classes cU ∈ U and cD ∈ D:

ClassSim(U,D) =
∑
ci∈U

CSim(ci, cj(i)) · s(ci) · s(cj(i))

(4)
cj(i) = argmaxcj∈D(CSim(ci, cj)) (5)

CSim(ci, cj) =

{
−ln len(ci,cj)2·H , if len(ci, cj) < Th

0, otherwise.
(6)

The similarity CSim (eq. (6)) between two classes ci and cj
is derived from the hypernym metrics exploited for term simi-
larity [8, 9]: it is computed as a score which is inversely pro-
portional to the length of the shortest path connecting the two
classes in the IPTC hierarchy; in case the length exceeds a con-
figurable threshold Th, the similarity is null. H is a constant
representing the maximum depth of the hierarchy (5 for IPTC).
Ranking fusion. The rankings τtext, τclass induced by Eqs. (1)
and (4), respectively, on the documents D given a profile U ,
are eventually fused in a final fused ranking τ̂ through a lin-
ear combination method [13], exploiting both terms and classes
contributions:

sτ̂ (D) =
∑

τ∈{τtext,τclass}

ατ

(
1− τ(D)− 1

|τ |

)
(7)

where |τ | is the length of the ranking and ατ >= 0 is a
preference weight (default is 1 for both rankings). Only docu-
ments which are part of both rankings will appear in the final

149

Prec Rec F Prec Rec F Prec Rec F
U1 0.94 0.93 0.94 0.88 0.21 0.34 0.88 0.17 0.29
U2 0.90 0.93 0.92 0.90 0.87 0.88 0.24 0.34 0.28
U3 0.92 0.95 0.93 0.91 0.42 0.58 0.12 0.23 0.16
U4 0.94 0.89 0.91 0.78 0.31 0.45 0.67 0.23 0.34
U5 0.94 0.91 0.92 0.83 0.10 0.18 0.18 0.08 0.11
U6 0.92 0.93 0.92 0.82 0.24 0.37 0.12 0.13 0.13

Our5ResultsUser5
req

Typical5retrieval5baselines5
Syntactic Syntactic,5no5t.a.

Figure 3. Effectiveness analysis: precision, re-
call and F-measure (our results on the left, two
baselines on the right).

ranking. Finally, note that, through αtau, the two similarity for-
mulas presented in this section can be combined in a completely
flexible way, in order to make the Semantic Engine adaptable to
the specific needs of different scenarios.

4. Experimental Evaluation
We will now present the preliminary results we obtained

from an exploratory effectiveness evaluation we performed on
a first prototype of the Semantic Engine, in the context of
AMBIT. Together with the project partners, we considered a
first simplified instantiation of the “cultural territorial enhance-
ment” scenario; the document collection is composed of nearly
2000 documents about activities, tourism, food, exhibitions and
fairs, manufactures, arts and events of the Modena and Emilia-
Romagna area. Starting from this collection, which serves as
a source of possible suggestions, we also considered different
user profile requests (“users” in the following) simulating dif-
ferent kinds of interests/preferences. In this evaluation, being
the effectiveness of the proposed analysis and similarity tech-
niques the current focus, user information is strictly composed
by an action history context (typically, 10-15 past navigated ex-
ternal documents witnessing their interests) and possibly by ex-
plicit query terms (2-8 queries). We will also assume a “stable”
situation, where users and documents have been already auto-
matically analyzed and their relevant terms and classes stored
in the Semantic Index and User DB, respectively.

Among the considered users, we selected a set of 6 (U1-U6)
as the most representative ones. For each one, we compared the
output of the Semantic Engine with a “gold standard”, i.e. rel-
evant answers manually selected from the collection by expert
project partners, and assessed precision, recall, and F-measure
(Figure 3, left part). The results are compared with two base-
lines simulating the results offered by typical retrieval engines:
a syntactic retrieval method ignoring synonyms, related terms
and class information, and a syntactic method also ignoring text
analysis (composite terms identification, stemming, etc.).

As we can see, the precision and recall levels achieved by the
semantic engine are generally very satisfying: all users widely
benefit from the proposed semantic features. Let us now ana-
lyze the results in detail. Typical terms and classes associated
to U1 involve generic “tourism information”: documents about

0"

500"

1000"

1500"

2000"

1" 3" 5" 7" 9" 11" 13" 15" 17" 19" 21" 23" 25" 27"Di
st
an

ce
)fr
om

)id
ea
l)r
an

ki
ng
)

Retrieved)results)

Std" Std"(text"only)" Std"(IPTC"only)"
Syntac:c" Non"weighted"

Figure 4. In-depth effectiveness analysis for U5:
distance from optimal ranking

restaurants, hotels and tour operators are correctly retrieved by
the engine due, for instance, to the similarity of the “tourism”
“catering” and “accommodation” IPTC classes and of the con-
tained terms (recall of 93%); on the other hand, they do not
necessarily contain the same terms present in the user profile,
thus syntactic techniques are not able to identify most of the rel-
evant documents (recall of 21% or lower). Text analysis is also
key to good results: for instance, the absence of stemming has a
very negative impact on the second baseline recall for all users.
Moreover, U2 and U3 are characterized by a high number of
composite terms: for instance, U2 is mainly interested in “wine
tasting”, while U3 in “picture card” expositions. These are two
examples where ignoring composite term information (and in-
cluding in the results irrelevant documents simply containing
“tasting” or “picture”) can seriously affect precision (24% and
12% for second baseline, compared to 90% and 92% of the se-
mantic engine).

The results, especially for U3-U6 which contain a larger
number of terms, also benefit from synonyms, related terms
and class management. For instance, U3 contains terms such
as “exposition” which are correctly matched with several doc-
uments about “exhibitions” that, otherwise, would have gone
unnoticed. User U4 is typically interested in “clothing” items
and in motor car racing: documents about Ferrari Formula One
“shirts” and “sweaters” are correctly retrieved mainly because
those terms are found related to “clothing” in WordNet, and
the documents themselves have also been associated to such
IPTC classes as “motor car racing” (similarly to some browsed
documents). Users U5 and U6 previously browsed mainly
art and food documents, respectively; identifying the syn-
onymy/relatedness of such terms as “church” and “cathedral”,
“carving” and “sculpture” (U5) and “cheese” and “parmesan”,
“food store” and “food shop” (U6) guarantees very good re-
call/precision (over 90%), differently from the baselines.

Finally, we deepened the effectiveness analysis by consid-
ering the actual rankings of the retrieved documents. Being
the number of potential suggestions very high, it is essential
to evaluate whether the best suggestions are returned in the top
positions (i.e. the weighting scheme is effective), especially
for proactive cases. Figure 4 shows the normalized Spearman

footrule distance [6] between the retrieved and the ideal rank-
ing for U5. As we can see, the curves of the semantic engine
(“Std” in figure) are the lowest ones, meaning the least distance
to the optimal ranking, while syntactic and non-weighted base-
lines are not effective in providing the best suggestions first.
In particular, the fused ranking takes the best from the class
and text rankings, which together seem able to well capture the
user interests. For instance, taking U5 as a representative ex-
ample, documents classified as “monument and heritage site”
(IPTC) are deemed of interest to the art-focused user; text rank-
ing also significantly contributes by promoting documents de-
scribing specific artistic sites such as a “clock tower”, a term
with an high weight in the user profile. Due to lack of space we
do not show detailed analyses for the other users, however we
found that the good performance of U5 is fully representative
of the others.

5. Concluding remarks
Several works in the literature have highlighted the ben-

efits of managing context information and/or proposed tech-
niques and applications exploiting context-awareness capabil-
ities ([2, 3, 4, 7]). In particular, a few works are directed
towards context modeling, representation, and effective han-
dling, aspects of particular interest to AMBIT. For instance,
[3] proposes to design a context management system which is
not application-dependent, [7] proposes an architectural frame-
work for context data management, while [15] reports the re-
sult of a study on various context modeling and management
approaches. However, most of the approaches in the literature
primarily focus on specific aspects such as external user infor-
mation, and/or do not consider the semantics of the context.

The techniques presented in this paper will serve as the foun-
dations of the AMBIT Semantic Engine and are designed to be
a first step in overcoming these limitations while being general
enough to support different application scenarios. More specif-
ically, they are focused on exploiting the textual information
deeply characterizing both the documents to be retrieved and
the user information, taking into account the users’ “history”,
i.e. past navigated documents and requests. The proposed se-
mantic similarity techniques leverage on the strengths of both
classic information retrieval and of knowledge-based and clas-
sification techniques, adapted and extended from different con-
texts, from information disambiguation [9] to the querying of
heterogeneous information in digital libraries and PDMSs [10]
and assisted software engineering [11].

AMBIT has just started and the presented approach is one
part of the final picture. Future work will include the design
of the other components of the whole architecture, the possibil-
ity to “personalize” the retrieved information, for instance by
highlighting the sections which should be the most interesting
to the user, the study of additional aspects of a user profile and
the extension of the semantic framework with additional rel-
evant similarity techniques based on them. Finally, an actual
real-world experimentation will be performed in the upcoming

project evaluation phase in a number of case studies proposed
by the project industrial partners in their field of expertise. This
will help us in obtaining useful suggestions about the quality of
the proposed techniques and their improvement, while, at the
local level of our territory, the newly created context-dependent
services is expected to help to improve the offer and to increase
the volume of business of the partners.

References

[1] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan,
and C. Diaz. The Web never forgets: Persistent tracking mech-
anisms in the wild. In 21st ACM Conference on Computer and
Communications Security, Nov 2014.

[2] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context-
aware systems. International Journal of Ad Hoc and Ubiquitous
Computing, 2:263–277, 2007.

[3] C. Bolchini, G. Orsi, E. Quintarelli, F. A. Schreiber, and
L. Tanca. Context modeling and context awareness: steps for-
ward in the context-addict project. Bulletin of the Technical
Committee on Data Engineering, 34:47–54, 2011.

[4] G. Cabri, L. Leonardi, M. Mamei, and F. Zambonelli. Location-
dependent Services for Mobile Users. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems And Humans,
33(6):667–681, 11 2003.

[5] G. Cabri, M. Leoncini, and R. Martoglia. AMBIT: Towards an
Architecture for the Development of Context-dependent Appli-
cations and Systems. In 3rd ICCASA Conference, 2014.

[6] P. Diaconis and R. L. Graham. Spearman’s footrule as a measure
of disarray. Royal Statistical Society Series B, 32(24):262–268,
1977.

[7] P. Falcarin, M. Valla, J. Yu, C. A. Licciardi, C. Frà, and L. Lam-
orte. Context data management: An architectural framework for
context-aware services. Serv. Oriented Comput. Appl., 7(2):151–
168, June 2013.

[8] C. Leacock and M. Chodorow. Combining Local Context and
WordNet Similarity for Word Sense Identification, chapter 11,
pages 265–283. The MIT Press, May 1998.

[9] F. Mandreoli and R. Martoglia. Knowledge-based sense disam-
biguation (almost) for all structures. Information Systems (Infor-
mation), 36(2):406–430, 2011.

[10] F. Mandreoli, R. Martoglia, W. Penzo, and S. Sassatelli. Data-
sharing p2p networks with semantic approximation capabilities.
IEEE Internet Computing (IEEE), 13(5):60–70, 2009.

[11] R. Martoglia. Facilitate IT-Providing SMEs in Software Devel-
opment: a Semantic Helper for Filtering and Searching Knowl-
edge. In SEKE, pages 130–136, 2011.

[12] G. A. Miller. WordNet: A Lexical Database for English. Com-
munication of the ACM, 38(11):39–41, 1995.

[13] M. E. Renda and U. Straccia. Web metasearch: Rank vs. score
based rank aggregation methods. In Proceedings of the 2003
ACM Symposium on Applied Computing, pages 841–846, 2003.

[14] G. Salton and C. Buckley. Term-Weighting Approaches in Au-
tomatic Text Retrieval. Inf. Process. Manage., 24(5):513–523,
1988.

[15] N. M. Villegas and H. A. Mller. Managing dynamic context
to optimize smart interactions and services. In M. Chignell,
J. Cordy, J. Ng, and Y. Yesha, editors, The Smart Internet, vol-
ume 6400 of Lecture Notes in Computer Science, pages 289–
318. Springer Berlin Heidelberg, 2010.

151

DOI reference number: 10.18293/SEKE2015-084

Documenting Implementation Decisions with Code Annotations

Tom-Michael Hesse1, Arthur Kuehlwein1, Barbara Paech1, Tobias Roehm2 and Bernd Bruegge2

1Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
{hesse, kuehlwein, paech}@informatik.uni-heidelberg.de

2Technische Universität München, Boltzmannstr. 3, 85748 Garching b. München, Germany
{roehm, bruegge}@in.tum.de

Abstract

Software developers make various decisions when imple-
menting software. For instance, they decide on how to im-
plement an algorithm most efficiently or in which way to
process user input. When code is revisited during mainte-
nance, the underlying decisions need to be understood and
possibly adjusted to the current situation. Common doc-
umentation approaches like JavaDoc neither cover knowl-
edge related to decisions explicitly, nor are they integrated
closely with knowledge management. In consequence, de-
cision knowledge is rarely documented and therefore inac-
cessible, especially when developers have left the team. So,
effective maintenance is hindered. We have developed an
annotation model for decision knowledge and integrated it
with the knowledge management tool UNICASE. The ap-
proach enables developers to document decisions within
code without tool switches to lower their documentation ef-
fort. Afterwards, maintainers can exploit the embedded de-
cision knowledge and follow links to external knowledge.
This paper presents the approach and evaluation results of
a first case study, which indicate its practicability.

1 Introduction

During the implementation of software, developers make
many decisions, e.g. on how to implement an algorithm
most efficiently or in which way to process user input. This
means to solve a decision problem, which comprises a set
of alternatives and criteria to compare them [16]. A com-
parison of alternatives, like using an external library instead
of programming an algorithm, can be made by considering
expert knowledge, personal experiences and the context of
the decision. So, a complex and large amount of knowledge
is required to understand a decision problem in retrospect.
We will refer to this knowledge as decision knowledge.

Over time, decision knowledge can erode easily [12]. As
a result, most information needs of developers towards im-

plementation decisions cannot be satisfied sufficiently. This
is shown in a study of Ko et al. at Mircosoft with 17 soft-
ware developer teams [13]. For instance, the question “Why
was the code implemented this way?” could not be an-
swered in 44% of the cases. The major reasons are that
decisions either are documented within unstructured inline
comments, are not documented at all or have to be inferred
from external documents without links to code [15]. These
reasons imply three requirements our approach has to fulfill.

First, implementation decision are difficult to understand
in retrospect, when no documentation structures are defined
and unstructured inline comments are used. So, defined
structures for decision documentation are required. Even
frameworks like JavaDoc only provide limited capabilities
for documenting decisions, as they focus on describing what
was implemented, but not on the underlying decisions. But
a defined documentation template for decisions often re-
quires more than the decision knowledge, which is currently
present. In consequence, a structured, but incremental cap-
ture of decision knowledge is required (requirement R1).
Second, implementation decisions may concern code parts
of different granularity levels, such as the usage of a particu-
lar operation or the purpose of an entire class. If developers
cannot document decisions directly within the code, they
either do not document decisions at all or have to interrupt
their current implementation task and change to some ex-
ternal documentation tool. Therefore, decision knowledge
should be embedded within the code for different levels of
code granularity (requirement R2). Third, when decision
knowledge is not linked to external documents like require-
ments or design diagrams, such decision-related external
knowledge cannot be exploited easily. This again can cause
high efforts and thereby hinders the assessment of imple-
mentation decisions by developers during system mainte-
nance. Therefore, decision knowledge should be linked to
related external knowledge within code (requirement R3).

The contribution of this paper is an approach, which ad-
heres to these requirements. First, we propose a documen-
tation approach based on code annotations, which is inte-

152

grated with knowledge management. Therefore, we derive
appropriate annotations for decision knowledge from an ex-
isting knowledge model for decisions, and implement these
annotations in Eclipse. The set of annotations covers many
elements of decision knowledge and can be used in an incre-
mental way without a static template. Second, we integrate
our approach with the model-based knowledge manage-
ment tool UNICASE [3]. This allows for links between an-
notations and external knowledge within UNICASE. Over-
all, our approach supports decision documentation within
code for developers and makes decision knowledge explicit
and exploitable during maintenance.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces background information and discusses re-
lated work. Section 3 describes our approach with a run-
ning example. In Section 4, we present results for a first
evaluation of our approach. We summarize our insights in
Section 5 and describe directions for future work.

2 Background and Related Work

In this section, we define decision knowledge in detail
and introduce the knowledge management tool UNICASE.
Then, we give a brief overview of existing annotation ap-
proaches for decision knowledge in code.

Decision Knowledge As defined in Section 1, Decision
knowledge addresses all information required to understand
a given decision problem with its context and rationale jus-
tifying the decision. Decision problems comprise a set of
alternatives, which are compared by different criteria [16].
In practice, these criteria and the resulting rationale for the
decision depend on various context aspects. For instance,
constraints brought up by former design decisions or as-
sumptions on the environment of the system shape deci-
sions. Moreover, rationale for decisions might be influenced
by time pressure in the project or personal experiences of
developers [19]. As we have described in [17], many mod-
els exist that cover parts of this knowledge for different ac-
tivities, for example in requirements engineering or design.
However, none of these models is addressing implementa-
tion decisions, they do not support an incremental documen-
tation and have only limited support for pre-defined links.

Due to these shortcomings, we decided to use a flexi-
ble documentation model as presented in [11]. It consists
of a set of different decision knowledge elements, which
may be aggregated for a decision incrementally over time
by different developers. The model is depicted in Figure 1.
The basic element is the Decision, which contains all related
decision knowledge elements for one decision as Decision-
Components. Amongst others, DecisionComponents can be
refined to a decision problem description as an Issue, to con-
text information like an Assumption, to a solution descrip-

External Knowledge

(e.g. Use Case, UML diagram)

Decision

Problem Solution Context Rationale

Contains

Contains

Issue

Goal

Alternative

Claim

Assumption

Constraint

Argument

Assessment

Identified byDecisionComponent

Attached to

Person

Role

Has

Taken by

Concerns

Implication

Figure 1. Documentation Model for Decisions

tion as an Alternative, or to a description of a rationale as an
Argument. Decisions and their components can be linked to
external knowledge like requirements specifications or de-
sign diagrams.

Knowledge Management Tool UNICASE Our annota-
tion model is integrated with the model-based knowledge
management tool UNICASE [3]. UNICASE is an Eclipse
extension and provides an integrated model for system and
project knowledge [5]. UNICASE offers a generic support
for the collaborative editing of the underlying model ele-
ments based on the Eclipse Modeling Framework EMF [1]
and the model versioning system EMFStore [2]. Moreover,
it provides a variety of elements for documenting and struc-
turing external knowledge, like use cases, UML diagrams
or test protocols.

Existing Annotation Approaches In the last decades,
only a few approaches were developed to document deci-
sion knowledge explicitly within code. Typically, they fo-
cus on rationale. As one of the first approaches, Lougher
and Rodden introduced a system to annotate rationale in the
source code of software using comments [15]. Then, a doc-
umentation is generated as a network of linked hypertext
documents out of these comments. Whereas the approach
claims to use a markup language for comments, no concrete
proposals for well-defined structures for such a language
are made. Moreover, the system is not integrated with ex-
ternal knowledge sources. So, this approach does not sat-
isfy R1 and R3. Canfora et al. propose the “Cooperative
Maintenance Conceptual Model” (CM2) [7]. It also struc-
tures rationale knowledge as a network of linked comments
for analysis, design and implementation. Also for this ap-
proach well-defined structures for comments are missing.
Moreover, the links between analysis and design artifacts

153

with the comments are not specified in detail. In conse-
quence, also this approach does not fulfill R1 and R3. Burge
and Brown present the system “Software Engineering Us-
ing RATionale” (SEURAT), which is an Eclipse extension
based on an ontology for rationale knowledge [6]. It can
highlight existing rationale in the code via Eclipse markers
as well as infer unresolved issues of inconsistencies. But
the documentation of newly acquired rationale is not pos-
sible within the code, as the ontology has to be extended
externally. Also, links to external knowledge are limited, as
the approach focuses on linking rationale and code files. So,
R2 and R3 are not satisfied. Other approaches enable devel-
opers implicitly to exploit decision knowledge by creating
traceability links, e.g. between requirements and code. For
instance, the approach of Cleland-Huang et al. [8] traces
architectural significant requirements to code. This enables
developers to reflect that a part of code realizes the linked
requirements. However, such traceability links typically do
not support incremental modifications and are not embed-
ded within the code, so they do not fulfill R1 and R2. In
summary, to the best of our knowledge no current approach
realizes all three introduced requirements for decision doc-
umentation of implementation decisions.

3 Annotation Model for Decision Knowledge

Based on the documentation model for decision knowl-
edge, we derived one annotation for each decision knowl-
edge element and integrated the annotations with UNI-
CASE. This implementation of our approach is available
via an Eclipse update site [4]. In the following sections, we
introduce a running example and describe how our model
realizes the three requirements presented in Section1.

Running Example To explain our annotation model, we
will employ the decision on implementing a wizard instead
of a dialog as example. This is a typical decision point
when programming plug-ins for Eclipse. On the one hand,
a wizard provides multiple pages for a guided user interac-
tion, but typically requires multiple user actions for stepping
through the pages. Moreover, it often implies complex data
handling, when input checks for each page are performed.
On the other hand, a dialog only offers a single page, so that
a step-wise user interaction is not possible directly. How-
ever, a dialog typically requires less user actions, because it
just consists of one page. Depending on the actual decision
context, either a wizard or a dialog are more appropriate.
We will refer to this decision in the following sections and
enrich it with further information to demonstrate our ap-
proach.

Annotation Structure All annotations are mapped to a
corresponding decision knowledge element of the docu-

mentation model (cf. Figure 1). An annotation can be used
to either create a new decision knowledge element or link
to an existing one. Each annotation contains several inter-
nal attributes to deal with references to external knowledge
and persistent storage. The textual content that is to be doc-
umented by the annotation can be typed directly after the
annotation itself by the developer, as depicted in Figure 2
using our wizard example. We established two different
kinds of annotations with different functional complexity:
core annotations and augmented annotations.

Core annotations represent a decision knowledge ele-
ment in the documentation model, for instance an issue as
@Issue or an alternative as @Alternative. We cre-
ated one core annotation for each knowledge element given
by the documentation model. Augmented annotations rep-
resent one or more decision knowledge elements with pre-
defined attributes or relations. This is a shortcut for devel-
opers in practice to create decision knowledge elements by
patterns, so that the manual documentation effort can be re-
duced. For instance, @Contra can be used to create a new
argument as a child of the nearest DecisionComponent and
to link the argument to this component as an attacking argu-
ment. In our wizard example, the @Contra-annotation is
used to argue against the “dialog”-alternative (cf. Figure 2).

This structure of annotations suits an incremental and
flexible use. For instance, if a @Decision statement is al-
ready given, a developer can simply add another annotation
like @Alternative to document a newly arisen alterna-
tive during re-engineering for this decision. So, developers
can complete and update the given documentation in case
this decision knowledge is incomplete or outdated. Also,
they are not forced to document a pre-defined default set of
annotations for a decision. Our approach is extensible, as
developers can define their own customized augmented an-
notations. Overall, this enables a structured and incremental
documentation of decisions and thus fulfills R1.

Annotation Embedding To implement our annotation
model, we created a new annotation parser within Eclipse,
which makes the annotations available for use. Decision an-
notations can be used in any inline code comment, including
JavaDoc, to annotate class and method declarations as well
as any code part within the method body. All annotations
are written directly into the code file, so that their textual
contents are not lost when the code is stored in a code ver-
sioning system. Whenever a developer types an annotation,

// @Decision Implement input UI using a wizard
// @Issue Complex user input
// @Alternative Use a dialog
// @Contra Need for step-wise user guidance

Figure 2. Examples of Decision Annotations

154

options for creating or linking related decision knowledge
are displayed by hovering over the annotation. In addition,
our implementation in Eclipse allows to directly create new
knowledge elements as children of the nearest decision that
is found in the code before, as depicted in Figure 3. More-
over, developers can annotate elements of one decision in
different comments on different code parts, as long as no
other decision is inserted in between. This addresses the
problem of different code granularity levels and enables a
documentation of implementation decisions directly within
the code, so R2 is fulfilled.

Integration with Knowledge Management UNICASE
allows for relating decision knowledge elements with anno-
tations to ingrate them into knowledge management. This
integration requires that for each annotation in code a cor-
responding decision knowledge element in the manage-
ment tool is created or linked. In consequence, all de-
cision knowledge elements were added to the UNICASE
model. Then, any other UNICASE knowledge element can
be linked with the decision knowledge element correspond-
ing to the annotation. However, an explicit link is needed to
relate code annotations and decision knowledge elements
in UNICASE. In our model, this is done by the Annotation-
Link knowledge element as the parent knowledge element
for CoreAnnotation and AugmentedAnnotation, which all
three were added to the UNICASE model. The Annotation-
Link provides a relation to the decision knowledge element
and uses the ID of the Eclipse marker for linking to an anno-
tation. In addition, the current revision of the code file and
the decision knowledge element is stored. These revisions
are updated, whenever a change in code or knowledge man-
agement impacts an annotation. So, a collaborative, dis-
tributed usage of annotations is supported. This mapping is
depicted in Figure 4.

In our approach, developers are enabled to create, mod-
ify or delete both annotations and knowledge elements as
summarized in Table 1. For new annotations, developers
decide to either create a related decision element or link
the annotation to an existing one. Then, annotations can
be related to any further UNICASE elements representing
the related external knowledge. Modifying annotations re-
quires the corresponding decision elements to be updated,

Figure 3. Create Elements using Annotations

Repository of

version control

system (svn)

Knowledge

repository

(UNICASE)

Code file Annotation
Decision

element

UNICASE

elementLinked toContains

AnnotationLink element

Code revision,

Knowledge revision

Related to Related to

Figure 4. Relating Code Annotations and De-
cision Knowledge via AnnotationLink

whereas updates of decision elements in UNICASE may
also require an annotation update. Considering our wizard
example, a developer can document how the wizard class
was embedded in the existing design. When annotations or
their related decision elements are deleted, the related An-
notationLink is removed. If a deleted annotation was used
to create a decision element, this corresponding element is
also removed. If a decision knowledge element is updated
or deleted, the related annotations also have to be updated or
deleted within the code. However, this is currently not im-
plemented due to restrictions and missing functionality in
the employed Eclipse version 3.7. Through these actions,
our annotation model enables developers to link any ex-
ternal knowledge consistently with annotations and thereby
fulfills R3.

4 Evaluation

To investigate the practicability of our approach for other
developers, we performed a first case study with students.
We present its results in this section. However, this does not
show the practicability of our approach in industry.

Context We performed a case study within a practical
course for undergraduate students in computer science at
Heidelberg University. Within the course, 7 participating
students were grouped in two development teams in or-
der to realize a software development project with identical
project descriptions. Their task was to plan, implement and
document an Eclipse plugin. We acted as the “customer”

Table 1. Impact of Developer Actions

Action Performed on Annotations Performed on
UNICASE Elements

Create Create new decision knowledge
element or link existing one

No effect on annotation

Modify Update decision knowledge
element content, references,
AnnotationLink

Update annotation, An-
notationLink

Delete Delete decision knowledge ele-
ment, AnnotationLink

Delete annotation, An-
notationLink

155

in both projects and provided an initial set of requirements
as scenario descriptions, which were not changed during
the project. Both projects were divided into three sprints
lasted three weeks from mid February until the beginning
of March 2015. For both teams, an initial tutorial for UNI-
CASE and the code annotations was held to reduce the vari-
ability of competency concerning the annotations for the
students. In addition, we provided textual explanations on
how to use the code annotations to both teams. However,
there was no mandatory rule for the students to use the an-
notations during implementation in order to get a realistic
impression of the actual annotation usage. At the end of
each sprints, the teams held a presentation to report on their
current progress.

Research Questions and Method Our goal was to inves-
tigate the practicability of our approach referring to the re-
search question: Is the annotation model and its implemen-
tation practicable to document implementation decisions?
To evaluate this question, we build upon the Technology
Acceptance Model (TAM) [9] to explore the actual use of
our approach. TAM consists of three variables: Ease of use
describes the degree to which a person expects the approach
to be effortless, usefulness is defined as the subjective prob-
ability for a person to increase job or work performance
and intention to use determines a persons’ willingness to
use the approach in the future. We assessed these variables
with three anonymous questionnaires. Each questionnaire
belonged to one sprint. They were answered by the students
after each sprint presentation. We derived questions on us-
ing the annotations for each variable, as listed in Table 2.
All questions were formulated as statements with defined
answers in order to ensure the comparability of the students’
responses. With statement #1 and #2, we distributed our in-
vestigation of ease of use on the creation and usage of anno-
tations. Statement #3 and #4 address usefulness and inten-
tion of use for the entire approach. The answers represent a
six point Likert scale [14], as this is an established approach
in survey research. If the majority of subjects marks four or
higher on the scale, we consider a statement to be accepted.

Table 2. Questionnaire Statements

No. Statement Variable

#1 It was easy to create decision elements with
code annotations.

Ease of use

#2 It was easy to locate decision elements
within the Eclipse Code Editor.

Ease of use

#3 Code annotations have been useful for the
documentation of decisions.

Usefulness

#4 In the future I would use code annotations
again to document decisions.

Intention of use

Table 3. Questionnaire Results

Sp
ri

nt
no

.

St
at

em
en

tn
o.

St
ro

ng
ly

di
sa

gr
ee

D
is

ag
re

e

R
at

he
r

di
sa

gr
ee

R
at

he
r

ag
re

e

A
gr

ee

St
ro

ng
ly

ag
re

e

N
ot

us
ed

,n
o

an
sw

er

∑ D
is

ag
re

e,
A

gr
ee

A
cc

ep
te

d

1
#1 0 0 0 0 1 2 4 0 / 3 yes
#2 0 0 0 2 1 1 3 0 / 4 yes
#3 0 1 0 3 1 1 1 1 / 5 yes

2
#1 0 0 0 1 2 1 3 0 / 4 yes
#2 0 0 0 2 1 1 3 0 / 4 yes
#3 0 1 0 0 1 3 2 1 / 4 yes

3

#1 0 0 1 0 3 2 1 1 / 5 yes
#2 0 1 0 0 3 0 3 1 / 3 yes
#3 0 0 1 0 2 2 2 1 / 4 yes
#4 0 1 1 0 4 1 - 2 / 5 yes

Note, that only questionnaire 3 contained statement #4, as
it addresses the overall experience with annotations during
all sprints. For this statement, the “not used”-answer was
not given. As the number of students does not permit to
achieve statistical evidence, we also asked for rationale and
comments in general and for each statement. This allowed
us to collect as much individual feedback as possible.

Results The results from all questionnaires are presented
in Table 3. Over time, more students used the code anno-
tations, so that the sum of “Not used, no answer”-results
slightly declines in sprint 3. Whereas the high number of
”Not used, no answer”-answers especially in the first sprint
provides only a limited support for the statements, no state-
ment has to be rejected according to the number of rejecting
answers. In consequence, this indicates that our approach is
practicable for documenting implementation decisions with
annotations. Multiple students pointed out in their feed-
back, that the approach was very useful to document deci-
sions within the code in order to remember and reflect them.
However, there was also a rejecting answer in the first two
questionnaires concerning the usefulness of the annotations
and several rejecting answers in the last questionnaire. This
might be due to some errors in the integration of annotations
and the code versioning system, which caused decisions to
be represented at incorrect locations within the code. These
errors partly are related to the employed Eclipse version 3.7
and were not entirely fixed during the course. Also, af-
ter trying our approach some students made proposals for
functionality enhancements. For instance, they proposed to
add keywords to annotations in order to create references to
other decisions when typing the annotation.

Threats to Validity According to Runeson et al. [18],
four different types of threats to validity have to be con-

156

sidered for our study. Concerning the internal validity, the
students’ knowledge was varying and they were not ex-
perienced in software engineering. To address this factor,
we provided a tutorial for our approach and grouped the
teams according to the students’ subjective experience lev-
els. However, missing experience could not be balanced
completely. Concerning the external validity, the develop-
ment projects had a rather small size regarding time, re-
quirements, and team size. So, the evaluation of the useful-
ness of our approach might be affected. In addition, the re-
sults for the investigated student projects are incomparable
to industry projects due to different project settings. How-
ever, Eclipse is a common tool in industry and also UNI-
CASE has been used in an industry setting [10]. So, we
believe that the usage through the students gives a first in-
dication that our approach is useful in practice. Concerning
construct validity, the questionnaires could have measured
something different than TAM, as they were not evaluated
prior to the study. However, we used typical questions for
TAM. Reliability validity can be impacted by the fact, that
the students knew we were investigating decision annota-
tions. But this impact is unlikely to be high, as the investi-
gators were not involved in the students’ grading.

5 Conclusion and Future Work

This paper presented an approach to document imple-
mentation decisions using annotations in source code. The
approach supports the structured and incremental capture of
decisions within code without switching to a documentation
tool. Moreover, external knowledge from knowledge man-
agement tools can be linked to annotated decisions. To the
best of our knowledge no other approach addresses all of
these requirements. The approach consists of an annotation
model and is integrated with the knowledge management
tool UNICASE. Evaluation results of a first case study were
presented, which indicate the practicability of our approach.

In our future work, we will extend and improve our im-
plementation of the annotation model. For instance, bugs
with the integration of the code versioning system in the
current implementation should be fixed and more code ver-
sioning systems (e.g., git) should be integrated. Moreover,
we want to realize the functionality improvements acquired
in the case study. Augmented annotations in our model
could be extended, so that they can handle keywords as ref-
erences on former or similar decisions. We also plan to ex-
ecute further case studies in advanced practical courses and
industry to overcome the shortcomings of the current study.

Acknowledgement This work was partially supported by the DFG
(German Research Foundation) under the Priority Programme SPP1593:
Design For Future — Managed Software Evolution. We thank all students
participating in our case study.

References

[1] EMF. http://eclipse.org/modeling/emf/ (05-2015).
[2] EMFStore. http://eclipse.org/emfstore/ (05-2015).
[3] UNICASE. http://unicase.org/ (05-2015).
[4] Update Site for Decision Annotations. http://svn.ifi.uni-

heidelberg.de/unicase/0.5.2/ures/decdoc-features/ (05-2015).
[5] B. Bruegge, O. Creighton, J. Helming, and M. Koegel. Uni-

case - An Ecosystem for Unified Software Engineering Re-
search Tools. In International Conference on Global Soft-
ware Engineering, pages 1–6. IEEE, 2008.

[6] J. E. Burge and D. C. Brown. Software Engineering Using
RATionale. Journal of Systems and Software, 81(3):395–413,
2008.

[7] G. Canfora, G. Casazza, and A. De Lucia. A Design Ratio-
nale Based Environment for Cooperative Maintenance. In-
ternational Journal of Software Engineering and Knowledge
Engineering, 10(5):627–645, 2000.

[8] J. Cleland-Huang, M. Mirakhorli, A. Czauderna, and
M. Wieloch. Decision-Centric Traceability of Architectural
Concerns. In International Workshop on Traceability in
Emerging Forms of Software Engineering, pages 5 – 11.
IEEE, 2013.

[9] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw. User Ac-
ceptance of Computer Technology: A Comparison of Two
Theoretical Models. Management Science, 35(8):982 – 1002,
1989.

[10] J. Helming, J. David, M. Koegel, and H. Naughton. Inte-
grating System Modeling with Project Management - A Case
Study. In 33rd Annual IEEE International Computer Soft-
ware and Applications Conference, pages 571–578. IEEE,
2009.

[11] T.-M. Hesse and B. Paech. Supporting the Collaborative
Development of Requirements and Architecture Documenta-
tion. In 3rd Int. Workshop on the Twin Peaks of Requirements
and Architecture at RE2013, pages 22 – 26. IEEE, 2013.

[12] A. Jansen and J. Bosch. Software Architecture as a Set of
Architectural Design Decisions. In 5th Working IEEE/IFIP
Conference on Software Architecture (WICSA’05), pages
109–120. IEEE, 2005.

[13] A. J. Ko, R. DeLine, and G. Venolia. Information Needs in
Collocated Software Development Teams. In 29th Interna-
tional Conference on Software Engineering (ICSE’07), pages
344–353. IEEE, 2007.

[14] R. Likert. A Technique for the Measurement of Attitudes.
Archives of Psychology, 22(140):1–55, 1932.

[15] R. Lougher and T. Rodden. Supporting Long-term Collab-
oration in Software Maintenance. In Conference on Orga-
nizational Computing Systems - COCS ’93, pages 228–238.
ACM Press, 1993.

[16] T. Ngo and G. Ruhe. Decision Support in Requirements En-
gineering. In Engineering and Managing Software Require-
ments, pages 267–286. Springer, 2005.

[17] B. Paech, A. Delater, and T.-M. Hesse. Integrating Project
and System Knowledge Management. In G. Ruhe and
C. Wohlin, editors, Software Project Management in a
Changing World, pages 161–198. Springer, 2014.

[18] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case Study
Research in Software Engineering. Guidelines and Examples.
Wiley, 1st edition, 2012.

[19] C. Zannier, M. Chiasson, and F. Maurer. A model of design
decision making based on empirical results of interviews with
software designers. Information and Software Technology,
49(6):637–653, 2007.

157

An Evaluation Study of Architectural Design Decision Paradigms
in Global Software Development

Meiru Che, Dewayne E. Perry
Department of Electrical & Computer Engineering

The University of Texas at Austin, Austin, Texas, USA
meiruche@utexas.edu, perry@mail.utexas.edu

Abstract—Global software development (GSD) is considered
as the coordinated activities of software development that are
geographically and temporally distributed. The management
of architectural knowledge, specifically, architectural design
decisions (ADDs), becomes important in GSD due to the
geographical, temporal, and cultural challenges in global envi-
ronments. Based on our previous work on ADD management
in localized software development (LSD), we present five ADD
paradigms used for GSD projects with different organizational
structures. We also investigate the benefits and the challenges
of the ADD paradigms by conducting an evaluation of the
paradigms using extensive archived semi-structured interview
data from industrial GSD projects. We aim to provide a
fundamental framework for managing ADD documentation
and evolution in GSD, as well as offer useful insights into
managing architectural knowledge in a global setting.

Keywords-architectural design decisions; global software de-
velopment; documentation; evolution

I. INTRODUCTION

Global software development (GSD) is an increasing fo-
cus in the field of software engineering. It can be considered
as the coordinated activities of software development that
are not localized and centralized but geographically and
temporally distributed [12]. Little attention has been paid
to software architecting processes and software architectural
knowledge management in the context of GSD. Similar
to localized software projects, software architecting and
architectural knowledge are important to support design-
ing, developing, testing, and evolving software. We note,
however, that in the global development of large complex
systems, architecture plays an even more critical role in
the structure of the project [11]. Therefore, managing and
coordinating architectural knowledge such as architectural
design decisions (ADDs) is a significant and also relatively
new research problem in the context of GSD.

In our previous work on ADD management, we had
an overall goal of providing a systematic approach that
supports ADD documentation and evolution in a localized
software development (LSD) context. Based on this, in this
paper, we present and discuss five typical ADD management
paradigms for global software projects, and we also conduct
an evaluation on these paradigms using archived semi-
structured interview data from industrial GSD projects to

investigate the benefits and the challenges of each paradigm
in the GSD contexts. Since little work has been done on
ADD documentation and evolution in GSD research and
practice, we aim to provide a fundamental framework for
managing ADD documentation and evolution in a global
setting, and also provide better insights into architectural
knowledge management for researchers and practitioners in
GSD contexts in the field of software architecture.

To the best of our knowledge, our study is the first to
provide ADD management paradigms in GSD projects and
to support architectural knowledge management in global
settings. Our study provides evidence that managing ADDs
in the GSD contexts reduces the complexity of coordination
and integration among multiple distributed sites, decreases
misunderstanding among different people, and also offers
useful documentation for project planning and other man-
agement policies. Our evaluation is also the first industrial
investigation into the benefits and the challenges of global
ADD management in practice.

II. BACKGROUND: ADD MANAGEMENT IN LSD

In order to capture the ADD set, we proposed the Triple
View Model (TVM) to clarify the notion of ADDs and to
cover key features in an architecting process [3]. The TVM
is defined by three views: the element view, the constraint
view, and the intent view. This is analogous to Perry/Wolf
model’s elements, form, and rationale but with expanded
content and specific representations [18]. Each view in the
TVM is a subset of ADDs, and the three views together
constitute an entire ADD set.

Based on the TVM, we proposed the scenario-based ADD
documentation and evolution method (SceMethod) [3], and
we specified the element view, constraint view, and intent
view through end-user scenarios, which are represented by
message sequence charts (MSCs) [19]. By documenting
all the possible ADDs and evolving these decisions with
changing requirements, the SceMethod effectively helps us
to make architectural knowledge explicit and to reduce
architectural knowledge evaporation. Basically, we have four
steps in the SceMethod to derive ADDs in a software project.
For the sake of brevity, we will not discuss the detailed
process of each step. We have the full illustration in [4].

(DOI reference number: 10.18293/SEKE2015-215)

158

Figure 1. Product-based Paradigm in GSD (for network product)

Figure 2. Product-based Paradigm in GSD (for single product)

III. ADD MANAGEMENT PARADIGMS IN GSD
In order to support ADD management in GSD projects,

we proposed three strategies for managing ADDs in a
distributed context, and discussed how distributed sites co-
ordinate with each other to share and maintain consistent
architectural knowledge. The three strategies for multi-site
ADD management are federated strategy, client-server strat-
egy, and incremental strategy respectively [5].

Given the foregoing discussion, we develop and discuss
the following five paradigms for global software projects.
Each paradigm adopts one strategy and is applied to one of
the different organizational structures.

1) Product-based Paradigm (Product-based Structure /
Federated Strategy): We consider two cases for product-
base paradigm, which are shown in Fig. 1 and Fig. 2.

In Fig. 1, the global organization works on a network
product (such as the case in our evaluation in the next
section), and each individual site is responsible for one indi-
vidual/dependent product. In Fig. 2, the global organization
works on a single product, then the product is decomposed
into components and the different components are allocated
to distributed sites.

We adopt the federated strategy to manage ADDs in the
GSD projects with product-based structures. As shown in
Fig. 1 and Fig. 2, each site manages ADD documentation
and ADD evolution locally according to the TVM and the
SceMethod. In addition, one of the global sites is selected
as the headquarters and is to set up a central repository for
recording and storing architectural decisions, which enables
all the geographically distributed sites to share ADDs in
the global context. These multiple sites have the access to
the central repository, so that they can check in their local
ADDs to the repository, read ADDs come from other sites,
and even reuse ADDs from other sites when necessary.

Figure 3. Process-based Paradigm in GSD

The headquarters with the central repository coordinates
architectural knowledge in the repository and keep them
consistent without conflicts. During the evolutionary process,
the evolved ADDs from each site are also transferred to the
central repository.

2) Process-based Paradigm (Process-based Structure /
Client-Server Strategy): For the process-based structures
in GSD, the architecting process mainly occurs in the
architecture phase, and all the other subsequent development
phases are considered as the clients who access the ADDs
derived in the architecture phase. Therefore, the client-server
strategy provides us with suitable support for GSD projects
with process-based structures.

In Fig. 3, we note that the architecting process is con-
ducted in the site with architecture phase, relying on our
TVM and SceMethod to derive the typical ADD set. More-
over, a repository is set up in the same site to manage
architectural knowledge documentation and evolution. This
repository is also regarded as a central repository among
the global sites, and all the other sites have access to the
repository for sharing and reusing ADDs in their specific
development phases. In some cases, the subsequent devel-
opment phases, such as design phase, may also come up
with new architectural decisions as the process proceeds.
However, we do not deal with this kind of exceptions
for now, but only explore the general paradigms that are
normally used in GSD.

3) Release-based Paradigm (Release-based Structure /
Incremental Strategy): The last two paradigms are both for
GSD projects with release-based structures. We also discuss
two formats in the release-based structures. One is for core-
customized releases (which is the case in our evaluation in
the next section), and the other is for incremental releases.
Since different product releases are allocated to different
sites, it is obvious that in the release-based paradigm each
site derives its ADD set locally, and maintains ADD docu-
mentation and evolution in its local repository.

Figure 4 and Figure 5 show the ADD paradigms for
the global projects with release-based structures. In Fig.
4, we can see that the ADDs from the core site are
transferred to the customized sites. Besides combining the
ADDs from the core site, each customized site has its local
ADD management. Similarly, as illustrated in Fig. 5, each
repository plays an important role in establishing a bridge
to transfer architectural knowledge, which complies with

159

Figure 4. Release-based Paradigm in GSD (for core-customized releases)

Figure 5. Release-based Paradigm in GSD (for incremental releases)

the mechanism in the incremental strategy. In the release-
based structure, the core-customized releases or the multiple
releases contain similar or even the same functionalities and
product features, which implies that the ADDs derived from
these different releases may have similarities as well. By
adopting the incremental strategy in these two paradigms,
each repository can serve as a reused ADD pool, and it is
easy to combine, reuse, and modify ADDs.

IV. EVALUATION

In order to compare the ADD paradigms and evaluate
whether they will bring benefits or introduce more chal-
lenges into global software projects, we investigate the
aforementioned paradigms using extensive archived semi-
structured interview data from Lucent Technologies [11], a
telecommunications systems company with a number of ge-
ographically separated software projects. In our evaluation,
we discuss the global projects in the following three aspects:
degree of autonomy, resource requirement, and coordination
complexity, which are the three factors largely influenced by
the global settings.

A. Research Questions

We investigate the ADD paradigms by considering the
following research questions:
RQ1: What are the benefits of each ADD paradigm regard-
ing the aspects of degree of autonomy, resource requirement,

and coordination complexity in different GSD organizational
structures?
RQ2: What are the challenges of each ADD paradigm
regarding the aspects of degree of autonomy, resource re-
quirement, and coordination complexity in different GSD
organizational structures?
RQ3: How do the intent-related decisions and the evolu-
tionary history of ADDs improve architectural knowledge
management and project management in GSD projects?

B. Overview of the GSD projects
Twenty-seven interviews were conducted in six different

organizations throughout Lucent Technologies. The inter-
views provided us with information about the project man-
agement and project evolution, as well as the distribution of
work, and organizational and development situations.

We plan to look into the interview data from four orga-
nizations among the total ones. They respectively have dif-
ferent organizational structures. Each organization is briefly
described here [11]:
Org A produces a series of smaller products that are mar-
keted together. Each product is developed by a single site,
and all the different sites jointly provide a network product,
including a manager component that ensures that all the
others work together.
Org B and Org C build a very large telecommunications
product together. They broke up their work into several
process steps, and these steps are then used as handoffs
among various locations.
Org D has numerous sites. They produce software that is
used for monitoring and managing networks. The basic prod-
uct is built in USA, and the additional work for deliveries
to particular customers is performed in Europe.

C. Analysis
To examine whether the ADD paradigms for GSD projects

have visible benefits, or even bring in new challenges,
we analyze the interview data from the four organizations
above. We identify the characteristics of degree of autonomy,
resource requirement, and coordination complexity for each
organization, in order to obtain deep insights on the influence
of ADD paradigms. We present our analysis in Table I.

As shown in Table I, we can see that in each organization,
the interviews are conducted with several different roles
in the software projects in order to provide GSD projects
information from various points of view. Based on the
organizational structures, we respectively adopt different
ADD paradigms in each organization. Basically, Table I
summarizes the organizations that we investigated from three
aspects, which helps us understand how each ADD paradigm
works in the corresponding organization.

Org A has a high degree of autonomy, since each
site works on an independent products/components. There
are well defined interfaces and component functionalities

160

Table I
THE ANALYSIS AND COMPARISON OF THE GSD PROJECTS

Org A Org B, Org C Org D

Role of Participants

Project Manager;
Department Head;
Software Developer;
Tester;
Software Architect

In Org B:
Senior Software Developer;
Technical Manager; Quality Manager;
Director
In Org C:
Assistant Manager; Development Head;
Software Developer

Technical Manager;
Developer;
Assistant Architect

Organizational Structure Product-based Structure Process-based Structure Release-based Structure

Paradigm Product-based Paradigm
(for network product) Process-based Paradigm Release-based Paradigm (for incremental releases)

Strategy Federated Strategy Client-Server Strategy Incremental Strategy

Degree of Autonomy

Needs network level testing;
Has a coordinator for each release;
Each site has a very close relation
with the element manager;
Needs lots of integration testing

The work in one site depends on that in
another site;
Needs to know the status of each site;
Reports issues to other sites;
Keeps consistent with requirements;
A very clear agreement on handoff policy

A hybrid composition of component separation
and process step;
Core codes should be done before the customization;
Needs to contact with customers;
Needs to gather requirement for customization

Resource Requirement

Integration phase needs a
lot of people;
Every site needs experts;
A defined process;
Training & Tools

A well-defined software process;
Defines the interface between sites;
A documentation platform;
Product architecture;
Experts on each site;
A stable plan on handoff policy and
development process

Training;
Documentation system;
Expertise at custom site;
Agreed plan for handoff

Coordination Complexity

Coordinates the combination;
Defines interface across sites;
Shares documents among sites;
Phones & Emails & Meetings;
Travelling

Phones & Emails & Meetings;
Travelling;
Different languages and time zones;
Web is heavily used

Coordination with customers;
Negotiations between customization people and
core code people;
Different languages, cultures, and time zones;
Phones & Emails;
Continuous Communication among different sites

Summary
High degree of autonomy;
Normal resource requirement;
High coordination complexity

Low degree of autonomy;
High resource requirement;
Normal coordination complexity

Normal degree of autonomy;
Normal resource requirement;
High coordination complexity

that contribute to the high autonomy. However, they do
need to coordinate features across all the individual prod-
ucts/components and this need of being consistent on fea-
tures does introduce a high degree of coordination com-
plexity, for they need to coordinate when integrating the
products/components to make sure everything works con-
sistently. The following quotes show a few examples of the
high autonomy and coordination in Org A.
“We are doing the testing of the element manager in combination
with all the different network elements.”
“Make sure the network management can manage the network
elements and they also interwork.”
“What we will do is try to combine all those products together in
a single network.”

As for Org B and Org C, they have multiple sites with
different development phases of the project, and the work
in one site depends on that in another site. Thus the main
challenges for these two organizations are the high depen-
dency between sites and the agreed handoff plan describing
the points on what is to be handed off, and how and when to
do so. In our investigation, we found that Org B and Org C
have low degree of autonomy due to the dependency, as well
as high resource requirement especially for a well-defined
software process, the interfaces between sites, and a clear
handoff plan. The following quotes describe the responses
from different interviewees about their work.
“One feature was developed here in X and the other one in Y and
I could say that we could not test our feature if we didn’t have
their feature.”

“Well what we needed to know was if the planning that they had
in X was just a little bit in front of our planning since that we
didn’t have to lose time because we just had to wait for them to
finish.”
“Here I have sort of a pretty well-defined software process.”

Org D has the release-based structure, and it contains one
site responsible for the core code, as well as all the other
sites for the custom codes. Basically, the customization site
obtains the core code from the core site, and customizes the
code according to the requirements from local customers.
From our investigation on the interview results, Org D
normally requires high coordination, since there are much
negotiation between the customization site and core site, as
well as coordinations with various customers. We can see
more examples from the interview.
“once the allocation has been made of where different processes
are going to be developed, there is a need for continuous commu-
nication coordination.”
“there is much negotiation between customization people and the
core code people, but what most of the time happens then is that
an expert from our site takes a look at it.”

D. Results
In this section, we look into what kinds of benefits and

challenges will be brought in when adopting the ADD
paradigms in these organizations with different structures,
and answer the research questions.
RQ1: What are the benefits of each ADD paradigm regarding
the aspects of degree of autonomy, resource requirement,

161

and coordination complexity in different GSD organizational
structures?

We adopt the product-based paradigm in Org A. In this
paradigm, each site manages its ADDs locally, and the
multiple sites share their ADDs in a central repository.
This enables us to keep architectural knowledge consistent
among different sites, and decreases the resources which
are used for product training and documentation. Most
importantly, the explicit architectural knowledge provides
us with more detailed and clearer architecture issues and
specifications, which reduces the complexity of coordination
and integration among different sites.

The main benefit provided by the process-based paradigm
for Org B and Org C is that it is easier to establish a well-
defined architecture and software process for the organi-
zation with process-based structure. Moreover, the ADDs
capture key constraint decisions, which leads to a clear
and consistent agreement on the handoff specifications. The
recording and sharing of ADDs largely decreases the cost
of resource requirement in the global organizations, as well
as the issues in the dependency among sites.

Similarly, Org D with release-based paradigm for the
ADD management has high coordination complexity. How-
ever, the ADDs can be kept up-to-date and consistent
with changing requirements from customers by using our
TVM and SceMethod, which provides the core site and the
customization sites with consistent project information, and
decreases the negotiation between them. Moreover, ADDs
offer a agreed plan for handoff policy used between the core
site and the customization sites.

Overall, we find that ADD paradigms make ADDs ex-
plicit, and the pre-written architectural knowledge decreases
misunderstanding in the global development context. In the
meanwhile, the communication among different sites is in
consistency from the beginning of the project, which reduces
the degree of intensive coordination across the multiple sites.
RQ2: What are the challenges of each ADD paradigm
regarding the aspects of degree of autonomy, resource re-
quirement, and coordination complexity in different GSD
organizational structures?

The main challenge when adopting the ADD paradigms
in these global organizations is that more resources are
required due to the ADD repositories. For Org A with the
product-based structure, the headquarters site has to set up
a repository for storing ADDs, and this would increase
the resource requirement but will not influence a lot. We
have the similar problem in Org B and Org C with the
process-based structure, i.e., one ADD repository needs to
be set up at the headquarters site. However, for Org D with
the release-based paradigm, each local site needs an ADD
repository, which takes up more requirements for hardware
and software resources in the entire global project. The other
challenge is that the access to ADD repositories among
multiple sites also increases the coordination complexity in

the global organization.
RQ3: How do the intent-related decisions and the evolu-
tionary history of ADDs improve architectural knowledge
management and project management in GSD projects?

In our TVM and SceMethod, we can document the intent-
related decisions and also update ADDs when software
requirements change. This is consistent when we investigate
the GSD project contexts. For the global settings, the ADD
paradigms collect the intent from stakeholders located at
different sites. During the process of integration and com-
bination, which happens a lot in Org A and Org D, the
stakeholders are more likely to have consistent architectural
knowledge. Therefore, misunderstanding and negotiation
among different sites and people are much decreased.

In addition, keeping the evolutionary history of ADDs
in the global organizations helps the project maintain the
documentation system in GSD settings and reduce the
inconsistent issues. Specifically, in Org D the evolutionary
history of ADDs provides us with effective way to track the
changes of the requirements, thus providing a better control
on the customized requirements from customers, as well as
the changing features under each release.

E. Threats to Validity
1) Construct validity: We select to evaluate the benefits

and the challenges on introducing the ADD paradigms into
the GSD projects. Specifically, we focus on how these
ADD paradigms affect the autonomy, the resource, and the
coordination of the GSD projects. We believe that what
we investigate in our evaluation are commonly used and
considered in the ADD management, and thus provide good
insights into the research and the practice of architectural
knowledge management.

2) Internal validity: The primary threat to the internal
validity of our evaluation is overlooking relevant problems in
the extensive interview data of the GSD projects. This could
affect our analysis on ADD management in global contexts.
We controlled for this threat by focusing carefully on the
specific organizational structures, i.e., the product-based,
process-based, and release-based structures, and narrowing
the interview data down to no more than five interviewees.

3) External validity: In our evaluation, we use the
archived interview data from software industry to investigate
the ADD paradigms. As opposed to formal experiments that
generally have an emphasis on controlling variables, our
evaluation analyzes the data through observations in an open
and unmoderated setting. Our evaluation on the archived data
may not generalize to other global projects. We controlled
for this threat by observing the three most typical aspects
that influence GSD projects, i.e., degree of autonomy, re-
source requirement, and coordination complexity.

V. RELATED WORK

The key concepts of the traditional view on software
architecture are components and connectors [18]. Currently,

162

software architecture is viewed as a set of ADDs [14],
[22]. The architectural decisions in the software architecting
process are increasingly focused on by researchers and
practitioners [10], [16], and ADDs are also considered to be
a part of architectural knowledge [17]. In [9], a systematic
review for architectural knowledge is presented, and differ-
ent definitions on architectural knowledge and how they are
relevant to each other are discussed as well.

Guidelines for documenting software architecture has
been provided in [6], [13], however, those documentation
approaches do not explicitly capture ADDs in the archi-
tecting process. Recently, many models and tools have
been proposed for capturing, managing, and sharing ADDs,
most of which are discussed and used within a localized
software development context [23], [15] and [21] . A detailed
comparison of these existing models and tools has been done
in [20]. However, the existing models are hard to support
architecture evolution very well [2].

With the increasing attention paid to GSD, ADD manage-
ment should be able to effectively applied in a GSD setting
as well. However, little work has be done on ADD manage-
ment in the GSD. A few of general architectural knowledge
management practices for GSD have been proposed and
evaluated in [7] and [8]. Furthermore, a literature review
has been done [1] to explore architectural knowledge in a
GSD context, and six architectural viewpoints are defined to
model GSD systems in [24].

Notably, ADDs have not been widely discussed and
supported in GSD, and the aforementioned approaches do
not address in detail how to capture, share, and evolve ADDs
in a global software project. Our current study in this paper
is significantly different from these prior studies by focusing
on the ADD management in the global practice and by
providing the specific ADD paradigms that can be adopted
in the global software industry.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we develop and discuss five typical ADD
management paradigms that can be widely used in GSD,
and provide a high-level methodology on how to manage
the documentation and the evolution of ADDs in the GSD
context. We also investigate the benefits and the challenges
of the ADD paradigms by conducting an evaluation on the
paradigms using extensive archived semi-structured inter-
view data from industrial GSD projects.

Our study is the first to provide ADD management
paradigms in GSD projects and to support architectural
knowledge management in global settings. In our future
work, we plan to implement the ADD paradigms by provid-
ing tool support, and apply them to more GSD projects to
investigate their impact on GSD contexts and environment.

REFERENCES
[1] N. Ali, S. Beecham, and I. Mistrı́k. Architectural knowledge

management in global software development: A review. In
ICGSE, pages 347–352, 2010.

[2] R. Capilla, F. Nava, and A. Tang. Attributes for characterizing
the evolution of architectural design decisions. Software
Evolvability, IEEE International Workshop on, 0:15–22, 2007.

[3] M. Che and D. E. Perry. Scenario-based architectural design
decisions documentation and evolution. In ECBS, pages 216–
225, 2011.

[4] M. Che and D. E. Perry. Managing architectural design
decisions documentation and evolution. International Journal
Of Computers, 6:137–148, 2012.

[5] M. Che and D. E. Perry. Exploring architectural design deci-
sion management paradigms for global software development.
In SEKE, pages 8–13, 2013.

[6] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers,
and R. Little. Documenting Software Architectures: Views and
Beyond. Pearson Education, 2002.

[7] V. Clerc. Towards architectural knowledge management
practices for global software development. In SHARK, pages
23–28, 2008.

[8] V. Clerc, P. Lago, and H. v. Vliet. The usefulness of
architectural knowledge management practices in gsd. In
ICGSE, pages 73–82, 2009.

[9] R. C. de Boer and R. Farenhorst. In search of ‘architectural
knowledge’. In SHARK, pages 71–78, 2008.

[10] J. C. Dueñas and R. Capilla. The decision view of software
architecture. In European Workshop on Software Architecture,
pages 222–230, 2005.

[11] R. E. Grinter, J. D. Herbsleb, and D. E. Perry. The geography
of coordination: dealing with distance in r&d work. In
GROUP, pages 306–315, 1999.

[12] J. D. Herbsleb. Global software engineering: The future of
socio-technical coordination. In FOSE, pages 188–198, 2007.

[13] C. Hofmeister, R. Nord, and D. Soni. Applied software
architecture. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[14] A. Jansen and J. Bosch. Software architecture as a set of
architectural design decisions. In WICSA, pages 109–120,
2005.

[15] A. Jansen, J. van der Ven, P. Avgeriou, and D. K. Hammer.
Tool support for architectural decisions. In WICSA, pages 4–,
2007.

[16] P. Kruchten, R. Capilla, and J. C. Dueñas. The decision view’s
role in software architecture practice. IEEE Softw., 26:36–42,
March 2009.

[17] P. Kruchten, P. Lago, and H. V. Vliet. Building up and
reasoning about architectural knowledge. In QOSA, pages
43–58, 2006.

[18] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. SIGSOFT Softw. Eng. Notes, 17:40–
52, October 1992.

[19] D. M. A. Reniers. Message sequence chart: Syntax and
semantics. Technical report, Faculty of Mathematics and
Computing, 1998.

[20] M. Shahin, P. Liang, and M.-R. Khayyambashi. Architectural
design decision: Existing models and tools. In WICSA/ECSA,
pages 293–296. IEEE, 2009.

[21] A. Tang, Y. Jin, and J. Han. A rationale-based architecture
model for design traceability and reasoning. J. Syst. Softw.,
80:918–934, June 2007.

[22] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software
Architecture: Foundations, Theory, and Practice. Wiley, 2009.

[23] J. Tyree and A. Akerman. Architecture decisions: Demysti-
fying architecture. IEEE Softw., 22:19–27, March 2005.

[24] B. M. Yildiz and B. Tekinerdogan. Architectural viewpoints
for global software development. In ICGSE, pages 9–16,
2011.163

DOI reference number: 10.18293/SEKE2015-226

Figure 1. The classification technique of the SAM framework

An approach for classifying design artifacts

Sébastien Adam, Ghizlane El Boussaidi, Alain Abran

Department of Software and IT engineering

École de technologie supérieure

 Montréal, Canada

Abstract—Software designers have to deal with a large number

of distinct software design artifacts (SDAs), including

requirements, patterns, and tactics. This paper proposes a

technique that systematizes the classification of SDAs, and a

classification scheme (CS) which organizes the SDAs into a

matrix, in a manner derived from the Zachman Framework

for enterprise architecture. An instantiation of this CS is a

traceability matrix called a software-structure map (SSM) that

records the SDAs and their relationships. The approach is

illustrated through the analysis of the Template Method (TM)

design pattern as an example of a SDA.

Keywords-software knowledge management, software

artifacts, multi-dimension analysis, decision support systems

I. INTRODUCTION

During the development of a software system, the
software designers deal with numerous software design
artifacts (SDAs) such as goals, concerns, requirements, and
design patterns. A SDA can be characterized using some
related SDAs and issues that may threaten the success of a
project. For instance, a design pattern [1] is a SDA that is
characterized by a rationale, a solution, some consequences,
and trade-offs. Somehow, the SDAs constitute the assets that
embody decisions and trade-offs applied during the project.
Several approaches propose a process or a technique aiming
at managing the software artifacts (e.g., [3, 7, 8]). These
approaches usually focus on a subset of the artifacts involved
in the development process and on a specific development
perspective. However, there is a lack of works that support a
methodical management of the SDAs and their relationships.

The SAM (Software Architecture Mapping) framework
[9] was proposed to manage the accumulated knowledge
related to software design in an integrated and systematic
manner. SAM enables to: 1) relate the SDAs to their factors
of influence; 2) offer support to use the relevant SDAs and to
appropriately solve their related issues; and 3) keep track of
the adopted arguments and resolved issues. The SAM
framework relies on a knowledge base that is populated by
creating a set of matrices called software structure maps
(SSMs). A SSM is a matrix that organizes software design
artifacts and their relations. It is built using a classification
scheme that is derived from the Zachman framework [8].

This paper presents the proposed classification technique
that systemizes the creation of the SSMs (see Figure 1). The
technique uses the classification scheme (CS) of the SAM
framework for classifying the SDAs according to their
descriptions in the literature – see Figure 2 [1. 2, 3, 10]. The
technique is illustrated through the analysis of the Template
Method (TM) design pattern as an example of a SDA.

The contributions of this paper are: 1) reusable
specifications of the SDAs and their relationships based on a
uniform SSM format; 2) a systematic technique for
extracting and structuring the SDAs using the SSMs; 3) a
flexible technique to transform textural descriptions to
networks of SDAs. This paper is organized as follows.
Section II presents an overview of the proposed classification
technique. Section III introduces a case study to illustrate the
classification technique. Section IV presents the related
works and section V presents conclusions and future works.

II. OVERVIEW OF THE CLASSIFICATION TECHNIQUE

Figure 1 presents the proposed classification technique
which aims at creating a SSM by extracting the verbs and
nouns for structuring the SDAs and relationships that
constitute the description of a style, a design pattern, or a
tactic. The resulting SSM is a matrix of traceability that
records design knowledge (DK) about the problem and
solution spaces of a software design. The SSMs should be
managed as part of the DK. A SSM captures DK about direct
or indirect relationships between SDAs; it supports analyzing
as presented in [9] how the SDAs impact the capacity of the
software design to satisfy targeted objectives.

164

Figure 2. The classification scheme of the SAM framework

Figure 3. The decision tree of the SAM framework

A. The tasks of the classification technique

Six tasks constitute the proposed classification technique:
extract verbs and nouns, identify SDAs and relationships,
classify the SDA, normalize the relationship, relate the
SDAs, and infer the SSM. The first and second tasks aim at
identifying the candidate SDAs and relationships from the
analysis of the description of a style, a design pattern, or a
tactic using the identification heuristics. Then, the third and
fourth tasks aim at classifying the SDAs using the decision
tree and the classification scheme, and formatting the
relationships using a list of formatted relationships. The fifth
and sixth tasks aim at relating the SDAs and inferring the
SSM by using the relationships and inference heuristics.

B. The proposed identification heuristics

For guiding the identification of the SDAs, we use in the
SAM framework a set of identification heuristics. We
consider that a SDA is: 1) less specific than implementation
artifacts, i.e. implementation may be selected, within a
particular technological context, to accomplish the intent of a
SDA; 2) more enduring than implementation artifacts, i.e. a
SDA should be described in a way that allows multiple
implementations; 3) typically discovered or abstracted from
practice and should have some correspondence with best
practices such as styles, design patterns, and tactics; 4)
coherent with more general or specific artifacts; 5) precise
enough to be capable of analysis; and 6) related to one or
more SDAs.

C. The proposed classification scheme

Figure 2 presents the proposed classification scheme
(CS) of the SAM framework. The CS organizes the SDAs
extracted from our analysis of the descriptions of styles,
design patterns, and tactics. The CS captures the SDAs about
the design problem and solution spaces, and about explicit or
implicit relationships between the SDAs. The CS captures
only the SDAs that influence the life cycle of a system.

The CS organizes the SDAs into a matrix that is based on
the Zachman Framework for enterprise architecture [8]. The
matrix classifies the SDAs according to their descriptions
and relationships, as described in [1, 2, 3]. More specifically,
the CS uses a matrix where the rows represent the activities
of the software design process and the columns, the
interrogatives (why, when, what, which, how, and where).
The outcomes of the following activities occupy the row
labels: select the objectives, identify the knowledge that has
been successful in achieving similar objectives, and define,
specify, describe, and evaluate the software architecture. The
problem space is split into the interrogatives why, when, and
what. The rationale (WHY issues) provides reasoning about
the problem. The context (WHEN issues) describes the
environment and hypotheses that influence the solution
space. The drivers (WHAT issues) define the problem. The
solution space is split into the interrogatives: which, how,
and where. The domain objects and architectural elements
have roles (WHICH issues) in realizing the solution. The
execution of their behaviors (HOW issues) at the assigned
locations (WHERE issues) shall satisfy the objectives for
which a SSM is done. The SDAs in the top row of Figure 2
define the problems and solutions from an organizational
perspective. The ones in the five lower rows do the same
from a design perspective. Each lower-row contains artifacts
for refining the interrogatives of the row that is above it,
from the general objectives to the specific system artifacts.

D. The proposed decision tree

We propose to use the decision tree in Figure 3 for
classifying the SDAs, and the following questions for
supporting the classification task. The questions begin with
the prefix “Does the SDA describes”. Each question relates
to one of the four main questions presented in the decision
tree: which interrogative, space, activity, and artifact best
render the meaning of the SDA in the context of a SSM?

165

- Which interrogative?

 - why: “… a reasoning for the SSM?”

 - when: “…a contextual information for the SSM?”

 - what: “… a target for a solution?”

 - which: “… the element of a solution?”

 - how: “… the behavior of an element?”

 - where: “… the allocation of an element?”

- Which space?

 - organizational: “… the organizational space? ”

 - design: “… the design space? ”

- Which activity?

- reusing knowledge: “… an information that is part

of the design knowledge base?”

- architecting software: “… an information about a

design fragment?”

- designing software: “… an information about a

design structure?”

- Which artifact?

 - use the SDAs’ descriptions

E. The proposed SDAs descriptions

For classifying an artifact, we propose to use the SDAs
described in Tables I to III. We extracted the proposed
SDAs’ descriptions from our review of the literature.
Because of the lack of space, we describe only some SDAs
that relate to the top four rows of the classification scheme.

TABLE I. THE DESCRIPTIONS OF SOME SDAS RELATED TO THE

WHY INTERROGATIVE

Why: These SDAs provide reasoning for the SSM

Architectural / Design concern: an area of interest specified with respect

to a goal in terms relevant for architecting / designing

Architectural rationale: a statement of reasons for a design fragment (e.g.,

isolate each layer from changes in other layers)

TABLE II. THE DESCRIPTIONS OF SOME SDAS RELATED TO THE

WHAT INTERROGATIVE

What: These SDAs provide the targets for the solution space

Architectural property: a condition about a property of the elements or
relations of a design fragment (e.g., performance)

Scenario: a description of how a software product should respond to a

stimulus

TABLE III. THE DESCRIPTIONS OF SOME SDAS RELATED TO THE

WHICH INTERROGATIVE

Which: These SDAs provide the elements of the solution space

Design pattern: a description of how the elements of a design fragment
relate to each other in order to address a design concern

Structural fragment: a set of elements and relationships of a design

fragment (e.g., instantiation of the template method)

F. The proposed relationships description format

We identified some relationships between the SDAs from
the literature [1, 2, 3, 4, 5, 6, 7, 10] – see Table IV. The SAM
framework proposes to format each relationship using a
unique identifier, a description of the relation, and the SDAs
between which the relationship applies, as example:

Identifier Description SDA-to-SDA

Generalize A SDA generalize another SDA Structure-to-Structure

TABLE IV. THE FORMATTED RELATIONSHIPS OF THE SAM

FRAMEWORK

Relationship Description

Mandatory A SDA requires the presence of another SDA

Optional A SDA optionally implies another SDA

Constraint A SDA constraints another SDA

Encapsulate A SDA encapsulates another SDA

Generalize A SDA generalizes another SDA

Specialize A SDA specializes another SDA

Realize A SDA realizes another SDA

G. The proposed SSM’s inference heuristics

Due to the lack of space, Table V presents only some of
the inference heuristics we propose for inferring a SSM using
the classified SDAs and the normalized relationships. These
inference heuristics aim at controlling the level of cohesion
between the SDAs of a SSM. Only one SDA drives the
cohesion of the SSM. All SDAs within a SSM shall be
cohesive with the driver SDA.

TABLE V. THE INFERENCE HEURISTICS FOR THE SDAS RELATED TO

THE WHY INTERROGATIVE

SDAs Inference heuristics

Architectural

concern, Design
concern

- Part of the design knowledge base

- Describe concerns for the SSM’s design space
- Influence all SDAs of a SSM’s design space

- Relate to a goal in the SSM

Architectural

rationale

- Set rationale for elements of a design fragment

- Relate to an architectural concern in the SSM

Design
rationale

- Set rationale for elements of a structure
- Relate to a design concern in the SSM

III. CASE STUDY - APPLYING THE CLASSIFICATION

TECHNIQUE

This section presents an overview of the case study
selected for applying the classification technique of the SAM
framework. We analyzed the descriptions of multiple
architectural tactics in [3], design patterns in [1], and
architectural style in [2] for creating their SSMs using the
proposed classification technique.

A. Mapping for the Template Method design pattern

Table VI presents the SSMs of the Template Method
(TM) design pattern described in [1]. The TM design pattern
is used for providing reusability and extensibility of
algorithms in object-oriented software. It aims to implement
the skeleton of an algorithm in a base class, and calls
primitive methods that subclasses override to provide
concrete behavior. The base class interface declares the
algorithm as a template method, which calls abstract
primitive methods that represent the algorithm’s variation
points. The subclasses implement the primitives to specialize
the algorithm. As a result, the algorithm’s structure is written
only once and indirectly specialized in subclasses, which
reduces duplication of code and enforces class interface
stability. Also, the template method allows the addition of
instrumentation in the base class, and lightens users' duty
since it is no longer required to call a primitive.

166

TABLE VI. THE SSM OF THE TEMPLATE METHOD DESIGN PATTERN

SDA Description

Concern Avoid code duplication

Concern Control subclasses extension

Concern Localize changes

Concern Prevention of ripple effect

Rationale Fix the steps of the algorithm and ordering

Rationale Let subclasses define the steps of the algorithm

Rationale Maintain the algorithm’s structure

Rationale Limit extension points

Rationale Provide default behavior

Rationale Control access to the operations

Situational f. Multiple kinds of primitive operations

Convention Naming convention

Symbol UML notation

Property Object-oriented paradigm

Property Object-oriented programming language

Property Reusability

Property Extensibility

Operational. Define an abstract base class

Operational. Define a template method

Operational. Define a concrete child class

Operational. Define hook operations

Viewpoint Class diagram

Viewpoint Sequence diagram

Pattern Template Method

Tactic Abstract Common Services

Fragment Class library

Structure Abstract class definition

Structure Concrete class definition

Behavior The TM controls the order of execution

Behavior The hook operations do nothing by default

IV. RELATED WORKS

To take full advantage of the accumulated design
knowledge, the designers need frameworks and tools not
only to manage this knowledge but also to relate it to the
decisions taken and artifacts produced during the design
activity. However, most of models, methods, and tools
provide limited views into this knowledge base [2, 5, 6, 7,
10]. Many approaches were proposed to support the design
process [3, 5, 6, 7], but few approaches support the designers
in managing and keeping track of the accumulated
knowledge during the design process. One of the most used
approaches is the Attribute-Driven Design method (ADD)
[3]. The focus of ADD is the process of architecting systems
in order to satisfy a set of quality attributes and to manage
tradeoffs between these attributes (quality dimension). Our
approach can be used to analyze and keep track of the
artifacts and knowledge produced by the ADD.

Many architectural styles and patterns have been
described and cataloged in the literature [1, 2, 3], but few
approaches support the designers in extracting the design
knowledge from textual descriptions. We believe that the
proposed classification technique can be used to
systematically analyze textual descriptions provided in the
literature, organize the design artifacts, and to explicitly
relate the artifacts used during the design process.

Finally, our work is closely related to Ovaska et al.’s
work [5]. They proposed an approach to fully integrate
quality requirements into the software design process. Their
approach allows the architect to manage and track the quality
attributes from the requirements specification to the
architecture design. This approach focuses on finding styles
and patterns using some quality attributes. While this is very
useful, an architect still needs to keep track of the rationale,
objectives and other constraints that led to choose these
quality attributes. Our framework can be useful to manage
these relationships into a SSM that relates in a finer-grained
manner the artifacts of the problem space to the ones of the
solution space, from the organizational goals to the specific
system artifacts. We believe a SSM is a valuable artifact for
providing an integrated view of the knowledge.

V. CONCLUSION

In this paper, we described a classification technique to
populate a design knowledge base by extracting the software
design artifacts and their relationships from the description
of a style, a design pattern, or a tactic. We applied the
classification technique for classifying the SDAs according
to their descriptions and relationships, as described in the
literature [1, 2, 3]. This work produced evidences that the
multi-dimensional analysis approach introduced in [9] is a
valuable step towards handling artifacts as an integrated set
of factors of influence. The proposed classification technique
can be customized to better support particular development
process and systems’ needs. In particular, the SAM
framework may be adapted to sustain different CS. In the
near future, we plan to propose a tool support and guidelines
to support the process of creating a SSM, eliciting related
arguments, and analyzing these arguments. The ultimate goal
of this work is to build a reference model of SDAs and
arguments linked formally and exploited by algorithms.

REFERENCE

[1] Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design Patterns:
Elements of Reusable Object-Oriented Software”, A.-Wesley, (1995)

[2] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.,
Nord, R., Stafford, J., “Documenting Software Architectures – Views
and Beyond”, Addison Wesley, Boston (2003)

[3] Bass, L., Clements, P., Kazman, R., “Software Architecture in
Practice”, Addison Wesley, Boston (2003)

[4] Kim, S., Kim, D.K., Lu, L., Park, S., “Quality‐ driven Architecture
Development Using Architectural Tactics”, Journal of Systems and
Software 82, pp. 1211-1231 (2009)

[5] Ovaska, E., Evesti, A., Henttonen, K., Palviainen, M., Aho, P.,
“Knowledge Based Quality-driven Architecture Design and
Evaluation”, Journal of Info. and Soft. Tech. 52, 577-601 (2010)

[6] Shahin, M., Liang, P., Khayyambashi, M.R., “Architectural Design
Decision: Existing Models and Tools”, In: WICSA/ECSA 2009,
IEEE, Cambridge, pp. 293-296 (2009)

[7] Parizi, R.M., Ghani, A., “Architectural Knowledge Sharing (AKS)
Approaches: a Survey Research”, Journal of Theoretical and Applied
Information Technology, 1224--1235 (2008)

[8] The Zachman Framework, http://zachman.com/about-the-zachman-
framework (2008)

[9] Adam, S., El-Boussaidi, G., "A multi-dimensional approach for
analyzing software artifacts", 25th SEKE, June 27-29, Boston (2013).

[10] Standard, I.: ISO/IEC 42010 Systems and Software Engineering -
Recommended Practice for Architectural Description of Software-
Intensive Systems. ISOIEC 42010, (2011)

167

http://zachman.com/about-the-zachman-framework
http://zachman.com/about-the-zachman-framework

DOI reference number: 10.18293/SEKE2015-102

A Novel Hybrid Approach for Diarrhea Prediction

Yongming Wang

Department of Computer Science & Technology

East China Normal University

Shanghai, China

ymwang819@gmail.com

Junzhong Gu

Department of Computer Science & Technology

East China Normal University

Shanghai, China

jzgu@ica.stc.sh.cn

Abstract—Accurate and reliable forecasts of diarrhea

incidences are necessary for the health authorities to ensure the

appropriate action for the control of the outbreak. In this paper,

a novel hybrid model known as EEMD-GRNN is proposed to

forecast the diarrhea incidences. The proposed approach first

uses Ensemble Empirical Mode Decomposition (EEMD), which

can adaptively decompose the complicated raw time series data

into a finite set of intrinsic mode functions (IMFs) and a residue,

which have simpler frequency components and higher

correlations. The IMF components and residue are than modeled

and forecasted using GRNN and the final prediction result can be

obtained by these prediction results using the principle of

ensemble. The proposed hybrid method is examined by

predicting the monthly diarrhea cases number of children and

adult located in Shanghai of China. The experimental results

indicate that the proposed EEMD-GRNN model provides more

accurate forecasts compared to the other ARIMA, single GRNN

models and hybrid model (EMD-GRNN). Overall, the proposed

approach was effective in improving the prediction accuracy.

Keywords—Diarrhea prediction; Ensemble empirical mode

decomposition; Generalized regression neural network; Hybrid

approach

I. INTRODUCTION

An accurate and timely diarrhea prediction is crucial for
predicting future health events or situations such as demands
for health services and healthcare needs. As a kind of common
and important infectious disease, diarrhea has a serious threat
to human health and leads to one billion disease episodes and
1.8 million deaths each year (WHO, 2008). Hence, a robust
prediction model for diarrhea facilitates preventive medicine
and health care intervention strategies, by pre-informing health
service providers to take appropriate mitigating actions to
minimize risks and manage demand [1].

Over the past couple of decades, there have been wide
attempts to capture the relationship between the available
information using some straightforward linear regression
assumptions, for example, the autoregressive integrated
moving average (ARIMA). However, currently there is no
evidence to support the assumption that the relationship
between the past and future of diarrhea is a perfectly linear one.
Many recent studies focus on the use of machine learning
techniques, such as artificial neural networks (ANNs), to build
a prediction model. Unlike traditional statistical models, ANNs
are data-driven models. They do not require strong model
assumptions and can map any nonlinear function without a

priori assumption about the properties of the data, even though
the underlying relationships are unknown or hard to describe.
Related works have shown that machine learning techniques
outperform many traditional models.

In this paper we develop predictors using generalized
regression neural networks (GRNNs) [2], a special type of
neural networks. GRNN has only a single design parameter and
is simple and fast in training. When using GRNN for diarrhea
prediction, the observed original values of prediction variables
are usually directly used for building prediction models.
However, many factors underlie the diarrhea such as seasonal
variations. Due to the complexity of the diarrhea incidence, it is
difficult to capture its non-stationary property and accurately
describe its moving tendency.

 Empirical Mode Decomposition (EMD) [3] is a kind of

adaptive signal decomposition technique using the Hilbert-

Huang transform and can be applied with nonlinear and non-

stationary time series. However, EMD suffers from an

intrinsic drawback-the frequent appearance of mode mixing.

Fortunately, there exists an improved method called Ensemble

EMD (EEMD) which makes up for the deficiency of EMD.

Different from other traditional decomposition methodologies

such as wavelet decomposition, EEMD is an empirical,

intuitive, direct and self-adaptive data processing method

created especially for non-linear and non-stationary signal

sequences. Therefore, the EEMD has been widely used in

many fields [4-6]. However, existing literatures regarding

diarrhea prediction have not adopted EEMD processes, and

this study will be to fill this gap.

In this paper, we introduce EEMD and GRNN to predict
the monthly number of diarrhea cases. A novel hybrid
prediction algorithm called EEMD-GRNN is proposed. The
proposed approach was compared with the EMD-GRNN,
single GRNN approaches and traditional time series models,
such as ARIMA, thus demonstrating that the proposed model is
substantially featured with an excellent prediction capacity.
Moreover, in order to evaluate the performance of the proposed
approach, the real world diarrhea datasets are used as an
illustrative example.

The rest of this paper is organized as follows. Section 2
reviews related methods used in this paper which are EEMD
and GRNN. The proposed model is described in Section 3.
Section 4 presents the experimental results and the

168

effectiveness of the proposed methodology is discussed.
Finally, Section 5 concludes the paper.

II. METHODOLOGY

A. Empirical Mode Decomposition

The basic idea of EMD is to identify the intrinsic
oscillatory modes and to decompose original time series data
into a finite and small number of oscillatory modes based on
the local characteristic time scale by itself [3]. The
decomposition is based on the following assumptions [6]: (1)
the signal has at least two extreme-one maximum and one
minimum; (2) the characteristic time scale is defined by the
time lapse between the extreme; and (3) if the data are totally
devoid of extreme but contain only inflection points, then they
can be differentiated one or more times to reveal the extreme.
Final results can be obtained by integration of the components.
With the assumptions of decomposition, an original data series
X(t) (t=1; 2,...,T) can be decomposed in terms of the following
sifting procedure. The detailed process of the EMD algorithm
is shown as follows [3, 14-16]:

Step 1: Identify local extreme in the data {x (t)}.

All the local maxima are connected by a cubic spline line
U(t), which forms the upper envelope of the data. Repeat the
same procedure for the local minima to produce the lower
envelope L (t). Both envelopes will cover all the data between

them. The mean of upper envelope and lower envelope m1(t) is

given by:

 2/)()()(1 tLtUtm   

Subtracting the running mean m1(t) from the original time

series x(t), we get the first component h1(t):

)()()(11 tmtxth  (2)

The resulting component h1(t) is an IMF if it is symmetric
and have all maxima positive and all minima negative. An
additional condition of intermittence can be imposed here to
sift out wave forms with certain range of intermittence for

physical consideration. If h1(t) is not an IMF, the sifting process

has to be repeated as many times as it is required to reduce the
extracted signal to an IMF. In the subsequent sifting process

steps, h1(t) is treated as the data to repeat steps mentioned

above:

)()()(11111 tmthth   

Again, if the function h11(t) does not yet satisfy criteria for
IMF, the sifting process continues up to k times until some
acceptable tolerance is reached:

)()()(1)1(11 tmthth kkk  
 

Step 2: If the resulting time series is an IMF, it is
designated as c1 = h1k(t). The first IMF is then subtracted from
the original data, and the difference r1 given by:

)()()(11 tctxtr   

 The residue r1(t) is taken as if it were the original data, and

we apply to it again the sifting process of Step 1.

Following the above procedures, we continue the process to
find more intrinsic modes ci until the last one. The final residue
will be a constant or a monotonic function which represents the
general trend of the time series. Finally we obtain:



)()()(

,)()(

11

1

1

trtctr

rtctx

in

n

n

i









  

 Where rn is a residue. Thus, residue rn (t) is the mean trend

of x(t). The IMFs={c1(t), c2(t), ..., cn(t)} include different

frequency bands ranging from high to low. The frequency
components contained in each frequency band are different and
they change with the variation of time series x(t), while rn(t)
represents the central tendency of time series x(t).

B. Ensemble Empirical Mode Decomposition

The EEMD [17] is the inheritor of the EMD. EEMD
defines the true IMF components as the mean of the
corresponding IMFs obtained via EMD over an ensemble of
trials and generated by adding different realizations of white
noise of finite variance to the original signal x[n]. The added
white noise can help extract the true IMFs, and can offset them
via ensemble averaging after serving their purpose [8].
Therefore, this can substantially reduce the chance of mode
mixing and represent a significant improvement over the
original EMD. The process of EEMD decomposition can be
demonstrated by the following steps:

1) Add a white noise series to the original time series

dataset;

2) Decomposition the data with added white noise into

IFMs using the EMD procedure;

3) Repeat the step 1 and 2 iteratively, but use different

white noise each time

4) Obtain the ensemble means of corresponding IMFs

as the final results.

C. Generalized Regression Neural Network

The GRNN [7] is a kind of radial basis function networks
which is based on a standard statistical technique called kernel
regression. A typical GRNN is organized using four layers,
namely the input layer, the pattern layer, the summation layer,
and the output layer. The hidden layer has radial basis neurons,
while neurons in the output layer have a linear transfer function.
A typical architecture of the GRNN is presented in Fig. 1.
Given a sufficient number of neurons, GRNN can approximate
a continuous function to an arbitrary accuracy [8].

Given m input-output pairs   1,  nYX and as the

training samples, assume the original design of GRNN, that is,
the number of hidden neurons is equal to the number of
training samples. For a desired estimate of system output
vectors Y, under the input vectors X, is achieved by a regression
calculation. The procedure of the GRNN model can be
represented as:

169

  










dXXYf

dXXYYf
XYEXY

),(

),(
/)(

 

Where X is a d-dimensional input vector, Y is the predicted
value of the GRNN model, E[Y/X] is the expected value of the
output Y, given the input vector X, f(Y,X) is the joint probability
density function of X and Y. When probability density function
adopt Gaussian function, the network output function of Y
given the vector X:
















n

i

i

n

i

ii

D

DY

XY

1

22

1

22

)2/exp(

)2/exp(

)(



  

Where
2

iD is defined as)()(2

i

T

ii XXXXD  , σ

denotes the smoothing parameter, X is the input variable of the
network, Xi is a specific training vector of the neuron i in the
pattern layer.

A good performance for GRNN method depends on
smoothing factor σ, which is very important in using GRNN
for prediction and determines the generalization capability of
the GRNN. The smoothing factor is only free (adaptive)
parameter, apart from the input and output layer, involved in
the designing of the network.

.

.

.
.

.

.

D

S

Input Layer Summation LayerPattern Layer Output Layer

…

1x

2x

3x

nx

1w

2w

y

mw

Fig. 1. Typical GRNN structure.

GRNN have several advantages [9], including: 1) it has one
design parameter (smoothing factor); 2) it is easy to train since
it is a one-pass algorithm; 3) it can accurately approximate
functions from sparse and noisy data; 4) it can converge to the
conditional mean surface by increasing the number of data
samples; and 5) ability to model from a relatively small data set,
and ability to handle outliers. It is these unique advantages that
make us to choose GRNN as local models for each IFM.

From a time series prediction point of view, the purpose of
GRNN is to define a function that produces outputs as close as
possible to the actual values over the prediction horizon. Given

a training set of T data points  T
t

d

tt yxyx
1

,|),(


 , the

GRNN try to construct a predictor function expressed by y=f(x),

where  df :)(is the predictor function.

III. PROPOSED EEMD-GRNN APPROACH

Considering the aforementioned points in section ІІ, in the
current research the powerful combination of positive aspects

of EEMD and GRNN algorithm is presented to one-step-ahead
diarrhea time series prediction problem. As shown in Fig. 2,
the proposed EEMD-GRNN modeling framework is generally
composed of the following three main steps:

 Step 1: Decompose time series by EEMD

The original diarrhea time series are first decomposed into
a finite and often a small number of intrinsic mode functions
(IMFs) and a residue using EEMD technique (here the residual

rn+1(t) also be considered as an IMF).

 Step 2: Local-GRNN predictor construction

 After the components (IMFs and a residue) are adaptively
extracted via EEMD, each IFM component is modeled by an
independent GRNN which are used to generate local predictor
to forecast the component series respectively.

 Step 3: Muti-local GRNN predictor ensemble

The forecasts of all IFM components are aggregated using
another independent GRNN model, which model the
relationship among the IMFs and the residue, to produce an
ensemble forecasts for the original time series.

EEMD

Diarrhea time serises

…

… GRNNn+1GRNNn

Step 1

Input

IMF1 IMF2 IMFn Rn+1

Step 2

GRNN1 GRNN2

Prediction

result of IMF1

Prediction

result of IMF2

Prediction

result of IMFn

Prediction

result of Rn

Final prediction

result

Step 3

Output

…

Ensemble forecast

Fig. 2. The EEMD-GRNN modeling framework.

 Several studies, for example [10, 11], have indicated that
selecting model inputs is probably the most critical task for a
time series prediction model, since it contains important
information embedded in the data. The statistical approach to
examine partial-auto-correlation function (PACF) of the time
series was recognized as a good and parsimonious method in
the determination of model inputs [12, 13]. So, in this study,
the model inputs in the approach are mainly determined by the
plot of PACF. After determining the relationship between
input(s) and output(s), the input/output pairs can be constructed
for each IFM component.

The performance of GRNN is mainly affected by the
smoothing factor σ. There are no general rules for the choice of
smoothing factor. In this study, the optimal smoothing factors
for each local predictor are determined by the trial-and-error

170

method. Normalization required for neural network modeling
in general is also included in our preprocessing. Thus, the
inputs are normalized by the method of maximum and
minimum normalization; after simulation, the corresponding
estimate results are rescaled through the contrary process of the
employed normalization method.

Through EEMD, different characteristics information of
original time series can be displayed on different scales, and
the proposed method can more fully capture the local
fluctuations of raw data. Moreover, each IMF component has
similar frequency characteristics, simple frequency components,
and strong regularity, therefore allowing this model to reduce
the complexity of local GRNN modeling and further improve
GRNN prediction efficiency and accuracy.

IV. RESULTS AND DISCUSSION

In order to validate the effectiveness of the proposed
EEMD-GRNN model, comprehensive experiments based on
two real world diarrhea datasets were conducted. First, data
description and performance criteria used in this study are
presented and then the experimental results are reported.
Finally, the result are compared and discussed.

12 24 36 48 60 72 84

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

C
h
ild

re
n

12 24 36 48 60 72 84

0.5

1

1.5

2

2.5

3

x 10
4

Time (month)

A
d
u
lt

TestingTraining

Training Testing

Fig. 3. Monthly diarrhea of children and adult from 2006(1)-2012(12).

A. Data Sets

In this study, the monthly diarrhea cases number data of
children (0-15) and adult (>15) from 2006.01 to 2012.12 in
Shanghai of China has been used. All data employed in this
study are obtained from the Shanghai Municipal Center for
Disease Control & Prevention. In particular, first, the data of
the diarrhea of children are used to witness the whole process
of the proposed method. In the same way, the corresponding
prediction results of adult diarrhea are shown and further
confirm the validity of the proposed method, accordingly.

There are in total 84 data points in each diarrhea dataset
and the monthly series behavior is illustrated in Figure 3. The
plot exhibits a permanent deterministic pattern of long-term
upward trend with short-term fluctuations that are independent
from one time period to the next. From Fig. 3, it can be seen
that the series appear to be nonlinear, non-stationary in that the
mean is increasing over time.

In order to testify the performance of the proposed
prediction methods, the collected data is divided into two sets,
training data and testing data. To achieve a more reliable and
accurate result, a long period is served as the training period.
Based on these considerations, the first 72 data points are used

as the training samples while the remaining 12 data points are
used as the testing sample. The statistic characteristics of
children and adult diarrhea in monthly time scale is tabulated in

Table І.

To assess the forecast capacity of the EEMD-GRNN model,
four indices for error forecast serve as the criteria to evaluate
the prediction performance; they are mean absolute error
(MAE), mean absolute percent error (MAPE), root mean
square error (RMSE) and the coefficient of determination (R

2
).

MAE, MAPE and RMSE are measures of the deviation
between actual and predicted values. The models with the
smallest MAE, MAPE, RMSE and the largest R

2
are

considered to be the best models.

TABLE I. STATISTICAL CHARACTERISTICS OF CHILDREN AND ADULT

DIARRHEA FOR TRAINING AND TESTING DATA.

Indexes
Children Adult

Training Testing Training Testing

Max 41923.0000 37808.0000 34325.0000 28273.0000

Min 802.0000 11973.0000 2330.0000 15220.0000

Mean 13055.7500 21675.4167 14704.5556 20800.9167

SD 8069.2917 8214.7503 6892.3226 4296.5920

B. Prediction Results

According to the proposed hybrid EEMD-GRNN approach,
in Stage 1, the original children diarrhea time series are
decomposed into three independent IMFs (Illustrated in Fig. 4)
and one residual employing EEMD technique, which exhibit a
stable and regular variation. This means that the interruption
and coupling between the different characteristics information
embedded in the original data have been weakened to an extent.
Thus, the local GRNN prediction model is easier to build.

10 20 30 40 50 60 70 80

-0.1

0

0.1

IM
F

1

10 20 30 40 50 60 70 80

-0.1

0

0.1

0.2

IM
F

2

10 20 30 40 50 60 70 80

-0.05

0

0.05

IM
F

3

10 20 30 40 50 60 70 80

0.2

0.3

0.4

R
e
s
id

u
a
l

Time(month)

Fig. 4. EEMD decomposition result for children diarrhea.

After using EEMD to decompose the original children
diarrhea data into three IMFs and a residue, these are then used
to build the local GRNN prediction model for each IFM. In
Stage 2, the relationship between the data of each IMF in the
same frequency band should be identified prior to obtaining the
prediction results of IMFs. The PACF is employed as a
detector to determine the correlations between them. The lag
orders of the autoregressive process of each IMF are two, four,
five and five, respectively.

Based on the correlation between the data of each IMF, the
input and the output pair vectors of the local GRNN model can
be generated. Then the respective GRNN model is built and
trained in terms of the input and the output vectors of the IMFs

171

and residue. For building the GRNN prediction model, the
Matlab R2013a software package is adapted in this study and
the optimal smoothing factor for each IFM is selected based on
the corresponding minimum mean absolute error (MAE) on the
out-of-sample testing samples. After that, the established
GRNN model produces the one-step-ahead prediction results of
each series of IMFs. In Stage 3, the final prediction results can
be obtained using another independent GRNN model using the
prediction results of each IFM as the input.

In order to reflect the model superiority, it is necessary to
build other models to compare with the proposed model. Some
other popular single prediction approaches recommended by
recent works on time series prediction are selected as
benchmarks. The benchmarks include time series techniques
and artificial intelligence (AI) techniques. Amongst time series
techniques, the autoregressive integrated moving average
(ARIMA) models are adopted. For AI models, single GRNN is
employed for the purpose. Furthermore, a hybrid learning
approach with the EMD selected as decomposition method is
also utilized. The simulation of this method is in general
similar to the proposed model.

In the modeling of the single GRNN model like the EEMD-
GRNN model, the input layer lags number has been determined
using PACF and the smoothing factor are selected through the
implementation of iterative optimization procedures.

In this study, the ARIMA model has three steps: model
identification, parameter estimation, and diagnostic checking.
The test time series data were processed by taking the first-
order regular difference and the first seasonal difference to
remove the growth trend and seasonality characteristics. We
used the SPSS.19 statistical software to formulate the ARIMA
model. Estimate the model parameters and utilize the Akaike
Information Criterion (AIC) value to identify the best model.
The model obtained from the training data set is ARIMA
(2,1,1)(1,1,1)12 model, the future one-head monthly cases
number of children diarrhea can be obtained.

C. Comparison and discussion

The comparisons of prediction models for the monthly
number of children diarrhea are made between the ARIMA
model, the single GRNN model, the hybrid EMD-GRNN
model and the hybrid EEMD-GRNN model. The actual
diarrhea cases number for children and predicted values of
different models are illustrated in Fig. 6 and the prediction
performances are shown in Table ІІ. Through model
comparisons, the proposed hybrid EEMD-GRNN model
performs best. It can be observed from Fig. 6 that the predicted
values obtained from the proposed EEMD-GRNN model are
closer to the actual values than those obtained from the other
models. This phenomenon signifies that the hybrid model can
combine different advantages from EEMD and GRNN.

As seen from Table ІІ and Fig. 6, it is clear that the hybrid
EEMD-GRNN model performs much better than ARIMA
model and single GRNN model, and outperforms the hybrid
EMD-GRNN model. More precisely, the MAE, RMSE, MAPE
and R

2
 of the proposed EEMD-BPN model are, respectively,

664.361, 811.925, 3.1% and 0.991. That these values are
smaller than other models. This indicates that there is a smaller

deviation between the actual and predicted values using the
proposed EEMD-GRNN model. Thus, the proposed EEMD-
GRNN model provides a better prediction result than the other
models based on MAE, RMSE, MAPE and R

2
.

The possible reason is that the proposed hybrid model
adequately makes use of the advantages of the decomposition
methods and GRNN algorithm and integrates them well. In
comparisons between EMD-GRNN and EEMD-GRNN, the
decomposition method of EEMD is superior to EMD in terms
of contribution to the prediction accuracy.

Similarly, the proposed EEMD-GRNN method also
performs well in terms of predicting the diarrhea for adult.
According to above steps, the ARIMA model generated from
the data set is ARIMA (2,1,0)(1,1,1)12. Table Ш summarizes
the diarrhea cases number for adult prediction results using the
ARIMA, single GRNN, EMD-GRNN and EEMD-GRNN
models. It can also be observed that the proposed EEMD-
GRNN model has the smallest MAE, RMSE, MAPE and R

2

values in comparison with the single GRNN and ARIMA
models and hybrid EMD-GRNN model. Thus, the proposed
method produces lower prediction errors and outperforms other
models with respect to predicting of diarrhea for adult.

TABLE II. PERFORMANCE OF THE FOUR MODELS FOR CHILDREN

Metrics
Models

ARIMA GRNN EMD-GRNN EEMD-GRNN

MAE 3364.427 3330.324 2123.084 664.361

RMSE 4437.433 4212.306 3049.842 811.925

MAPE 17.1% 14.9% 14.3% 3.1%

R2 0.846 0.953 0.9666 0.991

0 2 4 6 8 10 12
0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Time(month)

D
ia

rr
h
e
a
(C

h
ild

re
n
)

Actual

ARIMA

GRNN

EMD-GRNN

EEMD-GRNN

Fig. 6. Prediction results of diarrhea for children.

Fig. 7 depicts the actual diarrhea cases number for adult
and the predicted values from the ARIMA, single GRNN, and
EMD-GRNN, EEMD-GRNN models. From the Fig. 7, it can
be observed that the proposed EEMD-GRNN model provides
good prediction results. The predicted values of the proposed
model are closer to the actual values than the other three
models.

TABLE III. PERFORMANCE OF THE FOUR MODELS FOR ADULT.

Metrics
Models

ARIMA GRNN EMD-GRNN EEMD-GRNN

MAE 2999.752 2644.084 1839.788 1110.087

RMSE 3737.192 3643.624 2476.043 1484.657

MAPE 14.09% 11.69% 10.51% 5.14%

R2 0.823 0.969 0.971 0.995

172

0 2 4 6 8 10 12
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2
x 10

4

Time(month)

D
ia

rr
h
e
a
(A

d
u
lt
)

Actual

ARIMA

GRNN

EMD-GRNN

EEMD-GRNN

Fig. 7. Prediction results of diarrhea for adult.

V. CONCLUSIONS

In this paper, a novel hybrid approach integrating the
EEMD algorithm and the GRNN model is proposed to settle
the diarrhea prediction problem. The main contribution of the
paper is to propose a novel hybrid method for a stable
prediction of nonlinear and non-stationary diarrhea time series
data. The proposed method pre-processes the diarrhea time
series data and decomposes them into more stationary and
regular components (IMFs or residue) using the EEMD
technique. Furthermore, the corresponding GRNN model for
each divided component is easier to build. After the IMF
components and residue are forecasted in the built GRNN
model, the prediction values are then aggregated using another
independent GRNN model as the final prediction results. This
study compared the proposed method with the single GRNN,
ARIMA models and hybrid EMD-GRNN model, using MAE,
RMSE, MAPE and R

2
 as its criteria. Experimental results

showed that the proposed EEMD-GRNN model is better and
more efficient for prediction diarrhea in Shanghai areas.

There are several advantages of the proposed methodology.
First, thanks to the non-linearity and non-stationary of diarrhea,
hybrid the EEMD algorithm and GRNN model is a very wise
practice for the diarrhea prediction. Moreover, it has rarely
been mentioned in previous literature. Thus, applying this
hybrid method to forecast diarrhea is very important for the
future studies. Furthermore, from the simulation process and
results, we can find this hybrid approach is useful in prediction
diarrhea. Next, in terms of empirical results, it is a clear finding
that the hybrid model can describe them comprehensively. The
conventional single prediction models cannot do this very well.
However, a hybrid method can integrate the advantages of
other single models which conduce to boosting the model
prediction ability and enhancing prediction efficiency. From
this point of view, in terms of different criteria, it is
unsurprising that the hybrid approach performs better than the
single ARIMA and GRNN methods, and also superior to other
hybrid models, for instance, EMD-GRNN model. Both
statistical errors are reduced effectively in this hybrid model.
Therefore, the proposed method is very suitable for prediction
with nonlinear, non-stationary and strong complexity data, and
is an efficient method for diarrhea prediction.

Our study has the some limitations that need further
research. First, future studies may aim at combining EEMD
and other prediction tools, like support vector regression (SVR),
in evaluating the ability of the proposed prediction scheme.
Second, integrating GRNN and other time series processing

techniques, such as wavelet transformation and seasonal
adjustment method (SAM), in further improving the prediction
capabilities can also be investigated in future studies.

ACKNOWLEDGMENT

This research is supported by the Fund of The Shanghai
Science and Technology Development Foundation (Grant No.
13430710100). The authors are grateful to the editor and
anonymous reviewers for their suggestions in improving the
quality of the paper.

REFERENCES

[1] I. N. Soyiri, D. D. Reidpath, “An overview of health forecasting,”

Environmental health and preventive medicine, vol.18, pp. 1-9, 1998.

[2] D. Specht, “A general regression neural network,” IEEE Transactions
Neural Networks, vol. 2, pp. 568-576, 1991.

[3] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng,
“The empirical mode decomposition and the Hilbert spectrum for
nonlinear and nonstationary time series analysis,” In: Proceedings of the
royal society of London series a-mathematical physical and engineering
sciences, series A., vol. 454, pp. 903-995, 1998.

[4] N. E. Huang, Z. Shen, S. R. Long, “A new view of nonlinear water
waves: the Hilbert spectrum,” Annu. Rev. Fluid Mech, vol. 31, pp. 417-
457, 1999.

[5] D. J. Yu, J. S. Cheng, Y. Yang, “Application of EMD method and
Hilbert spectrumto the fault diagnosis of roller bearings,” Mech. Syst.
Signal Process, vol. 19, pp. 259-270, 2005.

[6] Hu, Jianming, Jianzhou Wang, and Guowei Zeng, “A hybrid forecasting
approach applied to wind speed time series,” Renewable Energy, vol. 60,
pp. 185-194, 2013.

[7] D. F. Specht, “A general regression neural network,” IEEE Transactions
on Neural Networks, vol. 2, pp. 568-576, 1991.

[8] J. D. Wu, J. C. Liu, “A forecasting system for car fuel consumption
using a radial basis function neural network,” Expert Systems with
Applications, vol. 39, pp. 1883-1888, 2012.

[9] W. Yan, “Toward automatic time-series forecasting using neural
networks,” Neural Networks and Learning Systems, IEEE Transactions
on, vol. 23, pp. 1028-1039, 2012.

[10] G. Q. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial
neural networks: The state of the art,” International journal of
forecasting, vol. 14, pp. 35-62, 1998.

[11] G. J. Bowden, G. C. Dandy, H. R. Maier, “Input determination for
neural network models in water resources applications. Part 1-
background and methodology,” Journal of Hydrology, vol. 301, pp. 75-
92, 2005.

[12] Ö. Kisi, “Constructing neural network sediment estimation models using
a data-driven algorithm,” Mathematics and Computers in Simulation,
vol. 79, pp. 94-103, 2008.

[13] K. P. Sudheer, A. K. Gosain, K. S. Ramasastri, “A data-driven algorithm
for constructing artificial neural network rainfall-runoff models,”
Hydrological Processes, vol. 16, pp. 1325-1330, 2002.

[14] P. Flandrin, G. Rilling, P. Goncalves, “Empirical mode decomposition
as a filter bank,” IEEE Signal Process. Lett, vol. 2, pp. 112-114, 2004.

[15] N. E. Huang, “Review of empiricalmode decomposition,” Proc. SPIE,
pp. 71-80, 2001.

[16] M. C.Wu, C. K. Hu, “Empiricalmode decomposition and synchrogram
approach to cardiorespiratory synchronization,” Phys. Rev. E, vol. 73
51917, 2006.

[17] Z. Wu, N. E. Huang, “Ensemble empirical mode decomposition: a noise-
assisted data analysis method, center for ocean-land-atmosphere
studies,” Tech Rep, vol. 51, 2004.

173

Are We Living in a Happy Country: An Analysis of
National Happiness from Machine Learning

Perspective

Theresia Ratih Dewi Saputri
Department of Computer Engineering

Ajou University
Suwon, South Korea
trdsaputri@ajou.ac.kr

Seok-Won Lee
Department of Software Convergence Technology

Ajou University
Suwon, South Korea

leesw@ajou.ac.kr

Abstract— National happiness has been actively studied during
last ten years. The factor of happiness could be different due to
different human perspective. The factors used in this work
include both physical needs and the mental needs of humanity
such as educational factor. This work identified more than 90
features that can be used to predict the country happiness.
Unfortunately, manually analyzing the features is difficult and
needs a lot of resources. Due to numerous size of the features, it is
unwise to rely on the prediction of national happiness by manual
analysis. That process will result in the high cost of analysis.
Therefore, this work used machine learning technique which is a
Support Vector Machine to learn and predicts the country
happiness. Dimensionality reduction is also done in this work.
Using the information gain technique, the features can be
reduced. This technique is chosen due to its ability to explore the
interrelationships among a set of variables. The selected features
are also evaluated using the SVM classifier. Using the data of 187
countries from the UN Development Project, this work is able to
identify which factor needed to be improved by a certain country
to increase the happiness of their citizens.

Keywords-data mining; classification; feature selection;
principal component analysis; support vector machine

I. INTRODUCTION

National happiness has been actively studied throughout the
last ten years. The work in [8] argues that the government of a
country is usually driven by the happiness of their citizens.
Some factors that are controlled or authorized by the
government positively correlate with the happiness level. That
work shows that the key role to determine the citizen happiness
is the improvement of public policy. Understanding happiness
factors will help governments to make a better policy and
legislation.

However, the factors that influence happiness could be
different due to different human perspectives. We cannot just
simply say that The United State is happier than Indonesia
country because The United State has higher GDP. Peggy in [1]
stated that happiness is correlated with national economic and

cultural living conditions. The work in [2] determined
happiness using three factors which are life expectancy,
experienced well-being and Ecological Footprint. Other work
in [9] shows a new measurement to improve the happiness of a
country. Unlike the previous work, this work studies that
happiness is not only related to physical but also mental needs.
Therefore, they also consider mental health, which includes
stress, depression, and emotional problems.

As a result of the increase of human social complexity, the
factors proposed by [2] and [9] may not be reliable anymore.
Additional factors such as health and human development
index should be examined carefully. However, analyzing the
factor to determine happiness of a particular country is not a
trivial problem. A single factor can have a bigger impact than
another. NEF organization in [2] proposes an equation to
calculate the happiness index. However, this equation does not
consider the economical aspects. Therefore, this work proposes
an approach by extending the factors and adopting machine
learning techniques to learn about those factors.

Due to numerous size of the features, it is unwise to rely on
the prediction of a national happiness done by manual analysis.
That process will result in high cost of analysis. Therefore, this
work also proposes the use of machine learning to predict
national happiness. Machine learning is a widely known
technique to learn about patterns in data. There are several
machine learning techniques which can be used to perform a
prediction task [3]. One of the remarkable techniques is the
support vector machine. This work uses support vector
machine because its outstanding ability to perform a
classification task.

II. RELATED WORK

This section briefly explains the related work in this project.
Firstly, the national happiness analysis is described. It will
discuss the importance of happiness analysis. Secondly, the
used machine learning is introduced. Lastly, the proposed
factor analysis is discussed.

DOI reference number: 10.18293/SEKE2015-224

174

A. National Happiness Analysis

The work in [4] mentioned that happiness could be a good
indicator for how well a society is doing. This becomes
important because Betham [5] said that the best society is the
one where the citizens are happiest. Several researches have
been conducted on positive aspects and the matters of
happiness in policy making [6][7]. As mentioned in the
previous section, happiness can be determined based on various
factors. Unfortunately, these factors were analyzed manually
[8]. The complexity of the factor leads to the expensive cost of
analysis. Therefore, the automatic analysis is needed.

B. Support Vector Machine

Due to its capability to learn from the past experiences,
machine learning has been used in various areas. Support
vector machine is one of the powerful machine learning
algorithm. Support Vector Machine (SVM) is a learning
technique which is used for classifying unseen data correctly.
It is a learning technique which usually used for classifying the
unseen data correctly. This technique has been used in various
research field due to its remarkable performance. In order to
perform the classification task, support vector machine builds a
hyperplane which separates the data into different categories
[9].

One of the important advantages of support vector machine
is its ability to handle the scarcity of the data. Moreover,
support vector machine is able to learn about the complex
decision boundaries in the high dimensional feature space
efficiently. Due to the complex features used to predict the
national happiness, it is important to apply the technique with
ability to handle the complex features.

C. Factor Analysis

As mentioned in the previous section, there are a large
number of features used to predict the national happiness.
However, some of the features may have no significant
contribution to the prediction. Therefore, it is unwise to use the
entire features to analyze the happiness. This work uses factor
analysis to analyze the related features. Factor analysis aims to
determine the contribution of a certain feature. This technique
does not focus on dimension reduction. Therefore, there will be
no features removed. The works in [10] and [11] have
introduced the advantages of factor analysis. The first
advantages mentioned is the ability to identify latent
dimensions or constructs that cannot be done using direct
analysis. Moreover, this approach is easy to run and
inexpensive in term of resources.

III. PROPOSED APPROACH

The aim of this project is to predict the national happiness
of a particular country using machine learning techniques. The
proposed approach contains four main steps in the data mining
process which are data collection, data preprocessing, data
analysis, and classification process as seen in Figure 1.

The first process in the process approach is collecting the
data. The data used in this project are gathered from the UN
Human Development Project. The data contains of the human
development index, GDI, healthy index of each country in the
world. However, these data are quite dirty. It cannot be used

directly as the input data for the learning process. Therefore,
the second process is data preprocessing. Data preprocessing is
used to increase the data quality. By increasing the quality of
data results to the increasing number of prediction accuracy
and consistency. The processes included in this process are data
cleaning and data integration. The routine processes that should
be done are filling the missing values, reduce the noise and
identify the outliers.

Figure 1. The proposed Approach

The third process in the proposed approach is data analysis.
This explanatory data analysis is used for finding the
relationship among the attributes of the features. This analysis
is done by visualizing the data. Dimensional reduction also be
done in this step. Using the information gain technique, the
features can be reduced. Information gain technique is used
because it can explore the interrelationships among a set of
variables. The last part is this work is the classification process.
In this classification process, SVM technique is used to predict
the happiness of the data based on the important features. The
validation process using k-fold cross validation technique is
used to measure the performance of the data based on the
accuracy, sensitivity and specificity values.

IV. RESULT AND ANALYSIS

This section discusses about the result of each step in the
proposed approach. Moreover, this section also presents the
analysis of significant factors to determine the happiness of a
particular country.

A. Data Collection

As mentioned in the proposed approach section, the data
used for this work are gathered from the UN Development
Project. In total there are 187 countries listed in the data.
Different types of factors are also mentioned in this data, such
as human development index, education, environment, health
care. The data consists of 105 types of features from 14
different factors.

However, we know that there is no perfect data. This data
consists of various missing values, especially for the relatively
small country such as Liechtenstein, as seen in Figure 2. This
data does not only consist of missing value, but also some of
outlier data. Therefore, this work needs a data preprocessing in
order to improve the quality of data analysis.

Figure 2. Example of Missing value

B. Data Preprocessing

In order to increase the data quality, the data preprocessing
is needed. The collected data are scattered in various tables.
Therefore, creating an integrated data is needed. The single

175

integrated table consists of the entire features and sample that
we are going to use in the next process. As seen in the previous
sub-section, there are some missing values in the data. Those
missing values may reduce the quality of the classification
process. There are some ways to handle missing values such as
pairwise deletion, listwise deletion, and mean substitution.

However, these approaches are not adequate to handle the
missing values. The first and second approaches are not
adequate because it needs to remove some of the data. Those
approaches result in a massive decrease in the sample size for
analysis and classification. It may not have a big impact when
the number of missing values is small. However, there are a big
number of missing values in the data used for this project.
Therefore, choosing pairwise or listwise deletion is an unwise
decision. One possible approach is to find the substitute of the
missing values. Mean substitution can be one of possible
solutions. However, adding data with mean will be useless. The
overall mean, with or without replacing my missing data, will
be the same. Moreover, using mean substitution makes only a
trivial change in the correlation coefficient and no change in
the regression coefficient.

Therefore, the approach used in this project is regression
substitution. Instead of adding a trivial value for the missing
value, regression substitution tried to predict the value based on
other variables. This technique uses existing variables to make
a prediction, and then substitute that predicted value as if it
were an actual obtained value. In this case, seven variables are
used to predict the missing value.

C. Feature Selection

Selecting the related features is important in order to
improve the performance of the classifier. In order to perform
this process, WEKA package for attribute selection is used [12].
The evaluator used in this work is information gain. This
technique is chosen due to its ability to measure the amount of
information in bits about the class prediction [13]. Therefore, it
measures the expected reduction in entropy.

Figure 3. Selected features for classification

There are two main properties in the ranker evaluator. The
first property is numToSelect property, which defines the
number of attributes to keep, an Integer number that is -1 (all)
by default. The next property is the threshold which defines the
minimum value that an attribute has to get in the evaluator in
order to be kept. In this case, the threshold is set to 0.

After running this process, the number of remaining
attributes is 36 includes class attribute. Those attributes are
listed in Figure 3. The selected attributes such as inequality in
life expectancy (inequality in the distribution of the expected
length of life based on data from life tables estimated using the
Atkinson inequality index), the number of homeless people,
and the mortality rate is used to classify the happiness of a
certain country.

D. Classification

In order to evaluate the selected attribute, this work also
runs the classification using the entire gathered attributes. The
same parameter used to compare both scenarios. The kernel for
SVM is chosen based on cross validation. Table 1 shows the
result for comparing different types of kernel. We can see that
the normalized poly kernel gave an outperform result.
Therefore, this kernel is chosen for this work.

TABLE I. COMPARISON RESULT OF THE KERNEL

Kernel Type Accuracy Rate
Normalize Poly Kernel 68.456 %
Poly Kernel 60.402 %
RBF Kernel 38.926 %
String Kernel 43.624 %

As mentioned before, this work also runs the classification
using the entire attributes in order to validate the performance
of selected attributes. Using the entire attributes we can see that
the classification process result in 58 % of accuracy. This result
shows the improvement of accuracy rate and true positive rate.
It also shows that using the selected attribute is able to reduce
the mean square error. It means that the selected attributes have
strong correlation with the class attribute that can be used to
predict the class which is the happiness of the country.

E. Analysis

Instead of classifying the data into happy and unhappy
countries, this work classified the data into three categories
which are happy, mid, and unhappy. Based on the classification
results, it shows that most countries in the world are not in a
happy state. As seen in Figure 4, 39 %, 38%, 23% of the
countries are happy, mid-happy, and unhappy, respectively.

Figure 4. Distribution of Country Happiness

In order to analyze the happiness factor, this work also
shows the distribution of the happiness based on the country. A
country with red shade is a country in an unhappy state such as

176

Russia and Nigeria. Moreover, the country with yellow shade is
mid-state country such as the United State and Australia. Lastly,
the country with green shade has happy state such as Brazill
and Indonesia. This figure showed one surprising fact that even
though a country is developed, it does not mean that it has a
happy state.

Figure 5. Factor Loadings based on PCA

After the classification process has been done, the next step
is factor analysis. This process is done to determine the factor
that drives the happiness of a country. There are various
approaches in statistical learning to analysis the factor. This
work uses factor analysis with principal component analysis
(PCA) to evaluate the factors. Using this approach, the selected
features are grouped into several factors as seen in Figure 5.
The evaluation of the factors is done based on the classification
results. In order to evaluate the factors, each of the sample was
observed based on its class attributes. Using this evaluation, we
can clearly see which features make a significant contribution
to determine the happiness of a particular country.

Figure 6. Summary of Significant Factors

In order to determine the significant factors, the factor
loading values are used. Based on those values, some features
should be increased to improve the happiness of a certain
country such as health care quality and employment population
ratio. We can also determine which features should be
decreased in order to improve the happiness such as inequality
in life expectancy, homeless person, adults with HIV and
gender inequality. Figure 6 shows a summary of the features
that need to be decreased or increased based on the results of
the factors analysis process. In order to improve the state of
happiness in for a country, the government can refer to the
listed significant factors in the policy making process. Using
this list, it will be easier for them to determine which factors

they need to improve in order to increase the happiness of their
citizens.

V. CONCLUSION

The happiness of a country cannot simply determine by its
development index. This work showed that there are various
factors can be used to determine the happiness. Due to the
various factors to classify the happiness, prediction is hard to
perform. Therefore, this work proposed the use of machine
learning technique to learn about the factor to predict the
national happiness combined with feature selection approach.

This work showed that the feature selection process using
information gain is able to increase the performance of the
classification process. The performance improvement is proved
by the increase of accuracy rate when the selected features
were used. This work also shows that using SVM classifier the
happiness of each country can be determined effectively and
efficiently.

Even though the accuracy rate increased due to the use of
selected features, unfortunately, the accuracy of the result is
still inferior. We argue that the inadequate of accuracy is
caused by the large number of missing values. Therefore, the
future work should implement a reliable approach for handling
the missing values.

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education, Science and
Technology(2013R1A1A2009801)

REFERENCES
[1] Schyns, Peggy. "Crossnational differences in happiness: Economic and

cultural factors explored." Social Indicators Research 43.1-2, pp. 3-26,
1998.

[2] http://www.happyplanetindex.org/assets/happy-planet-index-report.pdf

[3] Witten, Ian H., and Eibe Frank. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2005.

[4] Gudmundsdottir, Dora Gudrun. "The impact of economic crisis on
happiness." Social indicators research 110.3. pp: 1083-1101, 2013.

[5] Bentham, J. (1789/1996).An Introduction of the principles of morals and
legislation. Oxford: Clarendon Press. (Originally from 1789)

[6] Diener, E., Lucas, R. E., Schimmack, U., & Helliwell, J. Well-being for
public policy. New York: Oxford University Press, 2009.

[7] Dolan, Paul, and Mathew P. White. "How can measures of subjective
well-being be used to inform public policy?." Perspectives on
Psychological Science 2, no. 1 pp.71-85.2007.

[8] Viinamäki, H., Kontula, O., Niskanen, L., & Koskela, K. "The
association between economic and social factors and mental health in
Finland." Acta Psychiatrica Scandinavica 92, no. 3, pp.208-213, 1995.

[9] Malhotra, R., & Jain, A. "Software Effort Prediction using Statistical and
Machine Learning Methods." International Journal of Advanced
Computer Science and Applications 2., pp. 1451-1521, 2011.

[10] Garson, G. David, "Factor Analysis," from Statnotes: Topics in
Multivariate Analysis.

[11] Tucker, L. R., & MacCallum, R. C.. "Exploratory factor analysis."
Unpublished manuscript, Ohio State University, Columbus, 1997.

[12] http://weka.sourceforge.net/doc.dev/weka/filters/supervised/attribute/Att
ributeSelection.html

[13] Roobaert, D., Karakoulas, G., & Chawla, N. V. "Information gain,
correlation and support vector machines." In Feature Extraction, pp. 463-
470. Springer Berlin Heidelberg, 2006.

177

BiBinConvmean :A Novel Biclustering Algorithm for
Binary Microarray Data

Haifa BEN SABER

Time Université
Laboratory of Technologies of Information and

Communication and Electrical Engineering (LaTICE)
National High School of Engineers of Tunis (ENSIT),

University of Tunis, Tunisia.

Mourad ELLOUMI

Laboratory of Technologies of
Information and Communication and

Electrical Engineering (LaTICE)
University of Tunis-El Manar, Tunisia.

Abstract— In this paper, we present a new algorithm called,
BiBinConvmean, for biclustering of binary microarray data. It is a
novel alternative to extract biclusters from sparse binary
datasets. Our algorithm is based on Iterative Row and Column
Clustering Combination (IRCCC) and Divide and Conquer (DC)
approaches, K-means initialization and the CroBin evaluation
function [6]. Applied on binary synthetic datasets, our algorithm
outperforms other biclustering algorithms for binary microarray
data. Biclusters with different numbers of rows and columns can
be detected, varying from many rows to few columns and few
rows to many columns. Our algorithm allows the user to guide
the search towards biclusters of specific dimensions.

Keywords-component; Biclustering, binary data, microarray
data, Iteratif Row Column Combinaison approach, Divide and
Conquer approach, CroBin.

I. INTRODUCTION

A DNA Microarray is a glass slide covered with a product
and DNA samples containing thousands of genes [8].
Biclustering of microarray data can be helpful to study, among
others, the activity and the condition of the tissue via
microarrays such as transcription factor binding, insertional
mutagenesis and gene expression data. It can be helpfull also to
find genes involved in tumor progression, identify the function
of new genes, rank the tumors into homogenous groups and
identify new therapeutic strategies.

Biclustering algorithms of binary microarray data enable to
extract useful biclusters from binary data to provide
information about the distribution of patterns and intrinsic
correlations [16][15]. A number of biclustering algorithms of
binary microarray data have been proposed in recent years,
such as the Biclustering Bit-pattern (BiBit) [14][1], Cmnk [11],
[9], BiMax [13], Bipartite Bron-Kerbosch (BBK) [12], Binary
Matrix Factorization (BMF) [18], e-CCC Biclustering [5], e-
BiMotif [5], BIMODULE[4], BIDENSE[4], CETree [4], DeBi
[17] and Maximal Frequent Item Set [17]. Besides, there are
also other approaches based on Gaussian or Latent Mixture
Models, BEM and BCEM [3].

In the same context, different biclustering algorithms have
been adapted to deal with biclustering of binary gene
expression data. However, these changes lead to more
complicated user input parameters. Besides, all the elements of
every generated bicluster are set to zero in the input matrix,
introducing noise.

It is an interesseting from the biological point of view [12]
to search biclusters with small proportion of zeros especially
when binary data matrix is obtained after normalization and
binarization. However, most of biclustering algorithms of
binary microarray data, inculding Cmnk and BiMax, fail to
extract pertinent biclusters on sparse binary datasets. Indeed, if
we apply one of these algorithms on a typical sparse binary
microarray datasets (with thousands of columns), most of the
extracted biclusters are made up only by 1's.

The rest of this paper is organized as follows. In section 2,
we introduce some preliminaries. In section 3, we present
BiBinConvmean our biclustering algorithm of binary microarray
data. In section 4, we present an illustrative example. In section
5, we present the experimental results obtained thanks to
BiBinConvmean on binary synthetic, and we compare these
results with those obtained by other biclustering algorithms of
binary microarray data. Finally, in section 6 we present the
conclusion.

II. PRELIMINIARIES

In this section we present some preliminaries necessary for
the presentation of important formulas and relationships and
the used theory.

Let I = {1, 2, .., n} be a set of indices of n genes, J = {1, 2,
.., m} be a set of indices of m conditions and M(I, J) be a data
matrix associated with I and J.

The biclustering problem of a binary microarray data boils
down to a minimization of the criterion W(z, w, A) defined by:

(DOI Reference Number: 10.18293/SEKE2015-007) 178

 (1)

where:

 z is a partition of I into g clusters.

 w is a partition of J into m clusters.

 A is the summary of the data matrix where k (resp.
l) represents number of clusters on rows (resp.
columns). We note that the bicluster kl is defined
by the mij with zikwjl = 1.

III. CONTRIBUTION

In this section, we develop our biclustering algorithm,
BiBinConvmax that is based on the IRCCC approach, K-
means initialisation and the CroBin evaluation function. It
consists to permute the rows and the columns in order to
obtain homogeneous biclusters. As a preprocessing step of this
algorithm is applied:

a) First, when the data matrix M is not a binary one, we
apply a thresholding function to transform it to a binary one.
To the best of our knowledge, the main thresholding functions
are discretize, normalize and binarize [7]. According to [14],
[9][14], [9], the most adequate thresholding functionto
binarize microarray data is binarize.

b) Then, we make an initial clustering z0 of rows and an
initial clustering w0 of columns, thanks to k-means algorithm
[10] [2] .

After the initialization, we update the clustering of rows and
columns.

The preprocessing step consists in obtaining a binary matrix
Mb that can be directly used by our algorithm. The binary
values of 1 and 0 under an experimental condition c mean that
a gene is expressed or not, respectively. For example, in [13], a
discretization threshold was set to e2+(e1- e2)=2, with e1 and e2

as the minimum and maximum expression values in the data
matrix, respectively.

Our biclustering algorithm, BiBinConvmean receives as input
a binary matrix M gives as output (zopt, wopt, Aopt), where zopt is
the final clustering of rows of Mb, wopt is the final clustering
of columns of Mband Aopt is the summary matrix related to
zopt and wopt.

By adopting BiBinConvmean, we operate as follows:

First, we compute (z0, w0, A0) thanks to k-means algorithm
[10], [2], where z0 is the initial clustering of rows of Mb, w

0 is
the initial clustering of columns of Mb and A0 is the summary
matrix related to z0 and w0.

Then, we repeat this process :

We compute (zc, wc-1, A’) starting from (zc-1, wc-1, Ac1’),
where A’ is an intermediate summary matrix

We compute (zc, wc, Ac’) starting from (zc-1, wc-1, A’
’)

 Until (zc, wc, Ac’) = (zc-1, wc-1, Ac-1’).

IV. ILLUSTRATIVE EXAMPLE

We present in this section steps to perform the biclustering
on binary datasets. Our algorithm allows to reorder the rows
and the columns of the data matrix in both dimensions to obtain
homogeneous biclusters. The algorithm minimizes the
difference between the initial matrix according the two way
and the ideal matrix.

To illustrate our algorihtm method, we propose to run it on
an simple example. Let Mb be a (4,5) matrix of binary data to
perform biclustering. The initialization is to group the rows and
columns with K-means reference algorithm method. After
initialization, we compute z and w matrix whose elements
determine the membership of rows or column in horizontal or
vertical clusters, respectively.

Then, we reorganize the binary matrix. After that, we
compute the summary matrix is obtained from z and w and the
bicluster kl is defined by the xij ’s with zikwjl = 1.

The summary matrix is presented by the major value akl
which presents the degree of homogeneity via summary matrix.
We update clusters on rows and columns by computing our
criterion on both dimensions. Initial binary matrix Mbis given
by :

 Initialization:

z0 = (1, 2, 2, 3), w0 = (1, 1, 0, 0, 0), A0 = (1, 0, 1, 1, 0, 1)
 Iteration 1:

c = 1
We compute (z1, w0, A’) starting from (z0, w0, A0), we obtain:

(z1, w0, A’) = ((1, 3, 2, 1); (1, 1, 0, 0, 0); (1, 1, 1, 0, 0, 1))
We compute (z1, w1, A’) starting from (z1, w0, A’), we obtain:

(z1, w1, A’) = ((1, 3, 2, 1); (2, 2, 1, 2, 1); (1, 1, 1, 0, 0, 1))
We obtain (z2, w2, A2) != (z1, w1, A1).

 Iteration 2: c = 2

We compute (z2, w1, A’) starting from (z1, w1, A1), we obtain
(z2, w1, A’)= ((2, 1, 2, 3); (2, 2, 1, 2, 1); (0, 1, 1, 0, 0, 1))

We compute (z2, w2, A’) starting from (z2, w1, A’), we obtain:
(z2, w2, A’)= ((2, 1, 2, 3); (2, 2, 1, 2, 1); (0, 1, 1, 0, 0, 1))

We obtain (z3, w3, A3)!= (z2, w2, A2)

179

 Iteration 3: c = 3

We compute (z3, w2, A’) starting from (z2, w2, A2), we obtain:
(z3, w2, A’) = ((1, 1, 1, 1); (2, 2, 1, 2, 1); (1, 0))

We compute (z3, w3, A’) starting from (z3, w2, A’), we obtain:
(z3, w3, A’) = ((2, 1, 2, 3); (2, 2, 1, 2, 1); (1, 0))

We obtain (z3, w3, A’)!= (z2, w2, A2).

 Iteration 4: c = 4

We compute (z4, w3, A’) starting from (z3, w3, A’), we obtain:
(z3, w3, A’) = ((1, 2, 1, 2); (2, 2, 1, 2, 1); (1, 0, 0, 1))

We compute (z4, w3, A’) starting from (z4, w3, A’)= (z3, w3, A’),
we obtain:

(z4, w4, A’)= ((1, 2, 1, 2); (1, 1, 1, 1, 1); (0, 1))
We obtain (z4, w4, A4)!= (z3;w3;A3).

 Iteration 5: c = 5

We compute (z5, w4, A’) starting from (z4, w4, A’), we obtain:
(z5, w4, A’)= ((1, 2, 1, 2); (1, 1, 1, 1, 1); (0, 1))

We compute (z5, w5, A’) starting from (z5, w4, A’), we obtain:

(z5, w5, A’) = ((1, 2, 1, 2); (1, 1, 2, 1, 2); (1, 0, 0, 1))

We obtain (z5, w5, A5) = (z4, w4, A4).

After five iterations, we obtain (zopt;wopt;Aopt) = (z5;w5;A5).

Colored blocs represent the obtained biclusters thanks to
BiBinConv_{mean}
 .

IV. EXPERIMENTAL RESULTS

We have experimented the BiBinConvmean algorithm on
simulated data. To generate our simulated data, we operarte as
follows:

We choose the number of biclusters; in our case we choose
3 clusters on rows (g = 3) and 2 clusters on columns (m = 2).

We use Latent Bernoulli Mixture (LBM) model to generate
mixtures by considering pattterns of overlapping well separated
+5% or fairly separated: + + 15% or poorly Separated +++25%
and sizes of data are used; small one (50, 30), medium one
(100, 60) and large one (200, 120).

For instance, to apply the simulation on (100, 60) matrix
for 10 samples with a low degree of mixing such that a 3

clusters proportions on rows pk, 2 clusters proportions on
columns ql

Where:

 pk = [0:2; 0:3; 0:5], theta0= [0:3; 0:7], Alpha0 = [0:7; 0:3;
0:3; 0:7; 0:7; 0:7] and a degree of mixture belonging [0:00;
0:05].

The BiBinConvmean algorithm is fast and gives good results
when the biclusters have the same proportions and degrees of
homogeneity similar except that you set the number of clusters
on the rows and columns. However, it seems to be bad when
the proportions of partitions are dramatically different which
leads to think that BiBinConvmean assumes equal proportions of
clusters. This algorithm rearranges the rows and columns of the
data matrix along the two sheets of the rows and columns of
homogeneous biclusters. The algorithm minimizes the
difference between the initial matrix structured and the ideal
matrix according scores.

Figure 1. Recovery Scores against overlapping degree and noise

The summarize of the most important points obtained from
these simulations are as follows: Obviously, we can interpret
the reasonable results according to the model underlying the
data structure. In this research, we proves that if the proportions
of the components are considered equal give good results. The
convergence has a fast progress: most of the time. The
BiBinConvmean, is faster and gives us interesting results.

The obtained bicluster is very clear since extracted
biclusters containing a majority number of ’1’ and very
illustrative to help the biologist to extract knowledge.
According to our implementations, we note first that the choice
and application of a given criterion is not always obvious or
easy to find. According to our study, we find that
BiBinConvmean does not give good results when the matrix

180

becomes more large. We remark also that the error rates are
proportional according the overlap rate.

V. CONCLUSION

In this paper, we presented our method of binary
biclustering considered to be relevant by the expert starting
from the data resulting from the microarrays. The suggested
method generates interesting biclusters. To achieve this
purpose, we selected data to which we applied a thresholding to
release the binary data. Our proposal has been implemented
and evaluated on synthetic datasets.

According to our implementation, we note first that the
choice and application of a given criterion is not always
obvious or easy to find. Enjoying the benefits of our algorithm,
we proposed a methodology for the identification of
homogeneous biclusters. The first results are very encouraging
and persuade us of the obvious interest of such an approach.

Finally, further analysis and biological validation of the
obtained results is under study.

REFERENCES
[1] Aguilar-Ruiz and Jesús S. Shifting and scaling patterns from gene

expression data. Bioinformatics, 21(20):3840– 3845, 2005.

[2] Khalid Benabdeslem and Kais Allab. Bi-clustering continuous data with
self-organizing map. Neural Computing and Applications, 22(7):1551–
1562, 2013.

[3] M. Charrad. Une approche genrique pour l-analyse croisant contenu et
usage des sites web par des methodes de bipartitionnement. PhD thesis,
Paris and ENSI, University of Manouba, 2010.

[4] Jiun-Rung Chen and Ye-In Chang. A conditionenumeration tree method
for mining biclusters from dna microarray data sets. Elsevier, 97:44–59,
2007.

[5] Joana P. Gonalves and Sara C. Madeira. e-bimotif: Combining sequence
alignment and biclustering to unravel structured motifs. In IWPACBB,
volume 74, pages 181–191, 2010.

[6] Gerard GOVAERT. La classification croisee. Modulad, 1983.

[7] Santamaria R. Khamiakova T. Sill M. Theron R. Quintales L. Kaiser, S.
and F. Leisch. biclust: Bicluster algorithms. R package., 2011.

[8] Ouafae Kaissi. Analyse de Données Transcriptomiques pour La
Recherche de Biomarqueurs Liés à Certaines Pathologies Cancéreuses.
PhD thesis, University Abdelmalek Essaadi, Tangier, Morocco„ sep
2014.

[9] Mehmet Koyuturk. Using protein interaction networks to understand
complex diseases. Computer, 45(3):31–38, 2012.

[10] G. C. Marcos A.S. da Silva AND, Antonio M.V. Monteiro AND. Som-
code: Design patterns and generic programming in the implementation
of self organizing maps. BMC Genomics., 2013.

[11] Ananth Grama Mehmet Koyuturk, Wojciech Szpankowski. Biclustering
gene-feature matrices for statistically significant dense patterns. In 2004
IEEE Computational Systems Bioinformatics Conference (CSB’04),
pages 480–484, 2004.

[12] Stefan Bleuler Oliver Voggenreiter and Wilhelm Gruissem. Exact
biclustering algorithm for the analysis of large gene expression data sets.
Eighth International Society for Computational Biology (ISCB) Student
Council Symposium Long Beach, CA, USA.July, pages 13–14, 2012.

[13] Amela Prelic, Stefan Bleuler, Philip Zimmermann, Anja Wille, Peter
Bühlmann, Wilhelm Gruissem, Lars Hennig,

[14] Lothar Thiele, and Eckart Zitzler. A systematic comparison and
evaluation of biclustering methods for gene expression data.
Bioinformatics, 22:1122–1129, 2006.

[15] Perez-Pulido A. J. Rodriguez-Baena, D. S. and J.S. Aguilara-Ruiz. A
biclustering algorithm for extracting bit-patterns from binary datasets.
Bioinformatics., 2011.

[16] Bhattacharyya D. K. Roy, S. and J. K. Kalita. Cobi: Pattern based
coregulated biclustering of gene expression data. Pattern Recognition
Letters., 2013.

[17] Akdes Serin. Biclustering analysis for large scale data. Phd., 2011.

[18] Akdes Serin and Martin Vingron. Debi: Discovering differentially
expressed biclusters using a frequent itemset approach. Algorithms for
Molecular Biology, 6:18, 2011.

[19] Chris Ding Xian Wen Ren Xiang Sun Zhang Zhong Yuan Zhang, Tao
Li. Binary matrix factorization for analyzing gene expression data. Data
Mining and Knowledge Discovery, 20:28–52, 2010.

//
[20] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of

Lipschitz-Hankel type involving products of Bessel functions, ” Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.

.

181

Integration testing criteria for mobile robotic systems

Maria A. S. Brito∗, Marcos P. Santos∗, Paulo S. L. de Souza∗ and Simone do R. S. de Souza∗
∗Department of Computer Systems

University of São Paulo, São Carlos, SP, Brazil
Email: masbrit,mpereira,pssouza,srocio@icmc.usp.br

Abstract—Testing activity applied to mobile robotic systems
is a challenge because new features, such as non-determinism of
inputs, communication among components and time constraints
must be considered. Simulation has been used to support the
development and validation of these systems. Coverage testing
criteria can contribute to this scenario adding mechanisms for
measuring quality during the development of systems. This paper
presents a test model and a set of coverage criteria to test the
interaction among the components of mobile robotic systems.
The model and criteria focus on robotic systems developed in
ROS, a Robotic Operational System in which communication
is established through publish/subscribe interaction schema. The
testing criteria were evaluated using a robotic application. The
results confirm that the use of coverage testing criteria has
advantages for integration testing of mobile robotic systems.

I. INTRODUCTION

Research on software methods and environments of
robotics development has increased over the past decade. The
development of robotic systems requires a middleware to pro-
vide tools for interfacing with different system modules, hard-
ware abstraction and communication facilities. Many robotic
systems are custom-designed for specific projects and involve
high costs of software and hardware. Some middlewares used
to develop applications for robotics and complex systems
exhibit different behaviors and specificities, as well as unique
qualities that make them better suited to a particular task [9].
Various robot middlewares have been proposed, such as [11]
Player [10], Orocos [5], Orca [4] and ROS [18].

The validation of a mobile robotic application normally
includes simulations and software testing techniques. VSTs
(Virtual Simulation Tools/Technology) have been widely used
in development environments to model, simulate and evaluate
different aspects of a system before they are implemented in
an objective platform [9]. They reduce the development time
because all tasks are grouped into the same environment. The
validation of these systems is a challenging task due to the
amount of human resources, equipment and technical support
required for the production of reliable results and safety
assurance. Some tasks may be highly risky and uncertain,
especially those that involve transferring results from an offline
simulation to the real world [6].

Mobile robots are normally distributed computing sys-
tems because they involve many heterogeneous components,
multiple computers and devices. A common communication
mechanism of such systems is the publish/subscribe interaction
schema, which provides a loosely coupled form of interaction

DOI reference number: 10.18293/SEKE2015-191

in large scale settings and comprises subscribe and publish
nodes. Subscribers express their interest in an event, or a
pattern of events, and are notified of any event generated
by a publisher that has matched their registered interest [8].
Multiple concurrent publishers and subscribers may be con-
nected for a single topic and one node may publish and/or
subscribe to multiple topics. Nodes are processes that perform
computation. These common features of the publish/subscribe
(e.g., event correlation, communication channels, timestamp
aspects) require more specific testing approaches, which can
show defects in such critical applications. Integration testing
activity is an emerging and promising research direction, but
it still lacks testing criteria to reveal faults in this domain.

In this direction Kang et al. [13] proposed a simulation-
based interface testing automation tool (SITAT) for robot
software components which generates and executes test cases
in a simulation environment. A similar approach is presented
in [12], which proposes a required and provided interface
specification-based testing method (RPIST). Both approaches
require the specification of the application interfaces. Lim et
al. [15] defined a hierarchical testing model and its testing
automation framework for robot technology component (RTC).
Integration testing is based on the interoperability of hard-
ware and software components. A built-in unit/integration test
framework called ROStest was defined to support software
testing of the ROS-based systems [2]. ROStest is an integration
test suite compatible with xUnit frameworks. Its main disad-
vantages are the need of writing test code and changes in the
source code require changes in the test code.

In concurrent programming, several processes of an appli-
cation communicate among themselves to solve a problem. A
process is a program in execution formed by an executable
program, its data, a program counter, other registers and
all information required for its execution [22]. This com-
munication feature of the concurrent program resembles the
behavior of a mobile robotic application in which several nodes
interact to solve a computation. Some approaches of testing
integration on concurrent programs explore communication
and synchronization among processes [3], [7], [20], [21]. We
have revisited these approaches to check the similarities in the
testing applied and related to the mobile robotic applications
that use the publish/subscribe interaction and, therefore the
approach proposed here is inspired on the testing criteria for
concurrent programs [19].

This paper proposes an approach of integration software
testing for robotic systems to improve the quality of these
systems. The robotic systems considered are composed of a
set of distributed nodes that communicates by message passing
using publish/subscribe schema. Therefore, our approach is

182

concerned with the communication among software compo-
nents implemented in ROS system.

The paper is organized as follows: Section II introduces
concepts of publish/subscribe schema and integration testing;
Section III provides a motivating example for the problem
characterization; Section IV describes our testing approach and
the proposed testing criteria in detail; Section V illustrates the
application of the approach in a case study; Section VI presents
the related work and, finally, Section VII draws conclusions
and recommends future work.

II. BACKGROUND

This section provides some concepts of the publish/sub-
scribe interaction schema and the integration testing addressed.

A. Publish/Subscribe interaction schema

The publisher/subscribe interaction schema studied is im-
plemented in ROS (Robotic Operational System) [18]. ROS is
a meta-operating system that consists of an open-source library
and tools provided by Willow Garage for the development
of robotic applications [18]. It is integrated with tools and
libraries, such as OpenCV, a library of programming functions
for computer vision of real time, Point Cloud Library (or PCL)
for point cloud processing, Gazebo, a multi-robot simulator
for outdoor environments, and Player, a network server for the
robot control that provides a clean and simple interface to the
robots sensors and actuators over the IP network.

A distributed system developed in ROS is formed by many
nodes that either run in a single machine or are distributed over
different machines. The communication among nodes can be
established through two basic mechanisms (Figure 1). The first
uses services (synchronous communication) that enable nodes
to send or receive requests to/from another node. The second
is the publisher/subscribe interaction (asynchronous), in which
a node can publish messages in a topic, as well as subscribe
from a topic to receive messages from other nodes. Our test
model focuses on the publish/subscribe interaction [8].

A node is an executable file that uses ROS to communicate
with other nodes by sending messages. A message is a data
structure that comprises typed fields. A node sends out a
message by publishing it to a given topic. The topic is a name
used for the identification of the content of a message. If a
subscribe node expresses its interest in an event, or a pattern of
events, it is notified of any event generated by a publisher that
has matched its registered interest. An event is asynchronously
propagated to all subscribers that have registered interest in it.

The publish/subscribe interaction provides the loosely cou-
pled interaction required in such large scale settings. This
loosely coupling occurs because of three features: referential
decoupling, flow decoupling and time decoupling [8]. When
two nodes communicate, they need to know only the type of
data they will produce or consume; no extra information is
required. This feature is called referential decoupling. Flow
decoupling occurs when two processes do not block each other
when a message has been sent. Time decoupling enables the
transmission or reception of a message at any time. Section III
provides an example to illustrate a system described in ROS.

http://www.willowgarage.com/

Fig. 1. ROS Communication Model [1].

B. Integration Testing

Different connotations are used for the test phases. We
consider the test of the communication among methods of
different components (one or more classes) that compose a
system an integration testing.

Integration testing should be conducted after the unit test-
ing and the most used test case designs explore the inputs and
outputs of data, despite the techniques that exercise specific
paths of the source code of the program [17]. This design
form is more common because the objective is to exercise
the interactions and not the features of units. The integration
testing focuses on definitions and uses of variables in differ-
ent units responsible for the communication. Three types of
integration errors can be found [14]: 1) Interpretation error,
which occurs when a unit has implemented a functionality
different from the specification. Examples include wrong, extra
or missing functions; 2) Miscoded call error, which occurs
when the developer has inserted a call instruction in the wrong
point of the program. Examples are a call instruction on a path
or a statement which should not have the call; and 3) Interface
error, which occurs whenever the interface standard between
two modules has been violated. Examples include incorrect
parameters, data types, format and input/output modes. This
work explores mainly the miscoded call and interface errors.

III. MOTIVATING EXAMPLE

This section addresses the identification of an error that
may occur in the commnication among components. Figure 2
shows an example of a layout of a robotic application de-
veloped using ROS. This application is a simplified version
of iRobot Roomba, which explores unknown environments
to clean floors. It contains five components, called processes
in this paper, namely Controller, Proximity Sensor, Collision
Avoidance, Motor Driver and Mapping, illustrated in the graph
generated from the ROS. The communication among these
processes is established using the following topics: odometry,
proximity, cmd motors, velocity, location, time To Impact and
mapper activation.

Listings 1 and 2 show two excerpts of the codes related
to the Collision Avoidance [16] and Controller processes. The
Controller process receives information from time to impact
Callback topic (line 11) published by the Collision Avoidance
process and processes it. In the next step, it publishes data
in the cmd motors topic (line 29), which will be subscribed
by the Motor Driver process. The Controller process also
publishes the robot speed in the velocity topic (line 28), which

http://www.irobot.com/Company

183

will be subscribed by the Collision Avoidance process (line
8). Each code has two callback functions that contain a code
related to the incoming messages. ROS will call the callback
function once for each arriving message. For example, if the
Controller process has published data in the velocity topic, the
callback function, called velocityCallback, is activated (line 8).
The Collision Avoidance process will be notified that a process
has published data of its interest, because it has subscribed
in the velocity topic. The time to impactCallback function is
invoked when data have been published in the time To Impact
topic (line 30).

1 //Collision Avoidance Process
2 State State; // {working, slowed, stopped,

crashed}
3 int proximity;
4

5 proximityCallback(int proximityP) {
6 proximity = proximityP;
7

8 velocityCallback(int speed) {
9 if (speed == 0)

10 time_to_impact = 9999;
11 else
12 time_to_impact = proximity /

speed;
13 if (time_to_impact < 2) {
14 if (state != working)
15 state = stopped;
16 else {
17 state = crashed;
18 assert(false); //

Failure
19 }
20 }
21 else
22 if (time_to_impact < 3) {
23 state = slowed;
24 reduceMapping();
25 }
26 else {
27 state = working;
28 activeMapping();
29 }
30 publish(time_to_impact);
31 }

Listing 1. Excerpt of the Collision Avoidance [16] process.

1 //Controller Process
2 State state; //{working, slowed, stopped,

crashed}
3 int time_to_impact;
4 int speed; //{0, 1, 2}
5 int c_motors; //{stop, reduce, working}
6

7 odometryCallback(int odometryX) {
8 odometry = odometryX;
9 }

10

11 time_to_impactCallback(int timeToImpactT) {
12 time_to_impact = timeToImpactT;
13 if (time_to_impact < 2) {
14 c_motors = stop;
15 speed = 0; //break
16 state = crashed;
17 activeMapping();
18 } else if (time_to_impact <= 3) {

19 c_motors = reduce;
20 speed = 1;
21 reduceMapping();
22 state = slowed;
23 } else {
24 c_motors = working;
25 speed = 2;
26 state = working;
27 }
28 publish(speed);
29 publish(c_motors);}

Listing 2. Excerpt of the Controller Process

Communication problems may occur when the interaction
among processes is intense. An example of a defect that can
be identified is the different frequency of publication from two
processes communicating. Line 30 specifies the publication
of the data in the timeToImpact topic. If, for any reason, the
data have been published faster than the Collision Avoidance
process can access, some data can be lost. If that happened,
after their processing the Collision Avoidance process would
produce incorrect outputs and the system would exhibit a non-
expected behavior.

IV. INTEGRATION TESTING APPROACH

Our integration testing approach aims at revealing defects
related to the communication among processes of a robotic
application. The defined testing criteria exercise the input and
output data of the processes, frequency of publishing of the
messages and failures of an application. The testing approach
uses the source code of a program as input to derive the
elements required for each criterion based on a graph. The next
step is to create the inputs for the application or the sets of
test cases able to cover the required elements. The application
is executed and the coverage is analysed for each criterion.
New test data can be generated to improve the coverage of
the elements required until the maximum coverage has been
obtained.

A test model was defined to capture the communication
interfaces and data flow among processes. This model is based
on the work of Souza et al. [19], [21], who defined the
structural testing criteria for MPI (Message Passing Interface)
exploring interactions among processes of a concurrent appli-
cation. Our test model extends this work analyzing specific
details of publish/subscribe communication as the loosely
coupled among processes, and non-determinism during the
processing of the callbacks (from threads and queues).

The proposed test model represent the application using a
composition of two types of graphs, the graph generated by
the ROS and Control Flow Graphs (CFGs). A fixed number
of processes np is created at the beginning of the application.
In our model, p is a process that performs computations and
communicates with another process using streaming topics,
RPC services, and the parameter server of the ROS. Set of
processes P and inter-processes edges T are represented in the
Publish/Subscribe-based Def-Use graph (PSDU). Each process
p of the PSDU graph has its own internal structure which is
represented by a CFG.

A CFG is a directed graph that represents the structure of
a program as nodes and edges. Nodes in the CFG represent

184

Fig. 2. ROS Graph of the iRobot System.

blocks of sequential statements such as if any one statement
of the block is executed, then all statements in the block are
executed. The edges represent the communication among the
nodes of a CFG.

A definition (def) is a location in the program where a
value for a variable is stored into memory. A use occurs in a
location where a value of variable is accessed. In this model
a use can occur of three forms: 1) computation use (c-use),
when the variable is used in a computation; 2) predicative use
(p-use), which occurs when the variable is used in a decision;
and 3) communication use (m-use), which occurs in a inter-
processes edge. A def-clear path for a variable x through the
CFG is a sequence of nodes, n1, n2, .. ,nn that do not contain
a definition of x. The nodes into of CFG in this model also
represent definitions and uses of variables.

Figure 2 shows an ROS graph for the example presented
in the Section III. Each node represents a process and each
edge represents a message between two processes. Figure 3
illustrates an PSDU graph, which is a part of the code of the
Listings 1 and 2 with three processes exchanging messages:
p1, p2 e p3. Each CFG represents a callback method and inter-
processes communication edges link each graph. For example,
in nodes n2, n4 and n5 of the process p1 data are defined
and node n6 they are published. When this occurs the publish
method puts data in an output queue of the ROS and return.
From this point the middleware allocates threads that delivery
this message to the subscribes. For this example, the methods
m1 of process p2 and the m1 of process p3 subscribe messages
from m1 of the process p1. The method m1 of process p1
subscribes messages from m1 of p3.

Based on this model, the criteria for the publish/subscribe
applications are:

• all-nodes-communication criterion: each process of
the PSDU graph will be exercised at least once. The
input and output interfaces of each process should be
exercised by the test case set.

• all-nodes-publish criterion: all processes of the PSDU
graph that have published messages will be exercised
at least once. The interfaces provided will be exercised
at least once by the test case set.

• all-nodes-subscribe criterion: all processes of the
PSDU graph that have subscribed messages will be
exercised at least once. The interfaces for the topics

that have received data will be exercised at least once
by the test case set.

• all-pairs-publish/subscribe criterion: each pair of the
PSDU graph that consists of a process that publishs
data in a topic and another process that has subscribed
messages from the same topic must be exercised at
least once by the test case set.

• all-multiples-publish/subscribe criterion: more than
two processes of the PSDU graph must be exercised at
least once by the test case set. This criterion exercises
the composition of processes. Initially, three processes
are tested; next, the number of processes is increased
until the maximum number of processes of the graph
has been reached.

• all-m-uses criterion: each m-use association of the
PSDU graph will be exercised from the last definition
of the variable in a node ni until the first use of
the variable in the subscribe process psj , i.e., for
each node ni and each x ∈ def(ni), the test set
must exercises a path that covers an inter-processes
association w.r.t. x and ni ∈ ppk.

• all-sequences criterion: different input sequences are
exercised for each subscribe process of the PSDU
graph from different origins (topics). The criterion
exercises the order in which asynchronous events are
received.

V. EXAMPLE OF AN APPLICATION

This example is a simplified application of iRobot Roomba
presented in Section III. For the application of the testing
criteria, the first step is the generation of the elements required
for each criterion (Table I) based on the PSDU graph. Table I
shows some required elements. The second step is the gener-
ation of the test cases for covering the required elements. A
test input for this application is data from the Proximity Sensor
process and the expected output is a command from the Motor
Driver process for the actuators of the robot (wheels). One test
set is able to cover the required elements was generated based
on the testing criteria.

Defects were inserted into the programs for the evalua-
tion of the testing criteria in revealing faults. These defects
focus mainly on the communication among the application
processes. Three types of defects were inserted: 1) changes in

185

TABLE I. SOME REQUIRED ELEMENTS FOR THE EXAMPLE IROBOT.

Criteria Required Elements

All-nodes-communication (n1,1
6), (n2,1

11), (n3,1
8), (n1,1

1), (n2,1
1), (n3,1

1), ...
All-nodes-publish (n1,1

6), (n2,1
11), (n3,1

8), ...
All-nodes-subscribe (n1,1

1), (n2,1
1), (n3,1

1), ...
All-pairs-publish/subscribe ((n1,1

6), (n2,1
1)), ((n2,1

11), (n1,1
1)), ((n1,1

6), (n3,1
1)), ((n3,1

8), (n1,2
1), ...)

All-multiples-
publish/subscribe

((n2,1
11), (n1,1

1), (n1,1
6), (n3,1

1)), ((n1,1
6), (n2,1

1), (n2,1
11), (n4,1

1)), ...

All-m-uses (n1,1
2 , n1,1

6 , n3,1
1 , c motors), (n3,1

1 , n3,1
8 , n1,2

1 , odometry), ...
All-sequences (p1, t1, t2), (p1, t2, t1), (p4, t2, t1), ...

Fig. 3. Example using PSDU.

the frequency of publication of the processes, which occurs
when a process sends data faster than the capacity of the
receptor to take them, or otherwise; 2) non-publication of
expected data by the processes, when an expected datum is
not sent from a process; and 3) changes in the queue size
of a topic that received data from different process, occurs
when the queue size is smaller than necessary regarding the
frequency of publication in a topic from different processes.
Data overwritten in the queues of the topics might result in
problems for the robot.

Three programs were generated from each defect, there-
fore, 9 programs were employed for the evaluation of the
testing criteria. Table III shows the results of the execution
of test cases in the programs. The first column refers to the
identifiers of the programs with defects; the second column
shows the results of the application for the test set. Y indicates
an expected output, therefore, the test case did not reveal the
defect and N indicates an unexpected output, meaning the test
case could reveal the defect in the program.

The testing criteria were manually applied and no drivers
or stubs were used. According to Table III, only a defect
was not revealed by the test cases (Program 2c), because the
inserted defect did not change the expected output. All other
defects were revealed by test cases. The test cases achieved

100% coverage for the elements required. The advantage of the
testing criteria proposed is they support the tester in the control
of the integration testing activity. The tester choise the better
strategy based on this purpose, such as to test only publish
process can be used the all-nodes-publish criterion or if he
need test integration of various processes he can use the All-
multiples-publish/subscribe criterion. The focus of the criteria
is not on the generation of the test cases, but on the support
of the systematization of the activity, when the testing criteria
can help in the selection of the parts of the code or specific
combinations of processes to be tested during the integration
testing.

TABLE II. TEST CASES.

Input Expected outputs
-1 stop
1 stop
2 reduce
3 working

100 working

The results from manual application of the criteria shown
the testing activity of various processes of a mobile robotic
system can be supported by the use of integration testing
criteria. The program was executed more than once to cover
all required elements of all-sequences criterion for example.
A testing tool which instruments the code, generates and
integrates the CFGs for all methods can help in this task.
Other specific features of publish/subscribe schema need more
atention as race conditions, deadlocks and concurrent threads
in the processing of callbacks will be explored in next studies
with support of a testing tool.

VI. CONCLUSIONS AND FUTURE WORK

This manuscript has addressed aspects of testing mobile
robotic systems and emphasized the publish/subscribe interac-
tion schema. Specific characteristics of the publish/subscribe
systems, such as non-determinism, restrictions of time and
synchronization of the process have not been totally covered
by the existing testing approaches.

TABLE III. RESULTS OF THE EXECUTIONS ON THE PROGRAMS WITH
DEFECTS

Identifier Test set
p = -1 p = 1 p = 2 p = 3 p = 100

1a Y Y N N N
1b Y Y Y Y N
1c Y Y Y N N
2a Y Y N N N
2b Y Y N N N
2c Y Y Y Y Y
3a Y Y N N N
3b Y Y N N N
3c Y Y N N N

186

We have proposed a family of integration testing criteria
to publish/subscribe systems. Seven testing criteria were de-
fined for a systematic exploration of communication among
components in a mobile robot. The application is represented
by an PSDU graph generated from the ROS meta-operating
system and CFGs for the identification of the elements required
for these criteria. The defects identified would not usually
be revealed with the use of simulations only or unit testing
because the focus of our model is on exploring the internal
characteristics of each process and its influences in the pub-
lish/subscribe schema. An example shown the ability of our
approach to support the integration testing activity.

We intend to use more complex systems as case studies
to test concurrenct aspects when more intense computation is
involved. In addition comparing our testing criteria with other
testing approaches (simulation using VSTs, for instance). We
are currently developing an coverage analysis tool to support
the integration testing criteria.

ACKNOWLEDGMENT

The authors acknowledge the Brazilian funding agencies
FAPESP, under processes 2013/03459-4 and 2013/01818-7
and CAPES, under process DS-8435201/M, for the financial
support provided for this research.

REFERENCES

[1] Ros/concepts. http://wiki.ros.org/ROS/Concepts. [Acessed 18/10/2014].
[2] A. G. Araújo. ROSint - integration of a mobile robot in ROS

architecture. Master’s thesis, University of Coimbra, Coimbra, Portugal,
2012.

[3] Y. Ben-Asher, Y. Eytani, E. Farchi, and S. Ur. Producing scheduling
that causes concurrent programs to fail. In Workshop on Parallel and
Distributed Systems: Testing and Debugging, pages 37–39, 2006.

[4] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback.
Orca: A component model and repository. In Software Engineering for
Experimental Robotics, volume 30, pages 231–251. 2007.

[5] H. Bruyninckx. Open robot control software: the OROCOS project. In
Int. Conference on Robotics and Automation, volume 3, pages 2523–
2528, 2001.

[6] Q. Chen, L. Wang, Z. Yang, and S. Stoller. HAVE: Detecting atomicity
violations via integrated dynamic and static analysis. In Fundamental
Approaches to Software Engineering, volume 5503, pages 425–439.
2009.

[7] Z. Chen, X. Li, J. Y. Chen, H. Zhong, and F. Qin. SyncChecker: Detect-
ing synchronization errors between MPI applications and libraries. In
Parallel Distributed Processing Symposium (IPDPS), pages 342–353,
May 2012.

[8] P. Eugster, P. A. Felber, R. Guerraoui, and A. Kermarrec. The many
faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131, June
2003.

[9] L. C. Fernandes, J. R. Souza, G. Pessim, P. Y. Shinzato, D. O. Sales,
V. Grassi Jr., K. R. L. J. Branco, F. S. Osorio, and D. F. Wolf. Ca-
RINA intelligent robotic car: Architectural design and implementations.
Journal of Systems Architecture, 2013.

[10] B. P. Gerkey, R. T. Vaughan, K. Stoy, A. Howard, G. Sukhatme, and
M. J. Mataric. Most valuable player: a robot device server for distributed
control. In Int. Conference on Intelligent Robots and Systems, volume 3,
pages 1226–1231 vol.3, 2001.

[11] M. Y. Jung, A. Deguet, and P. Kazanzides. A component-based
architecture for flexible integration of robotic systems. In Int. Conf.
on Intelligent Robots and Systems, pages 6107–6112, Oct 2010.

[12] J. S. Kang and H. S. Park. RPIST: Required and provided interface
specification-based test case generation and execution methodology for
robot software component. In Int. Conference on Ubiquitous Robots
and Ambient Intelligence, pages 647–651, 2011.

[13] S. S. Kang, S. W. Maeng, S. W. Kim, and H. S. Park. SITAT:
Simulation-based interface testing automation tool for robot software
component. In Int. Conference on Control Automation and Systems,
pages 1781–1784, Oct 2010.

[14] H. K. N. Leung and L. White. A study of integration testing and
software regression at the integration level. In Conference on Software
Maintenance, pages 290–301, 1990.

[15] J. H. Lim, S. H. Song, T. Y. Kuc, H. S. Park, and H. S. Kim. A
hierarchical test model and automated test framework for RTC. In Int.
Conf. on Future Generation Information Technology, pages 198–207,
2009.

[16] C. Lucas, S. Elbaum, and D. S. Rosenblum. Detecting problematic
message sequences and frequencies in distributed systems. In Int. Conf.
on Object Oriented Programming Systems Languages and Applications,
pages 915–926, New York, NY, USA, 2012.

[17] R. S. Pressman. Software Engineering: Practitioner’s Approach.
McGraw-Hill, 6 edition, 2005.

[18] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. ROS: an open-source robot operating system.
In ICRA Workshop on Open Source Software, 2009.

[19] P. S. L. Souza, S. R. S. Souza, and E. Zaluska. Structural testing
for message-passing concurrent programs: an extended test model.
Concurrency and Computation: Practice and Experience, 26(1):21–50,
2014.

[20] S. R. S. Souza, P. S. L. Souza, M. C. C. Machado, M. S. Camillo,
A. S. Simão, and E. Zaluska. Using coverage and reachability testing to
improve concurrent program testing quality. In Int. Conf. on Software
Engineering and Knowledge Engineering, pages 207–212, Eden Roc
Renaissance Miami Beach, USA, Jul 2011.

[21] S. R. S. Souza, S. R. Vergilio, P. S. L. Souza, A. S. Simão, and
A. C. Hausen. Structural testing criteria for message-passing parallel
programs. Concurrency and Computation: Practice and Experience,
20(16):1893–1916, 2008.

[22] A. S. Tanenbaum. Modern operating systems. Second edition, 2001.

187

Embedded Real Time Blink Detection System
for Driver Fatigue Monitoring

Soheil Salehian∗ & Behrouz Far†
Department of Electrical and Computer Engineering,

University of Calgary,
Calgary, Canada.

Email: ∗ssalehia@ucalgary.ca, †far@ucalgary.ca

Abstract—Fatigue induced vehicle accidents have seen an
increase in the last few decades. Fatigue monitoring using non-
invasive and real time image processing and computer vision
techniques have shown great promise and are an active research
area. To that extent, in the proposed work a blink detection
algorithm is proposed that serves as a visual cue that may
be correlated to the state of fatigue of the driver. Using a
complimentary but independent approach, shape analysis and
histogram analysis are carried out in parallel to perform the
blink detection task. Close to real time performance and a
high level of accuracy in controlled settings show great promise
of such approach in enhancing the monitoring of the driver’s
blinking patterns. One of the main constraints of using such
algorithm in a real world setting is the minimized processing time
required to allow for sufficient driver response time. In this work
implementation of the algorithm is described using optimization
techniques to meet such latency requirements. The validation of
the algorithm was carried out by visual inspection of the video
sequences in terms of precision and accuracy. The presented
blink detection algorithm has a precision rate of 84% and an
accuracy rate of 69% obtained through using 12 sequences of
different duration videos in varying lighting conditions using a
small sample of participants.

Index Terms—computer vision, blink detection, driver fatigue,
image processing.

I. INTRODUCTION

The alarming number of traffic accidents due to driver
fatigue accounts for more than half of all truck collisions in
the United States [1]. Diminished levels of attention caused by
fatigue, increases response time while in more severe cases it
may result in short lapses of sleep by the driver. Research has
shown that after 2-3 hours of constant driving, fatigue plays an
important factor in slowing decision making and perception of
the driver of the vehicle. More recently, a study by the National
Sleep Foundation in the US showed that in their study, more
than 51% of adult drivers with drowsy symptoms had driven a
vehicle and 17% had momentarily fallen asleep while driving
[2]. It is estimated that 1,200 deaths and 76,000 injuries are
due to fatigue induced accidents annually. Due to the recent
attention to fatigue related crashes, fatigue detection systems
have become an active area of research.

There has been substantial work on characterizing driver
fatigue based on various models. Dinges et al. [3] showed
that physiological signals such as the electroencephalography
(EEG) and the electro-cardiogram (ECG) can be used to

measure fatigue. Other less intrusive methods using physical
information of the vehicle combined with the patterns of
driving has also been researched extensively with limited
success[4]. Although the most accurate results have been
reported using physiological instrumentation, such systems are
not practical as they require initial setup which is a hassle
for the driver [5], [6]. With non intrusiveness constraints,
another category of methods that has become an active re-
search area is non-intrusive online monitoring of the driver
using computer vision. In this category, ”visual cues” such
as gaze, head movement, and eye blink rate is tracked in
order to accurately estimate the state of the driver. These
computer vision techniques aim to extract visual fatigue related
characteristics in real time using image/video processing. For
instance, Boverie et al. [7] developed a system to correlate
eyelid movement to estimate the degree of vigilance of the
driver. While others such as Ueno et al. [4] looked at methods
to measure the degree of openness of the eyelids to make the
fatigue characterization. The majority of such early studies
involved strictly controlled environments, lighting conditions
and line of sight for the extraction process to work properly.
Recent clinical research on the effectiveness of blinks as
strong indicators of fatigue [8], make blink detection a strong
candidate that is the basis of the following work.

Although most of previous work has focused on the ability
of the vision system to correctly detect blinks in various
lighting conditions, in real world software vision systems there
are response time requirements that dictate the effectiveness
of such systems. Studies by Muttart [9] have quantitatively
examined the driver response times based on various real
conditions on the road. Their conclusion suggested that there is
a variety in response time in drivers that is obviously correlated
to driver speed and conditions. Therefore, it is of note to
mention that the response time of a developed computer vision
system should be minimized as much as possible to account
for this variation in driver population and allow for sufficient
time of reaction in real settings. From the moment the system
has the image data this time is labelled processing time and is
required to respond in less than an estimated 900ms. It is the
focus of the following work to not only develop the algorithm
but enhance in its performance on an implementation in an
embedded system with real time constraints.

(DOI reference number: 10.18293/SEKE2015-249)
188

In the presented chapter, an eye blink detection algorithm
is proposed using machine learning and image processing
techniques in an effort to enhance the robustness of blink
detection as an important part of a driver fatigue monitoring
system. The contribution of this work includes two compli-
mentary algorithms that exploit different information in each
image/frame in order to arrive at a more robust estimation of
the driver blink rate along with their concurrent implementa-
tion on an embedded system achieving real time requirements.
The remainder of the paper is organized as follows: Section
II provides a detailed explanation of the proposed algorithm
methodology. The implementation details and optimization
required to enhance performance of the vision system is
described in Section III. The results of the critical steps of
the algorithm and the validation methodology is presented in
Section IV. A discussion of the results of the algorithm in
a video processing setting is part of Section V and finally,
conclusions on effectiveness and limitations of our approach
along with future work is outlined in section VI.

II. METHODS

In the following section, the eye blink algorithm is described
with a detailed discussion on key sections of the algorithm
such as: face detection, eye detection, pre-processing of the
region of interest (ROI), shape analysis, complimentary his-
togram analysis method and combination of their outputs. The
algorithm was designed using a set of real-time video captures
in various lighting conditions for robustness verification.

A. Algorithm Overview

The high level flow of the proposed algorithm, initiates with
detecting the face area using Haar-features. These features are
extracted using a Haar classifier that has been trained with
frontal face images. Once the face area is located, a second
classifier using similar Haar-features finds the eye band area
for both eyes. This eye band area is the ROI that will be
processed by two separate eye blink detection methods. In one
method, called pipeline A, the gray scale image of the initial
frame is used as input. Then, the edges within the ROI are
detected using the canny edge detector with a 3× 3 Gaussian
blur filter to remove noise. This edge detection works well
because there is a strong contrast between the iris and the
choroid.

The algorithm proceeds by doing contour analysis, where
the various large contours of the ROI are examined further.
Due to the elliptical shape of the eyes while being open, an
ellipse fitting is performed to identify the eyes as open. Upon
closure of the eyes, the number of ellipses, corresponding to
each eye, in the image reduces greatly which indicates that a
blink may have happened.

However our experimentation shows that contour informa-
tion may not be sufficient in robustly detecting the blinks.
Therefore we have chosen to implement a second computation-
ally efficient method that concurrently enhances the detection
outcome.

Face Detection
Using Haar-

features

Eye Band
Detection Using

Haar-features

Blink
Detection
Methods

Canny Edge
Detection

Contour
Analysis

Ellipse Fitting

Global
Threshold

of Negative

Histogram
Analysis

Combined
Results

Fig. 1: Flow chart representation of the proposed blink de-
tection algorithm. Please note the two parallel sub-algorithms
and the combination of their results.

In parallel, a secondary method (pipeline B) looks at non
spatial information of the ROI. This second method, takes the
negative of the frame and uses a simple threshold to globally
threshold high pixel values (which will include the surrounding
areas around the eyes and the eye structure). The histogram
of such binary image has a bimodal shape with two impulses.
It can be observed that blinking reduces the number of white
pixels because momentarily the eyelids will cover the eyes and
there is a shift of pixels from the high end of the histogram to
the low end which is detected by the algorithm. The fusion of
the results of contour/shape analysis with histogram analysis
allows for the detection of eye blinks.

A flowchart representation of the algorithm overview is
presented in Fig. 1. The various stages of the algorithm is
explained in more detail in the following sections.

B. Face Detection

The following section presents the learning-based method
used in detecting the face area in our blink detection algorithm.
Learning based methods use training samples in combination
with statistical and machine learning models that have have
shown to be effective in detecting facial features [10]. One
main advantage of learning methods is their ability to adopt
to various scenarios given adequate and large training sets.
Variety of lighting conditions, driver demographics and other
features specific to the driving of the vehicle can be included
in the training set in order to increase accuracy and robustness
of the face detection process.

Viola et al. [11] proposed a set of features named Haar-
like features due to similarity to Haar wavelet basis functions.
Their algorithm has gained popularity due its robust and com-
putationally efficient property for object detection specifically
in the face detection domain. Haar-like features use the change
in contrast of adjacent rectangular groups of pixels instead of
the pixel’s own intensity values. The variance between the
neighbourhoods surrounding the pixel are used to identify
areas of high and low intensity values. Different number of

189

grouping of such basis functions based on their variance can
result in detecting different types of features such as edge, line
or center-surround features [12].

The simplicity of these features allow for scaling and
therefore scale-invariant detection of face region in the frame.
Viola et al. [11] showed that for a rather small image, the total
number of such elementary features is in the order 180,000
which may be impractical to calculate [12]. However, for
accurate object detection, they noted that not all features are
required. By transforming the image into what they called
an ”integral image”, any of the haar features is able to be
computed at any scale in constant time. The construction
of the features is initiated by generating the integral image.
The integral image intermediate representation (iI) of original
image (I) at x,y contains the sum of pixels above and to the
left at x’,y’ which can be formally defined as:

iI(x, y) =
∑

x′≤x,y′≤y

I(x′, y′)

Then the cumulative row sum s(x,y) is:

s(x, y) = s(x, y − 1) + i(x, y)

Then the integral image can be re-written in terms of the
cumulative row sum as:

iI(x, y) = iI(x− 1, y) + s(x, y)

Using this simple technique in generating the integral im-
age, all the combination of rectangle feature sets may be
constructed which makes feature generation computationally
efficient. These features are sensitive to presence of edges,
bars, and simple structures with only horizontal, vertical and
diagonal orientation [11]. Specifically in the case of face
detection, it was noted that some features are more effective
than others based on exploiting the property of the region of
the eyes that is often darker than the region of the nose and
cheek (with a higher variance in the eye region) and similarly
darker region of the eyes from the bridge of the nose.

The effect of different lighting conditions are important in
a variance based method and therefore during the training it
was addressed by a variance normalization procedure defined
as:

σ2
w = µ2

w − 1

N

∑
p2w

Where the variance σ2 of window w is defined in terms of
mean of the window (µw) and the sum of squared pixels p
of window w. The summation is calculated using the integral
image procedure previously described. It is important to note
that such normalization in the training procedure is inherently
needed in the detection phase as well.

With the feature generation phase complete, a learning
method is required in order to perform a classification func-
tion. The AdaBoost learning algorithm is used for both tasks of
feature selection and the training of the classifier [13]. Using

(a) Open eyes ROIs (b) Closed eyes ROIs

Fig. 2: Results of face (blue) and eye band (green) ROI
detection using Haar-classifiers. The classifier has worked well
in in identification of the eye ROI regions while the eyes are
closed in (b).

the Adaboost weak learner procedure, each classifier can only
depend on a single feature and cascading of such classifiers
allow for a robust method for scale invariant object detection.

A large reduction in the number of non-contributing fea-
tures, and its excellent generalization performance allows
AdaBoost to be used in a cascaded format that forms the
cascade classification of haar-features. The cascading of clas-
sifiers allows for training each classifier using AdaBoost and
adjusting each classifier’s threshold and weights to minimize
false negatives using error minimization.

The results have proven to have a high accuracy rating and
a subsequent better performance as the cascading continues.
This makes the haar-like cascaded classifier method ideal
for the face detection task of our real time blink detection
algorithm.

C. Eye Band Detection

The eye band detection method to identify the eyes in
each frame uses the same methodology as the face detection
mechanism via Haar-like features and AdaBoost combination.
Beyond the technical aspects of the classifier mechanism, for
the eye detection few considerations are worth mentioning:
• By finding the face region in each frame, the ROI for

eye detection becomes smaller and the performance of
the classifier increases dramatically.

• A separate training set for eyes is used to train the clas-
sifier. In the case of this work in its current form, a pre-
trained classifier was used which performed adequately
for the eye detection task.

• The decision was made to detect both eyes as an ”eye
band” as the trained classifier performed best when both
eyes were facing the camera.

Fig. 2 demonstrates the results of simultaneous face and eye
detection for frames corresponding to both open and closed
eyes using the described procedure.

D. Canny Edge Detection

Edge detection is an important procedure and a first step in
identifying objects of interest in the image. Once the ROI has
been identified, edge detection allows for structural analysis

190

(a) Open eyes Canny output (b) Closed eyes Canny output

Fig. 3: Results of canny edge detection using
lowThreshold = 60 and maxThreshold = 140 for
both open and closed cases. Please note that while closed, the
detector has only detected the shadow area around the eyes.

inside the ROI which in the case of this work is the eye
band detected in the previous stage. There are a number of
edge detectors that may be used depending on the desired
structural properties. In the proposed algorithm, the popular
Canny edge detector algorithm [14] was selected due to its
following characteristics:

1) Robust detection: in the blink detection application, the
probability of detecting real edges need to be quite high
despite high noise levels in each frame.

2) Computationally inexpensive: due to the real time nature
of the application, high performance was a secondary but
important deciding factor.

3) Step edges: the strong variance between the eye region
and skin (both horizontally and vertically) can be char-
acterized as step edges which the canny algorithm was
originally designed for [14].

The resulting output of this stage, is a binary image that
identifies all the corresponding edges in the eye band area. Fig.
3 shows the effect of the operator in open and closure sample
cases described previously. It is worth mentioning that the low
threshold for the method was proven to be critical in detecting
important edge structure between the eye choroid and the
pupil. A severely low threshold would mark many details of
the eye band as edges which was sub-optimal for the blink
detection algorithm. The thresholds were chosen empirically
based on the training set frames during development.

E. Contour Extraction & Analysis

By finding the strong edges using the previous operation
in the eye band region, the structural information of the ROI
is ready for further analysis in detecting the eye regions. The
goal of this proposed stage is to find an approximation of
all the contours that are present in each frame. The following
section explains in detail how contour extraction from the edge
information is accomplished and the corresponding analysis
that is carried out on each contour.

The contour extraction operation used in our algorithm is
based on the work of Suzuki et al. [15] where a topological
analysis is done on the contours found by what is known as
”border tracing” based on earlier work by Rosenfeld et al.[16]
and the utilization of Freeman’s chain codes [17].

Once all contours are traced using the above algorithm,
the operation proposed by Suzuki et al. derives a sequence
of coordinates on each contour and constructs a topological
ordering of such coordinates. It was shown that using such

technique, both outer contours and inner contours (holes)
can be effectively labeled and the topological analysis can
lend to accurate categorization and discrimination of enclosing
contours vs. inner contours. In the case of our blink detection
algorithm, due to the large size of both eye regions in the
band area, it was desired to analyze the outer contours in each
frame. The proposed algorithm exploits the fact that during the
blinking motion, larger contours of the eye will be deformed
and disappear rapidly and hence extracting the contours is a
first step in monitoring the blinking. Once the contours are
extracted, the proposed algorithm proceeds by calculating the
area of each contour for further analysis. It was observed that
discriminating the large contours (such as large reflections
due to sever lighting conditions) or smaller extracted contours
(due to poor edge extraction) based on area threshold was an
effective method in keeping only contours related to the eye
region. The area threshold is adaptive and based on the size
and resolution of the eye band frame.

F. Ellipse Fitting

Once the corresponding contours to the eye region (the
choroid and iris sections) have been identified, shape analysis
is the next stage of the proposed algorithm. In this section,
the ellipse fitting procedure and some of the assumptions
and criteria of the analysis is discussed in more detail. The
intuition behind the procedure is based on a priori that the
eye region contours have an elliptical shape. Fitzbibbon et al.
[18] evaluated various methods of fitting data to conic sections
based on assumptions of isotropic normally distributed noise
and incomplete contours. Their work is of particular interest
in our application due to its analysis of performance in terms
of algorithm complexity and computation in the task of ellipse
fitting using least-squares as a distance metric. Fitzbibbon et al.
showed that based on their experimentation evaluation of the
popular conic fitting algorithms with strong variants of noise,
orientation, and occlusion, that least-squares based algorithm
of statistical distance (also known as BIAS [19]) has a good
tradeoff between performance and accuracy in fitting contour
points to an ellipse even with the presence of outliers due to
high noise and discontinuities.

During the shape analysis stage of the blink detection
algorithm (implementation in OpenCV), all fitted ellipses had
to meet a discrimination criteria to be included for further
stages. The orientation of the fitted ellipses become important
in distinguishing eyes from other ellipses. It can be observed
that contours of the eye region has an orientation close to
the horizontal line with some varying angle, θ, assuming that
the driver is not orienting their head substantially. Choosing
an appropriate threshold on θ allows the algorithm to only
include ellipses resembling the contours of the eye region (θ
was empirically found to be 10◦). Another discriminant which
was used to avoid fitting all possible contours was the contour
area. Fig. 4 shows the results of ellipse fitting with and without
constraints in both open and eyes closed cases. Please note that
the fitted small ellipse in Fig. 4 (b) has been discarded using
a contour area threshold based on the resolution of the frame

191

(a) Open eyes all ellipses (b) Closed eyes all contours

(c) Open eyes all ellipses (d) Closed eyes all contours

Fig. 4: Results of the ellipse fitting procedure using discrimi-
nant of θ = 10◦ and contourArea = 20 pixels. The red and
yellow line are the ellipse fitting procedure while the green
box is the rectangular fit for orientation analysis.

in Fig. 4 (d). The effect of orientation discriminant can be
observed in between Fig. 4 (a) and (c).

With the shape analysis in place, this pipeline of the
algorithm (pipelline A) is able to classify the eyes in the frame
as open or closed. During the blinking motion, the monitored
number of allowable ellipses at each frame has a reduction of
2 or more which will indicate that the eyes have closed and
therefore the frame can be marked accordingly.

Although this pipeline works in most test cases, it was
observed that due to variations of sampling from different ex-
perimented cameras and the variability in lighting conditions,
the pipeline requires a complementary synchronization mech-
anism to overcome some of these shortcomings. A second
complimentary pipeline (pipeline B) was developed to run in
parallel which will be discussed in the following section.

G. Global Thresholding Of Negative

To independently complement the shape/contour analysis
pipeline discussed in the previous sections, pipeline B was
developed using a rather simple thresholding technique. It was
observed that during the blinking motion, when the eyelids
cover the choroid and iris there is a change in the number of
pixels that represent the skin. By exploiting this idea, a global
threshold on the negative of the gray scale frame is used to
detect the eye region and its approximate surroundings. The
global thresholding is formally defined as [17]:

g(m,n) =

{
0 iff(m,n) ≤ τ

255 iff(m,n) > τ

where the resulting binary image, g(m,n), is based on
the global thresholding operation on the original gray scale
image f(m,n) with threshold τ . This procedure renders robust
results with prior knowledge of the lighting conditions and
range of skin pixel values.

H. Histogram Analysis

Using the resulting binary image, simple histogram analysis
is used to monitor two groups of pixels in the image. One
group belongs to the background and the other group is the
approximate eye region. During the blinking motion, there is a
substantial change in the number of high intensity pixels and a

(a) Open eyes global threshold (b) Closed eyes global threshold

Fig. 5: Results of global thresholding, τ = 185 on the negative
of frames for both open and closed cases. Please note the
decrease of the number high intensity pixels in (b).

comparison of this number with the previous frame has shown
to be robust in the preliminary results of this work. Using this
difference, %d, the frame is classified as closed only if the
difference is greater and equal to 20% of the previous frame’s
number of high intensity pixels (found empirically). Fig. 5
shows the sudden drop of the number of high intensity pixels
during the blinking motion.

I. Merging of Results

In this final stage of the algorithm, the results of the shape
analysis/elliptical fitting (pipeline A) and the results of global
thresholding (pipeline B) is merged for each frame. If results
from both pipelines match to be closure, the frame is classified
as a detected blink. If there is a discrepancy among the
pipelines, the result is marked as an open eye.

III. REAL-TIME IMPLEMENTATION

In this section some of the details of the implementation of
the proposed algorithm is presented. As previously mentioned,
strict real time requirements are present in order for the system
to fulfill the minimization of processing time of 900 ms and
allow for slowest human driver response time in the process.
The embedded system chosen for this work was the Nvidia
Jetson TK1 which includes an ARM Cortex A-15 dual core
processor and a Nvidia GPU for embedded vision applications
on the Ubuntu 14.04 L4T platform. Although our development
environment was similar on Linux 14.04 on x64 machine,
during the porting process on the target embedded system,
there were optimization to be considered. With the latency
constraint of processing time being 900 ms it was important
to optimize CPU code.

One of the main steps in the algorithm that is used by
both pipeline A and pipeline B extensively was the color
to gray scale conversion. With the target platform being an
ARM based CPU with ARM’s NEON [20] capabilities which
allows for single instruction multiple data (SIMD) operations,
the approach chosen was to enhance gray scale conversions
using NEON intrinsic instructions.

The optimized implementation of gray scale conversion
using NEON intrinsics is shown below:
void neon_rbg_gray (uint8_t * __restrict dest,

uint8_t * __restrict src, int numPixels)

{

192

0.023NEON

0.062OpenCV

0 0.02 0.04 0.06 0.08 0.1
Time (s)

Fig. 6: Comparions of our Neon optimized RGB to gray scale
conversion compared to native OpenCV C++ performance.

int i;

// 8x8 Neon registers are filled

// Red channel multiplier

uint8x8_t rfac = vdup_n_u8 (77);

// Blue channel multiplier

uint8x8_t gfac = vdup_n_u8 (151);

// Green channel multiplier

uint8x8_t bfac = vdup_n_u8 (28);

int n = numPixels / 8;

// Conversion in 8 pixel chunks

for (i=0; i < n; ++i)

{

uint16x8_t temp;

uint8x8x4_t rgb = vld4_u8 (src);

uint8x8_t result;

temp = vmull_u8 (rgb.val[0], bfac);

temp = vmlal_u8 (temp,rgb.val[1], gfac);

temp = vmlal_u8 (temp,rgb.val[2], rfac);

result = vshrn_n_u16 (temp, 8);

vst1_u8 (dest, result);

src += 8*4;

dest += 8;

}

}

Fig 6 shows some of the earliest results with comparison to
OpenCV’s native C++ implementation. As it can be observed
a reduced factor of 2.5x allows for the system to meet the
latency requirements of processing time of 900ms.

IV. RESULTS

The following section outlines the results obtained through
experiments of this work. The proposed algorithm was devel-
oped and visually validated using live video processing of a
720p webcam at 20 frames per second using the OpenCV C++
APIs. For validation of this work, our preliminary validation
procedure was carried out from a set of sequence of frames
picked from various recordings in different lighting conditions
and a small sample of subjects. The sampling included a
relatively even distribution of the three possible cases of: open
eyes, closure motion, and closed eyes. As it is evident, the
algorithm initially needs to detect the face and eyeband ROI
region accurately and reliably prior to moving on to the later
stages for blink detection. By constraining the distance away
from the camera and the head orientation of the driver, it was
found that the Haar-feature classifier performs well based on
our qualitative analysis of frames through out development and
on the sequence frames used for validation.

The distribution of the sequences which can be observed
in Table I, are as follows: sequences s1 − s5 were based

TABLE I: Results of proposed blink detection algorithm in
different sequences of frames in moderate (s1−s5), high (s6−
s9) and low illumination (s11−s12) conditions. Accuracy and
precision of each sequence and the total average has been
shown.

Sequence # Frames AP TP FP FN Accuracy Precision

s1 242 16 15 1 0 0.9375 0.9375
s2 200 12 12 0 0 1.0000 1.0000
s3 193 8 8 0 1 0.8889 1.0000
s4 300 4 3 1 2 0.5000 0.7500
s5 275 21 19 2 1 0.8634 0.9048

s6 250 14 12 2 9 0.5218 0.8571
s7 220 9 8 1 6 0.5333 0.8889
s8 244 11 9 2 8 0.4737 0.8182
s9 207 7 5 1 1 0.7142 0.7143

s10 190 10 6 4 2 0.5000 0.6000
s11 202 12 9 3 2 0.6428 0.7500
s12 248 14 13 1 3 0.7647 0.9286

Average 0.6942 0.8458

on moderate illumination conditions, s6 − s9 were realized
in highly illuminated and s10 − s12 were in low illuminated
conditions. The results including the accuracy and precision
of each sequence have been based on the assumption that
the eyeband ROI detection procedure has been successful (as
the algorithm will not carry on if the eye band ROI is not
detected). True positives (TP) include all cases that both eyes
were closed and the system was able to detect the blink. The
cases of detected false blinks when they were either open or
the eye band ROI was not even detected, is labeled as false
positives (FP). The percentage of inability of the algorithm
to detect closure while detecting the eyeband ROI region is
included under the false negatives category (FN). The number
of actual positives (AP) was measured by repeated review of
each sequence via only visual inspection at this time.

A noteworthy detail of the implementation of the algorithm
is that if for any reason the eye ROI is not found, the algorithm
stays idle without exiting the program. The detection resumes
as normal once the ROI is found, which helps in eliminating
non relative frames in the validation procedure. However as it
was discussed previously, in almost all cases 100% of frames
were included due to both the highly robust performance of
the face/eye detection stages and also the controls of the
experiments.

V. DISCUSSION

The preliminary results of the validation of the algorithm,
show promise of the proposed complimentary approach of
using shape analysis in parallel with histogram analysis. This
is apparent in the accuracy and precision results in sequences
s1 − s5 of Table I, where the small sample of participants
in moderate and consistent lighting conditions. However, it
was observed that both the canny edge detector and global
thresholding methods are sensitive to both highly illuminated
environments (observed in sequences s6 − s8) and low illu-
mination conditions (sequence s10− s11).

193

Specifically, the accuracy of sequences s6−s8 has decreased
substantially in comparison to the moderate lighting conditions
of the first set of sequences. The analysis shows that this might
be due to the performance of the canny edge detector. It was
observed that the low threshold and maximum threshold during
its hysteresis phase, needed to be adjusted manually in order to
improve the performance of the edge detection in low illumi-
nation conditions. To improve on this shortcoming, histogram
equalization of the original gray scale was applied which has
helped in reducing low illumination effects. The preliminary
results of inclusion of the histogram equalization operator is
shown in sequence s12 for reference with improvements in
accuracy with a slight negative effect on precision. Further
validation is required to concretely conclude the effect of the
operator.

For high illumination cases, the histogram threshold had to
be re-adjusted as it was observed that due to high illumination
around the eyes, the thresholding results would include a larger
area in the proximity of the eyes and hence a higher number
of high illuminated pixels. This higher number effects the
histogram analysis which means that the difference between
the open eye frame and a closed eye frame may be smaller than
the predefined difference %d set in average illumination cases.
The results show degradation of performance in sequences
s10 − s11. To improve on the robustness of choosing %d, a
normalization factor may be used. The ratio of the number of
high pixels to low pixels seem to have eliminated this issue in
controlled conditions resulting in performance improvements
especially to precision as it can be seen in the results for s9.
However extensive validation is required to analyze the full
effect of this correction.

In terms of computional performance, our implementation
allows to meet the minimum driver response time requirements
of the real time system the algorithm is designed for. More
extensive profiling shows other areas of improvements such as
using the GPU to enhance the performance of edge detection
using the Canny edge detector.

VI. CONCLUSION & FUTURE WORK

This work presented a blink detection algorithm based on
two complimentary, but independent approaches using shape
and histogram analysis. The monitoring of the driver’s blink
patterns was performed in near real time using efficient image
and computer vision techniques. The preliminary results in
terms of total accuracy and precision rates indicate that the
current approach can be useful in monitoring blink detection
for fatigue. The algorithm requires training in more varying
lighting conditions in order to be robust. Future work will
include improvements to the image acquisition system such
as using an infra red camera and also additional preprocessing
techniques such as gamma correction or histogram equaliza-
tion. Furthermore the inclusion of adaptive methods in the
edge detection step and also in the global thresholding stages
will be part of the continuation of this work. Using similar
techniques in identifying other visual cues such as facial

expressions and yawning may enhance the accuracy of a well
defined driver fatigue detection in the future.

ACKNOWLEDGMENT

This work has been supported by the Alberta Innovates
Technology Futures and the University of Calgary. The au-
thors would like to thank Dr. Rangayyan for the technical
discussions during this work.

REFERENCES

[1] Q. Ji, Z. Zhu, and P. Lan, “Real-time nonintrusive monitoring and
prediction of driver fatigue,” Vehicular Technology, IEEE Transactions
on, vol. 53, no. 4, pp. 1052–1068, 2004.

[2] W. Wierwille, “Overview of research on driver drowsiness definition and
driver drowsiness detection,” in Proceedings: International Technical
Conference on the Enhanced Safety of Vehicles, vol. 1995. National
Highway Traffic Safety Administration, 1995, pp. 462–468.

[3] D. Dinges and M. Mallis, “Managing fatigue by drowsiness detection:
Can technological promises be realized?” in International Conference
On Fatigue and Transportation, 3RD, 1998, Frementle, Western Aus-
tralia, 1998.

[4] H. Ueno, M. Kaneda, and M. Tsukino, “Development of drowsiness
detection system,” in Vehicle Navigation and Information Systems Con-
ference, 1994. Proceedings., 1994. IEEE, 1994, pp. 15–20.

[5] M. Kaneda, H. Iizuka, H. Ueno, M. Hiramatsu, M. Taguchi, and
M. Tsukino, “Development of a drowsiness warning system,” in Pro-
ceedings: International Technical Conference on the Enhanced Safety of
Vehicles, vol. 1995. National Highway Traffic Safety Administration,
1995, pp. 469–476.

[6] S. Saito, “Does fatigue exist in a quantitative measurement of eye
movements?” Ergonomics, vol. 35, no. 5-6, pp. 607–615, 1992.

[7] S. Boverie, A. Giralt, J. Lequellec, and A. Hirl, “Intelligent system for
video monitoring of vehicle cockpit,” SAE Technical Paper, Tech. Rep.,
1998.

[8] R. Schleicher, N. Galley, S. Briest, and L. Galley, “Blinks and sac-
cades as indicators of fatigue in sleepiness warnings: looking tired?”
Ergonomics, vol. 51, no. 7, pp. 982–1010, 2008.

[9] J. W. Muttart, “Quantifying driver response times based upon research
and real life data,” in 3rd International Driving Symposium on Human
Factors in Driver Assessment, Training, and Vehicle Design, vol. 3,
2005, pp. 8–29.

[10] A. A. Lenskiy and J.-S. Lee, “Drivers eye blinking detection using
novel color and texture segmentation algorithms,” International Journal
of Control, Automation and Systems, vol. 10, no. 2, pp. 317–327, 2012.

[11] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Confer-
ence on, vol. 1. IEEE, 2001, pp. I–511.

[12] P. I. Wilson and J. Fernandez, “Facial feature detection using haar
classifiers,” Journal of Computing Sciences in Colleges, vol. 21, no. 4,
pp. 127–133, 2006.

[13] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” in Computational learning
theory. Springer, 1995, pp. 23–37.

[14] J. Canny, “A computational approach to edge detection,” Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on, no. 6, pp. 679–698,
1986.

[15] S. Suzuki et al., “Topological structural analysis of digitized binary
images by border following,” Computer Vision, Graphics, and Image
Processing, vol. 30, no. 1, pp. 32–46, 1985.

[16] A. Rosenfeld and A. C. Kak, Digital picture processing. Elsevier, 1982,
vol. 2.

[17] R. M. Rangayyan, Biomedical image analysis. CRC press, 2004.
[18] A. W. Fitzgibbon, R. B. Fisher et al., “A buyer’s guide to conic fitting,”

DAI Research paper, 1996.
[19] K.-i. Kanatani, “Statistical bias of conic fitting and renormalization,”

IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 16, no. 3, pp. 320–326, 1994.

[20] C. Pujara, A. Modi, G. Sandeep, S. Inamdar, D. Kolavil, and V. Tholath,
“H. 264 video decoder optimization on arm cortex-a8 with neon,” in
India Conference (INDICON), 2009 Annual IEEE. IEEE, 2009, pp.
1–4.

194

A Smartphone-based System for Automated Congestion Prediction

Lance Fiondella1, Swapna S. Gokhale2, and Nicholas Lownes3
1Dept. of Electrical and Computer Engineering, University of Massachusetts, Darmouth, MA 02747

2Dept. of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269
3Dept. of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269

Abstract

Accurate collection of traffic data is essential, tactically
for efficient highway operations and strategically for capac-
ity planning purposes. Currently, this traffic data is col-
lected by physical sensors, which suffers from many limi-
tations. These sensors gather limited measurements of vehi-
cle speeds and times from their fixed locations and cannot
systematically acquire mobility dynamics of individual ve-
hicles and the interactions among them. Also, because de-
ploying and maintaining physical sensors is expensive and
time consuming, typically they are installed to measure traf-
fic only on the busier road segments within a transportation
network. To overcome these issues, this paper reports on a
general-purpose, location-aware, smartphone-based traffic
monitoring system as a simple and an inexpensive alterna-
tive to collect dynamic vehicle data extensively through a
transportation network. A privacy-preserving smartphone
application was developed, deployed, and tested on the net-
work surrounding the University of Connecticut (UConn) in
Storrs. It securely transmits individual trip data over the
Internet to the servers hosted at UConn. Preliminary ex-
perimentation suggests that crowdsourcing the collection of
traffic data with smartphones can be cost effective and can
lead to richer data sets spanning the entire web of roadways.

1 Introduction

Presently, many highway operations centers rely on phys-
ical sensors deployed at fixed locations to collect traffic data.
Large volumes of video feeds collected by these sensors are
then monitored and analyzed by human experts to identify
evolving conditions that may disrupt traffic flow, including
rush-hour congestion and accidents. These experts must also
manually enter traffic alerts to be displayed on signs to cau-
tion motorists of the present and changing conditions that
may negatively impact travel. Collecting traffic data using
physical sensors suffers from three drawbacks:

• Sensors can collect measurements only from a set of
fixed locations, with no means to either record or in-
fer traffic conditions between these discrete collection

points. Capturing traffic data on a continuum, however,
can offer better insights into what is transpiring be-
tween these discrete locations. Based on such contin-
uous data, we can infer traffic conditions that vehicles
will encounter through the network, accurately predict
impending congestion before it becomes severe, and
issue warnings to motorists to seek alternate routes.
Such proactive warnings may be superior compared to
the current, reactive alerts that cannot prevent motorists
from being engulfed in heavy congestion.

• Physical sensors collect measurements on the collec-
tive, aggregate traffic behavior rather than gathering
data on the mobility dynamics of individual vehicles
including their acceleration, decceleration, and steer-
ing. They also cannot report on the interactions among
the vehicles. Vehicle-level measurements such as the
acceleration and deceleration could be correlated to
the safety of a road segment, while inter-vehicle inter-
actions could offer new insights into how congestion
forms and at what rate.

• Deploying and maintaining sensors on roadways can be
expensive, time consuming, and hazardous. Because of
these monetary and safety constraints, physical sensors
may be installed only on busy roadways, and hence, au-
tomobile traffic traveling only on these road segments
can be measured.

In the recent years, modern technologies such as
Global Positioning System (GPS)-enabled smartphones
have emerged as a promising alternative to overcome
the data collection drawbacks posed by physical sensors.
Such location-enabled smartphones can provide continuous
streams of mobility data for individual vehicles that can sup-
port the construction of their time-varying models. These
vehicle-level models can then be fused to form a more com-
plete and nuanced picture of network conditions. An addi-
tional advantage of using smartphones is that the measure-
ments are not limited to automobiles but can also be gener-
ated as a traveler navigates other modes including mass tran-
sit and pedestrian walkways. Therefore, smartphone mea-
surements can support multi-modal models to characterize
an individual’s behavior traversing multiple means within a

(DOI reference number: 10.18293/SEKE2015-183) 195

transportation network. These models can thus provide a
holistic view of how different modes interact, which have
traditionally been studied in isolation. Finally, crowdsourc-
ing data collection to smartphones is virtually free, incurs no
deployment and maintenance costs, and promotes the safety
of roadway workers.

Despite their promise, there is very little research on the
suitability of GPS-enabled smart phones to monitor traffic
conditions across the entire transportation network. Exist-
ing works demonstrate a narrow scope, such as: (i) measur-
ing traffic from fixed or static locations [4, 2]; (ii) restricting
to specialized networks such as highways [1] or university
campuses [4]; or (iii) covering only one mode, for example,
public transportation [5]. This paper reports on the archi-
tecture and non-functional properties of a general-purpose
smartphone-based monitoring system to collect continuous
streams of traffic measurements. The system captures a
sequence of locations and transmits these data points over
the public Internet to a server for storage and processing.
Experimental deployment, data collection, and analysis on
the transportation network around UConn demonstrates the
promise of using crowdsourced technology for efficiently
collecting richer traffic data through the web of roadways
spanning the entire transportation network. Such detailed
data can feed sophisticated models which can be used to plan
capacity, enhance road safety, and reduce congestion.

The rest of the paper is organized as follows: Section 2
describes the system architecture and its properties. Sec-
tion 3 presents the preliminary experiment and analysis.
Section 4 surveys related research. Section 5 offers con-
clusions and directions for future research.

2 Traffic Monitoring System

We describe the architecture and non-functional proper-
ties of the smartphone system for collecting traffic data.

2.1 Architectural View

The following three major components of the smartphone
system are organized as a pipeline. This section describes
the functions and the technologies used to implement these
components and the communication between them.

The Smartphone Application has a simplistic interface,
with just two buttons. One button begins and the other one
ceases the data collection. Clicking on the “Start Trip” but-
ton generates a random numeric identifier, which remains
constant through a session. Unlike sensors that measure
traffic only from static locations, this identifier will enable
a traveler’s path to be re-constructed because of its associa-
tion with a sequence of data points that contain the traveler’s
time and GPS locations.

The application then runs a simple loop that periodically
acquires the phone’s longitude and latitude coordinates. The
period or the time interval between the sampling of two data

points denoted by timeStep is a configuration parameter of
the application. A counter is initialized to zero and incre-
mented each time the coordinates are sampled. The nu-
meric values of longitude and latitude are concatenated to
two separate comma delimited strings. When the counter
reaches a preset threshold denoted by dataPoints in the code,
the sequence of coordinates is transmitted to a database
server through the Internet. After transmitting the current
sequence, the application begins collecting a new one. This
process repeats indefinitely or until the application is termi-
nated by the user. The number of data points that the appli-
cation must collect before transmitting the sequence is also
a configuration parameter of the application.

We used Sencha Touch [6] and PhoneGap [7] to imple-
ment the smartphone application because professional de-
velopers at the University of Connecticut (UConn) recom-
mended this combination of technologies, and offered tech-
nical support. Sencha Touch is a HTML5 mobile appli-
cation framework to build apps for iOS, Android, Black-
Berry, Windows Phone, and other devices. It exposes the
native application programming interfaces (API) of various
devices through its unified framework, hoping to achieve a
high degree of platform independence. PhoneGap is an open
source application container technology to create natively-
installed applications for mobile devices with HTML, CSS,
and JavaScript. It can output a binary application for de-
ployment to a particular platform such as IPA file (iOS Ap-
plication Archive) or an APK file (Android Package). Thus,
Sencha Touch and PhoneGap support the development and
deployment of programs that target multiple platforms with
minimal effort.

The Database Management System (DBMS) uses
MySQL database running on an Apache web server [8] to
store the data collected by the smartphone application. The
web server is hosted within the Department of Civil & En-
vironmental Enginerring at UConn. This server resides be-
hind the School of Engineering (SoE) firewall under the au-
thority of ECS and is password protected to prevent unau-
thorized access. Both MySQL database and Apache web
server are a part of XAMPP [9], which is an open source
Apache distribution containing MySQL, PHP (PHP: Hyper-
text Preprocessor, formerly Personal Home Page) [10], and
Perl. MySQL supports database creation and standard struc-
tured query language (SQL) commands to dynamically in-
sert, update, and delete data. The Apache Project develops
and maintains an open source HTTP server for operating
systems, including UNIX and Windows NT.

The SQL table to store traffic data has four fields:

1. vehicle ID: A numeric identifier of 10 digits, generated
by the smartphone application and common to all data
points in a single trip.

2. t stmp: The timestamp at which a longitude/latitude
pair was sampled by the smartphone.

3. lon: Longitude of a data point.

196

4. lat: Latitude of a data point.

We note that the smartphone only collects and
transmits the latitude and longitude coordinates of the
phone. We can convert these latitude and longi-
tude sequences into the distance or displacement be-
tween successive points. For example, GeoData-
Source (http://www.geodatasource.com/developers) pro-
vides source code to perform this conversion in 12 different
programming and scripting languages. These displacements
can be used to compute acceleration and deceleration.

A PHP Web Page was implemented and deployed on the
server hosting the MySQL database to transmit data from
the smartphone application to the DBMS. This PHP web
page contains a form and code to process the data submitted
through the form. Figure 1 shows the form, which creates a
channel for the data as it is transmitted from the smartphone
application to the MySQL database. The smartphone appli-

Figure 1. PHP Form for Data Channel

cation automatically populates the fields shown in Figure 1
to the form. vehicleID is the numeric identifier, timeStamp
is the time at which the initial data point in a sequence was
collected and timeStep is the constant interval between the
data points. lonSeq and latSeq are comma delimited strings
of signed double precision values representing the longitude
and latitudes tuples. passwd is a hidden field that does not
display on the web page. The password is embedded in the
application to ensure that the data is in proper format be-
fore it is inserted into the database. This also prevents users
from injecting garbage data. The PHP web page processes
the data posted through the form only after authentication.
It then dynamically constructs an SQL command to insert
the sequence into the DBMS. Figure 2 shows how the com-
ponents of the system communicate during a typical session
of the application. Once the application is started, the trav-
eler’s location is sampled periodically and recorded. After
collecting a certain number of data points, the application
transmits this sequence to the database server via the PHP
enabled web page, which builds a sequence of SQL queries
that insert the location and time data. The database supports
queries for analysis and modeling.

Figure 2. Communication Between Compo-
nents of Smartphone System

2.2 Architectural Properties

In this section, we outline our design choices to achieve
key non-functional attributes.

Performance is concerned with the timely delivery of
the data. Sending each latitude-longitude pair as it is sam-
pled, however, will be inefficient and drain a phone’s bat-
tery rapidly. On the other hand, transmitting data in batches
sacrifices the timeliness of delivery, which can be vital to
predict congestion in real time. Thus, performance and en-
ergy efficiency conflict, and we balance these two competing
goals by grouping a series of measurements and then trans-
mitting this entire sequence.

Transmitting a group of measurements also reduces the
number of bits transferred. This is because the applica-
tion acquires the location data at fixed time intervals, and
hence, the timestamps of the entire sequence of coordinates
contained in the group can be inferred based on the initial
one. Obviously, the savings in bits realized by this choice
increases with the number of coordinate tuples grouped to-
gether in a sequence. Nevertheless, the size of the sequence
transmitted grows with the number of tuples. The extreme
case will involve transmitting the entire sequence at once
at the end of the trip. However, this deferred delivery will
delay the prediction of congestion, and in some cases even
make it irrelevant. Moreover, transmitting a large group of
data can be unreliable, if bit error rates cause parts or the
entire sequence to be lost.

Reliability ensures that the data is delivered to the server
without loss or corruption. Software and application fail-

197

ures, and poor wireless coverage can cause loss of data. Of
these, failures of the wireless channel can be tolerated de-
spite intermittent availability, which may often occur in lo-
cations such as underground tunnels with weak GPS sig-
nals. To prevent data loss from poor coverage, the applica-
tion buffers the collected sequences on the phone, and then
transmits these when the communication is re-established.

The application promotes Safety through simplicity of
design that renders it non intrusive. It also directly encour-
ages safe driving by explicitly instructing the user to start
the application before and discouraging its use while driv-
ing. Thus, the application collects and transmits data in the
background without active involvement from the user.

Privacy and security is achieved by not collecting any
Personally Identifiable Information (PII) such as the user-
name and password or the hardware identifier of the phone.
The application captures the dynamics of each trip by an
individual, but generates a new identifier per trip. This elim-
inates the need to collect PII without sacrificing the per-trip
details. To ensure the security and privacy of the data dur-
ing transit, the Advanced Encryption Standard (AES) [11],
from the U.S. National Institute of Standards and Technol-
ogy (NIST), was incorporated through Sencha Touch.

3 Experimental Study

This section details an experiment conducted by de-
ploying the smartphone application on the Android
phone of an undergraduate student. With this phone,
she rode on the Orange Line bus route around the
UConn campus. The random identifier for the trip
was 7225472983 and consisted of 156 latitude-longitude
tuples. Her trip commenced at 9:32:17 AM at
41◦81′32.5792”N −72◦24′45.6682”W and concluded at
9:44:41 AM at 41◦80′55.7682”N −72◦24′86.3101”W. The
size of the sequence or the number of data points grouped
into a single transmission was set to one. Thus, the data
points were transmitted as they were sampled.

Table 1 lists the absolute time, and the latitude and the
longitude coordinates of the first six points collected during
this ride. The table also reports the delay between the two
points, although this information is not explicitly transmit-
ted and stored in the database.

Table 1. Sample Sequence of Trip Data
Time Delay Latitude Longitude
9:25:41 AM N/A 41.80562405 −72.24867839
9:25:46 AM 0 : 00 : 05 41.80553366 −72.24848601
9:25:51 AM 0 : 00 : 05 41.80553954 −72.24845334
9:26:01 AM 0 : 00 : 10 41.80556924 −72.24842785
9:26:06 AM 0 : 00 : 05 41.80568999 −72.24822567
9:26:12 AM 0 : 00 : 06 41.80595009 −72.24786536

Figure 3 shows the route with green dots, where each dot
denotes a point where data was collected, transmitted and
stored at the server. This data collection route closely ap-

proximates the bus route as shown in Figure 4. We note that

Figure 3. Data Collection Points Along Route

Figure 4. Orange Line Bus Route

the delay between successive coordinates varies slightly dur-
ing the entire data collection duration. One reason for this
variation is weak GPS reception at the phone. For exam-
ple, the missing data point at 9:25:56 AM in Table 1, may

198

have been caused by an intermittent loss of signal. Also, the
six-second delay between the last two data points in Table 1
may be caused by multiple applications running simultane-
ously and context switching on the smartphone, leading to
non-uniform intervals.

We estimated the speed empirically by computing the
distance between two successive geo-coordinates and divid-
ing it by the number of seconds between the two points. The
resulting speed is in miles per second, which we convert to
miles per hour. We computed a moving average for the ith

speed over five points because we found that it was large
enough to eliminate some noise, but small enough to prevent
excessive smoothing of the data. Excessive smoothing is not
desirable because it makes the moving average less respon-
sive to variations, thereby making it harder to detect sudden
changes. Figure 5 shows a plot of the moving average of the

Figure 5. Moving Average of Trip Speed Data

estimated speed of the bus throughout the trip. The straight
line in Figure 5 shows a constant speed of five miles per
hour for the entire duration of the trip. The moving average
of the speed fell below this value nine times. We note that
the moving average eliminates speed estimates very close to
zero because these are points immediately before a stop and
correspond to the bus slowing down. Points immediately
after the bus stop correspond to values when the bus was ac-
celerating. We analyzed these local speed minima manually
and discovered a strong correlation between the bus stops
and the corresponding geo-locations. For example, the trip
began at the Arjona stop north of the large lake in Figure 4,
marked with a red letter A in Figure 3. The stop B at 9:27:17
was associated with the Shippee stop. The bus did not stop
again until 9:30:51 (C) when it reached the Horse Barn Hill
Arena at the southern most stop in Figure 4. Subsequent
slow downs from 9:33:13 onward include the Young Build-
ing (D) Inbound stop, the stop light south east of the classics
(CLAS) classroom building (E), slowing down at cross walk
(F), a long delay at the North Campus stop at 9:37:34 (G),
where many students cross the street from dorms to class-
room buildings on the other side. The remaining four slow
downs from 9:38:41 include the intersection of North Ea-
gleville Road and Hillside Road (H) at the top right corner
of Figure 4 (left of Figure 3), followed by the Field House
(I), Co Op (J), and Alumni stops (K).

4 Related Research

This section compares our work to the conventional and
modern approaches to studying transportation networks.

4.1 Conventional Approaches

Conventional approaches that explore transportation
data [12] have built tools for examining historical incidents
such as accidents. These tools analyze periodically updated
archived data and separate data collection from exploration.
However, this separation makes it difficult to glean detailed
insights on the impact of these incidents on the network dy-
namics. For example, vehicle crash data often reports time,
place, property damage, and fatalities but offers no infor-
mation on the resulting delay or on how drivers rerouted
themselves in response to the incident. In comparison, real-
time data collection via smartphones can facilitate greater
insights into how traffic changes with time, and how conges-
tion develops and clears. Moreover, the impact of accidents,
construction, speed and traffic volume on congestion can be
predicted.

State-of-the-art transportation models [13, 14] employ
stochastic techniques to estimate the utilization of roads
considering travel demand and driver behavior, which is
captured in terms of probabilistic selection of routes. Cur-
rent congestion prediction models use demand data inferred
from surveys or fixed sensors. This data includes link vol-
ume but not the trends such as acceleration, deceleration,
and lane changes that can also indicate congestion. Smart-
phones can provide richer data to develop detailed models.
Because data collection is automated, these models can be
validated by collecting data from the same sites. Finally,
predictive accuracy of these models can be assessed by col-
lecting data on roads with similar characteristics.

In summary, automated data collection, integrated with
exploration and modeling can offer several benefits. First,
it can facilitate near real-time monitoring and detection of
problems so that alerts can be issued to exercise caution
around congestion or an accident and to offer guidance to
emergency response officials. Enhanced congestion models
can also assess how safety improvements such as new traffic
lights impact the roads around the modified location.

4.2 Modern Approaches

Contemporary approaches have used the smartphone
technology for the collection of transportation data. Feng et
al. [1] acquired measurements from GPS-equipped vehicles
and developed analytical models to optimally place probe
vehicles to minimize the travel time prediction error. An-
other recent study [2] implemented virtual trip lines, where
smartphones collected the location and speed of vehicles as
they cross these lines. Lin [3] describes an Android smart-
phone application called the Toronto Buffalo Border Wait
Time (TBBW) to share the waiting time among travelers

199

on the three Niagara Frontier border crossings. Davami et.
al. [4] describe Kpark, a crowdsourced mobile application
to monitoring parking availability on a university campus.
Nandan et al. [5] identified common challenges in using
crowdsourcing for public transportation, and implement an
application for demand estimation and next arrival time.

The limitations of these approaches include: (i) study-
ing only specialized transportation networks such as high-
ways [1] and university campuses [4]; (ii) (still) collecting
traffic data from fixed, static locations, similar to phyis-
cal sensors [3, 2]; or (iii) considering only one mode, for
example public transportation [5]. Our general-purpose
smartphone-based monitoring system, however, can collect
dynamic vehicle measurements on a continum, across the
entire web of roadways within a transportation network. It
can measure the dynamics of interacting public and private
modes including pedestrian walkways and mass transit, fa-
cilitating an integrated study.

5 Conclusions and Future Research

This paper describes preliminary results from our efforts
to engineer a smartphone-based system to crowdsource the
collection of transportation data. An Android smartphone
application for gathering user location information was de-
veloped and integrated with a server designed to receive,
process, and store this data. Experimenting with data collec-
tion using the application around UConn campus, and sub-
sequent example analysis of the collected data suggests that
our approach can potentially collect richer data sets through
the entire transportation network to test the validity of ex-
isting models and to develop new ones. Our future work
includes enhancements to the application to minimize the
involvement of users in data collection. Extensive data gath-
ering experimentation using the application and subsequent
analyses are also planned.

Acknowledgments

The authors would like to thank Tiffany and Linda
Hoang, Orlando Echevarria and Louis Herman for their help
with the smartphone application. This paper was supported
by the New England University Transportation Consortium
USDOT/MIT − 5608530.

References

[1] W. Feng, A. Bigazzi, S. Kothuri, and R. Bertini,
“Freeway sensor spacing and probe vehicle penetra-
tion,” Transportation Research Record: Journal of the
Transportation Research Board, vol. 2178, no. 1, pp.
67–78, 2010.

[2] J. Herrera, D. Work, R. Herring, X. Ban, Q. Jacobson,
and A. Bayen, “Evaluation of traffic data obtained via

gps-enabled mobile phones: The mobile century field
experiment,” Transportation Research Part C: Emerg-
ing Technologies, vol. 18, no. 4, pp. 568–583, 2010.

[3] L. Lin, “Data science application in intelligent trans-
portation systems: An integrative approach for border
delay prediction and traffic accident analysis,” PhD,
SUNY at Buffalo, Buffalo, NY, 2015.

[4] E. Davami and G. Sukthankar, “Improving the perfor-
mance of mobile phone crowdsourcing applications,”
in Proc. of Intl. Conf. on Autonomous Agents and Mul-
tiagent Systems, May 2015 (to appear).

[5] N. Naveen, A. Pursche, and X. Zhe, “Challenges in
crowdsourcing real-time information for public trans-
portation,” in Proc. of Intl. Conf. on Mobile Data Man-
agement, Jul. 2014, pp. 67–72.

[6] A. Kumar, Sencha Touch Cookbook: Over 100 Recipes
for Creating HTML5-based Cross-platform Apps for
Touch Devices. Birmingham, UK: Packt Publishing,
2011.

[7] Adobe Systems, “Phone gap,” phonegap.com/, Last ac-
cessed March 18, 2015.

[8] The Apache Software Foundation, “Apache HTTP
server project,” http://httpd.apache.org/, Last accessed
March 18, 2015.

[9] Apache Friends, “XAMPP Apache + MySQL + PHP
+ Perl,” https://www.apachefriends.org/, Last accessed
March 18, 2015.

[10] A. Tarr and W. Mostrey, PHP and MySQL 24-hour
Trainer. Indianapolis, IN: Wrox/John Wiley & Sons,
2012.

[11] J. Daemen and V. Rijmen, The Design of Rijndael:
AES–the Advanced Encryption Standard. Berlin:
Springer, 2002.

[12] M. Pack, K. Wongsuphasawat, M. VanDaniker, and
D. Filippova, “Ice - visual analytics for transportation
incident datasets,” in Proc. of the Intl. Conf. on In-
formation Reuse & Integration, Las Vegas, NV, Aug
2009, pp. 200–205.

[13] H. Mahmassani, J. Dong, and B. Park, “Existing traffic
prediction and estimation models and systems: Review
and summary,” Northwestern University, Tech. Rep.
US DOT/FHWA DTFH61-06-D-00005, 2008.

[14] B. Li, “Recursive estimation of average vehicle
time headway using single inductive loop detector
data,” Transportation Research Part B: Methodologi-
cal, vol. 46, no. 1, pp. 85–99, 2012.

200

(DOI reference number: 10.18293/SEKE2015-070)

Endowing NoSQL DBMS with SQL Features

Through Standard Call Level Interfaces

Óscar Mortágua Pereira, David Simões, Rui L. Aguiar

Instituto de Telecomunicações

DETI – University of Aveiro

Aveiro, Portugal

{omp, david.simoes, ruilaa}@ua.pt

Abstract— To store, update and retrieve data from database

management systems (DBMS), software architects use tools, like

call-level interfaces (CLI), which provide standard functionalities

to interact with DBMS. However, the emerging of NoSQL

paradigm, and particularly new NoSQL DBMS providers, lead to

situations where some of the standard functionalities provided by

CLI are not supported, very often due to their distance from the

relational model or due to design constraints. As such, when a

system architect needs to evolve, namely from a relational DBMS

to a NoSQL DBMS, he must overcome the difficulties conveyed

by the features not provided by NoSQL DBMS. Choosing the

wrong NoSQL DBMS risks major issues with components

requesting non-supported features. This paper focuses on how to

deploy features that are not so commonly supported by NoSQL

DBMS (like Stored Procedures, Transactions, Save Points and

interactions with local memory structures) by implementing

them in standard CLI.

Keywords—NoSQL; SQL; databases; middle-ware; call level

interfaces;software architecture.

I. INTRODUCTION

Critical data are mostly kept and managed by database
management systems (DBMS). To store, update and retrieve
data from DBMS, software architects use software tools to ease
the development process of business tiers. Among these, we
emphasize call-level interfaces (CLI) [1], which provide an
API that allows an application to call methods that propagate to
the database.

CLI try to build on the commonalities between DBMS and
provide a set of methods that encompass these common
aspects. Because all DBMS are inherently different, CLI have
two main issues to deal with. Firstly, the way of accessing
distinct DBMS is different (protocol, format, query language,
etc.), which means every DBMS must have its own
implementation, which converts the standard API calls to the
proper DBMS format. Secondly, DBMS have different features
and support different techniques. CLI try to encompass the
most common and often seen capabilities, but some DBMS do
not support all of them, while others can support features that
CLI do not support. Most NoSQL DBMS, for example, do not
support transactions, unlike most relational DBMS.

This paper focuses on how to handle this variety of features
supported by different DBMS and focusing primarily on
features provided by CLI but not supported by the DBMS.

These consist on: 1) transactions, 2) the execution of database
functions (like stored procedures) and, finally, 3) interactions
with local memory structures, containing data retrieved from
the database. We provide a framework that allows a system
architect to simulate nonexistent features on the underlying
DBMS for client applications to use, transparently to them. It is
expected that this research can contribute to minimize the
efforts of system architects when DBMS do not support what
are considered key features.

The remainder of this paper is organized as follows. Section
II presents the state of the art and Section III describes some
key functionalities of a CLI (in this case, JDBC). Section IV
formalizes our framework, Section V shows our proof of
concept and Section VI evaluates our framework. Finally,
Section VII presents our conclusions.

II. STATE OF THE ART

There is some work done to bridge the gap between
NoSQL and SQL. There have been some solutions focused on
providing JDBC drivers to particular DBMS, like [2]–[6],
using the DBMS’s own query language (usually SQL-like).
The authors' approach is to create an incomplete JDBC
implementation that delegates CLI requests to the DBMS API
and converts the results of queries into JDBC’s ResultSet.

There is also work done on translating SQL to the NoSQL
paradigm [7]–[12], which allows clients to perform ANSI-SQL
commands on NoSQL DBMS. These proposals create a SQL
query interface for NoSQL systems, which allow SQL queries
to be automatically translated and executed using the
underlying API of the data sources.

Work has also been done in an attempt to standardize the
access API for NoSQL DBMS. Atzeni et al. [13] propose a
common programming interface to NoSQL systems (and also
to relational ones) called SOS (Save Our Systems). Its goal is
to support application development by hiding the specific
details of the various systems. There is also research on cross-
database tools that depend heavily on JDBC’s features and that
cannot be used with NoSQL because their implementations are
not complete [14]. To the best of our knowledge, there has not
been work done with the goal of implementing CLI’s features
on drivers and DBMS that do not support them. We expect that
our framework positively contributes to overcome the gap
between NoSQL and SQL.

201

III. BACKGROUND

Like previously stated, CLI try to build on the
commonalities between DBMS and provide a set of methods
that encompass these common aspects. These methods include,
for example, reading data from the database, executing
commands on it or performing transactions.

Data manipulation commands are usually called ‘CRUD
Expressions’, which stand for Create, Read, Update and Delete
Expressions, and represent the most common ways to handle
data in a DBMS. CLI also usually allow the modification of
data on local memory structures, modifications which are
propagated to the database transparently, without a client
having the need to execute any CRUD expression.

While most full-fledged DBMS have several complete CLI
implementations (Microsoft SQL Server, MySQL, among
others), some relational DBMS do not (SQLite, for instance)
and most NoSQL DBMS do not either.

A. Java Database Connectivity

The Java Database Connectivity (JDBC) [15] is a CLI API
for Java. Because of Java’s portable nature, it has been the
most popular development language for NoSQL DBMS and, as
such, JDBC is the most popular CLI for NoSQL DBMS, even
though it is oriented towards relational DBMS.

JDBC Drivers typically return “Connection” objects, which
are then used to perform operations on the database. The
“Connection” object has a given set of capabilities, which
include the creation of CRUD statements to be executed on the
database, the creation of statements that call functions inside
the DBMS (like Stored Procedures) and the usage of
transactions (with commits, roll-backs and save points).

Associated with connections, are ResultSets (RS), which
are local memory structures retrieved with "select" queries and
representing rows on the database. These use cursors to iterate
through their set of data and also allow a set of capabilities,
which include retrieval of values from the current row and, if
the RS is defined as ‘updatable’, the insertion or deletion of a
row and the modification of the current row’s values. These
interactions are going to be referred to as ‘Indirect Access
Mode (IAM) Interactions’ through the remainder of this paper.

Listing 1 shows the creation of a statement stmt, the

retrieval of data from table table1 and how it is kept in the RS

(rs). Applications are then allowed to update their content. In

this case the attribute attributeName was updated to value and

then the modification was committed. We can see how the

update is done without the use of any CRUD expression.

stmt = conn.createStatement();

rs = stmt.executeQuery ("select * from table1");

rs.update("attributeName", value)

rs.commit();

Listing 1. A query and the update of a value using JDBC.

The features that the driver supports can be further grouped
by category: statements (with or without parameters),
execution of database functions (stored procedures or user-

defined functions), transactions (and save points), iteration
through RS, retrieval of values from RS and IAM interactions.

Some of these features are implemented by all drivers
(executing statements on the database, for example). However,
the execution of database functions, transactions, save points or
IAM interactions is not implemented by some DBMS,
depending on their architecture or features. These categories
are, then, the focus of this paper.

IV. IMPLEMENTATION FORMALIZATION

To implement these features, there are several options. The

first is to create another driver, wrapping the original one,

where the methods call the original methods or implement

those not supported; the second is to have a server-side

middleware layer that intercepts the CLI calls, allows the

supported ones and redirects the non-supported ones; the third

is to have the clients connecting to the server through a regular

socket connection and the server either forwards those

requests to a JDBC driver connected to the DBMS or it

executes functions from our framework.

While wrapping the driver in another may seem the

simplest option (clients can simply use the driver as they

usually would, as there is no need for middleware layers to

intercept the driver requests or for clients to change the way

they connect to the DBMS), it presents some security

vulnerabilities, which will be explained further ahead, and also

forces the clients to use the modified driver. The second

option is the most transparent for clients, but forces a complex

implementation on the server, to intercept the JDBC calls and

act accordingly, in an imperceptible way for the client. The

third option eliminates the need for clients to have any CLI

dependency on their code and the server merely acts as a relay

from clients to the DBMS. This makes for a simpler

implementation of the server logic, but is not transparent to

clients. The last two approaches are similar, consisting in a

middleware layer able to identify client requests, and any of

them are viable. It’s up the each system architect to decide

which approach suits his needs the best.

 For the remainder of this paper, the middleware layer

(intercepting the CLI calls) where the extra logic is

implemented will be referred to as the “barrier”. All the client

requests must go through the barrier to access the database. It

is able to intercept requests and, instead of forwarding them to

the DBMS, provide its own implementation and return the

appropriate results to the clients, transparently.

A. Execution of Database Functions

A Stored Procedure (SP) is a subroutine available to
applications that access a relational DBMS. Typical use for SP
include data validation (integrated into the DBMS) or access
control mechanisms. Furthermore, they can consolidate and
centralize logic that was originally implemented in
applications. Extensive or complex processing that requires
execution of several SQL statements is moved into stored
procedures, and all applications call the procedures. SP are
similar to User-Defined Functions (UDF), with a few minor

202

differences (how many arguments are returned, ability to use
try-catch blocks, among others).

If a DBMS does not allow the definition of SP or UDF,
these can be implemented on the barrier as a server-side
function that calls a group of SQL statements and operations,
which are executed together and, therefore, simulate a SP. By
doing so, it is possible to simulate most of the behaviors of SP
or UDF.

To detect when the functions that simulate SP should be
called, there are multiple ways. A simple one would be to give
the client the ability to call a SP by the use of a keyword (e.g.,
exec storedProcedure1), where the SP name would be the
function name. On the barrier, when the exec keyword was
detected, a function with the same name as the one requested
would be called with the arguments supplied and the results
would be returned to the client.

B. Transactions

A transaction symbolizes a unit of work performed within a
database, and treated in a coherent and reliable way
independent of other transactions. Transactions in a database
environment have two main purposes: to provide reliable units
of work that allow correct recovery from failures and keep a
database consistent even in cases of system failure; to provide
isolation between programs accessing a database concurrently.

A database transaction, by definition, must be atomic,
consistent, isolated and durable (ACID). In other words,
transactions provide an "all-or-nothing" proposition, stating
that each work-unit performed in a database must either
complete in its entirety or have no effect whatsoever.
Furthermore, the system must isolate each transaction from
other transactions, results must conform to existing constraints
in the database, and transactions that complete successfully
must get written to durable storage.

The implementation of transactions is a complex
engineering problem, heavily dependent on the DBMS
architecture. We present a solution that works with most
DBMS, but which also depends on the database schema. Our
proposal is defined by, after a transaction has been started,
executing the statements in the usual manner, but registering
them in a list. If a rollback is ensued, using the list, the changes
are undone and return the database to its original state. The
implementation of transactions inherently involves the
implementation of the ACID properties to a group of
statements. Consistency and durability cannot be implemented
on the barrier, because these are guaranteed by default by the
database itself.

To implement atomicity, along with a list of all the
executed actions, there is a need for a list of all the statements
that reverse those actions, hereafter referred to as the list of
reversers. All inserts are reversed with a delete, all deletes with
an insert, updates with updates and selects do not have to be
reverted. To reverse the performed actions, the reverser list of
actions must be executed backwards.

One needs to pay attention to the database schema and, if
an insert triggers other inserts (for logging purposes, for
example), all of their reversers must be added to the reverser

list. The same happens for cascading updates and deletes.
These kinds of mechanisms are mostly common in relational
databases, where transactions are natively supported, so we
expect few practical cases where these become relevant.

As an example, imagine a simple transaction consisting of a
bank transfer: money is withdrawn from Account A and
deposited in Account B. The money in A cannot fall under 0
and the transaction first deposits the money in B and then
withdraws from A. Currently, A has 40€, B has 0€ and the
transaction is executed for a transfer of 50€. When the deposit
is made, B has 50€ and A still has 40€. Here, the increment is
registered in the barrier and the reverser (subtracting 50€) is
also registered. Then, the transaction tries to withdraw 50€
from A but it fails, because the value would go below 0. Here,
the transaction is rolled back and the actions in the reverser list
would be executed, subtracting the money added to B and
ending the transaction.

The fact that CRUD expressions are kept on the barrier also
has an advantage when implementing transactions. If they were
on the client-side, inside the JDBC driver, it would be the client
to keep a list of the reversers needed in case of a rollback. If
indeed there was a need for a rollback, the client might not
have had the permissions to execute those actions and,
therefore, could not rollback. To solve this, special permissions
would need to be set for this case and that could lead to
vulnerabilities that an attacker could take advantage of.

Formally, our definition states that a transaction is
composed of actions (which trigger cascading actions), which
affect data in the database. Atomicity in a transaction can be
implemented if and only if: for any action in any transaction,
all the cascading actions can be found; for any action (or
cascading action) in any transaction, there is a reverser; the
execution of a reverser undoes all and only the changes made
by the original action.

Implementing isolation can be done through the use of a
single lock (a semaphore or a monitor), which serializes
multiple transactions. This concept can be further extended
with multiple locks (for example, one for each table), which
would allow concurrent transactions if these transactions
interacted with (in this example) different tables. Multiple
locks can, however, lead to deadlock issues; to avoid them,
either one of the transactions has to be reverted (deadlock
avoidance/detection) or the locks must all be done at the start
of the transaction and must occur in an ordered manner
(deadlock prevention).

Because the DBMS does not support transactions natively,
reverting one is a heavy process, and it can lead to starvation,
depending on which transaction is selected to be rolled-back.
The second option, however, decreases the system concurrency
and also implies knowing a priori all the tables where changes
will be made, which might not be possible.

As an example of the first solution, consider Transaction A,
which wants to change Table t1 and Table t2; and Transaction
B, which wants to interact with Table t2 and Table t1, in the
opposite order. When the transactions start, both try and lock
their first table. Then, one of them, let’s say A, tries to lock the
second table and blocks (because the other transaction, B, has

203

that table locked). When B tries to lock its second table, a
deadlock situation is detected (because A has that table locked)
and one of the transactions is rolled back. At that point, the
remaining transaction can proceed (because there are no locks
on any of the tables now, except its own) and when it is
finished, the rolled-back transaction can proceed as well.

 As an example of the second solution, consider the same
situation. When the transaction starts, both transactions try and
lock both tables. To avoid deadlocks, the locks must be done in
an ordered manner. In this case, they could be done
alphabetically, and not in the order the transactions use them.
Both transactions would try to lock t1 and then t2.

 The level at which the locks are implemented is also an
important choice. With higher levels, implementation is easier,
performance is better but concurrency is worse. As an example,
imagine a database-level lock. This single lock allows only a
single transaction at a time. The cases where such
implementation would work in a practical manner are very few.
SQLite is one of them, given it is a local file meant to be used
by a single process at a time.

 Locks at table level, for example, would have better
concurrency; clients can perform transactions on different
tables at the same time. However, with many clients or very
few tables, this level might still be too restrictive. Some
NoSQL DBMS may not, however, have the concept of ‘tables’.

 Relational DBMS use row-level locks on transactions,
which are ideal in the sense that many clients can perform
transactions on the same table, just not on the same piece of
data they are handling. However, some DBMS may not support
row distinction and, inherently, may not support row-level
locks. Some NoSQL DBMS also feature millions of rows,
which could lead to severe performance issues.

C. Savepoints in Transactions

Assuming transactions have been implemented, the ability

to create a save point in a transaction and to roll back to that

save point is a simple matter of defining points in the reverser

list and only reverting the actions and freeing locks up until

that point.

D. IAM Interactions

IAM interactions on a RS consist on the update of values

in a row and on the insertion or deletion of rows. By default, a

RS’s concurrency type is read only and does not allow any of

these. If it does, its type is updatable. To create a RS that

allows IAM interactions, a client must specify it when creating

the statement object to execute CRUD expressions on the

database.

The barrier can intercept the creation of this statement

object and, if the updatable type is not supported, wrap the RS

that is generated inside our framework’s RS, which simulates

the necessary behaviors to allow the insertion, update and

deletion of rows. This RS is the one supplied to the client,

where he will be able to execute IAM interactions as usual.

Our first approach was the following: when clients attempt

to perform actions on the RS (say, inserting a new row), the

actions would be converted and executed like a normal query

and the RS would be reset to show the new changes. This had

a noticeable performance decay (performing a CRUD

expression for the action and another to update the RS) and led

to problems when multiple clients were querying the same

tables, due to the fact that by resetting the RS, we were re-

querying the table fetching results affected by other clients.

Because of this, we followed a different approach where

our original RS is never changed (and where we do not have

to re-query the table). Values that are updated or inserted are

converted to a CRUD expression, inserted in the table and

kept in memory. If the client tried to access those values, our

framework would present them from memory, without the

need to query data from the table. Deleted rows are kept track

off and ignored when iterating through the values.

Figure 1. Our data structure for IAM interactions with row 2 highlighted.

Figure 1 shows an example of our data structure. When the

client requested the RS, rows A to D were queried. The client

inserted E and F and deleted A, C and E. Rows E and F are

kept in memory, in an array. Rows A, C and E are flagged as

deleted. When the client requests the row with index 2, which

corresponds to the value D, our implementation iterates

through the RS, ignoring deleted rows, until we reach the

intended row. With this implementation, there is no

unnecessary performance decay (there is no need to re-query

the data) and there are no concurrency issues (each client can

modify their own RS and their inserted/deleted values do not

affect the other clients’ RS). This behavior mimics a relational

driver implementation’s behavior.

V. PROOF OF CONCEPT

This section describes how the mentioned features were
implemented.

A. Execution of Database Functions

To define a SP in a common DBMS, an administrator needs
to define four aspects: the name, the input, the output and the
actual function of the SP. As such, it is expected that the same
aspects must be defined to implement SP on the barrier.

By defining an abstract class Barrier_CallableStatement
(implementing the CallableStatement class), which takes as
input a JDBC connection, a name String and an array of
arguments (that can be either input or output), the SP
framework is defined. To specify the SP, a developer
instantiates this abstract class and implements the execute()
method, which will contain all the SP logic and is the only
method that needs to change depending on the SP and the
underlying database. As such, all four original aspects are
defined and the execution of a SP can be intercepted by the

Client’s

Perspective

on the RS

1 B

2 D

3 F

Real Data Structure

1 A Deleted

Original

RS

2 B

3 C Deleted

4 D

5 E
Inserted +

Deleted
In-Memory

Rows
6 F Inserted

204

framework, which will then execute the custom
implementation, instead of trying to run it on the database,
which would throw an error.

 As an example, Listing 2 shows a stored procedure
getEmpName, defined in MySQL, which returns the name of
an employee based on his ID, by querying a table Employees,
with the fields id and name.

SELECT

CREATE PROCEDURE 'Emp'.'getEmpName'

(IN EMP_ID INT, OUT EMP_NAME VARCHAR(255))

BEGIN

 SELECT name INTO EMP_NAME

 FROM Employees WHERE ID = EMP_ID;

END

Listing 2. Stored Procedure in MySQL.

 The usage of this SP in a Java client with a JDBC
connection is shown in Listing 3. A CallableStatement is
created from the connection object with the SP invocation SQL
string. The input and output parameters are defined, the
procedure is executed and output parameter is read. We can see
that there are two separate definitions of the same procedure,
one in the database and one in the client. Because the SP and
the barrier are in the same place, this redundant definition
should not be needed. When implementing a SP, a developer
extends it to the Barrier_CallableStatement class and defines
the number of arguments and the SP name. The execute
method contains all the logic (reading input, processing and
setting the output).

CallableStatement stmt = connection.prepareCall

 ("call EMP.getEmpName (?,?)");

stmt.setInt(1, employeeID);

stmt.registerOutParameter(2, VARCHAR);

stmt.execute();

employeeName = stmt.getString(2);

Listing 3. Invocation of the SP in a Java Client.

The usage of this class is quite similar to the original
invocation of the SP and is shown in Listing 4. There is no
need to register which parameters are output and, in this case,
there was no need to refer to the SP name. The barrier,
however, keeps a list of the implemented SP and, when it
detects a command like exec getEmpName, matches the desired
SP, executes it and returns the corresponding results.

CallableStatement stmt = new SP_getEmpName(conn);

stmt.setInt(1, employeeID);

stmt.execute();

employeeName = stmt.getString(2);

Listing 4. Invocation of the SP implementation in a Java Client.

B. Execution of Transactions

 Transactions are implemented with an abstract class, just
like SPs. Each implementation depended on the underlying
DBMS and the methods that must be overridden are the
methods that return the reversers. When the execution of a
statement is requested, the reverser is determined and the
corresponding lock is activated. Then, the statement is
executed and the reverser is added to the list of actions in the
current transaction. The commit statement releases the locks
being used and clears the list of reversers.

 In case it is not possible to find the reverser (for example, if
the row about to be inserted is not unique and there is no way
to delete this specific row, then there is no reverser to be
found), an exception is thrown and the statement is not
executed. If the statement’s execution throws an error, the
reverser is not added to the list. A rollback executes all the
reversers in the list backwards and clears the list.

 If deadlock is detected, one of the transactions is rolled-
back. The choice of which transaction is selected can be
random, by most recent transaction (first come, first served
logic), by which transaction detected the deadlock or by which
transaction is easiest to rollback (while better on performance,
can lead to starvation). The ease of rollback can be determined
by the size of the actions list or, if actions have different
impacts, by the calculation of the impact of all the actions
currently in the list.

 Listing 5 shows an example transaction in a Java client.
The database has a table tb, on which are inserted two tuples, A
with ID=1 and B with ID=2. The A value is committed and
therefore, is stored in the database. The B value is rolled-back
and is not stored in the database. Assuming the table was
empty at the start of the transaction, by the end of the
transaction, a query should show only a single value, A.

conn.setAutoCommit(false);

try (Statement stmt = conn.createStatement()) {

stmt.execute("insert into tb values (1, 'A')");

conn.commit();

 stmt.execute("insert into tb values (2, 'B')");

conn.rollback(); }

conn.setAutoCommit(true);

Listing 5. A simple transaction in a Java client.

 As before, a transaction using our framework is expected to
function in a similar manner. Listing 6 shows the same
transaction, using our framework for SQLite. The creation of
the Barrier_Transaction object matches the setting of Auto
Commit Mode to false in Listing 5 and it handles the creation
of the statement object. Then, A is inserted and committed, B is
inserted and rolled-back and the transaction is closed, which
matches the setting of Auto Commit Mode to true.

Barrier_Transaction trans =

 new Barrier_TransactionSQLite (conn);

trans.execute("insert into tb values (1, 'A')");

trans.commit();

trans.execute("insert into tb values (2, 'B')");

trans.rollback();

trans.close();

Listing 6. A transaction using our Framework.

 In a SQL compliant DBMS, when each insert action is
requested, the corresponding delete action is created. For the A
value, for example, the reverser is delete from tb where id=1
and name=’A’. On DBMS with different query languages (like
Hive), the parsing and creation of reversers would be different.
Hence the fact that each DBMS and each schema have its own
implementation of the Barrier_Transaction class; schemas
with trigger actions need different implementations from
schemas without them.

 There is also a need for a client-wide lock system to be
deployed to enforce isolation, as well as a system to prevent

205

deadlocks when handling concurrent transactions. Corbett et al.
[16] have shown that there are many different solutions for
deadlock detection, both distributed and centralized. In our
case, the barrier layer acts as a centralized lock system to
guarantee isolation among transactions and, as such, it makes
sense to use a centralized deadlock prevention mechanism. We
have used table-wide locks with MySQL and Hive and row-
level locks with Redis and MongoDB.

 When a client performs an action during a transaction, the
appropriate reverser is found. Immediately after it is
determined, the lock is requested to the Concurrency Handler
(CH), which requires two things: the URI of the lock (in this
case, table names or row keys) and the URI of the requesting
process. The CH uses semaphores as locks and creates them as
transactions request them. In other words, the first time a client
requests the lock for table t1, that semaphore is created. Any
following requests for that table use that semaphore. This
removes the need for our framework to know the database
schema and be flexible for any lock-level.

 The CH does not lock the semaphore immediately. Before
doing so, it checks whether a deadlock situation would be
created. It does so by using a graph structure that represents
subjects (each transaction) and objects (each table/row) and
checking for cycles. If a cycle were to be created by this lock
request, that a deadlock situation would emerge [17].

Figure 2 shows an example using the previously mentioned
example of transactions A and B trying to lock tables T1 and
T2. We can see that we have a deadlock situation. B’s request
to T1 leads to its owner, A, which has requested T2, which
belongs to B. In our implementation, this situation would never
be reached. Assuming A requested T2 before B requested T1,
when B made its request, the cycle would be revealed and the
transaction would be restarted. When it rolled-back, its locks
would be released, which would allow A to proceed. When A
finished, B would be able to lock both tables and execute as
well.

Figure 2. A graph representation of a deadlock situation.

 While this example only features two subjects and two
objects, the concept can be easily extended for multiple
subjects and objects. By solving the deadlock issues, the use of
these locks enforces isolation among each transaction. Given
that the transactions cannot access another transaction’s
table/row, then values being read, modified, deleted or created
are safe from concurrent modifications.

C. Save Points

 A client can set a save point in a transaction and roll-back
only up to that save point, which allows for fine-grained
control when handling transaction exceptions. Listing 7 shows
a transaction that inserts 3 values but only rolls-back one of
them (value B). Our save point implementation is based in the
Barrier_Transaction class and, logically, depends on each
underlying DBMS. To use save points, a client executes all the

methods, just like previously shown, on the
Barrier_Transaction object.

setAutoCommit(false);

try (Statement stmt = conn.createStatement()) {

stmt.execute("insert into tb values (1, 'A')");

conn.setSavepoint("savepoint_one");

 stmt.execute("insert into tb values (2, 'B')");

conn.rollback("savepoint_one");

 stmt.execute("insert into tb values (3, 'C')");

conn.commit();

}

conn.setAutoCommit(true);

Listing 7. A transaction with savepoints in a Java client.

D. IAM Interactions

 Interactions on a RS imply that the RS has been requested
with the updatable type, which enables them. By default, the
type is read only. Listing 8 shows how a Java client can create
a RS, update the third row, insert a new one and delete the
second one.

Statement stmt = connection.createStatement(

 ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery(

 "SELECT * FROM person");

Listing 8. A Java client creating a RS to perform IAM interactions.

 Because it is our aim to provide as much transparency as
possible, the biggest difference is the object request, which
uses our wrapper class, as shown in Listing 9. We do not need
to specify the type (updatable or read only) because we assume
the DBMS only supports read only.

ResultSet rs = new Barrier_ResultSetSQLite(

 connection, "SELECT * FROM person",

 ResultSet.TYPE_SCROLL_SENSITIVE);

Listing 9. A Java client creating a RS with our SQLite implementation.

 Our implementation depends on the underlying DBMS,
because it depends on the query syntax, as previously stated.

VI. EVALUATION

To demonstrate the soundness of our approach, we have
selected four DBMS with different paradigms: SQLite, a
relational DBMS; Hive v1.0, a NoSQL DBMS; MongoDB
v3.0.2, a document-oriented DBMS; and Redis, one of the
most popular key-value DBMS. We expect that our concepts
are general enough to be adapted to most NoSQL DBMS. As a
basis for comparison, we also used a full-fledged relational
DBMS, MySQL, which served as a comparison basis between
our barrier implementation and an actual database engine
implementation.

The lock-levels were set as tables for all tests, although
Redis and MongoDB could use row IDs. Because Redis does
not provide a functional and up-to-date JDBC driver, we
developed our own driver, which uses the Redis Java API and
converts a simple query language into Redis’ operations.

 The choice of which DBMS to use was done taking into
account two main aspects: diversity (it is our goal to show that
our concept works with any kind of DBMS, and so it is

206

important to have both relational and non-relational DBMS, as
well as different NoSQL paradigms) and popularity (it is
important to choose widely used DBMS).

 We tested our framework in a 64-bit Linux Mint 17.1 with
an Intel i5-4210U @ 1.70GHz, 8GB of RAM and a Solid State
Drive. All the databases were deployed locally, including Hive,
which was set-up together with Hadoop as a single-node
cluster in this machine. The tests performed include the
insertion, update and deletion of values both outside and inside
a transaction from our framework.

 SQLite MongoDB Hive

Op. Rows Off On Off On Off On

Insert

100 749 754 120 189 2642k 2780k

500 3699 4031 420 1051 X X

1000 7907 8494 718 2309 X X

Update
100 755 758 111 138 3038k 3120k

500 4025 4096 731 1158 X X

1000 8248 8423 2010 3325 X X

Delete

100 737 746 65 103 2919k 3080k

500 3648 3784 403 761 X X

1000 7502 7775 1123 2018 X X

Select

100 7 8 81 79 160k 161k

500 105 107 425 422 X X

1000 295 292 1135 1097 X X

Table 1. A comparison of times taken (in ms) to perform operations in

different DBMS with our framework’s transactions enabled and disabled.

 Tests (shown in Table 1) show an expected performance
decay on all databases. In SQLite, the decay amounts to
approximately 8% of the original time taken for the insert
operation, 2% for the update operation and 3% for the delete
operation. In MongoDB, the decay is much stronger, with over
200% decay for inserts, 60% for updates and 80% for deletes.
For Hive, tests could only involve up to 100 rows, due to time
restraints. However, Hive shows good results of about 5%
decay in inserts, 3% in updates and 5% in deletes. Tests for
MySQL and Redis were not considered to have relevant
information and were not included.

 Because queries are an integral part of the transaction
process, the decay is directly related to the ratio between the
time taken for queries and operations for each DBMS. This
explains why MongoDB has a much stronger decay than
SQLite or Hive.

 Tests were also conducted in regards to database-stored
functions, rollbacks and IAM interactions. The tests show that
the performance decay is directly related to the performance of
a CRUD expression on the database: if a statement takes 10
seconds, an IAM interaction will also take 10 seconds, plus a
residual processing time (about 5 to 10 microseconds). The
same relation exists for rollbacks and stored procedures which
involve operations in the database.

VII. CONCLUSION

We have proposed a framework that implements some
features on a JDBC driver that are not usually implemented
using NoSQL drivers. Our proposal includes a model to use
our framework in a way that allows concurrent clients to
perform atomic and isolated transactions, as well as IAM
interactions and database functions, like stored procedures. We
have proven our concept with SQLite, Hive, Redis and

MongoDB, and we expect our model to be general enough that
it can be extended to other DBMS, relational or NoSQL.

Our performance results show that the use of our
framework can be suitable for a real-life scenario. However,
work is underway to perform a more in-depth performance
evaluation of the different DBMS, with different test
conditions, which will be adequate to each DBMS’s
architecture and design and provide a more insightful analysis.
Work is also underway to add fault tolerance to our proposal;
our framework does not currently provide atomicity in case of
hardware failures.

In conclusion, our framework positively contributes to
overcome the gap between NoSQL and SQL. It helps system
architects to simulate key relational DBMS features on NoSQL
databases that do not natively support them and eases the
transition from a DBMS to another, by abstracting underlying
features of the DBMS.

REFERENCES

[1] ISO/IEC, Information technology -- Database languages -- SQL -- Part
3: Call-Level Interface (SQL/CLI). 2008.

[2] R. Öberg, “Neo4j JDBC,” 2015. [Online]. Available:
https://github.com/neo4j-contrib/neo4j-jdbc. [Accessed: 11-Mar-2015].

[3] E. Horowitz, “MongoDB JDBC,” 2010. [Online]. Available:
https://github.com/erh/mongo-jdbc. [Accessed: 11-Mar-2015].

[4] R. Felix, “CouchDB JDBC,” 2009. [Online]. Available:
https://github.com/fellix/couchdb-j.

[5] Apache, “HBase JDBC,” 2011. [Online]. Available:
http://www.hbql.com/examples/jdbc.html.

[6] Apache, “Hive JDBC,” 2014. [Online]. Available:
https://cwiki.apache.org/confluence/display/Hive/HiveJDBCInterface.

[7] W.-C. Chung, H.-P. Lin, S.-C. Chen, M.-F. Jiang, and Y.-C. Chung,
“JackHare: a framework for SQL to NoSQL translation using
MapReduce,” Autom. Softw. Eng., vol. 21, no. 4, pp. 489–508, 2014.

[8] R. Vilaça, F. Cruz, J. Pereira, and R. Oliveira, “An effective scalable
SQL engine for NoSQL databases,” in Distributed Applications and
Interoperable Systems, 2013, pp. 155–168.

[9] J. Taylor, “Querying a not only structured query language (nosql)
database using structured query language (sql) commands.” Google
Patents, 18-Dec-2013.

[10] A. Calil and R. dos Santos Mello, “SimpleSQL: a relational layer for
SimpleDB,” in Advances in Databases and Information Systems, 2012,
pp. 99–110.

[11] R. Lawrence, “Integration and Virtualization of Relational SQL and
NoSQL Systems Including MySQL and MongoDB,” Computational
Science and Computational Intelligence (CSCI), 2014 International
Conference on, vol. 1. pp. 285–290, 2014.

[12] J. Tatemura, O. Po, W.-P. Hsiung, and H. Hacigümüş, “Partiqle: An
elastic SQL engine over key-value stores,” in Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data,
2012, pp. 629–632.

[13] P. Atzeni, F. Bugiotti, and L. Rossi, “Uniform access to non-relational
database systems: The SOS platform,” in Advanced Information
Systems Engineering, 2012, pp. 160–174.

[14] B. M. Clapper, “SQLShell.” 2012.

[15] Oracle, “JDBC Overview.” [Online]. Available:
http://www.oracle.com/technetwork/java/overview-141217.html.
[Accessed: 09-Mar-2015].

[16] C. Corbett, “Evaluating Deadlock Detection M e thods for Concurrent
Software,” vol. 22, no. 3, 1996.

M. Singhal, “Deadlock detection in distributed systems,” Computer, vol. 22.
pp. 37–48, 1989.

207

Optimization of an Object–Oriented File System

Ling–Hua Chang

Department of Information Management

Kun Shan University, No.195, Kunda Rd., YongKang

Dist., Tainan City 710–03, Taiwan (R.O.C.)

changlh@mail.ksu.edu.tw

Sanjiv Behl

Thomas Edison State College

101 W. State St, Trenton, NJ 08608–1176
sanbehl@yahoo.com

Abstract—Our research provides a unified and coherent

presentation of the essential concepts and techniques of object–

oriented file systems. It consolidates the results of research and

development in the semantics and implementation of a full

spectrum of information system facilities for object–oriented

systems, including data modeling, querying, storage structures,

composite objects and integration of a programming language.

This approach presents a tool for building an object–oriented file

system called object–oriented file system tool (or OOFS for short)

for completing the development of a large object–oriented

information system, and its associated applications development

framework. First we present the technological objectives

underlying the project. Then we present the process of

developing the information system and detail its architecture and

construction, concentrating on the areas in which object–oriented

technology has had a significant role.

Keywords-object serialization; object data modelling; object–

oriented database; information system generator; web system

generator

I. INTRODUCTION

A data model organizes data elements and standardizes how
the data elements relate to one another. Object–oriented data
modeling has achieved great popularity in recent years. The
major factor contributing to its success is that object–oriented
data modeling offers its users a high level of abstraction for the
representation of information in a manner close to users’
conceptual view of that information. We present a tool called
OOFS to build an object–oriented file system. This can be used
in the development of a large object–oriented information
system, and its associated applications development framework.
The primary focus for OOFS development is the
implementation of a large object–oriented information system.

In our earlier work, we developed a customized software
tool for automatically generating a complete Java program
based on the values or parameters inputted by the user, called
ISG [1] [2] [3]. ISG offers users interface screens for
generating an information system and has six transformational
functions – building object–oriented file system (OOFS), linking
to the next window, building data processing window,
displaying data, previewing a designed window and printing
data. The advantage of ISG is that it uses object serialization
mechanism to fill objects with data, which saves CPU
execution time. The attributes of an object and its path need to
be specified for ISG to translate it to Java code. Thus the
program can store and retrieve data efficiently. It can also
saves time in coding, debugging, testing and implementing an
information system.

II. RELATED WORK

Some of the papers regarding how to store Java objects are
“Reading Large Volumes of Java Objects from Database” [4],
“A Framework for Object–Oriented Data Mining” [5], “A
Composite Data Model in Object–Oriented Data Warehousing”
[6], “Efficient object serialization in Java” [7], “Object
Serialization Support for Object Oriented Java Processor” [8],
etc.

In 2000, Raimund K. Ege [4] explores issues in his paper
that arise when Java programs access objects stored in
databases. They report on their experience with designing and
implementing an approach that allows a Java program to
pretend that all objects are in main memory, and relieving the
Java program from most database housekeeping chores. The
architecture is supported by APIs to an actual database: the API
can map to an object–oriented database, a relational database
via JDBC, or to files using object serialization.

In 2008, Linna Li et al. [5] proposed a system called Escher
that is very suitable for describing knowledge for object–
oriented data mining. Escher supports a variety of data types
and can describe complex data. They also presented a
framework for object–oriented data mining, where type
information of data and semantic information of data model
could be used to guide the data mining process. A specific data
mining task, the frequent pattern discovery, is investigated
under this framework.

In 1999, Wei–Chou Chen et al. [6] introduced a composite
data model in which they proposed to store data in an object–
oriented data warehouse. The data warehouse is an information
provider that collects necessary data from individual source
databases to support the analytical processing of decision–
support functions. The data model forms new classes consisting
of the attributes listed in the definitions of views and copies
necessary class structure from the data source. The query
performance of the data warehouse can thus be improved. The
corresponding view creation and deletion algorithms were also
proposed.

The authors in [7] state that object serialization is the ability
to write the complete state of an object to an output stream, so
that it can be recreated from the serialized representation at a
later time. They also present a number of improvements to the
serialization mechanism aimed at decreasing pickle sizes
without visible degradation in the serialization performance.
Through performance results, they show that it produces

(DOI Reference Number: 10.18293/SEKE2015-108)

208

pickles up to 50% smaller without degrading the serialization
performance.

Another paper “Object Serialization Support for Object
Oriented Java Processor” [8] introduces a functional unit which
consists of a serialization and de–serialization unit along with
the descriptors and pool to describe the stored serialized objects.
This design can enhance the performance of Java based mobile
devices which run applications that communicate with other
similar applications very often. This design makes use of
architectural features of processors.

Java is one of the stable object oriented programming
languages which is widely used. In the papers mentioned above,
the proposed methods do an efficient serialization in object
oriented Java processor or applications. Many of the major
projects in industry are developed using Java. A suggestion has
also been made to enhance the Java serialization package to
reflect this hardware enhancement on the overall performance.

III. OOFS SYSTEM ARCHITECTURE

Let’s focus on aspects of OOFS that are particularly
appropriate for its use in an e–Business system.

A. OOFS Standard Model

Figure 1. A file structure of OOFS standard model.

OOFS stores data using object streams rather than regular
streams because Java has persistence in object–oriented circles
[9], which means the object layout on disk will be exactly like
the object layout in memory. So when an object (the first
created object) is saved to disk, the memory addresses of
objects that are created subsequently are stored in their
associated array and are stored to the disk automatically. Since
OOFS introduces this mechanism we design an OOFS standard
data model in Fig. 1 to help users to design their file systems.

Fig. 1 shows a file structure of OOFS standard model.
Since OOFS builds a file as a n object stream file and uses

arrays to manage their associated objects of the same class,
a subsequent class is created whose objects are stored in an
array of the previous class. Therefore if there are a number of
object-oriented arrays in a class diagram, a number of
subsequent class diagrams are shown as in Fig. 1 (see two oval
marks).

A class diagram with an OOFS design has a class name at
the top, its attributes are in the middle and methods which the
class can execute are at the bottom. Attributes of OOFS
contain variables and arrays.

A variable in OOFS is defined as VARIABLE_NAME:
DATA_TYPE. A variable named VARIABLE_NAME can
reserve memory locations to store a value. Data type
DATA_TYPE of the variable decides what can be stored in the
reserved memory. There are 9 data types supported by OOFS
including byte, short, int, long, float, double, boolean, char and
String.

OOFS provides two types of arrays are
ARRAY_NAME1:DATA_TYPE[]* and ARRAY_NAME2:
CLASS_NAME_OF_OBJECT[]* (See the first oval mark in
Fig. 1). []* means the number of dimensional array. Currently
OOFS only works for arrays that have up to three dimensions.

ARRAY_NAME1:DATA_TYPE[]* stores a fixed–size
sequential collection of elements of the same data type
(DATA_TYPE mentioned has 9 data types) and the array is
named ARRAY_NAME1.

 ARRAY_NAME2:CLASS_NAME_OF_OBJECT[]*
describes array ARRAY_NAME2 created uses defined the
constructor of the class named CLASS_NAME_OF_OBJECT
which is used to access objects.

For a variable VARIABLE_NAME: DATA_TYPE, OOFS
offers two methods to manage variable VARIABLE_NAME
and whose methods are getVARIABLE_NAME() and
setVARIABLE_NAME(DATA_TYPE element).
getVARIABLE_NAME() returns the element stored in this
variable VARIABLE_NAME and
setVARAIBLE_NAME(DATA_TYPE element) sets the
element stored in this variable VARIABLE_NAME (See the
third rectangular mark in Fig. 1).

For an array ARRAY_NAME1: DATA_TYPE[]*, OOFS
offers 7 methods to manage this array and which are
ARRAY_NAME1_add(DATA_TYPE element),
ARRAY_NAME1_expandCapacity(),
remove_ARRAY_NAME1(), remove_ARRAY_NAME1(int
n), get_ARRAY_NAME1_size():int,
get_ARRAY_NAME1(int n):DATA_TYPE,
ARRAY_NAME1_isEmpty() (see the first rectangular mark in
Fig. 1).

For an array ARRAY_NAME2: CLASS_NAME_OF_OBJECT[]*,
OOFS also offers 7 methods to manage the array and which are
ARRAY_NAME2_add(CLASS_NAME_OF_OBJECT element),
ARRAY_NAME2_expandCapacity(), remove_ARRAY_NAME2(),
remove_ARRAY_NAME2(int n), get_ARRAY_NAME2_size():int,
get_ARRAY_NAME2_CLASS_NAME_OF_OBJECT(int n):
CLASS_NAME_OF_OBJECT, ARRAY_NAME2_isEmpty()
[10] (see the second rectangular mark in Fig. 1). We take array

209

ARRAY_NAME2 for example and describe how these
methods manage array ARRAY_NAME2.

 ARRAY_NAME2_add(CLASS_NAME_OF_OBJECT element)
adds the specified object element whose class name
CLASS_NAME_OF_OBJECT to array ARRAY_NAME2.

ARRAY_NAME2_expandCapacity () creates a new array
to store the contents of array ARRAY_NAME2 with twice the
capacity of the old one.

remove_ARRAY_NAME2() removes all of objects from
the array.

remove_ARRAY_NAME2(int n) operation consists of
making sure the array is not empty and removes the specified
object from the array using index n.

get_ARRAY_NAME2_size():int returns the number of
objects in the array.

get_ARRAY_NAME2_CLASS_NAME_OF_OBJECT(int
n): CLASS_NAME_OF_OBJECT returns an object whose
class name CLASS_NAME_OF_OBJECT using index n.

The following uses as an example the e-Business system of
the Eastland Company to describe these 7 methods in detail.

B. Applying OOFS Standard Model on Eastland e–Business

System

Since OOFS is to build the file system of an information
system and for linking to the next window and for building data
processing window of ISG are to generate graphic user
interface screens which are to input data and then store data.
Now take Eastland e–Business for example to describe how we
implement the file system of Eastland e–Business.

Figure 2. Class diagrams of six groups of classes from Eastland e–Business.

Consider Eastland e–Business that computes the monthly
shipping amount, generates reports on their monthly earnings,
profit, orders, etc. Let’s focus on building the file system of
Eastland e–Business and there are 17 groups of classes (classes
that are related to each other through composition) in this system
such as classes for foreign bank data, local bank data, invoice
(including pro forma invoice, shipping notice), company data,
product description, vendor purchase orders, products, single

inventory statistics, goods expenses, types of expenses, monthly
earning, profit etc. Then use OOFS standard model in Fig. 1 to
illustrate the file structure of these 17 groups of classes. Now we
document these designs using OOFS standard model to examine
three of these groups, for invoice, goods expenses and goods
shown in Fig. 2. It shows class diagrams of file INVOICE, file
PAYOUT, file GOODS_PAYOUT_KIND. Each of files has its
associated classes such as class INVOICE, class
PROFORMA_INVOICE_DATA and class PI_DATA in file
INVOICE, class PAYOUT and class PAYOUT_DATA in file
PAYOUT, class GOODS_PAYOUT_KIND and class
GOODS_PAYOUT_KIND_DATA in file
GOODS_PAYOUT_KIND.

Taking file INVOICE for example (see the first oval mark
in Fig. 2), there are two arrays in object of class INVOICE;
array PI_PROFORMA_INVOICE is to store pro forma invoice
and array SI_SHIPPING_INVOICE is to store shipping notice
and both store objects of class PROFORMA_INVOICE_DATA.
Class PROFORMA_INVOICE_DATA includes attributes –
PI_NUMBER, PI_COMPANY, PI_CUSTOMER, etc. and an
array PI_ARRAY which stores objects of class PI_DATA.
Class PI_DATA includes attributes – PI_GU_NUMBER,
PI_GU_IDX, PI_GU_STATEMENT, PI_AMOUNT, PI_UNIT,
PI_PRICE and PI_PRESENTLY.

Another issue to consider is how an array manages its
associated objects. Consider arrays
PI_PROFORMA_INVOICE and SI_SHIPPING_INVOICE
(see four rectangular marks at class INVOICE in Fig. 2) for
illustrating how the object streams are stored in a file. Take
array PI_PROFORMA_INVOICE for example and array
PI_PROFORMA_INVOICE is used to manage objects of class
PROFORMA_INVOICE_DATA and seven methods enclosed
in the third rectangular mark are generated by OOFS that are
methods PI_PROFORMA_INVOICE_add(PROFORMA_INVOICE_DATA

element), remove_PI_PROFORMA_INVOICE(),
remove_PI_PROFORMA_INVOICE(int n),
get_PI_PROFORMA_INVOICE_size(),
PI_PROFORMA_INVOICE_isEmpty(),
get_PI_PROFORMA_INVOICE_PROFORMA_INVOICE_DATA(int n) and
PI_PROFORMA_INVOICE_expandCapacity().

If get_PI_PROFORMA_INVOICE_PROFORMA_INVOICE_DATA(int

n) returns an object of class PROFORMA_INVOICE_DATA
named A_PROFORMA_INVOICE1 and using this object to
call method getPI_NUMBER() gets value of attribute
PI_NUMBER. Therefore ISG can translate getting value of
PI_NUMBER with A_PROFORMA_INVOICE1 into a
command statement
A_PROFORMA_INVOICE1.getPI_NUMBER(). Another
command statement
A_PROFORMA_INVOICE1.setPI_NUMBER(n) is to set a
value n to attribute PI_NUMBER. When array
PI_PROFORMA_INVOICE is created (means object of class
INVOICE is created and array PI_PROFORMA_INVOICE in
it), it is allocated a specific number of cells into which elements
can be stored. Since we use a fixed–size data structure, at some
point the array may become full. So method
PI_PROFORMA_INVOICE_expandCapacity() will be called
automatically to double the size of array
PI_PROFORMA_INVOICE. Thus the file structure of

210

Eastland e–Business, with arrays and methods provided
makes it convenient and efficient t o retrieve data elements
in any array. How users use OOFS to set parameters and
translate to Java programs is discussed in [1].

C. How ISG Retrieves data from OOFS File Structure

If users specify a path for retrieving PI_GU_STATEMENT
data as INVOICE/PI_PROFORMA_INVOICE/PI_ARRAY/
PI_GU_STATEMENT, then ISG uses this path to translate a
Java program for getting PI_GU_STATEMENT.
INVOICE/PI_PROFORMA_INVOICE/PI_ARRAY/PI_PRICE
means that there are two arrays – PI_PROFORMA_INVOICE
and PI_ARRAY and there are objects stored in their associated
arrays.

The path indicates that an object of class INVOICE
contains a PI_PROFORMA_INVOICE array. Each element of
PI_PROFORMA_INVOICE array is an object of class
PROFORMA_INVOICE_DATA. Each of these objects
contains a PI_ARRAY array. Each element of PI_ARRAY
array is an object of class PI_DATA. Each of these objects
contains an attribute called PI_GU_STATEMENT. Therefore
ISG knows how to get attribute PI_GU_STATEMENT by
following steps using the above path specified. The command
statements can be seen in [2].

1. Read an object named THE_INVOICE from file INVOICE,
since PI_PROFROMAN_INVOICE is an array stored in
the THE_INVOICE object.

2. Next ISG uses for loop to retrieve each object of class
PROFORMA_INVOICE_DATA from the
PI_PROFORMA_INVOICE array which is temporarily
stored in AN_INVOICE object.

3. There is an array PI_ARRAY in object AN_INVOICE and
ISG use this object to get each object of class PI_DATA
stored in array PI_ARRAY. ISG also uses for loop to get
each object of class PI_DATA as step 2 does.

4. From the retrieved objects of class PI_DATA, we can get
the value of PI_GU_STATEMENT by using each of them.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We analyze the efficiency obtained in terms of the OOFS
CPU time using the two tools (ISG and DWL).

A. Analyzing Efficiency of OOFS CPU Time Using ISG

ISG generated an e–Business system for the Eastland
Company by generating a total of 74 Java programs. There
were 15 user interface screens for entering the shipping cost,
monthly expenses, foreign manufacture’s data, local
manufacture’s data, foreign bank data, local bank data,
packaging data, about products, about the company, foreign
customer shipments etc. The average time it took for translating
these GUI screens was 14.46 milliseconds (not including I/O
time) which is pretty good since ISG moves the parameters to
the memory and uses fast access methods. For storing these
parameters there are two files—HF file and FRAME file. An
HF file is for storing data architecture such as field name, data
type, array dimension, size of array and data type of array. A
FRAME file is for storing graphic interface screen component
and data path. Since OOFS moves everything to memory at
once, it reduces the amount of time it takes to read a FRAME

file (it took 288.93 milliseconds to move data). It took just
22.8 milliseconds for reading the HF file. So the total time for
translating a screen was 326.19 milliseconds.

B. Analyzing Efficiency of OOFS CPU Time Using DWL

We used DWL [11] to implement an E–commerce web–
based system that we call E–POLEMONG for POLEMONG
Plastic Company. POLEMONG Plastic Company
manufactures eleven types of products viz. telecommunication
parts, auto parts, sports equipment, daily supplies, appliances,
aquarium supplies, etc. E–POLEMONG displays six items viz.
News, Products, About POLEMONG Company, Investor
Information, Product Quality and Contact us. We translated 22
web pages using DWL for E–POLEMONG such as News and
eleven different types of products like About POLEMONG,
Product Quality, Investor Information, Contact Us, etc. We
also applied OOFS to retrieve data and then to translate it to
web-pages. The average translation time for these web pages
was 545.5 milliseconds, with the shortest time being 330
milliseconds and the longest time being around 700
milliseconds.

ISG’s and DWL’s experimental results show that OOFS is
scalable. Since our extents are implemented as one object in
one segment, as the number of objects in the extension
increased, the size of the extent object increased and that space
is big enough to keep all the class extension objects needed for
a transaction.

C. Another Advantage of OOFS – Join Approach

Note that ISG uses arrays and methods to create an
information system that is convenient and efficient for
retrieving data elements in any array. Another characteristic
of this OOFS standard model is when the drop–down lists of a
GUI screen has data items from other files, ISG can combine
data from these files into one file. This mechanism is similar
to SQL joins in a database. Since an index is an integer pointer
(into an array), using this index can identify elements of the
array. Therefore we can use the selected indices from a drop–
down list to retrieve its associated data elements from the
source file. This mechanism for drop–down lists combines
data elements from two or more files into a file which is a
Joined Approach. Therefore a Joined Approach can eliminate
duplication of information when objects may have one–to–
many relationships.

Figure 3: The Medical Supplier page of E–POLEMONG.

211

D. How to Update Web Pages Quickly as the Company

Produces New Products Frequently

Figure 3 shows the Medical Supplier webpage of E–
POLEMONG. It shows six types of hospital handrail image
pictures. We describe the steps below on how to implement an
application that translates it into a new webpage whenever a
new product is introduced.

1. Execute building data processing window of ISG to
generate an interface screen to input data – product name,
its image file name, and data is stored into a file called
MEDICAL_SUPPLIERFILE.

2. Use DWL to generate an HTML program called
MEDICAL_SUPPLIER.html which shows a webpage
similar to the one shown in Fig. 3. We wrote a translator to
update Fig. 3 which calls PrintWriter to print formatted
representations of objects to a text-output stream such as
MEDICAL_SUPPLIER.html. There is a for loop in the
translator which can be used to make changes to the
RIGHTCOLUMN section in Fig. 3. It gets the number of
hospital handrails from the MEDICAL_SUPPLIERFILE
file. The command statements can be referenced from [11].

V. Conclusions and Future Work

An information system was developed using ISG for
Eastland that involves computing the monthly shipping
amount, generating reports on their monthly earnings, profit,
orders etc. We had already established the usefulness of ISG in
our earlier work.

It is convenient and easy to use DWL to generate a web–
based system for any company or business. The web–based
system enables customers to better understand the company
and its products, which would result in increased sales. We
illustrated this for a company in the paper. In the future, we
hope to use this tool to develop customized web–based
systems for other small and medium sized businesses. Both
ISG and DWL can save time in writing, debugging and testing
a program.

We established the usefulness of DWL in our earlier work
which reduced the cost of producing software written in
HTML. For example, using DWL we developed a customized
web–based system for GREATYO sunglasses for sports and
kids [11] and for the 7th Ubiquitous–Home Conference
UHC2013 [3]. ISG has been used to generate an e–Business
system for Eastland International Company [2]. Our research
also offered a tool called W–Revised for creating customized
websites. Because companies introduce new products
frequently and the web pages of its site need to be updated
frequently, it can be done conveniently using W–Revised
generated by ISG and DWL [11].

Websites are often hacked by hackers seeking to
compromise the corporate network. Also programs are

sometimes downloaded without the users consent or knowledge
when they visit a web site (drive–by download). As a result,
industry is paying increased attention to the security of the web
applications themselves in addition to the security of the
underlying computer network and operating systems. In order
to keep a website clean and secure, we are trying to find a good
solution to defend the websites. Therefore we hope that in the
near future our software tools might be included in business
applications as software as a service (SaaS).

ACKNOWLEDGMENT

Eastland e–Business System was developed in
collaboration with Eastland International Company for
implementing an e–Business System. E–POLEMONG was
developed in collaboration with POLEMONG Plastic
Company for developing a web–based system for their
business. We would like to thank them for giving us this
opportunity to work with them and test our tools for
generating the information and the web–based systems.

REFERENCES

[1] Ling–Hua Chang, Sanjiv Behl, “An Efficient Information System
Generator,” 4th Asian Conference on Intelligent Information and
Database Systems, pp. 286–297, 2012.

[2] Ling–Hua Chang, Sanjiv Behl, Tung–Ho Shieh, “Amazing Use of ISG
for Implementing Information Systems,” 2014 International Conference
on Information Science, Electronics and Electrical Engineering,
(iseee2014), pp. 1980–1985, April 26–28, 2014.

[3] Ling–Hua Chang, Tung–Ho Shieh, Sanjiv Behl, “Amazing of Using ISG
on Implement a Web–Based System,” 14th International Conference on
Parallel and Distributed Computing, Applications and Technologies
(PDCAT’13), pp. 44–49, 2013.

[4] Raimund K. Ege, “Reading Large Volumes of Java Objects from
Database,” TOOLS '00 Proceedings of the Technology of Object–
Oriented Languages and Systems (TOOLS 34'00), pp. 117–124 , Aug.
2000.

[5] Linna Li, Bingru Yang, Faguo Zhou, “A Framework for Object–
Oriented Data Mining,” the 5th International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD 2008), pp. 60–64 , Oct. 2008.

[6] Wei–Chou Chen, Tzung–Pei Hong and Wei–Yang Lin, “A Composite
Data Model in Object–Oriented Data Warehousing,” TOOLS '99
Proceedings of the 31st International Conference on Technology of
Object–Oriented Language and Systems, pp. 400–405, 1999.

[7] L. Opyrchal, A. Prakash, “Efficient object serialization in Java,”
Proceedings of 19th IEEE International Conference on Distributed
Computing Systems Workshops on Electronic Commerce and Web–
based Applications., pp. 96–101, 31 May 1999–04 Jun 1999.

[8] Joe Cheri Ross, Dr. Priya Chandran, “Object Serialization Support for
Object Oriented Java Processor,” IEEE Transactions of Information
Technology, pp. 1–6, vol. 3 Aug. 2008.

[9] C.S. Horstmann, G. Cornell, Core Java Volume I–Fundamentals, 8th ed.
Sun Microsystems Press, Prentice Hall, New Jersey, 2008.

[10] John Lewis, Joseph Chase,, “Java Software Structures designing and
using data structures,” Pearson Education Inc., 2005.

[11] Ling–Hua Chang, Sanjiv Behl, Tung–Ho Shieh, “W–Revised: an
Amazing Tool for Creating Customized Websites”, 2014 IEEE, DOI
10.1109/ICSAI.2014.7009333, pp.465–470, 2014.

212

An Evolution Mechanism for Dynamic Physical
Applications in the Internet of Things

Kaibin Xie1,2 , Haiming Chen1, Dong Li1 and Li Cui1
1Institute of Computing Technology, Chinese Academy of Sciences, Beijing

2University of Chinese Academy of Sciences, Beijing
Email: xiekaibin@ict.ac.cn, chenhaiming@ict.ac.cn, lidong@ict.ac.cn and lcui@ict.ac.cn

Abstract—With rapid development of the Internet of Things,
more and more smart devices are deployed in the physical
space. A physical application is composed by several smart
devices which provide physical data. The physical applications
need appropriate physical information processing systems to
process the related data. However, the physical applications
are dynamic because of the ever-changing demands in the
IoT. So it is necessary to design an evolution mechanism for
the dynamic physical applications to find appropriate physical
information processing systems. We first analyze the changing
types of dynamic physical applications. Then we conclude three
relationships between the dynamic physical applications and
physical information processing systems. In order to verify the
correctness of the evolution mechanism, we use Communication
Sequential Process to formalize the evolution mechanism and use
Process Analysis Toolkit to verify deadlock-free, divergence-free
and nonterminating of the evolution mechanism.

Keywords—Internet of Things; physical application; physical
information processing system; dynamic; evolution mechanism

I. I NTRODUCTION

The concept of the Internet of Things (IoT) is proposed
by MIT in 1999 [6] and has got extensive attention from
the industrial community [3]. According to the vision for the
IoT [7], most smart devices in the physical space have the
ability to communicate and compute. A physical application
is composed by several smart devices which provide physical
data to the social. These physical applications need appropriate
physical information processing systems to process the related
data.

In our previous work, we have established a software
architecture of the IoT, named PMDA [9]. The PMDA is
composed by three models which are extracted from the social
space, the virtual space and the physical space. The three
models are the Application Model, the Sense-Execute Model
and the Physical Model. The relationship of the three models
is illustrated in Fig. 1. As depicted in Fig. 1, the Application
Model sends requirement information (req-info) to the Sense-
Execute Model; the Sense-Execute Model processes sensory
data (sen-data) from the Physical Model according to the req-
info from the Application Model and sends the execution
information (exe-info) to control the Physical Model; the
Physical Model provides sen-data to the Sense-Execute Model
and receives the exe-info from the Sense-Execute Model.

According to the PMDA, we can see that these physical
applications can be regard as the instances of the Physical
Model; the physical information processing systems can be
regard as the instances of the Sense-Execute Model.

Because of the ever-changing demands in the IoT [10], the
physical space and the physical parameters of physical appli-
cations are changeable. The changeable physical applications
need appropriate information processing systems. In order to
adapt the ever-changing demands in the IoT, we design an
evolution mechanism for the dynamic physical applications to
find appropriate physical information processing systems.

Fig. 1. The relationship of the three models in the PMDA

The challenges for designing the evolution mechanism
are as follows. Firstly, it is difficult to find an appropriate
physical information processing system for a dynamic physical
application in the IoT. Secondly, it is hard to illustrate the
correctness of the evolution mechanism. Without strict proof,
we can not state that the evolution mechanism is correct in all
situations.

The remainder of this article is organized as follows. We
provide the related work and a motivational scenario of the
evolution mechanism in Section II. Section III analyzes the
dynamic changes of physical applications. Three relationships
between the dynamic changes of these physical applications
and the physical information processing systems are depicted
in Section IV. Section V establishes the procedures of the evo-
lution mechanism. The processes of evolution mechanism are
depicted by the Communication Sequential Process(CSP) [5]
statements and the correctness of the evolution mechanism
is verified by the Process Analysis Toolkit(PAT) [4] in Sec-
tion VI. Finally, we make a concluding remark of the evolution
mechanism.

II. RELATED WORK AND MOTIVATIONAL SCENARIO

The evolution for the IoT has been investigated mainly in
three aspects which are the changing context and demands
for an IoT application [2], the user mobility and unreliable
sensor availability in IoT [1] and the dynamic interactions in
the IoT [8].

Based on the software architecture PMDA and recent
research in IoT evolution, this article analyzes the evolution
mechanism for the dynamically changing physical applications
due to the ever-changing demands in the IoT. The evolution
mechanism can guarantee that these physical applications

213

dell
打字机文本

dell
打字机文本

dell
打字机文本

dell
打字机文本

dell
打字机文本

dell
打字机文本

dell
打字机文本

dell
打字机文本

dell
打字机文本

dell
打字机文本

dell
打字机文本

dell
打字机文本

dell
打字机文本

dell
打字机文本
DOI reference number: 10.18293/SEKE2015-129

dell
打字机文本

evolve correctly according to the physical information pro-
cessing systems in the IoT. We depict a typical scenario for
these dynamic physical applications as follows.

Jim is a supervisor of a large environment monitoring
system. The organization deploys environmental monitoring
applications in three areas (area A, area B and area C) of a
city. Jim deploys the sensors in the three areas in order to
provide physical data of the environment to the corresponding
physical information processing systems which can process
the physical data according to the requirements (Req-A, Req-
B and Req-C) from the social space. In area A, Jim deploys
temperature sensors and humidity sensors; in area B, Jim
deploys CO sensors and CO2 sensors; in area C, Jim deploys
CO sensors and temperature sensors. The three environmen-
tal monitoring applications are instances of the Application
Model and named as pma, pmb and pmc respectively. Jim
develops three physical information processing systems to
process the three environmental monitoring applications. The
three physical information processing systems are instances
of the Sense-Execute Model and named as sema, semb and
semc respectively. Fig. 2 shows the scenario of the three
environmental monitoring applications.

Jim wants to manage the city’s environmental monitoring
applications in an effective way even when the environmental
monitoring applications have changed. But the above envi-
ronmental monitoring applications don’t conform to Jim’s
expectations because the three physical information processing
systems can not adapt to the dynamic changes in the three
environmental monitoring applications.

So Jim asks the Research department to realize the intended
environmental monitoring applications. The Research depart-
ment reports that they should design an evolution mechanism
for these environmental monitoring applications. The evolution
mechanism can adapt to the dynamic changes in the three
environmental monitoring applications and guarantee that there
are appropriate physical information processing systems for the
three environmental monitoring applications.

_

send_inreq

area B

area A

area C

pma

pmb

pmc

temperature humidity

CO CO2

CO temperature

semc

semb

sema

Social Space

Req-A

Req-B

Req-C

Fig. 2. The scenario of the three environmental monitoring applications

III. C HANGING TYPES OF PHYSICAL APPLICATIONS

Physical location and the physical parameters are two key
characteristics for the physical applications. The structure of a
physical application is illustrated in Fig. 3. In Fig. 3, the pa
represents the name of a physical application; the pl represents
the physical location of a physical application and the pps
represents the physical parameters of a physical application.

Fig. 3. The structure of a physical
application

Fig. 4. The structure of a physical
information processing system

We take the scenario in section II as an example and the
possible changing types of the dynamic physical applications
are as follows.

A. Changing types for the pl

There are four changing types which are changed in the
pl and remain unchanged in the pps. The four changing types
can be depicted as follows.

1) Shrink the scope of the physical location in the
physical application. The reduced sites are denoted
by S. We use SHRINK to represent this changing
type.

2) Enlarge the scope of the physical location in the
physical application. The added sites are denoted by
E. We use ENLARGE to represent this changing type.

3) Shrink and then enlarge the scope of the physical
location in the physical application or the versa. We
use SHR-ENL to represent this changing type.

4) Move to a new physical location. We use MOVE to
represent this changing type.

B. Changing types for the pps

There are four changing types for the pps, which are
changed in the pps and remain unchanged in the pl.

1) Add new physical parameters. We use ADD to rep-
resent this changing type.

2) Delete physical parameters. We use DELETE to
represent this changing type.

3) Delete the physical parameters and then add new
physical parameters or the versa. We use DEL-ADD
to represent this changing type.

4) New physical parameters. We use NEW to represent
this changing type.

C. Changing types for both the pl and the pps

Because there are four changing types for the pl and four
changing types for the pps, we can conclude that there are
sixteen changing types for the changes in both the pl and the
pps of a physical application.

D. ZERO changing type

There is a special changing type for the physical appli-
cation, which denotes that the pl or the pps of a physical
application is null. We use ZERO to represent this changing
type. The ZERO denotes that the physical application has
terminated in the IoT.

214

IV. RELATIONSHIPS BETWEEN DYNAMIC PHYSICAL
APPLICATIONS AND PHYSICAL INFORMATION PROCESSING

SYSTEMS

According to these changing types discussed in section III,
we analyze the relationships between the dynamic physical
applications and the physical information processing systems.

A physical information processing system processes the
physical data from the corresponding physical applications
according to the requirements from the social space. The
process ability of a physical information processing system
is denoted by pro. The pro is composed by several physical
parameters which the physical information processing system
can process in the IoT. A physical information processing
system can process these physical applications if the pps of
these physical applications are contained by the pro. A physical
information processing system records the related pl and pps of
the physical applications. We use semn to represent the name
of a physical information processing system.

The structure of a physical information processing system
is illustrated in Fig. 4.

We conclude that there are three relationships which are
named as ERASE, UPDATE and LOOKUP and analyze the
three relationships as follows.

A. The ERASE relationship

The ERASE relationship denotes that the changed physical
application has nothing with any physical information process-
ing systems in the IoT. We can conclude that the physical
application has terminated in the IoT. The changing type for
the ERASE relationship is ZERO.

B. The UPDATE relationship

If a physical application has changed and the changed
pps for the physical application still contains in the pro of
the corresponding physical information processing system, we
name it as UPDATE relationship for the physical application.

C. The LOOKUP relationship

If a physical application has changed and the changed
pps for the physical application is not in the pro of the
corresponding physical processing system, we name it as
LOOKUP relationship for the physical application.

V. EVOLUTION PROCEDURES

According to the procedures of the three relationships, we
can conclude that there are seven procedures for the evolution
mechanism. We illustrate the seven procedures as follows.

1) IRS (Initial Relationship Set): The IRS denotes the
relationship between the physical applications and the
physical information processing systems at initial.

2) JUDGE: We judge the changing types for these
dynamic physical applications in the IoT.

3) ERASE: The relationship is ERASE. After the pro-
cedure for ERASE, goto 7).

4) UPDATE: The relationship is UPDATE. After the
procedure for UPDATE, goto 7)

5) LOOKUP: The relationship is LOOKUP. If we can
find an appropriate physical information processing
system for the changed physical application, goto 7).
Else, it denotes that there is no physical information
processing system for the changed physical applica-
tion, goto 6).

6) DEPLOY: We deploy a new physical information pro-
cessing system for the changed physical application
and establish the relationship between the changed
physical application and the new physical information
processing system. After the procedure for DEPLOY,
goto 7).

7) UPDIRS: We update the IRS in order to form a
new relationship between the changed physical ap-
plications and the physical information processing
systems. After the procedure for UPDIRS, goto 1).

The seven procedures of the evolution mechanism are
illustrated in Fig. 5.

IRS

LOOKUP

JUDGE

ERASE UPDATE

YES NO

UPDIRS DEPLOY

Fig. 5. Procedures of the evolution mechanism

VI. CORRECTNESS VERIFICATION

In order to verify the correctness of the procedures for
the evolution mechanism, we express the seven procedures by
the processes in the CSP. We verify the correctness of these
processes by the PAT.

A. Processes for the evolution mechanism

We use the process IRS to express the procedure 1) in the
evolution mechanism. There is only one event (generate) in
the IRS. The meaning of the event is to generate the Initial
Relationship Set.

We use the process JUDGE to express the procedure
2). There are two events (change and judge) in the process
JUDGE. Event “change”shows that the physical application
has changed. Event “judge”is to judge the relationship.

We use process ERASE to express the procedure 3). There
are two events (erase, unlinkera) in the process ERASE. Event
“erase”shows that the physical information processing system
deletes the related pl and pps of the physical application. Event
“unlinkera”shows that the physical information processing
system unlinks with the physical application.

215

We use the process UPDATE to express the procedure 4).
There is only one event (update) in the process UPDATE.
Event “update”shows that the physical information processing
system updates the pl and the pps.

We use process LOOKUP to express the procedure 5).
There are three events (delup, unlinkup and search) in the
process UPDATE. Event “delup”shows that the physical in-
formation processing system deletes the pl and the pps of
the related physical application. Event “unlinkup”shows that
the physical information processing system unlinks with the
physical application. Event “search”shows that the physical
application searches the appropriate physical information pro-
cessing system in the IoT.

We use process DEPLOY to express the procedure 6).
There are two events (link, register) in the process DEPLOY.
Event “link”shows that the physical application links to a new
physical information processing system. Event “register”shows
that the pl and pps of the physical application are registered
in the new physical information processing system.

We use four processes (ERAIRS, UPDIRS, LOOKIRS and
DEPIRS) to express the procedure 7).

The process ERAIRS updates the IRS in procedure 7)
after the process ERASE. The process UPDIRS updates the
IRS in procedure 7) after the process UPDATE. The process
LOOKIRS updates the IRS in procedure 7) after the process
LOOKUP. The process DEPIRS updates the IRS in procedure
7) after the process DEPLOY.

There is only one event “updera”in the process ERAIRS.
Event “updera”updates the IRS by deleting the link relation-
ship.

There is only one event “updup”in the process UPDIRS.
Event “updup”updates the IRS by updating the pl and pps of
the physical application in the physical information processing
system.

There is only one event “updlook”in the process
LOOKIRS. Event “updlook”updates the IRS by adding the pl
and pps of the physical application to the physical information
processing system.

There is only one event “upddep”in the process DEPIRS.
Event “upddep”updates the IRS by adding the pl and pps
of the physical application to the new physical information
processing system.

Based on the above analysis of the processes and events we
can get ten CSP processes for the procedures of the evolution
mechanism as follows.

• IRS = generate → JUDGE;

• JUDGE = change → judge →

(ERASE[∗]UPDATE[∗]LOOKUP);

• ERASE = erase → unlinkera → ERAIRS;

• UPDATE = update → UPDIRS;

• LOOKUP = delup → unlinkup → search →

(DEPLOY [∗]LOOKIRS);

• DEPLOY = link → register → DEPIRS;

• ERAIRS = updera → IRS;

• UPDIRS = updup → IRS;

• LOOKIRS = updlook → IRS;

• DEPIRS = upddep → IRS;

B. Verification results for the evolution mechanism

We use process EM to express the behavior of the whole
procedures in the evolution mechanism. Because the process
IRS can be regard as the first process in the evolution mech-
anism, the process IRS is equal to the process EM.

Based on the PAT, we can verify that the process EM is
deadlock-free, divergence-free and nonterminating. The results
for the processes of the evolution mechanism are illustrated in
Fig. 6.

Fig. 6. The results for the processes of the evolution mechanism

VII. C ONCLUSION

This paper provides a novel evolution mechanism between
the dynamic physical applications and the corresponding phys-
ical information processing systems in the IoT. The evolution
mechanism satisfies three properties which are deadlock-free,
divergence-free and nonterminating.

ACKNOWLEDGMENT

Partial work of this paper is supported by the International
S&T Cooperation Program of China (ISTCP) under Grant
No.2013DFA10690.

REFERENCES

[1] R. Arun, P. Davy and B. Yolande.Enabling self-learning in dynamic
and open IoT environments. Procedia Computer Science, pp.207-214,
2014.

[2] A.P. Athreya, B. DeBruhl and P. Tague.Designing for self-configuration
and self-adaptation in the Internet of Things. IEEE International Con-
ference Conference on Collaborative Computing: Networking, Applica-
tions and Worksharing (Collaboratecom), 2013.

[3] Y. Cheng, X. Li, Z. Li, et al. AirCloud: a cloud-based air-quality
monitoring system for everyone. 12th ACM Conference on Embedded
Network Sensor Systems (SenSys), pp.251-265, 2014.

[4] CS Department NUS.PAT: Process Analysis Toolkit. Available:
http://www. patroot. com.

[5] C.A.R. Hoare. Communicating Sequential Processes. New Jersey:
Prentice-Hall International, 1985.

[6] G.Neil and C. Danny.Internet 0: Interdevice internetworking-end-to-
end modulation for embedded networks. IEEE Circuits and Devices
Magazine, pp.48-55, 2006.

[7] OECD. Machine-to-machine communications: Connecting billions of
devices. Available: http://www.oecdilibrary. org, 2012.

[8] L. Rao, C. Fan, Y. Wu, et al.A Self-Adapting Dynamic Service
Management Platform for Internet of Things. LISS 2013, Springer
Berlin Heidelberg, pp.783-791, 2015.

[9] K. Xie, H. Chen and L. Cui.PMDA: A physical model driven software
architecture for Internet of Things. Computer Research and Develop-
ment, pp.1185-1197, 2013(In Chinese).

[10] H. Zhuge. Semantic linking through spaces for cyber-physical-socio
intelligence: A methodology. Artificial Intelligence, pp.988-1019, 2011.

216

Architectural Evolution of a Software Product Line:
an experience report

Marcelo Schmitt Laser, Elder Macedo Rodrigues, Anderson Domingues, Flávio Oliveira, Avelino F. Zorzo
School of Computer Science (FACIN) - Pontifical Catholic University of Rio Grande do Sul

Porto Alegre – RS – Brazil
Email: {marcelo.laser, anderson.domingues}@acad.pucrs.br
{elder.rodrigues, flavio.oliveira, avelino.zorzo}@pucrs.br

Abstract—This work presents an experience report on the
architectural decisions taken in the evolution of a Software
Product Line (SPL) of Model-based Testing tools (PLeTs). This
SPL was partially designed and developed with the intention of
minimizing effort and time-to-market during the development
of a family of performance testing tools. With the evolution
of our research and the addition of new features to the SPL,
we identified limitations in the initial architectural design of
PLeTs’ components, which led us to redesign its Software Product
Line Architecture (SPLA). In this paper, we discuss the main
issues that led to changes in our SPLA, as well as present the
design decisions that facilitate its evolution in the context of an
industrial environment. We will also report our experiences on
architecture modifications in the evolution of our SPL with the
intention of allowing easier maintenance in a volatile development
environment.

I. INTRODUCTION

Over a few decades, more and more software development
companies have been using some software engineering strate-
gies, such as reuse-based software engineering, to develop
software with less cost, faster delivery and increased quality.
Reuse-based software engineering is a strategy in which
the development process is focused on the reuse of assets
and on a core architecture, reducing the development effort
and improving the software quality. In recent years, many
techniques have been proposed to support software reuse, such
as Component-based development and Software Product Lines
(SPL) [11]. Component-based development is centered on
developing a software system by integrating components, where
each component can be defined as an independent software
unit that can be used with other components to create a system
module or even a whole software system. In another way,
Software Product Lines are focused on developing a family
of applications based on a common architecture and a shared
set of software assets, where each application is generated,
in accordance with the requirements imposed by different
customers, from these assets and shares a common architecture
[11].

In past years, SPL has emerged as a promising technique
to achieve systematic reuse and at the same time to decrease
development costs and time-to-market [9]. One of the main SPL
development sub-processes is to use the domain requirements
and the product line variability model to define the Software
Product Line Architecture (SPLA). The SPLA is a common,
high level and generic structure that will be used for all the
products derived from the SPL.

In order to take advantage of this approach, we have adopted
the SPL concept to support the development of our applications
[1] [4] [10]. We have found that, although this enabled the reuse
of artifacts, thus reducing the time and cost of development, it
incurred in a cost related to the evolution of each artifact, as
well as that of the SPLA used to manage this evolution.

In this work we report and discuss our experience in
implementing and evolving the architecture of a component-
based SPL to derive Model-based Testing (MBT) tools. In
particular, we describe how we applied software design patterns
[6] to map and to instantiate components, these having their
variability managed by another component [5]. Finally, we
describe two methods of implementing the variable components
(features).

This paper is organized as follows. Section II describes
the context where PLeTs SPL was designed and developed, as
well as briefly presenting its Product Line Architecture (PLA).
In Section III we discuss the main PLA limitations identified
along the SPL evolution. In Section IV we present and discuss
our approach to mitigate these limitations, as well as describe
our PLA in accordance with that approach. In Section V we
discuss the related work and Section VI presents the lessons
learned along the PLA evolution. Finally, the conclusion and
the future work are presented in Section VII.

II. CONTEXT

Our research group on Software Testing1 has been working
to design and develop several testing tools. Our research focus is
to investigate innovative ways to mitigate the effort of repeatedly
creating custom solutions to apply performance, functional and
structural testing. After developing several testing tools, either
from scratch or using a limited opportunistic reuse, but which
had several features in common, we started a collaborative
study with the Technology Development Lab of our partner
company to investigate the use of SPL concepts to generate
these testing tools. As a result of this study we consolidated our
SPL called PLeTs [1] [4] [10]. In this SPL, derived products
are testing tools that receive behavioural models as input and
give either automatic or manual test scripts as output; these
models denote specific test cases, thus leveraging testing teams
to follow a model-based approach [14], a process that we
describe elsewhere [1].

1www.cepes.pucrs.br

(DOI Reference Number: 10.18293/SEKE2015-057) 217

Fig. 1. PLeTs UML Component Diagram

A. PLeTs Architecture

PLeTs was initially designed to support the derivation of a
particular testing tool from a set of shared software components,
which are then glued together with minimal changes. We defined
the use of a replacement mechanism to develop each concrete
feature [13] of the PLeTs feature model [1]. In this way, an
MBT tool derived from PLeTs is assembled by selecting a set
of components and a common software base. We chose this
approach to generate PLeTs products because it presents some
advantages, such as high-level of modularity and a simple 1:1
feature to code mapping. Figure 1 shows the PLeTs component
model.

Since we are using a component replacement mechanism,
each provided interface represents a variation point and each
variable component implementation represents a variant. The
interfaces provided by the PLeTs components are (see Figure
1): a) IParser: this interface is a mandatory variation point that
has two exclusive variant components, UmlPerf and UmlStruct;
b) ITestCaseGen: this interface is a mandatory variation point
that has one mandatory component: TestCaseGenerator. This
component provides two interfaces: IAbstractTestGen and
IseqGen. The former interface can be realized by one of the
following components: PerformanceTesting or StructuralTesting.
The latter interface can be realized by one of the following
components: FiniteStateMachineHsi or RandomDataGenerator;
c) IScriptGenerator: this interface is an optional variation point
that can be realized by one of the following components: Vi-
sualStudioScript, LoadRunnerScript, EmmaScript, JabutiScript
and JmeterScript; d) IExecutor: is an optional variation point
that can be realized by one of the following components: Vi-
sualStudioScript, LoadRunnerScript, EmmaScript, JabutiScript
and JmeterScript. For a detailed description of component
functionalities, see [3].

In accordance with Figure 1, a valid configuration of
a MBT tool derived from PLeTs could have the following
components: PLeTs, UmlParser, TestCaseGenerator, Perfor-
manceTesting, FiniteStateMachineHsi, LoadRunnerScript, Load-
RunnerParameters. Based on the selected components, the
generated tool supports the extraction of test information from
UML models (UmlParser component), then generates test cases
(TestCaseGenerator component) using a Finite State Machine

and the HSI method (FiniteStateMachineHsi component) to
apply performance testing (PerformanceTesting component).
The generated test cases could be used as a input to generate
scripts to the LoadRunner testing tool (LoadRunnerScript
component) and then the scripts could be loaded in the tool
and run the test (LoadRunnerParameters component).

III. PLETS ARCHITECTURE LIMITATIONS

During the design and development of an SPL, some of the
main issues faced by an SPL Architect are caused by changes
in the requirements, as these may result in the inclusion of
unpredicted features to the SPL (reactive approach [7]), i.e.
features that may not fit into the initial design of the SPLA
[12]. In our experience, this has often meant that some of the
core components of the SPL must be altered to make use of
this new feature, which in some cases could imply in changes
to the SPLA. This may in turn result in the propagation of
these modifications to other unrelated software components in
order for them to comply with the changes in the SPLA.

In the early versions of PLeTs [1] [3] [4] [10], we have
attempted to solve the problem of SPLA volatility with two
different approaches: Component Interfaces to map the access
between components and, compile-time definitions to isolate
statements that instantiate variability [2].

For Component Interfaces, we assumed that we would be
able to create a coarse-grained relationship between a Feature
Model and a Component Diagram, that is, a 1:1 mapping be-
tween features and components. Though we were able to create
certain components that could be shared between different
systems, our final result required high maintenance due to the
volatility of our SPLA. Furthermore, any features that could
not be directly translated into a single component inevitably
became entangled in dependencies, sometimes limiting reuse
in the SPL.

To address the difficulties imposed by a coarse-grained
relationship, we allowed for the finer-grained representation
offered by compile-time definitions. By doing this, we were able
to create a more suitable mapping between software features and
implemented code. We were also able to concentrate most of the
instantiation of variability management within a (comparatively)

218

Fig. 2. PLeTs Improved - UML Component Diagram

small section of the code. Before the use of compile-time
definitions, we had variability management spread across the
entire source code, whereas now we are able to contain it
within a well-defined section with few statement blocks.

Another difficulty we constantly faced was the maintenance
caused by any changes in a data structure used by more
than one component of the SPL. Such changes would often
impose the modification of several components. Sometimes
these modifications would be of such a degree that the effort
required to update all related components was higher than that
of creating a new data structure. We soon came to realize that
this option was merely mitigating the update effort, as several
adapters and converters had to be made over time to suitably
enable the new data structure to work with certain product
configurations.

Though each of the two approaches described had their
merits, neither fully addressed the difficulties we found in
evolving the SPLA in our research center environment. This en-
vironment is volatile due to the need to assign team members to
different projects during certain parts of the development phase
and the shifting of team members throughout the development
cycle. For an SPL framework to fit into this environment, we
found it necessary to establish certain guidelines (see Sections
IV-1 and IV-5) and mechanisms (see Sections IV-2, IV-3 and
IV-4) for the maintenance and extension of the SPLA.

IV. PLETS ARCHITECTURE EVOLUTION

In order to tackle the issues raised by our previous
development paradigms, we have adopted a mixed approach that
is largely based on the use of the Factory Method design pattern
[6] to externalize variability points from the implementation of
concrete features [13]. We kept the component-based approach.
The difference is that our SPL now has a well-defined core
that centralizes the variability management, as well as serving
as a starting point to the execution of any derived product.

The core of our SPL is composed by four components
(see Components marked with the stereotype core in Figure

2), described below: Control Unit; Factory Interfaces; Control
Structures and; Conversion Unit. Our goal has been to simplify
variability management as much as possible by ensuring the
independence between the SPL core and the feature instantia-
tions, specifying sections (i.e. Factory Interfaces component)
of the core to manage variability.

1) Control Unit: The Control Unit component is responsible
for orchestrating the execution of the system, providing access
to the functions of those components that implement features
and organizing the data structures necessary for the proper
execution of the system. It is designed and implemented without
any dependencies on components external to the SPL core,
which protects it from modifications in them.

2) Factory Interfaces: In order to access the components
that are external to the core, that is, all features, the Control
Unit makes use of the Factory Interfaces component, which is
an abstract representation of the variability points of the SPLA.
It contains interface definitions for each variability point, each
serving as a connection point for a variable component. Each
variability point in the SPL Architecture is represented here by
one interface.

In Figure 2, we can see that within the Factory Interfaces
component we have five interfaces represented. Each of these
interfaces, for example IExecutor [3], contains a signature to
all operations that must be available in a component that fulfills
the role of the equivalent abstract feature2, for example, the
Executor feature. All references contained in the Control Unit
with the intention of accessing a variable component will be
made with one of these interfaces, so that the Control Unit
may know what it is able to do without relying on access to
the libraries of the variable components.

3) Control Structures: To access the data structures held
by the components external to the core without establishing
dependencies to the libraries that define these data structures,

2In our approach, abstract features represent the variability points of the
system.

219

the Control Unit makes use of the Control Structures component.
Like the Factory Interfaces component, Control Structures
is an abstract representation of part of the SPLA, in this
case, the data structures required by the SPL. While the
Factory Interfaces component represents variability, the Control
Structures component represents commonality, that is, any
representations that are common to two or more data structures
of the system. These are abstract data structures that serve as
a surface representation of the concrete structures of the SPL.
These abstract structures can either be a number of detailed
ones that make use of inheritance or a single structure to serve
as a placeholder for all others. To enable the identification of
a specific instance of a Control Structure by the Control Unit
without creating dependencies between it and the data structure
components, we have specified that all Control Structures must
have an identification attribute. Specifically, we have used an
enumerator, created inside the Control Structures library itself,
listing the data structures present in the system.

4) Conversion Unit: The Conversion Unit is responsible for
parsing structures that are equivalent, i.e. any parsing process
that does not change the content of a structure, such as the
refactoring of a structure to execute different functions or the
updating of a structure to a newer version. The Conversion Unit
is a subsystem within the SPL, serving as a centralizer to the
inclusion and updating of data structures. This part of the SPL
core has been essential to the evolution of our project, greatly
lowering the effort required to adapt product configurations
to changes in data structures and vice-versa. By having all of
the converters available to one another, we are able to create a
directed graph of possible structural conversions and identify
entry points to easily include new structures to the system.
Rather than having to create adapters and converters for all
combinations of data structures, the Conversion Unit makes
use of the commonalities between them.

Fig. 3. Conversion Unit Diagram for PLeTs

Figure 3 shows the conversions currently available in the
Conversion Unit. We have a single modeling format, based on
UML diagrams, and a single test script format, called Test Plan.
Additionally, we have the state transition models Finite State
Machine (FSM) and (VFSM), from which the test sequences
are generated. When the inclusion of VFSM was made, our
requirement was that it be convertible to and from the UML
and FSM formats, and to the model Test Plan, resulting in a
total of five converters. As shown by the cycles in the graph,
by implementing two of these converters (“UML to VFSM”
and “VFSM to FSM”), we were able to fulfill all five of
the requirements for the inclusion of this new structure. For
example, the conversion “VFSM to Test Plan” is made by first
converting the VFSM into an FSM, and then converting the
resulting FSM into a Test Plan. We are aware that this composite
conversion of structures may be detrimental to performance, but

in our experience this has not been an issue. Should performance
be critical to a certain conversion, a specific converter can be
added.

For every abstract structure defined in the Control Structures
component, the Conversion Unit has a factory capable of
reading its type, as well as the return type desired, and
forwarding it to the appropriate concrete structure converter. If
a new structure component is developed for the system, specific
converters will have to be implemented for that structure in
order to convert both to and from it. All of these converters
are contained within the Conversion Unit component itself, and
are therefore accessible by the SPL Core.

Figure 4 presents an example of the process executed by
the Conversion Unit. The Control Unit makes a request to
the Conversion Unit. This request sends both the structure
to be converted and the desired return type. The Conversion
Unit identifies the type of the input structure and forwards
the request to the appropriate Converter Factory, in this case
the UML Factory. The Converter Factory infers the required
converter based on the return type, and forwards the request
to it. Finally, the converter casts the resulting structure into a
general purpose structure described in the Control Structures
component and returns it to the Control Unit.

The key factor that enables us to do this is the extensibility
of a single library by partitioning it. The only library upon
which the other core components are dependent on is the
one containing the factories responsible for the first phase
of the conversion, that is, the reading of input type. The
concrete converters are each implemented in their own packages,
compiled into their own libraries and kept outside of the SPL
Core. They are implemented as extensions to the Conversion
Unit namespace and included as needed by the compiler,
resulting in a single logical unit that is distributed among
various libraries with varying dependencies. The result is a
final product where the converters, being plugged into the
SPL Core as needed, are accessible from all concrete feature
implementations while the SPL Core, being guarded from these
concrete converters, can function in their absence.

5) Variable Components: We have found that the reuse of
features for the creation of new product configurations becomes
simpler and requires less refactoring effort if the variable
components that implement these features are developed
autonomously, that is, to be capable of execution as an atomic
software unit if given an appropriate input. To make this
possible without requiring the SPL core to depend on the
libraries of all known variable components, an intermediate
entry point is represented in the SPLA in the form of Factory
components.

These factories make use of both compile-time and runtime
logical operations to return an instance of the correct main
feature realization. The compile-time operations are used to
define what variable components are available to a given product
configuration. The runtime logical operations are used when
more than one option is available as a realization of a main
feature, evaluating input from the user and the current state
of the software to return the correct option. More about the
Factory Method design pattern can be found in [6].

Ideally, each new feature added to our SPL as an alternative
to represent a variability point in the SPLA will be developed as

220

Fig. 4. PLeTs UML to FSM Sequence Diagram

its own component. This results in several diverse components
(variants) to resolve each variability point. Alternatively, we
have identified the option of representing a variant as an
extensible component, in a manner similar to the Conversion
Unit (See Subsection IV-4). Based on our experience, this can
be useful during particularly hectic periods of development,
during which hotfixes are required constantly and there is not
enough time to build an entirely new component.

Our experience with the Sequence Generation feature of
PLeTs (“Sequence Generator Factory” in Figure 2) serves as
a practical example of the application of this option. This
particular feature has proven to require adjustments each time
a new product configuration was to be derived. Given the
speed at which new versions were required and the sometimes
mutually-exclusive nature of these adjustments (what would
work with one configuration could not work with another, and
vice-versa), we found the creation of an entire new component
too costly. Instead, we developed small extensions to the
existing component that would either include new operations
or override existing ones. The original component, along with
the extension component, would then be packaged as a single
logical unit within a certain configuration, essentially becoming
one possible implementation of a certain feature. We used this
method purely for reasons of compatibility, and they were used
only until such a time as we were able to develop a more
robust and versatile component to represent that feature (less
demand, more resources available).

In the case of developing new components for each feature,
we have the advantage of finer granularity. Since we began
using this approach, we have found that the maintenance of
our SPL has become simpler than the alternative identified,
as the independence of components is strictly enforced by
their isolation. This means that the failure or replacement of a
concrete feature has little impact to the rest of the system. On
the other hand, the stricter isolation requires that the Factory
component (responsible for managing the variability point) be
kept up to date with modifications to the SPLA, requiring
recompilation of the SPL Core. We are aware that this means
either that a new Factory component must be written every
time a new feature is added to this variability point or that
the original Factory’s source code must be available to anyone
working on the SPL. In our experience, due to the entire SPL
being worked on within a single environment and therefore all

code being available during development, this has not been an
issue.

In the case of extensible components we have the advantage
of faster development time and greater inter-feature accessibility.
Dependencies can be formed between different alternatives to
a single variability point, allowing for an incremental extension
of libraries without access or change to their source code.
This approach also allows a developer to make alterations to a
component without necessarily having access to the original
factory (indeed, the factory related to this variability point
should ideally remain unchanged). This means that independent
developers are able to alter and extend the SPL without being
given full access to its source code. This approach does not,
however, offer any assurances in regards to system granularity.
A component built with several codependent sub-components
using this approach incurs on the liability to complete system
failure if a single unit of the variable component should fail.

V. RELATED WORK

Although Software Product Lines is an active research field,
few works present new approaches for the implementation of
an SPL, as well as discuss difficulties and limitations faced by
SPL design and development teams.

For example, in [15], the authors speak extensively on
techniques for Variability Management and present the case
study of the Mercure PL, in which the Abstract Factory design
pattern is used as a decision model, with each of its concrete
factories being related to one product. Our approach has
similarities with the one presented in this particular work,
but diverges from it in that our use of the Factory Method
design pattern is extended to deal with each of the variability
points of the SPL.

In [8], this topic is also discussed. A two-dimensional model
is proposed for the representation of the issues in variation
management, with “files”, “components” and “products” in one
axis and “sequential time”, “parallel time” and “domain space”
in the other. The author argues that the nine smaller issues
defined by this model can be tackled using a divide-and-conquer
strategy.

221

VI. LESSONS LEARNED

This section presents the lessons learned from the develop-
ment and evolution of PLeTs and the subsequent evolution of
its SPLA.

• One of the limitations of PLeTs’ previous SPLA was
the presence of strong dependencies between components.
This often meant that changes in one component resulted
in a chain maintenance through all components dependent
upon it. To mitigate this problem we have proposed a
change to the SPLA to add an SPL core that contains
all the basic operations supported by the SPL. Rather
than simply making a separation between the concepts of
commonality and variability, we found it advantageous to
add components into the core for managing the execution
and communication of the variable components, i.e. the
Control and Conversion units. In doing this, we were able
to give autonomy to the variable components, avoiding
the dependencies that may have arisen between them.

• In some situations, we had difficulty adding new compo-
nents to the SPL due to the absence of a well-established
entry point. In using the Factory Method to automate the
process of instantiating components during execution, we
were able to isolate the code referent to the majority of
variability decisions into small sections that are easy to
maintain. This has facilitated the expansion of the SPL
by creating an entry point for the adding of new variable
components.

• Both SPLAs used benefited from the component-based
approach to the realization of variation points in the
SPLA. Connecting a new component to the SPL through
one of the pre-existing factory interfaces is a simple
process, requiring only the packaging of input and output
in accordance to the Control Structures component of the
core. The new SPLA did not negatively impact in this.

• Should changes in requirements result in new variability
points in the SPLA, the SPL core will require modifica-
tions. A new factory interface and variation point factory
will be necessary, and this will incur in modifications to
the Control Unit. We are aware of the implications of such
modifications, but have not had the opportunity to test
whether or not modifications in the Control Unit would in
turn incur in changes to the variable components. Given
the well-defined nature of the MBT technique, such radical
changes to the SPLA are unlikely in our environment.

VII. CONCLUSION

In this paper we report our experience on the design,
development and evolution of a Software Product Line of
Model-based Testing tools - PLeTs. We have focused on
techniques to simplify the process of managing the evolution of
components by use of a software design pattern. We have also
presented a description of the core components of PLeTs, which
were designed to simplify the communication among variable
components, as well as increase the degree of autonomy they
have between one another.

Despite the completion of the development of our SPL
in accordance to the current SPLA, we are certain that there
are further issues to be resolved related to the growth of the
SPL. This work details the maintenance and evolution given

to address specific issues identified during the evolution of the
SPLA, but over the course of this maintenance the SPL did
not have any important features added to it. It is important to
evaluate how well the SPLA design proposed here withstands
the problems imposed by the addition of new variability points.
It would also be valuable to investigate how well a new team
member would adapt to this new approach, considering that
we work in a volatile environment and new developers might
not have prior knowledge of the design pattern used to develop
PLeTs.

ACKNOWLEDGMENTS

Study partially developed by the Research Group of the
PDTI 001/2012, financed by Dell Computers of Brazil Ltd.
with resources of Law 8.248/91. We thank Dell for the support
in the development of this work.

REFERENCES

[1] L. T. Costa, R. Czekster, F. M. Oliveira, E. M. Rodrigues, M. B. Silveira,
and A. F. Zorzo. Generating Performance Test Scripts and Scenarios
Based on Abstract Intermediate Models. In 24th International Conference
on Software Eng. and Knowledge Eng., pages 112–117, 2012.

[2] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 2000.

[3] E. de M. Rodrigues, L. Passos, F. Teixeira, A. F. Zorzo, and R. Saad.
On the Requirements and Design Decisions of an In-House Component-
based SPL Automated Environment. In 26th International Conference
on Software Eng. and Knowledge Eng., pages 483–488, 2014.

[4] E. de M. Rodrigues, L. D. Viccari, A. F. Zorzo, and I. M. Gimenes.
PLeTs-Test Automation using Software Product Lines and Model Based
Testing. In 22nd International Conference on Software Eng. and
Knowledge Eng., pages 483–488, 2010.

[5] C. Gacek and M. Anastasopoules. Implementing product line variabilities.
In Symposium on Software Reusability: Putting Software Reuse in
Context, pages 109–117, New York, NY, USA, 2001. ACM.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[7] C. W. Krueger. Easing the transition to software mass customization.
In 4th International Workshop on Software Product-Family Eng., pages
282–293, 2002.

[8] C. W. Krueger. Variation management for software production lines. In
Software Product Lines, pages 37–48. Springer, 2002.

[9] K. Pohl, G. Böckle, and F. J. v. d. Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer–Verlag
New York, Inc., 2005.

[10] M. B. Silveira, E. M. Rodrigues, A. F. Zorzo, H. Vieira, and F. Oliveira.
Model-Based Automatic Generation of Performance Test Scripts. In 23rd
International Conference on Software Eng. and Knowledge Eng., pages
1–6, Miami, FL, USA, 2011. Knowledge Systems Institute Graduate
School.

[11] I. Sommerville. Software Engineering. Pearson/Addison–Wesley, 2011.
[12] M. Staples and D. Hill. Experiences Adopting Software Product Line

Development without a Product Line Architecture. In Asia-Pacific
Software Eng. Conference, pages 176–183, 2004.

[13] T. Thum, C. Kastner, S. Erdweg, and N. Siegmund. Abstract features
in feature modeling. In 15th International Software Product Line
Conference, pages 191–200, 2011.

[14] M. Utting and B. Legeard. Practical model-based testing: a tools
approach. Morgan Kaufmann, 2006.

[15] T. Ziadi, J.-M. Jézéquel, F. Fondement, et al. Product line derivation with
uml. In Software Variability Management Workshop, Univ. of Groningen
Departement of Mathematics and Computing Science, 2003.

222

Quality Evaluation of Artifacts in Tailored Software

Process Lines

Camila Hübner Brondani, Gelson Bertuol, Lisandra Manzoni Fontoura

Programa de Pós-Graduação em Informática

Universidade Federal de Santa Maria – UFSM

Santa Maria, Brazil

chbrondani@inf.ufsm.br; gelson.bertuol@gmail.com; lisandra@inf.ufsm.br

Abstract – In software engineering, it is necessary to consider

variables such as quality, effort, productivity, time and cost of

development. Those variables are negatively affected when

defective artifacts are produced. In this case, the cost of rework to

correct defects increases in relation to the time of their discovery.

Therefore, initiatives should be undertaken in order to find these

defects and correct them as soon as they are introduced. This work

proposes a mechanism to evaluate the quality goals of software

artifacts by means of a quality framework. The study has the

objective of organizing concepts that involve the definition of

quality goals and their respective methods and metrics of

evaluation and can be used to facilitate the task of defining quality

plans. Besides that, the framework includes a process to evaluate

software artifacts generated from a Software Process Line (SPrL).

A Web tool that uses SPrL was used to facilitate the adequacy of

the process to different contexts of projects.

Keywords-component: Software Quality; Software Artifacts;

Process Tailoring; Software Process Lines.

I. INTRODUCTION

The use of software development processes adjusted to the
needs of the project and of the work team has strong influence
in the final quality of the produced products. This is due mainly
by the fact that the process management and the search for
continuous quality improvement tend to generate less defective
software and within the expected patterns. On other hand, Al-
Kilidar et al. [1] affirm that, instead of trying to measure the
software quality as a whole, should be sought an evaluation of
attributes that compose a product which, when combined, may
offer a general notion about their quality.

Among diverse approaches described in literature to define
and evaluate the quality of software products, stand out the
quality models. They search to structure quality in punctual and
easy factors to be analyzed and, at the same time, provide a
good characterization of such elements [2]. Quality models can
be used to evaluate the final product or the different artifacts
produced along with the software development. Quality plans
may be created from artifacts selected to compose a tailored
process. SPrL turns easy the processes tailoring enhancing
quality and adequacy of generated processes, decreasing the
risks of an inadequate tailoring and even potentializing the
reuse.

Software Process Lines (SPrL) imply that organizational
process may be organized according with their similarities and
variabilities, allowing the composition of processes based in
projects specific needs [3]. In this work, the reuse of elements
applied to create a quality plan and the composition of processes
are supported in a process line based in the context of the
project.

In this sense, this work presents an approach to the
evaluation of artifacts generated and/or transformed by several
activities that compose a tailored SPrL. The approach has the
finality to detect and correct possible problems or defects found
previously their spread, reducing rework and improving the
quality of final products. The proposal is based in a quality
framework, structured from a metamodel that relates the
evaluation process to the characteristics that involve the
artifacts, such as their purposes, interests, methods and metrics.
This work also uses lessons learned to form a repository able to
help future evaluations of quality artifacts.

This article is organized as follow: in Section II it is
presented important concepts to the understanding of this work.
In Section III it is described an overview including: a) a
metamodel to evaluate artifacts in tailored software processes,
b) an approach to generate tailored software process lines and
c) evaluation process of artifacts using a tailored software
process line. In Section IV, a case study to illustrate the use of
our approach is presented. In Section V presents final remarks
and some future steps of this work are also discussed.

II. BACKGROUND

Approaches based on knowledge reuse are widely used on
software process tailoring, with the purpose of decreasing
delivery deadlines and costs, aside from improving the final
product quality [4]. The adoption of SPrL allows us to leverage
the reuse of individual process components for full process
architectures, comprising several inter-related components
[3][5][6]. Afterward that, the objective of elaborating consistent
processes, once several tailoring approaches are limited to
selecting the elements for the process according to the
characteristics or the product, and there is no worries with the
sequencing and consistency of the generated process. Authors
like Jaufman and Munch [7], Washizaki [5] and Barreto [6]
propose the use of SPrL as a way to make possible the reuse of
software process components.

The authors would like to thank Fapergs (Fundação de Amparo à Pesquisa
do Rio Grande do Sul) for the financial support to this work.

DOI reference number: 10.18293/SEKE2015-052 223

mailto:gelson.bertuol@gmail.com

At the same time, it is believed that to achieve a final
product adequate to the project requirements, the quality should
be evaluated along the whole software development process.
Quality models are, in general, classified as Hierarchical
Models, Conceptual Models and Context Models. The
Hierarchical Quality Models describe the relation among a
fixed group of high level quality factors, product attributes and
appropriate metrics to achieve these factors [8]. They are
organized in pillars which are decomposed and refined in
specific quality attributes, capable of being evaluated
quantitatively by appropriate metrics. The most relevant
hierarchical models to this research which, at the same time,
where useful as theoretical foundation to the development of
others more complex and elaborated models aside from
standards and international quality patterns are: the ISO/IEC
9126 [9], the McCall's quality model [10] and Boehm's [11].

The Quality Conceptual Models are used not only in the
process evaluation, but as for the development environment as
a whole [12]. However, this approach allows not only the
evaluation of artifacts, but also the development of team
knowledge, the modeled domain, the modeling languages, as
for many others aspects that involve the software process
building. Two of the most important proposals around the
Conceptual Models are the Lindland et al. [13] and Krogstie et
al. [14]. Although the conceptual models may have a high level
of abstraction and, therefore, it is more difficult of being
practically applied, they can become a good alternative to
formalize quality intentions. Other studies have also been
proposed to improve the software products and processes
qualities during time. These works approaches the evaluation of
quality in scientific contexts, normally by means of a
framework instantiated from a quality metamodel.

III. PROPOSED APPROACH OVERVIEW

This work presents an approach of quality evaluation of

software artifacts generated from a tailored SPrL. To achieve

this goal, in this section are described: a metamodel with the

objective of organizing quality concepts, a systematic process

tailoring using SPrL and an evaluation process.

A. Metamodel of Evaluation of Artifacts in Tailored Software

Processes

The metamodel (Figure 1) has the objective of helping who
is interested in an adoption of a common vision about the
requirements of quality intended for a specific project, at the
same time that allows a structured decomposition of elements,
concepts and relationships necessary to this vision. The
metamodel definition was based in three basic requirements,
proposed by Trendowicz e Punter [8], which are: flexibility,
reusability and transparency.

The created metamodel, called Quality Metamodel for
Tailoring Process (QMTP), represents a group of elements
considered pertinent for the quality evaluation of software
artifacts. The structure, illustrated at Figure 1, as well as its
relations, was made from the quality models described in the
Section II, and aims on organizing the evaluators' knowledge in
the search for evaluation metrics and methods which better
represent its quality purposes.

Figure 1. Quality Metamodel for Tailoring Process (QMTP)

The metaclass Approach is specified to represent instances
of different methodologies or paradigms that can be used in the
software development. QualityGoal is the definition clear and
comprehensible of which attributes or quality characteristics of
a certain stakeholder is interested for a certain software artifact.
These goals are specifics for each Artifact. For example, a Use
Case Model has as main objective the comprehension of
software requirements, while a source code must be complete
and consistent. Therefore, in the context of this work, an artifact
is basically associated to the delivers which occur during a
software process and the propose of formalizing these elements
aims, first, at determining which of them can identify the
expected quality needs for the product based on the stakeholders
expectations.

Thus, to facilitate the evaluation process tailoring and
organize the artifacts based on organizational standards, the
metamodel allows that the quality goals can be identified by a
QualityType. That helps to architecture it on different
abstraction levels, which can be created by the evaluation team
based on some of the existing models. The ViewPoint metaclass
is used to identify the stakeholders interested in intended quality
goals.

At the same time, the Purpose metaclass has the objective
of identifying the purpose that describes the artifacts' intention
inside software process life cycle, together with the reason why
it should be evaluated. The EvaluationMethod can be
quantitative or qualitative and it identifies how a certain quality
goal may be evaluated. These methods are widespread to
support specific methods (for example, simulations,
inspections, checklists) as well as specific Metric, for example,
NUC (number of classes per use case) or NCU (number of use
cases per class) for UML models or KLOC (number of errors
by a thousand code lines). For this, each metric is defined based
on a unit and in the minimum and maximum limit values and a
value known as acceptable (Limit metaclass). Each metric has
its own particularities. The definition of values and unities,
although recommended, it is optional and that the values
attributed in the insertion of a certain metric will serve just as
reference to the evaluators, which can change it at the moment
in which they are defining the quality plan.

224

B. Support Approach in the Software Tailoring Processes

This project has begun with the work of Lorenz [15], which
objective was to define a systematic approach to the software
process tailoring from SPrL and information about the projects'
characteristics. The approach allows the reuse of process
elements, previously defined, enabling the definition of agile
and planned processes. In order to validate the work, it was
developed a Web tool called Metamodel for Tailoring Process
tool (MfTPt) for supporting the tailoring process, improving the
element selection technique for reusable processes. This tool
has two modules. The main module has all the functionalities
for the creation of process elements repository, as: registration
of artifacts, tasks, roles, activities, tailoring requirements,
attributes for contextualization of project activities and
definition of process architectures. The tailoring software
process module is systematized by four steps.

1) Definition of project characteristics: the criteria for
projects contextualization were described from Octopus Model,
proposed by Kruchten [16]. In this model, a software project is
characterized by the following attributes: size, stable
architecture, business model, team distribution, rate of change,
age of system, criticality and control.

2) Selection of the tailoring requirements and of the
process architecture: this step aims to select process elements
that will meet those needs and incorporate them into the
process. For each component defined in the architecture,
activities that have similar purposes are recovered. An
architecture from agile or planned approaches can be defined.
It is also possible to combine the features of agile and planned
methods in a unique process of development to create a hybrid
process.

3) Prioritization of the activities: the components defined
previously for the architecture are retrieved according to the
tailoring requirements for creating SPrL. Thus, the components
are prioritized by an algorithm based on the technique Analytic
Hierarchy Process (AHP).

4) Creation of the tailored software processes line: from
the defined process architecture and recovered activities,
prioritized and selected, there has the development of tailored
SPrL according to the situational characteristics of the project.
The Figure 2 shows the SPrL for the discipline of requirements.

Figure 2. Example of SPrL from requirements discipline

This discipline begins with the component "Inception", goes
through the component "Elicitation", "Specification",
"Negotiation" and "Validation”. For each of these components
there is one or more selected activities that contain similar
situational context. In the Figure 2, it is highlighted as an
example of component the activity “Analyze the Problem”.
This activity is selected to be instantiated in the component
“Inception”, with its input and output artifacts.

C. Tailored Software Process Line Artifacts Evaluation

Approach

This section describes, as part of the proposed quality
framework, an evaluation process for software artifacts of the
tailored line. The process has been built upon the standard
ISO/IEC 14598 [17]. The objective was to organize the data,
structured by the metamodel, so that the evaluators have a solid
and practical reference at the time to validate the artifacts
produced during the project based on quality goals they think
are the most important to the final product.

As a first step to determine the quality plan, there is a need
to populate the repository. The data can be extracted from many
different sources, including models, specific work or even
experts experience or previous projects developed by the
organization. You should then define the elements of quality,
and for each item there are instances already registered and the
possibility of keeping each one of them or inserting new ones.
In the Figure 3 there is an example on the use of the module
Evaluation of the Quality of the Artifacts of MfTPt according
to Figure 1.

Figure 3. Example of the use of the module Evaluation of the Quality of
the Artifacts of MfTPt

It was proposed an instantiation of objects for the evaluation
of models of Use Cases in order to improve communication of
a software project developed under the model-driven paradigm.
The goal of main quality is usability, based on internal quality
proposed by ISO/IEC 9126 [9]. However, the choices of what
purposes, evaluation methods, metrics and practices are best
suited to each situation is the prerogative of quality analysts.

The step that corresponds to the evaluation process begins
with the definition of the life cycles that make up the used
process model. From each phase of the project the assessment
requirements are established for the definition of the quality
evaluation plan. That is, for each phase of the process life cycle,
the generated artifacts are selected, and for each artifact, the
evaluators define its purpose, stakeholders and related quality
goals. Then there is the review of the specification that involves
relate evaluation methods, metrics and practices for each
selected artifact.

225

The last step comprises the documentation of procedures
defined and that will be used by the evaluators to define the
quality of the selected artifacts, that is, at this stage it produced
the quality plan. The idea is that all artifacts settings and their
relationships are structured in a clear and understandable way
in order to guide the evaluators in quality validation. Finally,
the quality plan will be stored and can serve as reference for
future assessments, as the artifacts generated during a software
process are similar to keeping the same development
approaches and the same models of software process.

IV. CASE STUDY

In order to validate the proposal put forward in this paper,
we performed a case study involving the evaluation of quality
in a software project, developed by undergraduate students of
Information Systems at the Universidade Federal de Santa
Maria (UFSM). Though it had academic purposes, the project
was implemented and deployed in a client. An incremental
development process was adopted, consisting of development
cycles, where each cycle in the following activities were carried
out: definition and requirements analysis, design, coding and
testing. The following artifacts were generated: Project Charter;
UML models – Use Cases, classes, components diagrams and
data model, in addition to source codes.

The project aims to develop a software to manage the
payment of mentoring grants of an education institution called
Instituto Federal Farroupilha (IFF). This institution has eight
geographically distributed campuses. The application's goal is
to computerize the management system and the payment of
fellow teachers who work on campus.

The case study took place in two stages. The first involved
the undergraduates who developed the project and the second
had the support of students of graduate in Computer Science
from the same university. Training was offered addressing
concepts of quality, existing quality models, importance of
assessing the quality of software products (and their artifacts as
well) and the objective of this work was explained. Then, in
possession of a handout provided, the project team aimed to
point out, in the group opinion, what were the most important
quality goals for the project as a whole and for each of the
artifacts created during the project, and stakeholders roles and
what means known to evaluate the defined goals.

In response, there was some compatibility between the
quality goals chosen in the first phase with those presented in
the second phase of the experiment. However, respondents
indicated having a high degree of difficulty to suggest possible
methods of assessment for each quality goal. The groups were
asked regarding the importance of evaluating the quality of
software products and as how much a specialized tool could
help development teams in the definition and implementation
of quality in these products. In response, respondents converged
their ideas arguing that the assessment of quality can lead to
reduced incidence of errors, reducing costs and production time
and positively impact the developer organization's image. At
the same time, there was consensus that an aid tool in defining
and assessing the quality of software products is essential in the
application of quality concepts.

V. CONCLUDING REMARKS

This work presented a proposal of artifacts evaluation
process that is inserted in a SPrL tailored from the reuse of
properly characterized activities. The SPrL tailored uses a
process architecture for which activities to compose the SPrL
are retrieved and prioritized. The Web MfTPt tool was
developed to support the tailoring process, improving the
technique of selecting the reusable process elements and
helping the process sequencing, optimizing the resources and
improving the process management. The quality plan for
artifacts evaluation is developed considering the group of
artifacts selected during the process tailoring process and from
the reuse of instances of the quality metamodel.

The validation of the proposed approach was accomplished
by means of a case study involving a software project. Between
the future works, it is intended to validate the proposed
approach in real projects, in addition to develop an automation
of elements that comprise the artifacts evaluation plan, because
it is dependent on human intervention, in other words, on the
evaluators knowledge and experience.

REFERENCES

[1] H. Al-Kilidar, K. Cox, and B. Kitchenham, “The use and usefulness of the

ISO/IEC 9126 quality standard,” International Symposium on Empirical
Software Engineering, pp. 126–132, 2005.

[2] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner, “Software

quality models: purposes, usage scenarios and requirements,” 7th
International Workshop on Software Quality, pp. 9–14, 2009.

[3] D. Rombach, “Integrated software process and product lines,”

International Conference on Unifying the Software Process Spectrum, pp.
83–90, 2005.

[4] L. M. Northrop, “SEI’s software product line tenets,” IEEE Software, vol.

19, no. 4, pp. 32–40, 2002.
[5] H. Washizaki, “Building software process line architectures from bottom

up,” Product-Focused Software Process Improvement, vol. 4034, pp. 415–

421, 2006.
[6] A. S. Barreto, L. G. P. Murta, and A. R. C. da Rocha, “Software process

definition: a reuse-based approach,” Journal of Universal Computer

Science, vol. 17, no. 13, pp. 1765–1799, 2011.
[7] O. Jaufman and J. Münch, “Acquisition of a project-specific process,”

Product Focused Software Process Improvement, vol. 3547, pp. 328–342,

2005.
[8] A. Trendowicz and T. Punter, “Quality modelling for software product

lines,” 7th Workshop on Quantitative Approach in Object-Oriented
Software Engineering, 2003.

[9] ISO/IEC 9126, “Software Engineering - Product Quality,” 2003.

[10] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in Software
Quality,” Nat’l Tech. Information Servicel, vol. 1, 2 and 3, 1977.

[11] B. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. McLeod, and M. Merritt,

“Characteristics of software quality,” TRW of software technology, 1978.
[12] K. Mehmood, S. S. Cherfi, and I. Comyn-Wattiau, “Data quality through

conceptual model quality-reconciling researchers and practitioners through

a customizable quality model,” 14th Internation Conference on
Information Quality, pp. 61–74, 2009.

[13] O. I. Lindland, G. Sindre, and A. Solvberg, “Understanding quality in

conceptual modeling,” Software, IEEE, vol. 11, no. 2, pp. 42–49, 1994.
[14] J. Krogstie, O. I. Lindland, and G. Sindre, “Defining quality aspects for

conceptual models,” International Working Conference on Information

System Concepts: Towards a Consolidation of Views, pp. 216–231, 1995.
[15] W. G. Lorenz, M. B. Brasil, L. M. Fontoura, and G. V. Pereira, “Activity-

based software process lines tailoring,” International Journal of Software

Engineering and Knowledge Engineering, vol. 24, no. 9, pp. 1357–1381,

2014.

[16] P. Kruchten, “Contextualizing agile software development,” Journal of

Software: Evolution and Process, vol. 25, no. 4, pp. 351–361, 2010.
[17] ISO/IEC 14598, “Information Technology - Software Product Evaluation,”

1999.

226

BPMN* - A Notation for Representation of Variability in Business Process
Towards Supporting Business Process Line Modeling

Marcelo F. Terenciani∗ Débora M. B. Paiva Geraldo Landre Maria Istela Cagnin†

Facom – Federal University of Mato Grosso do Sul (UFMS) – Campo Grande (MS) - Brazil
E-mail: terenciani@outlook.com, {debora, geraldo, istela}@facom.ufms.br

Abstract

This paper proposes an extension for the Business Pro-
cess Model and Notation (BPMN), named BPMN*, that
based on the elements of the feature model (FM), commonly
used to represent variability, intends to represent variabil-
ity in Business Processes Line (BPL). This notation is eval-
uated by means of an empirical study whose main objec-
tive is to compare it with other notation named variant-rich
BPMN (vrBPMN) regarding the productivity and correct-
ness of the business process model template (BPMT), which
is one of the artifacts that compose a BPL. From the results
it was possible to observe that the proposed notation allows
the elaboration of BPMT with less errors, although model-
ing time was kept almost the same.

Keywords– Business process line modeling, variability,
notation, BPMN

1. Introduction

Due to the strong competitiveness in the globalized
world, it is necessary for organizations to establish a set
of improvements that make their businesses evolve every
day. However, for those improvements to be proposed, it
is necessary to discover and document business processes
from the organizations [7]. In this context, the Business
Process Management (BPM) acts as an approach that aims
to identify, document, model, operate, monitor and improve
business process to achieve results that are aligned with the
organizational objectives [2].

The activity of business process modeling supports the
BPM, once it promotes better knowledge about organiza-
tions business in order to stay competitive in the market
[8]; as well as it facilitates knowledge management, since
it disseminates how the business functions for all the stake-
holders. Regardless of its benefits, this activity is not always

∗Financial support by Capes
†Financial support by Fundect (T.O. no 115/2014)

held due to the associated time and costs.
Nonetheless, according to Ladeira [6], business process

models can be reutilized, which makes it possible to re-
duced the time and effort and improve quality in the elabo-
ration of this type of artifact since they had been previously
validated and improved. From this perspective, the use of
software reuse techniques in the context of business pro-
cesses, as in the case of BPL, has been utilized to enable the
efficient reuse of business process models.

The term BPL emerged from adaptations of concepts and
experiences from Software Product Line (SPL) [10] to the
context of business processes. The BPL aims to manage a
set of commonalities, which are the common parts of the
business domain; a set of variabilities (composed by vari-
ation point1, and variant2), that can be selected to accom-
modate the target process; a set of rules, which explicit the
task of decision making to do the flexible composition of
business process assets [1].

Basically, the modeling of a BPL is composed by a set of
business processes from the same domain (BPL instances);
a variability model that represents “what”; and “how” the
business varies; a BPMT, which represents the variabilities
of business processes in one domain; and a mapping be-
tween artifacts, utilized for the traceability between them
[7, 3].

Two techniques are commonly utilized to model BPL in
the literature [1, 3, 11, 13]: FM [4], utilized to represent
variabilities in BPL, and BPMN [9], utilized to represent
instances from the BPL. For the BPMT representation there
are some notations, discussed in Section 2, but there is no
consensus about the most appropriate notation.

The main objective of this work is to present an extension
to the BPMN notation, called here BPMN*, which adds el-
ements to the BPMN notation based on elements from the
FM, with the intent to allow the creation of BPMT with less
errors, once there is need to know another new notation be-

1Places where the variation can happen (vehicle color, for example)
[10].

2Possible existent solutions for the variation point (for example, white,
black, silver and red) [10].

DOI reference number: 10.18293/SEKE2015-055 227

sides the BPMN and the FM. This was observed by means
of an empirical study presented in this paper.

2. Related work

Gröner et al. [3] propose the adoption of BPMN ele-
ments to model the BPMT and the adoption of the model
FM to model the variabilities of a BPL. In that study, each
variability is represented in the BPMT in a execution flow
of the business process. In this case, it is not possible to ex-
plicitly distinguish the commonalities and the variabilities
from the BPL in the BPMT, since the BPMN doesn’t have
specific elements for that purpose.

In another work, Schnieders and Puhlmann [13] propose
an extension for the BPMN, referred as vrBPMN, whose
objective is to explicitly represent the variabilities on busi-
ness process models. However, since this extension has
many stereotypes, its use implies the need for the business
domain engineer to know another notation, in addition to
the FM and the original BPMN.

Other notations to represent variabilities in business pro-
cess were proposed in the literature, such as the C-EPC [12]
and the C-YAWL [5], however they are not based on the
BPMN and, thus, not discussed in this paper.

3. BPMN*

The BPMN* notation consists of a extension of the
BPMN, since a set of stereotypes and tagged values based
on the FM were added to the BPMN notation, as well as a
new element was added to the BPMN metamodel to repre-
sent a variability association, that is, a relationship between
a variation point and its respective variants. The BPMN was
chosen to be extended in this work because it’s the standard
notation to represent business processes. The FM was cho-
sen for being commonly used to represent variabilities [3].

The intent of the BPMN* is to facilitate the modeling
of variabilities in business processes of a BPL, that is, the
elaboration of the BPMT. The main justification for the pro-
posed extension is that business domain engineers don’t
need to have knowledge about a specific notation to rep-
resent variabilities in business processes, as in the case of
the vrBPMN. Besides that, it is believed that the learning
curve for the BPMN* is smaller when the business domain
engineers already know the BPMN and the FM, which are
commonly utilized for the modeling of BPL. That is ob-
served in the results from the empirical study in the Section
4.

Table 1 presents the stereotypes, tagged values and the
new element added to the BPMN to represent the variabil-
ity in business processes of BPLs. A study to identify the
BPMN elements where variability could happen was con-
ducted based on [3, 13]. From this study, it was observed

that variability can happen in the following BPMN ele-
ments: process, sub-process, activity, event, data object,
pool and sequence flow. This way, the elements from the
BPMN* can be used to represent variability in such ele-
ments during the modeling of variability in business pro-
cesses.

Elements Description
<<varpoint>> Stereotype added to BPMN elements, in order to identify

variation points, that is, where the variability happens.
<<variant>> Stereotype added to BPMN elements, in order to iden-

tify variants, that is, the possible resolutions of a variation
point. A variant is always associated to a variation point,
through the element “Variability Association”.

<<mandatory>> Stereotype added to identify variation points and variants
that must be resolved. This stereotype can be omitted.

<<optional>> Stereotype added to identify variation points and variants
that have an optional component.

<<or>> Stereotype added to variability associations to identify the
behaviour of the variation point. In this case, the stereotype
indicates that one or more variants from the variation point
should be selected.

<<xor>> Stereotype added to variability associations to identify the
behaviour of the variation point. In this case, the stereotype
indicates that only one of the variants from the variant point
must be selected.

feature Tagged value added to variability elements to identify a
correspondence between elements from the BPMT and the
features from the FM.
A variability association is an element utilized to represent
an association between a variation point and its variants.

Table 1: Elements from the BPMN* notation

Figure 1a represents a model of variabilities in FM, com-
posed by a variation point and its variants. The variation
point “Payment” is associated with its variants “Credit”,
“Debit” and “Cash” through the relationship “or”, which
allows to select at least one of the variants of the variation
point during the instantiation of the BPL.

(a) Model of
Variabilities in FM. (b) BPMT in BPMN*.

Figure 1: Representation of variation point “Payment”.

Figure 1b is the representation of the variation point
“Payment” in BPMN*. In this case, the stereotype
<<varpoint>> added to the label of the activity “Make a
payment” indicates that there is a variation point, the tagged
value feature indicates the name of the corresponding fea-
ture, enabling the traceability between the FM (Figure 1a)
and the BPMT (Figure 1b). The variants are identified with
the stereotype <<variant>> and are associated with to
their respective variation point through a variability asso-

228

ciation with the stereotype <<or>> added, indicating the
same behaviour from the FM.

4. Empirical Study

The objective of the empirical study is to analyze the
BPMTs generated while using the BPMN* and vrBPMN
notations, with the purpose of the evaluation in relation to
the efficiency in terms of time spent for the elaboration of
the BPMT (productivity) and the quantity of errors found in
the resulting BPMT (correctness), by the point of view of
business domain engineers. The hypotheses are described
in Table 2.

Hypothesis Description
H0 Time taken to model the BPMT utilizing the BPMN* notation

is equal or greater than when using the vrBPMN notation.
Ha0 Time taken to model the BPMT utilizing the BPMN* notation

is less than when using the vrBPMN notation.
H1 The quantity of errors made in the modeling of the BPMT

utilizing the BPMN* notation is equal or greater than when
using the vrBPMN notation.

Ha1 The quantity of errors made in the modeling of the BPMT
utilizing the BPMN* notation is less than when using the
vrBPMN notation.
H: null hypothesis, Ha: alternative hypothesis

Table 2: Empirical study hypothesis

The participants of the empirical study are undergrad stu-
dents from Computer Engineering, System Analysis, Com-
puter Science, and Technologist in Analysis and Develop-
ment of Systems courses from the Facom/UFMS.

The participants are divided in two groups balanced by
background level and are composed by forty members each.
The groups labeled as G-BPMN* and G-vrBPMN, used the
notations BPMN* and vrBPMN respectively.

The training was held in two days. In the first day, with
the two groups in the same place, an explanation was pre-
sented about the basic concepts of the BPMN and FM, with
a length of three hours. For a better assimilation of the given
concepts, exercises were applied and their solutions pro-
vided. In the second day of training, the groups G-BPMN*
and G-vrBPMN were separated in distinct places for train-
ing about the BPMN* and vrBPMN to be ministered, to-
gether with a exercise for the fixation of the terms presented.

With the end of the training, each participant received a
table containing the main elements from each notation, ac-
cording to his or her group, and the correspondence from
those elements to the FM; as well as supporting guidelines
for the elaboration of the BPMT. They also received three
instances of a BPL from the domain of rental services (Pro-
cess of Video Rental, Process of Borrowing in the Library
and Process of Renting Vehicle), the FM of that domain and
the execution form. Twenty minutes were given for the par-
ticipants so that they could understand the provided artifacts
and ask any questions related to interpretation.

Even though eighty participants have answered the par-
ticipant profile form, seventeen of them didn’t attend in the
day of the study or had given up participating, for not being
a mandatory activity in the aforementioned classes. Two
participants were removed for not reporting the end time of
the elaboration of the BPMT in the execution form; and two
were removed because the elaborated BPMT was illegible.
Hence, 59 participants were considered during the analysis
of the data.

First, an analysis of the data from the study was realized
in order to identify outliers. To aid in the identification of
outliers, graphs of the type box-plot were generated.

Based on data from the execution form, the time spent by
each participant was calculated. This time was used to make
a box-plot, where it was detected the absence of outliers
related to the time.

A box-plot was constructed taking into consideration the
quantity of errors found in the elaborated BPMTs. Hence,
the participants that committed 11, 12 and 14 errors in
the G-BPMN* group were classified as outliers and were
removed from the sample. With the removal of outliers,
the group G-BPMN* was left with 31 participants and the
group G-vrBPMN with 25 participants, adding up to 56 par-
ticipants.

Analysis of the data regarding the correctness of the
BPMT: All of the BPMTs elaborated by the participants
were analyzed with the intent of identifying the errors com-
mitted.

In Figure 2a, the participants were sorted in relation to
the amount of errors found in the BPMT. It’s possible to vi-
sualize that members from the group G-BPMN* committed
less errors than the members of the group G-vrBPMN. An-
alyzing the graph it’s given that from the eighteen (32,14%)
participants that didn’t commit errors, 77,78% of them are
members of the group G-BPMN*. In relation to the highest
number of errors committed, the member from the group
G-BPMN* that had more errors, had 10 errors less than the
member from the G-vrBPMN that committed more errors.
This way, analyzing the two members that committed more
errors in each group, it is observed an increase of 166,67%
from the group G-vrBPMN in relation to G-BPMN*.

(a) Correctness of the BPMT. (b) Elaboration time.

Figure 2: Analysis of the data dispersion.

229

Based on data from the graph presented in the Figure 2a,
it’s given that the average of errors committed by members
of the groups G-BPMN* and G-vrBPMN is of 1.77 and 5.2
erros, respectively. With that, it is observed an average in-
crease in errors of 193,78% for the G-vrBPMN group in
relation to the G-BPMN* group.

Analysis of the data in relation to the elaboration
time: In the Figure 2b is illustrated a dispersion graph of
the time spent by the participants, sorted from the shorter
time to the highest time. It’s observed that the time spent to
elaborate the BPMT with the BPMN* notation tends to be
similiar to the time spent to elaborate the BPMT with the
vrBPMN notation.

Additionally, it is observed that, on average, participants
from the group G-BPMN* took 33.35 minutes to elaborate
the BPMT, wherein the participant that took less time took
13 minutes and the one that took more time spent 52 min-
utes in the elaboration. And for the group G-vrBPMN, par-
ticipants took 33.16 minutes on average to finish the BPMT
and, in this group, the participant that finished first took 20
minutes, and the last one took 56 minutes. With this data,
it can be observed that the time spent with both notations
for modeling the BPMT is approximately the same, even
though the group G-vrBPMN is, on average, 0,57% faster
than the group G-BPMN*. However, it is noticed an in-
crease in time of 53,8% from G-vrBPMN in relation to the
G-BPMN* in regard to the participant that took less time to
elaborate the BPMT.

Hypothesis Analysis The hypothesis H0 was accepted,
since the modeling time from the members of the group
G-BPMN* was approximately equal (on average, 0,57%
slower) to the group G-vrBPMN. Thus the hypothesis Ha0
was rejected, given that the modeling time of the BPMT
making use of the BPMN* was greater than using the
vrBPMN. Due to little difference of time spent between
both notations, it is noted that other studies should be done
to better analyze this hypothesis. The hypothesis H1 was
refuted, since the amount of errors made in the modeling of
the BPMT making use of the BPMN* was less (193,78% on
average) than when using the vrBPMN. Therefore, the hy-
pothesis Ha1 was accepted, that affirms that the quantity of
errors when using the BPMN* was smaller than when using
the vrBPMN. All the artifacts used during the training and
execution of the empirical study conducted in this work are
available at http://goo.gl/g4V2TU.

5. Conclusion and Future Work

This paper presented the BPMN* notation, which is an
extension to the BPMN for the explicit representation of
variabilities in business process models, useful to support
the modeling of BPL. Once that the new elements incorpo-
rated into the proposed notation are based on the FM, the

learning curve for its utilization is lower, propitiating the
elaboration of BPMTs with a fewer amount of errors, as ob-
served in the empirical study presented. The results from
this study also allow to observe that, on average, the mod-
eling time using both notations was about the same for the
considered business domain.

As suggestions for future works, there are: i) leading of
other empirical studies to better analyze the hypothesis H0,
taking into consideration business processes models from
real organizations; ii) development of a CASE tool to sup-
port the use of the BPMN* notation, aiming to encourage its
use; and iii) incorporate the proposed CASE tool in an real
environment of BPL management with the intent of observe
its benefits.

References

[1] N. Boffoli, D. Caivano, D. Castelluccia, and G. Visaggio.
Driving flexibility and consistency of business processes by
means of product-line engineering and decision tables. In
3rd Int. Work. on Product Line Approaches in Soft. Eng.,
2012.

[2] H. Eriksson and M. Penker. Business Modeling With UML:
Business Patterns at Work. 2000.

[3] G. Gröner, M. Bošković, F. Silva Parreiras, and D. Gašević.
Modeling and validation of business process families. Inf.
Syst., 38(5):709–726, July 2013.

[4] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-oriented domain analysis (FODA): Feasi-
bility study. Technical report, Software Eng. Inst., 1990.

[5] M. La Rosa, F. Gottschalk, M. Dumas, and W. van der
Aalst. Linking domain models and process models for ref-
erence model configuration. In Business Process Manage-
ment Work., volume 4928, pages 417–430. Springer Berlin
Heidelberg, 2008.

[6] S. Ladeira, R. Penteado, R. Braga, and M. Cagnin. Busi-
ness modeling reuse based on views: a case study. In 22nd
Brazilian Symp. on Soft. Eng., October 2008. in port.

[7] G. Landre, E. Palma, D. Paiva, E. Y. Nakagawa, and M. I.
Cagnin. vrBPMN* and Feature Model: An approach to
model business process line. In 5th Int. Work. on Process
Model Collections: Management and Reuse, 2014.

[8] K. Laudon and J. Laudon. Essentials of Management Infor-
mation Systems. Prentice Hall, 2012.

[9] OMG. Business process model and notation (BPMN).
[10] K. Pohl, G. Böckle, and F. J. v. d. Linden. Software Product

Line Engineering: Foundations, Principles and Techniques.
Springer, 2005.

[11] C. Rolland and S. Nurcan. Business process lines to deal
with the variability. In 43rd Hawaii Int. Conf. on System
Sciences, 2010.

[12] M. Rosemann and W. M. P. van der Aalst. A configurable
reference modelling language. Inf. Syst., 32(1):1–23, Mar.
2007.

[13] A. Schnieders and F. Puhlmann. Variability mechanisms in
e-business process families. In 9th Int. Conf. on Business
Information Systems, 2006.

230

DOI reference number: 10.18293/SEKE2015-217

An Architecture Description Language for Dynamic

Service-Oriented Product Lines

Seza Adjoyan

UMR CNRS 5506 / LIRMM

University of Montpellier

Montpellier, FRANCE

adjoyan@lirmm.fr

Abdelhak Seriai

UMR CNRS 5506 / LIRMM

University of Montpellier

Montpellier, FRANCE

seriai@lirmm.fr

Abstract- Reconciling Software Product Lines (SPL) and

Service Oriented Architecture (SOA) allows modeling and

implementing systems that systematically adapt their behavior in

respond to surrounding context changes. Both approaches are

complementary with regard to the variability and the dynamicity

properties. Architecture Description Language (ADL), on the

other hand, is recognized as an important element in the

description and analysis of software properties. Different ADLs

have been proposed in SOA or in SPL domains. Nevertheless,

none of these ADLs allows describing variability and dynamicity

features together in the context of service-oriented dynamic

product lines. In this sense, our work attempts to describe the

changing architecture of Dynamic Service-Oriented Product

Lines (DSOPL). We propose an ADL that allows describing three

types of information: architecture's structural elements,

variability elements and system’s configuration. Furthermore, we

introduce context elements on which service reconfiguration is

based.

Keywords—Architecture Description Language (ADL); Service-

Oriented Architecture (SOA); Software Product Lines (SPL);

dynamicity; variability; software architecture; Dynamic Service-

Oriented Product Lines (DSOPL)

I. INTRODUCTION

Software Product Lines (SPL) and Service Oriented
Architecture (SOA) have a common goal from a software
development point of view; increase the reusability of existing
assets rather than rebuilding new systems from scratch. SPL,
on the one hand, allows the development of a family of
products that share some common set of core assets [1], [2],
[3]. Variability has always been a first concern in SPL studies
[16]. According to [4], variability is the ability of a software
artifact to quickly change and adapt for a specific context in a
preplanned manner. SOA, on the other hand, is a special kind
of software architecture, where the main architectural
elements are coarse grained and loosely coupled services that
are dynamically composable and inter-operable [5]. Being
able to modify the architecture of a running system at such a
high level of abstraction renders the system highly extensible,
customizable and powerful [6].

Variability and dynamicity are core properties to develop
complex adaptable software systems such as
telecommunication, pervasive, crisis management,
surveillance and security systems. In such systems, due to
environment changes, a dynamic re-configuration should be
carried out without having to re-deploy the whole system.

Combining SOA and SPL constitutes the answer to this need
[7]. SOA offers, through its encapsulation property and its
explicit interfaces, a solution for achieving dynamic product
lines. SPL offers, via variability modeling, analysis and design
of changing points in service-oriented architectures.

Architecture Description Language (ADL) is a formalism
that allows the specification of system’s conceptual
architecture [8]. It enables architects to describe and validate
systems against stakeholders’ requirements from one side, and
ease the development and implementation process of complex
systems, from another side. It often has a graphical
representation or plain text syntax. Conventional ADLs
support only static architecture description [6]. Some ADLs
provide special formalism for SOA to describe service
dynamicity or for SPL to describe variability. Unfortunately
no ADL supports the crosscutting SOA and SPL concepts.

To overcome this limitation, we propose an XML-based
ADL that allows describing the architecture of a Dynamic
Service-Oriented Product Line (DSOPL). It describes the four
following elements: (i) the structural elements of a family of
software products (i.e. services and connections), (ii) an
architectural variability model (i.e. variability points and
alternatives), (iii) context information, in addition to (iv) an
architectural configuration model (i.e. reconfiguration rules
based on context and variability). We choose to use XML as a
description language to facilitate understandability and
analysis of the described architecture. In addition, XML-based
description facilitates tool-support design and interoperability.

The remainder of this paper is organized as follows: In
section 2, we discuss related works regarding variability and
dynamicity properties. In section 3, we characterize our
proposed DSOPL-ADL’s elements and demonstrate their
utility through a running example. Finally, in section 4, we
summarize our contribution and provide directions for future
research.

II. RELATED WORK

A. ADLs specifying dynamic properties

A software architecture can be classified in terms of its
capability of evolution into two categories: static or dynamic.
A static architecture reflects the static structure of software
and is completely specified at design time [6], whereas in
dynamic architecture, system may evolve after its compilation
[1]. In this type of architecture, in addition to specifying the

231

system in terms of components, connectors and
configurations, it should also specify how these components
and connectors are
evolution of architecture at runtime may happen under several
forms
architecture (modifying connection
composing elements (substitution of composing elements).

dynamic software architecture.
literature, only few of them support dynamic reconfiguration
such as
ACME/Plastik
de
{condition} do {operations}
different choices at runtime.
component at runtime
used
components
dynamic since third party services can be discovered and
bound to service broker at

B

conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration
during
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking
of changed elements

representing an architecture that encompasses variability
xADL
architectural elements of software systems
set of
concepts in the form of three schemas:
variants
concepts within xADL; this approach suffers from
limitation
between elements of different variation points.
defines
component.
any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

lines architecture are not based on the ser
A
in terms of services whether in a dynamic or static ADL
Nevertheless

system in terms of components, connectors and
configurations, it should also specify how these components
and connectors are
evolution of architecture at runtime may happen under several
forms
architecture (modifying connection
composing elements (substitution of composing elements).

ADLs are used
dynamic software architecture.
literature, only few of them support dynamic reconfiguration
such as
ACME/Plastik
describe a specific
{condition} do {operations}
different choices at runtime.
component at runtime
used
components
dynamic since third party services can be discovered and
bound to service broker at

B. ADLs

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration
during
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking
of changed elements

F
representing an architecture that encompasses variability
xADL
architectural elements of software systems
set of
concepts in the form of three schemas:
variants
concepts within xADL; this approach suffers from
limitation
between elements of different variation points.
defines
component.
any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser
Approaches
in terms of services whether in a dynamic or static ADL
Nevertheless

system in terms of components, connectors and
configurations, it should also specify how these components
and connectors are
evolution of architecture at runtime may happen under several
forms: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

ADLs are used
dynamic software architecture.
literature, only few of them support dynamic reconfiguration
such as
ACME/Plastik

scribe a specific
{condition} do {operations}
different choices at runtime.
component at runtime
used in
components
dynamic since third party services can be discovered and
bound to service broker at

ADLs

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration
during
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking
of changed elements

Few existing approaches were co
representing an architecture that encompasses variability
xADL [
architectural elements of software systems
set of
concepts in the form of three schemas:
variants
concepts within xADL; this approach suffers from
limitation
between elements of different variation points.
defines
component.
any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

pproaches
in terms of services whether in a dynamic or static ADL
Nevertheless

system in terms of components, connectors and
configurations, it should also specify how these components
and connectors are
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

ADLs are used
dynamic software architecture.
literature, only few of them support dynamic reconfiguration
such as C2
ACME/Plastik

scribe a specific
{condition} do {operations}
different choices at runtime.
component at runtime

in operations
components
dynamic since third party services can be discovered and
bound to service broker at

ADLs spec

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

 runtime
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking
of changed elements

ew existing approaches were co
representing an architecture that encompasses variability

[17]
architectural elements of software systems

 XML schemas
concepts in the form of three schemas:
variants schemas.
concepts within xADL; this approach suffers from
limitation
between elements of different variation points.
defines “switches
component.
any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

pproaches
in terms of services whether in a dynamic or static ADL
Nevertheless

system in terms of components, connectors and
configurations, it should also specify how these components
and connectors are
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

ADLs are used
dynamic software architecture.
literature, only few of them support dynamic reconfiguration

C2 [
ACME/Plastik

scribe a specific
{condition} do {operations}
different choices at runtime.
component at runtime

operations
components. In
dynamic since third party services can be discovered and
bound to service broker at

pec

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

runtime
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking
of changed elements

ew existing approaches were co
representing an architecture that encompasses variability

] is an ADL for modeling runtime and design
architectural elements of software systems

XML schemas
concepts in the form of three schemas:

schemas.
concepts within xADL; this approach suffers from

of expressing
between elements of different variation points.

switches
component. The main limitation in Koala is its static nature;
any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

pproaches such
in terms of services whether in a dynamic or static ADL
Nevertheless, these ADLs

system in terms of components, connectors and
configurations, it should also specify how these components
and connectors are
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

ADLs are used
dynamic software architecture.
literature, only few of them support dynamic reconfiguration

[9], Darwin
ACME/Plastik [13

scribe a specific
{condition} do {operations}
different choices at runtime.
component at runtime

operations
In π

dynamic since third party services can be discovered and
bound to service broker at

pecifying

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

runtime
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking
of changed elements

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems

XML schemas
concepts in the form of three schemas:

schemas.
concepts within xADL; this approach suffers from

of expressing
between elements of different variation points.

switches
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

such
in terms of services whether in a dynamic or static ADL

these ADLs

system in terms of components, connectors and
configurations, it should also specify how these components
and connectors are evolv
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

ADLs are used
dynamic software architecture.
literature, only few of them support dynamic reconfiguration

, Darwin
13]

scribe a specific configuration
{condition} do {operations}
different choices at runtime.
component at runtime

operations
π-ADL

dynamic since third party services can be discovered and
bound to service broker at

fying variability

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

runtime [15
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking
of changed elements

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems

XML schemas
concepts in the form of three schemas:

schemas. Concerning the integration of product lines
concepts within xADL; this approach suffers from

of expressing
between elements of different variation points.

switches” in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

such as
in terms of services whether in a dynamic or static ADL

these ADLs

system in terms of components, connectors and
configurations, it should also specify how these components

evolv
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

ADLs are used to describe the prope
dynamic software architecture.
literature, only few of them support dynamic reconfiguration

, Darwin
 and Dynamic Wright
configuration

{condition} do {operations}
different choices at runtime.
component at runtime, detach

 part
ADL

dynamic since third party services can be discovered and
bound to service broker at

variability

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

15].
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

 [22]

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems

XML schemas. xADL 2.0 integrates product lines
concepts in the form of three schemas:

Concerning the integration of product lines
concepts within xADL; this approach suffers from

of expressing
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

as [19
in terms of services whether in a dynamic or static ADL

these ADLs

system in terms of components, connectors and
configurations, it should also specify how these components

evolved or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

to describe the prope
dynamic software architecture.
literature, only few of them support dynamic reconfiguration

, Darwin
and Dynamic Wright

configuration
{condition} do {operations}
different choices at runtime.

detach
part

ADL [11
dynamic since third party services can be discovered and
bound to service broker at runtime

variability

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

[22].

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems

. xADL 2.0 integrates product lines
concepts in the form of three schemas:

Concerning the integration of product lines
concepts within xADL; this approach suffers from

of expressing constraints (i.e.
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

19], [
in terms of services whether in a dynamic or static ADL

these ADLs are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

to describe the prope
dynamic software architecture.
literature, only few of them support dynamic reconfiguration

 [10
and Dynamic Wright

configuration
{condition} do {operations}”
different choices at runtime.

detach
part to respectively unlink and lin

11],
dynamic since third party services can be discovered and

runtime

variability

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems

. xADL 2.0 integrates product lines
concepts in the form of three schemas:

Concerning the integration of product lines
concepts within xADL; this approach suffers from

constraints (i.e.
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

], [20]
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

to describe the prope
dynamic software architecture. Among
literature, only few of them support dynamic reconfiguration

10], π
and Dynamic Wright

configuration
” is used

different choices at runtime. To replace
 and

to respectively unlink and lin
 the architecture

dynamic since third party services can be discovered and
runtime

 properties

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems

. xADL 2.0 integrates product lines
concepts in the form of three schemas:

Concerning the integration of product lines
concepts within xADL; this approach suffers from

constraints (i.e.
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

] describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connections),
composing elements (substitution of composing elements).

to describe the prope
Among

literature, only few of them support dynamic reconfiguration
, π-ADL

and Dynamic Wright
 in [

is used
To replace

and attachments
to respectively unlink and lin

the architecture
dynamic since third party services can be discovered and

.

properties

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems

. xADL 2.0 integrates product lines
concepts in the form of three schemas:

Concerning the integration of product lines
concepts within xADL; this approach suffers from

constraints (i.e.
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
), or

composing elements (substitution of composing elements).

to describe the prope
Among existing ADLs in the

literature, only few of them support dynamic reconfiguration
ADL

and Dynamic Wright
[13]

is used
To replace

attachments
to respectively unlink and lin

the architecture
dynamic since third party services can be discovered and

properties

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems

. xADL 2.0 integrates product lines
concepts in the form of three schemas: versions

Concerning the integration of product lines
concepts within xADL; this approach suffers from

constraints (i.e.
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
or upgrading existing

composing elements (substitution of composing elements).

to describe the prope
existing ADLs in the

literature, only few of them support dynamic reconfiguration
ADL [11

and Dynamic Wright
], the expression “

is used to toggle between
To replace

attachments
to respectively unlink and lin

the architecture
dynamic since third party services can be discovered and

properties

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common activities at runtime:
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems.

. xADL 2.0 integrates product lines
versions

Concerning the integration of product lines
concepts within xADL; this approach suffers from

constraints (i.e. requires, excludes)
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
lines architecture are not based on the service

describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
upgrading existing

composing elements (substitution of composing elements).

to describe the properties of static or
existing ADLs in the

literature, only few of them support dynamic reconfiguration
11], Rapide
 [14

, the expression “
to toggle between

To replace an instance of
attachments

to respectively unlink and lin
the architecture

dynamic since third party services can be discovered and

Dynamic Software Product Line (DSPL
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which

tivities at runtime:
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ew existing approaches were concerned about
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
 It is defined as a

. xADL 2.0 integrates product lines
versions

Concerning the integration of product lines
concepts within xADL; this approach suffers from

requires, excludes)
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
vice-

describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
upgrading existing

composing elements (substitution of composing elements).

ties of static or
existing ADLs in the

literature, only few of them support dynamic reconfiguration
, Rapide

14]. I
, the expression “
to toggle between

an instance of
 statements are

to respectively unlink and lin
the architecture is considered

dynamic since third party services can be discovered and

DSPL
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which

tivities at runtime:
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ncerned about
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
is defined as a

. xADL 2.0 integrates product lines
versions, options

Concerning the integration of product lines
concepts within xADL; this approach suffers from

requires, excludes)
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
-oriented style.

describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
upgrading existing

composing elements (substitution of composing elements).

ties of static or
existing ADLs in the

literature, only few of them support dynamic reconfiguration
, Rapide

In order to
, the expression “
to toggle between

an instance of
statements are

to respectively unlink and lin
is considered

dynamic since third party services can be discovered and

DSPL)
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which

tivities at runtime:
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ncerned about
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
is defined as a

. xADL 2.0 integrates product lines
options

Concerning the integration of product lines
concepts within xADL; this approach suffers from

requires, excludes)
 Koala [

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
oriented style.

describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
upgrading existing

composing elements (substitution of composing elements).

ties of static or
existing ADLs in the

literature, only few of them support dynamic reconfiguration
, Rapide

n order to
, the expression “
to toggle between

an instance of
statements are

to respectively unlink and lin
is considered

dynamic since third party services can be discovered and

 extends
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which

tivities at runtime:
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ncerned about
representing an architecture that encompasses variability

is an ADL for modeling runtime and design-
is defined as a

. xADL 2.0 integrates product lines
options, and

Concerning the integration of product lines
concepts within xADL; this approach suffers from

requires, excludes)
Koala [

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtime and
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
oriented style.

describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

 Thi
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfiguring
upgrading existing

composing elements (substitution of composing elements).

ties of static or
existing ADLs in the

literature, only few of them support dynamic reconfiguration
 [12

n order to
, the expression “on
to toggle between

an instance of
statements are

to respectively unlink and lin
is considered

dynamic since third party services can be discovered and

extends
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which

tivities at runtime:
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ncerned about
representing an architecture that encompasses variability [16

-time
is defined as a

. xADL 2.0 integrates product lines
, and

Concerning the integration of product lines
concepts within xADL; this approach suffers from the

requires, excludes)
Koala [18

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

e and
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
oriented style.

describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

This
evolution of architecture at runtime may happen under several

ing
upgrading existing

ties of static or
existing ADLs in the

literature, only few of them support dynamic reconfiguration
12],

n order to
on

to toggle between
an instance of

statements are
to respectively unlink and link

is considered
dynamic since third party services can be discovered and

extends
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which

tivities at runtime:
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ncerned about
16].
time

is defined as a
. xADL 2.0 integrates product lines

, and
Concerning the integration of product lines

the
requires, excludes)

18]
in order to dynamically bind the selected

The main limitation in Koala is its static nature;
e and

will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
oriented style.

describe system’s architecture
in terms of services whether in a dynamic or static ADL.

A

exemplify concepts related to our proposed approach
example is about
four actors
service
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

B

S
architecture level
is structured
F

1

2

3

4

III

A. I

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach
example is about
four actors
service
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

B. The DSOPL

In order to describe the runtime variability of a
Service
architecture level
is structured
Fig.

1. Structural
abstract structural entities
interfaces, operations)

2. Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

3. Context description: v
descriptions are based on information about context.
information
specific

4. Configuration
co
how to configure (generate)
on structural,

III.

Illustrative

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach
example is about
four actors
services
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

The DSOPL

In order to describe the runtime variability of a
ervice

architecture level
is structured

 2:

Structural
abstract structural entities
interfaces, operations)

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

Context description: v
descriptions are based on information about context.
information
specific

Configuration
concrete services
how to configure (generate)
on structural,

Figure

 D

llustrative

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach
example is about
four actors

s, as m
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

The DSOPL

In order to describe the runtime variability of a
ervice-Oriented

architecture level
is structured

Structural
abstract structural entities
interfaces, operations)

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

Context description: v
descriptions are based on information about context.
information
specific

Configuration
ncrete services

how to configure (generate)
on structural,

Figure

DYNAMIC

llustrative

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach
example is about
four actors;

, as m
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

The DSOPL

In order to describe the runtime variability of a
riented

architecture level
is structured in

Structural
abstract structural entities
interfaces, operations)

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

Context description: v
descriptions are based on information about context.
information
specific section

Configuration
ncrete services

how to configure (generate)
on structural,

Figure 1. Illustrative example:

YNAMIC

llustrative example

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach
example is about

 customer, retailer, warehouse and shipment
, as modeled in

retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

The DSOPL-ADL structure

In order to describe the runtime variability of a
riented

architecture level,
in four sections

Structural element description
abstract structural entities
interfaces, operations)

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

Context description: v
descriptions are based on information about context.
information about

section

Configuration
ncrete services

how to configure (generate)
on structural, variability and context elements

Illustrative example:

YNAMIC S

xample

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach
example is about a simplified online sales scenario between

customer, retailer, warehouse and shipment
odeled in

retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

ADL structure

In order to describe the runtime variability of a
riented P

, we propose an
four sections

element description
abstract structural entities
interfaces, operations)

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

Context description: v
descriptions are based on information about context.

about
section of

Configuration description
ncrete services

how to configure (generate)
variability and context elements

Illustrative example:

Figure

SERVICE

xample

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

odeled in
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

ADL structure

In order to describe the runtime variability of a
Product

we propose an
four sections

element description
abstract structural entities
interfaces, operations)

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

Context description: v
descriptions are based on information about context.

about
of the ADL.

description
ncrete services and

how to configure (generate)
variability and context elements

Illustrative example:

Figure 2

ERVICE

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

odeled in
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

ADL structure

In order to describe the runtime variability of a
roduct

we propose an
four sections

element description
abstract structural entities
interfaces, operations).

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

Context description: v
descriptions are based on information about context.

about context elements is
the ADL.

description
and connections are

how to configure (generate)
variability and context elements

Illustrative example:

2. Modular DSOPL

ERVICE O

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

odeled in Fig
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

ADL structure

In order to describe the runtime variability of a
roduct

we propose an
four sections, as

element description
abstract structural entities

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

Context description: variability and configuration
descriptions are based on information about context.

context elements is
the ADL.

description: here,
connections are

how to configure (generate)
variability and context elements

Illustrative example:

Modular DSOPL

ORIENTED

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

Fig.
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepared, the shipping service handles
the delivery of items to the customer.

ADL structure

In order to describe the runtime variability of a
Line

we propose an XML
as summarized in the

element description
abstract structural entities

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

ariability and configuration
descriptions are based on information about context.

context elements is
the ADL.

: here,
connections are

how to configure (generate) concrete architecture
variability and context elements

Illustrative example: online sales scenario architecture

Modular DSOPL

RIENTED

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

. 1.
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles
the delivery of items to the customer.

In order to describe the runtime variability of a
ine
XML
summarized in the

element description: defines
 of the system

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

ariability and configuration
descriptions are based on information about context.

context elements is

: here,
connections are

concrete architecture
variability and context elements

nline sales scenario architecture

Modular DSOPL

RIENTED P

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

 The customer accesses
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles
the delivery of items to the customer.

In order to describe the runtime variability of a
 (D

XML-based
summarized in the

: defines
of the system

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

ariability and configuration
descriptions are based on information about context.

context elements is

: here, the rules used to create
connections are

concrete architecture
variability and context elements

nline sales scenario architecture

Modular DSOPL-ADL

PRODUCT

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

The customer accesses
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles

In order to describe the runtime variability of a
DSOPL
based

summarized in the

: defines
of the system

Variability description: here, variation points are defined
and also all alternative services of each variation point
with the constraints related to each alternative

ariability and configuration
descriptions are based on information about context.

context elements is

the rules used to create
connections are specified

concrete architecture
variability and context elements

nline sales scenario architecture

ADL

RODUCT

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

The customer accesses
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles

In order to describe the runtime variability of a
SOPL)

based ADL.
summarized in the

: defines all types of
of the system

points are defined
and also all alternative services of each variation point
with the constraints related to each alternative

ariability and configuration
descriptions are based on information about context.

context elements is described

the rules used to create
specified

concrete architecture
variability and context elements

nline sales scenario architecture

RODUCT L

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

The customer accesses
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles

In order to describe the runtime variability of a
)

ADL.
summarized in the

all types of
of the system

points are defined
and also all alternative services of each variation point
with the constraints related to each alternative.

ariability and configuration
descriptions are based on information about context.

described

the rules used to create
specified

concrete architecture
variability and context elements.

nline sales scenario architecture

LINE

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

The customer accesses
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles

In order to describe the runtime variability of a Dynamic
system

ADL. This ADL
summarized in the schema

all types of
of the system (services,

points are defined
and also all alternative services of each variation point

ariability and configuration
descriptions are based on information about context.

described

the rules used to create
specified to

concrete architecture

nline sales scenario architecture

INE ADL

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach.

a simplified online sales scenario between
customer, retailer, warehouse and shipment

The customer accesses
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles

Dynamic
system

This ADL
schema

all types of
(services,

points are defined
and also all alternative services of each variation point

ariability and configuration
descriptions are based on information about context. Thus

described

the rules used to create
to describe

concrete architectures based

nline sales scenario architecture

ADL

We will use throughout the paper an illustrative example to
. This

a simplified online sales scenario between
customer, retailer, warehouse and shipment

The customer accesses
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles

Dynamic
system

This ADL
schema of

all types of the
(services,

points are defined
and also all alternative services of each variation point

ariability and configuration
Thus

described in

the rules used to create
describe

based

We will use throughout the paper an illustrative example to
This

a simplified online sales scenario between
customer, retailer, warehouse and shipment

The customer accesses
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles

Dynamic
at

This ADL
of

the
(services,

points are defined
and also all alternative services of each variation point

ariability and configuration
Thus,

n a

the rules used to create
describe

based

232

architectural concern
description of architecture in four sections, each of them
specifying one type of architectural description has
following advantages:

of the

by sepa

and

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

is translated at architec

C

interacts
itself is a
into finer
services
considered
implement any functionality
to
described as sub

require a number of
collection of methods or operations
service
future exploiting systems, they should
defined int
operations.
or
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required
An interface

meta
architectural
has a name specified by

Our approach
architectural concern
description of architecture in four sections, each of them
specifying one type of architectural description has
following advantages:

1)

of the

2)

by sepa

and configuration).

3)

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

is translated at architec

C. Structural

A
interacts
itself is a
into finer
services
considered
implement any functionality
to one of
described as sub

Each service
require a number of
collection of methods or operations
service
future exploiting systems, they should
defined int
operations.
or required interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required
An interface

The structural description of a se
meta
architectural
has a name specified by

Our approach
architectural concern
description of architecture in four sections, each of them
specifying one type of architectural description has
following advantages:

) It facilitates the modification and re

of the four

) It allows the description and anal

by sepa

configuration).

) It allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

is translated at architec

Structural

A service
interacts
itself is a
into finer
services
considered
implement any functionality

one of
described as sub

Each service
require a number of
collection of methods or operations
service.
future exploiting systems, they should
defined int
operations.

required interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required
An interface

The structural description of a se
meta-model.
architectural
has a name specified by

Figure

Our approach
architectural concern
description of architecture in four sections, each of them
specifying one type of architectural description has
following advantages:

t facilitates the modification and re

four

t allows the description and anal

by separating the four concerns (structure, variability, context

configuration).

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

is translated at architec

Structural

service
interacts with other services through
itself is a composite
into finer-grained
services. All other services in the hierarchical tree are
considered
implement any functionality

one of its composing services.
described as sub

Each service
require a number of
collection of methods or operations

. Since services
future exploiting systems, they should
defined int
operations.

required interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required
An interface

The structural description of a se
model.

architectural
has a name specified by

Figure

Our approach
architectural concern
description of architecture in four sections, each of them
specifying one type of architectural description has
following advantages:

t facilitates the modification and re

 sections of ADL.

t allows the description and anal

rating the four concerns (structure, variability, context

configuration).

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

is translated at architec

Structural

service
with other services through
composite
grained

. All other services in the hierarchical tree are
considered composite
implement any functionality

its composing services.
described as sub

Each service
require a number of
collection of methods or operations

Since services
future exploiting systems, they should
defined interfaces that describe their
operations. Interfaces are two types, either

required interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required
An interface has

The structural description of a se
model. A service

architectural attributes
has a name specified by

Figure 3. Structural description meta

Our approach
architectural concern
description of architecture in four sections, each of them
specifying one type of architectural description has
following advantages:

t facilitates the modification and re

sections of ADL.

t allows the description and anal

rating the four concerns (structure, variability, context

configuration).

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

is translated at architec

Structural elements

 is an encapsulated and self
with other services through
composite
grained

. All other services in the hierarchical tree are
composite

implement any functionality
its composing services.

described as sub-architecture.

Each service has
require a number of
collection of methods or operations

Since services
future exploiting systems, they should

erfaces that describe their
Interfaces are two types, either

required interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

has a

The structural description of a se
A service
attributes

has a name specified by

. Structural description meta

Our approach implicitly
architectural concern
description of architecture in four sections, each of them
specifying one type of architectural description has
following advantages:

t facilitates the modification and re

sections of ADL.

t allows the description and anal

rating the four concerns (structure, variability, context

configuration).

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

is translated at architec

elements

is an encapsulated and self
with other services through
composite
grained services

. All other services in the hierarchical tree are
composite

implement any functionality
its composing services.

architecture.

has
require a number of
collection of methods or operations

Since services
future exploiting systems, they should

erfaces that describe their
Interfaces are two types, either

required interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

a set of

The structural description of a se
A service
attributes

has a name specified by

. Structural description meta

implicitly
architectural concerns
description of architecture in four sections, each of them
specifying one type of architectural description has
following advantages:

t facilitates the modification and re

sections of ADL.

t allows the description and anal

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

is translated at architecture level through

elements description

is an encapsulated and self
with other services through
composite service

services
. All other services in the hierarchical tree are

composite. A
implement any functionality

its composing services.
architecture.

 a number of
require a number of required interfaces.
collection of methods or operations

Since services are developed independently from their
future exploiting systems, they should

erfaces that describe their
Interfaces are two types, either

required interface. Provided
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

set of

The structural description of a se
A service
attributes, as shown in Fig

has a name specified by

. Structural description meta

implicitly
 from each other

description of architecture in four sections, each of them
specifying one type of architectural description has

t facilitates the modification and re

sections of ADL.

t allows the description and anal

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

ure level through

description

is an encapsulated and self
with other services through

ervice
services.

. All other services in the hierarchical tree are
A composite service

implement any functionality
its composing services.

architecture.

a number of
required interfaces.

collection of methods or operations
are developed independently from their

future exploiting systems, they should
erfaces that describe their
Interfaces are two types, either

Provided
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

set of operations

The structural description of a se
 is described based on

, as shown in Fig
has a name specified by service_name

. Structural description meta

implicitly separate
from each other

description of architecture in four sections, each of them
specifying one type of architectural description has

t facilitates the modification and re

sections of ADL.

t allows the description and anal

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

ure level through

description

is an encapsulated and self
with other services through

ervice and
. Leaf services are called

. All other services in the hierarchical tree are
composite service

implement any functionality by
its composing services.

architecture.

a number of
required interfaces.

collection of methods or operations
are developed independently from their

future exploiting systems, they should
erfaces that describe their
Interfaces are two types, either

Provided
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

operations

The structural description of a se
is described based on

, as shown in Fig
service_name

. Structural description meta

separate
from each other

description of architecture in four sections, each of them
specifying one type of architectural description has

t facilitates the modification and re

t allows the description and anal

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

ure level through

description

is an encapsulated and self
with other services through

and is
Leaf services are called

. All other services in the hierarchical tree are
composite service

by itself
its composing services.

a number of provided interfaces and may
required interfaces.

collection of methods or operations
are developed independently from their

future exploiting systems, they should
erfaces that describe their
Interfaces are two types, either

Provided interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

operations

The structural description of a se
is described based on

, as shown in Fig
service_name

. Structural description meta

separates
from each other

description of architecture in four sections, each of them
specifying one type of architectural description has

t facilitates the modification and re

t allows the description and anal

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

ure level through

description

is an encapsulated and self
with other services through

is hierarchically
Leaf services are called

. All other services in the hierarchical tree are
composite service

itself,
its composing services. Each

provided interfaces and may
required interfaces.

collection of methods or operations that are
are developed independently from their

future exploiting systems, they should
erfaces that describe their
Interfaces are two types, either

interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

operations.

The structural description of a ser
is described based on

, as shown in Fig
service_name

. Structural description meta-model of DSOPL

 the
from each other

description of architecture in four sections, each of them
specifying one type of architectural description has

t facilitates the modification and re

t allows the description and analysis of the architecture

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

ure level through

is an encapsulated and self
with other services through interfaces

hierarchically
Leaf services are called

. All other services in the hierarchical tree are
composite service

, but it delegates this
Each

provided interfaces and may
required interfaces.

that are
are developed independently from their

future exploiting systems, they should
erfaces that describe their
Interfaces are two types, either

interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

rvice reflect
is described based on

, as shown in Fig.
service_name

model of DSOPL

the four
from each other

description of architecture in four sections, each of them
specifying one type of architectural description has

t facilitates the modification and re-utilization of each

ysis of the architecture

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

ure level through its variabi

is an encapsulated and self-
interfaces

hierarchically
Leaf services are called

. All other services in the hierarchical tree are
composite service doesn’

but it delegates this
Each composite service is

provided interfaces and may
required interfaces. Interfaces

that are
are developed independently from their

future exploiting systems, they should have
erfaces that describe their functionalities
Interfaces are two types, either provided interface

interface of a service is an
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

vice reflect
is described based on

. 3: (1) Every
 attribute. (

model of DSOPL

four aforementioned
from each other.

description of architecture in four sections, each of them
specifying one type of architectural description has

utilization of each

ysis of the architecture

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

variabi

-contained unit. It
interfaces

hierarchically
Leaf services are called

. All other services in the hierarchical tree are
doesn’

but it delegates this
composite service is

provided interfaces and may
Interfaces

that are supported by the
are developed independently from their

have solid and well
functionalities
provided interface
of a service is an

interface that the service realizes, whereas required interface
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

vice reflect
is described based on

: (1) Every
attribute. (

model of DSOPL

aforementioned
. The modular

description of architecture in four sections, each of them
specifying one type of architectural description has

utilization of each

ysis of the architecture

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

variabi

contained unit. It
interfaces. The system

hierarchically de
Leaf services are called

. All other services in the hierarchical tree are
doesn’t execute

but it delegates this
composite service is

provided interfaces and may
Interfaces

supported by the
are developed independently from their

solid and well
functionalities
provided interface
of a service is an
required interface

is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

vice reflects
is described based on the following

: (1) Every
attribute. (

model of DSOPL

aforementioned
The modular

description of architecture in four sections, each of them
specifying one type of architectural description has

utilization of each

ysis of the architecture

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

lity section.

contained unit. It
The system
decomposed

Leaf services are called
. All other services in the hierarchical tree are

t execute
but it delegates this

composite service is

provided interfaces and may
Interfaces define

supported by the
are developed independently from their

solid and well
functionalities
provided interface
of a service is an
required interface

is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required interfaces.

 this service
the following

: (1) Every
attribute. (2) It has a

-ADL

aforementioned
The modular

description of architecture in four sections, each of them
specifying one type of architectural description has

utilization of each

ysis of the architecture

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

lity section.

contained unit. It
The system

composed
Leaf services are called atomic

. All other services in the hierarchical tree are
t execute

but it delegates this
composite service is

provided interfaces and may
define

supported by the
are developed independently from their

solid and well
functionalities
provided interface
of a service is an
required interface

is an interface that the service needs in order to operate.
Services communicate to each other through provides/

interfaces.

this service
the following

: (1) Every service
) It has a

ADL

aforementioned
The modular

description of architecture in four sections, each of them
specifying one type of architectural description has the

utilization of each

ysis of the architecture

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

lity section.

contained unit. It
The system

composed
atomic

. All other services in the hierarchical tree are
t execute or

but it delegates this task
composite service is

provided interfaces and may
define

supported by the
are developed independently from their

solid and well
functionalities and
provided interface
of a service is an
required interface

is an interface that the service needs in order to operate.
Services communicate to each other through provides/

interfaces.

this service
the following

service
) It has a

aforementioned
The modular

description of architecture in four sections, each of them
the

utilization of each

ysis of the architecture

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

lity section.

contained unit. It
The system

composed
atomic

. All other services in the hierarchical tree are
or

task
composite service is

provided interfaces and may
 a

supported by the
are developed independently from their

solid and well-
and

provided interface
of a service is an
required interface

is an interface that the service needs in order to operate.
Services communicate to each other through provides/

interfaces.

this service
the following

service
) It has a

textual_description

functionalities of the service, its inputs and expected outputs.
(3)
service is atomic or composite.
section
example.

<

</interface>

</

D

making changes to system’s architecture.
types of

pre
example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch
automatically
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,
depicted in

s

textual_description

functionalities of the service, its inputs and expected outputs.
(3)
service is atomic or composite.
section
example.

<DSOPL

 <structural_

 <service

</interface>

 </service>

 <service name="customer_service"

 </service>

 <service name="relay

 </service>

 <service name="home_delivery_shipping_service"

 </service>

 </structural_

 <variability_

 <context

 <configuration_description

</DSOPL

D. Variability

 Variability
making changes to system’s architecture.
types of

1)

It represents
pre-
example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch
automatically
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,
depicted in

2)

It may exist several
services.

textual_description

functionalities of the service, its inputs and expected outputs.
(3) is_at
service is atomic or composite.
section
example.

SOPL-ADL>

<structural_

<service

<interfaces>

 ...

</interfaces>

<sub

 <service name="retailer_service"

 <interfaces>

</interface>

 </interfaces>

 </service>

 <service name="warehouse_service"

 <interfaces>

 </service>

</sub

</service>

<service name="customer_service"

...

</service>

<service name="relay

...

</service>

<service name="home_delivery_shipping_service"

...

</service>

</structural_

<variability_

<context

configuration_description

SOPL-ADL>

Variability

Variability
making changes to system’s architecture.
types of

) S

It represents
-conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch
automatically
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,
depicted in

) Variability of connection

It may exist several
ervices.

textual_description

functionalities of the service, its inputs and expected outputs.
is_atomic

service is atomic or composite.
section description
example.

ADL>

<structural_

<service

<interfaces>

...

</interfaces>

<sub-architecture>

<service name="retailer_service"

<interfaces>

 <interface name="i_order" role="provides">

 <operation

 </operations>

 </interface>

 <interface

</interface>

</interfaces>

</service>

<service name="warehouse_service"

<interfaces>

</service>

</sub-architecture>

</service>

<service name="customer_service"

</service>

<service name="relay

</service>

<service name="home_delivery_shipping_service"

</service>

</structural_

<variability_

<context_description

configuration_description

ADL>

Variability

Variability
making changes to system’s architecture.
types of variability:

Service variability

It represents
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch
automatically
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,
depicted in

Variability of connection

It may exist several
ervices. The selection of the appropriate connection is done

Figure 5

textual_description

functionalities of the service, its inputs and expected outputs.
omic

service is atomic or composite.
description

<structural_description

<service name="

<interfaces>

</interfaces>

architecture>

<service name="retailer_service"

<interfaces>

<interface name="i_order" role="provides">

<operation

 <operation name="submit_order_request"

 <operation name="get_catalog"

</operations>

</interface>

<interface

</interface>

</interfaces>

</service>

<service name="warehouse_service"

<interfaces>

</service>

architecture>

</service>

<service name="customer_service"

</service>

<service name="relay

</service>

<service name="home_delivery_shipping_service"

</service>

</structural_description

<variability_description

description

configuration_description

ADL>

Figure 4. Structural

Variability

Variability
making changes to system’s architecture.

variability:

ervice variability

It represents
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch
automatically
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,
depicted in Fig

Variability of connection

It may exist several
The selection of the appropriate connection is done

Figure 5

textual_description

functionalities of the service, its inputs and expected outputs.
omic has a Boolean value to indicate whether the

service is atomic or composite.
description

description

name="supply_chain_management_service"

<interfaces>

</interfaces>

architecture>

<service name="retailer_service"

<interfaces>

<interface name="i_order" role="provides">

<operation

<operation name="submit_order_request"

<operation name="get_catalog"

</operations>

</interface>

<interface

</interfaces>

</service>

<service name="warehouse_service"

<interfaces>

</service>

architecture>

<service name="customer_service"

<service name="relay

<service name="home_delivery_shipping_service"

description

description

description

configuration_description

Figure 4. Structural

Variability description

Variability in
making changes to system’s architecture.

variability:

ervice variability

It represents
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch
automatically at ru
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

Fig. 9

Variability of connection

It may exist several
The selection of the appropriate connection is done

Figure 5. Example of service variability in sales scenario

textual_description

functionalities of the service, its inputs and expected outputs.
has a Boolean value to indicate whether the

service is atomic or composite.
description of the architecture related to our illustrative

description

supply_chain_management_service"

architecture>

<service name="retailer_service"

<interfaces>

<interface name="i_order" role="provides">

<operations>

<operation name="submit_order_request"

<operation name="get_catalog"

</operations>

</interface>

<interface name="i_goods_request"

</interfaces>

<service name="warehouse_service"

<interfaces> ...

architecture>

<service name="customer_service"

<service name="relay

<service name="home_delivery_shipping_service"

description

description

description>

configuration_description

Figure 4. Structural

escription

in SPL
making changes to system’s architecture.

variability:

ervice variability

It represents binding an alternative service that satisfies
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch

runtime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

9.

Variability of connection

It may exist several
The selection of the appropriate connection is done

. Example of service variability in sales scenario

textual_description
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
service is atomic or composite.

of the architecture related to our illustrative

description>

supply_chain_management_service"

<service name="retailer_service"

<interface name="i_order" role="provides">

<operation name="submit_order_request"

<operation name="get_catalog"

</operations>

name="i_goods_request"

<service name="warehouse_service"

... </interfaces>

architecture>

<service name="customer_service"

<service name="relay_point_shipping_service"

<service name="home_delivery_shipping_service"

description>

description>

> ... </

configuration_description

Figure 4. Structural

escription

SPL
making changes to system’s architecture.

ervice variability

binding an alternative service that satisfies
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch

ntime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

Variability of connection

It may exist several
The selection of the appropriate connection is done

. Example of service variability in sales scenario

 that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
service is atomic or composite.

of the architecture related to our illustrative

supply_chain_management_service"

<service name="retailer_service"

<interface name="i_order" role="provides">

<operation name="submit_order_request"

<operation name="get_catalog"

name="i_goods_request"

<service name="warehouse_service"

</interfaces>

<service name="customer_service"

_point_shipping_service"

<service name="home_delivery_shipping_service"

 ...

</context

configuration_description> ...

Figure 4. Structural

escription

SPL architecture
making changes to system’s architecture.

ervice variability

binding an alternative service that satisfies
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch

ntime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

Variability of connection

It may exist several
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
service is atomic or composite.

of the architecture related to our illustrative

supply_chain_management_service"

<service name="retailer_service"

<interface name="i_order" role="provides">

<operation name="submit_order_request"

<operation name="get_catalog"

name="i_goods_request"

<service name="warehouse_service"

</interfaces>

<service name="customer_service"

_point_shipping_service"

<service name="home_delivery_shipping_service"

... </variability_

context

... </

Figure 4. Structural description

architecture
making changes to system’s architecture.

binding an alternative service that satisfies
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch

ntime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

Variability of connection

It may exist several alternative
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
service is atomic or composite.

of the architecture related to our illustrative

supply_chain_management_service"

<service name="retailer_service"

<interface name="i_order" role="provides">

<operation name="submit_order_request"

<operation name="get_catalog"

name="i_goods_request"

<service name="warehouse_service"

</interfaces>

<service name="customer_service" ...

_point_shipping_service"

<service name="home_delivery_shipping_service"

</variability_

context_description

</configuration_description

description

architecture
making changes to system’s architecture.

binding an alternative service that satisfies
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch

ntime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

Variability of connection

alternative
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
service is atomic or composite. Fig

of the architecture related to our illustrative

supply_chain_management_service"

<service name="retailer_service" ...

<interface name="i_order" role="provides">

<operation name="submit_order_request"

<operation name="get_catalog"

name="i_goods_request"

<service name="warehouse_service" ...

... is_atomic="Y">

_point_shipping_service"

<service name="home_delivery_shipping_service"

</variability_

description

configuration_description

description

architecture
making changes to system’s architecture.

binding an alternative service that satisfies
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch

ntime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

alternative
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
ig. 4 shows the structural

of the architecture related to our illustrative

supply_chain_management_service"

... is_atomic="Y">

<interface name="i_order" role="provides">

<operation name="submit_order_request"

<operation name="get_catalog" ...

name="i_goods_request"

... is_atomic="Y">

is_atomic="Y">

_point_shipping_service"

<service name="home_delivery_shipping_service"

</variability_description

description

configuration_description

 of sales scenario

architecture refers to the ability of
making changes to system’s architecture.

binding an alternative service that satisfies
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch

ntime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

alternative connections between
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
4 shows the structural

of the architecture related to our illustrative

supply_chain_management_service"

is_atomic="Y">

<interface name="i_order" role="provides">

<operation name="submit_order_request"

...> </operation>

 role="consumes">

is_atomic="Y">

is_atomic="Y">

_point_shipping_service" ...

<service name="home_delivery_shipping_service"

description

description>

configuration_description

of sales scenario

refers to the ability of
making changes to system’s architecture.

binding an alternative service that satisfies
conditioned constraints on runtime. Back to

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment, as
The decision of which alternative to ch

ntime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

connections between
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
4 shows the structural

of the architecture related to our illustrative

supply_chain_management_service" ...

is_atomic="Y">

<interface name="i_order" role="provides">

<operation name="submit_order_request" ...

</operation>

role="consumes">

is_atomic="Y">

is_atomic="Y">

... is_atomic="Y">

<service name="home_delivery_shipping_service" ...

description

configuration_description

of sales scenario

refers to the ability of
making changes to system’s architecture. We

binding an alternative service that satisfies
. Back to

example, there are two alternatives of shipment; either a relay
, as shown

The decision of which alternative to cho
ntime depending on customer’s selection in

addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

connections between
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
4 shows the structural

of the architecture related to our illustrative

... is_atomic="N">

is_atomic="Y">

...> </operation>

</operation>

role="consumes">

is_atomic="Y">

is_atomic="Y">

is_atomic="Y">

... is_atomic="Y">

description>

configuration_description

of sales scenario

refers to the ability of
e distinct

binding an alternative service that satisfies
. Back to

example, there are two alternatives of shipment; either a relay
shown
oose is taken

ntime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

connections between
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
4 shows the structural

of the architecture related to our illustrative

is_atomic="N">

is_atomic="Y">

</operation>

</operation>

role="consumes">

is_atomic="Y">

is_atomic="Y">

is_atomic="Y">

>

configuration_description

refers to the ability of
distinct

binding an alternative service that satisfies
. Back to our sales

example, there are two alternatives of shipment; either a relay
shown in Fig

ose is taken
ntime depending on customer’s selection in

addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

connections between
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
4 shows the structural

of the architecture related to our illustrative

is_atomic="N">

</operation>

role="consumes">

is_atomic="Y">

is_atomic="Y">

configuration_description>

refers to the ability of
distinct

binding an alternative service that satisfies
our sales

example, there are two alternatives of shipment; either a relay
in Fig

ose is taken
ntime depending on customer’s selection in

addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

connections between
The selection of the appropriate connection is done

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
4 shows the structural

of the architecture related to our illustrative

is_atomic="N">

</operation>

 ...

is_atomic="Y">

is_atomic="Y">

refers to the ability of
distinct three

binding an alternative service that satisfies
our sales

example, there are two alternatives of shipment; either a relay
in Fig.

ose is taken
ntime depending on customer’s selection in

addition to other environmental conditions such as the
existence of a relay point service in customer’s city, as

connections between
The selection of the appropriate connection is done

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
4 shows the structural

of the architecture related to our illustrative

is_atomic="N">

</operation>

...

is_atomic="Y">

refers to the ability of
three

binding an alternative service that satisfies
our sales

example, there are two alternatives of shipment; either a relay
 5.

ose is taken
ntime depending on customer’s selection in

addition to other environmental conditions such as the
as

connections between
The selection of the appropriate connection is done

233

automatically at runtime according to constraints
For example, the customer
retailer service and thus
connectio
connection for a VIP customer which normally has some extra
privileges.
Fig

service or a connection
services by another set of interconnected services
co
composition
one in
warehouse services,
requested

8
exist in the system
specifies the part of the architecture that can be variable.
variation
variation

variation_type

Possibl
connection

whether this variation may occur at
runtime
approaches where variability is clearly and completely
specified at design time
important in SOA systems, where selection of an alternative
during
points
overhead of loading the entire configuration at
v
elements
has a unique name
priority

determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

automatically at runtime according to constraints
For example, the customer
retailer service and thus
connectio
connection for a VIP customer which normally has some extra
privileges.
Fig.

3)

This type of variability concerns replacing not only a
service or a connection
services by another set of interconnected services
composite architecture
composition
one in
warehouse services,
requested

 T
8. W
exist in the system
specifies the part of the architecture that can be variable.
variation
variation

variation_type

Possibl
connection

whether this variation may occur at
runtime
approaches where variability is clearly and completely
specified at design time
important in SOA systems, where selection of an alternative
during
points
overhead of loading the entire configuration at
variation point has several
elements
has a unique name
priority

determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

automatically at runtime according to constraints
For example, the customer
retailer service and thus
connectio
connection for a VIP customer which normally has some extra
privileges.

 9 is an example of variability of connection.

) Variability of composition

This type of variability concerns replacing not only a
service or a connection
services by another set of interconnected services

mposite architecture
composition
one in
warehouse services,
requested

The meta
We specify

exist in the system
specifies the part of the architecture that can be variable.
variation
variation

variation_type

Possible values of
connection

whether this variation may occur at
runtime
approaches where variability is clearly and completely
specified at design time
important in SOA systems, where selection of an alternative
during
points c
overhead of loading the entire configuration at

ariation point has several
elements
has a unique name
priority

determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

Figure 6

Figure 7

automatically at runtime according to constraints
For example, the customer
retailer service and thus
connections; either a connection for a regular customer or a
connection for a VIP customer which normally has some extra
privileges.

is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a
service or a connection
services by another set of interconnected services

mposite architecture
composition
one in Fig
warehouse services,
requested items

he meta
e specify

exist in the system
specifies the part of the architecture that can be variable.
variation
variation_name

variation_type

e values of
connection

whether this variation may occur at
runtime) or at
approaches where variability is clearly and completely
specified at design time
important in SOA systems, where selection of an alternative
during runtime

could be s
overhead of loading the entire configuration at

ariation point has several
elements to fill the selected
has a unique name
priority.
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

Figure 6

Figure 7

automatically at runtime according to constraints
For example, the customer
retailer service and thus

ns; either a connection for a regular customer or a
connection for a VIP customer which normally has some extra

 The
is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a
service or a connection
services by another set of interconnected services

mposite architecture
composition of

Fig. 1.
warehouse services,

items

he meta-model of variability
e specify

exist in the system
specifies the part of the architecture that can be variable.

 point
_name

variation_type

e values of
connection or
whether this variation may occur at

) or at
approaches where variability is clearly and completely
specified at design time
important in SOA systems, where selection of an alternative

runtime
ould be s

overhead of loading the entire configuration at
ariation point has several

to fill the selected
has a unique name

 This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

Figure 6. Example of connection variability in sales scenario

Figure 7. Example of composition variability in sales scenario

automatically at runtime according to constraints
For example, the customer
retailer service and thus

ns; either a connection for a regular customer or a
connection for a VIP customer which normally has some extra

The variation_point
is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a
service or a connection
services by another set of interconnected services

mposite architecture
of supply_chain_management_service
. Here

warehouse services,
items and returns

model of variability
e specify in this section

exist in the system
specifies the part of the architecture that can be variable.

point
_name

variation_type
e values of

or composition
whether this variation may occur at

) or at
approaches where variability is clearly and completely
specified at design time
important in SOA systems, where selection of an alternative

runtime is totally poss
ould be s

overhead of loading the entire configuration at
ariation point has several

to fill the selected
has a unique name

This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
For example, the customer
retailer service and thus

ns; either a connection for a regular customer or a
connection for a VIP customer which normally has some extra

variation_point
is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a
service or a connection
services by another set of interconnected services

mposite architecture
supply_chain_management_service

ere,
warehouse services,

and returns

model of variability
in this section

exist in the system
specifies the part of the architecture that can be variable.

 has
 indicating
 that specifies the type of this variation.

e values of
composition

whether this variation may occur at
) or at runtime

approaches where variability is clearly and completely
specified at design time
important in SOA systems, where selection of an alternative

is totally poss
ould be specifi

overhead of loading the entire configuration at
ariation point has several

to fill the selected
has a unique name

This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
For example, the customer
retailer service and thus

ns; either a connection for a regular customer or a
connection for a VIP customer which normally has some extra

variation_point
is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a
service or a connection, but
services by another set of interconnected services

mposite architecture.
supply_chain_management_service

, in addition to the roles of retailer and
warehouse services, the manufacturer service

and returns

model of variability
in this section

 at architectural level
specifies the part of the architecture that can be variable.

has
indicating

that specifies the type of this variation.
e values of variation_type

composition

whether this variation may occur at
runtime

approaches where variability is clearly and completely
specified at design time
important in SOA systems, where selection of an alternative

is totally poss
pecified at compile

overhead of loading the entire configuration at
ariation point has several

to fill the selected
has a unique name alternative

This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
For example, the customer
retailer service and thus command

ns; either a connection for a regular customer or a
connection for a VIP customer which normally has some extra

variation_point
is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a
, but

services by another set of interconnected services
 Fig

supply_chain_management_service

in addition to the roles of retailer and
the manufacturer service

and returns

model of variability
in this section

at architectural level
specifies the part of the architecture that can be variable.

has the following
indicating

that specifies the type of this variation.
variation_type

composition

whether this variation may occur at
runtime

approaches where variability is clearly and completely
specified at design time [
important in SOA systems, where selection of an alternative

is totally poss
ed at compile

overhead of loading the entire configuration at
ariation point has several

to fill the selected
alternative

This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
For example, the customer service

command
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
variation_point

is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a
, but replacing

services by another set of interconnected services
Fig. 7

supply_chain_management_service

in addition to the roles of retailer and
the manufacturer service

and returns them to

model of variability
in this section the different

at architectural level
specifies the part of the architecture that can be variable.

the following
indicating

that specifies the type of this variation.
variation_type

composition.
whether this variation may occur at

. Contrary to traditional SPL
approaches where variability is clearly and completely

[21],
important in SOA systems, where selection of an alternative

is totally poss
ed at compile

overhead of loading the entire configuration at
ariation point has several alternatives

to fill the selected variation poi
alternative

This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
service

command
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
variation_point "customer_variation_point

is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a
replacing

services by another set of interconnected services
7 illustrates another alternative

supply_chain_management_service

in addition to the roles of retailer and
the manufacturer service

them to

model of variability
the different

at architectural level
specifies the part of the architecture that can be variable.

the following
indicating its unique name

that specifies the type of this variation.
variation_type

. (3)
whether this variation may occur at

Contrary to traditional SPL
approaches where variability is clearly and completely

], variation_time
important in SOA systems, where selection of an alternative

is totally possible.
ed at compile

overhead of loading the entire configuration at
alternatives
variation poi

alternative

This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.

 priority

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
service in Fig

command an order via
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
customer_variation_point

is an example of variability of connection.

This type of variability concerns replacing not only a
replacing

services by another set of interconnected services
illustrates another alternative

supply_chain_management_service

in addition to the roles of retailer and
the manufacturer service

them to the warehouse service.

model of variability description
the different

at architectural level
specifies the part of the architecture that can be variable.

the following
its unique name

that specifies the type of this variation.
variation_type

) variation_time
whether this variation may occur at compile

Contrary to traditional SPL
approaches where variability is clearly and completely

variation_time

important in SOA systems, where selection of an alternative
ible. However,

ed at compile
overhead of loading the entire configuration at

alternatives
variation poi

alternative_name

This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.

priority

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
in Fig

an order via
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
customer_variation_point

is an example of variability of connection.

This type of variability concerns replacing not only a
replacing a set of interconnected

services by another set of interconnected services
illustrates another alternative

supply_chain_management_service

in addition to the roles of retailer and
the manufacturer service

the warehouse service.

description
the different

at architectural level
specifies the part of the architecture that can be variable.

the following
its unique name

that specifies the type of this variation.
variation_type

variation_time

compile

Contrary to traditional SPL
approaches where variability is clearly and completely

variation_time

important in SOA systems, where selection of an alternative
However,

ed at compile-time
overhead of loading the entire configuration at

alternatives
variation poi

_name

This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.

priority priority

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
in Fig.

an order via
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
customer_variation_point

is an example of variability of connection.

This type of variability concerns replacing not only a
a set of interconnected

services by another set of interconnected services
illustrates another alternative

supply_chain_management_service

in addition to the roles of retailer and
the manufacturer service

the warehouse service.

description
the different variation points

at architectural level. A
specifies the part of the architecture that can be variable.

the following
its unique name

that specifies the type of this variation.
 are either

variation_time

compile

Contrary to traditional SPL
approaches where variability is clearly and completely

variation_time

important in SOA systems, where selection of an alternative
However,

time. This reduces the
overhead of loading the entire configuration at

alternatives, which are
variation point. Each alternative

_name and
This attribute helps the system automatically

determine which architectural element is chosen in case there
is more than one valid configuration at a given time.

priority

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
 6 can access the

an order via
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
customer_variation_point

is an example of variability of connection.

This type of variability concerns replacing not only a
a set of interconnected

services by another set of interconnected services
illustrates another alternative

supply_chain_management_service

in addition to the roles of retailer and
the manufacturer service

the warehouse service.

description is
variation points

A variation point
specifies the part of the architecture that can be variable.

 attributes:
its unique name

that specifies the type of this variation.
are either

variation_time

compile-time

Contrary to traditional SPL
approaches where variability is clearly and completely

variation_time

important in SOA systems, where selection of an alternative
However, some

. This reduces the
overhead of loading the entire configuration at

which are
nt. Each alternative

and
This attribute helps the system automatically

determine which architectural element is chosen in case there
is more than one valid configuration at a given time.

priority

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints’ satisfaction.
can access the

an order via two
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
customer_variation_point

is an example of variability of connection.

This type of variability concerns replacing not only a
a set of interconnected

services by another set of interconnected services
illustrates another alternative

supply_chain_management_service

in addition to the roles of retailer and
the manufacturer service

the warehouse service.

is given
variation points

variation point
specifies the part of the architecture that can be variable.

attributes:
its unique name

that specifies the type of this variation.
are either

variation_time

time
Contrary to traditional SPL

approaches where variability is clearly and completely
variation_time

important in SOA systems, where selection of an alternative
some

. This reduces the
overhead of loading the entire configuration at runtime

which are
nt. Each alternative

and an order of
This attribute helps the system automatically

determine which architectural element is chosen in case there
is more than one valid configuration at a given time.

priority=

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

satisfaction.
can access the

two different
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
customer_variation_point

This type of variability concerns replacing not only a
a set of interconnected

services by another set of interconnected services within a
illustrates another alternative

supply_chain_management_service than the
in addition to the roles of retailer and

the manufacturer service
the warehouse service.

given
variation points

variation point
specifies the part of the architecture that can be variable.

attributes:
its unique name

that specifies the type of this variation.
are either service

variation_time specifies
 (i.e. before

Contrary to traditional SPL
approaches where variability is clearly and completely

 attribute is
important in SOA systems, where selection of an alternative

some variation
. This reduces the

runtime
which are
nt. Each alternative

an order of
This attribute helps the system automatically

determine which architectural element is chosen in case there
is more than one valid configuration at a given time.

=“1”

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

satisfaction.
can access the

different
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
customer_variation_point

This type of variability concerns replacing not only a
a set of interconnected

within a
illustrates another alternative

than the
in addition to the roles of retailer and

the manufacturer service realizes
the warehouse service.

given in Fig
variation points

variation point
specifies the part of the architecture that can be variable. Each

attributes:
its unique name, (2)

that specifies the type of this variation.
service

specifies
(i.e. before

Contrary to traditional SPL
approaches where variability is clearly and completely

attribute is
important in SOA systems, where selection of an alternative

variation
. This reduces the

runtime. Each
which are possible
nt. Each alternative

an order of
This attribute helps the system automatically

determine which architectural element is chosen in case there
is more than one valid configuration at a given time.

“1” is the

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

satisfaction.
can access the

different
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
customer_variation_point" in

This type of variability concerns replacing not only a
a set of interconnected

within a
illustrates another alternative

than the
in addition to the roles of retailer and

realizes
the warehouse service.

in Fig
variation points that

variation point
Each

attributes: (1)
, (2)

that specifies the type of this variation.
service

specifies
(i.e. before

Contrary to traditional SPL
approaches where variability is clearly and completely

attribute is
important in SOA systems, where selection of an alternative

variation
. This reduces the

Each
possible

nt. Each alternative
an order of

This attribute helps the system automatically
determine which architectural element is chosen in case there

 The
is the

satisfaction.
can access the

different
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
in

This type of variability concerns replacing not only a
a set of interconnected

within a
illustrates another alternative

than the
in addition to the roles of retailer and

realizes

in Fig.
that

variation point
Each

(1)
, (2)

that specifies the type of this variation.
service,
specifies

(i.e. before
Contrary to traditional SPL

approaches where variability is clearly and completely
attribute is

important in SOA systems, where selection of an alternative
variation

. This reduces the
Each

possible
nt. Each alternative

an order of
This attribute helps the system automatically

determine which architectural element is chosen in case there
The

is the

preferred one in a variation point.
constraints
operate properly.
conditions
selected alternative (i.e. alternative can be selected, only if all
constraints of pre
represents desirable outcomes when process is completed
successfully.
crosscutting “
F
condition that states that in order to choose the alternative
“
“
Fig. 9)
constraint
“
condition=

constraint in FM.

variation_type="service" variation_time="runtime">

reference_element="

reference_element="relay_point_shipping_service" priority="2">

element="relaying_point_service_in_city" condition="available"/>

calculculate_total_amount" condi

variation_type="connection" variation_time="runtime">

reference_element="i_customer_order" priority="1">

reference_element="i_VIP_customer_order" priority="2">

preferred one in a variation point.
constraints
operate properly.
conditions
selected alternative (i.e. alternative can be selected, only if all
constraints of pre
represents desirable outcomes when process is completed
successfully.
crosscutting “
Feature
condition that states that in order to choose the alternative
“relay_point_delivery_alternative
“relaying_point_service_in_city
Fig. 9)
constraint
“relaying_point_in_city
condition=

constraint in FM.

 <variability_

 <variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

reference_element="

reference_element="relay_point_shipping_service" priority="2">

element="relaying_point_service_in_city" condition="available"/>

calculculate_total_amount" condi

 </variation_point>

 <variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

reference_element="i_customer_order" priority="1">

reference_element="i_VIP_customer_order" priority="2">

 </alternative>

 </variation_point>

 </variability_

preferred one in a variation point.
constraints
operate properly.
conditions
selected alternative (i.e. alternative can be selected, only if all
constraints of pre
represents desirable outcomes when process is completed
successfully.
crosscutting “

eature
condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

Fig. 9), this statement is equivalent
constraint
relaying_point_in_city

condition=

constraint in FM.

<variability_

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternatives>

 <alternative name="home_delivery_alternative"

reference_element="

 <contraints>

 </alternative>

 <alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

 <contraints>

element="relaying_point_service_in_city" condition="available"/>

calculculate_total_amount" condi

 </contraints>

 </alternative>

</alternatives>

</variation_point>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

<alternatives>

 <alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

 <alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

</alternative>

</alternativ

</variation_point>

</variability_

preferred one in a variation point.
constraints
operate properly.
conditions
selected alternative (i.e. alternative can be selected, only if all
constraints of pre
represents desirable outcomes when process is completed
successfully.
crosscutting “

eature M
condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

, this statement is equivalent
constraint
relaying_point_in_city

condition=

constraint in FM.

<variability_

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternatives>

<alternative name="home_delivery_alternative"

reference_element="

<contraints>

</alternative>

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

<contraints>

 <pre

 <pre

element="relaying_point_service_in_city" condition="available"/>

 </pre

 <post

 <post

calculculate_total_amount" condi

 </post

</contraints>

</alternative>

</alternatives>

</variation_point>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

<alternatives>

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

</alternative>

</alternativ

</variation_point>

</variability_

Figure 8

preferred one in a variation point.
constraints, in forms of
operate properly.
conditions that
selected alternative (i.e. alternative can be selected, only if all
constraints of pre
represents desirable outcomes when process is completed
successfully.
crosscutting “

Model
condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

, this statement is equivalent
 from “

relaying_point_in_city

condition=”unavailable

constraint in FM.

<variability_description

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternatives>

<alternative name="home_delivery_alternative"

reference_element="

<contraints>

</alternative>

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

<contraints>

<pre-condit

<pre-

element="relaying_point_service_in_city" condition="available"/>

</pre-conditions>

<post-condidtions>

<post

calculculate_total_amount" condi

</post-

</contraints>

</alternative>

</alternatives>

</variation_point>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

<alternatives>

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

</alternative>

</alternativ

</variation_point>

</variability_description

Figure

Figure 8

preferred one in a variation point.
, in forms of

operate properly.
that

selected alternative (i.e. alternative can be selected, only if all
constraints of pre
represents desirable outcomes when process is completed

 Pre and P
crosscutting “requires

odel FM
condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

, this statement is equivalent
from “

relaying_point_in_city

unavailable

constraint in FM.

description

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternatives>

<alternative name="home_delivery_alternative"

reference_element="home_delivery_shipping_service" priority="1">

<contraints>

</alternative>

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

<contraints>

condit

-condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

conditions>

condidtions>

<post-condition element_type="method" element="re

calculculate_total_amount" condi

-condidtions>

</contraints>

</alternative>

</alternatives>

</variation_point>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

<alternatives>

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

</alternatives>

</variation_point>

description

Figure

Figure 8. Variability description meta

preferred one in a variation point.
, in forms of

operate properly.
that should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
constraints of pre-conditions are satisfied)
represents desirable outcomes when process is completed

Pre and P
requires

FM
condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

, this statement is equivalent
from “

relaying_point_in_city

unavailable

description

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

<contraints> ...

</alternative>

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

<contraints>

conditions>

condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

conditions>

condidtions>

condition element_type="method" element="re

calculculate_total_amount" condi

condidtions>

</contraints>

</alternative>

</alternatives>

</variation_point>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

es>

</variation_point> ...

description

Figure 9. Variability description of sales scenario

Variability description meta

preferred one in a variation point.
, in forms of

 Pre
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
conditions are satisfied)

represents desirable outcomes when process is completed
Pre and P
requires”,

in SPL paradigm
condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

, this statement is equivalent
from “relay_point

relaying_point_in_city

unavailable

description>

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

... </contraints>

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

ions>

condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

conditions>

condidtions>

condition element_type="method" element="re

calculculate_total_amount" condi

condidtions>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

...

description>

Variability description of sales scenario

Variability description meta

preferred one in a variation point.
, in forms of pre

Pre-conditions specify
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
conditions are satisfied)

represents desirable outcomes when process is completed
Pre and Post

, “excludes
in SPL paradigm

condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

, this statement is equivalent
relay_point

relaying_point_in_city

unavailable”

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

</contraints>

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

condidtions>

condition element_type="method" element="re

calculculate_total_amount" condi

condidtions>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

>

Variability description of sales scenario

Variability description meta

preferred one in a variation point.
pre-conditions

conditions specify
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
conditions are satisfied)

represents desirable outcomes when process is completed
ost-con

excludes
in SPL paradigm

condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

, this statement is equivalent
relay_point

relaying_point_in_city”
” is equivalent

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

</contraints>

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

condition element_type="method" element="re

calculculate_total_amount" condition="execute"/>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

Variability description of sales scenario

Variability description meta

preferred one in a variation point.
conditions

conditions specify
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
conditions are satisfied)

represents desirable outcomes when process is completed
conditions are the equivalent of

excludes
in SPL paradigm

condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

, this statement is equivalent
relay_point

 feature.
is equivalent

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

</contraints>

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

condition element_type="method" element="re

tion="execute"/>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

Variability description of sales scenario

Variability description meta

preferred one in a variation point. Each
conditions

conditions specify
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
conditions are satisfied)

represents desirable outcomes when process is completed
ditions are the equivalent of

excludes” and “
in SPL paradigm

condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city” should be available
, this statement is equivalent

relay_point_delivery

feature.
is equivalent

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

condition element_type="method" element="re

tion="execute"/>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

Variability description of sales scenario

Variability description meta

Each alternative has a set of
conditions and

conditions specify
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
conditions are satisfied)

represents desirable outcomes when process is completed
ditions are the equivalent of

and “
in SPL paradigm. For example, the pre

condition that states that in order to choose the alternative
relay_point_delivery_alternative”, the service

” should be available
, this statement is equivalent in

_delivery

feature.
is equivalent

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

condition element_type="method" element="re

tion="execute"/>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

Variability description of sales scenario

Variability description meta-model of DSOPL

alternative has a set of
and post

conditions specify
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
conditions are satisfied)

represents desirable outcomes when process is completed
ditions are the equivalent of

and “and
For example, the pre

condition that states that in order to choose the alternative
”, the service

” should be available
in FM

_delivery

 On the contrary,
is equivalent

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

condition element_type="method" element="re

tion="execute"/>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

Variability description of sales scenario

model of DSOPL

alternative has a set of
post

conditions specify
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
conditions are satisfied). Post

represents desirable outcomes when process is completed
ditions are the equivalent of

and”
For example, the pre

condition that states that in order to choose the alternative
”, the service

” should be available
FM to a

_delivery”
On the contrary,

is equivalent to

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

element="relaying_point_service_in_city" condition="available"/>

condition element_type="method" element="re

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1"> ...

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

Variability description of sales scenario

model of DSOPL

alternative has a set of
post-conditions

conditions specify a
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
. Post

represents desirable outcomes when process is completed
ditions are the equivalent of

” constraints in
For example, the pre

condition that states that in order to choose the alternative
”, the service

” should be available
to a
 feature

On the contrary,
to

home_delivery_shipping_service" priority="1">

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

element="relaying_point_service_in_city" condition="available"/>

condition element_type="method" element="re

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

... </alternative>

reference_element="i_VIP_customer_order" priority="2"> ...

Variability description of sales scenario

model of DSOPL

alternative has a set of
conditions
a group of

should be satisfied before executi
selected alternative (i.e. alternative can be selected, only if all

. Post-condition
represents desirable outcomes when process is completed

ditions are the equivalent of
constraints in

For example, the pre
condition that states that in order to choose the alternative

”, the service
” should be available

to a “requires
feature

On the contrary,
to “exclude

home_delivery_shipping_service" priority="1">

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

element="relaying_point_service_in_city" condition="available"/>

condition element_type="method" element="re-

</alternative>

...

Variability description of sales scenario

model of DSOPL-ADL

alternative has a set of
conditions

group of
should be satisfied before executing

selected alternative (i.e. alternative can be selected, only if all
condition

represents desirable outcomes when process is completed
ditions are the equivalent of

constraints in
For example, the pre

condition that states that in order to choose the alternative
”, the service

” should be available
requires

feature
On the contrary,

exclude

home_delivery_shipping_service" priority="1">

reference_element="relay_point_shipping_service" priority="2">

element="relaying_point_service_in_city" condition="available"/>

-

</alternative>

ADL

alternative has a set of
conditions, to

group of
ng the

selected alternative (i.e. alternative can be selected, only if all
condition

represents desirable outcomes when process is completed
ditions are the equivalent of

constraints in
For example, the pre

condition that states that in order to choose the alternative
”, the service

” should be available (see
requires

feature to
On the contrary,

excludes

</alternative>

ADL

alternative has a set of
to

group of
the

selected alternative (i.e. alternative can be selected, only if all
condition

represents desirable outcomes when process is completed
ditions are the equivalent of

constraints in
For example, the pre-

condition that states that in order to choose the alternative
”, the service

(see
requires”

to
On the contrary,

s”

</alternative>

234

E. Context description

 Architecture reconfiguration is based on context changes.
The context consists of any element that influences the
behavior and/or the structure of the architecture. It can be
related either to system’s environment (e.g. escalator state in
the case of crisis management software), evaluated quality of
service (e.g. time to response to a query), hardware
architecture changes (e.g. server failure), etc. Thus, context
element needs to be described in a dynamic ADL. We include
these context elements as part of the architecture description to
allow context-aware configurations (i.e. autonomous run-time
adaptation according to context changes). A context element
could capture raw data from a single information source such
as a GPS locator that locates customer’s current location to
search for a nearby relay point for the shipping service in our
sales example. In this case, context element is considered as a
primitive_context. In some other cases, a single information
source could not be sufficient to take decisions; in that case,
different atomic information sources’ values are collected,
combined and analyzed in order to give sufficient and more
accurate information about the context value. We call this
context as composite_context. We can consider the weather
forecast example, where the weather is considered hot when
both temperature and humidity sensors exceed a certain
threshold.

A simplified meta-model of context is illustrated in Fig.
10. Any context element has a unique name and a
context_type to indicate to which family of contexts it
belongs (e.g. contexts related to environment, user
preferences, etc.). Context element also has values_type that
indicates the type of its values, either primitive types such as
integer, double, etc. or user-defined types. In Fig. 11, we show
two primitive context descriptions from our sales scenario.

 <context_description>

 <context_type name="environment">

 <context is_aggregate="N">

 <name> location </name>

 <values_type> double </values_type>

 </context>

 <context is_aggregate="N">

 <name> shipping </name>

 <values_type> enumeration </values_type>

 <permitted_values>

 <possible_value> home </possible_value>

 <possible_value> relay_point </possible_value>

 </permitted_values>

 </context> ...

 </context_type> ...

 </context_description>

Figure 11. Some context descriptions from sales scenario

F. Configuration description

In traditional architectures, where environment is
considered stable, services are selected and composed at
design time. In contrast, in dynamic environment, parts of the

software can be instantiated or evolved at runtime. Therefore,
we need to maintain, in addition to structural information,
architectural information of the running system. The
configuration section of DSOPL-ADL allows describing all
the configuration rules to generate valid architectures. A valid
architecture is a concrete architecture whose services and
connections comply with configuration rules.

The configuration description section of DSOPL-ADL has
an initialization sub-section, where all static elements
(services and connections) in addition to alternatives, whose
variation_time=”compile_time”, are instantiated. The
connection part has two references to two different service
interfaces, the one that calls the information
consumer_interface and the one that provides the
information provider_interface. The configuration
description also has a dynamic_configuration sub-section
where architectural configurations are triggered based on
runtime context conditions. In other words, a concrete
architecture is selected through two consecutive execution
levels: (1) static bind where core services are selected and
bound then (2) late-binding where remaining services and
variation points are bound.

In initialization sub-section, we first bind static services to
the configuration in addition to their connections. In
dynamic_configuration sub-section, we integrate selected
instances of services by observing context changes that are
specified in the condition part of the configuration rule. Fig.
12 illustrates the architectural configuration meta-model. Any
partial_configuration has a name and an attribute called
priority of type integer, which determines which
configuration to choose in case more than one
partial_configuration satisfies current conditions. At that
time, the one with the higher priority is privileged. Each
partial_configuration is composed of two parts; condition
part and dynamic_action part. In the condition part, we
specify conditions that are driven by context elements. In the
dynamic_action part, we specify all dynamic activities that
will be realized. Every action concerns an architectural
element which can either be a service or a connection.
Action_type defines the type of change that will apply on the
selected element. Its values are limited to bind, unbind,
activate or deactivate concerned elements. Figure 10. Context description meta-model of DSOPL-ADL

Figure 12. Configuration description meta-model of DSOPL-ADL

235

In our illustrative example, customer and supply chain
management services are instantiated at design time, as
depicted in Fig. 13, whereas the relay point shipping service or
home delivery shipping service are instantiated dynamically
depending on environment’s conditions.

<configuration_description>

 <initialization>

 <services>

 <deployable_service_instance

service_instance_name="customer_service_instance" ...>

 </deployable_service_instance>

 <deployable_service_instance

service_instance_name="supply_chain_management_service_instance" ...>

 </deployable_service_instance> <!-- when a composite service is

connected, all its composing atomic services are consequently

connected -->

 </services>

 <connections>

 <connection consumer_interface="i_goods_request"

provider_interface="i_goods_response">

 </connection>

 ...

 </connections>

 </initialization>

 <dynamic_configuration>

 ...

 <partial_configuration name="home_delivery_configuration"

priority="2">

 <condition>

 <context_element name="shipping"/>

 <expression operator="equals"> home </expression>

 </condition>

 <dynamic_actions>

 <architecture_element element_type="service"

name="home_delivery_shipping_service_instance" action_type="bind"/>

 <architecture_element element_type="connection"

consumer_interface="i_home_delivery"

provider_interface="i_shipment_ready_delegation"

action_type="activate"/>

 </dynamic_actions>

 </partial_configuration>

 ...

 </dynamic_configuration>

 </configuration_description>

 Figure 13. Configuration description of sales scenario

IV. CONCLUSION AND PERSPECTIVES

We have presented DSOPL-ADL, an architectural
language that allows the runtime variability of a service based
product lines system to be modeled. To manage the runtime
variability of such service based systems at architectural level,
we have proposed a modular language called DSOPL-ADL
which is structured and composed of four sections; structural,
variability, context and configuration. For each part, its meta-
model was presented and discussed in detail through an
illustrative example.

It is worth noting that we have perceived variability in this
work from a spatial perspective and not temporal, that is why
we have only considered describing variation points and
alternatives and have intentionally eliminated versioning
aspect. Another point is that during late binding, we do not use
any real-time configuration verification mechanisms.
However, we assume that pre-conditions and post-conditions
assure a valid configuration.

We are working on generating BPEL process from DSOPL
architecture. As a future work; we intend to build a modeling
tool for DSOPL-ADL and to conduct more experiments in
order to completely evaluate our approach.

REFERENCES

[1] P. Clements, D. Garlan, F. Bachmann, J. Ivers, J. Stafford, L. Bass, P.

Merson. Documenting software architectures: views and beyond, 2nd

edition. Addison-Wesley Professional, 2010.

[2] B. Mohabbati, B. Asadi, D. Gašević, J. Lee. Software Product Line

Engineering to Develop Variant-Rich Web Services. In Web Services

Foundations, pp. 535-562. Springer New York, 2014.

[3] P. Clements, L. Northrop. Software product lines: Practices and Patterns.

Addison-Wesley, 2001.

[4] M. Galster, P. Avgeriou, D. Weyns, T. Männistö. Variability in software

architecture: current practice and challenges. SIGSOFT Softw. Eng.

Notes, vol. 36, no. 5, pp. 30-32, September 2011.

[5] M. P. Papazoglou, W.-J. Heuvel. Service oriented architectures:

approaches, technologies and research issues. The VLDB Journal, vol.

16, no. 3, pp. 389–415, 2007.

[6] N. Medvidovic. ADLs and dynamic architecture changes. In Joint

proceedings of ISAW-2 & Viewpoints '96 on SIGSOFT '96.

[7] J. Lee, G. Kotonya, D. Robinson. Engineering Service-Based Dynamic

Software Product Lines. Computer, vol.45, no.10, pp. 49-55, Oct, 2012.

[8] N. Medvidovic, R.N. Taylor. A classification and comparison

framework for software architecture description languages. IEEE

Transactions on Software Engineering, vol.26, no.1, pp.70-93, Jan 2000.

[9] N. Medvidovic, P. Oreizy, J. E. Robbins, R.N. Taylor. Using object-

oriented typing to support architectural design in the C2 style.

In Proceedings of SIGSOFT '96, pp. 24-32, 1996.

[10] J. Magee, N. Dulay, S. Eisenbach, J. Kramer. Specifying Distributed

Software Architectures. In Proceedings of the 5th European Software

Engineering Conference, pp. 137-153, 1995.

[11] F. Oquendo. π-ADL: An architecture description language based on the

higher-order typed π-calculus for specifying dynamic and mobile

software architectures. ACM SIGSOFT, pp. 1-14, 2004.

[12] D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, W.

Mann. Specification and Analysis of System Architecture Using Rapide.

IEEE Trans. Software Eng., vol. 21, no. 4, pp. 336-355, Apr. 1995.

[13] A. Joolia, T. Batista, G. Coulson, A.T.A. Gomes. Mapping ADL

Specifications to an Efficient and Reconfigurable Runtime Component

Platform. WICSA’05, pp.131-140, 2005.

[14] R. Allen, R. Douence, D. Garlan. Specifying dynamism in software

architectures. In Proceedings of the Workshop on Foundations of

Component-Based Systems, Zurich, Switzerland, pp. 11–22. 1997.

[15] C. Cetina, P. Trinidad, V. Pelechano, A. Ruiz-Corts. An Architectural

Discussion on DSPL. 2nd International Workshop on Dynamic Software

Product Lines (DSPL08). Limerick, Ireland, 2008.

[16] E.Y. Nakagawa. Reference architectures and variability: current status

and future perspectives. In Proceedings of the WICSA/ECSA, 2012.

[17] E.M. Dashofy, A. van der Hoek, R.N. Taylor. An Infrastructure for the

Rapid Development of XML-based Architecture Description Languages.

In ICSE2002, Orlando, Florida, 2002.

[18] R. van Ommering, F. van der Linden, J. Kramer, J. Magee. The Koala

Component Model for Consumer Electronics Software. Computer 33, 3,

pp. 78-85, March 2000.

[19] F. Oquendo. π-ADL for WS-Composition: A Service-Oriented

Architecture Description Language for the Formal Development of

Dynamic Web Service Compositions. In: SBCARS, pp. 52–66, 2008.

[20] X. Jia, S. Ying, H. Cao, D. Xie. A New Architecture Description

Language for Service-Oriented Architecture. In Sixth International Conf.

on Grid and Cooperative Computing GCC, pp. 96-103, 2007.

[21] M. Galster. Describing variability in service-oriented software product

lines. In Proceedings of the ECSA’10, pp. 344–350, 2010.

[22] R. Capilla, et al. An overview of Dynamic Software Product Line

architectures and techniques: Observations from research and industry.

Journal of Systems and Software, vol. 91, pp. 3-23, May 2014.

236

Social Analysis of the SEKE Co-Author Network

Rehab El Kharboutly Swapna S. Gokhale
Software Engineering Computer Science & Engg.
Quinnipiac University Univ. of Connecticut
Hamden, CT 06518 Storrs, CT 06269

Ruby.elkharboutly@quinnipiac.edu ssg@engr.uconn.edu

Abstract

We extract the co-author network over the entire history
of the SEKE conference from 1988 through 2014. In this
network, authors represent nodes and a pair of authors is
connected by an edge if they have co-authored at least one
article over the entire duration. We analyze this network us-
ing socio-centric and ego-centric network methods to study
the extent to which the authors are involved in the SEKE
community, and the patterns of collaboration between them.
Socio-centric analysis reveals that most authors publish a
very small number of articles, and collaborate within tightly
knit circles. In fact, only a tiny fraction of the authors
consistently return to SEKE to disseminate their research.
Ego-centric measures of centrality confirm these findings
by revealing that only a small percentage of the authors
are structurally dominant, and influence the flow of com-
munication among others. Based on these findings, we be-
lieve that strategically SEKE could benefit from cultivating
a wider base of influential authors, promoting broader col-
laborations, and encouraging one-time authors to return.

Keywords

Co-author network, Clustering Coefficient, Centrality

1 Introduction and Motivation

The International Conference on Software Engineering
and Knowledge Engineering (SEKE), now in its 27th year,
is a premier conference that aims at bringing together ex-
perts in either Software Engineering (SE) or Knowledge En-
gineering (KE) or both. Specifically, the conference seeks
to emphasize the transference of methods between both do-
mains [11]. Since its inception in 1988, SEKE has consis-
tently expanded; both in terms of the number of papers and
number of authors by welcoming contributions from tradi-
tional SE and KE topics as well as emerging areas.

Participation of researchers and authors is vital to the
long-term survival of any conference. A conference is
sustained by those authors who consistently return to the
venue. However, for healthy growth, a conference should
also seek to attract new contributors into its fold, and simul-
taneously foster collaborations between existing and new
authors. Collaborative work offers many advantages, indi-
vidually for the authors, collectively for the entire scientific
community, and finally for the conference itself. It leads to
cross-fertilization of ideas, sharing of resources, skills and
workload, efficiency in the use of time, and avoidance of
competition – all in the pursuit of a mutually shared, com-
mon goal. Collaborative research also encourages knowl-
edge sharing, which is essential for knowledge creation, be-
cause a person’s limited cognitive capability, and bounded
rationality [25] imposes a natural limit on what an individ-
ual working alone can achieve. Thus, working together can
increase the research productivity and impact of an individ-
ual [13]. Finally, fostering collaboration can strategically
improve the quality, stature, and reputation of a conference,
because when a conference spurs the collaboration, it is
very likely that the new team chooses the same venue to
publish their new joint work.

Co-authorship may be regarded as a strong evidence or
an explicit product of collaborative work [10]. In fact,
a significant proportion of scientific collaboration leads to
co-authored articles. Collectively, such joint authorship of
research articles leads to a network, where nodes are au-
thors and links between two authors (nodes) represents at
least one joint article between them. Such a co-author net-
work can be considered to be the first-order approximation
of complete scientific collaboration network [19]. There-
fore, a study of the co-author network can offer insights into
whether the social structure of a conference community is
conducive to collaborative research. It can also offer sug-
gestions on how such synergistic effort can be promoted.

In this paper, we study the co-author network of the
SEKE conference, extracted from the DBLP, KSI and elec-

1(DOI Reference Number: 10.18293/SEKE2015-092)
237

tronic proceedings spanning years 1988 through 2014. We
studied this network using socio-centric and ego-centric
analysis methods to understand the degree to which authors
are embedded in the SEKE community, and the structural
patterns of interactions among them. Socio-centric analysis
reveals that most authors have published opportunistically
(one or two) papers in SEKE, and only very few return con-
sistently. Moreover, most authors collaborate within their
small, tightly knit circles of 2 − 3 collaborators. Approx-
imate power-law spreads of ego-centric measures of cen-
trality, namely, degree, closeness, and betweenness confirm
these socio-centric observations by revealing that very few
authors are structurally dominant, and control and influence
the flow of information and communication among others.
Based on these observations, we believe that the SEKE
conference could derive long-term benefits by strategically:
(i) cultivating a wider base of influential authors structurally
embedded in the community; (ii) promoting broader collab-
orations; and (iii) encouraging one-time authors to return.

The rest of the paper is organized as follows: Section 2
describes data collection and pre-processing. Section 3
and 4 discuss socio-centric and ego-centric analyses respec-
tively. Section 5 surveys related work. Section 6 concludes
the paper and offers directions for future work.

2 Data Collection and Pre-Processing

We extract the co-author data from 26 editions of SEKE
conferences from its inception in 1988 to its most recent in
2014. Of these years, proceedings for 2013 and 2014 were
obtained electronically, data for 1991, 1997, and 1998 from
the SEKE website, and the rest from DBLP. Since most data
came from DBLP, and was retrieved in XML format, the
textual citations obtained from the web and electronic pro-
ceedings were parsed and formatted into XML as well. To
the best of our knowledge, DBLP does not provide a way to
download data to a txt file, so we manually transferred the
XML entries to a file. Figure 1 shows an example entry in
the DBLP proceedings in the XML format.

We pre-processed this data to replace all the special char-
acters with acceptable XML characters, especially in Euro-
pean names. Authors wrote their names in multiple formats,
including first and last name, first and middle initials and
last name but the most common representation was first ini-
tial, last name. Thus, we translated all the names into this
common format. We noticed that many authors shared a last
name, but it was very rare (only 4− 5 instances) for authors
to share the combination of first initial and last name. We
manually disambiguated between such authors by consult-
ing their affiliations and emails; assuming that authors who
share a name but not affiliation and/or email represent dif-
ferent individuals. We added unique tags to identify identi-
cal combinations that represent different individuals.

Table 1: Socio-centric Metrics

Metric Value
Duration 1989− 2014
Total Number of Authors 2990
Total Number of Papers 1738
Average Papers Per Author 1.49
Average Collaborators Per Author 2.46
Density 0.0059
Average Component Size 4.9
Largest Connected Component 1126
Average Path Length 7.329
Diameter 22
Average Clustering Coefficient 0.852
Number of triangles 4268

After pre-processing, we implemented a parser to extract
pairs of collaborators from the XML entries. The pairwise
list of authors created by the example XML entry is in Fig-
ure 2. This list was checked each time a newly created pair
matches an existing entry in the list; if there is a match, the
number of contributions for that pair is incremented, oth-
erwise a new pair is added with a collaboration count of
1. We also maintain the number of papers and collabora-
tors for each author. Finally, this list of collaborator pairs is
used to create the adjacency matrix. We note that although
we keep track of the collaboration count for each pair, for
this analysis the adjacency matrix represents an unweighted
graph. That is, if authors A and B have co-authored at least
one paper, the corresponding element in the matrix is set to
1, otherwise it is set to 0. Altogether we processed 1738 ar-
ticles written by 2990 authors to build the SEKE co-author
network.

B. Cheng,R. Bourdeau
R. Bourdeau,G. Gannod
C. Cheng,G. Gannod

Figure 2: List of Author Pairs – DBLP Entry in Figure 1

3 Socio-centric Analysis

In this section, we discuss socio-centric metrics that are
computed over all the nodes in the network. We compare
these metrics, shown in Table 1, with those of other scien-
tific communities within and beyond computer science.

3.1 Individual or Local Metrics

Individual metrics are computed locally by considering
the immediate connections of each author to understand the

238

<inproceedings key="conf/seke/ChengBG94" mdate="2007-02-23">
<author>Betty H. C. Cheng</author> <author>Robert H. Bourdeau</author>
<author>Gerald C. Gannod</author> <title> The object-oriented
development of a distributed multimedia environmental information system.
</title>

<pages>70-77</pages>
<year>1994</year>
<crossref>conf/seke/1994</crossref>
<booktitle>SEKE</booktitle>
<url>db/conf/seke/seke1994.html#ChengBG94</url>
</inproceedings>

Figure 1: Example DBLP Entry in XML Format

author’s involvement in the SEKE community. We found
that on an average a SEKE author writes 1.49 articles, col-
laborates with 2.46 others, and on an average a SEKE ar-
ticle has 1.5 authors. These values are low compared to
biology (6.4, 3.75 and 18.1) and physics (5.1, 2.53 and 9.7)
co-author networks [22]. This difference may arise because
biologists and physicists may need to collaborate more fre-
quently and widely due of the experimental nature of their
work. However, these metrics are consistent with the val-
ues for the co-author network in library and communica-
tion sciences (2.40, 1.80, and 2.24) [15], a field that may be
closer to SEKE in terms of culture, traditions, practices, and
norms. Figure 3, which shows the distribution of the num-
ber of authors per article further confirms that a very large
percentage of SEKE articles has four or fewer authors. Ar-
ticles with five or more authors are very rare, with seven
being the maximum.

Figure 3: Distribution of Authors per Article

Figure 4, which shows the distribution of number of ar-
ticles per author indicates that a large percentage of the au-
thors publish only one article, and a very small percent-
age publishes three or more articles. This approximate
power-law spread suggests that while the conference en-
joys a very small loyal base, most authors opportunistically
choose SEKE. Figure 5, which shows the distribution of the
number of collaborators shows that a significant proportion
of authors have between 1 and 6 collaborators. A group
with two to three collaborators could represent a graduate
advisor with his or her doctoral students. A very small per-

centage with no collaborators could represent solo authors.
Finally, groups with 5 or more members could represent
collaborations across institutions.

Figure 4: Distribution of Articles Per Author

Figure 5: Distribution of Collaborators Per Author

3.2 Aggregate or Global Metrics

Aggregate social metrics, computed by considering the
global network, will reveal the degree of closeness of the
SEKE community structure.

• Network Density: The network density (D) is defined
as the number of edges T to the number of possible
edges and is given by Equation (1). The density of
the SEKE co-author network is 0.0059, indicating an
overall very sparsely connected network.

D =
T

N(N − 1)
(1)

239

• Average Path Length: This is calculated by finding
the shortest path between a pair of nodes and then di-
viding by the total number of pairs. This shows, on an
average, the number of steps it takes to reach one au-
thor from the other. The average path length of 7.329
and diameter of 22 indicates that the SEKE network
does not exhibit small-world properties, where the av-
erage path length and diameter is around 2.0 and 6 re-
spectively. This is surprising because we would expect
stronger homophily between SEKE authors, who are
mostly computer scientists, than other types of shared
interests based on geographic proximity, or organiza-
tional affiliation, which typically lead to small-world
properties in social networks.

• Clustering Coefficient: This measures the degree to
which the authors group together so that the probabil-
ity of a tie between two authors in a cluster is greater
than the probability of a tie between any two random
authors. The clustering coefficient is defined as the av-
erage clustering coefficient of all the nodes [5], where
the clustering coefficient Cv for a node v is the pro-
portion of all possible edges between the neighbors of
a node that actually exist. The clustering coefficient is
based on the number of triangles or closed and open
triplets. The average clustering coefficient is a real
number between 0 and 1, with the SEKE value be-
ing 0.8268. 734 nodes have been excluded from this
computation because they have only one edge, and the
network has 4268 triangles. The value closer to 1 sug-
gests the presence of a small yet, close community and
a large number of isolated groups. The distribution of
the clustering coefficient in Figure 6 supports this con-
jecture, with a large peak at a very high value.

• Component Sizes: Similar to other co-author net-
works, the SEKE network is not a single connected
graph. Therefore, to measure the degree of connec-
tivity, we measure the relative size of the largest con-
nected component as its actual size divided by the
size of the network, which is approximately 38%.
Previously, the relative sizes of the largest connected
components were observed to be 20% for the li-
brary and communication science [15], 60% for SIG-
MOD [21], 92.6% for Medline, and 57.2% for NC-
STRL [23]. The relative size for SEKE is consis-
tent with Kretschmer’s [12] observation that the largest
components usually have a ratio of around 40%. This
relative size may also be impacted by the nature of the
disciplines, experimental sciences such as biology and
physics may have larger connected components com-
pared to computational disciplines such as SEKE and
library and communication sciences. The distribution
of the connected component sizes shown in Figure 7

has a peak at component size of two, followed by a
size of three. This suggests that most authors collabo-
rate within their comfort zone of friends, colleagues or
members within their research group, rather than seek-
ing out completely new partners.

Figure 6: Distribution of Clustering Coefficient

Figure 7: Distribution of Component Sizes

4 Ego-centric Analysis

In this section, we discuss ego-centric measures of cen-
trality which is an important structural attribute that indi-
cates an author’s formal power or prominence in the net-
work relative to the others [4]. We study the distribution
of these centrality scores, computed for each node in the
largest connected component.

4.1 Degree Centrality

The degree centrality CD(v) of an author v is given by
the degree of v and is defined by Equation (2). It measures
the number of ties of an author with others. Authors with
more connections or a higher degree are more central to the
structure, and tend to have a greater capacity to influence
others. An author may have a high degree because he or
she appears as a co-author on many articles, but each pa-
per has a short list of authors. Alternatively, a highly con-
nected author may appear as a co-author on a few articles,
but each article is authored by many. While this measure
does not consider connection strength, it does capture an
author’s collaborative scope within the network.

Cd(v) = deg(v) (2)

240

4.2 Closeness Centrality

Closeness centrality is defined as the mean shortest dis-
tance by which a given author is separated from all the oth-
ers [18]. It is measured as the average of the total recipro-
cal distance of an author from each of the other authors.
Closeness centrality of an author v is given by Equation
(3), where d(i, j) is the distance between the two authors
i and j, and N is the number of authors. A message orig-
inating in the most central position (i.e. from the author
with the highest closeness centrality) would spread through-
out the network in minimum time. Moreover, an author
with high closeness centrality could access or obtain the re-
sources owned by others more efficiently than any other au-
thor. Therefore, closeness centrality is a surrogate measure
of an author’s efficiency in communicating with others.

Cc(v) =
N∑

k=1

1

d(i, j)
(3)

4.3 Betweenness Centrality

Betweenness centrality is defined as the proportion of the
shortest paths between all pairs that pass through a given
author [3]. It represents an author’s ability to control the
flow of resources or information, which enables the au-
thor to broker information and resources to others [8]. Be-
tweenness centrality of an author v is given by Equation
(4), where gj,v,k is all the geodesics linking authors j and k
which pass through author v and gj,k is the geodesic dis-
tances between authors j and k. Authors with high be-
tweenness centrality play the role of a “middleman” or a
“bridge” and could gain different resources and informa-
tion from different groups. Also, when authors with high
betweenness are removed, it typically results in the largest
increase in the distance between others. It thus measures
authors’ importance to others’ virtual communication.

CB(v) =
∑
j,k 6=v

gj,v,k
gj,k

(4)

Figures 8, 9, and 10 respectively show the distributions of
the degree, closeness, and betweenness centralities for the
SEKE co-author network. The spreads of these measures
can be approximated using power-law distributions. The
distribution of degree centrality in Figure 8 indicates that
a large number of authors have a small number of collab-
orators, and only a fraction collaborate with a large num-
ber of others. The co-author network, color coded accord-
ing to the node degree ranging from 1 to 37, depicted in
Figure 11 confirms this distribution. In this network, blue
nodes, which make up only a small fraction have the highest
degree. Similarly, the distribution of closeness centrality in

Figure 8: Distribution of Degree Centrality

Figure 9: Distribution of Closeness Centrality

Figure 10: Distribution of Betweenness Centrality

Figure 9 indicates that a very small number of authors are
highly efficient in communicating with others and accessing
their resources. Betweenness centrality distribution in Fig-
ure 10 suggests that after a large spike at the lowest value,
the remaining values show the same proportions. Thus, a
majority of the authors do not lie on the shortest paths be-
tween other pairs. Thus, in summary, although each central-
ity measures a different aspect of authors’ embeddedness,
we find that a very small fraction of SEKE authors lie in
prominent positions. These authors sport a large number of
collaborators, lie on the shortest paths between other pairs,
and are highly efficient communicators.

241

Figure 11: SEKE Co-Author Network

5 Related Work

Social network measures have been used to study the
properties of co-author networks in various fields includ-
ing mathematics, biology, physics, and computer science.
Some authors also study how the network structure impacts
local or micro-level properties including citation counts.
These works, their measures and data, and their key objec-
tives and findings are summarized in Table 2.

Most of the works in Table 2 study readily available,
archived data from large communities such as Medline,
Physics or Mathematics authors. They also assess the im-
pact of network structure on micro-level properties of in-
dividual authors or articles, mostly captured in the form of
citation counts. Our work can be distinguished in the fol-
lowing two ways: (i) we extract and process the co-author
network of the SEKE conference from three sources; and
(ii) we corroborate socio-centric and ego-centric measures
to offer recommendations on how the SEKE conference
could strategically improve its stature. The SEKE confer-
ence, by the virtue of its more than 25 years of history as a
premier conference at the interplay of SE and KE, affords
this unique opportunity.

6 Conclusions and Future Work

In this paper, we describe the process of extracting the
network of SEKE co-authors over the entire history of the
conference. We analyze this network using socio-centric

and ego-centric network analysis methods to understand
patterns of author involvement and collaboration. Corrob-
orating the results from both these analyses reveals that the
SEKE conference is characterized by a large percentage of
authors who publish one or two papers, and who collaborate
in tightly knit circles. A small fraction of the authors enjoy
structural dominance in the network, and control and influ-
ence the flow of information and communication. Based on
these findings, we offer recommendations that could strate-
gically benefit SEKE.

Our future research involves longitudinal analysis to un-
derstand how the patterns of collaboration have evolved
since the early editions of the conference.

References

[1] A. Abbasi, K. S. K. Cheung, and L. Hossain. “Egocen-
tric analysis of co-authorship network structure, posi-
tion and performance”. Information Processing and
Management, 48:671–679, 2012.

[2] J. Bollen, M. A. Rodriguez, and H. Van De Sompel.
Journal status. Scientometrics, 69(3), 2006.

[3] S. P. Borgatti. “Centrality and network flow. Social
Network, 27(1):55–71, 2005.

[4] M. E. Burkhardt and D. J. Brass. “Changing patterns
or patterns of change? The effects of a change in tech-
nology on social network structure and power”. Ad-
ministrative Science Quarterly, 35(1):104–127, 1990.

[5] X. Cheng, C. Dale, and J. Liu. “Statistics and social
network of YouTube videos”. In Proc. of Intl. Work-
shop on Quality of Service, pages 229–238, 2008.

[6] R. P. Dellvalle, L. M. Schilling, M. A. Rodriguez,
H. Van de Sompel, and J. Bollen. “Refining dermatol-
ogy journal impact factors using PageRank”. Journal
of the American Academy of Dermatology, 57(1):116–
119, 2007.

[7] Y. Ding. “Scientific collaboration and endorsement:
Network analysis of coauthorship and citation net-
works”. J. Informetr, 5(1):187–203, 2011.

[8] L. C. Freeman. “Centrality in social networks: Con-
ceptual clarifications”. Social Network, 1(3):215–239,
1979.

[9] C. N. Gonzalez-Brambila, F. M. Veloso, and D. Krack-
hardt. “The impact of network embeddedness on re-
search output”. Research Policy, 42:1555–1567, 2013.

[10] B. He, Y. Ding, and E. Yan. “Mining enriched contex-
tual information of scientific collaboration: A meso

242

Table 2: Research Summary: Co-Authorship Networks

Citation Measures Data Objectives
Mutschke [20] Centrality Digital Libraries Collaboration patterns
Liu et. al. [17] Centrality Joint Conf. on Digital Libraries Citation Counts
Yan et. al. [15] Centrality Library & Commn. Science Citation Counts
Bollen et. al. [2] Weighted Page Rank ISI Journals Prestige and Status
Dellvale et. al. [6] Weighted Page Rank Dermatology Prestige, Status
Leydesdroff [14] Centrality Journal Citation Reports Interdisciplinarity
Gonzalez et al. [9] Centrality Mexican Researchers Research Productivity
Abbasi et. al. [1] Degree Centrality Library & Info. Science G-index

Structural Holes
Sarigol [24] Centrality CS publications Citations
Newman [22] Centrality Medline Collaboration Patterns

Physics arXiv
Mathematical Rev.

D’Amour et. al. [16] Centrality Patents
Ding [7] Topic Modeling Information Retrieval Topics, Citation

Path Analysis

perspective”. Journal of the American Society for
Information Science and Technology, 62(5):831–845,
2011.

[11] Knowledge Systems Institute. http://www.ksi.
edu/seke/seke15.html.

[12] H. Kretschmer. “Author productivity and geodesic dis-
tance in bibliographic co-authorship networks and vis-
ibility on the Web”. Scientometrics, 60(3):409–420,
2004.

[13] S. Lee and B. Bozeman. “The impact of research col-
laboration on scientific productivity”. Social Studies
of Science, 35(5):673–702, 2005.

[14] L. Leydesdroff. “Betweenness centrality as an indi-
cator of the interdisciplinarity of scientific journals”.
Journal of the American Society of Information Sci-
ence and Technology, 58(9):1303–1319, 2007.

[15] E. Y. Li, C. H. Liao, and H. R. Yen. “Co-authorship
networks and research impact: A social capital per-
spective”. Research Policy, 42:1515–1530, 2013.

[16] G. C. Li, R. Lai, A. D’Amour, D. M. Doolin, Y. Sun,
V. I. Torvik, A. Z. Yu, and L. Fleming. “Dis-
ambiguation and co-authorship networks of the U.S.
patent inventor database (1975-2010). Research Pol-
icy, 43(6):941–955, 2013.

[17] X. Liu, J. Bollen, M. L. Nelson, and H. V. Sompel.
“Co-authorship networks in the digital library research
community”. Information Processing and Manage-
ment, 41:1462–1480, 2005.

[18] H. Lu and Y. Feng. “A measure of authors’ central-
ity in co-authorship networks based on the distribu-
tion of collaborative relationships”. Scientometrics,
81(2):499–511, 2009.

[19] T. Martin, B. Ball, B. Karrer, and M. E. J. Newman.
“Coauthorship and citation in scientific publishing.
arXiv preprin arXiv:1304.0473, 2013.

[20] P. Mutschke. “Mining networks and central entities in
digital libraries: A graph theoretic approach applied
to co-author networks”. Advances in Intelligent Data
Analysis, 2810:155–166, 2003.

[21] M. A. Nascimento, J. Sander, and J. Pound. “Anal-
ysis of SIGMOD’s co-authorship graph”. SIGMOD
Record, 32(3):8–10, 2003.

[22] M. E. J. Newman. “Coauthorship networks and pat-
terns of scientific collaboration”. Proc. of the National
Academy of the Sciences of the United States of Amer-
ica, 101(1):5200–5205, April 2001.

[23] M. E. J. Newman. “The structure of scientific collab-
oration networks”. Proc. of the National Academy of
Science of the United States of America, 98(2):404–
409, 2001.

[24] E. Sarigol, R. Pfitzner, I. Scholtes, A. Garas, and
F. Schweitzer. “Predicting scientific success based on
coauthorship networks. arXiv:1402.7268, 2014.

[25] H. A. Simon. Administrative Behavior. Free Press,
New York, 1976.

243

A Rule-based Method for Discovering Trajectory Profiles

Lucas André de Alencar,
Luis Otavio Alvares and Vania Bogorny

Universidade Federal de Santa Catarina (UFSC)
Florianópolis, Brasil

Chiara Renso
ISTI-CNR
Pisa, Italy

Alessandra Raffaeta
DAIS - Università Ca’Foscari Venezia

Venice, Italy

Abstract—The discovery of people profiles such as work-
ers, students, families with kids, etc, is of interest for several
application domains. For decades, such information has been
extracted using census data, and more recently, from social
networks, where people’s profile is clearly defined. A new type
of data that has not been explored for discovering profiles, but
which stores the real movement of people, are trajectories of
moving objects. In this paper we propose a rule-based method
to represent socio-demographic profiles, a moving object history
model to summarize the daily movement of individuals, and define
similarity functions for matching the profile model and the history
model. We evaluate the method for single and multiple profile
discovery.

I. INTRODUCTION AND MOTIVATION

The knowledge about people living in a city or country
has great value for the public administration as well as for
enterprises. To know the population profile may help smart city
planners, public transportation administrators, government ser-
vices or companies to decide if and where to install a new store
or to personalize an advertisement, for example. Most attempts
to discover and measure the population profiles are through
human surveys, and the most well known example is the socio-
demographic census with diary activities, periodically done
in almost all countries. However, the main drawbacks of the
census data are that they: 1) are not up to date since they are
usually collected every 5 - 10 years; 2) are expensive to collect,
and cover only a small - although statistically significant - part
of the population for a short period of time; 3) do not collect
the actual movement of the individuals, but only the activities
performed during the day and which are mentioned by the user
during the interview.

We believe that nowadays we can infer much knowledge
and the real behavior about people from their every day
movement, about where people really go, when they go, and
for how long. We are entering the era of big data, where the
real movement behavior of a society can be extracted from its
individuals everyday movement. In daily life, in general, we
all follow a routine, going more or less to the same types of
places everyday (e.g. work, gym, supermarket, restaurant, etc).
The routine of one person during one week, one month or one
year represents the general pattern of movement of this person.
For instance, a typical routine of a worker is to go, in general,
four or five times a week to work, while a student goes to
school/university four or five times a week. On the contrary,
an Unemployed may have a different routine, as not having a
workplace. The routines followed by a similar group of people
as the students, workers, or unemployed we call profiles.

With the increasing number of GPS trajectory datasets
and the definition of semantic trajectories in GPS data [1],

it is possible to infer the real places visited by an object, the
duration of the visit, and the frequency of the visits. Based on
these visits, it is possible to obtain the routine of an object. An
example of semantic trajectory is shown in Fig. 1, where the
moving object visits four places (home, university, shopping
mall and bar).

Fig. 1. Example of semantic trajectory A.

In the literature of moving object trajectories there are
several works for extracting “general patterns” and that sum-
marize the movement of objects, but no works have tried to
look deeper into the data to infer more knowledge about the
moving object. Only a few works address the discovery of
user profiles, but from a different perspective and for different
mobility data. For GPS trajectories, which is the focus of this
paper, [2] defines as object profile the representative trajectory
of a set of similar trips, for car pooling. [3] defines as profiles
the users that visit similar places at similar times. [4] is the
only work that proposes to infer socio-demographic profiles,
but for social network data integrated to GPS trajectories, not
only from pure GPS data. In summary, in these works a profile
is considered as a set of features which characterize a type
of user or a group of users, but not for socio-demographic
inference.

In this paper we propose a different perspective. We
assume that a description of a mobility behavior for specific
socio-demographic categories of users is available and can
be represented as “rules”. These rules can be defined by
domain experts who describe which is a typical behavior
of a specific category (workers, students, unemployed) in a
certain application. Another possibility is to run data mining
methods on census data or on GPS trajectories to identify
groups of users with similar behavior, and label them with
the socio-demographic category like “workers” or “students”
[5]. Thus, given domain knowledge about how to describe a
socio-demographic profile, we propose a profile model based
on the rules that a moving object should fulfill to belong to a
specific profile category. This model allows the user to specify,
in a simple way, the types of profiles that are interesting
for his/her application. How to match GPS trajectories to the
profile model is the second focus of this paper, which proposes
a moving object history model and a set of similarity functions
that are capable to take into account the blurred aspect of

(DOI reference number: 10.18293/SEKE2015-143) 244

such profiles in two ways: (1) the temporal match is defined
considering the overlapping portion between a profile model
and the trajectories behavior; (2) the matching function assigns
to the match a similarity degree between a profile model and
the trajectory behavior. In other words, a trajectory may be
matched to several profiles with different similarities, thus
being able to discover multiple profiles.

Fig. 2 gives an overview of our proposal. Taking as input
GPS trajectories, we first compute the trajectory history model.
Then, we compute the similarity between the history model
and the profile rules. The output is a set of trajectories labeled
with one or more profile names.

Fig. 2. Overview of the proposal.

The rest of this paper is organized as follows: Section II
presents the related work; Section III introduces the basic and
new concepts for this work; Section IV presents the algorithm
T-Profiles for extracting socio-demographic profiles from tra-
jectories; Section V presents the experimental evaluation of the
method with real trajectories; and finally, Section VI presents
the conclusion and future work.

II. RELATED WORK

The inference of user profiles from GPS trajectory data,
which is the focus of this paper, is very recent, and ex-
isting works for GPS trajectory mining have not addressed
this problem to extract social information. For instance, [2]
defines a set of representative trips performed by the object
in his/her historical movement, and a profile is the spatio-
temporal trajectory which is frequent in the object’s movement
history. Profiles in this work are computed for car pooling.
Similarly, [6] defines object profile as a sequence of regions
frequently visited by the object, and those with similar visits
are clustered to infer communities of people. Both previous
works focus on raw trajectories, where the object history
is a set of space-time points, while we focus on semantic
trajectories. [7] proposes a similarity measure that estimates
the similarity among semantic trajectories, and the similarity is
computed based on the matches of the sequences of categories
of visited places between the trajectories. [3] proposes a
similarity measure, considering not only the sequences of
places but also the travel time to the place and the duration of
the visit. Similar to previous works, [8] defines as user profile
the mobility pattern of an object, computing the regions of
interest (dense regions) and the duration of stays, but does not
identify socio-demographic profiles.

In GSM data management, a user profile is defined as
his/her mobility pattern [9], [10], [11], extracted from phone
calls. Since telecommunication companies have normally a set
of information about the user, it becomes trivial to infer user
profiles from this type of data. In web logs and social networks,
the inference of profiles has been an active area of research.

However, in these networks the user profile is available in the
data, while GPS trajectories have only the position and time
of the object.

Our work is different from all previous ones since we use
a set of rules to describe the behavior of a profile. We also
propose a moving object history model, which summarizes
the individual user movement history in a way that it can
be matched with the profile model. As a result, we give the
similarity of a user with a given socio-demographic profile or
multiple profiles.

III. BASIC DEFINITIONS

Considering that we may infer the profile of people
from places they visit, we make use of semantic GPS tra-
jectories and stops [1]. A semantic trajectory A is a se-
quence of stops 〈stop1, ..., stopi〉 ordered in time, where
each stop is associated to a POI type. Fig. 1 shows
an example of semantic trajectory that has four stops
〈Home,University, ShoppingMall, Bar〉.

Definition 1 (Stop). Let POIType be a type of Point of
Interest (POI), startT ime and endT ime be the start and end
time that delimit the interval [startT ime, endT ime] in which
a moving object oid stays at a POI of POIType. Then, a stop
is a tuple (oid, POIType, startT ime, endT ime).

In the following section we present the rule-based model
(Section III-A), propose a history model (Section III-B), and
define similarity measures for matching the rules and the
history model (Section III-C).

A. Profile Modeling

A profile is a set of features that represent a group of people
with similar characteristics. These characteristics describe a
profile/category. For example, the features go to school, four
or five times a week describe a student profile. Go to work,
five times a week, describe a worker profile. These examples
of profiles are not mutually exclusive, since a worker can also
be a student.

In order to extract socio-demographic profiles from tra-
jectories we define a profile model with features that can be
extracted and compared to moving object semantic trajectories.
To make the model as simple as possible, we assume that four
main features describe a socio-demographic profile: the type of
place where people go (called POIType), when they go, how
often and for how long they stay there. With this set of features
we define a profile rule. We denote with P the set of profiles
we want to investigate.

Definition 2 (Profile rule for a POIType). Let POIType be
a type of POI and p ∈ P be a profile name. Then a profile
rule r for a POIType and a profile p is a tuple of this kind:

r = (p, POIType, freq, ωf , timeU,weekPeriod, dayPeriod, duration, ωd),

where freq is the frequency that a POIType is visited in a
time unit timeU , during certain periods of the day dayPeriod,
and the period of the week (”weekday”, ”weekend” or ”week”)
weekPeriod, duration is an interval that describes the ex-
pected amount of time spent at POIType in the specified
period of the day and week. ωf and ωd are the weights for

245

the attributes freq and duration, respectively, that should be
in the interval [0,1] and their sum must be equal to 1.

An interesting part of this approach is that, to make the
rules more expressive, we added a weight ω to the attributes
freq and duration to indicate the importance of the attribute
to a specific rule.

A rule can express that a specific POIType should not be
visited. For instance, a Retired should not have a Workplace.
To support this type of profile we allow the definition of
positive and negative rules, which are expressed through the
attribute frequency. For positive rules the frequency attribute
should be above zero (freq > 0), and for negative rules
freq = 0.

If any of the attributes weekPeriod, dayPeriod or
duration are not relevant, they can be set as Not Applicable
(NA). The only exception is the attribute timeU , which can
only assume NA when the profile rule is negative. Having
defined the set of rules for a POIType we can define the profile
model, given in Definition 3.

Definition 3 (Profile model). Let p ∈ P be a profile name,
a profile model for p, called Rp, is a set of profile rules for
POITypes associated with the profile name p.

B. Moving Object History Modeling

The set of all stops of a moving object characterize the
movement history. This history corresponds to the whole period
that the object was tracked (e.g. one week, one month), i.e.,
the mobility diary. Definition 4 formalizes the object history
extracted from semantic trajectories.

Definition 4 (Object History). An object history h =
〈stop1, . . . , stopn〉 is the sequence of stops belonging to the
same object such that

∀i ∈ {1, ..., n− 1}, endT imei ≤ startT imei+1

where endT imei and startT imei refer to the endT ime and
startT ime of the i-th stop of the sequence, respectively.

From the object history, for each place (POIType) visited
by an object in his/her trajectories, we compute the values in
Definition 5 to summarize the trajectory information.

Definition 5 (Moving Object History Model). Let oid be a
moving object identifier and h be its trajectory history. Then,
a moving object history model for the object history h, called
Mh, is a set of tuples of this kind:

m = (oid, POIType, avgFreq, weekPeriod, dayPeriod, avgDuration)

where POIType is a type of POI, avgFreq is the av-
erage frequency that oid visits POIType, weekPeriod
specifies when this happens (weekdays, weekends or whole
week), dayPeriod indicates the period of the day (morning,
afternoon, evening, night) that oid visits POIType, and
avgDuration is the average amount of time that the object
spends at POIType at that weekPeriod and dayPeriod. All
these values are extracted from the object history h.

Each tuple m ∈ Mh represents the summary of a subset
of stops from the object history h with the same POIType

for a weekPeriod (weekday, weekend and whole week) and
dayPeriod.

C. Moving Object History Model and Profile Models Matching

As defined in section III-A, there can be two types of
profile rules: positive and negative. For each type of rule the
matching process is different. In Equation (1) we give the
function that computes the similarity between a positive profile
rule r and a tuple m of the moving object history modelMh. It
represents the sum of the similarities of frequency and average
duration multiplied by their corresponding weight. The tuple
m should have the same POIType, weekPeriod and dayPeriod
of the ones in the profile rule r, in order to be analyzed.

simpos(m, r) = simf · ωf + simd · ωd (1)

where POITypem = POITyper, weekPeriodm =
weekPeriodr, and dayPeriodm = dayPeriodr

The similarity functions for frequency simf and duration
simd are defined by functions that follow the same idea of
a set membership function in fuzzy logic, and are detailed in
section IV, that describes the algorithm.

The similarity for negative rules is defined by Equation (2),
where if the POIType defined in the profile rule r is not
present in the moving object history model Mh it has sim =
1.

simneg(Mh, r) =

{
1 if POITyper /∈Mh

0 otherwise
(2)

The total similarity between a moving object history model
Mh and a profile name p ∈ P is given by the function
MATCH in Equation (3). In general words it is the sum
of the similarities of the positive rules simpos and the sum of
the similarities of the negative rules simneg , divided by the
total number of rules of that profile name p.

MATCH(Mh, p) =

∑
simpos(mi, rj) +

∑
simneg(Mh, rk)

|Rp|
(3)

where Rp is the set of rules of the profile name p

In the following section we present the algorithm T-
Profiles, to extract socio-demographic profiles from trajecto-
ries.

IV. T-PROFILES: AN ALGORITHM FOR DISCOVERING
TRAJECTORY PROFILES

Listing 1 shows the pseudo-code of the proposed algorithm
to extract profiles from trajectory data, named T-Profiles. The
algorithm receives as input a set of semantic trajectories T ,
a set of profile names P , a set of profile models R, and the
minimal similarity degree ε for an object to be considered
similar to a profile name. The output is a set of moving objects
labeled with a profile name p and the similarity degree between
the object and the profile.

The first step is to compute the history model for each mov-
ing object in T (lines 12, 13). We summarize the trajectories

246

to the structure of Definition 5, for each visited place. Once
computed, the moving object history model will be compared
with all rules of each profile name p in the profile model Rp
(lines 14-38).

The similarity of positive rules (line 18) is computed
according to Equation (1), with simf defined by Equation
(4) and simd defined by Equation (5), presented in the fol-
lowing. The similarity of negative rules (line 24) is calculated
according to Equation (2). These values are used to compute
the matching between a moving object history model and a
profile name (line 33).

If one or more of the negative rules of a profile name are
not satisfied by the object history model, the similarity is set
to zero, since the negative rules are mandatory (line 31). In
case the total similarity is greater than the threshold ε, the
moving object identifier, the profile name and the similarity
degree are added to the output set ψ of trajectory profiles (line
36). This step finishes the analysis of one profile name and the
algorithm returns to line 14 to test the next profile name in P
with the current object history. Notice that the algorithm has
the capability to return multiple profiles, i.e., a moving object
can belong to several profiles in case the match is above ε.

Listing 1. Pseudo-code of the algorithm T-Profiles
1 Input : T / / s e t o f s e m a n t i c T r a j e c t o r i e s
2 P / / s e t o f p r o f i l e names
3 R / / p r o f i l e models R = ∪p∈PRp

4 ε / / min imal s i m i l a r i t y d eg re e f o r
5 / / an o b j e c t b e l o n g i n g t o a p r o f i l e
6
7 Output : ψ / / s e t o f moving o b j e c t p r o f i l e s
8
9 Method :

10
11 ψ = {} / / empty s e t
12 f o r each moving o b j e c t h i s t o r y h ∈ T do
13 Mh = b u i l d M o v i n g O b j e c t H i s t o r y M o d e l (h)
14 f o r each p r o f i l e name p ∈ P do
15 sumPos = 0
16 f o r each p o s i t i v e r u l e r ∈ Rp do
17 f o r each m ∈ Mh do
18 sumPos=sumPos + simpos(m, r)
19 end f o r
20 end f o r
21 n e g a t i v e R u l e s N o t H o l d = F a l s e
22 sumNeg = 0
23 f o r each n e g a t i v e r u l e r ∈ Rp do
24 aux=simneg(Mh, r)
25 sumNeg=sumNeg + aux
26 i f aux = 0
27 n e g a t i v e R u l e s N o t H o l d = True
28 end i f
29 end f o r
30 i f n e g a t i v e R u l e s N o t H o l d
31 MATCH = 0 . 0
32 e l s e
33 MATCH=(sumPos+sumNeg) / | Rp |
34 end i f
35 i f MATCH > ε
36 ψ . add (h.oid ,p ,MATCH)
37 end i f
38 end f o r
39 end f o r
40 re turn ψ

Similarity functions

The frequency and the duration similarity can be im-
plemented in different ways. After performing several ex-
periments we implemented the following in T-Profiles: the
similarity for frequency (simf) is defined by Equation (4),

where avgFreqm is the average frequency computed in the
history model tuple m, freqr and timeUr are respectively,
the frequency and the time unit defined in the profile rule
r. The function days(timeUr) returns the number of days
that the time unit represents (e.g. if timeUr = week, then
days(timeUr) returns 7). When avgFreqm = 0, means that
the object did not visit the POIType, so simf = 0. When
avgFreqm is lower than the frequency defined in the profile
rules (represented by freqr

days(timeUr)
), then simf increases lin-

early from 0 to 1. If avgFreqm is greater than the frequency
defined in the profile rules, then simf = 1.

simf =


0 if avgFreqm = 0
avgFreqm·days(timeUr)

freqr
if avgFreqm < freqr

days(timeUr)

1 if avgFreqm ≥ freqr
days(timeUr)

(4)

The duration similarity (simd) is defined by Equation (5),
and is illustrated in Fig. 3 for durationr defined as the interval
[1:00, 2:00]. Fig. 3 shows that an avgDurationm between
1 and 2 hours will have simd = 1. For an avgDurationm
between 0.5 hour and 1 hour the similarity increases linearly
from 0 to 1, and for an avgDurationm between 2 and 2.5
hours the similarity decreases linearly from 1 to 0.

simd =



0 if avgDurationm < minGlobal ∨
avgDurationm > maxGlobal

1 − minDur−avgDurationm
minDur−minGlobal

if minGlobal < avgDurationm ∧
avgDurationm < minDur

1 if minDur ≤ avgDurationm ∧
avgDurationm ≤ maxDur

1 +
maxDur−avgDurationm

maxGlobal−maxDur
if maxGlobal > avgDurationm ∧

avgDurationm > maxDur

(5)

where
durationr = [minDur,maxDur]
minGlobal = minDur − (minDur ∗ 0.5)
maxGlobal = maxDur + (minDur ∗ 0.5)

Fig. 3. Duration similarity function simd for durationr = [1:00 - 2:00].

V. EXPERIMENTAL EVALUATION

We evaluate our proposal using two datasets, a trajectory
set built from census data where we have the ground truth
(V-A), and a GPS trajectory dataset of car trajectories collected
in Florence, Italy (V-B).

A. Census Trajectories

As it is still very difficult to obtain a dataset of semantic
trajectories with a ground truth, we first evaluate the algorithm
T-Profiles on a “trajectory” dataset generated from census data,
where we have the ground truth. This dataset is a census of

247

activity diaries collected in Italy in 2008, having the socio-
demographic profile of each individual that was interviewed.
Each activity diary corresponds to the activities of one person
during one day, and can be seen as the “semantic trajectories”
of each individual, because they contain the place of activity
(that corresponds to the POIType of the stops), the activities
performed at the place, and the begin and end time of the
activities. Examples are: sleeping at home from 10PM to
8AM, profile retired; working at a workplace from 10AM to
5PM, profile worker; studying at the university from 2PM to
6PM, profile student, etc. The most significant profiles in the
database are: worker, retired, unemployed, housewife with kids
and student.

As one day of activities is not enough to determine the
profile of a person, we preprocessed the data grouping diaries
that belong to the same socio-demographic profile, considering
14 days of activities. As a result, we obtained trajectories of
14 days long for 829 objects. The amount of objects for each
profile is shown in the second column of Table II.

TABLE I. PROFILE RULES.

Profile Name p POIType freq (ωf) timeUnit weekPeriod dayPeriod duration (ωd)
Worker Workplace 4 (0.8) week NA NA 03:00 - 09:00 (0.2)

Student School/Univ. 3 (0.5) week weekday NA 03:00 - 06:00 (0.5)

Retired Workplace 0 (1) NA NA NA NA
Retired School/Univ. 0 (1) NA NA NA NA
Retired Bar 1 (1) week NA Morn, Aftn NA
Unemployed Workplace 0 (1) NA NA NA NA
Unemployed School/Univ. 0 (1) NA NA NA NA
Unemployed Bar 1 (1) week NA Evening NA
Unemployed Restaurant 1 (1) month NA NA NA
Unemployed Sport court 2 (1) month NA NA NA
Housewife Kids School/Univ. 3 (0.5) month weekday NA 00:20 - 01:00 (0.5)

Housewife Kids Commercial estab. 3 (1) week weekday NA NA

Table I shows the rules considered in this experiment. A
worker is identified by the POIType Workplace, that should
be visited with a frequency of 4 times a week with duration
between 3 and 9 hours. We define a broad range for duration to
obtain all types of workers (full time and part time). Notice that
we defined a higher weight for the frequency (0.8), because
this attribute is more important than the duration.

The rule for the profile named Student expresses that
this profile should visit a POIType related to educational
institutions, such as schools or universities, for at least 3 times
a week on weekdays, with a duration between 3 and 6 hours
per day, to include full time and part time students. The weights
for the attributes freq and duration are both 0.5.

For the profile Retired, we defined two negative rules
related to workplace and educational places, to distinguish
between workers and students, since it is expected that most
retired do not have a workplace and do not go to school.
However, these rules are not enough to distinguish a retired
from an unemployed. Then, as they are supposed to go more
often to bars or cafes, we create a rule with this kind of
POIType, in the period of morning and afternoon, i.e., during
the day.

The profile Unemployed may have similar behavior to the
Retired, having no working place and not going to school to
distinguish these profiles. To distinguish an unemployed from
a retired we define three positive rules: POIType Bar visited
during the evening, POIType Restaurant visited only once a
month, and visits to sport places.

A housewife that has children can be identified if the person

visits educational places such as schools. But the difference
from the profile student is the frequency and the duration. The
profile does not need to go every day to take the child to the
school, but should at least visit a POIType school sometimes
to express that there is a relationship with educational place.
Defining a rule forcing a housewife with kids to go very
frequently to educational places would limit the discovery only
of cases where the housewife takes the kids to school everyday.

Table II shows the results for similarity ε of 60%, 70%
and 80%. For similarity 70%, for instance, T-Profiles detected
478 workers out of 479, and 73 out of 74 students. For the
profile Housewife Kids, 24 instances were discovered. The
most difficult classification is to distinguish unemployed and
retired, because their behavior is very similar, but still 158
retired from 224 were detected.

TABLE II. PROFILES FOR 60%, 70% AND 80% SIMILARITY.

Profiles Total ε = 0.6 ε = 0.7 ε = 0.8
Worker 479 479 478 473
Housewife Kids 35 28 24 20
Unemployed 17 9 9 9
Retired 224 185 158 158
Student 74 74 73 72

Table III shows the precision and recall for each profile,
considering the similarities for each profile name as well as the
average for all objects. T-Profiles shows a very high average
precision, about 97%. The recall is also high, between 88%
and 93% with these values of ε.

TABLE III. PRECISION AND RECALL

ε = 0.6 ε = 0.7 ε = 0.8
Precision Recall Precision Recall Precision Recall

Worker 1.000 1.000 1.000 0.997 1.000 0.987
Housewife Kids 0.583 0.800 0.750 0.685 0.769 0.571
Unemployed 0.529 0.529 0.529 0.529 0.600 0.529
Retired 0.953 0.825 0.957 0.705 0.957 0.705
Student 1.000 1.000 1.000 0.986 1.000 0.972
Avg. 0.960 0.934 0.968 0.895 0.970 0.882
Avg. F1 measure 0.946 0.926 0.921

In these results we considered only the highest similarity
for each profile name, but we can also analyze all similarities
that are above the threshold ε, having multiple profiles. Table
IV shows some examples of the output of T-Profiles. Each row
corresponds to an object. The multiple profile column shows
all profile names that have similarity above 80%. For the object
842, for instance, the similarity with Worker and Housewife
Kids is above 90%, so this object is labeled as Worker and
Housewife Kids.

TABLE IV. MULTIPLE PROFILES FOUND USING ε = 0.8

oid Worker Housewife Unemployed Retired Student Multiple profile
Kids

16 0.000 0.174 0.800 0.980 0.000 Retired,
Unemployed

131 0.000 0.261 0.800 0.980 0.000 Retired,
Unemployed

842 1.000 0.949 0.000 0.000 0.179 Worker,
Housewife

Kids
600 1.000 0.897 0.000 0.000 0.100 Worker,

Housewife
Kids

248

B. Florence Dataset

The Florence dataset is a sample of car trajectories col-
lected by an insurance company during one month, but the
average tracking period of one object was 10 days. From this
dataset, we selected all trajectories with more than 10 stops,
labeled with their POITypes and with at least 10 days history.

Here we show the flexibility of T-Profiles, where the
user can choose any level of profile category analysis, from
the more general to the more detailed. We are interested in
Full Time Workers, Part Time Workers, Weekend Workers
and Night Workers. Considering the rules defined in Table
I, we extended the rules set with new profiles of workers.
Table V shows the rules for workers, where the duration
distinguishes Full Time and Part Time Workers; while the
frequency, week period, and day period distinguish Weekend
and Night Workers.

TABLE V. PROFILE RULES FOR WORKER PROFILES.

Profile Name p POIType freq (ωf) timeUnit weekPeriod dayPeriod duration (ωd)
Full Time Worker Workplace 4 (0.5) week NA NA 07:00 - 09:00 (0.5)

Part Time Worker Workplace 4 (0.5) week NA NA 03:00 - 05:00 (0.5)

Weekend Worker Workplace 1 (1) week weekend NA NA
Night Worker Workplace 3 (1) week NA Evening, Night NA

Table VI shows the result for ε = 0.8, where T-Profiles
labeled 36 Full Time Workers, 16 Part Time Workers, 31
Weekend Workers, 21 Night Workers, 4 Students, and 2
Retired.

TABLE VI. PROFILES FOR 70%, 80% AND 90% SIMILARITY.

Profiles ε = 0.7 ε = 0.8 ε = 0.9
Full Time Worker 56 36 32
Part Time Worker 26 16 9
Weekend Worker 37 31 31
Night Worker 24 21 15
Student 4 4 4
Retired 2 2 0
Unemployed 1 0 0
Housewife Kids 0 0 0

Table VII shows some examples of the output of T-Profiles,
with some single and multiple profiles. Notice that objects
893757 and 820817 were labeled with multiple profiles. For
oid 893757 the similarity degree was 100% with Part Time
and Weekend Worker, while object 820817 had similarity of
100% with Full Time and Night Worker. Objects 85000 and
288807 had similarity above 80% with the profile category
Full Time and Night Worker, respectively. Another example is
the object with oid 757727, that had similarity 100% with the
profile Student.

VI. CONCLUSION AND FUTURE WORK

In this paper we made a first attempt to go deeper in the
analysis of moving object trajectories, analyzing every indi-
vidual object mobility history in order to discover the socio-

TABLE VII. EXAMPLES OF THE OUTPUT OF T-PROFILES FOR ε = 0.8

oid Housewife Kids Unemployed Retired Student Full Time Worker Part Time Worker Weekend Worker Night Worker Profile
893757 0.000 0.000 0.000 0.000 0.603 1.000 1.000 0.000 Part Time Worker, Weekend Worker
820817 0.000 0.000 0.000 0.000 1.000 0.500 0.000 1.000 Full Time Worker, Night Worker
85000 0.326 0.000 0.000 0.106 0.977 0.477 0.000 0.000 Full Time Worker
288807 0.000 0.000 0.000 0.000 0.743 0.318 0.636 0.848 Night Worker
757727 0.250 0.000 0.000 1.000 0.000 0.000 0.000 0.000 Student
1255063 0.000 0.750 0.852 0.000 0.000 0.000 0.000 0.000 Retired

demographic status of each individual. While the discovery of
socio-demographic profiles is very trivial in social networks,
GSM calls and weblog data, where far more information is
available, the discovery of socio-demographic profiles from
GPS trajectories is a challenge. In this paper we proposed a
profile model, as a set of very simple rules that the user can
express to discover any type of profile. We also introduced a
moving object history model that summarizes the historical
traces of moving objects, that is independent of a specific
profile model. Finally, we proposed a matching process that
provides the similarity between a given profile name and a
moving object based on his/her trajectory summary. As future
work, we will go deeper in the analysis to discover more
complex profiles such as gender, marital status, income, etc.

ACKNOWLEDGMENT

This work was supported by EU project FP7- PEOPLE
SEEK (N.295179 http://www.seek-project.eu) and the Brazil-
ian agencies CAPES and CNPQ.

REFERENCES

[1] L. O. Alvares, V. Bogorny, B. Kuijpers, J. A. F. de Macedo, B. Moelans,
and A. Vaisman, “A model for enriching trajectories with semantic
geographical information,” in Proceedings of the 15th annual ACM in-
ternational symposium on Advances in geographic information systems.
ACM, 2007.

[2] R. Trasarti, F. Pinelli, M. Nanni, and F. Giannotti, “Mining mobility user
profiles for car pooling,” in Proceedings of the 17th ACM SIGKDD, ser.
KDD ’11. ACM, 2011, pp. 1190–1198.

[3] X. Xiao, Y. Zheng, Q. Luo, and X. Xie, “Finding similar users
using category-based location history,” in Proceedings of the 18th
SIGSPATIAL. ACM, 2010, pp. 442–445.

[4] V. W. Zheng, Y. Zheng, and Q. Yang, “Joint learning user’s activities
and profiles from GPS data,” in Proceedings of the 2009 LBSN, ser.
LBSN ’09. New York, NY, USA: ACM, 2009, pp. 17–20.

[5] S. Jiang, J. Ferreira, and M. C. González, “Clustering daily patterns of
human activities in the city,” Data Mining and Knowledge Discovery,
vol. 25, no. 3, pp. 478–510, 2012.

[6] C.-C. Hung, C.-W. Chang, and W.-C. Peng, “Mining trajectory profiles
for discovering user communities,” in Proceedings of the 2009 LBSN,
ser. LBSN ’09. New York, NY, USA: ACM, 2009, pp. 1–8.

[7] J. J.-C. Ying, E. H.-C. Lu, W.-C. Lee, T.-C. Weng, and V. S. Tseng,
“Mining user similarity from semantic trajectories,” in Proceedings of
the 2nd ACM SIGSPATIAL LBSN, ser. LBSN ’10. New York, NY,
USA: ACM, 2010, pp. 19–26.

[8] X. Chen, J. Pang, and R. Xue, “Constructing and comparing user
mobility profiles,” ACM Transactions on the Web (TWEB), vol. 8, no. 4,
p. 21, 2014.

[9] M. A. Bayir, M. Demirbas, and N. Eagle, “Mobility profiler: A frame-
work for discovering mobility profiles of cell phone users,” Pervasive
and Mobile Computing, vol. 6, no. 4, pp. 435 – 454, 2010.

[10] B. Furletti, L. Gabrielli, C. Renso, and S. Rinzivillo, “Analysis of GSM
calls data for understanding user mobility behavior,” in 2013 IEEE
International Conference on Big Data, Santa Clara, California, 2013,
pp. 550–555.

[11] M. Dash, H. L. Nguyen, C. Hong, G. E. Yap, M. N. Nguyen, X. Li,
S. Krishnaswamy, J. Decraene, S. Antonatos, Y. Wang, D. T. Anh, and
A. Shi-Nash, “Home and work place prediction for urban planning using
mobile network data,” in IEEE 15th MDM, vol. 2, July 2014, pp. 37–42.

249

A Balanced Method for Budgeted Influence Maximization

Xinhui Xu∗, Yong Zhang†, Qingcheng Hu∗, Chao Li†, Chunxiao Xing†

Department of Compute Science and Technology
Tsinghua National Laboratory for Information Science and Technology

Research Institute of Information Technology, Tsinghua University, Beijing, China
∗ {xuxh13, hqc10}@mails.tsinghua.edu.cn

† {zhangyong05, li-chao, xingcx}@mail.tsinghua.edu.cn

Abstract—With the flourish of Web-based large Online Social
Networks (OSNs), people on OSNs can easily yield influence
on others. Finding how the influence spreads and maximizing
influence spread within OSNs have been extensively studied.
State-of-the-art researches suffer two defects: (a) need to
acquire the topological structure of the network, which is
impractical for the continuously changing networks in real life
and thus can not balance very well between influence spread
and running time; (b) assign the same cost for every node in
OSN which cannot reflect the reality. To solve these problems
we firstly propose PageRank Based Cost (PRBC) model to
assess the cost of nodes in OSN according to their importance
(influence); secondly we present Budgeted Random Maximal
Degree Neighbor (BRMDN) algorithm by exploiting the scale
free property. Results from extensive experiments show that
BRMDN can well balance influence spread and running time.

Keywords-social network; cost model; influence maximiza-
tion;

I. INTRODUCTION

A. Background and Motivations

The Web today is a growing universe of interlinked Web
pages and Web applications, teeming with videos, photos,
and interactive content. The Web-based large online social
network(OSN)s such as Facebook, Twitter, WeChat etc. ac-
quire great success for their interactive features like sharing,
forwarding and discussing contents. According to eBizMBA,
in February 2015, Facebook has estimated unique monthly
visitors numbered 900 million 1. People spend a lot of time
on these communication platforms making friends, sharing
daily affairs, spreading interesting news, and expressing
different opinions, which provides us with affluent real-life
data to mine valuable information. Taking advantage of the
popularity of OSNs, many researchers have studied diffusion
phenomenon in OSNs, which includes the diffusion of
news, ideas, innovations, and the adoption of new products
[1]. These diffusion phenomenons are referred as influence
diffusion or propagation in [1]. Influence maximization is an
extensively investigated topic in influence diffusion [1] [2]
[3] [4]. It tries to find a set of nodes in one OSN to maximal
the influence spread over the OSN under certain diffusion
model such as Independent Cascade (IC) proposed in [2].

1http://www.ebizmba.com/articles/social-networking-websites

However, the aforementioned research works suffer two
defects: (a) need to acquire the topological structure of the
network, which is impractical for the continuously changing
networks in real life and thus can not balance very well
between influence spread and running time; (b) assign the
same cost for every nodes in OSN which cannot reflect the
real situation in life. In reality, time can be a critical factor
in some situations such as disease controlling, emergency
evacuation. Furthermore, different nodes in one OSN should
not be assigned the same cost. For example, in the domain
of online advertisement, different service providers have
different advertising prices [5].

Taking account of the above situations, also with the fact
that most of the large OSNs are complex networks and have
the scale free property [6], we firstly define a cost function
to assess the cost of a given node in one OSN, then research
budgeted influence maximization problem and propose our
algorithm.

B. Our Contributions

In this paper, we propose a cost function to assess every
node in terms of their influence and dedicate to solving the
problem of budgeted influence maximization. Our contribu-
tions in this paper are summarized as follows.

• We propose PRBC model to assess nodes’ costs accord-
ing to their importances (influences) which are assessed
by the nodes’ PageRank value [7] and degrees in OSN.

• We exploit the scale-free property [6] [8] that most
OSNs hold, and then propose BRMDN under PRBC
model.

• Finally, we test the performance of BRMDN under
two real datasets with extensive experiments, which
proves the effectiveness and efficiency of the proposed
algorithm.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III provides preliminar-
ies for budgeted influence maximization. Section IV presents
our algorithms and the theoretical analysis. Section V shows
our experimental results. Finally we conclude the paper in
section VI.

(DOI reference number: 10.18293/SEKE2015-157)

250

II. RELATED WORK

A. Diffusion Models

In influence maximization process, we label every node
with one status−activated or inactivated. We tag a node
activated if it accepts the message or event we concern, in-
activated otherwise. In a widely connected network, people
may influence each other by publishing, sharing, re-directing
messages or news etc. Therefore, influence spreading is to
a large extent similar to information diffusion process. One
pioneer information diffusion model is IC [2].

IC is firstly proposed by D Kempe et al. in [2], and now
becomes the most important model in influence maximiza-
tion problem. Given OSN G = (V,E), an initial seed set
S, let p(u, v) denote the probability of u influencing v and
p(u, v) is independent assigned for ∀u, v ∈ V . IC runs as
follows: Let St denote the nodes activated in step (time)
t, te represents the step when the activation process ends,
initially we have t = 0, St = S. At step t + 1, every node
u ∈ St tries to activate its out-neighbors v ∈ V \

⋃
0≤i≤t Si

with an independent probability of p(u, v). This procedure
proceeds until no more nodes can be activated. It should
be mentioned that each node can activate its out-neighbors
one time and when a node is activated, it never fails. The
final activated set can be calculated by

⋃
0≤i≤te Si which

we denote as σIC(S).

B. Influence Maximization

1) Greedy Algorithms: In [2], D Kempe et al. proposed
a general greedy algorithm for influence maximization and
proved that general greedy algorithm can approximate to the
optimal solution by a factor of 1− 1/e, but it is extremely
expensive to compute. CELF [9] improved general greedy
algorithm by exploiting the property of submodular function.
Results show that CELF achieves 700 times faster than
general greedy algorithm. NewGreedy and MixGreedy in
[10] presented two variants of greedy algorithm which aim
at improving effectiveness and efficiency, yet still suffer high
computation cost.

2) Random Based Algorithm: Random algorithm always
contains a randomization procedure within itself, in the field
of influence maximization, the most obvious and straightfor-
ward random based algorithm is referred as Random in [2]
[10]. It runs as follows, it iterates for k times, every time
it randomly selects a node which has not been added to the
seed set. As we can see from Table I, Random runs fastest,
but we will show later it performs the worst in terms of
influence spread.

3) Degree Based Heuristic Algorithms: In OSNs, one
node that has a larger number of in-neighbors most probably
means that it is more important. It is referred as degree
centrality [11]. DegreeHeuristic algorithm sorts all the nodes
according to their degree and then chooses the Top-K nodes.
In [10] SingleDiscount is a simple degree discount heuristic

Table I
TIME COMPLEXITY OF ALGORITHMS

Algorithms Complexity
Random O(K)

Degree Heuristic O(m)
Degree Discount O(K ∗ log(n) +m)
Single Discount O(K ∗ log(n) +m)
New Greedy IC O(KRm)
CELF Greedy O(KnRm/700+)

General Greedy O(KnRm)

where each neighbor of a newly selected seed discounts its
degree by one, while DegreeDiscount is a more accurate
degree discount heuristic algorithm. It excludes nodes that
can possible be influenced by nodes which have already been
added into the seed set. Experiments show that SingleDis-
count and DegreeDiscount have almost the same result in
influence spreading as greedy algorithms, while achieving
significant speedup in running time.

The time complexities of some aforementioned algorithms
are shown in Table I, where K denotes # of nodes in the
initial seed set, n represents # of vertices, m depicts # of
edges in the given graph and R is # of rounds in the specific
algorithm. These notations used in the following sections
will have the same meaning if there is no explicit declaration.

C. Cost Models

Most state-of-the-art influence maximization algorithms
such as [1] [2] [3] [4] [10] etc. take the constant cost (i.e.
unit cost) model. That is, CF(s) = 1 for all node s ∈ V ,
CF(·) denotes cost function. In [9], J. Leskovec et al used #
of posts for their case 1, they assigned a non-negative cost
for case 2; [5] does not give their detailed cost model; while
[12] randomly gives a value to nodes in OSN. To our best
of knowledge, few non-constant cost models have been used
for budgeted influence maximization.

III. PRELIMINARIES

A. Scale-free Networks

In the real world, there are numerous networks existing
in form of complex network [6] such as biosphere, citation
network, OSNs and so on. Many large OSNs (such as
Facebook, Twitter, MySpace, Flickr [13]) share the property
of scale-free [6]. A node in a network with degree k subjects
to power-law distribution has probability p(k) = ck−γ [14].
When the power-law distribution exponent γ values are
between 2 and 3, the network holds the property of scale-
free.

B. PageRank Algorithm & Proposed Cost Model

PageRank algorithm has been widely taken as a method
for measuring the importance of web pages which was
firstly proposed in [7]. With the web pages modeled as
nodes, and hyperlinks between them represented as edges,
the interlinked Web can be seen as a complicated graph. As

251

we have described in previous section, OSN is represented
by G = (V,E), so we can apply the PageRank algorithm
to the OSN to estimate the importance of nodes. According
to nodes’ differences in importance we give them different
cost. The cost model is shown as follows.

Definition 1. (PageRank Based Cost) Given an OSN G =
(V ,E), a pre-defined increase factor δ and coefficient λ, for
∀u ∈ V , we define its PageRank Based Cost, PRBC(u),
as follows,

PRBC(u) =
λ(PR(u) + δ)D(u)

D(vmax)
, vmax = argmax

v∈N (u)∪{u}
D(v)

where PR(u) is the PageRank value of node u, D(u) is the
degree of node u, N (u) is the neighbor set of node u.

C. Non-Constant Cost Influence Maximization

In reality, the nodes in OSN have different influences
should be assigned different costs. Compared with normal
unit cost influence maximization problem, Non-Constant
Cost Influence Maximization (NCC-IM) has tighter con-
straints. We formally formulate it as follows,

Definition 2. (NCC-IM) Given OSN G = (V ,E), a constant
K, a cost function CF(·), and a budget limit B, finding a set
S with K nodes which subjects to the following constraints:

σ(S) = argmax
|S|≤K∧S⊆V

Inf(S),
∑
u∈S
CF(u) < B

where σ(S) denotes the expected nodes set finally activated
by giving an initial set S under influence spread function
Inf .

Noting that in NCC-IM problem, we have constraints
that |S| ≤ K, because that in our algorithm and other
algorithms we implemented as baselines, we find that when∑
u∈S CF(u) > B, all the algorithms should stop.

IV. BUDGETED INFLUENCE MAXIMIZATION
ALGORITHM

Finding exact maximal influence spread is a NP-Hard
problem and the improved greedy algorithm variants are
expensive to compute. Random algorithms randomly choos-
ing K nodes also perform arbitrarily bad. [8] [15] [16] find
that in many OSNs vertices’ connectivities follow scale-free
property that most vertices are sparsely connected. However,
a small number of vertices are densely connected. We design
our own algorithm by combining randomly heuristic method
with the properties of scale-free networks.

A. Algorithm Design

Enlightened by the random algorithm and the property of
scale-free network, we propose Budgeted Random Maximal
Degree Neighbor (BRMDN) algorithm. Firstly, BRMDN
randomly selects a node u in the network; then it uses the
algorithm MDN (Algorithm 1) to find the candidate node

which will be added to initial set S if it satisfies the budget
constraints. we repeatedly run the above procedure to get
the qualified S. We give BRMDN as Algorithm 2.

Algorithm 1 MDN: Find the candidate node
Input: G = (V,E); node u; exclusive set ES;
Output: Node vmax selected to be added to the seed set

1: vmax ← u; vdegree ← D(u);
2: for all nbr ∈ N (u) do
3: if nbr 6∈ ES ∧ vdegree < D(nbr) then
4: vdegree ← D(nbr);
5: vmax ← nbr;
6: end if
7: end for
8: return vmax

Algorithm 2 BRMDN: Compute the seed set
Input: G = (V,E); seed set size K; budget limit B; fault

tolerance factor τ ; cost function CF ;
Output: Seed set S with |S| ≤ K ∧

∑
s∈S CF(s) < B

1: S ← Φ; i← 0; totalcost← 0
2: while i < K do
3: Randomly select a node u ∈ V \ S
4: Select umax ←MDN(G, u, S)
5: if CF(umax) + totalcost < B + τ then
6: S ← S ∪ {umax}
7: totalcost← totalcost+ CF(umax)
8: i← i+ 1
9: if totalcost > B then

10: i← K + 1
11: end if
12: end if
13: end while
14: return S

Noting that through MDN procedure in BRMDN, we only
need to know the local topological structure around node u,
which can greatly boost computing efficiency.

B. Feasibility of BRMDN

For network G = (V,E) which subjects to the power-law
distribution, a node with degree k has probability p(k) =
ck−γ . Let kmax be # of the maximal degree and kmin be
the minimal one, so we have:∫ +∞

kmax

p(k)dk =
1

n
,

∫ +∞

kmin

p(k)dk = 1 (1)

By solving (1), we get, kmax = kminn
1

γ−1 . For arbitrary
edge which starts from node u, let pTop−K denote the
probability of connecting a node with degree great than or
equal to Top-K (such node is also known as one Hub of the

252

network). We can get

pTop−K =

∫ kmax

kTop−K

p(m)dm =
k2−γmax − k

2−γ
Top−K

k2−γmax − k2−γmin

(2)

If the seed set size is K, the probability to get at least one
hub node is phub = 1−(1−pTop−K)K−ε. Where ε denotes
the budget B affects the phub, actually if B > Kζ then
ε = 0, where ζ = maxu∈V {CF(u)} is the highest cost in
the OSN. If K is bigger enough (say K = 30) then we can
have (1− pTop−K)K → 0, and finally phub ≈ 1− ε. Here ε
is a random factor which is determined by random process
in BRMDN. But we can alleviate the random disturbance
by iterating BRMDN many times to decrease constraint ε
to a small number and so phub is close to 1. A high value
of phub indicates that BRMDN with a large possibility can
have at least one hub node in initial set S.

C. Time Complexity

According to Algorithm 2, after a node is randomly
chosen, we have to traverse its all neighbors. Let k̄ denote
the average degree in a scale-free network, we have:

k̄ =
n∑
1

kp(k) =
n∑
1

kck−γ = c
n∑
1

1

kγ−1
, p(k) = ck−γ

(3)

Lemma 1. Let G = (V,E) be a network that holds scale-
free property, if there are no self-loops or multiple links
between two nodes in G, there does not exist a G with
1 < γ < 2.

Proof: From section IV-B, we already have kmax =

kminn
1

γ−1 . Now assume that there exists a network that
subjects to power-law distribution and has 1 < γ < 2,
then we can get 0 < γ − 1 < 1, n

1
γ−1 > n, and

kmax = kminn
1

γ−1 > n, which means that a node with
the largest degree is even bigger than the number of the
total nodes in network G. It contradicts the fact that n is the
total # of nodes of network G.

According to lemma 1, γ > 2. Then

k̄ = c
n∑
1

1

kγ−1
≤ c

n∑
1

1

k
= cln(n), n→ +∞ (4)

If the size of the initial seed set is K, the time complexity
of Algorithm 2 can be computed by Kk̄. By substituting k̄
with equation (4), we get O(Klog(n)).

V. EXPERIMENTS

Considering different networks with different topological
structures, we choose two datasets which subject to power-
law distribution and have different γ values (Table II). We
will show that BRMDN performs very well in terms of both
influence spread and running time.

Table II
STATISTICS OF TWO REAL NETWORKS

Dataset n m k̄ kmax γ

Blogs 3982 6803 3.42 189 2.453
Facebook 4039 88234 43.69 1045 2.509

A. Experimental Setup
The two real scale-free networks listed in Table II are

summarized as follows:
• Blogs [17]. It contains about 4K nodes and 6K edges.

Obviously this network is sparely connected, and
#edges
#nodes = 1.70.

• Facebook [18]. It is just a small part of users of
Facebook. This network has 4K nodes but with 88K
edges, which is different from Blogs greatly in its high
density of connection, and #edges

#nodes = 21.84.

600 800 1000 1200 1400
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Blogs

T
im

e
(s

ec
)

Budget

 RH
 DH
 SD
 DD
 BL-RMDN

(a) Blogs

600 800 1000 1200 1400
0.00

0.05

0.10

0.15

0.20

0.25

Facebook

T
im

e
(s

ec
)

Budget

 RH
 DH
 SD
 DD
 BL-RMDN

(b) Facebook

Figure 1. Running time under datasets Blogs and Facebook with K = 30

We apply IC model to BRMDN and compare the results
with some state-of-the-art heuristic based influence maxi-
mization algorithms. We list those algorithms as follows,
RandomHeuristic(RH): It is a baseline for heuristic ap-
proaches. It simply selects K random vertices in the graph,
which is also evaluated in [2] and [10].
DegreeHeuristic(DH): It intuitively selects K vertices
which have the largest degrees in the given graph.
SingleDiscount(SD): A simple degree discount heuristic
where each neighbor of a newly selected seed decreases its
degree by one, proposed in [10].
DegreeDiscount(DD): Compared to SingleDiscount, it is a
refined heuristic method [10].

The greedy algorithms perform very well in terms of influ-
ence spread but are intolerable slow for large networks. For
example in our experiments, the general greedy algorithm
spends 20.78 hours running dataset Blogs with R = 5
(normally we have R = 1000), while one degree based
heuristic algorithm spends about 0.05 seconds, which almost
is 1,500,000 times faster. Therefore we do not compare
with them in this paper. We gain all the results on a server
computer with 24 cores of Intel(R) Xeon(R) CPU E5-2640
2.50GHz and 128G Memory.

For the IC model with relatively large propagation proba-
bility p, the influence spread is not very sensitive to different

253

5 10 15 20 25 30

5

10

15

20

25

30 Blogs

S
el

ec
te

d
 s

ee
d

 s
iz

e

Expected seed size

 RH
 DH
 SD
 DD
 BL-RMDN

(a) Blogs with B = 600

5 10 15 20 25 30

5

10

15

20

25

30 Blogs

S
el

ec
te

d
 s

ee
d

 s
iz

e

Expected seed size

 RH
 DH
 SD
 DD
 BL-RMDN

(b) Blogs with B = 900

5 10 15 20 25 30

5

10

15

20

25

30 Facebook

S
el

ec
te

d
 s

ee
d

 s
iz

e

Expected seed size

 RH
 DH
 SD
 DD
 BL-RMDN

(c) Facebook with B = 400

5 10 15 20 25 30

5

10

15

20

25

30 Facebook

S
el

ec
te

d
 s

ee
d

 s
iz

e

Expected seed size

 RH
 DH
 SD
 DD
 BL-RMDN

(d) Facebook with B = 500

Figure 2. Performance under IC model for dataset Blogs and Facebook with different budget B

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

Blogs

In
fl

u
en

ce
 s

p
re

ad

Seed size

 RH
 DH
 SD
 DD
 BL-RMDN

(a) Budget B = 600

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

Blogs

In
fl

u
en

ce
 s

p
re

ad

Seed size

 RH
 DH
 SD
 DD
 BL-RMDN

(b) Budget B = 900

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

Blogs

In
fl

u
en

ce
 s

p
re

ad

Seed size

 RH
 DH
 SD
 DD
 BL-RMDN

(c) Budget B = 1200

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

Blogs

In
fl

u
en

ce
 s

p
re

ad

Seed size

 RH
 DH
 SD
 DD
 BL-RMDN

(d) Budget B = 1500

Figure 3. Performance under IC model for dataset Blogs with different budget B

5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

Facebook

In
fl

u
en

ce
 s

p
re

ad

Seed size

 RH
 DH
 SD
 DD
 BL-RMDN

(a) Budget B = 300

5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

Facebook

In
fl

u
en

ce
 s

p
re

ad

Seed size

 RH
 DH
 SD
 DD
 BL-RMDN

(b) Budget B = 400

5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

Facebook

In
fl

u
en

ce
 s

p
re

ad

Seed size

 RH
 DH
 SD
 DD
 BL-RMDN

(c) Budget B = 500

5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

Facebook

In
fl

u
en

ce
 s

p
re

ad
Seed size

 RH
 DH
 SD
 DD
 BL-RMDN

(d) Budget B = 600

Figure 4. Performance under IC model for dataset Facebook with different budget B

algorithms. When simulating propagation process with IC
model, we set transmitting probability to a relative small
number 0.01. To correctly evaluate our method with a
reasonable precision, we set our iteration number R = 1000.
We use PageRank Based Cost Model to evaluate the cost of
every node in all the aforementioned algorithms, and we set
λ = 100, δ = 0.5.

In scale-free networks, the most nodes are sparsely con-
nected, while the hub nodes are densely connected. In the
logarithmic coordinate system, a network having scale-free
property is a straight-line with gradient valued between -2
and -3. We use the method proposed in [19] [20] to estimate
γ, the result is listed in Table II.

B. Experimental Results

The results show that under IC model, BRMDN performs
almost as good as DegreeDiscount according their influence
spread, while achieves great speedup with respect to running
time.

Influence spread: Considering influence spread in Figure
3 and Figure 4, we can see that DegreeDiscount, Degree-
Heuristic, SingleDiscount achieve the best; RandomHeuris-
tic, without any surprise, performs the worst; BRMDN
approximately approaches to the best algorithms by different
ratios with respect to different datasets. In Figure 3, with
the increasing of seed set size K, BRMDN gets the result
more and more close to DegreeDiscount. Let ∇fig denotes
the ratio between the influence spread of BRMDN and DD
in Figure fig, then from Figure 3 we have ∇3(a) = 95%,
∇3(b) = 96%, ∇3(c) = 91%, ∇3(d) = 85%. While in Figure
4, we can see that when the seed set size K < 15, BRMDN
gets a result approximate to DegreeDiscount with a ratio
less than 90%. But when K grows near to 30, BRMDN
achieves almost as good as DegreeDiscount. Finally we have
∇4(a) = 93%, ∇4(b) = 99%, ∇4(c) = 99%, ∇4(d) = 97%.
From Figure 3 and Figure 4, BRMDN performs very well
in terms of influence spread.

Running time: From Figure 1, we can see that for every

254

algorithm, the running time is almost a horizontal line which
indicates that budget B has little affect on running time.
From Figure 1, we can see that RH runs fastest, second
comes BRMDN, DH is the third, SD and DD are the slowest.
Specifically, from Figure 1(a) BRMDN is almost 14 times
faster than DD, and from Figure 1(b) BRMDN is almost 19
times faster than DD. For datasets Blogs and Facebook, they
have relative small number of nodes, so DH’s running time
is approximate to BRMDN. But from Table I, we can see
that when OSN has a large number of nodes (n), BRMDN
will show its great speedup.

Noting that in Figure 3(a), when K > 23, RH outperforms
other algorithms. From Figure 2(a), we find that when budget
B is very limited, other algorithms find a small number of
nodes with high cost, while RH can find a large number of
nodes with low costs, and finally RH can achieve a better
influence spread. From Figure 4, when budget B > 400,
all the algorithms can not improve their performance when
K is limited to 30. From Figure 2(d), we can see that it is
because the nodes selected by all the algorithms are close to
30, and most influential nodes have been already included.

VI. CONCLUSION

Influence maximization is important for activities like
products promotion, information transmission, emergency
evacuation etc.. It has been extensively studied to find K
nodes within the given budget in OSN to achieve maximal
spread under constant-cost (i.e. unit-cost) model. In this
paper, we firstly propose PRBC to assess nodes’ cost accord-
ing their importance (influence); secondly research budgeted
influence maximization under PRBC and propose BRMDN
algorithm; finally run extensive experiments to test the
performance of BRMDN. The experimental results show: (1)
budget B has little affects on running time when a specific K
is given; (2) BRMDN has almost the same influence spread
with SD and DD, but achieves great speedup. Therefore,
BRMDN balances well between running time and influence
spread.

VII. ACKNOWLEDGMENT

This work was supported by National Basic Research
Program of China (973 Program) No.2011CB302302, the
National High-tech R&D Program of China under Grant No.
SS2015AA020102, Tsinghua University Initiative Scientific
Research Program.

REFERENCES

[1] X. He, G. Song, W. Chen, and Q. Jiang, “Influence blocking
maximization in social networks under the competitive linear
threshold model.” in SDM. SIAM, 2012, pp. 463–474.

[2] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the
spread of influence through a social network,” in Proceed-
ings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2003, pp.
137–146.

[3] W. Chen, A. Collins, R. Cummings, T. Ke, Z. Liu, D. Rincon,
X. Sun, Y. Wang, W. Wei, and Y. Yuan, “Influence maximiza-
tion in social networks when negative opinions may emerge
and propagate.” in SDM, vol. 11. SIAM, 2011, pp. 379–390.

[4] W. Chen, C. Wang, and Y. Wang, “Scalable influence max-
imization for prevalent viral marketing in large-scale social
networks,” in Proceedings of the 16th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining.
ACM, 2010, pp. 1029–1038.

[5] S. Han, F. Zhuang, Q. He, and Z. Shi, “Balanced seed selec-
tion for budgeted influence maximization in social networks,”
in Advances in Knowledge Discovery and Data Mining.
Springer, 2014, pp. 65–77.

[6] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-
U. Hwang, “Complex networks: Structure and dynamics,”
Physics Reports-review Section of Physics Letters, vol. 424,
pp. 175–308, 2006.

[7] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pager-
ank citation ranking: Bringing order to the web.” 1999.

[8] A.-L. Barabási and R. Albert, “Emergence of scaling in
random networks,” science, vol. 286, no. 5439, pp. 509–512,
1999.

[9] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. Van-
Briesen, and N. Glance, “Cost-effective outbreak detection
in networks,” in Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data
mining. ACM, 2007, pp. 420–429.

[10] W. Chen, Y. Wang, and S. Yang, “Efficient influence maxi-
mization in social networks,” in Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2009, pp. 199–208.

[11] P. Bonacich, “Factoring and weighting approaches to status
scores and clique identification,” Journal of Mathematical
Sociology, vol. 2, no. 1, pp. 113–120, 1972.

[12] H. Nguyen and R. Zheng, “On budgeted influence maximiza-
tion in social networks,” Selected Areas in Communications,
IEEE Journal on, vol. 31, no. 6, pp. 1084–1094, 2013.

[13] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee, “Measurement and analysis of online so-
cial networks,” in Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement. ACM, 2007, pp. 29–
42.

[14] R. Cohen and S. Havlin, “Scale-free networks are ultrasmall,”
Physical review letters, vol. 90, no. 5, p. 058701, 2003.

[15] L. A. Adamic and B. A. Huberman, “Power-law distribution
of the world wide web,” Science, vol. 287, no. 5461, pp.
2115–2115, 2000.

[16] D. J. Watts and S. H. Strogatz, “Collective dynamics of
’small-world’ networks,” nature, vol. 393, no. 6684, pp. 440–
442, 1998.

[17] Q. Hu, Y. Gao, P. Ma, Y. Yin, Y. Zhang, and C. Xing, “A
new approach to identify influential spreaders in complex
networks,” in Web-Age Information Management. Springer,
2013, pp. 99–104.

[18] J. Leskovec and J. J. Mcauley, “Learning to discover social
circles in ego networks,” in Advances in neural information
processing systems, 2012, pp. 539–547.

[19] A.-L. Barabási, R. Albert, and H. Jeong, “Mean-field theory
for scale-free random networks,” Physica A: Statistical Me-
chanics and its Applications, vol. 272, no. 1, pp. 173–187,
1999.

[20] A. Clauset, C. R. Shalizi, and M. E. Newman, “Power-law
distributions in empirical data,” SIAM review, vol. 51, no. 4,
pp. 661–703, 2009.

255

Using implications from FCA to represent a two mode network data

Sebastião M. Neto, Mark A. J. Song, Sergio M. Dias
Luis E. Zárate Serviço Federal de Processamento de Dados

Centro Universitário UNA SERPRO
Pontifícia Universidade Católica de Minas Gerais Belo Horizonte – MG – Brasil

Belo Horizonte – MG – Brasil sergio.dias@serpro.gov.br

mark@prof.una.br,

sebastiaomendesneto@gmail.com,

zarate@pucminas.br

Abstract – In a world of ever-growing connectivity, full of connec-
tions between people and objects, new multidisciplinary complex network
analysis needs to arise. This work presents a solution to analyze an In-
ternet Service Provider database using a formal concept analysis element
named implications and complex network techniques. Our goal is to an-
alyze access to the 25 most visited websites to find access patterns. We
selected 9 time intervals in one week. Data were converted to a clarified
formal context and the FindImplications algorithm was used to extract
implications sets. These sets were cross-checked to look for patterns. The
implications were used to explore the complex network substructures. As
a result, we found access patterns that guarantee that whenever premise
websites are accessed, so are conclusion websites. This result can aid in
creating security policies and network configurations to help predict fu-
ture accesses. Without this technique relationships between events nodes
(websites) of a two mode network could not be identified.

I. INTRODUCTION

In the last few years, attention has turned towards the
increasing complexity of the connected world, as noted by
Easley and Kleinberg [1]. This connectivity is propelled by
a variety of factors, such as the Internet itself, telephone net-
works and the speed with which information travels around
the globe. These factors enable the genesis of social net-
works formed by relationships between people. Motivated
by the interconnected world, research has surfaced and dis-
ciplines interlink to contribute with techniques and new per-
spectives for the analysis of these complex networks.

Currently, social network analysis is focused on the dis-
covery of social relationship patterns. These relationships
can occur between subjects, events, or subjects and events.
According to Getoor and Diehi [2], in some cases some rela-

(DOI reference number: 10.18293/SEKE2015-085)

tionships are not observed. Therefore, it is of general inter-
est to unveil hidden substructures as possible and potential
communities.

However, the identification of substructures demands
work towards perfecting methods to clarify network visu-
alization and extract representations and important knowl-
edge from them [3,4]. We propose a implications-based
computational models that allows for the extraction of new
knowledge and better visualizations.

The knowledge extraction, in turn, are done via Formal
Concept Analysis (FCA) [5], which is a mathematical re-
search field introduced by Rudolf Wille and has found use
in different fields. Due to its potential in knowledge repre-
sentation, FCA can also benefit complex network analysis,
as discussed in related work section.

In this work, we used implications seeking to increase
our knowledge on complex networks and innovates by us-
ing implications to find patterns, build graphs and conduct
analyses in a two mode network data.

II. COMPLEX NETWORKS AND LIMITATIONS

Graph theory [6] is a framework which enables the rep-
resentation of complex networks in a mathematically accu-
rate way. Formally, a network can be represented by a graph
G = (N,L) directed or not, where N 6= ∅ and L are sets
of pairs, sorted or not, of elements from N . The elements
in N ≡ {n1, n2, . . . , nM} are vertices of graph G. The
elements in L ≡ {l1, l2, . . . , lK} are the edges.

Networks that contain vertices of a single type are called
one mode network data. When networks contain vertices of
two or more types, such as vertices that represent users and
websites, they are called two mode network data [7].

Fig. 1 shows an example of a network that represents
user connections to websites. The resulting graph is a bipar-

256

Figure 1: Network generated from the accesses of 20.115 users in a day to
15 preselected websites.

tite directional graph, with vertices representing users con-
nected to vertices representing visited websites. It is a two
mode network data. A cluster finding algorithm, Clustering
Chinese Whispers [8], found 15 groupings (C1-C15). These
users have a greater probability of communicating and con-
stituting a social network [9][10]. In the groupings G1 and
G2, each user accessed a single website. Therefore, they are
so next to each other [11]. The grouping G2 accessed the
website S1. Users of grouping G3 accessed two websites
and, therefore, is positioned between G1 and G2. Website
S2 (Google), located in the center of the graph, have a vast
number of user connections and its centrality corroborates
its importance in the graph. The Region R1, made up of
users who accessed many websites, ended up not grouped
and becoming dispersed.

Relationships between websites are not easily observed.
This begs the question: how to determine which access to
a set of websites implies in an access to another website?
User-website relationships are perceptible, they are repre-
sented by graph edges. However, inter-website relation-
ships cannot be inferred. Freeman and White [12] exposed
this limitation in the representation of networks containing
nodes of two types (two mode network data) and suggested
the concept lattices as the best option. In our work, we
showed that implications along with complex network tech-
niques can also help understand this kind of network.

III. FORMAL CONCEPT ANALYSIS AND APRIORI

FCA [5] offers the formalization of a concept, which is
made by an intention and an extension. The extension cor-
responds to all objects belonging to the concept, while the
intention represents all attributes shared by the aforemen-
tioned objects. FCA allows us to identify object groups with
a specific meaning that share common attributes. According
to Ganter and Wille [5], FCA revolves around four funda-
mental elements: formal contexts, formal concepts, concept
lattices and implications.

A formal context is usually represented by a table, in
which rows represent objects and columns represent at-
tributes. When an object possesses an attribute we have an
incidence represented by an “X” [5].

Formally, a formal context has the notation
K := (G,M, I), where G is a set of objects (rows),
M is a set of attributes (columns) and I are incidences,
defined as I ⊆ G×M . If an object g ∈ G and an attribute
m ∈M are in relationship I , their representation is
(g,m) ∈ I ou gIm, which reads as “object g has attribute
m”.

Given a subset of objects A ⊆ G of a formal context
K := (G,M, I), there is an attribute subset of M com-
mon to every object of A, even if empty. Likewise, given
a set B ⊆M , there is an object subset that shares the at-
tributes of B, even if empty. These relationships are defined
by derivation operations [5]: A′ := {m ∈M |gIm∀g ∈ A}
and B′ := {g ∈ G|gIm∀m ∈ B}

From the formal contexts we obtain formal concepts, de-
fined as pairs (A,B), where A ⊆ G is called extension and
B ⊆M and is called intention, and they must follow the
conditions A = B′ and B = A′ [5].

With all formal concepts sorted hierarchically by order
of inclusion ⊆ we can build the concept lattice.

Implications exist between two attribute subsets of a for-
mal context. Formally, an implication can be expressed as
follows. Considering a context K := (G,M, I) satisfying
implications Q→R, Q,R⊆M , if for every g ∈G, gIq for
every q ∈ Q implies gIr for every r ∈ R. These implica-
tions are normally used in data mining to find dependencies
[4].

It is important to note that association rules obtained by
the famous APRIORI [13] algorithm are usually expressed
with a confidence interval of 0% to 100%. Implications
based on existing formal concepts always yield a confidence
rate of 100%. Therefore, depending on what the attribute
represents, like websites, we can establish an access pattern
to related websites.

IV. RELATED WORK

Poelmans et al [14] presents a “semiautomatic” process
to expose a network of criminal organizations and their
members. They built a lattice of suspected drug dealers and
then a lattice containing suspect profiles, that allowed the
identification of criminal networks.

Freeman [15] found several important complex network
analysis elements through lattice observations, like cliques
and bridging cliques, showing that these elements can be
observed by FCA and used to facilitate the analysis of com-
plex networks.

Cuvelier and Aufaure [16], analyzed tweets about a spe-
cific subject. By means of FCA, the authors were able to
establish relationships between messages and, after repre-
senting them in the lattice, use data filtering criteria to as-
semble a topographical network graph to help clarify the
information obtained.

257

Aufaure and Le Grand [17], who describe lattice expres-
siveness, especially when associated with ontologies, as a
benefit of this FCA use. The work is a compilation of
case studies. Among the conclusions, they have observed
that lattices allow researchers to find deterministically-
overlapping groupings, which can be labeled using exten-
sions and intentions.

Our work differs by searching implications for a way to
provide more knowledge about the influence of event type
vertices in two mode network data networks when looking
for substructures.

V. METHODOLOGY

Freeman [12] mentioned the problem of finding the re-
lationships between event type vertices in two mode net-
work data. Here, this problem is attacked by transforming
network data into a formal context, extracting implications
and finally make a network composed by sets of websites
(premises and conclusions) connected by edges (implica-
tions). This way, we turn a two mode network data into
a one mode network data. With that, we expose existing
relationships between event type vertices, which was not
feasible in the original network. This would render every
complex network technique applicable to the analyzed net-
works.

The FindImplications [18] algorithm, gather from [19],
was used to extract implications. It takes a formal context as
input and looks for an implication coverage. It is known for
its completeness, being capable to extract all implications.

The object clarification process consists in eliminating
duplicated objects. Objects with the same attribute sets can
be discarded when obtaining implications, since they do not
influence the result [5]. So, we have only considered clari-
fied contexts.

VI. EXPERIMENT AND RESULT ANALYSIS

The database used was provided by a Brazilian cable
Internet Service Provider, with anonymous access data.
Records refer to accesses made in march 2009, adding up
to a total of 6,319,333 accesses.

Targeting the 25 most accesses websites, we found
165,659 (24,9% of the overall access total) accesses made
by 29,319 distinct users in the first week of the month. The
aiming was to find access patterns among week days. The
data were converted to a formal context with websites as
attributes and users as objects. Websites from the same do-
main, for example “www.globo.com”, “ads.globo.com”and
“bbb.globo.com” were grouped together for simplification
sake, and categorized only as “globo”. The number of at-
tributes was reduced to 15.

Nine formal contexts were generated. Table I shows con-
texts, the time of day in which accesses were logged, the
number of users in the context (objects) and the number of
profiles (user sets with identical accesses) in the clarified
context.

TABLE I. CONTEXTS AND THEIR CHARACTERISTICS

Context Access Period Users Profiles
K1 Monday from 8 AM-6 PM 11.387 715
K2 Tuesday from 8 AM-6 PM 11.095 710
K3 Wednesday from 8 AM-6 PM 10.829 672
K4 Thursday from 8 AM-6 PM 10.860 700
K5 Friday from 8 AM-6 PM 10.633 683
K6 Friday from 10 PM-2 AM 5.445 315
K7 Saturday from 10 PM-2 AM 5.172 294
K8 Sunday from 10 PM-2 AM 5.482 309
K9 Wednesday from 10 PM-2 AM 5.487 296

The amount of implications extracted and the number of
intersections between contexts are shown in Table II.

TABLE II. IMPLICATIONS AND INTERSECTIONS

Cxt N.R K2 K3 K4 K5 K6 K7 K8 K9
K1 1.246 50 35 20 51 0 2 0 0
K2 876 29 13 19 2 2 0 0
K3 955 37 60 0 5 0 1
K4 835 46 0 2 0 0
K5 919 1 0 0 1
K6 205 0 0 1
K7 123 0 3
K8 155 0
K9 149

In addition to the aforementioned intersections, other in-
tersections were found, like between K1, K2, K3 and K4,
and the following implication rule, common to all contexts,
was also found:

{orkutgstatic, ad.doubleclick.net, yahoo} → {google} (1)

In rule (1), with 100% certainty, we identified an access pat-
tern which repeated itself in 4 days of the week, from Mon-
day to Thursday. These websites are theoretically harm-
less. However, in case of a rule which exposes improper
behavior, with a premise website set that leads to dangerous
conclusion websites, it can be used as a malicious behavior
pattern and have alerts and special controls associated to it.

The support for a rule is the percentage of objects that
follow the rule relative to the total amount of objects. For
rule (1), the approximate support percentage was approxi-
mately 0.11% for the non-clarified context K1. Thus, this
rule identifies 13 users. For non-clarified context K2, with
11,095 users, the rule has an approximate support rate of
0.08%, identifying 9 users. Context K3, which has 10,829
users, yielded a support rate of 0.06% for the rule, identify-
ing 7 users. For context K4, the support rate was also ap-
proximately 0.06%, and the number of identified users was
also 7 since K4 has 10,860 users. With this access pattern,
we reached a total of 32 distinct identified users, of which
four followed the pattern in at least two days.

If we take rule (1) as suspicious user behavior, we could
start a detailed control process, tailored to recurring users.
As soon as one of them or, if desired, one of the 28 others
accesses a premise website, a security policy can be initi-
ated.

The network formed by the implications yields a bipar-
tite, directed graph, with edges going from the premise to
the conclusion.

258

Figure 2: Approximate depiction of the network formed by implications

Fig. 2 shows an approximate depiction of a network
formed by implications from contexts K3 and K5. Group-
ings, like G1, indicate premises (websites) with equal con-
clusions. The algorithm Clustering Chinese Whispers iden-
tified 449 groupings, implications with the same conclu-
sion. Vertex P1 represents a premise linked to a conclu-
sion C1 (google, yahoo). Vertex P2 is linked to conclusion
C2 (google), forming an implication that was recurrent in
both days (darker edge in the highlighted area). By mak-
ing use of strong ties principles [1], it is possible to deter-
mine that premises linked to the same conclusion represent
users who have similar behavior. If the access to conclusion
sites raises concern, like increased bandwidth consumption,
when one of the premises occurs, automatic configurations
to avoid network bottlenecks can be triggered. Premises P3
and P4 are linked to more than one conclusion, indicating
ambiguous behavior for the premises. This only took place
because the graph is formed with implications from two
days. None of these observations, made from the network
composed by premise and conclusion website sets, would
have been possible if the original data was visualized and
analyzed.

VII. CONCLUSIONS

The main goal of this work was to associate FCA and
complex networks to allow us to uncover access patterns
(recurrent and ambiguous), in addition to enabling a bet-
ter representations of relationships between event type ele-
ments in two mode network data complex networks.

Implication obtained from user connections made the
discovery of access patterns viable. By obtaining rule inter-
sections, patterns and recurring users were identified. The
network formed by the rules found ambiguous premises and
premise groups with the same conclusion. Examples of use
for this type of information were presented, like automatic
safeguarding measures to improve service provided and se-
curity controls.

We intent to add another dimension, time, to collected
data for access prediction analyses based on a profile con-
taining access sequences. For highly dimensional formal
contexts, execution times of the algorithms become pro-

Find more information about this work at http://goo.gl/n2G6lI.

hibitive, so we intent to find optimizations for these algo-
rithms using new formal context representations (such as
Binary Decision Diagrams and parallelism).

VIII. ACKNOWLEDGMENTS

We thank SERPRO and also FAPEMIG, CNPq and
CAPES for their financial support.

REFERENCES

[1] D. Easley and J. Kleinberg, “Networks, crowds, and markets: Reason-
ing about a highly connected world”, Wiley Online Library, 2012.

[2] L. Getoor and C. Diehl. “Link mining: a survey’, ACM SIGKDD
Explorations Newsletter, Vol. 7, Issue 2, pp. 3-12, 2005.

[3] L. C. Freeman, “Visualizing social networks”, Journal of social struc-
ture, vol. 1 2000.

[4] L. C. Freeman, “Graphical techniques for exploring social network
data”, Models and Methods in Social Network Analysis, 2005.

[5] B. Ganter, G. Stumme, and R. Wille, “Formal concept analysis: founda-
tions and applications”, Dresden, Alemanha, Springer, v.3626. 2005.

[6] B. Bollobas, “Random graphs”, Academic Press, London, 1985.

[7] S. Wasserman and K. Faust, “Social network analysis: methods and
applications”, New York. Academic Press. 1993

[8] C. Biemann, “Chinese whispers: an efficient graph clustering algo-
rithm and its application to natural language processing problems”, In
Proceedings of the first workshop on graph based methods for natural
language processing, p. 73-80, Association for Computational Lin-
guistics, 2006.

[9] L. B. Ronald, “The duality of persons and groups”, Social Forces, vol.
53, pp. 181-190, 1974.

[10] S. L. Feld. “The focused organization of social ties”. American Jour-
nal of Sociology, 86(5), pp. 1015-1035, 1981.

[11] M. Jacomy, S. Heymann, T. Venturini, and M. Bastian, “Forceat-
las2, a graph layout algorithm for handy network visualization”, Paris
http://www. medialab. sciences-po. fr/fr/publications-fr , 2009.

[12] L. C. Freeman and D. R. White, “Using galois lattices to represent
network data”. Sociological methodology, v. 23, pp. 127-146. 1993.

[13] R. Agrawal, S. Ramakrishnan, “Fast algorithms for mining association
rules”, In Proc. 20th int. conf. very large data bases, VLDB, vol.
1215, pp. 487-499, 1994.

[14] J. Poelmans, P. Elzinga, S. Viaene, G. Dedene, and S. Kuznetsov, “A
concept discovery approach for fighting human trafficking and forced
prostitution”, 19th International conference on conceptual structures,
lecture notes in computer science, vol. 6828, pp. 201-214, Derby,
England: Springer, 2011.

[15] L. C. Freeman, “Cliques, galois lattices, and the structure of human
social groups”, Elsevier, Social Networks, 18, pp. 173-187, 1996.

[16] E. Cuvelier and M. Aufaure, “A buzz and e-reputation monitoring tool
for twitter based on galois lattices”, In Conceptual Structures for Dis-
covering Knowledge, pp. 91-103, Springer Berlin Heidelberg, 2011.

[17] M. Aufaure and B. Le Grand, “Advances in FCA-based Applications
for Social Networks Analysis”, International Journal of Conceptual
Structures and Smart Applications (IJCSSA) 1, vol. 1, pp. 73-89,
2013.

[18] C. Carpineto and G. Romano, “Concept data analysis: theory and
applications”, Wiley, 2004.

[19] S. M. Dias and N. J. Vieria, “A framework for the development of for-
mal concept analysis algorithms” in portuguese “Um arcabouço para
desenvolvimento de algoritmos da análise formal de conceitos”, Re-
vista de Informática Teórica e Aplicada, vol. 18, no. 1, p. 31-57,
2011.

259

State Key Laboratory for Novel Software Technology at Nanjing University, Nanjing, China

How do developers use C++ libraries? An empirical study
Di Wu

nju.wudi@gmail.com

Lin Chen *

lchen@nju.edu.cn

Yuming Zhou

zhouyuming@nju.edu.cn

Baowen Xu

bwxu@nju.edu.cn

Abstract—C++ libraries provide an abundance of reusable
components for writing high-quality programs and are thus
widely adopted by software developers. However, to date there is
little work investigating how these libraries are actually used in
real software. In this paper, we perform an empirical study to
investigate the adoption of C++ standard libraries in open-source
applications, with the goal to provide actionable information for
developers to help them employ libraries more efficiently. To this
end, we analyze 379 historical revisions of 30 applications,
containing 149 million lines of C++ code, to conduct the
experiment. The experimental results show that: (1) three
standard libraries (i.e. Containers Library, Utilities Library, and
Strings Library) are significantly more often used than other
libraries; (2) the new libraries of C++11 (i.e. Regular Expressions
Library, Atomic Operations Library, and Thread Support
Library) are significantly less often used than the formerly-
established libraries; (3) the deprecated library constructs (i.e.
auto pointers, function objects, and array I/O operations) are not
used at a declining frequency; and (4) applications with a larger
size do not adopt libraries more frequently. Based on these
results, we propose four suggestions, which could help developers
learn and use C++ libraries in an efficient way.

Keywords- Programming Language, C++, Library, Empirical Study

I. INTRODUCTION

C++ libraries are pervasively used in software
development, as they enable developers to write high-quality
programs by employing reusable components rather than
implementing all code from scratch [4]. To date, various
libraries have been provided to help solve problems of
different domains. Among these libraries, the Standard C++
Library is the most renowned, since it provides a large set of
standardized components that are shipped with identical
behavior by every C++ implementation [5]. According to
C++11 [3], the latest1 C++ specification, the Standard C++
Library is constituted by 11 sub-libraries, including 3 new
libraries introduced in C++11 and 8 old libraries established in
C++98 [1] and C++03 [2]. For brevity, people generally call
these sub-libraries as “standard libraries”.

In recent years, many researchers have been devoting to
improve the performance of standard libraries. However, few
studies focus on how these libraries are actually adopted in
real software. This lack of knowledge may bring troubles to
software developers, since they do not know which standard
libraries are the most commonly used and need their attention
to be paid on, whether they have made full use of new

* Corresponding author: Lin Chen; Email: lchen@nju.edu.cn
1 C++14 was recently approved, but its official specification has not been
released. Thus, we still serve C++11 as the latest standard of C++ in this paper.

(DOI reference number: 10.18293/SEKE2015-009)

standard libraries, and whether deprecated library constructs
are less frequently used.

In this paper, we perform an empirical study to investigate
the adoption of C++ standard libraries in open-source
applications, with the goal to provide actionable information
for developers to help them use libraries more efficiently. To
be specific, we propose the following four research questions:
(1) RQ1: Which libraries are the most often used? (2) RQ2:
Are the new libraries of C++11 used as often as the formerly-
established libraries? (3) RQ3: Are the deprecated library
constructs used at a declining frequency after C++11 was
published? and (4) RQ4: Do applications with a larger size
adopt libraries more frequently? The purpose of RQ1
investigates whether there exist a few libraries that are more
often used than others. If the most commonly used libraries
are found, we may suggest developers, especially the new
comers of open-source projects, to focus on understanding and
using these libraries. The purpose of RQ2 investigates whether
the new libraries of C++11 have been widely used. If the
answer is “Yes”, we will have empirical evidence to support
that the new features of C++11 have been widely adopted in
developing real software. Otherwise, we may advise
developers to pay special attention on using applicable new
library constructs instead of writing their own code of similar
functionality. The purpose of RQ3 investigates whether the
deprecated library constructs are gradually infrequently used.
Due that auto pointers, function objects, and array I/O
operations can be replaced by other advanced features, they
have been deprecated since C++11. By investigating RQ3, we
can understand whether developers have realized to reduce
using these outdated library constructs. The purpose of RQ4
investigates the correlation between system size and the
frequency of library use. In previous studies on Java and C#
libraries [9, 10], researchers found that applications with
different sizes adopt libraries differently. The empirical result
for RQ4 can be used to answer whether this conclusion is also
applicable to the use of C++ libraries.

In order to answer these research questions, we analyze
379 historical revisions of 30 applications, containing 149
million lines of C++ code, to conduct the experiment. The
experimental results show that: (1) three standard libraries (i.e.
Containers Library, Utilities Library, and Strings Library) are
significantly more often used than other libraries; (2) the new
libraries of C++11 (i.e. Regular Expressions Library, Atomic
Operations Library, and Thread Support Library) are
significantly less often used than the formerly-established
libraries; (3) the deprecated library constructs (i.e. auto
pointers, function objects, and array I/O operations) are not
used at a declining frequency; and (4) applications with a
larger size do not adopt libraries more frequently. Based on
these results, we propose four suggestions, which could help
developers learn and use C++ libraries in an efficient way.

260

The rest of the paper is organized as follows. Section II
introduces the C++ Standard Library. Section III describes the
studied applications, data collection procedure, and data
analysis methods. Section IV reports the experimental results,
the implications, and the threats to validity of our study.
Section V discusses related work. Section VI concludes the
paper and outlines the direction for future work.

II. AN OVERVIEW OF THE C++ STANDARD LIBRARY

The C++ Standard Library is a general name for the
standardized built-in classes, functions, and macros in C++.
The whole standard library is constituted by 11 sub-libraries,
which are generally called “standard libraries”. Before C++11,
8 elementary standard libraries were supported. To
differentiate them from new libraries of C++11, we call these
libraries as “formerly-established libraries”. These libraries
basically consist of Containers, Iterators, Algorithms, Utilities,
Strings, Numerics, Input/Output, and Localizations. The first
three libraries together with function objects in the Utilities
library constitute STL (the Standard Template Library), which
provides generic classes and functions to create and operate
common data structures like vectors, queues, and stacks. The
other five libraries are specific to language support (as well as
general-purpose utilities support), string processing, scientific
computation, I/O management, and internationalization
support, respectively. Since C++11, three new libraries have
been introduced. They are Regular Expressions Library,
Atomic Operations Library, and Thread Support Library. The
first new library is used to perform pattern matching for
strings. The other two new libraries are specific to concurrent
programming, equipped with low-level (atomics-based) and
high-level (thread and task-based) concurrency facilities,
respectively. Moreover, three formerly-established library
constructs (i.e. auto pointers, function objects, and array I/O
operations) are deprecated in C++11. They are no longer
supported either due to the low efficiency or due to the
advanced replacers.

III. EXPERIMENTAL SETUP

In this section, we first introduce the open-source
applications used for investigating our research questions.
Then, we report the data collection procedure. Finally, we
describe the data analysis methods.

A. Studied Applications

To investigate the proposed research questions, we analyze
30 open-source applications, whose source code is obtained by
using svn and git clone tools. These applications are selected
for the following reasons: (1) they cover different application
domains listed on http://sourceforge.net, thus making the
empirical results not skewed to a specific kind of applications;
(2) they have a big difference in code size, thus making the
result for RQ4 sufficiently reliable; and (3) they are developed
as ongoing projects, thus making the experimental data up-to-
date. The detailed information of the 30 applications is shown
in Table I. As we can see from Table I, these applications
cover 10 software domains. Moreover, they vary in age (2 to
16 years) and code size (9 to 4731 KSLOC). For these
applications, we use their latest revisions by the end of 2014 to

investigate RQ1, RQ2, and RQ4 and use their historical
revisions to investigate RQ3. In our experiment, the historical
revisions are regularly selected as the last revisions in each
season after September 2011, the release time of C++11. We
do not investigate all historical revisions because the code
repositories contain many dump revisions, which may pose a
threat to the accuracy of our experimental data. For some
applications (i.e. PN, SwiftSearch, HTEditor, and ConEmu),
only a few revisions are studied. This is either due to their late
establishing time or due to the long time intervals between
adjacent revisions.

TABLE I. OPEN-SOURCE APPLICATIONS IN THE STUDY

Project
A
ge

C++
KSLOC
of latest
revision

Studied

revisions

Total C++
KSLOC1

Category

VLC 16 135.825 14 1855.855 Audio
&

Video
LameXP 5 21.449 14 315.346
MPC-HC 9 521.267 14 9581.495
MuPDF 11 16.137 14 140.816 Business

&
Enterprise

Qucs 12 125.600 13 2323.950
LibreOffice 5 4730.718 14 68554.599
LeechCraft 8 325.526 14 3819.669

Commu-
nications

MirandaNG 3 1087.472 12 11155.677
KopeteIMClient 13 348.629 14 4009.079
TortoiseGit 7 457.517 14 5153.035

Develop-
ment

PN 13 155.059 7 1084.903
KDevelop 16 108.759 14 1388.152
Warzone2100 10 186.721 12 2233.427

Games Pentobi 4 30.818 14 375.543
SuperTuxKart 8 369.355 14 3476.652
Blender 13 600.906 14 6852.224

Graphics LuminanceHDR 13 38.828 13 452.887
FreeCAD 4 1185.593 14 15992.063
GoldenDict 6 75.008 14 748.038 Home

&
Education

Kiwix 8 63.863 14 1060.158
SUMO 13 132.400 14 1651.322
rr 4 18.245 14 66.944 Science

& Engi-
neering

Trimph4php 3 80.211 10 562.450
RStudio 2 127.943 14 1300.345
KmyMoney 3 146.252 14 1993.554 Security

&
Utilities

SwiftSearch 3 8.556 6 43.196
HTEditor 13 95.517 7 712.315
ConsoleZ 8 65.056 14 840.411 System

Adimini-
stration

NVDA 9 11.291 14 139.735
ConEmu 2 203.471 5 955.516

B. Data Collection

We collect the experimental data by using “Understand”
[17], a tool that automatically analyzes the source code of
applications without manual configuration. To be specific, the
data is collected by the following steps. At the first step, we
obtain C++ files by using the “C++ Strict” option provided by
“Understand” and build an Understand database for each
studied application. At the second step, we process Understand
databases to identify the use sites of standard library
constructs, including library classes, library functions, and
library macros. Since all standard library constructs are
marked with the “std::” namespace, they can be easily detected
by running a Perl script which invokes Understand APIs. At

1 “KSLOC” means “thousand source lines of code (excluding comments)”.
Generally speaking, it is equal to “KLOC” (“thousand lines of code”).

261

the third step, we compare the names of practically used
constructs with the names of actual standard library constructs.
We do this in order to filter out those fake standard library
constructs used by developers. At the fourth step, we divide all
examined standard library constructs into the new library
group and the formerly-established library group. At the final
step, we calculate the KSLOC value and the number of C++
files for each application by looking up the metrics reported by
Understand. With these five steps, we can obtain the
experimental data set, which consists of: (1) the number of use
for each standard library (both formerly-established and new
libraries); (2) the number of use for deprecated library
constructs; (3) the number of use for standard libraries in each
application and in its historical revisions; and (4) the KSLOC
value and the number of files in each application.

C. Data Analysis

In order to answer RQ1, RQ2, and RQ3, we apply the
Wilcoxon signed-rank test to examine whether two groups of
data have a significant difference. More specifically, for RQ1,
we compare the percentages of use for the 11 standard libraries
in pair-wise. Here, the percentage is calculated as the number
of use for a specific library divided by the total number of use
for all libraries. If a few libraries exceed other libraries in the
percentage of use at the significance level of 0.05, we will
accept them as the most commonly used standard libraries.
Otherwise, we will conclude that there is not an outstanding
library that is more often used than others. For RQ2, we
compare the percentage of use for each new library with the
percentage of use for each formerly-established library. If new
libraries show a significant difference (significance level = 0.05)
from the formerly-established libraries in the percentage of use,
we will conclude that the new libraries and formerly-
established libraries are not equally commonly used. Otherwise,
we will fail to reject the hypothesis that “new libraries are as
often used as formerly-established libraries”. For RQ3, we
compare the densities of use for the deprecated library
constructs in each season after C++11 was published. The
densities are calculated both at line level (number of use for
deprecated library constructs per KSLOC) and at file level
(number of use for deprecated library constructs per file). Here,
we use the density instead of the raw number of library
construct use in order to avoid the impact brought by the
change of system size. The answer to RQ3 will be “Yes” if the
density value in one season (for instance, Dec. 2014) is
significantly lower than the density value in the former season
(for instance, Sep. 2014). Otherwise, we will fail to conclude
that the deprecated library constructs are used at a declining
frequency after C++11 was officially released. After
performing each Wilcoxon signed-rank test, we further apply
the Cliff’s , which is used for median comparison, to examine
whether the magnitude of difference is important from the
viewpoint of practical application [6]. By convention, the
magnitude of the difference is either trivial (|| < 0.147), small
(0.147-0.33), medium (0.33-0.474), or large (> 0.474) [7].

In order to answer RQ4, we use the Spearman’s rank
correlation analysis to examine whether the size of applications
is significantly positively correlated to the frequency of library
use. In previous studies [9, 10], researchers found that

applications with different sizes adopt libraries differently.
More specifically, larger applications tend to have more library
uses. However, the raw number of library use cannot
effectively reflect the frequency of library use in different
applications, because larger applications usually have more
functionalities and not surprisingly have more library uses. In
order to remove the impact of different system size, here we
use the density to replace the raw number of library use. More
specifically, we first calculate the density of library use for
each application. The densities are calculated both at line level
(number of library use per KSLOC) and at file level (number of
library use per file). Then, we calculate the Spearman’s
coefficient (rho) of the correlation. In particular, the p-value is
employed to examine whether the correlation is significant at
the significance level of 0.05. If the calculated p-value is less
than 0.05, we will conclude that applications with a larger size
adopt libraries more frequently. Otherwise, we will have a
conclusion that the size of application does not significantly
positively correlates to the frequency of library use.

IV. RESULTS AND IMPLICATIONS

In this section, we report in detail the experimental results
and discuss their implications.

A. RQ1: Which libraries are the most often used?

We employ the result from the Wilcoxon signed-rank
analysis for the percentage of library use to answer RQ1. In
particular, we apply Figure I to describe the percentage of use
for each library. In this figure, each boxplot shows the median
(the horizontal line within the box), the 25th and 75th
percentiles (the lower and upper sides of the box), and the
mean value (the small red rectangle inside the box). By
observing Figure I, we can see that the percentages of use for
three libraries (i.e. Containers, Utilities, and Strings) are
obviously larger than the percentages of use for other libraries
(i.e. Iterators, Algorithms, Numerics, I/O, Localizations,
Regular Expressions, Atomic Operations, and Thread Support),
indicating that these three standard libraries are the most
commonly used by developers. The data listed in Table II
confirms our observation from Figure I. This table displays the
result from the Wilcoxon signed-rank analysis for the pair-
wise comparisons between three standard libraries (the first
row) and the other eight standard libraries (the first column).
In particular, we report the significance (p-value) and the
magnitude (Cliff’s ) of the difference, respectively. To be
specific, for the Containers Library, it significantly
outperforms other eight libraries in the percentage of use (all
p-values < 0.001). Moreover, the effect sizes are large in terms
of Cliff’s  (0.804  ||  0.966). The Utilities Library, as
expected, shows a similar result, and the effect sizes are
considerably large (0.931  ||  0.973). For the Strings
Library, its percentage of use is also significantly larger than
the other eight libraries, with seven p-values less than 0.001
and one p-value equaling to 0.017. Moreover, the effect sizes
are either small ( = 0.329), moderate ( = 0.393), or large
(0.482  ||  0.862). To summarize, the core observation from
Table II is that three new libraries significantly outperform the
other eight libraries in the percentage of use and the magnitude
of difference is relatively large. Therefore, we have the

262

Containers Iterators Algorithms Utilities Strings Numerics Input/Output Localizations
Regular

Expresstions
Atomic

Operations
Thread
Support

0
20
40
60
80

100

%
 o

f
u

s
e

Figure I. Boxplot showing the percentage of use for standard libraries

TABLE II. RESULTS OF WILCOXON SIGNED-RANK ANALYSIS FOR RQ1

Containers Utilities Strings

p  p  p 
Iterators <0.001 0.820 <0.001 0.949 <0.001 0.393
Algorithms <0.001 0.911 <0.001 0.966 <0.001 0.642
Numerics <0.001 0.859 <0.001 0.973 <0.001 0.482

I/O <0.001 0.804 <0.001 0.931 0.017 0.329
Localizations <0.001 0.947 <0.001 0.963 <0.001 0.784

Regular exp. <0.001 0.963 <0.001 0.967 <0.001 0.853
Atomic op. <0.001 0.966 <0.001 0.967 <0.001 0.862

Thread sup. <0.001 0.959 <0.001 0.967 <0.001 0.838

* All the p-values are BH-adjusted

following conclusion for RQ1: three standard libraries (i.e.
Containers Library, Utilities Library, and Strings Library)
are significantly more often used than the other libraries.

In order to find out which library constructs play a key role
in Containers, Utilities, and Strings, we further pick out the
most commonly used library constructs on ground of their
number of use. All library constructs are divided into three
groups, namely library classes, library functions, and library
macros. According to the obtained result, library functions
(73.95%) are more often used than library classes (7.89%) and
library macros (18.16%). One possible explanation for this is
that library functions are generally used as APIs and they are
widely applied to operate elementary data structures (for
instance, bitsets, shared pointers, maps, etc). Also, we find that
many library classes are implemented as templates, especially
the STL templates (for instance, map, set, list, and vector) and
the Utilities templates (for instance, tuple, pair, bitset,
numeric_limits, shared_ptr, and auto_ptr). This indicates that
library templates play an important role in creating the basic
data structures, which is in line with our previous findings
about the utilization of templates [16]. For library macros, we
find that the most commonly-used macros are inclusive
members of Utilities. This result is not surprising, because an
important role of the Utilities Library is to provide language
support with built-in macros like UINT8_MAX, INT16_MAX,
EXIT_SUCCESS, etc.

Implication. From the empirical results for RQ1, we
advise developers, especially the new comers of open-source
projects, to be proficient with the usage of Containers, Utilities,
and Strings. Since these standard libraries are the most often
used in real software development, adopting them effectively
is beneficial to increase the efficiency of programming.

B. RQ2: Are the new libraries of C++11 used as often as the
formerly-established libraries?

We employ the result from the Wilcoxon signed-rank
analysis for the percentage of new library use to answer RQ2.
Here, we exclude the experimental data provided by the
applications which were established before C++11 was

released. We do this mainly because these applications have
already existed before the delivery of new libraries, thus
investigating their use of new libraries may pose a threat to the
result for RQ2. To eliminate this negative impact, we only
employ the data of new library use in the applications which
were established after the delivery of C++11. Table III shows
the results for the pair-wise comparisons between the adoption
of new libraries (the first row) and the adoption of formerly-
established libraries (the first column). In particular, we report
the significance (p-value) and the magnitude (Cliff’s ) of the
difference, respectively. To be specific, for the Regular
Expressions Library, its percentage of use is significantly
different from the percentage of use for seven formerly-
established libraries (p-values  0.016). Moreover, the effect
sizes are large in terms of Cliff’s  (0.877  ||  1). The only
exception is the Localizations Library, which does not show a
significant difference from Regular Expressions (p-value =
0.281). For the other two new libraries (i.e. Atomic Operations
and Thread Support), they show a similar result as the Regular
Expressions Library. From this reasoning, we conclude that
new libraries and formerly-established libraries are differently
used. Actually, the new libraries of C++11 are much less
often used than the formerly-established libraries.

TABLE III. RESULTS OF WILCOXON SIGNED-RANK ANALYSIS FOR RQ2

Regular exp. Atomic op. Thread sup.

p  p  p 
Containers 0.010 -1.000 0.010 -1.000 0.010 -1.000

Iterators 0.016 -0.877 0.016 -0.889 0.034 -0.827
Algorithms 0.016 -0.877 0.016 -0.889 0.019 -0.802
Utilities 0.010 -1.000 0.010 -1.000 0.010 -1.000
Strings 0.016 -0.877 0.016 -0.889 0.019 -0.877
Numerics 0.010 -1.000 0.010 -1.000 0.010 -0.926

I/O 0.016 -0.877 0.016 -0.889 0.019 -0.877
Localizations 0.281 -0.333 0.100 -0.444 0.419 -0.309

* All p-values are BH-adjusted; p-values > 0.05 are shown in grey background.

Implication. The result for RQ2 is opposed to our initial
expectation that new libraries and formerly-established
libraries should be equally used. One possible explanation for
this is that most developers are still not familiar with the usage
of new libraries, as the new libraries are been a part of the C++
standard for only three years. For this reason, we highly
recommend developers to pay special attention on learning the
usage of new libraries (i.e. Regular Expressions Library,
Atomic Operations Library, and Thread Support Library) and
employ them when they need to write string matching or
concurrent programs.

C. RQ3: Are the deprecated library constructs used at a
declining frequency after C++11 was published?

We employ the result from the Wilcoxon signed-rank
analysis for the density of use for deprecated library constructs

263

Sep

2011

Dec

2011

Mar

2012

Jun

2012

Sep

2012

Dec

2012

Mar

2013

Jun

2013

Sep

2013

Dec

2013

Mar

2014

Jun

2014

Sep

2014

Dec

2014

0.0

0.1

0.2

0.3

0.4

#
 u

s
e
 p

e
r

K
S

L
O

C

(a) Density of use for the deprecated library constructs (at line level)

Sep

2011

Dec

2011

Mar

2012

Jun

2012

Sep

2012

Dec

2012

Mar

2013

Jun

2013

Sep

2013

Dec

2013

Mar

2014

Jun

2014

Sep

2014

Dec

2014

0.00

0.02

0.04
0.06

0.08

0.10
0.12

#
 u

s
e
 p

e
r

fi
le

(b) Density of use for the deprecated library constructs (at file level)

Figure II. Density of use for the deprecated library constructs

to answer RQ3. In particular, we use Figure II to describe the
density values both at line level (number of use per KSLOC)
and at file level (number of use per file). In Figure II, each
boxplot shows the median (the horizontal line within the box),
the 25th and 75th percentiles (the lower and upper sides of the
box), and the mean value (the small red rectangle inside the
box). By observing the two subfigures, we do not see an
obvious declining trend for the density values from Sep. 2011
to Dec. 2014, indicating that the deprecated library constructs
are not decreasingly frequently used after C++11 was released.
The data listed in Table IV confirms our observation from
Figure II. In Table IV, we show the Wilcoxon signed-rank
analysis results for comparing two adjacent seasons since
September 2011. Of the 13 comparison results listed in the
“Line level” group, we totally find 6 significant results (p-
values < 0.05), whose effect sizes are either trivial or small in
terms of Cliff’s  (0.008  ||  0.163). By observing the “File
level” column, however, we only have 3 significant results,
whose effect sizes are relatively negligible (0.044  ||  0.108).
To summarize, the core observation from Table IV is that the
density of use for the deprecated library constructs does not
significantly decrease from late 2011 to the end of 2014. From
this reasoning, we draw the conclusion for RQ3 as the
deprecated library constructs are not used at a declining
frequency after C++11 was published.

TABLE IV. RESULTS OF WILCOXON SIGNED-RANK ANALYSIS FOR RQ3

Groups for comparison
Line level File level

p  p 
Dec.2011 vs. Sep.2011 0.060 -0.006 0.133 -0.008
Mar.2012 vs. Dec.2011 0.358 -0.039 0.529 0.003
Jun.2012 vs. Mar.2012 0.032 -0.025 0.087 0.008
Sep.2012 vs. Jun.2012 0.060 -0.017 0.116 -0.019
Dec.2012 vs. Sep.2012 0.005 -0.163 0.007 -0.108
Mar.2013 vs. Dec.2012 0.032 -0.047 0.031 -0.044
Jun.2013 vs. Mar.2013 0.157 0.015 0.446 0.119
Sep.2013 vs. Jun.2013 0.377 0.019 0.534 0.014
Dec.2013 vs. Sep.2013 0.083 -0.055 0.345 -0.033
Mar.2014 vs. Dec.2013 0.074 -0.080 0.095 -0.069
Jun.2014 vs. Mar.2014 0.039 0.008 0.097 -0.003
Sep.2014 vs. Jun.2014 0.032 -0.080 0.031 -0.080
Dec.2014 vs. Sep.2014 0.013 -0.050 0.087 -0.025

* All p-values are BH-adjusted; p-values > 0.05 are shown in grey background.

Implication. One possible explanation for RQ3 is that most
developers do not realize that several long-lived library
constructs (i.e. auto pointers, function objects, and array I/O
operations) have been deprecated since C++11. For this reason,
we advise developers to keep an eye on the changes in the new
C++ standards and update their code accordingly. In particular,
we wish developers to remove the uses of the deprecated
library constructs, because these constructs will completely
stop to be supported since C++17 [18], the next major revision
of the C++ programming language.

D. RQ4: Do applications with a larger size adopt libraries
more frequently?

In order to answer RQ4, we use the Spearman’s rank
correlation analysis described in Section III.C to examine the
correlation between the size of application and the density of
library use. Here, we calculate application size both as
KSLOC (line-level size) and as the number of files (file-level
size), with the purpose to investigate RQ4 from different
perspectives and obtain a consistent result. To be specific, the
result of Spearman’s rank correlation analysis at line level
shows that application’s KSLOC does not significantly
correlate to the density of library use (number of library use
per KSLOC) (p-value = 0.896). A similar result is reported by
the Spearman’s rank correlation analysis at file level, which
shows that the number of files and the density of library use
(number of library use per file) are not significantly correlated
(p-value = 0.799). From this reasoning, we conclude that the
size of application is not significantly correlated to the density
of library use. In other words, applications with a larger size
do not adopt libraries more frequently.

Implication. According to Robillard and DeLine [8],
library users can efficiently understand an API if they are
provided with examples to demonstrate “best practices” for
using the API. Thus, it would be valuable work to explore real
examples of library use in open-source applications. Since the
conclusion for RQ4 indicates that applications of different size
do not adopt libraries at different frequency, we suggest new
comers of open-source projects to learn API usage examples
by reading the source code of small applications. This can help
them obtain better learning effect by avoiding understanding
the complex source code of large applications.

264

E. Threats to Validity

There are four possible threats to validity in this study. The
threat to the construct validity is the correctness of library use
sites reported by “Understand”. Since many studies have
produced reliable empirical results by using “Understand” [17],
the data in our study can also be considered as acceptable. The
threat to the internal validity is that we do not exclude new
library constructs from the formerly-established libraries. But
according to our empirical data, the new library constructs
only account for a relatively small proportion of the use
(1.23%) for formerly-established library use. For this reason,
our empirical results are still reliable. The first threat to the
external validity is that we only use open-source applications
to conduct the experiment. The empirical results may not be
applicable to industrial applications, as different ways of
software development probably make a difference in the
adoption of libraries. The second threat to the external validity
is that we only investigate standard libraries. The third-party
libraries are not included mainly because they are generally
considered not as widely used as standard libraries.

V. RELATED WORK

Due to page limitation, here we only discuss a few studies
most related to our work. In recent years, more and more
researchers have started to investigate the adoption of software
libraries in an empirical way. Torres et al. [9] were among the
first to study the usage of Java concurrency libraries and they
found a list of commonly-used concurrency library constructs.
Also, they concluded that medium to large-sized applications
tend to use more concurrency constructs. However, this
conclusion was drawn by simply comparing the raw number
of library use among small applications (1-20KLOC), medium
applications (20-100KLOC), and large applications
(>100KLOC). By comparison, we use the Spearman’s rank
correlation analysis method to test the relationship between the
size of application and the frequency of library use, which can
produce a more reliable result. Another related study was an
empirical investigation on C# parallel libraries performed by
Okur and Dig [10], who showed that applications with
different sizes have different adoption trends. However, they
only compare the raw number of library use among different
applications instead of investigating the frequency of library
use. For this reason, this finding is limited to some extent.
Before this study, we have already performed an empirical
investigation on the adoption of C++ templates [16], which
showed that STL predominates the overall use of library
templates. Compared with our previous work, this paper
investigates the adoption of C++ libraries at a higher level by
focusing on the whole C++ Standard Library, not limited to
library templates. The other related work includes the
investigation on MPI open-source applications [11], the study
on Java library use trend [12], the research on Java API
popularity [13], the assessment on third-party libraries [14],
and the exploration on third-party component reuse [15].

VI. CONCLUSION AND FUTURE WORK

In this paper, we conduct a study on the adoption of C++
libraries in real applications. The whole study is performed by
investigating four research questions regarding the most often

used libraries, the difference between the use of the new
libraries and the use of the formerly-established libraries, the
trend of adopting deprecated library constructs, and the
relationship between the size of application and the frequency
of library use. By employing inferential statistics, we get
reasonable results for the proposed research questions. Based
on the empirical results, we give four actionable suggestions,
which could help developers, especially the new comers of
open-source projects, learn and use libraries efficiently. In the
future work, we will investigate more research questions and
perform an empirical study on more applications to understand
the adoption of C++ libraries in depth.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (61170071, 61432001, 91418202,
61472175, 61472178), the National Natural Science
Foundation of Jiangsu Province (BK20130014), and the
program B for Outstanding PhD candidate of Nanjing
University.

REFERENCES

[1] ISO/IEC. Information Technology—Programming Languages—C++.
ISO/IEC 14882-1998. 1998.

[2] ISO/IEC. Information Technology—Programming Languages—C++,
Second Edition. ISO/IEC 14882-2003. 2003.

[3] ISO/IEC. Information Technology—Programming Languages—C++,
Third Edition. ISO/IEC 14882-2011. 2011.

[4] N. Josuttis. The C++ Standard Library: A Tutorial and Reference -
Second Edition. Addison-Wesley, 2012.

[5] B. Stroustrup. The C++ programming language – Fourth Edition.
Addison-Wesley, 2013.

[6] E. Arisholm, L. Briand, B. Johannessen. A systematic and
comprehensive investigation of methods to build and evaluate fault
prediction models. Journal of Systems and Software, 83(1), 2010: 2-17.

[7] J. Romano, J. Kromrey, J. Coraggio, J. Skowronek. Appropriate
statistics for ordinal level data: Should we really be using t-test and
Cohen’s d for evaluating group differences on the NSSE and other
surveys? In: Annual Meeting of the Florida Association of Institutional
Research, 2006: 1-3.

[8] M. P. Robillard, R. DeLine. A field study of API learning obstacles.
Emp. Soft. Eng., 16(6), 2011: 703-732.

[9] W. Torres, G. Pinto, B. Fernandes, J. P. Oliveira, F. Ximenes, F. Castor.
Are Java programmers transitioning to multicore? A large scale study of
java FLOSS. SPLASH, 2011: 123-128.

[10] S. Okur, D. Dig. How do developers use parallel libraries? FSE, 2012:
Article No. 54.

[11] C. Marinescu. An empirical investigation on MPI open source
applications. EASE, 2014: Article No. 20.

[12] Y. M. Mileva, V. Dallmeier, M. Burger, A. Zeller. Mining trends of
library usage. IWPSE-Evol, 2009: 57-62.

[13] Y. M. Mileva, V. Dallmeier, A. Zeller. Mining API popularity. TAIC
PART, 2010: 173-180.

[14] S. Blom, J. Kiniry, M. Huisman. A structured approach to assess third-
party library usage. ICECCS, 2013: 212-221.

[15] W. Schwittek, S. Eicker. A study on third party component reuse in Java
enterprise open source software. CBSE, 2013: 75-80.

[16] D. Wu, L. Chen, Y. Zhou, B. Xu. An empirical study on the adoption of
C++ templates: library templates versus user defined templates. SEKE,
2014: 144-149.

[17] SciTools Understand. https://scitools.com/.

[18] C++17. http://en.wikipedia.org/wiki/C%2B%2B17.

265

(DOI reference number: 10.18293/SEKE2105!-033)

A Case Study Approach: Iterative Prototyping Model

Based Detection of Macular Edema in Retinal OCT
Images

Sadaf Sahar, Sadaf Ayaz, M.Usman Akram, Dr. Imran Basit(AFIO)
Department of Computer Engineering

College of Electrical & Mechanical Engineering NUST
Rawalpindi, Pakistan

sadafsahar21@gmail.com, sadafayaz32@gmail.com, usmakram@gmail.com, drimranbasit@gmail.com

Abstract—Highly Reliable Automated medical diagnosis systems
are of critical importance. Such systems aid in early detection of
diseases and prevention of its further progression. Development
of such a reliable and efficient software system is possible using a
suitable system development life cycle (SDLC) model only. A
SDLC model develops a system in a structured, deliberate and
methodical mode and provides a very reliable and efficient
system within limited resources and time. Macular edema is the
blurring or loss of central vision which is caused as a result of
Diabetic Retinopathy and Analysis of OCT images helps in
identification of Macular Edema. The aim of this research is the
successful detection of Macular Edema using Iterative
Prototyping SDLC model. First the extraction of ILM layer has
been done by using Active Contour based Segmentation and
Curve Fitting Techniques then a new technique is proposed in
this research for the successful localization of fovea in retinal
ILM layer by using distance based method. Finally the detection
of Macular edema has been done on the basis of analysis of fovea
region. The system is evaluated using a local dataset of OCT
images which is gathered with the help of Armed Forces institute
of Ophthalmology. The dataset consists of 550 images and the
developed system gives an accuracy of 84%.

Keywords—SDLC, Iterative Prototyping, Fovea Centrails,
Optical Coherence Tomography, Macula, Macular Edema.

I. INTRODUCTION

A System Development Life Cycle (SDLC) is a
methodology which is used to represent the process of
development of a system and the system is developed in a
structured, deliberate and methodical mode which does
reiterate every single stage of the Life Cycle. It is the
development of a system or an application following the
process of planning, creating, testing and deploying for the
success of system under development. There are multiple
SDLC models like waterfall model, iterative model and
incremental model etc. and to ensure the success of system
developed, the perfect model to follow is decided. Figure1
shows different phases of a Life Cycle Model.

The most suitable model is selected on the basis of Type of
system to be developed, Requirements and Functionalities of
the system, Skills and Experience. A suitable SDLC is a key
to the success of project.

Figure 1: System Development Life Cycle Phases

Rapid prototyping is the type of SDLC model in which
quick prototypes are delivered for assessment and after doing
modifications, a new prototype is again developed according to
new requirements. Edema detection system is aimed to provide
highly accurate Edema detection and for that it is necessary to
get quick and frequent response from a specialist, during
development, who will be using this system. Rapid Prototyping
Model is the one which can provide help in development of a
system in this way. Hence the development of this system is
done using Iterative Prototyping SDLC model.

Macular Edema is the disease in which the macular part of
eye gets damaged causing central vision blurring and in severe
case the loss of vision. Macular edema is caused due to the
leakage of fluids out of blood vessels in retina. The fluids
leakage out of blood vessels causes swelling and thickening of
Macula and as a result loss of detailed vision. Figure2 (top)
shows the macular edema pointed out in an OCT image in
form of cystic pockets and rise in Fovea and Figure2 (bottom)
shows a fundus image with edema in yellow color. Since
Macular Edema causes prominent changes in fovea region in
OCT that’s why Macular Edema can be identified through the

localization of fovea region and after that analysis of fovea
region in an OCT image. On the basis of changes occurring in
fovea region, Macular Edema can be easily identified.

(DOI Reference Number: 10.18293/SEKE2015-033) 266

mailto:sadafsahar21@gmail.com
mailto:sadafayaz32@gmail.com
mailto:usmakram@gmail.com

Figure 2: Macular Edema Identification in OCT and Fundus
Image

The paper proposes a novel method for identification of
Macular Edema in Retinal OCT images using Iterative
prototyping SDLC model. Section-I is an introduction of
Edema and SDLC model followed by section-II having related
work done for Fovea and Edema detection. Section-III is the
detailed Methodology section having step by step development
of edema detection system. Section-IV describes Results
obtained by the system developed and finally Section-V
contains conclusion and an overview of the complete system
development process.

II. RELATED WORK

There is no work done already for Fovea and Edema detection
using OCT images but there are many algorithms proposed by
many researchers for fovea and edema detection in Digital
Fundus Images [13-16]. One is the detection of fovea in
fundus images is by using some morphological operation of
Image processing. It finds out the location of optic disk first
and then identifies the location of fovea. Since fovea is the
non-vascular region of fundus image that’s why it is the dark

most part of the image. In this way a collection of pixels
located at the center and dark colored are marked as fovea [1].

Spatial domain filteration is another method which is
used for the detection of fovea. Various gray scale image
operations are applied on the fundus image first. Then spatial
filteration is applied to extract the macular region. After that
fovea is identified as the lowest frequency values in the
Macula [2].
Since fovea is the non-vascular region of macula and does not
have any blood vessels. By using this property of fovea
another technique has been proposed for fovea identification.
It identifies the presence or absence of fovea on the basis of
blood vessels presence or absence. The thickness of blood
vessels is calculated in macula and the region with minimum
thickness is considered as fovea [3].

Another method for detection of fovea in fundus
images is with the help of color bands. A moving window
calculates the average color intensity of the image after the
extraction of red and green components of fundus image. The
window having minimum average intensity value is marked as
fovea. These intensities are calculated after the fusion of red
and green components [4].

By using the properties of blood vessels and information of
optic disk in fundus image, another algorithm based upon
optic disk is also proposed [5]. Graphically represented
intensities of color bands are also helpful in the detection of
optic disk and fovea region [6].

The extraction of retinal layers is also very important
before fovea detection in OCT images and there are many
methodologies proposed for this. One method is the assigning
of normal feature values for all the layers. Then for a given
image, scanning is done vertically. When the values of
features start to deviate from present values then it is checked
in the next layer. If this condition meets then it is marked as
the separation mark between the two layers [7].

Probabilistic model is another one for the extraction
of the layers. A probabilistic value for each pixel in the layer
is calculated after some preprocessing. The value of layer
defines the probability of the pixel to belong to that layer. If
the value of layer is high then the pixel will more probably
belong to that layer. This is done by using random forest
classifier which separates it into layers [8]. Table3.1 shows an
overview of all the related work done.

Due to tilted OCT images during scanning, it
becomes sometimes difficult to process the image easily so the
alignment of image is very necessary. The flattering of layers
aligns them to the x-axis and then bilinear interpolation can be
easily used for image alignment [9] [10]. One method for the
detection of Macular Edema in fundus images is through the
detection of exudates in fundus images. In this method first of
all the detection of Optic Disk is very necessary and it has
been done by the use of morphological filteration techniques
and watershed transforms. After that exudates have been
found by their high variations in their gray levels and
morphological re-construction techniques have been used to
determine their contours. Finally Macular Edema detection
has been done on the basis of exudates presence [11].

In another method for the detection purpose of
Macular edema it is necessary to find the presence of all of the
possible exudates on retinal surface. In this method the
exudates have been enhanced with the help of Gabor
filteration bank and a binary mask has been generated for the
possible locations of exudates. Hence the Macular edema has
been identified on the basis of number and locations of
exudates on the surface of retina in colored fundus images
[12].

III. PROPOSED METHODOLOGY

The whole project development is divided into multiple
modules and their sub modules. A prototype module is
developed for each module and is handed over to a specialist
for feedback. The changes mentioned by the specialist are
noted and another prototype is developed on the basis of
changes identified. Once the prototype of the changed
requirements is completed, it is again handed over to the
specialist for feedback and this process goes on as long as the
physician gets satisfied with the prototype delivered. This
process is repeated for all individual modules. After the entire
prototype modules are approved, the final development is

267

done for the improvement of quality measures of the system.
In this way Rapid Prototype is helping in the development of a
highly reliable system which is being verified by the user after
each single step and the error cost is reducing very much since
all the errors are being removed with the development of
every next prototype.
Following steps are to be followed during the development of
system:

 Requirements Elicitation

 Requirements Specifications

 Architectural Design

 Implementation

 Testing

 Feedback form Specialist

 Improved Prototype Systems development until
approval from user

 Improvement of Quality of Final prototype

 Deployment

 Maintenance
Figure3 shows an overview of flow of development from
requirements gathering to the completion and maintenance of
system.

Figure 3: Flow Diagram of the Algorithm

A. Requirements Elicitation

Requirements Elicitation is the first most step of any project
development. In this step maximum number of possible
requirements are tried to collect. These requirements are not in
a well written and structured form but this is the step where
most of the information is collected about the system under
development. The requirements for this project are collected
from the Ophthalmological Department of AFIO. Out of
multiple techniques of requirements elicitation e.g.
Brainstorming, Interviewing, Questionnaires etc., the
requirements for this project are collected through the
Interviewing technique. Many interviews are conducted with
the potential users and stakeholders of the project and

maximum numbers of requirements are collected for the
project. Information shown in Figure4 about the product has
been collected after all the interview sessions.

Figure 4: Requirements Elicitation Information Gathered

B. Requirements Specification

In requirements Specification stage requirements roughly
gathered are studied deeply and their feasibility is estimated
and on the basis of feasibility of each requirement three
different categories are defined for a structured view of
requirements shown in Figure5. Three types of requirements
are:

 Functional Requirements
 Non-Functional Requirements
 Constraint Requirements

Figure 5: (Left) Functional Requirements; (Middle) Non-

Functional Requirements; (Right) Constraint Requirements

C. Architectural Design

Architectural design consists of high level and low level
design of the system. It represents the whole system as a
model. The model can be in different forms like Use Case
diagram, Data Flow Diagram, Sequence Diagram etc. These
diagrams are used for the understanding of the system. These
diagrams also help in clarifying different confusions about any
functionality or any other thing. These diagrams are given to
the users of the system for an overview of the system to be
designed and if there is any misunderstanding then it is
modified at this point. Hence saving the time, effort and
resources. Following are some design diagrams used for the
understanding and overview of the system:

 Use Case Diagram
 Data Flow Diagram
 Sequence Diagram

Use case diagram is helpful in understanding of the
requirements as it is a form of user and system interaction and
each use case depicts a scenario of interaction between the
user of the system and the system. The user/actor can be a
person and can also be some other system. Figure6 is a use

268

case diagram showing the whole system and its interaction
with users.

Figure 6: Edema Detection Use Case Diagram

Data flow diagrams show the flow of data between different
units and processes. It helps in understanding the project in
terms of data processing. It also helps in testing phase as it
keeps track of the data flowing between nodes hence an error
cause can be estimated. Figure7 shows the data flow diagram
of the system.

Figure 7: System Data Flow Diagram

A sequence diagram shows the occurrences of different
processes at specific intervals of time from start to end of a
process. It also shows the life time of different sub processes.
Figure8 shows the sequence diagram of the system developed.

Figure 8: System Sequence Diagram

D. Implementation, Feedback, Modifications

The whole project is divided into three modules.
1. ILM extraction
2. Fovea Localization
3. Edema Detection

There are also sub modules of each main module. Figure9
shows the division of whole project into different modules.
Since the modules are not independent but are each next
module is depending upon the previous one. That’s why three

sub modules of main module are developed one by one. First
of ILM Extraction module is developed by rapid prototyping.
After 4-5 prototypes this module has been approved and
finalized. After that the second module is developed by rapid
prototyping. All the errors and bugs are removed with each
next prototype. Similarly final module has been approved and
finalized after some prototypes. Fovea localization and edema
detection algorithms are changed many times as the results
were either not good or were not acceptable by user. Rapid
prototyping has helped in finally achieving a perfect system
which is acceptable and according to the needs of user.

Figure 9: Modules Divisions

The main aim of the system under development is the
conversion of an OCT image into a Fovea marked image and
after that the labeling of that image as Edema or Non-Edema
scan. Following processing is done from Input image to the

269

conversion of Output image. Figure10 is an overview of
Methodology steps.

Figure 10: Implementation Overview

Since Macular edema causes prominent changes in top OCT
layer of retina which contains fovea so for the purpose of
Edema detection, Fovea is to be localized first and for that
Extraction of region of Interest (ROI) is the main objective
first. Hence an Input OCT image is taken as shown in
Figure11(a). Then the input image is converted into YCbCr
color space in Figure11(b) to get prominent layers boundaries.
In the next step gradient of each color component is calculated
separately using Prewitt operator as each color component
contributes in the layer boundary formation. After that
gradients of all three color components are combined and
Thresholding is applied to remove background and much
Noisy small objects are removed by performing Connected
Components Analysis. Further Noise is removed by taking
distance between centroids of each object and extra noisy
small objects are removed on the basis of minimum threshold
distance between objects. Small objects at a distance greater
than threshold are removed. Figure11(c) shows the centroids
of each object marked in blue and Figure11(d) shows noise
free ROI extracted from original input grayscale image. This
ROI is further used as an initial Mask for Active Contours
Based Segmentation. This segmentation provides fine layer
boundaries out of input grayscale image. Figure11(e) shows
the segmented layers region. After that the upper and lower
layer boundaries are separated out of segmented image and
smoothing of boundaries is done by performing Polynomial
Curve Fitting. Figure11(f) shows the upper and lower layer
boundaries. Next the alignment of layers is done by drawing a
straight line between two extreme points of layers. It helps in
alignment of tilted OCT images. Since Edema is the swelling
in macula which results in a Rise in macular region of OCT.
Point by Point distance between upper layer and Straight line
drawn is taken and the maximum distance between these two
is noted. If the maximum distance value is greater than a
specific threshold and lies in the middle area of layer than it is

marked as an Edema otherwise as Non-edema. Figure11(g)
shows the aligned and Edema Marked OCT Image.

Figure 11: (a) Input Image, (b) Transformed Image, (c)

Centroids Labeled, (d) ROI, (e) Segmentation, (f) Layers
Boundaries, (g) Edema Labeled Output Image

E. Quality Improvement, Deployment, Maintainance

White Box testing of the system developed is performed by
Statement Coverage and Boundary Value Analysis is used for
Black Box testing i.e. the testing of each module and each sub
module. In boundary value analysis, each functionality is
tested by three input values. One is the normal Image, Second
is abnormal and third one is poor quality and corrupt image. In
this way all the functionalities are first unit tested for these
three kind of images. After that sun modules are combined
and integration testing is done. Finally System testing is done
for the whole system. This testing phase is repeated after
every single prototype development for the high quality and
bug free system achievement. Since in many cases the Rapid
prototyping model does miss some phases like testing mostly
to provide the prototype quickly and making the quality of
product risky but in this project testing is done after the
development of each single prototype to keep the system
totally error free. Also the performance testing of final product
after prototyping phase completion is done by its usability
testing, stress testing, Recovery Testing etc. to increase the
quality of end product.
Next thing is the quality improvement of the final product
which is improved in terms of response. After this the system
has been deployed and the integration with legacy system is
improved in the maintenance phase.

270

IV. RESULTS

Since there are no Datasets available for such system, that’s

why the OCT images used for the testing of Edema
Identification are collected from AFIO. First the images are
manually marked by some Specialist and then these images are
labeled by using this system. Finally the results of both images
are compared and hence the performance and accuracy of
system is calculated. A local dataset of 50 images is collected
for testing. The dataset contains both with Edema and without
Edema presence images in which 15 images are normal and 35
are with Edema. This system correctly classifies 14 images
normal and 28 images of Edema and hence the accuracy of
system is 84% with 0.93 Sensitivity value and 0.8 Specificity
value. Figure12 shows the results of some randomly selected
images from dataset.

Figure 12: (Top Row) Input Images, (Middle Row) Smooth Top
Layer Extracted, (Bottom Row) Edema Localized OCT Images

V. CONCLUSION & DISCUSSION

SDLC is the step by step development of a system to get an
Efficient and Reliable system. It helps in Organizing and
Efficiently managing the development life cycle to achieve the
desired product within available Time and Resources. OCT
imaging is a new technique for the detailed imaging of retina.
Analysis of OCT images is helpful in detection of multiple
diseases as the changes occurring in the retinal layers due to
some disease can be easily observed with OCT image
analysis. Macular Edema is the disease in which the sharp and
pin-point vision gets affected. Since there is no work already
done for the detection of such things using OCT imaging so in
this research a new technique is proposed for the detection of
Edema in OCT images using an appropriate SDLC model. It
works on the principle of line-layer distance calculation and
the labeling of Edema at the maximum positive distance point.
Before that the upper most retinal layer is successfully
extracted out of OCT image which is the key element for
further Edema Identification processing. The extraction of
ILM layer is done by using Active contour Based
segmentation and polynomial Curve fitting techniques.
Similarly the identification of Edema is done on the basis of
rise in fovea region from a specific threshold. This system is
further tested for a data set of 50 images and Edema detection
gives an accuracy of 84%.

ACKNOWLEDGMENT

We might want to recognize the assistance and exceptionally
kind support of AFIO (Armed Forces Institute of
Ophthalmology), Rawalpindi. We additionally say thanks to
National ICT R&D fund, Pakistan for their monetary support.

REFERENCES
[1] Asim, K.M., Basit, A. , Jalil, A.. “Detection and localization of fovea in

human retinal fundus images,” 2012 International Conference on
Emerging Technologies (ICET), 2012.

[2] Guven, A. ; Oner, A.O. ; Kara, S. “Automated location of optic disk and
fovea in color fundus images” 14th National Biomedical Engineering
Meeting, 2009. BIYOMUT 2009.

[3] Ziyang Liang ; Wong, D.W.K. ; Jiang Liu ; Ngan-Meng Tan ; Xiangang
Cheng ; Cheung, G.C.M. ; Bhargava, M. ; Tien Yin Wong “Automatic
fovea detection in retinal fundus images” Industrial Electronics and
Applications (ICIEA), 2012.

[4] Veras, R., Silva, R. ; Aires, K. ; Medeiros, F. “Automatic Detection of
Fovea in Retinal Images Using Fusion of Color Bands” Graphics,
Patterns and Images (SIBGRAPI), 2014.

[5] Kovacs, L. ; Qureshi, R.J. ; Nagy, B. ; Harangi, B. ; Hajdu, A. “Graph
based detection of optic disc and fovea in retinal images” Soft
Computing Applications (SOFA), 2010.

[6] Samanta, S; Saha, S.K. ; Chanda, B. “A Simple and Fast Algorithm to
Detect the Fovea Region in Fundus Retinal Image” Emerging
Applications of Information Technology (EAIT), 2011.

[7] Yogesh Kumar A., Sasikala M “Texture Analysis of Retinal Layers in
Spectral Domain OCT Images” International Journal of Emerging
Technology and Advanced Engineering Volume 2, Issue 12, December
2012.

[8] Andrew Lang, Aaron Carass, Elias Sotirchos, Peter Calabresi, and Jerry
L. Prince “Segmentation of retinal OCT images using a random forest
classifier”Proc SPIE. March 13, 2013.

[9] Yang Q, Reisman CA, Wang Z, Fukuma Y, Hangai M, Yoshimura N,
Tomidokoro A, Araie M, Raza AS, Hood DC, Chan K. “Automated
layer segmentation of macular OCT images using dual scale gradient
information”. Opt Express. 2010.

[10] Garvin M, Abramoff M, Wu X, Russell S, Burns T, Sonka M.
“Automated 3-D intra retinal layer segmentation of macular spectral-
domain optical coherence tomography images”. IEEE Trans MedImag.
2009.

[11] Thomas Walter, Jean-Claude Klein, Pascale Massin, and Ali Erginay “A
Contribution of Image Processing to the Diagnosis of Diabetic
Retinopathy—Detection of Exudates in Color Fundus Images of the
Human Retina” IEEE TRANSACTIONS ON MEDICAL IMAGING,
VOL. 21, NO. 10, OCTOBER 2002.

[12] Umer Aftab and M. Usman Akram “Automated Identification of
Exudates for Detection of Macular Edema” 2012 Cairo International
Biomedical Engineering Conference (CIBEC) Cairo, Egypt, December
20-21, 2012.

[13] M. U. Akram and S. A. Khan, ”Automated detection of dark and bright
lesions in retinal images for early detection of diabetic retinopathy”,
Journal of Medical Systems (JOMS), vol. 36, no. 5, 3151-3162, 2012.

[14] A. Tariq, M. U. Akram, A. Shaukat, S. A. Khan, “Automated Detection
and Grading of Diabetic Maculopathy in Digital Retinal Images”,
Journal of Digital Imaging, vol. 26, no. 4, pp. 803-812, 2013.

[15] M. U. Akram, A. Tariq, M. A. Anjum, M. Y. Javed, ”Automated
Detection of Exudates in Colored Retinal Images for Diagnosis of
Diabetic Retinopathy”, OSA Journal of Applied Optics, vol. 51 no. 20,
4858-4866, 2012.

[16] M. U. Akram, S. Khalid, S. A. Khan, ”Identification and Classification
of Microaneurysms for Early Detection of Diabetic Retinopathy”,
Pattern Recognition, vol. 46, no.1, 107-116, 2013.

271

State Key Laboratory for Novel Software Technology at Nanjing University, Nanjing, China

A metrics-based comparative study on

object-oriented programming languages
Di Wu

nju.wudi@gmail.com

Lin Chen

lchen@nju.edu.cn

Yuming Zhou

zhouyuming@nju.edu.cn

Baowen Xu *

bwxu@nju.edu.cn

Abstract—There has been a long debate on which programming
language can help write better object-oriented programs.
However, to date little response is given to this issue with
empirical evidence. In this paper, we perform a comparative
study on C++, C#, and Java programs by using object-oriented
metrics, which comprise measures for class size, complexity,
coupling, cohesion, inheritance, encapsulation, polymorphism,
and reusability. Our experiment is conducted on 78 tasks in
Rosetta Code, a code repository providing solutions to the same
programming tasks in different languages. The experimental
results show that: (1) C++ classes are significantly larger than C#
and Java classes in size, but their complexity does not differ
significantly; (2) C# classes are significantly more likely to be
coupled than C++ and Java classes through inter-class method
invocations instead of direct data access; (3) C# and Java classes
tend to be more cohesive than C++ classes; (4) C# and Java
significantly outperform C++ in building deep inheritance trees;
and (5) programs written in C++, C#, and Java do not show a
significant difference in class encapsulation, polymorphism, and
reusability. These findings could help practitioners choose
suitable languages to develop object-oriented systems. 1

Keywords- Programming Language, Comparative Study, Object-
oriented Metrics

I. INTRODUCTION

Which programming language can help write better object-
oriented programs? This question is often asked but it is hard
to reach a consensus on the answer. From the practical
perspective, it would be reliable to answer this question by
empirically comparing real object-oriented programs written
in different languages. The findings based on empirical
evidence should be valuable in helping practitioners choose
suitable languages to develop object-oriented systems.

To evaluate the quality of object-oriented programs, many
metrics have been proposed, which are related to various
language features like class size, coupling, cohesion,
inheritance, encapsulation, and polymorphism [4-9]. In
previous studies, these metrics are generally applied to fault
prediction [10], class testability prediction [11], code
refactoring [12], and code size estimation [13]. However, few
researchers use the object-oriented metrics as indicators to
compare programs written in different languages.

In this paper, we perform a preliminary comparative study
on programming languages by employing 23 commonly-used

* Corresponding author: Baowen Xu; Email: bwxu@nju.edu.cn

(DOI reference number: 10.18293/SEKE2015-064)

object-oriented metrics. More specifically, we use the standard
statistical inference techniques to perform a differential
analysis on the metric values for real programs written in C++,
C#, and Java. The subject programs used in this study are
provided by Rosetta Code [21], a code repository of solutions
to common programming tasks implemented with various
languages. By investigating 78 tasks in Rosetta Code, we
attempt to answer the following issues: (1) Which language
can help write classes of small size and low complexity? (2)
Which language can help write classes of low coupling and
high cohesion? (3) Which language can help create good type
hierarchies? and (4) Which language can help write classes of
good encapsulation, polymorphism, and reusability? These
issues are of highly practical value, as they determine which
programming language can help write better object-oriented
programs. However, little is currently known on this subject
with empirical evidence. Our study attempts to fill this gap by
this comparative study.

Our experimental results based on object-oriented metrics
show the following findings:
 C++ classes are significantly larger than C# and Java

classes in size, but their complexity does not differ
significantly;

 C# classes are significantly more likely to be coupled than
C++ and Java classes through inter-class method
invocations instead of direct data access;

 C# and Java classes tend to be more cohesive than C++
classes;

 C# and Java significantly outperform C++ in building deep
inheritance trees;

 Programs written in C++, C#, and Java do not show a
significant difference in class encapsulation,
polymorphism, and reusability.

The rest of the paper is organized as follows. Section II
introduces the object-oriented metrics in a nutshell. Section III
describes the studied subjects, data collection procedure, and
data analysis method. Section IV reports the experimental
results. Section V presents the threats to validity. Section VI
discusses related work. Section VII concludes the paper and
outlines the direction for future work.

II. OBJECT-ORIENTED METRICS

In the past decades, many object-oriented metrics have been
proposed. The most well-known metrics are CK metrics [4]
and MOOD metrics [6], which are applied to assess the quality

272

TABLE I. OBJECT-ORIENTED METRICS

Category Metric name Metric definition Level
Expected
value

Source

Size and
Complexity

NOM (Number of
methods)

The number of methods defined in a class Class Low [7]

NOA (Number of
attributes)

The number of attributes defined in a class Class Low [7]

WMC (Weighted
method complexity)

The sum of complexity for all methods in a class Class Low [4]

CC (Class complexity) The sum of complexity for all methods in a class based on the information flow Class Low [9]

Coupling

RFC (Response for a
class)

The number of methods that can be potentially executed in response to a
message received by an object of a class

Class Low [4]

CBO (Coupling
between objects)

The number of other classes to which a class object is coupled Class Low [4]

DAC (Data abstract
coupling)

The number of ADT(Abstract Data Type) instances defined in a class Class Low [7]

MPC (Message passing
coupling)

The number of send statements defined in a class Class Low [7]

CF (Coupling factor)
CF =

∑ ∑ ��_������(��,��)��
���

��
���

������
, where TC is total number of classes and

��_������(��,��) = �
1,��� �� => �� ��� �� ≠ ��

0,��ℎ������

System Low [6]

Cohesion

LCOM (Lack of
cohesion in methods)

LCOM = (Number of pair of methods that have no common attributes) -
(Number of pair of methods that have common attributes)

Class Low [4]

TCC (Tight class
cohesion)

TCC = (Number of pairs of directly connected public methods using common
attributes) / (Number of pairs of public methods)

Class High [5]

LCC (Loose class
cohesion)

LCC = (Number of pairs of directly and indirectly connected public methods
using common attributes) / (Number of pairs of public methods)

Class High [5]

ICH (Information
based cohesion)

The number of invocations to other member functions/methods Class High [8]

Inheritance

NOC (Number of
children)

The number of immediate subclasses of a class in a type hierarchy Class High [4]

DIT (Depth of
inheritance tree)

The maximum length from the node to the root of the tree Class High [4]

MIF (Method
inheritance factor)

MIF = (Number of methods inherited in all classes) / (Number of methods
defined and inherited in all classes)

System High [6]

AIF (Attribute
inheritance factor)

AIF = (Number of attributes inherited in all classes) / (Number of attributes
defined and inherited in all classes)

System High [6]

Encapsulation

MHF (Method hiding
factor)

Let V (M) = number of classes where the method M is visible, then

MHF = 1 -
∑ �(�)/ (����� ������ �� ���������)

������ �� ������� �� ��� �������
 System High [6]

AHF (Attribute hiding
factor)

Let V (A) = number of classes where the attribute A is visible, then

AHF = 1 -
∑ �(�)/ (����� ������ �� ���������)

������ �� ���������� �� ��� �������

System High [6]

Polymorphism

NMO (Number of
methods overridden by
a subclass)

The number of methods in a subclass overridden from its base class Class High [7]

PF (Polymorphism
factor)

PF =
∑ ��(��)��

���

∑ [��(��)×��(��)]��
���

, where TC is the total number of classes and Mn(Ci)

= Number of new methods of the class Ci, Mo(Ci) = Number of overriding
methods of the class Ci, DC(Ci) = Number of descendants of the class Ci

System High [6]

Reusability
RR (Reuse ratio) RR = (Total number of super classes) / (Total number of classes) System High [7]
SR (Specialization
ratio)

SR = (Total number of sub-classes) / (Total number of super classes) System High [7]

of object-oriented programs at different levels. To be specific,
CK metrics are mainly used to evaluate single classes, while
MOOD metrics are applied to assess the whole object-oriented
systems. Table I gives a detailed description of the 23
commonly-used object-oriented metrics. According to this
table, all the metrics can be divided into 7 categories [3],
which cover the following object-oriented features:
 Size and complexity. NOM and NOA are used to measure

the size of a class in terms of the number of methods and
the number of attributes, respectively. WMC and CC are
applied to measure the complexity of a class through

calculating the total complexity of its member
functions/methods in different ways. Since classes are
suggested to be designed as concise as possible, these
metrics are expected to be low in their values.

 Coupling. Five metrics are used to evaluate class coupling
from different perspectives. To be specific, the CF metric
is used to evaluate the coupling of all classes at the system
level. By comparison, the other four metrics measure
coupling at class level. Among these metrics, RFC and
MPC are used to assess method coupling, DAC embodies
data coupling between classes, and CBO shows coupling

273

between class instances. Since highly coupled classes are
less object-oriented, low metric values are preferable.

 Cohesion. Cohesion is measured with four class-level
metrics, which are calculated in different ways to reflect
the interactions between member functions/methods.
Among these metrics, a low LCOM value is expected,
while high TCC, LCC, and ICH values are desired.

 Inheritance. NOC and DIT are class-level metrics, which
express class inheritance through the number of
descendants and the depth of type inheritance, respectively.
By comparison, MIF and AIF are system-level metrics,
which refer to method inheritance and attribute inheritance,
respectively. Since it is suggested to build hierarchical type
trees in the object-oriented systems, the high inheritance
metric values are expected.

 Encapsulation. MHF and AHF are indicators to show how
well methods and attributes are hidden inside classes.
These metrics are measured at system level and high
metric values are preferable.

 Polymorphism. NMO and PF are polymorphism metrics at
different levels. To be specific, NMO is a class-level
metric, which refers to the number of methods overridden
by a single subclass, while PF is a system-level metric,
which measures the degree of method overriding in the
whole type tree. Their metric values are desired to be high.

 Reusability. RR and SR are both system-level reusability
metrics. They are calculated as the ratios of subclasses to
all classes and to super classes, respectively. Since classes
are expected to be highly reused, large reusability metric
values are desirable.

III. RESEARCH METHOD

In this section, we first introduce the subject programs used
in our study. Then, we describe the data collection procedure.
Finally, we show the data analysis method.

A. Studied Subjects

In order to conduct the comparative experiment, we need to
investigate the programs that give solutions to the common
goals and are written in C++, C#, and Java, respectively. For
this reason, we employ the open-source programs in Rosetta
Code [21], a code repository providing solutions to the same
tasks in various languages. Currently, it contains 766
programming tasks implemented in 567 different languages.
These tasks belong to 59 categories, including mathematics,
games, and networking, etc. Due to its abundant resources,
Rosetta Code has been effectively used to compare languages’
concise, performance, and failure-proneness [2].

In the Rosetta Code repository, we totally find 381 tasks that
have solutions in all the three investigated languages. By
manually checking these solutions, we choose 78 tasks as our
studied subjects, because they are all implemented in the
object-oriented manner. In other words, the remaining 203
tasks are deleted from our concern either because they are
implemented in the procedural manner in their C++ solutions
or because that they are lack of entire implementation code.
The detailed information of these tasks can be found at
http://ise.nju.edu.cn/wudi/Lang.Comp.Study.

B. Data Collection

We collected the metric values by using “Understand” [20],
a program analysis and measurement tool. Specifically, the data
was collected by the following steps. At the first step, we built
an Understand database for each solution implemented in C++,
C#, and Java. At the second step, we collected the metric
values for each solution by processing its database. Some
simple metrics such as NOM, NOA, and WMC were directly
reported by Understand, while other metrics including CC,
MHF, and AHF were collected by running our own Perl scripts,
which utilize the analysis-based information of programs
through calling Understand APIs. At the third step, we
calculated for each class-level metric its average metric value
of all classes in each solution. At the fourth step, we selected
for each task its optimal solution written in the same language.
Of the 78 studied subjects, 20 tasks have more than one
solution written in the same language. In order to pick out the
best solutions for the 20 tasks, we compare for each task its
solutions written in the same language according to the metric
values and select the optimal one. At the last step, we gathered
the metric values of all selected solutions to the 78 tasks and
stored the data in a csv file, which was used for data analysis.

C. Data Analysis

We employ the standard statistical inference techniques to
analyze the experimental data. More specifically, for each
object-oriented feature, we perform a Wilcoxon’s signed rank
analysis to compare the metric values of solutions implemented
in different languages. In other words, C++, C#, and Java are
compared in pair-wise to find out which language can help
write best object-oriented programs. If the metric values of two
languages show a difference at a significance level of 0.05 (p-
value), we will conclude that the languages are significantly
different. Also, we employ the Cliff’s  to examine whether the
magnitude of difference is important [18]. By convention, the
magnitude of the difference is considered either trivial (|| <
0.147), small (0.147-0.33), medium (0.33-0.474), or large (>
0.474) [19]. Finally, we apply the signed ratio R to give an
unstandardized measure of the difference between two medians
[2]. The R value is calculated as:

R = sgn(Mx-My)
������, ���

������, ���
 (1)

where Mx and My denotes the median metric values of language
X and language Y, respectively. A positive sign sgn(Mx-My)
indicates that the median metric value of X is larger than the
median metric value of Y, while a negative sign signifies a
reverse result. Moreover, the absolute R value denotes how
many times X’s median is larger/smaller than Y’s median
under a specific metric.

VI. EXPERIMENTAL RESULTS

In this section, we report in detail the experimental results.
Table II shows the overall experimental results for language
comparison. In this table, we present for each metric the
significance of the Wilcoxon’s signed rank analysis (p-value),
the magnitude of difference (Cliff’s ), and the times between
two median values (R).

274

TABLE II. COMPARATIVE RESULTS FOR OBJECT-ORIENTED METRICS ON C++, C#, AND JAVA PROGRAMS

Metrics
C++ vs. C# C++ vs. Java C# vs. Java

p  R p  R p  R

Size and Complexity

NOM < 0.001 0.478 2.222 < 0.001 0.484 1.667 1.000 -0.007 -1.333
NOA 0.007 0.385 - 0.554 0.162 2.000 0.064 -0.151 -

WMC 0.150 0.095 1.200 0.930 -0.024 1.000 0.006 -0.125 -1.200
CC 0.111 -0.143 -2.773 0.460 -0.092 -1.340 1.000 0.049 2.069

Coupling

RFC < 0.001 -0.635 -1.403 < 0.001 0.502 2.000 < 0.001 0.868 2.806

CBO < 0.001 -0.677 -3.000 < 0.001 0.463 - < 0.001 0.916 -
DAC 0.004 0.236 - 0.301 -0.027 - < 0.001 -0.236 -

MPC 0.954 -0.029 - 1.000 0.030 - 0.966 0.061 -
CF 0.072 -0.827 -2.222 0.056 -0.753 -2.778 1.000 0.012 -1.250

Cohesion

LCOM < 0.001 0.458 - < 0.001 0.340 - 0.416 -0.070 -

TCC 0.351 0.111 1.473 0.884 0.007 -1.018 0.966 -0.095 -1.500
LCC 0.254 0.155 1.500 0.777 0.055 1.000 0.966 -0.098 -1.500

ICH 0.014 -0.272 - 0.010 -0.268 - 1.000 -0.001 1.136

Inheritance

NOC 0.078 0.133 1.000 0.004 0.291 1.000 0.065 0.155 1.000

DIT < 0.001 -0.934 - < 0.001 -0.939 - 0.210 -0.068 1.000
MIF 0.150 0.094 - 0.760 0.052 - 0.378 -0.041 -
AIF 1.000 0.033 - 1.000 0.034 - 1.000 0.001 -

Encapsulation
MHF 0.218 -0.219 -2.826 0.230 0.375 - 0.118 0.625 -
AHF 0.608 0.184 2.000 0.385 0.306 - 0.497 0.388 -

Polymorphism
NMO 0.317 -0.028 - 0.569 0.026 - 0.178 0.053 -
PF 1.000 0.333 - 1.000 0.000 1.000 1.000 -0.111 -

Reusability
RR 0.159 0.088 - 0.056 0.077 - 1.000 -0.012 -

SR 0.432 -0.625 -1.833 1.000 0.250 1.500 0.378 0.500 2.750
* Note: (1) All p-values have been adjusted using the Benjamini-Hochberg method; (2) Cells marked with “-” denote the denominator of formula (1) is zero;

(3) Cells in gray background denote the significant results (p-values < 0.05).

A. Size and Complexity

We employ the result from NOM and NOA metrics to
compare the size of classes written in C++, C#, and Java.
According to Table II, we find that C++’s NOM value is
significantly different from C#’s NOM value (p < 0.001), and
the magnitude of difference is large in terms of Cliff’s 
(0.478). Moreover, the median NOM value of C++ is over 2
times larger than the median NOM value of C# (R = 2.222).
Besides, the comparison between C++’s NOM value and
Java’s NOM value shows a similar result. This indicates that
C++ classes significantly have more member
functions/methods than both C# and Java classes. As for NOA,
we find C++ classes significantly have more attributes than C#
classes (p = 0.007) and the magnitude of difference is medium
( = 0.385). However, the comparison between C++ and Java
does not show a significant difference.

In terms of class complexity (WMC and CC metrics), we
do not observe a significant difference between C++ and
C#/Java. This indicates that C++ classes are not significantly
more complex than C# and Java classes. However, C#’s WMC
value is significantly different from Java’s WMC value (p <
0.001), but the effect size is trivial according to Cliff’s  (-
0.125). This signifies that C# methods tend to be less complex
than Java methods, but the difference is not obvious.

To summarize, the core observation from the size and
complexity metrics is that C++ classes are significantly
larger than C# and Java classes in size, but their
complexity does not differ significantly.

Interpretation. One possible explanation for this result is
that C++ has two different paradigms, namely the procedural
programming and the object-oriented programming. When

programmers implement C++ classes, they are likely to think
in the procedural manner, thus resulting in a large number of
member functions to be created inside a class.

B. Coupling

We employ the result from RFC, CBO, DAC, MPC, and
CF metrics to compare the coupling of classes written in C++,
C#, and Java. As for CF, the system-level metric, we do not
find any significant difference among the three languages (all
p-values > 0.05). This indicates that C++, C#, and Java do not
differ in class coupling from the system-level perspective. As
for the class-level metrics, however, these three languages
show significant differences. To be specific, for RFC, which
evaluates class coupling based on method invocations, C# has
a significantly larger RFC value than C++ and Java (both p-
values < 0.001). Moreover, the effect sizes are large in terms
of Cliff’s  (0.635  ||  0.868). Besides, the R values also
show a difference between the medians (1.403  |R|  2). This
evinces that C# classes are more likely to interact with each
other through inter-class method invocations. Also, CBO, a
metric reflecting coupling between class objects, shows a
similar result. However, DAC, a metric evaluating class
coupling through data access, indicates a contrary result. More
specifically, it shows that C#’s DAC value is significantly
smaller than C++ and Java’s DAC values (both p-values <
0.005). Moreover, the effect sizes are small in terms of Cliff’s
 (both || = 0.236). This result signifies that C# classes are
less likely to interact with each other through data interaction.
As for MPC, another coupling metric based on member
functions/methods, does not show a significant result. To
summarize, the core observation from the coupling metrics is
that C# classes are significantly more likely to be coupled

275

than C++ and Java classes through inter-class method
invocations instead of direct data access.

Interpretation. According to Table II, we find RFC and
MPC, the metrics for inter-class method coupling, show
completely different results. This is due to the different ways
in calculating their metric values. To be specific, the get/set
accessors in C# classes are regarded as ordinary methods
when we compute the RFC values. But they are removed
during calculating the MPC values. For this reason, we
conjecture that the tight coupling among C# classes is
generally caused by frequent inter-class get/set method
invocations.

C. Cohesion

We employ the result from LCOM, LCC, TCC, and ICH
metrics to compare the cohesion of classes written in C++, C#,
and Java. As for LCOM, we find that C++ has a significantly
larger LCOM value than C# and Java (both p-values < 0.001).
Moreover, the magnitudes of difference are medium in terms
of Cliff’s  (0.340  ||  0.458). Since a low LCOM value is
preferable, this result indicates that C++ classes are less
cohesive than C# and Java classes. ICH, another cohesion
metric, shows a consistent result. To be specific, C++’s ICH
value is significantly smaller than both C#’s ICH value (p =
0.014) and Java’s ICH value (p = 0.010). Furthermore, the
effect sizes are small in terms of Cliff’s  (0.268  ||  0.272).
However, the other two cohesion metrics, namely LCC and
TCC do not show significant results. To summarize, the core
observation from the cohesion metrics is that among the four
metrics, two of them significantly evince that C# and Java
outperform C++ in creating higher cohesive classes. From this
reasoning, we conclude that C# and Java classes tend to be
more cohesive than C++ classes.

Interpretation. One possible explanation for this result is
that many member functions in C++ classes are still
implemented in the procedural manner. As a result, the
member functions do not interact well through sharing the
common attributes and thus result in a low cohesion for the
whole class.

D. Inheritance

We employ the result from NOC, DIT, MIF, and AIF
metrics to compare the inheritance of classes written in C++,
C#, and Java. As for NOC, we find C++’s NOC value is
significantly larger than Java’s NOC value (p = 0.004).
Moreover, the effect size is small in terms of Cliff’s  (0.291).
The comparison between C+ and C#, however, does not show
a significant result (p = 0.078). As for DIT, we observe that
C++’s DIT value is significantly smaller than both C# and
Java’s DIT values (both p-values < 0.001). Furthermore, the
effect sizes are relatively large in terms of Cliff’s  (0.934 
||  0.939). As for other two metrics, namely MIF and AIF,
no significant result is revealed. To summarize, the core
observation from the inheritance metrics is that C# and Java
significantly outperform C++ in building deep inheritance
trees (DIT).

Interpretation. Both C# and Java have the root type
“Object”, which is a super type for all classes. Therefore, the
depth of inheritance trees in C# and Java systems is not
surprisingly larger than the C++ systems.

E. Encapsulation, Polymorphism, and Reusability

We employ the result from MHF and AHF metrics for
encapsulation, NMO and PF metrics for polymorphism, and
RR and SR for reusability to compare the classes written in
C++, C#, and Java. According Table II, there is no significant
result revealed by all these metrics. For this reason, we
conclude that programs written in C++, C#, and Java do
not show a significant difference in class encapsulation,
polymorphism, and reusability.

Interpretation. Regarding the language features for class
encapsulation, C++, C#, and Java all provide private, protected,
and public keywords to control the accessibility to the
methods and attributes inside a class. As a result, there is no
difference in information hiding of classes written in different
languages. Moreover, all these three languages support static
binding and dynamic dispatching in similar ways. Therefore,
the polymorphism of classes does not differ. Finally, class
reusability is generally independent from language support.
Instead, it is determined by the ways programmers define new
classes. For this reason, there is not a significant difference in
the reusability of classes written in C++, C#, and Java.

VII. THREATS TO VALIDITY

The threat to the construct validity is the correctness of the
metric values collected from “Understand” databases. Since
many historical studies have produced reliable empirical
results by using “Understand” [20], the data in our study can
also be considered as acceptable. The threat to internal validity
is the object-oriented metrics used in this study. We totally use
23 metrics to investigate class size, complexity, coupling,
cohesion, inheritance, encapsulation, polymorphism, and
reusability. Even though these metrics do not include all
object-oriented metrics proposed in historical studies, they are
generally regarded as the most representative ones. Since these
metrics are also used in other empirical studies [1, 3], they are
also applicable in this study. The threat to the external validity
is that we only use the programs provided by Rosetta Code to
conduct the experiment. Since many solutions to our studied
tasks have a small number of classes, our empirical results
need to be further examined on more complex object-oriented
systems in the future.

VIII. RELATED WORK

The most related study to our work was undertaken by
Kumari and Bhasin [1], who used the object-oriented metrics
to compare C++ and Java programs. They investigated 15
object-oriented applications and found that Java is more
object-oriented than C++ as per intuition. The metrics applied
in our study and in [1] are basically the same. However, we
use more strict research method and thus obtain more reliable
findings. To be specific, our study has the following
advantages. First, we studied three languages, namely C++, C#,

276

and Java, while in [1], only C++ and Java were analyzed.
Second, we used 78 open-source programming tasks to do the
experiment, while Kumari and Bhasin only employed 15 tasks.
Moreover, the detailed information of their data set was not
given, making their experiment not replicable. Third, we used
the standard statistical inference techniques (such as the
Wilcoxon’s signed rank analysis) to analyze the experimental
data, while Kumari and Bhasin only got the comparison result
based on bar graphs for the raw metric values. For this reason,
our empirical results are more reliable. In terms of the
conclusions, the main difference between the two papers lies
in the languages’ support to build deep inheritance trees. In [1],
the authors showed that the DIT metric value of C++ programs
was larger than Java programs. However, we get an opposite
result. Due that the result in this study is drawn using the
standard statistical analysis, our conclusion is more acceptable.

Another related study was conducted by Nanz and Furia [2],
who used the Rosetta Code repository to compare the
conciseness, performance, and failure-proneness of programs
written in different languages. By using the standard statistical
inference methods, the authors had the following findings: (1)
functional and scripting languages are more concise than
procedural and object-oriented languages; (2) C is hard to beat
when it comes to raw speed on large inputs; and (3) compiled
strongly-typed languages are less prone to runtime failures
than interpreted or weakly-typed languages. Compared with
[2], our study focuses on a different research question, namely
languages’ support to write good object-oriented programs.
For this reason, the conclusions of the two studies are not
comparable. However, the two studies still share some
similarities. First, they both use Rosetta Code as the
experimental subject. Second, they both use the standard
statistical inference techniques to analyze the experimental
data. Third, the conclusions of both studies are drawn on the
result of statistical analysis. Other related empirical
programming language research include the comparison on
languages’ difference in running time, memory consumption,
and productivity [14], the survey of developers’ behaviors in
using object-oriented concepts [15], the study on languages’
support for code quality [16], and the investigation on
languages’ adoption [17], etc.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we perform a comparative study on C++, C#,
and Java programs to investigate which language can help
write better object-oriented programs. By analyzing 23 object-
oriented metrics on the solutions to 78 real programming tasks,
we find that C# and Java outperform C++ in creating concise
and cohesive classes. Also, the empirical result shows that C#
and Java can help build deeper inheritance trees than C++.
Moreover, we find that C# classes are significantly more likely
to be coupled than C++ and Java classes through inter-class
method invocations instead of direct data access. Finally, the
statistical result reveals that the programs written in C++, C#,
and Java do not show a significant difference in class
encapsulation, polymorphism and reusability. Our empirical
evidence should be valuable in helping practitioners choose

suitable languages to develop object-oriented systems. In the
future work, we will investigate more object-oriented
languages and replicate the study on more applications.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China (61170071, 61432001, 91418202,
61472175, 61472178), the National Natural Science
Foundation of Jiangsu Province (BK20130014), and the
program B for Outstanding PhD candidate of Nanjing
University.

REFERENCES

[1] U. Kumari, S. Bhasin. Application of object-oriented metrics to C++ and
Java: A comparative study. ACM SIGSOFT Software Engineering Notes,
36(2), 2011: 1-10.

[2] S. Nanz, C. A. Furia. A comparative study of programming languages in
Rosetta Code. ICSE, 2015.

[3] K. K. Aggarwal, Y. Singh, A. Kaur, R. Malhotra. Empirical study of
object-oriented metrics. Journal of Object Technology, 5(8), 2006: 149-
173.

[4] S. R. Chidamber, C. F. Kamerer. A metrics suite for object-oriented
design. IEEE Trans. Software Eng., 20(6), 1994: 476-493.

[5] L. C. Briand, J. W. Daly, J. Wüst. A unified framework for cohesion
measurement in object-oriented systems. Empirical Software
Engineering, 3(1): 1998: 65-117.

[6] R. Harrison, S. J. Counsell, R. V. Nithi. An evaluation of MOOD set of
object oriented software metrics. IEEE Trans. Software Eng., 24(6),
1998: 491-496.

[7] B. Henderson-Sellers. Object-oriented metrics: measures of complexity.
Prentice Hall, 1995.

[8] Y. S. Lee, B. S. Liang, S. F. Wu, F. J. Wang. Measuring the coupling
and cohesion of an object-oriented program based on information flow.
QSIC, 1995.

[9] Y. S. Lee, B. S. Liang, F. J. Wang. Some complexity metrics for OO
programs based on information flow: A study of C++ programs. Journal
of Information Science and Engineering, 10(1), 1994: 21-50.

[10] T. Gyimothy, R. Ferenc, I. Siket. Empirical validation of object-oriented
metrics on open source software for fault prediction. IEEE Trans.
Software Eng., 31(10), 2005: 897-910.

[11] M. Bruntink, A. van Deursen. Predicting class testability using object-
oriented metrics. SCAM, 2004: 136-145.

[12] K. O. Elish, M. Alshayeb. Using software quality attributes to classify
refactoring to patterns. Journal of Software, 7(2), 2012: 408-419.

[13] Y. Zhou, Y. Yang, B. Xu, H. Leung, X. Zhou. Source code size
estimation approaches for object-oriented systems from UML class
diagrams: A comparative study. Information & Software Technology,
56(2), 2014: 220-237.

[14] L. Prechelt. An empirical comparison of seven programming languages.
IEEE Computer, 33(10), 2000: 23-29.

[15] T. Gorschek, E. Tempero, L. Angelis. A large-scale empirical study of
practitioners' use of object-oriented concepts. ICSE, 2010: 115-124.

[16] B. Ray, D. Posnett, V. Filkov, P. T. Devanbu. A large scale study of
programming languages and code quality in Github. FSE, 2014: 155-
165.

[17] L. A. Meyerovich, A. Rabkin. Empirical analysis of programming
language adoption. OOPSLA, 2013: 1-18.

[18] E. Arisholm, L. Briand, B. Johannessen. A systematic and
comprehensive investigation of methods to build and evaluate fault
prediction models. Journal of Systems and Software, 83(1), 2010: 2-17.

[19] J. Romano, J. Kromrey, J. Coraggio, J. Skowronek. Appropriate
statistics for ordinal level data: Should we really be using t-test and
Cohen’s d for evaluating group differences on the NSSE and other
surveys? Annual Meeting of the Florida Association of Institutional
Research, 2006: 1-3.

[20] SciTools Understand. https://scitools.com/.

[21] The Rosetta Code Repository. http://rosettacode.org/wiki/Rosetta_Code.

277

 DOI reference number: 10.18293/SEKE2015-038

TAGGINGSENSE: Method Based On Sensemaking

For Object-Oriented Source Code Comprehension

Daniel Schreiber
Post Graduate Program in Informatics

(PPGIa) - Polytechnic School

Pontifícia Universidade Católica do

Paraná – PUCPR

Curitiba, Brazil

xiraba@gmail.com

André Menolli
Computer Science Departament

Universidade Estadual do Norte do

Parná - UENP

 Bandeirantes, Brazil

menolli@uenp.edu.br

Sheila Reinehr, Andreia Malucelli
Post Graduate Program in Informatics

(PPGIa) - Polytechnic School

Pontifícia Universidade Católica do Paraná –

PUCPR

Curitiba, Brazil

sheila.reinehr@pucpr.br,

malu@ppgia.pucpr.br

Abstract— All software requires maintenance, either for error

correction or for implementing updates. However, maintenance is

often complex and expensive, and one of the main problems in the

high cost of maintenance is the difficulty of understanding the

source code of other authors. Thus, this research presents

TaggingSense, a method based on sensemaking that aims to reduce

object-oriented source code comprehension time on systems

maintenance. Through experimentation, it was possible to observe

knowledge extracted from the source code, processing, and

sharing, to be positively assisted in the source code maintenance

and comprehension process, thus bringing benefits such as

reduction time spent, quality, and greater security in the changes

made.

Keywords-knowledge;sensemaking;source code maintenance;

ontology.

I. INTRODUCTION

Software maintenance is one of the activities that consume
substantial resources in software projects. In the mid-1980s, the
total cost invested in maintenance and improvement accounted
for over 60% of the total cost of software systems [1]. In
contrast, in the 2000s, total maintenance cost exceeded more
than 90% [2]. Maintenance is inevitable because we must ensure
updated and efficient software, and this activity is performed for
various reasons, such as changes in requirements, bug fixes,
component modifications, software improvement, source code
optimization, and efficiency improvement, among others [3].

Among several proposed techniques and processes to
improve software maintenance, some studies explore cognitive
aspects related to software comprehension. With source code
being the main maintenance component, comprehension is the
predominant factor for providing effective software
maintenance, thus allowing the development of computerized
systems [4].

Software comprehension corresponds to activities that
people perform in order to understand, conceptualize, and reason
about software [5]. It is estimated that developers dedicate an
average of 40% to 90% of the maintenance effort to the software
comprehension process [6] [7]. One of the possible reasons for
difficulty in source code comprehension is the lack of
knowledge by people without experience, as well as by
programmers from other fields.

One method to build knowledge and make sense of things is
through sensemaking. Sensemaking is the process of turning
circumstances into situations that can be comprehended
explicitly in words, and that serves as a catalyst for actions [8].
Weick [8] considers labeling (assigning explicit names) an
essential step in sensemaking.

In maintenance activities, it is in the analysis and
comprehension stage that those involved do work to extract
knowledge and use it to continue with maintenance. During this
activity, the acquired knowledge is conserved in people's
memories, and such knowledge is divided into two classes:
syntactic and semantic [9]. Both semantic and syntactic
knowledge are directly and indirectly related to source code
comprehension. Many studies and models of comprehension
identified different types of knowledge, including knowledge of
programming, knowledge of real-world situations addressed by
software, and knowledge of the application domain [10].

After comprehension, the coding activity, a process through
which developers declare their intentions for the computer, is
performed. This activity implies high processing power and
storage in the memory of people, because, in addition to the
domain, developers need to visualize the organization of objects
and routines, as well as the data flow [11]. These challenges,
coupled with the effort applied to maintenance and the absence
of an ideal solution to these problems, led to the development of
this research. It is believed that a comprehension method applied
to the source code related to the extraction and dissemination of
knowledge can assist in the comprehension process, thus
reducing uncertainties and the time dedicated to maintenance
tasks.

Therefore, this study aims to develop a method based in
sensemaking to reduce object-oriented source code
comprehension time on system maintenance. More specifically,
it is intended to answer the following question: Is it possible to
reduce the time and effort of source code comprehension, and
thus increase the quality and efficiency of software
maintenance?

II. RELATED LITERATURE

Of all the activities involved in the process of maintenance,
comprehension is the most important, as it is considered to be
the essential basis for modifying a software product [12]. Studies

278

show that efforts applied on maintenance are mainly targeted to
the comprehension part [11].

Several works were developed related to software
maintenance and comprehension, not all of which are focused
on serving the same purpose. However, these studies use similar
techniques for working on the source code. For example, in
research [10], the complexity of understanding a program at the
time of maintenance was studied for the purpose of calculations
and estimates of effort metrics. Work [13] identified two levels
of comprehension: syntactic and semantic. The work proposed
in [14], by means of cataloging source code, already seeks to
discover programmers’ knowledge on application domain. [12]
explored a method for maintaining software engineering
artifacts "connected" through semantic connections, starting
from the source code, by means of ontologies. Work [15]
proposes a union of the ontology of code knowledge with
domain knowledge, and lastly, work [16] developed source code
and documentation ontology to assist in the comprehension
process through complex searches inferred on ontology
populated from text mining applied in the source code.

The use of ontologies has been significantly explored in
software maintenance activities for much of the works
highlighted here. Among the techniques for applying ontology
to the source code, this paper proposes a new approach: using
ontology as a consequence of the knowledge extracted from the
source code by using the sensemaking technique. Based on
sensemaking, we propose the development and implementation
of a method with the principle of formalizing and implementing
a folksonomy within the source code, so that it is possible to
extract knowledge and maintain it in a knowledge base, with the
goal of extracting and disseminating both domain knowledge
and the features contained in the source code.

III. TAGGINGSENSE METHOD

In this section, we present the “TaggingSense” method,
which supports the steps and the intrinsic processes involved in
source code comprehension during software maintenance. This
method combines the tagging concepts of folksonomy, and the
stages and processes identified by sensemaking, with the goal of
accelerating and improving the comprehension process of
unknown source codes.

A. Method Structure

From the eight stages of sensemaking (Organizes Flux,
Noticing and Bracketing, Labeling, Retrospective, Presumption,
Social and Systemic, Action, and Organizing through
Communication) conceived by [8], four activities have been
defined for the proposed method, and are described as follows:

 Observation: consists of the superficial analysis that a
programmer performs when starting the maintenance
activity. Owing to such observations, in this activity, the
programmer formulates ideas and structures based on
the experience of past projects.

 Extraction: activity related to the extraction and
development of knowledge contained in the source
code. This activity starts sensemaking. Knowledge is
formalized and archived by the programmer with the
source code.

 Organization: organizing and structuring the extracted
knowledge. This activity consists of provided support
and the support or rejection of raised ideas and
hypotheses in order to improve knowledge structuring.
It is in this activity that the programmer identifies
phenomena and observed patterns, improves
externalization, and catalogs the acquired knowledge.

 Collaboration: the main component of this activity is
communication. In this activity, the sharing and
development of knowledge with the group of people
involved in the process occurs through the exchange of
experience and the refinement of learning.

Based on the activities defined, details of the method and the
steps involved in each activity are described in Table I.

In total, four activities were created with a subtotal of 15
interrelated steps. Each activity has a purpose that serves as input
to generate a specific output. The outputs generated by the
activities are: (i) formulation and structuring of ideas and
hypotheses (observation activity): ideas are formulated and
structured tacitly, where externalization occurs in the execution
of the next stage; (ii) formalized knowledge (extraction activity):
transformation of tacit knowledge into explicit; (iii) restructured
and organized knowledge (organization activity): this activity
organizes knowledge in a structured way, and enriches existing
knowledge with more information; and (iv) knowledge base
(collaboration activity): this is the location where all knowledge
extracted from the source by one or more programmers is stored.

B. Knowledge Representation

The TaggingSense method proposes the use of a
folksonomy-based ontology for organizing and managing tags.
In [27], the authors defined folksonomy as the result of a
personal free marking (tag) of information and objects for
retrieval. The use of tags through folksonomy fits best to factor
a demonstration of human thought, compared with those
methods related to automatic extraction of text [17]. Through a
manual process, the user develops source code sensemaking and
identifies a topic/knowledge through tagging. In this process,
folksonomy is the result of the sensemaking process designed by
the user. One of the strengths of folksonomy is the free
assignment of words to features. Annotating a feature with
multiple keywords requires less cognitive effort than selecting a
single category [18].

Folksonomy is represented through ontology, which serves
as basis for supporting the processes. This helps to solve the
main problems of folksonomy, such as synonyms, ambiguities,
and searches. The main ontologies developed to support the
tagging process were evaluated, such as Newman [19], SCOT
[20], MOAT [21], Knerr [22], and NAO [23]. After analyzing
the available ontologies, the ontology of Knerr [22] was chosen,
due to its better compliance with the requirements of the
problem, its availability, and easy access to documentation of
their classes and properties.

279

TABLE I. TAGGINGSENSE METHOD ACTIVITIES AND STEPS

Activities Steps Description

Observation

Structure analysis Preliminary study of the structuring

of the source code.

Technical knowledge

and domain search
Improvement of technical
knowledge in relation to the source

code structure, such as

programming language, paradigms,
architecture, and standards, in

addition to complementary studies

related to the domain.

Extraction

Knowledge

extraction
Development of domain concepts.
Assimilation between domain issues

and technical issues related to the

source code.

Tagging Marking source code through tags.

Use of folksonomy to assist,

support, and organize tags created
during knowledge extraction.

Externalization Knowledge articulation occurs, i.e.,

transformation of tacit knowledge

into explicit or usable knowledge.
This task represents the continued

task of Tagging.

Guides Improvement of source code
tagging. Tagging is structured in a

way that helps programmers find

such markings in the source code
through waypoints.

Enrichment tags Development of new concepts

related to those already developed
and identified by means of tags.

Organization

Knowledge

refinement
Refinement of points related to

application domain. Revaluation

and continuation of “Knowledge
extraction” task of previous activity.

Tag re-evaluation Importance validation with project

and domain.

Redundant tags are eliminated;

common tags are reused in the

project.

Cataloging

standardization
Standardization between the terms
already created.

Release All new created tags have visibility

property set to private because they
are developed at this stage and can

change or be eliminated by the

creator.

Collaboration

Storage Throughout the process, extracted
knowledge is stored in a database

called knowledge base, through

ontologies meaning.

Sharing Database must be shared with

everyone specifically involved in

the process of project maintenance.

Refinement Enhancement and improvements in

tags created by other programmers.

Reuse Reuse of tags created by other

programmers.

IV. TAGGINGSENSE ENVIRONMENT

To support the TaggingSense method, we implemented an
environment to allow tagging the source code in order to assist
in its comprehension. The tagging process consists of manually
extracting source code knowledge, and adding it in the
folksonomy ontology. This information corresponds to
keywords for the tag, date, time, and creator, in addition to the
class, method, variable, or related code snippet, that can be

inserted to the same tag created for other individuals. This
environment was built as a plug-in for the Eclipse development
IDE (integrated development environment). In this environment,
interaction starts from the programmer’s comprehension of the
source code from the bottom to the top (“bottom-up”) of the
source code lines that represent the domain knowledge, through
the identification of relevant chunks. Chunks are code portions
that programmers can recognize. Large chunks contain several
smaller chunks [16].

After this step, it is necessary for the source code to be
processed and synchronized with the source code ontology. In
the environment, SCRO (Source-code Ontology) is used as the
source code ontology because it was created to support the main
tasks of software comprehension through the explicit
representation of conceptual knowledge found in the source
code [24]. This synchronization consists of the extraction of
information from the project’s source code, such as methods,
input and output values of each method, attributes, and classes,
and population of the source code ontology.

Once the source code ontology is populated, the next step is
to interact with the folksonomy ontology. This allows new
individuals created in this ontology through the creation of tags
by the programmer to be associated according to the instances of
individuals of the source code ontology. Lastly, the process
results in a knowledge base that contains all created tags and
their respective associations, derived from the domain
knowledge received from the source code. The knowledge base
consists of the very folksonomy ontology populated and inferred
by inference mechanisms. The environment implementation is
presented in the next subsection.

A. Environment Implementation

The environment was implemented according to the
assumptions of sensemaking, folksonomy, and knowledge base.
In addition, six implementation requirements were raised to
support the source code comprehension process. They are:

 Requirement 1: query and record domain information in
the folksonomy ontology. Information refers to the
knowledge acquired during the comprehension process,
and should be semantically linked to allow queries and
inferences (reasoning).

 Requirement 2: populating source code ontology. The
plug-in must provide a method for extracting semantic
information from the source code and automatically
populating the source code ontology.

 Requirement 3: populating folksonomy ontology.
Populating the domain ontology, which corresponds to
the tags created, must be performed manually. As a
result of sensemaking, the source code comprehension
process is best developed manually because it is at this
moment that the user assimilates and understands the
source code.

 Requirement 4: searches of instances in the ontology.

 Requirement 5: allows to create, connect, provide,
identify, query, and share tags during the source code
comprehension process.

280

 Requirement 6: integration with the working
environment.

In order to automatically extract the source code and allow
direct interaction with the user, the system was designed and
developed based on Eclipse 3.6 and Java 6 platform.

The source code ontology is automatically populated by the
plugin, through QDox library [25], whereas the tags
manipulation is manual, according to user action. The source
code is the only input software artifact, whereas the remaining
entries in the system are through manual intervention. Queries
by created and populated tags occur through SPARQL-DL with
OWL-API support library because there was no native support
for SPARQL queries during the development of this research.

Based on the requirements for extraction and manipulation
of gathered knowledge, the TaggingSense plug-in was
developed to manipulate ontologies and tagging in the source
code, with the following functionalities: (i) Display tags related
to the selected code: from a window, it is possible to analyze the
relationship between the programming-related object and the
associated domain concept (tag); (ii) Display tags in tree format:
from the list of tags, it is possible to find the source code related
to the selected tag; and (iv) Display use of all tags: list all public
tags created by any person, in addition to private tags authored
by the current user.

In addition to the features described, the plug-in allows the
addition of new tags and makes the tags public, thus allowing
other users to view the tags and use them collaboratively.

V. EXPERIMENT

To evaluate the feasibility of the method and the
environment, an experiment was proposed with the goal of
answering the initial question of this research: Is it possible to
reduce the time and effort of source code comprehension, and
thus increase the quality and efficiency of software
maintenance?

To evaluate the experiment, three criteria were defined: (i)
programmer behavior: evaluation based on observations from an
expert who accompanied the experiment; (ii) development time:
this was considered a metric to measure method efficiency; (iii)
quality of maintenance performed: an assessment as to whether
the requested improvements were implemented as expected.

To conduct the experiment, four IT professionals, who work
in a midsize software company, were selected. The selected
professionals belong to two distinct classifications: junior,
professionals with less than five years of experience in OOP
(Object-Oriented Programing), software architectures, design
patterns, organization and best coding practices; and senior,
programmers with equals or more than five years of experience
in system development with knowledge of working on large,
complex projects. The participants were requested to make two
improvements to an existing system that was unknown to them.
The system consisted of a salesforce automation project
developed in Java language for mobile devices. Its initial release
was designed to run on PALM OS, Windows Mobile, and
Android devices. The experiment was divided into three parts,
each part containing a specific purpose and applied to specific

participants, as summarized in Table II. In addition, a maximum
execution time for each maintenance task was stipulated.

TABLE II. EXPERIMENT DESCRIPTION

E
x

p
e
r
im

e
n

t
1

Participants Objective Procedure

Junior A

Senior A

Evaluate

understandin
g difficulty

and

comprehendi
ng source

code of other

authors.

Same activity for participants

with and without experience.
Activity consists of making

improvements to existing

system. For this experiment,
features for using tags were not

available, only features offered

by IDE.

Evaluation

Improvement

time and
location

E
x

p
e
r
im

e
n

t
2

Participants Objective Procedure

Junior B

Senior B

Evaluate

comprehensi

on of source
code of other

authors that

performed
tagging.

Same activity for both types of

participants. Source code is not

tagged, but developers are
allowed to add, share, and use

tags to assist maintenance

process.

Evaluation

Improvement

time and

location; name

and number of

new tags
created during

the process.

E
x

p
e
r
im

e
n

t
3

Participants Objective Procedure

Junior B
Senior B

Evaluate
comprehensi

on of project

already
tagged by

someone

familiar with
the project.

Repeat experiment 1 with
project already tagged. Those

involved should use tags as

guides to reach system critical
point, thus performing

maintenance at correct location.

Evaluation

Maintenance
time and

quality; number

of new tags
created.

A. Results

Analysis of the results was performed mainly in a
qualitatively manner. In this analysis, the purpose of the
experiments was considered, and the experiments were designed
so that a comparison could be made, as described in Table III.

In experiment 1, senior participant A showed difficulties
when attempting to find the location (class/method) that caused
the parameter to perform the validation requested for this
experiment. However, he was able to perform the experiment
successfully in 16 minutes, and executed the maintenance in the
expected class and method. Junior participant A could not find
the correct location of the maintenance in the stipulated time.
Even after being shown the location where the maintenance
should be performed, the participant failed to complete the task
successfully within the stipulated time because, although the
maintenance was performed correctly, the code was not
implemented in the expected method.

In experiment 2, junior participant B did not use the plug-in
as a support tool and could not find the correct method where the
improvement should be implemented. Senior participant B
achieved this improvement in 12 minutes, and did not need to
receive any type of help or advice. However, neither senior
participant B nor junior participant B implemented an
improvement on the desired method and class.

281

TABLE III. EXPERIMENT COMPARISON

Relationship Evaluation - Objective

Experiment 1

x

Experiment 2

Check maintenance performance without the use of tags

(experiment 1) and with the use of tags (experiment 2);
evaluate performance of maintenance performed between

junior programmers, among senior programmers, and

between junior and senior programmers.

Experiment 1

x

Experiment 3

Analyze performance of maintenance performed by

senior programmer without the use of tags and by junior
programmer with the use of tags.

Experiment 2

x

Experiment 3

Evaluate impact on improvement maintenance when

there are no tags; that is, comprehension is initiated
without the aid of previously created domain concepts

(experiment 2).

Evaluate impact on improvement maintenance when tags
are identified previously (experiment 3) and are available

to assist in the comprehension process.

In experiment 3, participants had access to the tags. Junior
participant B started the maintenance using the available tags.
Through the tags, the class attribute that had the value that
needed to be changed was easily deduced. After the locating task
was performed all locations that called the attribute in question
were searched by the programmer in the source code. Every item
in each code snippet that was located was verified against the
related tag. Junior participant B performed the activity in merely
eight minutes, without any type of help or support. Compared
with senior participant A who ran the same maintenance in
experiment 1 without the aid of tags, junior participant B was
faster because senior participant A performed the same
maintenance in 16 minutes. In turn, senior participant B, who
had access to the tags, implemented the proposed improvement
in four minutes; half the time displayed by junior participant B.
Table IV presents a summary of the maintenance time required
by senior and junior programmers.

TABLE IV. COMPARISON BETWEEN TIME OF SAME MAINTENANCE WITH AND

WITHOUT TAG

Participant Without tags With tags

Junior Group 30 min 8 min

Senior Group 16 min 4 min

VI. DISCUSSION

In experiments 1 and 2, tag features to be used in the
comprehension process were not available to programmers.
However, for experiment 3, the tags were made available to
assist in the comprehension process. From the results, it can be
concluded that sensemaking development is influenced heavily
by the availability of features. The group of junior programmers
who did not use tags required an average of 30 minutes to
perform the proposed maintenance. However, through the tags,
this time decreased to eight minutes, demonstrating a 74%
productivity improvement in performance.

In the same sense, the senior group performed the same
maintenance in 12 minutes, whereas by means of tags, this time
decreased to four minutes, showing a gain of 75% for this class
of developers

In experiment 2, wherein the tags were not available, but the
possibility of creating and using them was offered, only the

group of senior participants benefitted. However, the tags
created were used as waypoints (identification of locations), and
as memorization topics that were extracted from the source code.
Thus, the created tags helped in source code navigation, assisting
developers to locate code among the many classes and methods,
avoiding them to get lost on source code navigation.

In contrast, in the experiment where the tags were already
created and available, only the group of juniors added a new tag.
The new tag served the same objective as for the other group,
that is, as a waypoint.

We can conclude that in unfamiliar environments, extracting
source code knowledge is easier for more experienced
developers precisely because they have more experience. It was
also observed that in environments where knowledge of the code
was already present, senior programmers did not process new
knowledge, whereas junior programmers were led by the
existing tags, and even added a new related tag. The failure to
process new knowledge puts in evidence the conclusion of the
study by [26], which showed that there is no interest on the part
of software engineers to study application domain knowledge
when performing specific maintenance, where only knowledge
related to software engineering (programming, development
environment, and application implementation) are considered.
The authors in [26] concluded that developers cultivate past
knowledge, and searching for new knowledge is a costly process
that is performed only when there is a clear need for the
programmer and there is no easier alternative. According to [26],
software engineers attempt to understand only what is necessary
for a system to solve the current problem, and then tend to forget
the details of what they learned.

Senior programmers in experiment 2 showed an average of
60% higher performance in the same experiment performed by
the group of junior programmers. In this experiment, only the
senior programmers used the feature for extracting knowledge
from the source code. This justifies the fact that sensemaking is
best developed when there already exist foundations and past
experience [8].

However, as already discussed, in an environment where the
knowledge contained in the source code is extracted previously
by an expert with greater knowledge, and is made available via
tags for those with less experience, a significant gain in
performance is demonstrated.

Thus, we can conclude that the proposed method for
extracting and sharing knowledge of the source code is
sufficiently effective for improving overall performance of the
development team.

VII. CONCLUSIONS

The software maintenance field is complex, mainly because
it is dependent on a source code comprehension process, an
activity that involves greater cognitive effort of the people
involved. Several studies have been developed to facilitate code
comprehension. However, this process can still be improved.
Knowledge extracted directly from the source code through
sensemaking is rich in important and valuable details that can be
applied to source code comprehension. This knowledge can be
best utilized when stored by means of ontologies and
disseminated to more people using Semantic Web. With this

282

process, the knowledge can not only be extracted, but also shared
with those involved, thus benefitting the entire team. Through
the results of our experiments, we demonstrated that the
proposed TaggingSense method is viable because we were able
to conclude that knowledge extraction, processing, and sharing
assists positively in the process of source code maintenance and
comprehension, thus obtaining benefits such as reduced time,
increased quality, and greater security in the changes made. We
also showed that our proposed method can guide programmers
to the exact location of the improvement required, thus causing
maintenance to not occur in wrong places that could affect the
quality of the program or open the possibility for security
breaches. Thus, the main issue of this research could be
answered: it is possible to reduce the time and effort for source
code comprehension during maintenance. However, we plan to
extend the study to a larger number of participants. We also
intend to evaluate the reaction of programmers with different
educational backgrounds, as well as evaluate the question of the
impact of personal and organizational culture and customs.

REFERENCES

[1] M. Zelkowitz, A. Shaw, and J. Gannon, Principles Of Software

Engineering And Design. Prentice Hall Inc., , 1979, pp 157 – 178.

[2] L.Erlikh, "Leveraging Legacy System Dollars For E-Business," It
Professional, Ieee, vol. 2, n. 3, 2000, pp. 17 – 23.

[3] B. B. Argawal, and S. P. Tayal, Software Engineering. Laxmi
Publications: New Delhi, 2007.

[4] A. Mayrhauser, and A. Vans, "Program Comprehension During Software
Maintenance And Evolution, " Ieee Computer vol. 28, 1995, pp. 44 – 55.

[5] W. Meng, J. Rilling, Y. Zhang, R. Witte, S. Mudur, and P. Charland, "A
Context-Driven Software Comprehension Process Model," Ieee Software
Evolvability Workshop, 2006.

[6] A. De Lucia, A. R. Fasolino, and M. Munro, "Understanding Function
Behaviours Through Program Slicing, " In 4th Ieee Workshop On
Program Comprehension, Ieee, 1996, pp. 9 – 18.

[7] A.Telea, and V. Lucian, "Visual Software Analytics For The Build
Optimization Of Large-Scale Software Systems, " Computational
Statistics, vol 26, n. 4, 2011, pp. 635 – 654.

[8] K. E. Weick, K. M. Sutcliffe, and D. Obstfeld, "Organizing And The
Process Of Sensemaking, " Organization Science, 2005, pp. 409 – 421.

[9] B. Shneiderman, Designing The User Interface: Effective Strategies For
Effective Human-Computer Interaction, 2rd ed. Addison Wesley, 1992.

[10] J. Yang, D. Hendrix, K. Chang, and D. Umphress, "An Empirical
Validation Of Complexity Profile Graph, " In Proceedings Of The 43rd
Annual Southeast Regional Conference, Acm, vol 1, 2005, pp. 143 – 149,
2005.

[11] C. L.Corritore, and S. Wiedenbeck, "Mental Representations Of Expert
Procedural And Object-Oriented Programmers," In A Software
Maintenance Task. In International Journal Of Human-Computer Studies,
vol 50, n. 1, 1998, pp. 61 – 83.

[12] R. Witte, Y. Zhang, and J. Rilling, "Empowering Software Maintainers
With Semantic Web Technologies," Springer-Verlag Berlin, n. 4519,
2007, pp. 37 – 52.

[13] C. Dasgupta, "That Is Not My Program Investigating The Relation
Between Program Comprehension And Program Authorship," In Acm Se
'10 Proceedings Of The 48th Annual Southeast Regional Conference,
Acm, n. 103, 2010.

[14] R. Sindhgatta, "Identifying Domain Expertise Of Developers From
Source Code, " In Proceeding Of The 14th Acm Sigkdd International
Conference On Knowledge Discovery And Data Mining, Acm, 2008, pp
981-989.

[15] H. Zhou, F. Chen, and H. Yang, "Developing Application Specific
Ontology For Program Comprehension By Combining Domain Ontology
With Code Ontology, " In Quality Software, 2008. Qsic '08. The Eighth
International Conference, Ieee, 2008, pp. 225 – 234.

[16] Y. Zhang, An Ontology-Based Program Comprehension Model. Doctoral
Thesis, University Of Concordia, Canada, 2007.

[17] H. Al-Khalifa, and H. Davis, " Exploring The Value Of Folksonomies For
Creating Semantic Metadata, " International Journal On Semantic Web &
Information Systems, vol 1., n. 3, 2007, pp. 13 – 39.

[18] R. Sinha, "Tagging From Personal To Social: Observations And Design
Principles," In Tagging Workshop, World Wide Web Int. Conf., 2006.

[19] R. Newman, Tag Ontology Design. Available On
<Http://Www.Holygoat.Co.Uk/Projects/Tags/>. Accessed On 27 March
2012.

[20] H. L. Kim, A. Passant, J. G. Breslin, S. Scerri, and S. Decker, "Review
And Alignment Of Tag Ontologies For Semantically-Linked Data In
Collaborative Tagging Spaces, " In Proceeding Of The 2nd International
Conference On Semantic Computing, Ieee, 2008. pp. 315 – 322.

[21] A. Passant, "Using Ontologies To Strengthen Folksonomies And Enrich
Information Retrieval In Weblogs: Theoretical Background And
Corporate Use-Case," In International Conference On Weblogs And
Social Media, Boulder, United States, 2007.

[22] T. Knerr, "Tagging Ontology—Towards A Common Ontology For
Folksonomies," Available On
<Http://Tagont.Googlecode.Com/files/Tagontpaper.Pdf>. Accessed On
27 March 2012.

[23] S. Scerri, M. Sintek, and L. Van Elst, " Handshuch, S. Nepomuk
Annotation Ontology (Nao)," Available On
<Http://Www.Semanticdesktop.Org/Ontologies/Nao/>. Accessed On 28
March 2012.

[24] A. Alnusair, "Scro – Source-Code Ontology," Available
On<Http://Www.Indiana.Edu/~Awny/Index.Php/Research/Projects-
Tools/15-Research/Ontologies/10>. Accessed On 22 February 2012.

[25] Qdox: Qdox Java Parser Extractor. Available On
<Http://Qdox.Codehaus.Org/>. Accessed On: 31 May 2012.

[26] M. R. Ramal, R. M Meneses, and N. A. Anquetil, "Disturbing Result On
The Knowledge Used During Software Maintenance, " In 9th Working
Conference On Reverse Engineering, Ieee, 2002, pp. 277 – 286.

[27] V. Wal, "Explaining And Showing Broad And Narrow Folksonomies, "
Available On
<Http://Www.Personalinfocloud.Com/2005/02/Explaining_And_.Html>
. Accessed On 10 November 2011.

283

Facilitating Peer Learning and Knowledge Sharing in

STEM Courses via Pattern Based Graph Visualization

Emilio Zegarra, Shi-Kuo Chang, Jingtao Wang

Department of Computer Science

University of Pittsburgh

Pittsburgh, PA United States

{ezegarra, chang, jingtao}@cs.pitt.edu

Abstract—High quality education in Science, Technology,

Engineering and Math (STEM) majors expects not only the

acquisition of comprehensive domain knowledge, but also the

mastery of skills to solve open ended and even ill-defined

problems. Problem-based Learning (PBL) is usually adopted to

achieve such goals. However, PBL requires sustained and in-

depth faculty involvement, hence making PBL not scalable. Also,

existing knowledge discovery techniques do not facilitate the

capture and reuse of solutions to recurring problems. To address

these challenges, we present MicroBrowser, an interactive Q&A

system augmented with 2D discussion visualizations and pattern

based expertise sharing interfaces. MicroBrowser allows learners

to browse and navigate important discussions in PBL based on

topic similarity encoded by node proximity in a knowledge graph.

MicroBrowser also provides a set of pattern based expertise

sharing interfaces to allow both learners and instructors to

highlight, share and reuse major findings in PBL. Through a 32-

subject study, we found MicroBrowser to be effective at

facilitating knowledge discovery. Moreover, students understood

and were able to use design patterns to complete open ended

tasks.

Education, knowledge, sharing, discovery, pattern, graph,

visualization

I. INTRODUCTION

Work on improving education to students in STEM majors
has allowed students to acquire important domain knowledge.
Yet, upon graduation, students are faced with open ended and
ill-defined problems for which they might not be prepared.
Innovative techniques such as PBL aim to address these
limitations by encouraging students to learn by addressing
everyday problems [13].

An important aspect of PBL is the in-depth participation of
faculty advisors [16]. However, for large faculty-to-student
ratios it becomes difficult for faculty advisors to get involved
with all students resulting in a reduced time and effort
involvement and a longer feedback loop A technique that has
been used in the context of online education via Massive Open
Online Courses (MOOCs) to address this challenge is the use
of discussion forums and Q&A systems [5][12]. These systems
have been found to be a common source of knowledge for
students when completing homework tasks [18][20] and for
interacting with instructors[12]. While these systems can
address the scalability problem of faculty involvement, they
introduce new problems. First of all, as knowledge bases grow
in size, the sheer size of the accumulated knowledge makes it

Figure 1. The primary UI of MicroBrowser displaying discussion threads and design patterns. MicroBrowser consists of three components: a knowledge

exploration graph, a discussion listing view and a knowledge timeline

(DOI reference number: 10.18293/SEKE2015-006) 284

harder to locate the desired information. Secondly, existing
knowledge discovery techniques do not provide effective
means for the capture and reuse of solutions to recurring
problems.

To address these challenges, we designed MicroBrowser
(Fig. 1). MicroBrowser is a pattern based visualization system
designed for educational settings that aims to improve peer-
learning by facilitating knowledge discovery and reuse. Its
contributions are the ability to discover knowledge from large
online discussion boards by using visualization techniques as
well as the introduction of design patterns as a method to not
only discover knowledge but also to improve peer-learning by
facilitating knowledge creation and reuse. In a 32-subject user
study, we found that MicroBrowser facilitates the completion
of knowledge discovery and reuse tasks when compared to
traditional Q&A systems. We also found that for open ended
tasks, students made use of design patterns to complete the
tasks in over 50% of the time. Also, results from our subjective
evaluation indicate students understood the concept of design
patterns and found the features in MicroBrowser to be effective
and useful. Finally, students found MicroBrowser to be easy to
use.

II. RELATED WORK

A. Visualizing Discussion Forums

Discovering of information thru visualization is not limited to

finding relevance between posts, but also about finding

structure[19]. Several approaches have been used to address

forum visualization. ForAvis[23] uses the “overview, zoom

and filter” visualization technique as well as color coding to

provide a layered approach to displaying information. In [7],

the authors found that using treemaps, with color and size

encoding, made finding largest and most active discussions

faster than traditional text based interfaces. VIDI Toolbar [21]

displayed Political Science discussion on a graph with node

proximity encoding similarity and cluster of nodes

representing topics. Anagora[10] visualized discussion

activity along a horizontal chronogram axis. The length of the

discussions represented activity and high activity in a forum

was represented thru discussion overlap.

In MicroBrowser, we learned from these works on discussion

forums and extended them to a Q&A system in an educational

domain.

B. Using Design Pattern

Design patterns are a shared language used to communicate

proven solutions to recurring problems. Christopher

Alexander [1] crafted the notion of patterns to facilitate design

and construction of towns and buildings.

The adaptability benefits of design patterns have allowed their

extension to other contexts. Gamma et.al used patterns to

document recurring problems and their solutions in object

oriented programming[8]. Pedagogical patterns assist

instructors in preparing effecting instructional material based

on learned experience from other instructors[3][14]. Also,

human computer interaction and user interface design patterns

have been defined to assist with valuable UI design solutions

[15][22].

MicroBrowser takes advantages of the benefits of design

patterns and applies them to discussion threads in an

educational domain. Different from pedagogical patterns,

design patterns in MicroBrowser are intended to address the

problem of answering recurring questions posted in Q&A

systems. MicroBrowser also provides pattern browsing

capabilities which allow students to discover patterns and

reuse them by either associating them to discussion threads or

using their solutions to answer similar questions.

III. THE DESIGN OF MICROBROWSER

The design goals of MicroBrowser are to: a) Identify, create

and reuse design patterns in discussions and b) Make it easier

to visualize and browse discussion threads and associated

patterns.

MicroBrowser was implemented on Java using the Prefuse[11]

library.

A. Data Processing and Graph Generation

Topic Modeling facilitates the analysis of large volumes of

unstructured text. We use the topic models information to

quantify similarities between discussions. For our corpus, we

created a text document for each discussion by combining the

question title, question text, tags and the answers‟ text. Stop

words were removed from the documents. We used the Mallet

[17] topic modeling toolkit to perform topic analysis and build

our topic model. The initial model parameters were set to the

default values except for the maximum number of topics

which was set to 100 and the maximum iteration was set to

2000. Using the topic model, we created a dissimilarity matrix

between each discussion. We first used (1) to compute the

similarity between two discussions and (2) for their

dissimilarity and to populate our dissimilarity matrix.

 ()

 (1)

 () () (2)

As in [21], we then applied Multi-Dimensional Scaling (MDS)

to the dissimilarity matrix to reduce the discussions to a 2-

dimension space for plotting. We stored the resulting

similarity value between discussions separately to be used

when retrieving related discussions. Finally, we used the

GraphML
1
 format to describe the structural properties of the

knowledge base with nodes representing discussions and

edges representing relationship. For each discussion, we

created a connection to each of its top 20 most similar

discussions. For the case of design patterns, we build a

connection to each associated discussion. For each edge

created between two nodes, we stored the calculated similarity

value, except for design pattern edges where we set the value

to 1.

1
 http://graphml.graphdrawing.org

285

B. Knowledge Graph View

Similar to [23], we displayed discussions in an overview

graph. Thru visualization techniques, students can use their

visual abilities to discover relationships, structures or patterns

in discussion threads.

We used the shape of a discussion node to encode whether a

discussion was either answered or unanswered, with answered

ones displayed as a hexagon and unanswered ones displayed

as diamond. Having the name of the pattern available makes it

easier to identify them. Thus, we used a green label node to

display design patterns. To highlight associations to design

patterns, we build a convey circle around those discussion

nodes belonging to the design pattern and centered the design

pattern node among them.

We encoded popularity using a gradient color scheme similar

to [2][23] with darker shades denoting more popular items.

A connection between a discussion node and a pattern node

indicates that a discussion node is an instance of the pattern.

A connection between two discussion nodes indicates that the

two discussions are related to each other. A challenge we

faced with the number of connections between nodes was that

it was cluttering the drawing area making it unreadable. We

address this by using progressive disclosure [4] and used the

similarity strength value assigned to each connection or edge

between two discussions to determine the color intensity of the

similarity with more similar items darker. We also added a

similarity slider to allow students to control the visibility of

the nodes based on the similarity strength.

C. Discussion Listing View

Traditional text based browsing schemes provide simple and

effective means for displaying textual information that cannot

be represented in a graph node. The discussion listing view

provides a text based browsing scheme to allow students to

access more information about the discussions that would have

been difficult to include in the graph. Since we provided two

different browsing approaches (graph and text-based), it was

important to ensure proper integration between the two. We

enabled bi-directional synchronization between the graph and

the listing view. As students moved the mouse over a node in

the graph, the corresponding entry in the discussion listing

view was brought into focus. Likewise, if a student was more

comfortable browsing discussions in textual form, as they

moved the mouse over the discussions the corresponding node

in the graph got highlighted.

The discussion view also provides keyword filtering to allow

users to filter out results.

D. Knowledge Timeline

Only providing keyword filtering might not be enough. In

[10][9], the authors allowed users to browse discussions thru

their temporal attributes. In an educational setting, time

information is very important as discussions can be associated

around quizzes or deadlines. To support such scenarios, the

knowledge timeline allows students to filter discussions by

specifying starting and ending dates. With the timeline in

combination with the keyword filters, students can further

narrow the available discussions.

E. Discussion Details View

For our discussions, we wanted to represent an organization of

answers, related discussions and associated design patterns. In

[2], the authors found that using a tree layout provides a

simple way to represent perceptual organization. We extended

the approach and built a hierarchy for answers, related

discussions and design patterns (Fig. 2). The discussion detail

view extends the color and size encodings from the knowledge

graph view. Textual content for the question and answers was

available from the corresponding tab.

F. Associating Design Patterns

When students open up the pattern selection dialog, Fig. 3,

they are presented with a list of available patterns they can

select from. Selecting a pattern displays its description and

the solution. The description helps the student to identify the

appropriate question type being evaluated. The solution

provides the student with a recommendation for how to

answer the type of question.

Figure 2. Discussion details view providing question details, answers, related

discussions and design patterns. In this figure, a student has selected an

answer. The selected answer is brought into focus on the answers list to the
right and its content is displayed in the Answers tab below.

Figure 3. Pattern selection dialog allows students to select existing or create

new design patterns.

286

Once a pattern is selected, the discussion becomes an instance

of that pattern. If students need to find samples of how similar

questions were answered, they can look at other instances of

discussions associated to the selected pattern.

Finally, [6] found that tools that manage pattern collections

should be able store and organize the patterns for easy access

and exploration. The Pattern Browser view provides such

functionality and it is available from the main navigation

window along with the discussion listing view.

IV. USER STUDY

We conducted a 32-subject user study of MicroBrowser to

find out:

 Does MicroBrowser promote peer-learning and
knowledge discovery? Were students able to discover
and reuse knowledge efficiently?

 Did students understand the concept of design
patterns? Were design patterns helpful for completing
knowledge discovery and reuse?

 Were the design features of color coding, node sizes,
keyword and timeline search and discussion overview
effective and easy to understand?

 Is MicroBrowser easy to use?

A. Experimental design

To validate the effectiveness of MicroBrowser (MB), we

compared it against a state-of-the-art Q&A system (Q&A).

Subjects were randomly assigned to start with either MB or

Q&A. The user study consisted of three parts. First, students

completed a brief tutorial and were asked to complete a total

of 12 tasks. After each task, students rated the perceived

difficulty of completing the task. Then students completed 12

similar tasks using the other system. There was no time limit

for completing these tasks. Finally, students completed an exit

questionnaire.

B. Task Descriptions

We defined 12 tasks around 4 scenarios:

1) Discovering knowledge using keywords

Task 1 asked students to find a question about a given

keyword. Task 2 asked students to find the most popular

discussion for a given keyword. Task 3 asked students to first

find an unanswered question about a given keyword and then

find related discussion suggested by the system.

2) Discovering knowledge using timeline

Task 4 asked students to find any discussion that occurred

during a given timeframe. Task 5 asked students to find

discussions about given keyword that occurred during a given

timeframe. Task 6 asked students to find the most recent

unanswered question.

3) Using Patterns for knowledge reuse

Task 7 asked students to find examples of discussions whose

answer either provide recommendations or advise or suggested

the use of references. Task 8 asked students to modify a given

discussion such that other students looking for similar

approaches to answering the question could reference it. Task

9 asked students to submit a given answer to an unanswered

discussion. Then they were asked to modify the discussion

such that other students could reuse how the answer to the

question was presented.

4) Using Patterns for knowledge discovery

Task 10 asked students to find discussions based on the

approach taken to answer them. Task 11 asked students to

refer to a particular discussion and then find other discussions

whose approach to answering it was similar. Task 12 asked

students how they can find recommended ways to answer

discussions.

C. Participants and Apparatus

We recruited 32 subjects (6 female) over 18 years (18-21:

38%, 22-25: 41%, 26+: 22%) among STEM major students

from a local university. Each session lasted 1 hour 30 minutes

and participants were compensated with a $10 Amazon.com

gift card.

Participants used a Dell Optiplex 745 (Intel Core2 Duo T6300

1.86GHz, 2GM RAM) using Windows 8 and a 19” display at

a screen resolution of 1280x1024. MB ran on top of Eclipse

V4.2.2 and Java SE 7u51.

As our baseline Q&A system, we configured an instance of

the open source, PHP based Question2Answer
2
 platform and

access it via Internet Explorer V10.

D. Data

We loaded the system with the 500 most recent discussion

threads and their answers retrieved from

StackOverflow
3

associated to the tag „Java‟. This data

consisted of 4041 records (500 questions, 3541 answers) from

2091 different users. We created 4 initial design patterns and

assigned them sample discussions.

E. Usage Behavior

Table 1 summarizes the activities participants performed the

most while completing the tasks using MB. We noted that

participants visited a median of 182 nodes using the

knowledge graph but only 12 nodes using the discussion

listing view suggesting a preference for browsing knowledge

using the knowledge graph over the discussion listing view.

Participants opened an average of 15 discussions and 8 design

patterns suggesting that integrating discussion details in the

knowledge graph reduced the need to open discussions for

information. When students opened the details of a

2
 http://www.question2answer.org

3
 http://www.stackoverflow.com

 TABLE 1. DESCRIPTIVE STATISTICS SUMMARIZING
PARTICIPANTS‟ ACTIVITIES USING MICROBROWSER (SD=STD

DEV).

Activities Median Mean SD

Open discussion details 15.0 15.37 7.66

Open design pattern details 8.0 8.12 3.88

Open answer details 56.5 81.50 76.49

Perform keyword searches 13.0 13.81 5.14

Visit node on knowledge

graph
179.0 182.56 72.20

Visit node on discussion listing 8.0 12.28 13.77

287

discussion, they could explore related discussions and answers

associated to the discussion Data shows that on average

participants viewed the details of about 50 answers (SD =

76.49) suggesting that MB facilitated knowledge exploration

not only of discussion but also of their answers. Finally,

participants performed an average of 13 search events.

F. Perception of Difficulty

1) Discovering knowledge using keywords

Results show no statistically significant differences between

Q&A and MB for Task 1 (p = 0.8514). For Tasks 2 and 3,

results show statistically significant differences between the

two methods. Data shows that MB is easier to use for

completing those tasks (Table 2).

2) Discovering knowledge using timeline

For Tasks 4-6 results show statistically significant differences

between Q&A and MB. Data show Task 4 and 5 were easier

to complete using MB while for Task 6 Q&A was easier

(Table 2).

3) Using Patterns for knowledge reuse

No statistically significant differences were found for Task 8

(p=0.0675) or Task 9 (p=0.1164) between the two systems.

However, data shows a trend towards MB being easier to

complete the tasks. Results show MB was easier to complete

Task 7.

4) Using Patterns for knowledge discovery

We found statistically significant differences between Q&A

and MB for Tasks 10-12. Students found using MB to be less

difficult to complete these tasks.

G. Qualitative Results

The majority of students found the use of design patterns

effective and most importantly easy to learn (Fig. 4). This was

an important finding as we wanted to validate students could

understand their value. Students were ecstatic about their

capability and usefulness as noted by the following comments:

“Pattern browsing is a great concept”, “I really loved the

pattern browser. Just a brilliant idea” and “Pattern browser,

it is very useful to see "trusted advisor". If I want to see

reliable answers and "reference" and "comparator" are very

useful.”

When directly asked about their feedback, students were very

positive on the usefulness and effectiveness of the main

features (Fig. 5).

When openly asked to list their most liked features, 56%

students cited the integration of design patterns and the pattern

browser, 47% the visual representation of discussions, 13% for

visualizing relationships, 25% the use of color to encode

popularity, 25% for shape encoding, and 22% the knowledge

timeline.

Among the features students disliked the most were the initial

learning curve (13%), the knowledge timeline (13%), the slow

response (9%) and the use of patterns (9%).

Finally, students found MicroBrowser to be easy to use (10-

point Likert-scale, median=8).

V. DISCUSSION

In this study, we aimed to determine if our innovative system

MB was easy to use and facilitated completion of the tasks

when compared to a traditional Q&A. Based on the results,

students found MB to be easier to complete most of the tasks

when compared to Q&A. Task 1 was very simple which can

explain why no statistically significant differences were found

between the systems. For Tasks 2 and 3, students benefited in

MB from the use of color coding to quickly identify popular

discussions and the clear identification of the related

discussions in the discussion details view. For Tasks 4 and 5,

students benefited from using the knowledge timeline to

narrow discussions as well as the ability to filter by both

keyword and timeline simultaneously. When using Q&A,

students could only sort by recent discussions but had to page

thru the discussions until reaching the desired date.

Surprisingly, based on results, Q&A was easier for completing

TABLE 3. STUDENTS‟ PERCEPTION OF DIFFICULTY FOR TASKS 7-12. SCALE OF

1-EASIER TO 5-MORE DIFFICULT. (GRAY BACKGROUND = P < 0.05, WILCOXON

SIGNED-RANK TEST, IQR=INTERQUARTILE RANGE, SD=STD DEV)

 Q&A MB

Task
Median

(IQR)
Mean (SD)

Median

(IQR)
Mean (SD)

7 3 (1) 2.83 (1.00) 2 (2) 2.09 (0.92)

8 3 (2.5) 2.90 (1.37) 2 (1.25) 2.37 (1.23)

9 2.5 (2) 2.81 (1.40) 2 (1) 2.40 (1.04)

10 2 (1) 2.60 (1.16) 2 (2) 2.00 (1.09)

11 2 (1.5) 2.50 (1.29) 2 (1) 1.76 (0.81)

12 3 (1.37) 3.37 (1.37) 2 (1.14) 2.30 (1.14)

TABLE 2. STUDENTS‟ PERCEPTION OF DIFFICULTY FOR TASKS 1-6. SCALE OF 1-

EASIER TO 5-MORE DIFFICULT. (GRAY BACKGROUND = P < 0.05, WILCOXON

SIGNED-RANK TEST, IQR=INTERQUARTILE RANGE, SD=STD DEV)

 Q&A MB

Task Median

(IQR)

Mean (SD) Median

(IQR)

Mean (SD)

1 1 (0) 1.25 (0.56) 1 (0.25) 1.28 (0.52)

2 2 (1.15) 2.51 (1.15) 2 (0.59) 1.68 (0.59)

3 3 (1.09) 3.00 (0.83) 1 (0.83) 1.67 (0.83)

4 3 (1.14) 3.03 (1.14) 1 (0.67) 1.50 (0.67)

5 2 (1.10) 2.25 (1.10) 1 (0.56) 1.46 (0.56)

6 1 (1.00) 1.65 (1.00) 3 (0.98) 2.93 (0.98)

Figure 4. Students‟ opinion about design patterns. 5-point Likert-scale

Figure 5. Students‟ opinion about MicroBrowser features and functionality.

5-point Likert-scale

288

Task 6. Q&A showed unanswered discussions already sorted

by update date. This explains why, under Qualitative results,

students recommended adding sorting capabilities to MB.

Even though Task 7 was open-ended, we wanted to see if

students could use the systems to identify instances of reusable

knowledge. Using MB, students were able to use the pattern

browser and from there refer to the sample discussions. In the

case of Q&A, students used different methods, such as

performing keyword searches and then reading the details of

identified discussions. Sometimes students simply opted for

selecting the discussion that matched a keyword search. For

Task 8, students benefited by the use of design patterns

because 66% of the students used a design pattern to complete

the task. For the case of Q&A, students tended to associate a

tag to create a classification of the discussions. For Task 9-12,

we noted a large percentage of students benefited from design

patterns by using them when completing the tasks (50%, 81%,

78% and 77%, respectively). For Q&A, students had to find

techniques for identifying recommended discussions such as

using keywords or using page view count information.

Finally, qualitative results showed students found the MB

features to be useful and effective. Students identified some

usability issues and also made recommendations for

improvements to MB. Among the recommendation were to

add sorting capabilities, to improve the knowledge timeline by

using a slider, to add filtering by users or question state, to

associate more patterns to questions, to add actions on right-

click menus and to design for accessibility.

VI. CONCLUSION

In this paper, we presented MicroBrowser, a system that

facilitates peer learning and knowledge discovery in classroom

settings. Results from our 32-subject user study show reduced

difficulty at completing tasks when compared to traditional

Q&A system. More importantly, students found benefit in the

use of design patterns and found the system and its features

effective and easy to use.

The integration of Design Patterns in knowledge discovery

and generation is a key innovation in MicroBrowser. Overall,

MicroBrowser achieves this with an interactive knowledge

visualization and exploration system.

REFERENCES

[1] Alexander, C. The origins of pattern theory: The future of the theory,
and the generation of a living world. Software, IEEE 16, 5 (1999), 71–
82.

[2] Cai, Q. and Sheth, N. Visualizing MeSH Dataset using Radial Tree
Layout. (2003).

[3] Carle, A., Clancy, M., and Canny, J. Working with pedagogical patterns
in PACT. ACM SIGCSE Bulletin 39, 2007, 238.

[4] Chuang, J., Ramage, D., Manning, C.D., and Heer, J. Interpretation and
Trust : Designing Model-Driven Visualizations for Text Analysis.
(2012), 443–452.

[5] Coetzee, D., Fox, A., Hearst, M., and Hartmann, B. Should your MOOC
forum use a reputation system? CSCW’14, (2014), 1176–1187.

[6] Deng, J., Kemp, E., and Todd, E.G. Managing UI pattern collections.
Proceedings of the 6th ACM SIGCHI New Zealand chapter’s
international conference on Computer-human interaction making CHI
natural - CHINZ '05, (2005), 31–38.

[7] Engdahl, B., Koksal, M., and Marsden, G. Using treemaps to visualize
threaded discussion forums on PDAs. Proceedings of ACM CHI 2005
Conference on Human Factors in Computing Systems, (2005), 1355–
1358.

[8] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software. 1994.

[9] Gibbs, W.J., Olexa, V., and Bernas, R.S. A Visualization Tool for
Managing and Studying Online Communications. 9, (2006), 232–243.

[10] Giguet, E. and Lucas, N. Creating discussion threads graphs with
Anagora. CSCL’09 Proceedings of the 9th international conference on
Computer supported collaborative learning, (2009), 616–620.

[11] Heer, J., Card, S., and Landay, J. Prefuse: a toolkit for interactive
information visualization. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ACM Press (2005), 421.

[12] Huang, J., Dasgupta, A., Ghosh, A., Manning, J., and Sanders, M.
Superposter behavior in MOOC forums. Proceedings of the first ACM
conference on Learning @ scale conference - L@S ’14, (2014), 117–
126.

[13] Hung, Woei (University of Arizona South, Sierra Vista, A., Jonassen,
David H (University of Missouri, Columbia, M., and Liu, Rude (Beijing
Normal University, Beijing, C. Problem-Based Learning. Encyclopedia
of the Sciences of Learning, (2012), 2687–2690.

[14] Köppe, C. and Utrecht, H. A pattern language for teaching design
patterns. Proceedings of the 18th Conference on Pattern Languages of
Programs - PLoP ’11, Part 2 (2011), 1–16.

[15] Lin, J. and Landay, J.A. Employing patterns and layers for early-stage
design and prototyping of cross-device user interfaces. Proceeding of the
twenty-sixth annual CHI conference on Human factors in computing
systems - CHI ’08, (2008), 13.

[16] Massie, D. and Massie, C. Framework for organization and control of
capstone design/build projects. Journal of STEM Education 7, 3 (2006),
36–43.

[17] McCallum, A.K. MALLET: A Machine Learning for Language Toolkit.
2002. http://mallet.cs.umass.edu/.

[18] Seaton, D.T., Bergner, Y., Chuang, I., Mitros, P., and Pritchard, D.E.
Who does what in a massive open online course? Communications of the
ACM 57, 2014, 58–65.

[19] Seo, J., Croft, W.B., and Smith, D. a. Online community search using
thread structure. Proceeding of the 18th ACM conference on Information
and knowledge management - CIKM ’09, (2009), 1907.

[20] Sonnino, E. 4 Ways to Get the Most out of a MOOC. Learning Advisor,
2013. http://blog.studentadvisor.com/four-ways-get-mooc/.

[21] Trampuš, M. and Grobelnik, M. Visualization of online discussion
forums. Workshop on Pattern Analysis Applications 11, (2010), 134–
141.

[22] Vanderdonckt, J. and Simarro, F.M. Generative pattern-based design of
user interfaces. Proceedings of the 1st International Workshop on
Pattern-Driven Engineering of Interactive Computing Systems - PEICS
’10, (2010), 12–19.

[23] Wanner, F., Ramm, T., and Keim, D. ForAVis: explorative user forum
analysis. WIMS ’11: Proceedings of the International Conference on
Web Intelligence, Mining and Semantics, (2011).

289

DOI reference number: 10.18293/SEKE2015-073

Scaffolding MATLAB and Octave Software

Comprehension Through Visualization

Ivan de M. Lessa, Glauco de F. Carneiro

Universidade Salvador (UNIFACS)

Salvador/Bahia, Brazil

ivan.lessa@gmail.com,

glauco.carneiro@unifacs.br

Miguel P. Monteiro

Universidade Nova de Lisboa (UNL)

NOVA LINCS

Lisbon, Portugal

mtpm@fct.unl.pt

Fernando Brito e Abreu

Instituto Universitário de Lisboa
(ISCTE-IUL)

Lisbon, Portugal

fba@iscte-iul.pt

Abstract— Multiple view interactive environments (MVIEs)

provide visual resources to support the comprehension of a specific

domain dataset. For any domain, different views can be selected

and configured in a real time fashion to be better adjusted to the

user needs. This paper focuses on the use of a MVIE called

OctMiner to support the comprehension of MATLAB and

GNU/Octave programs. The authors conducted a case study to

characterize the use of OctMiner in the context of comprehension

activities. Results provide preliminary evidence of the effectiveness

of OctMiner to support the comprehension of programs written in

MATLAB and Octave.

Keywords – software visualization; MATLAB/Octave; software

comprehension.

I. INTRODUCTION

Multiple view interactive environments (MVIE) provide
resources to support data analyses and unveiling information that
otherwise would remain unnoticed [1][4]. This work is focused
on MATLAB [8] and Octave [11] programs, following reports
in the literature that indicate a lack of support for the
comprehension of programs coded in these languages. We
contribute to fill this gap by implementing a MVIE named
OctMiner. Following previous research on this topic [2][9], we
conducted a case study using OctMiner to support the
comprehension of MATLAB/Octave programs, which aims at
characterizing the MVIE support to identify crosscutting
concerns.

This paper is structured as follows: section II describes key
functionalities of OctMiner and its architecture; section III
presents two case studies to characterize OctMiner as a means to
support MATLAB/Octave program comprehension; section IV
proposes a set of usage strategies to be performed with OctMiner
for comprehension purposes. Finally, section V presents the final
considerations and outlines opportunities for future work.

II. MULTIPLE VIEW INTERACTIVE ENVIRONMENTS

Visualization is a means of providing perceivable cues to
several aspects of the data under analysis to reveal patterns and
behaviors that would otherwise remain unhighlighted and
unnoticed [13]. Card et al. [1] proposed a well-known reference
model for information visualization. According to them, the
creation of views goes through a sequence of successive steps:
pre-processing and data transformations, visual mapping and
view creation. Carneiro and Mendonça [3] extended this model

to adapt it to the context of MVIEs. Figure 1 shows the extended
model, emphasizing that the visualization process is highly
interactive. Moreover, it enables the combined use of resources
of a multiple view interactive environment. The process starts
with original (raw) data obtained from a repository that
undergoes a set of transformations to be organized into data
structures suitable for information exploration. This process is
called data transformation [3]. Next, the data structures are used
to assemble visual data structures. Those structures organize
data properties and visual information properties in ways that
facilitate the construction of visual metaphors. This step defines
the mapping from real attributes – which are derived from the
data properties, software attributes, in our case – to visual
attributes such as shapes, colors and positions on the screen. This
process is called visual mapping [3]. It is important to highlight
that these activities do not deal with rendering, but rather with
building suitable data structures from which the views can be
easily computed and rendered. The final step, presented in
Figure 1, is the view transformation, aimed at drawing the
information on the screen to produce the views. In this step, a
specific visual scene is actually rendered on the computer screen
[3].

Figure 1. An Extended Reference Model for MVIEs [3]

Nunes et al. [10] proposed a toolkit implemented as a Java
Eclipse plugin from which MVIEs could be developed. The
plugin provides a basic structure that allows the creation and
inclusion of new resources and functionalities to develop
MVIEs. Figure 2 presents the way the toolkit was used and
extended by other plugins to comprise the SourceMiner MVIE.
This MVIE was originally developed to support the
comprehension of Java source code. As can be seen in the figure,
the extension points of the toolkit.aimv plugin enable the
inclusion of new plugins to the MVIE. Each of the extension
points conveyed provides an interface with methods and their
respective signatures. In the case of OctMiner, we needed to
access and transform raw data – the Abstract Syntax Tree (AST)
of MATLAB/Octave programs – to a format compatible with the

290

visual data structure. According to the extended reference model
for MVIEs, this is a requirement to feed the views.

Figure 2. The MVIE SourceMiner [10]

Figure 2 presents a set of plugins that comprise the
SourceMiner MVIE. The following guides are available to help
MVIE developers: (1) Data Transformation: to extend the plugin
Import Module to implement the plugin sourceminer.modules;
(2) Creating and Applying Filters to extend the plugins Filter and
Filter View; (3) Creating Tools to extend the plugin Tools; (4)
Creating Views to extend the plugins Data Views and Tools.
These guides are available at [14].

Figure 3. OctMiner Architectural Overview [7]

The goal of the toolkit is to provide an infrastructure to

develop MVIEs for different domains. The domain targeted in

this paper comprises programs written in MATLAB/Octave.

A. THE MATLAB AND OCTAVE PROGRAM LANGUAGES

MATLAB is an interpreted language very popular among
students and researchers of physics, biomedical engineering and
related areas. It is not uncommon that a young engineer is fluent
in using MATLAB, but hardly familiar with C, and even less of
Fortran [5][15]. MATLAB has been used to teach linear algebra,
numerical analysis, and statistics. Since the MATLAB language
is proprietary, a similar language, named Octave was developed,
and is distributed under the terms of the GNU General Public
License. It was originally conceived in 1988 to be a companion
programming language for an undergraduate-level textbook on

chemical reactor design. Due to the similarities between these
languages, it is possible to interpret MATLAB programs in the
interpreter of the GNU/Octave with no major problems. The
main differences among the two languages are as follows: i)
Some similar routines can have different names in each
language; ii) Comments in MATLAB are written after “%”
while in Octave you can use both “%” and “#”; iii) In MATLAB
the control blocks (while, if and for) as well as the functions
delimiter all finish with “end” while in Octave you can also use
“endwhile”, “endif”, “endfor” and “endfunction” respectively;
iv) In MATLAB the not equal to operator is “˜=” while in Octave
“!=” is also valid; v) MATLAB does not accept increment
operators such as “++” and “—“, while Octave accepts them.

B. THE AIMV OCTMINER

The main motivation for representing concerns manifested

in MATLAB/Octave code in a MVIE is the enhancement of the

comprehension activities. The plugin structure supporting the

MVIE toolkit is the same as presented in Figure 2. The main

difference is that in this case the focus is on MATLAB/Octave

rather than Java. Figure 3 depicts the main four elements of

OctMiner: the Eclipse IDE RAP/RCP (Rich Clients and Rich

Ajax Applications), the Octclipse plugin, the Octave interpreter

and the MVIE toolkit proposed in [10]. The Eclipse IDE enables

its extension through the use of plugins. The MVIE toolkit does

this to provide its functionalities as well as enabling the

tailoring of the MVIE tailoring for the analysis of data from

different domains, e.g., the data gathered from

MATLAB/Octave programs.

We implemented an Analyzer module as presented in Figure

3, which is analogous to sourceminer.modules – see Figure 2. It

is an extension of the Import Module, whose goal is to import

and convert data from the original data repository to be

represented in the multiple views. The Octclipse plugin also

provides an Octave development environment built on top of

Eclipse's Dynamic Languages Toolkit. This environment

enables programmers to create Octave scripts (*.m files), edit

them in a multi featured text editor, run the Octave interpreter

and see results displayed in the IDE's console. OctMiner is

available at [14].

To provide a short illustration of the visualization

capabilities of OctMiner, Figure 4 shows a typical visualization

scenario. Part A is the Project Explorer, presenting all the

repository files; Part B is the Outline, showing the functions and

variables of a given file, when it is selected in the Project

Explorer. Part C provides editing access to the routine’s code.

Part F is a filter dashboard. Parts D, E and G are views

corresponding to several different visualization metaphors. For

instance, the Treemap view (G) provides panoramic view, e.g.,

of how names of routines are distributed in the file repository.

Colours represent different concerns (be they crosscutting or

no). We use the term “token” to refer to routine names from the

MATLAB/Octave systems. The List view (E) presents a list of

the files from the repository. The Grid view (D) is be used to

identify the tokens

291

Figure 4. A Typical Scenario of OctMiner Use in the Eclipse IDE [7]

used in the repository along with several different metrics, e.g.,

number of occurrence of each token in each file or in the whole

repository. This view can also be presented in several orderings,

depending on what is convenient. Full details on the

visualizations are provided in our ITNG paper [7].

III. COMPREHENSION ACTIVITIES WITH OCTMINER

This section presents a case study to characterize the use of
OctMiner in comprehension activities. In it, we investigate the
following question: to which extent OctMiner provides effective
support to identify potential symptoms of crosscutting concerns
in MATLAB programs? In the study, we analyze 22 MATLAB
image processing routines. The goal is the identification of the
dual symptoms of scattering and tangling in the routines, as
supported by OctMiner. Scattering [12] is the degree to which a
concern is spread over different modules or other units of
decomposition. Tangling [16] is the degree to which concerns
are intertwined to each other in the same routines. Both
scattering and tangling are indicators of the presence of
crosscuting concerns in program code.

The case study explores the potential of tokens to be
indicators of the scattering and tangling symptoms. The
approach is as follows: sets of tokens can be associated to a given
concern, which ideally would be modularized into its own file,
with no additional concerns. When the concern is not
modularized, its code is scattered across multiple files and its
associated tokens are found in such files – an indicator of
scattering. Often, such files also betray the presence of tokens
categorized under multiple concerns – an indicator of tangling.

To explore the aforementioned approach, participants
performed the following activities: i) Identify tokens most
commonly used in the 22 routines; ii) Characterize the

localization among files of the most commonly used tokens to
assess the symptoms of scattering; iii) Characterize the
relationship between the most commonly used tokens and other
tokens in the files to assess the symptoms of tangling; iv)
Determine the category (concern) to which the most commonly
used tokens belong; v) Using the category of each token, identify
the main functionalities (concerns) of the program. Using this
approach, it was possible to identify the top most commonly
used tokens in the analyzed routines and that this same tokens
presented evidences of scattering. This study was the starting
point for the use of OctMiner in comprehension activities.

We identified the following limitations in this study:
considering that the routines were already analyzed by
OctMiner, any new modification in the original routines will not
be reflected in the views until a new analysis is performed to
obtain these modification from the repository. In addition, the
user can only select the predefined color in OctMiner. It is also
not possible to define new colors in this version of OctMiner.
The need to configure the XML file with the tokens is also a
limitation. To overcome it, we intend to provide a XML file with
a large number of MATLAB and Octave functions and their
respective categories.

We recognize that OctMiner may not be able to provide

support for all kinds of comprehension needs. To better

characterize and validate its range of applicability, we plan

additional studies (see section V). Another potential threat to

validity is that both design and execution of the study were

performed by the same person. To overcome this issue, further

independent experiments will be carried out to compare results

more thoroughly.

292

IV. PRELIMINARY STRATEGY BASED ON OCTMINER

Results from this case study enable us to propose a
preliminary usage strategy based on OctMiner for
comprehension purposes. The strategy includes a
comprehension question as its starting point, which drives
subsequent steps. The question is related to tangling and
scattering, using a set of tokens from programs of a repository as
a basis. Table 3 presents the steps proposed from evidences
collected from this case study.

Table 3. A Proposed Set of Usage Strategies

Suggested Steps

1 - Select a question: the programmer needs to identify an issue

relevant for his daily activities. Answers to the question should be

available considering that the routines used in the code should be

registered in the OctMiner configuration file.

2 – Identify a target routine: it should be the routine that plays a

relevant role in the code of the primary solution to the selected

question.

3 – Locate repositories that use the target routine: since

OctMiner aims at assisting the comprehension of a given target

routine, it is desirable that routines using the target routine provide

good examples and be the subject of analysis.

4 – Identify the routines and their respective categories available

in the official documentation: alternative routines used in the

repository selected in Item 3 must also be identified. MATLAB and

Octave routines are categorized in the official language sites of

MATLAB and Octave.

5 – Register the target routine as well as other routines from the

repository in the OctMiner configuration file: the routines should

be registered in OctMiner configuration file using their specific

group, identified according to Item 4.

6 – Create a To-Do list for identification through visualization:
activities that the user must perform should be described so that the

study is conducted as well as possible within OctMiner.

7 – Implementation of the proposed activities: the user must run

OctMiner according to the activities set out in Item 6.

8 - Answer the original question: to prove the effectiveness of the

tool, the user should be able to answer the question that started the

process in Item 1.

V. CONCLUSIONS AND FUTURE WORK

This paper presents the following contributions: a) the
provision of an environment called OctMiner for the
comprehension of MATLAB/Octave routines supported by
multiple views; b) Evidences of the effectiveness of OctMiner to
support the identification of symptoms of code tangling and code
scattering as discussed in the study presented at section III; c)
the initial version of a sequence of steps for a strategy for the
usage of OctMiner for comprehension purposes.

A previous paper by the same authors describing the
architecture of OctMiner along with an illustrative example of
its main functionalities in a real scenario of program
comprehension, was presented at ITNG’2015 [7]. An extended
version of the present paper, where the validation case studies
are described in detail and additional information on the
proposal is provided, will appear in the proceedings of
ICCSA’2015 in Canada.

We will soon conduct a new version of a more detailed study,
based on answers posted at popular question-and-answers sites
(e.g., StackOverflow). We are planning research questions to
assess the extent to which OctMiner provides effective support
to clarify programmer´s issues. We believe OctMiner can help
programmers in understanding the context of use of a routine
through OctMiner‘s visualizations. Our goal is to gather
evidence of the effectiveness of OctMiner in supporting
acquisition of insights by means of the visualization of target
routines. We will base the next study on routines referred in
posts from question-and-answers sites. The authors would like
to thank the Brazilian Coordination for the Improvement of
Higher Education Personnel (CAPES) for their financial
support.

REFERENCES

[1] Card, S. K., Mackinlay, J. and Shneiderman, B. Readings in Information
Visualization Using Vision to Think. San Francisco, CA, Morgan
Kaufmann, 1999.

[2] Cardoso, J.; Fernandes, J; Monteiro, M.; Carvalho, T; Nobre, R. Enriching
MATLAB with aspect-oriented features for developing embedded
systems. Journal of Systems Architecture 59 (2013) p. 412–428.

[3] Carneiro, G.; Mendonça, M.. SourceMiner: Towards an Extensible Multi-
perspective Software Visualization Environment. In: Slimane
Hammoudi;José Cordeiro;Leszek A. Maciaszek;Joaquim Filipe. (Org.).
Enterprise Information Systems. 1ed.: Springer International Publishing,
2014, v. 190, p. 242-263.

[4] Carneiro, G., Silva, M., Mara, L., Figueiredo, E., Sant’Anna, C., Garcia,
A., Mendonc¸ a, M., 2010. Identifying code smells with multiple concern
views. In: XXIV BrazilianSymp. on Software Engineering (SBES 2010),
IEEE Comp. Soc., Washington, DC, USA, pp. 128–137.

[5] Chaves, J.; Nehrbass, J.; Guilfoos, B.; Gardiner, J.; Ahalt, S.;
Krishnamurthy, A.; Unpingco, J., Chalker, A.; Warnock, A.; Samsi, S.
Octave and Python: High-Level Scripting Languages Productivity and
Performance Evaluation. In Proc. of the HPCMP Users Group
Conference (HPCMP-UGC '06).

[6] Data Explorer - StackExchange. Available at
http://data.stackexchange.com/.

[7] Lessa, I.; Carneiro, G.; Monteiro, M.; Abreu, F. A Multiple View
Interactive Environment to Support MATLAB and GNU/Octave Program
Comprehension. In: International Conference on Information
Technology:New Generations (ITNG), 2015, Las Vegas/EUA.

[8] MATLAB Programming Language. Available at
www.mathworks.com/products/matlab.

[9] Monteiro, M.; Cardoso, J.; Posea, S. Identification and characterization of
crosscutting concerns in MATLAB systems. In Conference on Compilers,
Programming Languages, Related Technologies and Applications
(CoRTA 2010), Braga, Portugal (pp. 9-10).

[10] Nunes, A.; Carneiro, G.; David, J. Towards the Development of a
Framework for Multiple View Interactive Enviironments. In:
International Conference on Information Technology:New Generations
(ITNG), 2014, Las Vegas/EUA. p. 23-30.

[11] Octave Programming Language. Available at
www.gnu.org/software/octave/.

[12] Robillard, M; Murphy, G. Representing Concerns in Source Code. ACM
TOSEM, 2007.

[13] Spence, R. Information Visualization: Design for Interaction (2nd Edition).
2. ed.Prentice Hall, 2007.

[14] SourceMiner Website. Available at www.sourceminer.org/octminer

[15] Stenroos, M.; Mäntynen, V.; Nenonen, J. A MATLAB library for solving
quasi-static volume conduction problems using the boundary element
method. - Computer methods and programs in biomedicine, 2007.

[16] Tarr, P.; Ossher, H.; Harrison, W.; Jr., N. Degrees of Separation: Multi-
Dimensional Separation of Concerns. ICSE, 1999.

293

To Enlighten Hidden Facts in The Code: A Review
of Software Visualization Metaphors

Yangyang XU∗, Yan LIU† and Jiabin ZHENG‡
School of Software Engineering, Tongji University

Shanghai, China
Email: ∗1334902@tongji.edu.cn, †yanliu.sse@tongji.edu.cn, ‡1434321@tongji.edu.cn

Abstract—Software visualization has been adopted to help
engineers understand the design and functionality better and
faster. A number of visualization techniques have been developed
in the field of structure, behavior and evolution recently. However,
there is little attempt to comprehensively review current state
of the art for software professionals. As a consequence, this
paper employs a systematic review of research literature on the
visualization of code, to identify current application tasks, discuss
variety effectiveness of visual representations, and sort out their
relationships to improve usability. Finally, unsolved issues and
future research opportunities have been discussed.

Keywords-code visualization; metaphor; mapping; systematic
literature review;

I. INTRODUCTION

Software systems have increasingly grown in size and com-
plexity. Due to the high turnover rate and changing industry en-
vironments, engineers have encountered challenge in software
comprehension and maintenance. Particularly, studies indicate
that 80% of the software costs are used for maintenance,
in which 40% is devoted to understand source code[1]. It
is recognized that people are better at deducing information
from graphical image than numerical and textual formats[2].
Therefore, Software visualization(SV) is defined as a technique
which transfers hidden facts into visual forms like images,
diagrams or animations[3]. However, most of the current
research focuses on specific technique of analysis, there is little
work on how visualization techniques really facilitate general
tasks for stakeholders. Critically, the challenge is to find a good
visual structure which maintains fulfilled information of tasks
and can be perceived easily. As a consequence, SV techniques
have not been widely adopted in the industry[4].

The body of work on SV is such that, at first, it is
important to identify visualization tasks and select adap-
tive metaphors. This is because SV should always be goal-
oriented[5]. Namely, visualization goals drive the definition of
SV techniques. Efforts on this research can be categorized in
two approaches: empirical study and literature review. With
the limitation of quantitative analysis for SV, we decided to
conduct a systematic literature review(SLR) of software code
visualization. On the basis of running through state of the
art, we could summarize existing visual metaphors, understand
analytic tasks and obtain a better mapping between them. The
results are expected to be utilized as a foundation for potential
experimentation and professional scholars.

DOI reference number: 10.18293/SEKE2015-203

TABLE I. Research questions of SLR

Number Research question
RQ1 What analytic tasks does current SV support?
RQ2 What types of perspectives do engineers use SV techniques?
RQ3 What types of visual metaphors are available in the study?
RQ4 Which tools are used to support software code visualization?
RQ5 What is the correlation between tasks and visual metaphors?

II. RESEARCH METHODS

A. Planning the Review

Prior to undertaking a SLR it is necessary to identify
the purpose[6], namely, to explore relevant literature through
research question “how visualization metaphors facilitate tasks
supported in current techniques?”

1) Research questions: Relavant research questions(RQs)
to guide SLR have been formulated in Table I.

The motivation of RQ1 and RQ2 is to identify the goal
of SV techniques. RQ3 and RQ4 get a comprehensive set
of available visualization techniques. The objective of RQ5 is
to investigate relationship between techniques and supported
tasks.

2) Review protocols: With the definition of RQs, it is
essential to specify review protocols to reduce possibility of
bias[6]. It includes search terms, search resources, selection
criteria and data extraction strategy.

In this SLR, initial search terms were “software visual-
ization” and “visualization techniques”. Moreover, “visual”,
“visualize” and other synonyms could be considered as search
terms. Query of this review were built mainly in 6 top publica-
tion venues of SV area, along with research in 4 representative
databases: IEEE Xplore, Sciencedirect, ACM Digital Library
and Springer Link.

Selection criteria are listed in Table II. Data items to
extract related information are defined as follows: analytic

TABLE II. Inclusion and exclusion criteria of SLR

Inclusion criteria
1 A study is published after 2007.
2 A study discusses about SV supported tasks, metaphors, tools, and evaluation.

Exclusion criteria
1 A study does not include code visualization.
2 A study is with little evidence or outdated.
3 A study is duplicate.

294

TABLE III. Number of paper per step for per venue

Public venue Search Selection1 Selection2
ICSE 115 89 12
ICPC 79 70 10
ICSM 77 48 5
SoftVis 96 14 2
WCRE 68 50 7
WICSA 9 8 1

tasks/visualization activities for RQ1, RQ2; visualization rep-
resentation/metaphors for RQ3; tool support for RQ4; and
conclusion/relationship/correlation for RQ5.

B. Conduct the Review

SV papers have been published in many venues. We se-
lected 6 representative ones as paper sources, including ICSE,
ICPC, ICSM, SoftVis, WCRE and WICSA. Table III indicates
selected number of papers in each step for each venue. Initial
results were achieved with query of search terms. Due to
the large number of papers, we applied selection criteria in
Table II to concentrate the results. We limited the date of
publication to consult mature theory in the first selection. And
manual search method was performed in the second round.
As a result, 37 papers were selected from these venues. In
addition, same research method has been explored in 4 famous
public databases and we retrieved 50 results. After removing
duplicate ones within two approaches, finally we identified 81
papers for the review. Due to the limited space, selected papers
are listed in “http://SSE.tongji.edu.cn/liuyan/sv papers.html”.

III. VISUALIZATION REVIEW RESULT

After conducting the review, this section reports results
based on the synthesis and analysis of data extraction activities
to answer RQs.

A. Supported Tasks

Software visualization focuses on diverse aspects through
development stages[7]. Selected papers have indicated an in-
creasing interest in not only visualization of software compo-
nents, their properties, relationships, but also their evolution,
behavior and instruction execution[1][3][7]. In order to present
various tasks clearly, this review adopted the classification
proposed by Stephan Diehl[3], concerning with visualizing
static analysis, dynamic execution of program and evolution
of code.

Figure 1. Number of studies per category

1) Static analysis: According to statistics, 54 studies in
our selection have reported this aspect, including control-flow
analysis[3], code map[8], dependency relationship between
software components[9], software architecture[9] and code
metrics[7].

Control-flow analysis (S1): It is used to depict sequential
order of the program in source code which helps developers
to think in an orderly manner[10].

Code map (S2): This visualization maps the relationships
between pieces of code. Recent studies have indicated full
interests in this analytic task.

Dependency relationship (S3): This is an essential part
of software visualization owing to tremendous amount of
interactions between components. It provides a visual approach
for engineers to obtain an overview of dependencies for entire
solution without viewing all the files and lines of source code.

Software architecture (S4): Because the focal point is code
visualization, here software architecture focuses on hierarchy.
It is one of core topic in SV that is used to help engineers
organize artifacts into logical, abstract groups and make sure
code remains consistent with the design.

Code metrics (S5): Typical static metrics of source code
include size of code, number of components and complexity.
However, visualization techniques discussed in 10 studies have
no great changes in the past few years.

2) Dynamic analysis: In contrast with static properties of
source code, merely 15 studies involved in research support
dynamic analysis visualization. The motivation is to present
what happens at run time, concerning executed time, statement
coverage, dynamic architecture and program slice.

Executed time (D1) and statement coverage (D2) are
aimed to optimize system performance[3][11]. 8 studies
(R9,R12,R15,R19,R25,R52,R53,R64) mentioned visualization
of code coverage which helps users pay more attention on
frequent lines and non-executed ones.

Dynamic architecture (D3): Behavior diagrams are gener-
ated to describe changes at the level of architecture.

Program slice (D4): A dynamic slice is the set of all
program points that actually affect a program point for a given
input(R7,R11,R13). This is intended to find patterns in source
code, and users can eliminate and sort procedures based on
whether or not they are in the slice.

3) Evolution: Tracking changes between different versions
can be meaningful for code management and maintenance[12].

Evolution metrics (E1) in this aspect include who edited
specific parts of code; when each line was last modified;
where bugs were located, who fixed these bugs and how the
evolution processed. As a consequence, the visualization can
be used in the field of code discovery and code decay[13].
Visualization of software archives (E2) which comes up from
a whole overview of system updating has been reported in 3
papers. Added lines, deleted lines and changed lines reflect
which class is added or removed in one file version. At the
same time, visualization techniques to depict structural changes
(E3) are limited[7][13].

295

Above all, Fig. 1 reveals that majority of selected studies
investigate visualization of static aspects especially in depen-
dency relationships and software architecture. While dynamic
analysis visualization is a broad and relatively young research
field due to the limitations of implementation techniques.
Visualization of evolution has attracted great interests in recent
year. Nevertheless, most of the analyzed work intends to
visualize evolution metrics with fewer on complex structural
change.

B. Principal Visual Representation

The focal step of the visualization process is to choose
effective visual representations for facts in source code. They
are built from points, lines, areas, and volumes with various
properties: size, length, width, height, volume, position, orien-
tation, angle, slope, color, grayscale, texture, and shape[3].

To better address RQ3, we have tried to combine rep-
resentations which use different terms with same essence.
Those rarely used or supported with little evidence have been
excluded. Therefore, Fig. 2 presents various types of visual
representations that are currently used in code visualization,
ranging from simple to complex.

1) Line representation: Relevant visual representations in-
clude pie and bar graph, histograms and pixel representation.
It makes the entire file visible with the attributes of length,
indentation and color. According to the effective technique of
color-coding which is beneficial for layering information, it is
possible to show a million lines of code in a screen and make
it easy to find different parts. However, it might be shrunk to
a single row of pixels which is less readable with large scale
programs.

2) Node-link layout: This is the most well-known metaphor
to represent the relationship and hierarchy of software
components[1]. It uses nodes and links to represent ele-
ments(files, packages, classes) and structural relationships re-
spectively. Studies in selected research have indicated that rep-
resentation becomes too large due to the high interconnectivity
between components[7]. Related terms such as Sunburst tree
layout and hyperbolic tree layout[14] have moved to more
sophisticated ones to deal with the problem.

3) Matrix views: It is an effective visualization to display
two-dimensional grid with rows corresponding to one index
and columns to another[15]. In contrast to graph-based visual-
ization, this representation provides complementary informa-
tion for large programs with no overplotting. This is owing to

Figure 2. Number of studies per metaphor

strength of matrix that a single image contains thousands of
cells[15]. One weakness of the representation is that adjacent
modules are unordered and the display is irrelevant to the
structure of source code tree.

4) Treemap: The metaphor is an effective means to visual-
ize hierarchical decompositions of software. It executes tiling
algorithm to slice the view into several parts corresponding
to the number of subsystem. The space-filling technique visu-
alizes methods as elementary boxes and classes as composed
boxes which helps to address space problem in comparison
with node-link graph. However, it has common problem with
matrix views which is impossible to map the structure.

5) Notation views: This type of visualization presents the
relationship between elements in a structure which is currently
used for UML diragram. In contrast to node-link layout, it is
reported that type of the nodes is important information in
notation views.

6) Cityscape views: 15 studies reported this type of visu-
alization which uses physical contexts to represent software
components and relationships[16]. Similiar metaphors include
forest metaphor (R39) and network view. Comparing with
matrix views, it provides more intuitive view for users[17]
and enhances the visualization of metrics. Nevertheless, weak-
nesses of 3D technology like object occlusion and performance
issues have limited the usability.

7) Metric views: The implementation of metric view dis-
plays information on the top of UML diagram. UML is an
visual modeling language to specify, design and construct
software systems[18]. An extension metaphor of metric views
is “areas of interest” proposed by Byelas and Telea[19].

Visualization representations proposed in research range
from simple “line representation” to complex n-dimensional
visualization and even animation. We do not describe these
visual representations in detail, rather we consider factors that
relate software visualizations to particular perspectives. As
shown in Fig. 2, there is a significant difference in popularity
of these visual representations. Node-link layout and line
representation are still the most popular metaphors despite they
have notable limitations in visualizing large scale program. 3D
cityscape views and even n-dimensional representations have
been proposed with the development of 3D technology. How-
ever, further research is needed for addressing the weakness
of this metaphor.

TABLE IV. Number of papers associated to each analysis task
and visual metaphor

Tasks Line Node
link

Matrix
View Treemap Notation Cityscape Metric

View

control-flow analysis 1 5 1
code map 5 3
dependency relationship 15 5 2 3 7 2
software architecture 10 1 4 2 1
code metric 5 1 1 1 3

executed time 3
statement coverage 6 1
dynamic architecture 2
program slice 1 1

evolution metrics 5 1 3 5
software archives 2 1
structural change 1 2 2

296

C. Relationship between Analysis Task and Visual Metaphor

It makes no sense to translate mere source code information
into a massive graph. The utility of visualization lies in
an appropriate, understandable and effective abstraction of
the data in order to present significant information[20]. An
increasing number of visual metaphors have been proposed to
address different concerns which have been reported above.
In order to develop suitable SV techinques, it is necessary to
understand the correlation between analysis task and visual
metaphor.

Table IV has listed the number of studies which mentioned
visual metaphors for respective tasks. There is a many-to-many
relationship between analysis task and visual metaphor. As
little attention has been paid on the visualization of control-
flow analysis and code map, metaphors for these tasks are
relatively few. Notation view is the most popular representation
which has been employed to visualize control-flow of code.
In contrast, visual representations have supported dependency
relationships and architecture quite a lot. This is due to the
importance of understanding structural elements for software
maintanence. Common method to visualize relationship among
components is graph. In particular, node-link layout has been
widely used in dependency and architecture domains with 15
and 10 studies respectively. Because of increasing relations
in code, matrix views which address space problem of node-
link layout have been used for visualizing dependency in 5
studies. And cityscape views provide more vivid representation
in comparison with previous two representations. Treemap is
also applied to visualize relationship and software architecture,
especially good at representing hierarchical information.

Few studies described the visualization of dynamic anal-
ysis. Among them, line representation is dominant metaphor
which is applied for the visualization of dynamic aspect while
node-link layout is rarely used.

With respect to the evolution, line representation and metric
views are popular metaphors to depict change of metrics.
While node-link and treemap can be used to visualize changes
in structure.

IV. CONCLUSION AND FUTURE WORK

This paper presents a systematic review of code visu-
alization which is intended to provide an understanding of
current metaphors used for tasks. However, there still exists
limitations for our review. First of all, we focused on English
articles in six famous public venues and four large digital
database which excluded several valuable literature. Secondly,
the variants of search terms might cause the missing of articles.
Therefore, visual concerns that we consider do not exhaust all
the possibilities. Instead, they are examples to illustrate certain
problems and represent most popular concepts in our review.

We have specified 3 categories of visual tasks and syn-
thesized 7 types of metaphors from SLR. However, it is
argued that what is visualized is what can be visualized,
not necessarily what needs to be visualized in peer academic
literature[21]. Most studies try to develop new visualization
techniques as oppose as to validate or add value to existing
ones. This implies importance to move from the state of the
art to state of practice. Simple mapping between them has

provided theoretical evidence for deeper quantitative analysis.
Consequently, to evaluate the utility of visualization metaphors
and select appropriate one for specific task, next step is
to make research on the higher level of abstraction with
experimentation in cognitive and perceptive activities.

REFERENCES

[1] A. Telea, L. Voinea, and H. Sassenburg, “Visual tools for software
architecture understanding: A stakeholder perspective,” IEEE software,
vol. 27, no. 6, pp. 46–53, 2010.

[2] I. Spence, “Visual psychophysics of simple graphical elements.” Journal
of Experimental Psychology: Human Perception and Performance,
vol. 16, no. 4, p. 683, 1990.

[3] S. Diehl, Software visualization: visualizing the structure, behaviour,
and evolution of software. Springer, 2007.

[4] H. A. Duru, M. P. Çakır, and V. İşler, “How does software visualization
contribute to software comprehension? a grounded theory approach,”
International Journal of Human-Computer Interaction, vol. 29, no. 11,
pp. 743–763, 2013.

[5] V. R. Basili, J. Heidrich, M. Lindvall, J. Münch, M. Regardie,
D. Rombach, C. Seaman, and A. Trendowicz, “Linking software de-
velopment and business strategy through measurement,” arXiv preprint
arXiv:1311.6224, 2013.

[6] S. Keele, “Guidelines for performing systematic literature reviews in
software engineering,” Technical report, EBSE Technical Report EBSE-
2007-01, Tech. Rep., 2007.

[7] T. Khan, H. Barthel, A. Ebert, and P. Liggesmeyer, “Visualization and
evolution of software architectures,” in OASIcs-OpenAccess Series in
Informatics, vol. 27. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2012.

[8] “Visual studio 2013,” http://msdn.microsoft.com/zh-cn/library/
dd831853.aspx, accessed: Sept. 22, 2014.

[9] “Visualizing and understanding code,” http://msdn.microsoft.com/
zh-cn/library/dd409365.aspx, accessed: Sept. 22, 2014.

[10] I. Nassi and B. Shneiderman, “Flowchart techniques for structured
programming,” ACM Sigplan Notices, vol. 8, no. 8, pp. 12–26, 1973.

[11] T. Ball and S. G. Eick, “Software visualization in the large,” Computer,
vol. 29, no. 4, pp. 33–43, 1996.

[12] S. G. Eick, J. L. Steffen, and E. E. Sumner Jr, “Seesoft-a tool for
visualizing line oriented software statistics,” Software Engineering,
IEEE Transactions on, vol. 18, no. 11, pp. 957–968, 1992.

[13] M. Lanza, “The evolution matrix: Recovering software evolution using
software visualization techniques,” in Proceedings of the 4th interna-
tional workshop on principles of software evolution. ACM, 2001, pp.
37–42.

[14] W. Randelshofer, “Visualization of large tree structures,” 2011.
[15] S. G. Eick, T. L. Graves, A. F. Karr, A. Mockus, and P. Schuster, “Vi-

sualizing software changes,” Software Engineering, IEEE Transactions
on, vol. 28, no. 4, pp. 396–412, 2002.

[16] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
Visualizing Software for Understanding and Analysis, 2007. VISSOFT
2007. 4th IEEE International Workshop on. IEEE, 2007, pp. 92–99.

[17] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz, “Software
landscapes: Visualizing the structure of large software systems,” in
Proceedings of the Sixth Joint Eurographics-IEEE TCVG conference
on Visualization. Eurographics Association, 2004, pp. 261–266.

[18] M. Clauß, “Generic modeling using uml extensions for variability,” in
Workshop on Domain Specific Visual Languages at OOPSLA, vol. 2001,
2001.

[19] T. Barlow and P. Neville, “A comparison of 2-d visualizations of
hierarchies,” in Information Visualization, IEEE Symposium on. IEEE
Computer Society, 2001, pp. 131–131.

[20] M. Petre, E. de Quincey et al., “A gentle overview of software
visualisation,” PPIG News Letter, pp. 1–10, 2006.

[21] M. Petre, “Mental imagery and software visualization in high-
performance software development teams,” Journal of Visual Languages
& Computing, vol. 21, no. 3, pp. 171–183, 2010.

297

Reliability-Based Software Rejuvenation Scheduling
for Cloud-Based Systems

Jean Rahme and Haiping Xu

Computer and Information Science Department
University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA

E-mail: {jrahme, hxu}@umassd.edu

Abstract—The reliability and availability of a cloud-based system
play an important role in evaluating its system performance. Due
to the promised high reliability of physical facilities provided for
cloud services, software faults have become a major factor for
failures of cloud-based systems. In this paper, we focus on the
software aging phenomenon where system performance may be
progressively degraded due to exhaustion of system resources,
fragmentation and accumulation of errors. We present a
proactive technique, called software rejuvenation, to counteract
the software aging problem. The dynamic fault tree (DFT)
formalism is adopted to model the system reliability before and
during a software rejuvenation process in an aging cloud-based
system. Then it is converted into Markov Chains to derive the
system reliability function. We use a case study of a cloud-based
system to illustrate the validity of our approach. Based on the
reliability analysis results, we show how to estimate software
rejuvenation schedules that can keep the system reliability above
a predefined critical level for required system availability.

Keywords-Software aging; software rejuvenation; reliability
analysis; dynamic fault tree (DFT); Markov chain; scheduling.

I. INTRODUCTION
With the promised high reliability and availability of

physical facilities, including the hardware facilities and their
associated redundancy mechanisms, provided by cloud service
providers, software faults have now become a major factor of
cloud-based system failures. Since software reliability is
considered one of the weakest points in system reliability,
software fault tolerance and failure forecasting require more
attentions than hardware fault tolerance in modern computer-
based systems [1][2]. This work is motivated to deal with the
software faults in cloud computing in order to assure high
reliability and availability of cloud-based software systems.
Reliability and availability are two common ways to express
system fault tolerance in industry. A reliable computer-based
system typically has high availability if unreliability is the
major cause for unavailability. In this paper, we focus on
analyzing the reliability of cloud-based systems for software
fault tolerance in software reliability engineering (SRE).
Traditional SRE has been based on analysis of software
defects and bugs such as Bohrbugs or Heisenbugs without
considering software aging related bugs [1]. The concept of
software aging phenomenon was introduced in the middle 90s,
which explains that the system resources used by the software
degrade gradually in function of time [3][4]. Software aging

starts to show up due to multiple factors such as memory
bloating, memory leaks, unterminated threads, data corruption,
unreleased file-locks, storage space and fragmentation, and
accumulation of round-off errors when running a software.
Software aging has considerably changed the SRE field of
study, and become a major factor for the reliability of fully
tested and deployed software systems. To deal with software
aging and to assure software fault tolerance, software
rejuvenation process has been introduced as a proactive
approach to counteracting software aging and maintaining a
reliable software system [3]. Software rejuvenation involves
actions such as stopping the running software occasionally,
cleaning its internal state (e.g., garbage collection, flushing
operating system kernel tables, and reinitializing internal data
structures). The simplest way to perform software rejuvenation
is to restart the application that causes the aging problem, or to
reboot the whole system.

Due to the ever-growing cloud computing technology and
its vast markets, the workload of a cloud-based system has
increased dramatically. A heavy workload of cloud-based
system will inevitably lead to more software aging problems.
In this paper, we introduce an approach to developing
rejuvenation schedules for cloud-based systems in order to
maintain their high system reliability. In our approach, we
adopt an analytical-based approach to compute the reliability
of a cloud-based system using Dynamic Fault Tree (DFT). To
maintain high system reliability and ensure a zero-downtime
rejuvenation process, we introduce cloud-based spare parts as
major software components. Once the DFT model is
developed, it is converted into Continuous Time Markov
Chains (CTMC) to calculate the system reliability. We assume
a practical reliability threshold for the core software
components of the system. When the threshold is reached, the
software rejuvenation process is triggered, and the reliability
of the cloud-based system is boosted to its initial state. Our
case study shows that software rejuvenation scheduling based
on the reliability analysis of a cloud-based system can
significantly enhance its system reliability and availability.

Previous studies on software aging and software
rejuvenation for predicting a rejuvenation schedule can be
classified into two categories, namely analytical-based and
measurement-based approaches [5]. In an analytical-based
approach, a failure distribution is assumed for software faults
related to the software aging phenomenon, and software
rejuvenation is executed at a fixed interval based on the
analytical results of the system reliability and availability [6].

298

Several analytic models have been proposed to determine the
optimal time for rejuvenation. Bobbio et al. proposed a fine-
grained software degradation model for optimal rejuvenation
policies [7]. Based on the assumption that the current
degradation level of the system can be identified, they
presented two different strategies to determine whether and
when to rejuvenate. Vaidyanathan et al. presented an
analytical model of a software system using inspection-based
software rejuvenation [8]. In their approach, they showed that
inspection-based maintenance was advantageous in many
cases over non-inspection based maintenance. Although the
above approaches proposed various models for software
rejuvenation, they are not intended to address complex system
components’ behaviors and interactions, such as dynamic
relationships between software components including sparing
relationship and functional dependency. Different from the
existing analytical-based approaches, we focus on the dynamic
behaviors of software components in the context of cloud-
based systems. We use sparing relationships as an example to
show how dynamic relationships of software components in a
cloud-based system can be modeled using DFT.

On the other hand, measurement-based approach applies
statistical analysis to the measured data of resources usage and
degradation that may lead to the software aging problem. In a
measurement-based approach, a monitoring program is used to
continuously collect the system performance data, which are
analyzed to estimate the system degradation level. When
exhaustion reaches a critical level, the software rejuvenation
process is triggered. Machida et al. used Mann-Kendall test to
detect software aging from traces of computer system metrics
[9]. They tested for existence of monotonic trends in time
series, which are often considered indication of software
aging. Grottke et al. studied the resource usage in a web server
subject to an artificial workload [10]. They applied non-
parametric statistical methods to detect and estimate trends in
the data sets for predicting future resource usage and software
aging issues. The existing measurement-based approaches are
feasible ways to detect software aging problems in real-world
computer-based systems; however, they typically involve
processing of large amount of system data. Thus, they are not
as efficient as analytical-based approaches. On the other hand,
measurement-based approaches do provide useful insights
about the system behaviors and failure distributions related to
software aging. As such, our research is complementary to
research efforts that investigate the relationships of static
features of software and metrics for software faults with the
software aging phenomenon using statistical analysis.

II. REJUVENATION OF CLOUD-BASED COMPONENTS

In a cloud-based system, virtualization allows one to share
a machine’s physical resources among multiple virtual
environments, called virtual machines (VM). As shown in Fig.
1, a VM is not bounded to the hardware directly; rather it is
bounded to generic drivers that are created by a virtual
machine manger (VMM) or a hypervisor. Since a VM can be
easily created and destroyed, it is particularly useful in a
disaster recovery process of a cloud-based system. In this
paper, we refer a cloud-based system as a software system that
consists of multiple VMs, where each VM is considered a
software component of the cloud-based system.

Figure 1. An example of reliable cloud-based systems

As a proactive fault management technique, software
rejuvenation has been used to refresh system internal states
and prevent the occurrence of software failures due to
software aging. As we have mentioned, a simple way of
software rejuvenation in a cloud-based system is system
reboot, e.g., to restart a VM or all VMs of the system. The
basic idea of our approach is to create a new instance of VM
that replaces the one to be rejuvenated. Since the newly
deployed VM instance has not yet been affected by the
software aging phenomenon, the reliability of the software
component is boosted back to its initial condition. To achieve
high fault tolerance and reliability, we further adopt the
software redundancy technique using two different types of
software standby spares, namely Cold Spare Part (CSP) and
Hot Spare Part (HSP). In the context of cloud-based systems,
cold standby means that the software component is available
as an image of a VM, rather than an active VM instance. Data
between primary component and the spare one is regularly
mirrored based on a specified schedule, e.g., multiple times a
day. Since a CSP is not up running continuously and does not
take any workload, its reliability approaches to 1 with a failure
rate 0. Since a CSP can be started very quickly, the recovery
time using CSP typically takes just a few minutes to no more
than two hours. Note that a software-defined CSP is different
from a hardware-based CSP in terms of its cost and efficiency.
The cost of a software-defined CSP is its storage and very
little CPU time; while a hardware-based CSP is a physical
device that must be available all the time in order to assure fast
failover [1]. Furthermore, a software-defined CSP can be
started very quickly, but a hardware-based CSP typically
requires manual configuration and adjustment in the event of
partial or total failure.

Similarly, an HSP in the context of cloud-based systems is
a hot standby VM instance. This means the software
component serving as an HSP must be installed and deployed,
and it must be instantly available in a case that the primary
component fails. Although an HSP is deployed and running
along with the primary component, it typically does not take
any workload for processing user requests. To ensure fault
tolerance, critical data is mirrored in near real time from the
primary VM instance. This generally provides a recovery time
of a few seconds in case of a failure. In our system design,
each critical primary component is equipped with at least one
HSP and one CSP in order to maintain the needed reliability.
When calculating the system reliability, we only need to
consider the primary component and its HSP; while the failure
rate of a CSP is constantly 0. In the following, for simplicity,
we denote a primary VM instance/component as P, which is
active and processing workload, an HSP as H, which is active

Physical Machine 1

VMM 1

P

VM
1-1

P’

VM
1-2

...

...

Zone 1 2Zone

... H

VM
k-1

H’

VM
k-2

VMM k

...Physical Machine k

299

but does not take any workload, and a CSP as C, which is
inactive and also does not take any workload.

In our approach, a rejuvenation scheduling is based on the
results of reliability modeling and analysis of a cloud-based
system. When the reliability of a system component or the
whole system reaches a predefined threshold, the rejuvenation
process is triggered. We assume the rejuvenation process takes
about 30 minutes, which is typically sufficient for starting a
CSP and transfer all requests to the new VM. As a simple
example illustrated in Fig. 1, suppose we have two instances,
i.e., a primary component P and a hot standby one H, which
are deployed on two different physical machines. The two
physical machines usually belong to two different zones
(denoted as Zone 1 and Zone 2 in Fig. 1), so a power/network
outage in one zone, will not affect the availability of the other
one. To rejuvenate the whole system, we need to start two
CSPs P’ and H’ to replace P and H, respectively. As shown in
Fig. 1, P’ and H’ are deployed on the same physical machine
where P and H are deployed, respectively, but in reality, both
P’ and H’ can be deployed on any physical servers.

Once the spare components P’ and H’ are up and running,
P’ will start processing new system requests, while H’ is kept
alive and will not take any workload. Meanwhile, we allow 30
minutes for the old components P and H to finish processing
their existing requests. After 30 minutes, we shut down and
delete the components P and H, which has been successfully
replaced by P’ and H’ after completion of the rejuvenation
process. Note that we do not try to restart and reuse the same
instances P and H in our approach. This is because different
from a physical machine, a VM can be easily created and
deployed, thus deploying new instances P’ and H’ is a much
more efficient way than restarting P and H.

During the rejuvenation procedure, we consider two
scenarios. One scenario is to rejuvenate the major software
components all together. In this case, we replicate the whole
system at the same time when the system reliability reaches its
threshold. We call this scenario as a system-specific
rejuvenation. The second scenario is a component-specific
one, meaning that each time, we only rejuvenate the critical
component whose reliability is the lowest one when the
system reliability reaches its reliability threshold. As we will
show in a case study, the component-specific rejuvenation
usually demonstrates certain advantages over the system-
specific approach.

III. MODELING AND ANALYSIS USING DFT

In this section, we first briefly introduce DFT, then we
show how to use DFT to model and analyze the reliability of a
cloud-based system subject to software rejuvenation. To
simplify matters, we assume that the time-to-failure for the
software components (i.e., the VMs) has a probability density
function that is exponentially distributed. Therefore, all VMs
have constant failure rates.

A. Dynamic Fault Tree

The fault tree modeling technique was introduced in 1962
at Bell Telephone Lab, which provides a conceptual modeling
approach to representing system level reliability in terms of
interactions between component reliabilities [1]. Fault tree
analysis (FTA) is by far the most commonly used technique

for risk and reliability analysis, where the system failure is
described in terms of the failure of its components. Standard
fault trees are combinatorial models and are built using static
gates (e.g., AND-gate, OR-gate, and K/M-gate) and basic
events. As combinatorial models can only capture the
combination of events without considering the order of
occurrence of their failures, they are usually inadequate to
model today’s complex dynamic systems.

DFT augments the standard combinatorial gates of a
regular fault tree, and introduces three novel modeling
capabilities, namely spare component management and
allocation, functional dependency, and failure sequence
dependency. These modeling capabilities are realized using
three main dynamic gates: the spare gate, the functional
dependency gate, and the priority-AND gate. The work done
in this paper uses the dynamic spare gate, in particular the hot
spare gate or HSP gate. Note that a spare gate has one primary
input and one or more alternate inputs (i.e., the spares). The
primary input is initially powered on, and when it fails, it is
replaced by an alternate input. The spare gate fails when the
primary and all the alternate inputs fail.

Since a DFT failure model is typically used to describe
dynamic relationships rather than simple combinatorial ones,
we need to transform it into a state-based formalism, such as
Markov chains, for formal analysis. In the following section,
we show how to convert a DFT model into Markov chains.

B. Modeling and Analysis Using DFT
To model and analyze the reliability of a cloud-based

system with spare parts, we consider two different phases.
Phase 1 represents the pre-rejuvenation phase, where the
reliability analysis is based on the failure rates of the primary
components and their HSPs. CSPs are not considered for
reliability analysis, as they cannot take over the system load
instantly when both the primary and hot spare components
fail. We model the system reliability using DFT, and then the
DFT is converted into a CTMC to derive the system reliability
function.

Figure 2 shows a simple hot spare gate with one primary
component denoted as P and one hot spare part denoted as H.
At the right-hand side of the figure, we show the CTMC
model corresponding to the HSP gate. There are four states 1
to 4 defined in the CTMC model, which are denoted as PH, P,
H*, and FAILURE, respectively. The state PH (State 1) refers
to the one in which both the primary component and the hot
spare part are functioning. When the hot spare part component
or the primary component fails, the model enters its P state
(State 2) or H* state (State 3), respectively.

State 1

HSP
State 2

State 4

State 3

Figure 2. An HSP gate and its corresponding CTMC model

P

Spares

H

300

Note that we denote State 3 as H* instead of H because in
State 3, the hot spare part has a different failure rate as the one
in State 1. The reason why H and H* have different failure
rates is described as follows. In State 1, the hot spare part does
not take any workload, therefore its failure rate λH is fairly
low; however, in State 3, the hot spare part takes the normal
workload as the primary one before it fails, its failure rate
becomes higher due to the software aging phenomenon.
Suppose the hot spare part has the same configuration as the
primary one, then in State 3, its failure rate shall equal to the
primary component’s failure rate λP.

Let Pi(t) be the probability of the system in state i at time t,
where 1 ≤ i ≤ 4, and Pij(dt) = P[X(t+dt) = j | X(t) = i] be the
incremental transition probability with random variable X(t).
The following matrix [Pij(dt)], where 1 ≤ i, j ≤ 4, is the
incremental one-step transition matrix [1] of the CTMC
defined in Fig. 2.

 (1)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

+−

=

1000
100

010
0)(1

)]([
** dtdt
dtdt

dtdtdt

dtP
HH

PP

PHHP

ij λλ
λλ

λλλλ

The matrix [Pij(dt)], where 1 ≤ i, j ≤ 4, is a stochastic
matrix with each row sums to 1. This matrix provides the
probabilities for each state either remaining (when i = j) or
transit to a different state (when i ≠ j) during the time interval
dt. Given the initial probabilities of the states, the matrix can
be used to describe the state transition process completely.
From the matrix defined in Eq. (1), we can derive the
following relations as in Eqs. (2-4).

)())(1()(11 tPdtdttP Hp λλ +−=+ (2)

)()1()()()(212 tPdttPdtdttP pH λλ −+=+ (3)

)()1()()()(3*13 tPdttPdtdttP HP λλ −+=+ (4)

where the initial probabilities is defined as the probability of
the system being at State 1; thus, we have P1(0) = 1, and P2(0)
= P3(0) = 0. By applying dt limit to 0, we get a set of linear
first-order differential equations as in Eqs. (5-7), which are
state equations for states 1-3.

)()()()(lim)(1
11

01 tPλλ
dt

tPdttPt'P HPdt
+−=

−+
=

→
 (5)

)()()()(lim)(21
22

02 tPλtPλ
dt

tPdttPt'P PHdt
−=

−+
=

→
 (6)

)()()()(lim)(31
33

03 tPλtPλ
dt

tPdttPt'P H*Pdt
−=

−+
=

→
 (7)

The state equations defined in Eqs. (5-7) can be solved
using Laplace transformation, which allows transforming a
linear first order differential equation into a linear algebraic
equation that is easy to solve.

Let the Laplace transformation of Pi(t) be Fi(s), where 1 ≤
i ≤ 3, we can solve the original linear first order differential
equations in Eqs. (5-7) as follows.

t
s

HP

HP
etPsF)(

1)(
1

1)()(λλ
λλ

+−
++ =⇒=

tt
ss

HPP

PHP

H eetPsF)(
2))((2)()(λλλ

λλλ
λ +−−

+++ −=⇒=

)()()()()(
3))((3

*

*

tt
ss

HPH

H

P

HHP

P eetPsF λλλ
λ
λ

λλλ
λ +−−

+++ −=⇒=

The reliability function R(t) is the summation of P1(t), P2(t)
and P3(t), which can be calculated as in Eq. (8), assuming λH*
= λP, i.e., H has the same configuration as the primary one.

tt HP

H

PP

H

P eetPtPtPtR)(
321)()1()()()()(λλ

λ
λλ

λ
λ +−− −+=++= (8)

Note that P4(t) is the probability of system’s being in the
FAILURE state at time t. Therefore, the system unreliability
function U(t) = P4(t) = 1 - R(t).

Phase 2 is the software rejuvenation phase. When the
predefined reliability threshold is reached, the software
rejuvenation process is initiated, and the system enters the
software rejuvenation phase. As we have mentioned, there are
two rejuvenation scenarios, namely the system-specific
rejuvenation and the component-specific rejuvenation. To
illustrate the basic idea of calculating reliability in this phase,
we use the first scenario. In this scenario, we start two CSPs
P’ and H’ to replace P and H, respectively. During the
rejuvenation period, the four software components P, H, P’
and H’ coexist. As shown in Fig. 3, we decompose the
dynamic fault tree model into two sub-trees, S1 and S2, which
are connected by an AND-gate. Subtree S1 consists of the
components P and H that are to be rejuvenated, while subtree
S2 consists of the newly deployed components P’ and H’,
which are used to replace P and H. Both of the subtrees are
defined as HSP gates, each of which can be computed using
the same analysis technique as described in Phase 1. Since
both of the two HSP gates are functioning at the same time,
any of them fails during the rejuvenation phase will not lead to
the failure of the whole system, and the system fails only when
both of the two HSP gates fail. Therefore, the two HSP gates
shall be connected by an AND-gate.

Figure 3. A DFT model with 2 HSP gates (Phase 2)

Once we have solutions to S1 and S2, the static component,
i.e., the AND-gate can be easily solved using the sum-of-
disjoint-products (SDP) method [1]. Specifically, to calculate
the reliability of the whole system in this phase, we first
calculate the unreliability functions US1(t) and US2(t) for S1
and S2, respectively. Then we calculate the reliability of the
AND-gate as in Eq. (9).

)(*)(1)(1)(21 tUtUtUtR SSAND −=−= (9)

In the following section, we describe a case study
considering both of the two scenarios during the rejuvenation
process. Scenario 1 involves rejuvenation of the whole system
by replicating all major software components when system
reliability reaches the threshold; while in Scenario 2, we
rejuvenate the most critical component with the lowest
reliability when the system reliability reaches its threshold.

301

IV. CASE STUDY

A typical cloud-based system is illustrated in Fig. 4, which
consists of an application server PA and a database server PB,
all deployed on VMs. To enhance the system reliability, two
hot spare components HA and HB are set up for PA and PB,
respectively, which are ready to take over the workload once
the primary ones fail. Note that all servers are deployed on
VMs in different zones for fault-tolerance purpose. As a
clarification for the reliability analysis in this case study, we
view a VM with its OS, the server and the deployed services
as a single software component. In addition, we only consider
the reliability of the servers within the box with dashed lines,
and assume the proxy server’s reliability is ideal. Furthermore,
we assume that the proxy server and the application server can
monitor and detect failures of the application server and the
database server, respectively.

To ensure a high reliability of the system, we set a
reliability threshold of 0.99. For this case study, we assume
the typical failure rates for the servers, where λPA = 0.004, λHA
= 0.0025, λPB = 0.005, λHB = 0.003. Note that the failure rates
of the hot spare parts are lower than their corresponding
primary ones because the spare parts do not take any workload
when the primary ones are functioning. However, when the
primary servers fail, the failure rates of the hot spare parts will
be increased, i.e., λHA* = λPA = 0.004, λHB* = λPB = 0.005. This
case study involves 8 software components split into two
groups. The first group consists of the four servers shown in
Fig. 4. The second group consists of four CSP components
that are used to replace the servers in the first group during the
rejuvenation process. We name the severs in the second group
as PA’, HA’, PB’, and HB’. As the CSP components are
undeployed VM images, their failure rates are 0. Once
deployed, they will have the same failure rates as their
corresponding software components.

Figure 4. A cloud-based system with servers deployed on VMs

Figure 5 shows the DFT model of the cloud-based system
in Phase 1. As the system fails when either the application
servers fail or the database servers fail, the two HSP gates are
connected by an OR-gate, which can solved as in Eq. (10).

))(*))(1()((1)(1)(211 tUtUtUtUtR SSSOR −+−=−= (10)

where UOR(t), US1(t) and US2(t) are the unreliability functions
of the OR-gate, the subtrees S1 and S2, respectively.
According to Eq. (8), US1(t) and US2(t) can be calculated as in
Eq. (11) and Eq. (12), respectively.

Figure 5. DFT model of the cloud-based system (Phase 1)

tt
SS

HAPA

HA

PAPA

HA

PA eetRtU)(
11)()1(1)(1)(λλ

λ
λλ

λ
λ +−− ++−=−= (11)

tt
SS

HBPB

HB

PBPB

HB

PB eetRtU)(
22)()1(1)(1)(λλ

λ
λλ

λ
λ +−− ++−=−= (12)

In Phase 2, we consider both of the scenarios mentioned in
the end of Section III.B, so their impacts on system reliability
as well as their consequent rejuvenation schedules can be
compared. Figure 6 shows the DFT model of the cloud-based
system in Phase 2 based on Scenario 1. For the same reason as
in Phase 1, the system reliability can be calculated as in Eq.
(13). According to Eq. (9), US3(t) and US4(t) can be calculated
as in Eq. (14) and Eq. (15), respectively.

))(*))(1()((1)(1)(433 tUtUtUtUtR SSSOR −+−=−= (13)

)(*)()('113 tUtUtU SSS = (14)

)(*)()('224 tUtUtU SSS = (15)

Note that in Eqs. (14-15), US1(t), US1’(t), US2(t) and US2’(t)
can be calculated in a similar way as in Eqs. (11-12).

Figure 6. DFT model of the cloud-based system in Phase 2 (Scenario 1)

The reliability analysis results for Scenario 1 are listed in
Table 1. The table shows that the reliability threshold (0.99) is
reached every 18 days according to the reliability analysis
results. Hence, both application and database servers are
rejuvenated at the end of Phase 1. Phase 2 has a 30-minute
time duration; therefore, we calculate the system reliability at
5, 10, 20 and 30 minutes in Phase 2 to illustrate how system
reliability may change during the rejuvenation process. From
the table, we can see that the system reliability is kept very
high during the transition. After 30 minutes, the newly
deployed servers completely take over the system, and the
servers to be rejuvenated are shut down. When this happens,
the system returns to its initial state, and starts a new life cycle

302

with a very high initial reliability. Therefore, Table 1 suggests
that the system should be rejuvenated every 18 days in order
to keep the system reliability above the threshold.

Table 1. System reliability with software rejuvenation (Scenario 1)

Phase Time
(Days)

App Servers
Reliability

DB Servers
Reliability System Reliability

1

0 1 1 1
1 0.99998705 0.9999801 0.9999671502577
5 0.9996806 0.9995107 0.9991914562824

10 0.998745 0.998085 0.9968324033250
18 0.996044 0.994004 0.9900717201760

2

18.0035 0.999999999999 0.999999999999 0.9999999999979
18.0069 0.999999999997 0.999999999994 0.9999999999917
18.0139 0.999999999990 0.999999999977 0.9999999999669
18.0208 0.999999999978 0.999999999940 0.9999999999177

1

19 0.99998705 0.9999801 0.9999671502577
23 0.9996806 0.9995107 0.9991914562824
28 0.998745 0.998085 0.9968324033250
36 0.996044 0.994004 0.9900717201760

 36.0035 0.999999999999 0.999999999999 0.9999999999979

2
36.0069 0.999999999997 0.999999999994 0.9999999999917
36.0139 0.999999999990 0.999999999977 0.9999999999669
36.0208 0.999999999978 0.999999999940 0.9999999999177

...

By further looking into Table 1, we can see that when the
system reliability reaches 0.99 after 18 days, the reliability of
the database server subsystem is lower than that of the
application server subsystem. This suggests that we may
rejuvenate the most critical components (i.e., the component
with the lowest reliability) first. Now suppose we choose to
rejuvenate the database servers first. Then we wait until the
system reliability reaches the threshold again, and rejuvenate
the application servers next, as they now become the most
critical components. This is exactly what happens for the
rejuvenation scheduling in Scenario 2, where the application
servers and the database servers are rejuvenated alternatively.
The system reliability in Scenario 2 can be calculated in a
similar way as in Scenario 1.

We now illustrate the rejuvenation scheduling for both
Scenario 1 and Scenario 2 as in Fig. 7. In the figure, the start
of rejuvenation is indicated by a sudden increment of the
system reliability.

Figure 7. Rejuvenation scheduling (Scenario 1 vs. Scenario 2)

By comparing the two rejuvenation schedules, we can see
that during 119 days, Scenario 1 has 6 rejuvenation process
which requires rejuvenating both of the application and
database servers. On the other hand, Scenario 2 has 9
rejuvenation process which only requires rejuvenating either
the application servers or the database servers. It is easy to see
that Scenario 2 requires less management of the servers in

order to keep the system reliability above the 0.99 threshold
all the time. Suppose the rejuvenation of the application
servers has the same cost as that of the database servers, by
using the rejuvenation scheduling defined in Scenario 2, the
cost can be reduced by (6*2 - 9)/(6*2) = 25% comparing to the
rejuvenation scheduling defined in Scenario 1.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a reliability-based approach to
estimating a rejuvenation scheduling for cloud-based systems.
The system requires using hot spare parts during normal
running time, and cold spare parts during the rejuvenation
process in order to keep the system reliability above a
predefined threshold. By modeling the reliability of a cloud-
based system using DFT, we are able to derive the reliability
function for each software component as well as the whole
system. We define two phases for the software rejuvenation,
and discuss about two scenarios of the rejuvenation process in
Phase 2. The analysis results of our case study show that
Scenario 2 is more cost-effective than Scenario 1.

For future work, we will extend our current work for
components with non-constant failure rates. We will adopt a
measurement-based approach to collecting empirical data in
order to determine the probability density function of the
system reliability affected by software aging. Software tools
will also be developed for modeling and analyzing the
reliability of cloud-based systems, as well as deriving effective
rejuvenation schedules. Finally, modeling and analyzing
cloud-based systems with active standby spare components
that can share workload with the primary ones, is envisioned
as a future, and more ambitious research direction.

REFERENCES
[1] H. Pham, System Software Reliability, Springer Series in Reliability

Engineering, Springer-Verlag London, 2006.
[2] A. Somani and N. Vaidya, “Understanding Fault Tolerance and

Reliability,” IEEE Computer, Vol. 30, No. 4, April 1997, pp. 45-50.
[3] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software

Rejuvenation: Analysis, Module and Applications,” Proceedings of the
Twenty-Fifth International Symposium on Fault-Tolerant Computing,
1995, pp. 381-390.

[4] M. Grotte, R. Matias and K. S. Trivedi, “The Fundamentals of Software
Aging,” Proceedings of Workshop on Software Aging and Rejuvenation,
ISSRE, Nov. 11-14, 2008, pp. 1-6.

[5] V. Castelli, R.E. Harper, and P. Heidelberger, et al., “Proactive
Management of Software Aging,” IBM Journal of Research and
Development, Vol. 45, No. 2, March 2001, pp. 311-332.

[6] L. Jiang and G. Xu, “Modeling and Analysis of Software Aging and
Software Failure,” Journal of Systems and Software, Vol. 80, No. 4,
April 2007, pp. 590-595.

[7] A. Bobbio, M. Sereno and C. Anglano, “Fine Grained Software
Degradation Models for Optimal Rejuvenation Policies,” Performance
Evaluation, Vol. 46, 2001, pp. 45-62.

[8] K. Vaidyanathan, D. Selvamuthu and K. S. Trivedi, “Analysis of
Inspection-Based Preventive Maintenance in Operational Software
Systems,” Proceedings of the 21st IEEE Symposium on Reliable
Distributed Systems (SRDS 2002), Suita, Japan, 2002, pp. 286-295.

[9] F. Machida, A. Andrzejak, R. Matias, E. Vicente, “On the Effectiveness
of Mann-Kendall Test for Detection of Software Aging,” Proceedings of
the IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), Pasadena, CA, November 4-7, 2013, pp. 269-274.

[10] M. Grottke, L. Li, K. and Vaidyanathan, et al., “Analysis of Software
Aging in a Web Server,” IEEE Transactions on Reliability, Vol. 55, No.
3, 2006, pp. 411-420.

303

Reporting an Experience on the Establishment of a
Quality Model for Systems-of-Systems

Daniel Soares Santos∗, Brauner R. N. Oliveira∗, Adolfo Duran†, and Elisa Yumi Nakagawa∗
∗ICMC, Department of Computer Systems

University of São Paulo, São Carlos, SP, Brazil.
†DCC, Department of Computer Science

Fraunhofer Project Center
Federal University of Bahia, Salvador, BA, Brazil.

{danielss, brauner}@usp.br, adolfo@ufba.br, elisa@icmc.usp.br

Abstract—Currently, Systems-of-Systems (SoS) have
performed an important role in diverse application
domains, with representative examples in airport, mili-
tary, and smart-cities, including crisis/emergency man-
agement. SoS refer to complex software-intensive sys-
tems, resulted from interoperability of independent
constituent systems, performing new missions that
could not be performed by any constituents working
separately. For these critical systems, their quality is un-
doubtedly essential. However, in general, there is a lack
of studies that discuss how quality has been addressed
in such systems. The main contribution of this paper is
to present an experience of establishing a quality model
(i.e., a set of quality characteristics/attributes, sub-
characteristics, and metrics) for SoS, in particular, for
the crisis/emergent management domain. This quality
model is based on ISO/IEC 25010 and it has also proved
to be an important support to evaluate a system of this
domain, however their construction must be performed
with caution. Experience such as presented in this work
could be repeated in other domains, contributing to
improve the quality of a diversity of critical, complex
SoS that are currently being built.

I. Introduction

Software-intensive systems have become increasingly
large and complex and even essential to the whole society.
These systems are sometimes resulting from interoperability
of constituent systems that work together to provide more
complex missions that could not be completed by any of
these systems separately [1]. This new class of software-
intensive systems has been referred as System-of-Systems
(SoS) and can be found in different application domains,
including medicine, airport, robotics, avionics, healthcare,
and automotive [2], [3]. Currently, the development of SoS
still presents great challenges for the classical software
engineering [4], as they presents a set of unique character-
istics. Moreover, these systems must assure high level of
quality considering their use in diverse critical application
domains.
In another perspective, software quality has been a

research topic widely researched over the last three decades

DOI reference number: 10.18293/SEKE2015-155

[5]. In this context, a well-accepted way to support quality
control is to adopt software quality models. A quality
model intends to make the software quality better un-
derstandable and manageable. A widely known model is
the ISO/IEC 25010 quality model that has become an
international standard for evaluating quality of modern
software-intensive systems [6]. ISO/IEC 25010 is based
on the fact that the software product quality can be
specified and evaluated using a hierarchical structure
of quality attributes/characteristics (e.g., reliability and
performance), sub-characteristics (e.g., availability and
adaptability), and metrics to measure these characteristics
and sub-characteristics [7]. Specifically for the context of
SoS, in spite of the great necessity of dealing with software
quality during their development and evolution, there are
not quality models for SoS that can contribute to control
and improve the quality of these systems. Additionally, due
to the generic nature of the ISO/IEC standard, hierarchical
quality models can be tailored upon its characteristics [8].

Motivated by this scenario, the main contribution of this
paper is to present an experience in establishing a quality
model for SoS in the crisis/emergency management domain
from the ISO/IEC 25010. This quality model has been built
in the context of a large international research project —
the RESCUER project1 — which has as a main goal to
develop an SoS for that domain, which intends to bring a
clear impact and direct, innovative benefits to the society.
Additionally, we conducted an evaluation of this SoS using
this quality model. Results achieved until now show the
valorous role of a quality model to improve quality of SoS.
However, the building a quality model for this domain must
be performed with attention mainly when it is strictly based
in a standard such as the ISO/IEC 25010.
The remainder of this paper is organized as follows.

Section II presents the background on SoS and quality
models. Section III presents the establishment of the quality
model. Section IV presents the application of this model.
Section V discusses on learned lessons. Finally, Section VI
presents our conclusions and future work.

1http://www.rescuer-project.org/

304

http://www.rescuer-project.org/

II. Background

This section presents important concepts related to SoS
and quality models, aiming a better understanding about
the topics covered in this paper.

Regarding to SoS, definitions and characterization of SoS
have been increasing discussed and widespread in recent
years. Despite the number of different definitions existing
in the literature, there is still no universally recognized
definition for SoS, and then, their characterization depends
often on the viewpoint and system’s context. In general
terms, an SoS can be seen as a “supersystem” composed by
complex and operationally independent systems working
together to achieve higher goal [9]. According to Maier
[1], an SoS can be identified and differentiated from
monolithic systems by the presence of features such as:
(i) Operational Independence: constituent systems are
operationally independent and have their own goals, even
when disconnected from the SoS; (ii) Managerial Indepen-
dence: it means that each constituent system is developed
and maintained by different organizations, with their own
stakeholders, development teams, processes and resources;
(iii) Evolutionary Development: each constituent system
evolves independently and, therefore, the SoS must also
evolve, where structures, functions, and purposes are added,
removed, and modified; (iv) Emergent Behavior: it means
that a new behavior that can not be provided by any
constituent system working separately emerges; and (v)
Geographical Distribution: constituent systems may be
located in different places changing information among
them.

SoS started to gain popularity mainly on military systems
as a strategy to reach goals or deliver unique capabilities
wherein a collaborative work of complex systems is needed
[1], [4]. Furthermore, SoS is migrating from traditional
military domains to civil domains, such as smart homes,
healthcare, crisis/emergency management, and several oth-
ers. In particular, an SoS in the context of crisis/emergency
management allows more efficient response to crisis and
incidents through integration of police, firefighters, military,
and medical systems.
Achieving quality in these systems is a quite difficult

task, mainly because constituent systems are sometimes
developed and maintained by different organizations, with
their own stakeholders, development teams, processes, and
resources [10], [11]. In this context, quality models could
be used to identify relevant quality characteristics that can
be further used to guide the development, evolution, and
evaluation of these systems [6].
A software quality model may support a better under-

standing about what quality is in the context of software
systems, supporting diverse activities throughout system
development cycle. This is done through the identification
of quality characteristics that are exhibited by software
systems and can be aggregated to compose the overall
software quality concept. These characteristics are generally

called quality attributes (e.g., maintainability, performance,
and security), which are presented by quality models to
define, assess and/or predict software quality [5]. The
first models emerged in the early days of the software
engineering area and since then, quality models are still
subject of research. The first standardized quality model
was proposed in the international standard ISO/IEC 9126-
1 [12] in 2001, which was revised and replaced by the
ISO/IEC 25010 [7] in 2011.
The ISO/IEC 25010 provides two quality models: (i) a

quality in use model that provides five quality characteris-
tics concerning software under operation by its stakeholders
and (ii) a product quality model that is composed of eight
quality characteristics concerning the software system apart
of its stakeholders. Both are supposed to be applied to
any kind of computer system that includes a software
product. Characteristics of both models are decomposed
into sub-characteristics that can be measured. When every
sub-characteristic is measured, it is considered that the
characteristic is also measured by aggregation. Having every
characteristic measured, the overall quality of the product
is determined. In order to achieve this goal, one or more
metrics are defined and applied to each sub-characteristic,
resulting in a value that represents the degree to which it
is present in the final product. The ISO 9126-2 [13] is an
example of standard that presents metrics for measuring
sub-characteristics, and may be used together with ISO
25010 to evaluate quality of a software product.

III. Establishing the Quality Model
Before we present the development of the quality model,

we present the context where this model is being established
and used. In the context of crisis/emergency management,
the main challenge for an Emergency Command and
Control Centre is to quickly obtain contextual information
to answer an emergency and ensure the correct decisions.
An appropriate response is essential to attenuate the
occurrence of physical injuries as well as the negative
outcome to the public image of the involved organizations.
Decisions based on incorrect or late information have a
great potential for causing more damage.
In parallel, the everyday use of mobile devices, such as

tablets and smartphones, provides an enabling technology
for building new software solutions for also the emergency
domain. Exploring such devices as a communication tool,
the RESCUER research project proposes the development
of an interoperable computer-based solution to provide
Command and Control Centres with real-time contextual
information related to the emergency situation in industrial
areas and in large-scale events. This solution relies on the
collection, combination, and aggregation of crowdsourcing
information.
The RESCUER solution comprises four main con-

stituents systems:
• Mobile Crowdsourcing Solution (MCS) implements

suitable context-sensitive mechanisms for eyewitnesses

305

and operational forces carrying mobile devices to
provide the Command and Control Centre with in-
formation about emergency situations, taken into
consideration the behavior of people under stress
situations. The users provide reports of the incidents
with text, photos, and videos. Besides, the RESCUER
application is able to send relevant information from
device sensors without user interaction.

• Data Analysis Solution (DAS) is composed by algo-
rithms that process and filter the received data (e.g.,
image, text, and video) to extract relevant and con-
solidated information. This system is responsible for
fusing similar data coming from different eyewitnesses
in order to extract information such as the type of
incident, the position and dimensions of the affected
area, people density, evacuation routes, and possible
approach routes for the first responders;

• Emergency Response Toolkit (ERTK) provides the
Command and Control Centre with updated and rele-
vant information, in an adequate format, to support
decision-making during an emergency. It applies a set
of solutions to manage the analyzed data coming from
the DAS and presents them in a Real Time Dashboard,
using adequate visualization means; and

• Communication Infrastructure (COM): supports the
information flow between stakeholders even when
traditional communication infrastructure is overloaded,
by establishing Ad Hoc network communication to
propagate data between users’ phones and the com-
mand centre.

In the RESCUER platform, these constituents sys-
tems are part of an Integrated Solution (IS) that will
gather crowdsourcing information and provide relevant
information to the command and control centre. Since
the development and evaluation of each main constituent
of the RESCUER platform is not sufficient to guarantee
the quality of the whole system, the IS was considered
like an independent system during the development and
application of the quality model.
This project defines an iterative project lifecycle, in

which each subsequent iteration builds on and improves
the results of the previous one. The overall strategy divides
the lifecycle into three iterations steps. Basically, the
iterations have been defined according to the integration of
functionality (basic functions first, integration of more
complex capabilities later). This facilitates the quality
management, since it allows the quality evaluation of the
first results and the gradual specification and maturation
of the requirements of the RESCUER solution.

In this context, it can be noted that the solution emerged
from the integration of described constituents systems, as
well as the context development of the RESCUER solution
is considered an SoS since can be perceived all the main
SoS characteristics.
As early mentioned, to support RESCUER solution

development, a quality model based on the ISO/IEC 25010

[7] has been established. This quality model determines
quality characteristics and sub-characteristics to be con-
sidered during the three iterations of RESCUER project
as well as a set of quality metrics to measure each quality
characteristic. In the next sections, the establishment of the
quality models is detailed concerning the quality attributes
selection and quality metrics definition.

A. Quality Attributes Selection
To determine which quality characteristics and sub-

characteristics are relevant to the RESCUER solution,
all its non-functional requirements as well as the project
goals and scope were carefully analyzed. This analysis
allowed to translate each non-functional requirement into
ISO/IEC 25010 quality characteristics, taking into account
the Product Quality and Quality in Use models. To support
this activity, it was performed a survey with requirement
teams, developers, task leaders, and project coordinators
in order to assure that all selected quality attributes
are appropriate and relevant regarding the requirements
of RESCUER solution. In this opportunity, we verified
the applicability of the metrics and the viability of the
application methods proposed by the ISO/IEC 9126 (it is
detailed in the next section). Additionally, suggestions of
other quality attributes that could be considered in the
quality model and other metrics or application methods
that could be used to measure the quality attributes were
also gathered. After the questionnaires were answered, a
meeting was performed with the stakeholders in order to
discuss the results and, consequently, to obtain a consensus
about the element that will compose the quality model.

The involvement of the stakeholders was very important,
since the requirements about the RESCUER solution are
still being detailed in the current phase of the project.
Therefore, some quality attributes can still not be directly
translated from the RESCUER requirements. Moreover,
this strategy allows to obtain a consensus about all elements
that compose the quality model, besides to assure that the
main decisions about the quality model were coherent with
the systems requirements and project goals.
On the order hand, it is important to highlight that

not all quality characteristics and sub-characteristics are
relevant for all constituents systems and as well as the
IS. Depending on the use purpose of the quality model
(system specification or evaluation), and the considered
evaluation subject, a different subset of characteristics/sub-
characteristics can be chosen accordingly to the specific
goals and objectives. In addition, as RESCUER is an
ongoing research project, its requirements will be probably
modified during, and thus the quality model will be
improved. Therefore, other quality characteristics that were
not considered in the first project iteration, such as perfor-
mance and security, will be added in the following project
iterations. Figure 1 presents the quality characteristics
and sub-characteristics selected to compose the developed
quality model.

306

Quality
Character.

Quality Sub
Character. Metric Purpose of the metric Method of application Interpretation of

measured value
Artifact or
Data Source

Usability Learnability USM3
What proportion of users
can operate successfully
a function without a
demonstration or tutorial?

Number of users
that adequately operated
the functions by total
number of users

The closer to 1.0,
the better

User test, interview
or user behavior
observation

USM4
What proportion of
user can operate
successfully a function after
a demonstration or tutorial?

Number of users that
adequately operated
the functions by total
number of users

The closer to 1.0,
the better

User test, interview
or user behavior
observation

Table I: Examples of Metrics

Figure 1: Established Quality Model

B. Metrics Definition

As early mentioned, quality metrics are used to measure
the quality of a software product by measuring its quality
attributes. When applying a quality metric, it is possible

to obtain a quantitative value that characterizes the
degree of compliance of the software to the corresponding
quality characteristic. In this sense, for each quality sub-
characteristics defined in the quality model, a set of
appropriated metrics for their measurement was estab-
lished. These metrics were selected and adapted from the
international standards ISO/IEC 9126-2 - External Metrics
[13] and ISO/IEC 9126-4 – Quality In Use Metrics [14].
External metrics are used to measure the quality of the
software product by measuring the behavior of the system,
during testing stages or system operation. On the order
hand, quality in use metrics are applied in a realistic system
environment to verify if a product meets the needs of
specified users to achieve their goals [14].
Table I presents examples of two metrics, USM3 and

USM4 - USability Metric 3 and 4, of a total of 20 metrics
that we have established in the quality model. These
were used to measure the learnability of MCS, a key
quality characteristic since no training material should
be necessary for the user to understand and interact with
the RESCUER system during an emergency incident, even
when users are under high stress situations. In this sense,
these metrics are important to identify the influence of the
demonstration or tutorial in the effectiveness of the users
and consequently measure the level of learnability of the
RESCUER solution. In addition, it is very important to
highlight that specific input data is needed for an adequate
application of these metrics. Input data can be obtained by
using questionnaires, checklists, experiments, observations,
etc. For each established metric, the method of application
and the source of data or artifacts that could be used in
the measurement were established. These source of data
and artifacts, as well as the strategies that will be used to
obtain the needed information to application of metrics,
were properly detailed in evaluation plans created to guide
the constituent systems and IS evaluation. Next section
will present more details about the evaluation and the
application of the quality model.

IV. Application of the Quality Model
The developed quality model was used as basis to the

evaluation of ERTK and MCS constituent systems. Each
system was evaluated in four different situations, in Brazil
and in Germany, taking into account the contexts of
large events (FIFA World Cup 2014 and football games
in Germany) and industrial areas (Camaçari Industrial

307

Quality
Character.

Quality Sub
Character. Metric First Iteration Second Iteration Third Iteration

Sub System Acceptance Criteria Sub System Acceptance Criteria Sub System Acceptance Criteria

Usability Learnability
USM3

Mobile
Crowdsourcing
Solution

60% of the users
should adequately
use the app without
demonstration

Mobile
Crowdsourcing
Solution

65% of the users
should adequately
use the app without
demonstration

Mobile
Crowdsourcing
Solution

70% of the users
should adequately
use the app without
demonstration

USM4
Mobile
Crowdsourcing
Solution

70% of the users
should adequately
use the app with
demonstration

Mobile
Crowdsourcing
Solution

75% of the users
should adequately
use the app with
demonstration

Mobile
Crowdsourcing
Solution

80% of the users
should adequately
use the app with
demonstration

Emergency
Response
Toolkit

N/A
Emergency
Response
Toolkit

50% of the users
should adequately
use the app with
demonstration

Emergency
Response
Toolkit

75% of the users
should adequately
use the app with
demonstration

Table II: Evaluation Plan

Complex2 in Brazil). A total of 172 people participated of
our evaluation. For this, a general evaluation plan was
first developed in order to guide the evaluation of all
constituents systems, including the IS, during the three
iterations of the project. This general plan defines a set
of assessment criteria that will be used to decide whether
the metric results are satisfactory or not, considering the
expected results for each project iteration. In general,
these criteria are numerical thresholds or targets used
to determine the need for action or further investigation.
This allowed us to identify and, therefore, react in a
straightforward manner to the problems that influenced
the overall quality of the system. These criteria were
defined through detailed analysis of the RESCUER quality
requirements and refined by the requirements team, task
leaders, and project coordinators.

To better manage and control the quality evolution of the
RESCUER system, a different set of assessment criteria was
established for each iteration. The assessment criteria were
defined considering an increased level of rigor, since the
metric results must improve in the course of the iterations
in order to achieve the quality requirements expected to be
in the final of the project. Table II presents the assessment
criteria defined for the metrics USM3 and USM4, and the
increasing of the rigor level of each assessment criteria
during the three iterations.

For each constituent system, it was developed a specific
evaluation plan to define and detail the set of strategies,
source data and artifacts that will be used to obtain the
needed input information for the application of the quality
metrics, and, therefore, to obtain the final result about the
compliance of the RESCUER constituent systems with the
quality attributes established in the quality model. Since
the evaluation focus of the first iteration was the usability
and user experience, the strategy was basically to ask the
participants to use the system following a set of key tasks
while their behavior was observed in order to identify if each
task was performed following an expected way. In addition,
a brief user interview was performed to identify the system
acceptance and aspects regarding the user experience. In
the specific evaluation plan were detailed all the forms
and questionnaires that were applied to evaluators and

2http://www.coficpolo.com.br/

participants in the execution of the evaluation.
In general, the application of the quality model can

be summarized as following: (i) in the first step, from
the quality model, it was selected the quality attributes
and metrics established for the MCS addressing the first
project iteration; (ii) in the second step, each quality
characteristic/sub-characteristic was measured through the
application of the metrics; and (iii) finally, the results were
compared with the assessment criteria to identify if the
quality characteristics were achieved and, consequently,
to act in the quality characteristics that have not been
sufficiently achieved.
Table III presents the evaluation results regarding the

quality attributes defined for MCS in the first iteration of
the project. The results were satisfactory considering our
expectations for the first evaluation iteration of the RES-
CUER project. This means that, taking into consideration
the average in all evaluation places, results were higher than
the values of the assessment criteria. The quality model
facilitated the identification of factors that can impact
specific quality attributes of the system, as well as the
quality of RESCUER solution as a whole. Through this
first evaluation iteration and the feedback provided, it was
observed that the RESCUER solution can be refined to
achieve a higher quality for the next evaluation iteration
and that there is still room for improvement in order to
make the solution as intuitive as possible. However, the
establishment of a quality model in the SoS context imposes
some challenges as those described in the next section.

V. Learned Lessons and Discussions
The establishment and use of a quality model in the

SoS context impose several challenges and difficulties
mainly due to the SoS characteristics, such as managerial
independence, evolutionary development, and geographical
distribution. In the RESCUER project, these characteris-
tics have proven to significantly impact the productivity,
success, and effort required for the establishment of a
quality model. In addition, the current quality models such
as the ISO/IEC 25010 have several limitations that difficult
its application in the SoS context, mainly because of the
lack of clearly decomposition criteria that determine how
the quality attributes achieved in the constituent systems
can impact and determine the SoS quality as a whole [15].

308

http://www.coficpolo.com.br/

Quality
Character.

Quality Sub
Character. Metric Evaluation

Place 1
Evaluation
Place 2

Evaluation
Place 3

Evaluation
Place 4

Total
Measure

Assessment
Criteria

Total
Result

Product Quality Metrics

Usability
User Interface
Aesthetics USM2 0.84 0.87 0.81 0.87 0.84 0.70 Yes

Learnability USM3 0.39 0.58 0.73 0.70 0.60 0.60 Yes
USM4 0.64 0.80 0.76 0.80 0.75 0.70 Yes

Quality in Use Metrics
Effectiveness ECM1 0.54 0.69 0.75 0.76 0.69 0.55 Yes

Satisfaction Usefulness UFM1 0.97 1.0 0.84 0.97 0.95 0.60 Yes
Trust TRM1 0.97 0.85 0.78 0.93 0.88 0.60 Yes

Table III: Evaluation Results of the Mobile Crowdsourcing Solution

This is a very complex problem, since quality attributes
not achieved in one of their constituents can impact on
the quality of other constituent systems. In addition, this
impact depends on the role and importance that each
constituent system plays in an SoS.
In addition, it was observed that the establishment of

domain-specific quality models based on general quality
models must be performed with attention. There are, for
instance, domain-specific quality attributes that are not
present in ISO/IEC 25010. This could be mitigated by
using methodologies such as the one presented in [8], which
considers external domain sub-characteristics to the general
quality model.
In a parallel study, we found that the coverage rate

of the ISO/IEC 25010 is only 44% regarding the quality
attributes important for SoS [15]. This may significantly
compromise the completeness and comprehensiveness of the
quality model that have been developed. Moreover, some
well-established definitions for each quality attribute can
not be fully applied in the SoS context due to the flexible,
dynamic nature of these systems. Therefore, some quality
attributes defined in the ISO/IEC 25010 such as reliability
can not directly express the required characteristics for
RESCUER project and possibly others SoS.

On the other hand, it is important to say that during the
refinement of the presented quality model in the next two
iterations, other important key SoS quality attributes such
as interoperability, security, reliability, and performance,
including those ones identified in [15], will be considered.
In this sense, we expect that this quality model, with

the expected improvements, can adequately guide the
development and evaluation of the RESCUER solution,
and our experience establishing it light the construction of
quality models for domains where SoS have been applied.

VI. Conclusions
SoS is becoming increasingly important and being ap-

plied in several critical sectors of the society. By their
criticality, evaluation of their quality is essential. In this
scenario, this paper presented an experience of establishing
a quality model for SoS, in particular, for the domain of
crisis/emergency management. In addition, we applied this
model in a case study to evaluate an SoS of such domain. As
a result, we observed that quality models must be adopted

as one of the main guidelines to support the improvement
of quality of software-intensive systems, including SoS. For
the future work, we intend to apply this quality model
in other evaluation iterations, as well as to update it to
be consolidate as a model to be adopted for this critical,
essential application domain. Besides that, we intend our
experience can be reproduced in other critical domains
where SoS are found.

Acknowledgments
This work is supported by Brazilian funding agencies FAPESP

(Grant: 2014/02244-7), CNPq (Grant: 490084/2013-3).

References
[1] Mark W. Maier. Architecting principles for systems-of-systems.

Systems Engineering, 1(4):267 – 284, 1998.
[2] Elisa Y. Nakagawa, Marcelo Gonçalves, Milena Guessi, Lucas

B. R. Oliveira, and Flavio Oquendo. The State of the Art and Fu-
ture Perspectives in Systems of Systems Software Architectures.
In SESoS, pages 13–20, Montpellier, France, 2013.

[3] J. A. Lane. What is a system of systems and why should i care?
Technical report, USC-CSSE, 2013.

[4] Department of Defense. Dodaf architecture framework version
2.02. http://cio-nii.defense.gov/sites/dodaf20/, 2010. (Accessed
20/03/2015).

[5] S. Wagner. Software Product Quality Control. Springer, Berlin,
Heidelberg, 2013.

[6] N. Azizian, T. Mazzuchi, S. Sarkani, and D. F. Rico. A
Framework for Evaluating Technology Readiness, System Quality,
and Program Performance of U.S. DoD Acquisitions. Syst. Eng.,
14(4):410–426, 2011.

[7] ISO/IEC. ISO/IEC 25010 - Systems and software engineering
- Systems and software Quality Requirements and Evaluation
(SQuaRE) - System and software quality models. Technical
report, 2011.

[8] Xavier F. and Carvallo, J. P. Using Quality Models in software
package selection. IEEE Software, 20(1):34–41, 2003.

[9] M. Jamshidi. Systems of Systems Engineering: Principles and
Applications. Taylor & Francis, 2008.

[10] M. Gagliardi, W. Wood, J. Klein, and J. Morley. A uniform ap-
proach for system of systems architecture evaluation. CrossTalk,
22(3-4):12–15, 2009.

[11] D. S. Santos, B. Oliveira, M. Guessi, F. Oquendo, M. Delamaro,
and E. Y. Nakagawa. Towards the evaluation od system of
systems softaware architecture. In WDES, pages 1–6, Maceio,
Brasil, 2014.

[12] ISO/IEC. ISO/IEC 9126. Software engineering – Product quality,
2001.

[13] ISO/IEC. ISO/IEC 9126 - Software engineering - Product quality
- Part 2: External metrics, 2003.

[14] ISO/IEC. ISO/IEC 9126 - Software engineering - Product quality
- Part 4: Quality in Use metrics, 2003.

[15] D. S. Santos, T. Bianchi, K. R. Felizardo, and E. Y. Nakagawa.
An investigation on quality attributes of systems-of-systems.
Technical report, São Paulo, Brazil, 2015.

309

http://cio-nii.defense.gov/sites/dodaf20/

Experimental Frame Design Using E-DEVSML for
Software Quality Evaluation

Bei Cao, Linpeng Huang, Jianpeng Hu
Dept. of Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai,China

Email: caobei.sjtu@gmail.com, Huang-lp@sjtu.edu.cn, mr@sues.edu.cn

Abstract—Quality evaluation is a critical aspect in the area
of software development. If software quality problems could be
found in the early design phase, the cost for software development
and maintaining will be reduced. In this paper we propose an
evaluation framework including a software error model and its
corresponding experimental frame, which is based on Discrete
Event System Specification (DEVS), to support the evaluation
of multiple quality properties in the design phase. To accelerate
the modeling and simulation processes, we further extend E-
DEVSML to create model of system under evaluation and its
experimental frame, and transform them to executable models
automatically. A case study of a ticket booking system is presented
to demonstrate that our approach is applicable.

Keywords—System of Systems, DEVS, quality evaluation

I. INTRODUCTION

Automated software modeling and simulation tools are
by far the most promising approach to lowering the cost of
software development. For successful project managements, it
is very important to validate FRs and evaluate NFRs of systems
precisely in early design phase before implementation of the
systems [2]. Consequently the executable architectures are
commonly defined to be executable dynamic simulations that
are automatically or semi-automatically generated from static
architecture models or products [1]. In an executable evaluation
process, one of the most important issues is the design of
the Experimental Frame (EF). An EF is a specification of the
conditions under which a system is observed or experimented
with [6]. The EF can be viewed as a system that interacts
with the system of interest or system under test to obtain data
under specified conditions. In this way, for an early evaluation
of software quality we should concentrate on the behavior
description of the system under test and the design of EF
related to corresponding quality concerns, and interactions
between simulated system model and EF are consequently
captured for analysis and evaluation.

In this paper we propose a generic simulation approach to
software quality evaluation based on a Discrete Event System
Specification (DEVS) simulation framework to aid architects
in the analysis of software quality attributes. First, to accelerate
the modeling and simulation processes, we further extend
our formal work E-DEVSML [2] to facilitate the design of
experimental frame of quality evaluation. Second, an error
model is given to depict behavior of the system under test for

The work described in this paper was supported by the National Natural
Science Foundation of China under Grant No.61232007 and No.91118004.

quality concerns. At the last, we use a case of ticket booking
system to demonstrate our approach.

The rest of this paper is organized as follows. Section two
extends E-DEVSML for EF modeling. Section three presents
our DEVS-based software quality evaluation model. A case
study of a ticket booking system is present to explain how our
approach worked in section four. In section five, we make our
conclusion and discuss the future direction.

II. EF SPECIFICATION IN E-DEVSML

When we use DEVS to simulate a system, a critical part
is to design the experimental frame (EF), which controls
the simulation process. A DEVS experimental frame is often
composed of three parts: acceptor, generator and transducer.
The acceptor controls the beginning and end of the simulation,
the generator sends requests applied to the system or model,
and the transducer observes and analyzes the system output.
As creating EF is a necessary part of the simulation process,
reducing the complexity of writing EF programs will accelerate
the DEVS modeling process. Therefore, we extend our E-
DEVSML [2] to support the EF modeling. Thus EF models
can be created in E-DEVSML and automatically transformed
to executable languages through Xtend [4]. The detail of our
method will be introduced in the following sections.

A. Acceptor

The function of an acceptor is to control the beginning
and the end of simulation. The DEVS model of an acceptor is
shown in Fig.1. An acceptor contains an output port to send
start or stop messages. In the beginning of simulation, the
acceptor stays in passive state for a certain time. After that
time it sends a start message through control port and changes
its state to simulating. Then the acceptor sends a stop message
after a certain time simulation. The key information that is
needed for us is the simulation time, wait time and the output
port name which is used for the coupling with other models.
The abstract syntax of an acceptor in E-DEVSML is presented
in Fig. 1. We define an acceptor with keywords acceptor,
extends,waitTime, simTime, and control. A defined acceptor
can be extended by another acceptor using keyword extends.
To make the layout of the simulation model clear, we define
the acceptor as a coupled model, which contain several sub-
acceptors. As its external transition function, internal transition
function and output function are in the same form which can be
encapsulated, we can automatically get these functions through
Xtend [4].

(DOI reference number: 10.18293/SEKE2015-169) 310

passive simulating

Acceptor

control

[start/stop]

out:control=start

out:control=stop

Fig. 1: Acceptor model

B. Generator

The DEVS model of a generator is shown in Fig. 2. A
generator contains two ports: an input port to receive control
messages for start or stop the generator, and an output port to
generate requests. Requests are generated in a random way
following a probability distribution. The abstract syntax of
a generator is presented in Fig. 4. We define a generator
with keywords generator, extends, control, out, distribution. We
also defined some classical distribution types in the grammar,
including poisson distribution, normal distribution and uniform
distribution. We can choose an appropriate distribution suited
for actual situation or define a function by ourselves.

passive output

Generator

[start/stop]
control out

[request]
in:control=stop

in:control=start

out:out=request

Fig. 2: Generator model

C. Transducer

A transducer receives messages generated by the simulation
system and analyzes them through some calculations. The
DEVS model of a transducer is shown in Fig. 3. A trans-
ducer contains several ports: an input port to receive control
messages for start or stop the transducer, a set of input ports
to receive messages generated by the simulation system, and a
set of output ports to send the analysis results. We define the
grammar of a transducer with keywords transducer, extends,
vars, control, in, out in Fig. 4. Every input port of a transducer
is binding with some codes which describes the behavior when
a message comes to this port. Every output port of a transducer
is binding to a variable which records the analysis result. The
transducer is also defined as a coupled model and can be
extended by another transducer.

passive

calculating

output

Transducer

...

...dataIn

[start/stop]
control

dataOut
in:control=start

in:control=stop

out:dataOut

in:dataIn

Fig. 3: Transducer model

Fig. 4: The Grammar of EF Defined in EBNF

III. SOFTWARE QUALITY EVALUATION MODEL

In this section, we propose our DEVS-based software
quality evaluation model. The quality evaluation model is
composed of two parts: Error Model (EM) and EF. An EM
describes the dynamic behavior of software or software compo-
nent with parameters generated in the runtime. The EF controls
the simulation process and calculates the quality metrics.

Fig.5 describes the behavior of a DEVS-based Error Model
of system under evaluation with seven states: passive, active,
executing, failed, recovering, error, and reboot. The passive
state represents the model is waiting requests from req input
port. When the request come the state changes to active.
Then a message will be sent through state port. EM is in
executing phase when it is processing a request. The failed
state represents that a failure event happened. The recovering
state represents that the model is recover from a failure. The
error state represents that a fatal error event happened which
leads to system reboot. The reboot state represents that the
system is rebooting. An EM is in passive state before the
simulations beginning. If a request comes, the state will change
to active and an activated message will generate through state
port to activate the failure generator and error generator. Then
the state change to executing. If the request queue is not empty,
the EM will keep processing the request. When a request is
finished, the execution time will be sent through et port. If the
request queue is empty, the state will go back to passive. If
a failure comes in the executing state, the state will change
to failed. After a downtime, the system starts to recover. EM
comes to recover state. After a recover time, the state returns to
executing. If an error comes in the executing state, the state will
change to error. The system starts to reboot immediately. After
a reboot time, the state returns to executing. Some messages
will be produced in an internal transition as shown in Fig.5.
We will capture these messages with our experimental frame.

311

errorerror rebootreboot

passive

active

failed

executing

recoverring

Error Model

in:req=requesti

out:state=activated

req

failin

state [activated/finished]

dt [downTime]

rt [recoverTime]

rbt [rebootTime]

et [execuTime]

sreq [request]

failout [failure]

in:failin=failure

in:err=error

out:rbt=rebootTime

out:dt=downTime

out:rt=recoverTime

out:state=finished

out:state=finished

out:sreq=request

out:et=executiomTime

If (request.empty())

If (!request.empty())

External Transition

Internal Transition

[failure]

[request]

err

[error]

out:failout=failure

out:failout=failure

Fig. 5: Error model

We defined the corresponding EF of the error model with
one acceptor, three kinds of generators and three kinds of
transducers. The acceptor controls the start and the stop of
the simulation. Generators are composed of request generators,
failure generators, and error generators. The request generator
sends request to the req port, the failure generator sends
failure to failin port. The error generator sends error to the err
port. Transducers are composed of performance transducers,
reliability transducers and availability transducers. The per-
formance transducer receives message from the sreq port and
counts the total number of requests finished by the system.
The reliability transducer receives message from failout port
and counts the failures happened in the simulation process.
The availability transducer receives message from port dt, rt,
rbt, and et. It counts the available time and unavailable time
of the system.

IV. CASE STUDY

In this section, we use a ticket booking system to explain
how to design an experimental frame in E-DEVSML to
evaluate software quality. Eclipse Xtext is used to specify E-
DEVSML and transform E-DEVSML models to Java codes
for DEVS-suite [5] which is a popular DEVS simulator. We
will run the simulation and get the evaluation results in DEVS-
suite.

mobile phone

laptop

Server

Fig. 6: A ticket booking system

A. A ticket booking system

The example ticket booking system (Fig. 6) is composed of
two clients (laptop and mobile phone) and a server. Customers
may use these clients to request a service, such as querying

TABLE I: Experimental settings

mobile phone laptop server

etime(s) uniform
(0.3, 0.6)

uniform
(0.2,0.4)

uniform
(0.1,0.15)

rtime(s) 1 2 0.5
rbtime(s) 10 30 20
dtime(s) 0.3 0.2 0.1
failure rate 0.06 0.05 0.02
error rate 0.015 0.01 0.008
Request

frequency
funiform
(1.5, 3)

uniform
(1, 2)

depends on
clients

available tickets, booking movie tickets, online payment. The
server answers the requests and sends the results to the clients.
The server may stop providing the service if some failures or
errors happen, e.g., it cannot handle any more requests or the
system crashed. The clients may also experience some failures,
e.g., the mobile phone lost the signal, the laptop crashed. We
create DEVS models in E-DEVSML and evaluate the quality
of the laptop and phone and compare the results.

B. Experiment settings

Parameters related to the quality aspects must be set before
the simulation based on the behavior of previous systems,
historical data and software experiences. To make the case easy
to understand, we set these parameters in table I according to
our experiences and set the simulation time to 3 days. In actual
situation, the experimental settings could be more complex.
In table I, etime represents the time to process a request,
rtime represents the time needed to recover from failed state,
rbtime represents the reboot time of the software system. dtime
represents the down time. The word uniform represents the
uniform distribution. As the clients depend on the server, the
failure of server will cause the failure of clients. Although we
only care about the quality properties of clients, we still have
to consider the parameters of the server.

C. E-DEVSML modeling

To evaluate the quality of the system, we should create the
evaluation model first. We define the ticket booking system in
E-DEVSML with experimental settings.Our evaluation model

312

Fig. 7: Simulation model

TABLE II: Simulation results
mobile phone laptop

turnaround time 51319.3 50192.7
Finished requests 112155 170407

Sent requests 115274 172835
fail number 3119 2428

unavailable time 4054.7 5341.6

TABLE III: Quality properties of different clients

Phone Laptop
Reliability (MTBF) 83.1 s 106.8 s

Availability (available time/total time) 98.44% 99.10%
Performance (Average turnaround time) 2.31s/request 1.52s/request

is composed of three atomic models, an acceptor, a coupled
generator, and two coupled transducer. We define the couplings
and input ports and output ports of the simulation system
in a coupled model. As E-DEVSML can be transformed to
executable language through Eclipse Xtend, we define some
mapping rules through Xtend and transform our E-DEVSML
model to Java code which can be run on the DEVS-suite [5].
The simulation model after transformation is shown in Fig 7 .

D. Simulation results Analysis

By tracking the output ports of transducers, we can get
the quality properties of the system. After the simulation, we
can get the turnaround time, finished requests, sent requests,
fail number and unavailable time. The results we get from
these out ports are shown in table II. We can calculate the
classical quality properties of the system through the data we
get. For example the mean time between failures (MTBF), the
availability and performance. Table III presents some quality
properties calculated by transducer. By comparison of the
quality properties of mobile phone and laptop system, we
found that the laptop provide better service than the mobile
phone.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we further extend our E-DEVSML with EF
specification. To describe the behavior of the system, the error
model presented here is general and representative, making
the modeling and simulation of software system for quality
evaluation more convenient.Our work in this paper has the
following features: 1) the error model of system under evalu-
ation considers not only the functional requirements, but also
takes into account non-functional concerns, including failures
and errors. 2) EF specification in E-DEVSML improves the
modeling efficiency and the reusability of DEVS models. 3)
The automated code generation improves the automation of
model based evaluation process and reduces the burden of
analyzers. Although E-DEVSML provides strong modeling
abilities, the text based modeling approach also brings in com-
plexity. Our future work is to enable transformation between
some graphical modeling languages and E-DEVSML for EF
modeling.

REFERENCES

[1] Hu J, Huang L, Cao B, et al. Extended DEVSML as a
Model Transformation Intermediary to Make UML Diagrams
Executable[C]. SEKE, 2014.

[2] Hu J, Huang L, Cao B, et al. Executable Modeling Approach
to Service Oriented Architecture Using SoaML in Conjunction
with Extended DEVSML[C].Services Computing (SCC), 2014
IEEE International Conference on. IEEE, 2014: 243-250.

[3] Sharma V and Trivedi K. Quantifying software performance,
reliability and security: an architecture-based approach. J Syst
Software2007; 80: 493-509.

[4] Bettini L. Implementing Domain-Specific Languages with Xtext
and Xtend[M]. Packt Publishing Ltd, 2013

[5] Kim S, Sarjoughian H S, Elamvazhuthi V. DEVS-suite: a
simulator supporting visual experimentation design and behavior
monitoring[C].Proceedings of the 2009 Spring Simulation Mul-
ticonference. Society for Computer Simulation International,
2009: 161.

[6] B.P. Zeigler, H. Praehofer, T.G. Kim, Theory of Modeling and
Simulation, Academic Press, 2000.

313

Analysis of Risk Dependencies in Collaborative

Risk Management

Catherine de L. Barchet, Luís A. L. Silva, Lisandra M. Fontoura
Programa de Pós-Graduação em Ciência da Computação

Universidade Federal de Santa Maria - UFSM

Santa Maria, Brasil

{catherine.barchet, silva.luisalvaro, lisandramf}@gmail.com

Abstract— Risk management aims to discuss the probabilities

and consequences of risks on the goals of a software project.

In such projects, there are dependence relationships between

risks, although they are not treated yet by standard risk

management practices. This paper is concerned with the

analysis of risk dependencies, where these risks are assessed

when multiple project stakeholders are involved in the de-

velopment of collaborative risk debates. Our approach is

based on a dialogue game protocol for collaborative risk

management. This protocol mediates not only the discussion

tasks of risk identification, risk analysis and risk planning,

but also the collaborative debate regarding the identification

and treatment of dependent risks. These risk management

concepts are represented in a Bayesian network model for a

risk management discussion situation, where alternative

simulation scenarios can be proposed and tested in this

probabilistic model according to discussion participants’

requests. As observed in a case study, results from this proc-

ess lead to the enhancement of the argumentative analysis of

risk management issues developed by project stakeholders.

Keywords— Risk dependencies; Collaborative risk

management; Dialogue game protocol; Bayesian networks.

I. INTRODUCTION

Software projects have a high probability of failing be-

cause their stakeholders are not involved in the develop-

ment of risk management tasks [1]. Despite this fact, risk

management practices are presented in the project man-

agement literature – PMBOK (Project Management Body

of Knowledge) [2], and in the literature regarding the

utilization and evaluation of software development pro-

cesses – RUP (Rational Unified Process) [3], CMMI

(Capacility Maturity Model Integration) [1] and ISO/IEC

15504 [4]. These standard frameworks for risk manage-

ment, which often rely on experts’ judgment of a problem,

define risk evaluation tasks where risks are regarded as

independent events. However, when dependent risks exist

in a software project, a risk may have a significant impact

in another risk. The problem is that these risk dependen-

cies are not captured in most risk management frame-

works. Important information in the risk management

process is being underused or even lost since the explicit

analysis of such dependencies can allow project stake-

holders to have means of constructing more effective

strategies of risk management, reaching better decisions

regarding the proposition and analysis of plans to deal

with these risks, as observed in [5], for instance. The im-

portance of dealing with risk dependencies is highlighted

in [6] when stating that the evaluation and mitigation of

risks may demand the analysis of complex networks rep-

resenting risk dependency relationships. According to the

CMMI standard [1] and as described in [7], the identifica-

tion of cause-effect relationships between risks allows a

more effective treatment of these risks since the exploita-

tion of these relationships is likely to result in more com-

prehensive analysis of a risk management problem.

Past work in our research group describes a

collaborative approach for risk management in software

projects [8][9]. Here, we enhance this approach to deal

with the collaborative identification and evaluation of risk

dependencies. This is achieved through the expansion of a

risk discussion protocol, which is formalized as a

“dialogue game” [10] for collaborative risk management.

Such kind of protocol amounts to a knowledge acquisition

and representation solution for challenges that appear

when there is a need of organizing the interchange of

arguments that occurs when various project stakeholders

collaborate on the deliberation of risk management

situation. Based on this argumentation technique, the

enhancement of this protocol which is discussed in this

paper allows project stakeholders to debate the occurrence

and impact of risk dependencies. Then, the information

that is captured when these collaborative discussions are

developed is utilized on the construction of a Bayesian

network – BN [11] model for the assessment of a risk

management problem. Through it, project stakeholders

can simulate outcomes of a project using a graph

representation that contain probability estimates linked to

risks, risk causes and risk treatment plans. Our approach is

implemented on a new version of a web-based system for

collaborative risk discussion – RD System [8][9]. In

summary, this work discusses an approach which aims the

analysis and simulation of risk dependencies in software

projects, where such dependencies are discussed

collaboratively in a context where uncertainty is present.

In this paper, Section II discusses argumentation and

risk management issues; Section III describes our

enhanced dialogue game protocol for collaborative risk

management of risk dependencies; Section IV exploits a

BN model in the simulation of risk management issues;

Section V discusses a case study carried out in our project

and Section VI presents final remarks.

We gratefully acknowledge financial support from CAPES -

Brazil.

DOI reference number: 10.18293/SEKE2015-122

314

II. THE ANALYSIS OF RISK DEPENDENCIES IN

COLLABORATIVE RISK MANAGEMENT

A risk consists on the effect of an uncertainty on the goals

of a project [12]. In general, the goals of a risk manage-

ment process are the identification, evaluation, treatment

and minimization of risk items before they turn up as a

threat for the successful execution of a project. As de-

scribed in the CMMI standard [1], to the development of

an effective risk management task it is necessary to have a

process of risk identification in which project stakeholders

are able to collaborate, in which there is a free and open

debate of project risks. In addition, the judgment due to

the group is likely to act as an aid on the assessment of

risks, often promoting higher levels of trust on risk man-

agement plans constructed. Collaborative tasks of risk

management can be structured by means of argumentation

models [13][10], as proposed in [8][9]. According to [10],

the modelling and representation of dialogues can be de-

veloped when “dialogue game” techniques are exploited

in the construction of intelligent systems. A dialogue

game [8] is a knowledge representation formalism which

recognizes relevant moves of human interaction in debates

involving two or more participants. A key task for the

representation of a dialogue game is the definition of a set

of locutions that can be utilized by debate participants.

Each locution captures a participant intention to speak,

such as to propose something, to answer a query, etc.

In the process of collaborative risk discussion, partici-

pants can identify risks that are dependent on other risks,

since they are subject to the effects of other risks. For

instance, the increment of the probability of a risk “A”

may influence the probability of a risk “B” to occur in a

project, in case the risk “B” is dependent on the risk “A”.

A deeper level of dependency relationship between risks

involves the identification of dependencies that are

grounded on risk causes. For instance, risks “A” and “B”

can have a common cause, and be dependent because of

this. According to CMMI [1], the relationship between

risks that are dependent on common causes can make

easier the grouping of these risks, leading to risk treatment

plans that deal with such common causes. In the analysis

of dependent events, it is possible to highlight the exploi-

tation of a BN approach [11], which is a model that per-

mits to handle uncertainty along with the management of

risks. This technique is founded on a qualitative analysis,

where relevant information for the construction of the BN

model is often obtained when project managers are in-

volved in steps of debate. Most importantly, it is also

grounded on the exploitation of quantitative probabilistic

analysis which can be tested when a model for a problem

situation is constructed. In practice, risk dependency rela-

tionships are represented in the BN model as arcs that link

risks represented as nodes of a directed acyclic graph. In

situations where risks are dependent because they have

causes in common, instead of having risks that are directly

linked by dependency arcs, this dependency relationship is

represented by a node representing a cause and risks that

are dependent on this node. Once this information is mod-

elled, queries can be executed in the BN graph, which is a

task involving the generation of posterior probabilities

utilizing probability tables modelled [14] [15].

III. COLLABORATIVE RISK MANAGEMENT DISCUSSIONS

IN THE ANALYSIS OF RISK DEPENDENCIES

The Risk Discussion (RD) System is a web-based collabo-

rative environment for the elicitation and organization of

risk management debates [8][9]. This system mediates the

communication between project stakeholders, and conse-

quent standardization of risk information recorded in a

project memory. In doing so, the RD System interprets and

executes a dialogue game protocol for collaborative risk

management [8], which controls the interaction steps be-

tween discussion participants according to a set of commu-

nication rules. This dialogue game protocol contains a set

of locutions that are particularly directed to the capture and

representation of typical risk management tasks, namely a)

risk identification, b) risk analysis and c) risk planning.

Besides of these problem-oriented locutions, the protocol is

also formed by general purpose locutions, permitting the

full development of multi-participant debates. Among

these locutions, for instance, we can cite the “Ask”, “In-

form”, “Argument pro” and “Argument con” locutions (see

locutions in [8]). In this paper, we augment this protocol so

that project stakeholders can develop dialogues aiming the

identification, treatment and simulation of risk dependen-

cies of a risk management problem.

The qualitative analysis of risk dependencies devel-

oped when the RD System is used involves the discussion

of dependencies between risks which are proposed by

debate participants. Once the collaborative identification

and analysis of risk dependencies is executed, information

related to such dependencies is utilized in the generation

of a BN model. This model allows one to simulate prob-

abilistic predictions of a risk management outcome in a

project, using as input the pieces of evidence raised in the

debate. This approach is a qualitative and quantitative form

of assessing probabilities related to such risk dependencies,

and obtaining risk simulation information which can be

exploited by project stakeholders in the construction of

stronger arguments to be submitted back in a debate. All

locutions available in the protocol are relevant to develop

risk dependency analysis; although the most exploited

locutions are (Fig. 1 presents examples of these locutions):

Locution: propose_risk(t, Pi), where t is a description

of a risk, and Pi is any participant within the dialogue. It

permits the statement of risk proposals in a collaborative

risk management debate. Preconditions: There must have

been utterance of the start_discussion(t, Pi) locution by

any participant within the dialogue.

315

Figure 1. A fragment of a collaborative risk debate carried out in the RD System (part of a study case carried out in our project).

Locution: propose_probability(t, Pi), where t is a de-

scription of a probability estimate, and Pi is any participant

within the dialogue. Based on project stakeholders’ experi-

ence, and augmented by discussion in which users can

adjust their statements, the use of this locution permits the

proposition of probability values regarding the occurrence

of risks and/or risk causes. It is also utilized when users

state probabilities regarding the effectiveness of risk treat-

ment plans. Similarly, probabilities related to the occur-

rence of risk causes and the effectiveness of risk plans can

also be collected when this locution is used. Precondi-

tions: There must have been utterance of the pro-

pose_risk(t, Pi), propose_cause(t, Pi) or propose_plan(t,

Pi) locutions by any participant within the dialogue.

Locution: propose_plan(t,Pi), where t is a description

of a risk treatment plan, and Pi is any participant within the

dialogue. It permits the proposition of plans to treat risks of

a software project, where these plans can be directed to the

treatment of risks that are dependent of other risks pro-

posed in a debate. Preconditions: There must have been

utterance of the propose_risk(t, Pi) locution by any partic-

ipant within the dialogue.

Locution: propose_dependency(t, Pi), where t is a

statement composed of two risks previously proposed in

the debate (along with the reserved word “is-dependent-

on), and Pi is any participant within the dialogue. It per-

mits the identification of binary dependency relationships

between two risks of a software project. Important, it is an

indexing place for recording of other participants’ argu-

ments related to the detailed characterization and analysis

of these dependencies. Preconditions: The pro-

pose_risk(t, Pi) locution should be inserted by any partici-

pant at least twice in the dialogue.

Locution: propose_cause(t, Pi), where t is the descrip-

tion of a cause of risk, and Pi is any participant within the

dialogue. It allows participants to indicate possible risk

causes in a debate. Preconditions: There must have been

utterance of the propose_risk(t, Pi) locution by any partic-

ipant within the dialogue.

Once risk dependencies are made explicit, participants

can generate a BN model for the risk management prob-

lem. Having this model, which can be imported by a stan-

dard tool for Bayesian analysis – the Netica System [16],

discussion participants can evaluate the outcomes of prob-

Collaborative risk management debates

are formed by a set of arguments, where

each argument is structured as i) a locu-

tion selected from the dialogue protocol,

ii) a free-text risk management statement

and iii) an identification of the discussion

participant that is submitting the argument

Project stakeholders’ arguments are

structured in a hierarchical format of a

discussion tree, where each argument

instance corresponds to a node of the tree

316

abilistic simulations executed on this model. In a debate,

these simulation activities are discussed when the follow-

ing set of locutions are utilized:

Locution: generate_bayesian_network (t, Pi), where t

is description automatic “The Bayesian Network model

was generated”, and Pi is the RD System. It generates a

graph representing the BN model in which its risk man-

agement concepts are captured through the locutions avail-

able in the dialogue protocol. This graph model is formed

by proposals regarding risks, risk causes, risk plans, and

probabilities linked to nodes of the BN model that repre-

sent these concepts, in addition to dependency relation-

ships between risks. When this locution is used, the BN

model for the risk management concepts available in the

latest version of the debate is generated. In this case, an

external representation to the RD System of the BN model

is produced. Preconditions: There must have been utter-

ance at least two propose_risk(t, Pi) locutions by any

participant within the dialogue, with proposed_plan(t, Pi)

and propose_cause(t, Pi) locutions associated.

Locution: propose_simulation(t,Pi), where t is a de-

scription of a simulation desired by any participant, and Pi

is any participant within the dialogue. It permits the state-

ment of probabilistic simulation scenarios as for promoting

the analysis of risks along with their causes, the effective-

ness of plans for reducing risks, the effects of risk depend-

encies, etc. To select risk management concepts to be ex-

ploited in a simulation scenario, in which probabilities for

variable states can be changed according to users’ requests,

debate participants can use locutions such as: “Select

Plan”, “Select Cause” and “Select Risk”. To execute this

simulation, users state that the probability of a certain plan

to be effective should be exploited. This is described

through the utilization of “Select Plan” and “Propose Prob-

ability for State” locutions, where the first locution selects

a plan available in the BN model and the second locution

describes that the probability of success of this plan should

be changed. Preconditions: There must have been utter-

ance of the generate_bayesian_network(t, Pi) locution by

any participant within the dialogue.

Locution: select(type, t, Pi), where type can be {risk,

cause, plan}, t is a statement of a risk, cause or plan to be

select, and Pi is any participant within the dialogue. This

locution permits the selection of risk management concepts

represented in a BN model. Discussion participants can

utilize it when making a detailed discussion of a simulation

scenario. In our debate protocol, these simulations are

captured and recorded as sub-trees of a “Propose simula-

tion” node. Preconditions: There must have been utterance

of the propose_simulation(t, Pi) locution by any partici-

pant within the dialogue.

Locution: propose_probability_for_state(t, Pi),

where t is a description of a probability to be simulated in a

state of a variable represented in a BN model, and Pi is any

participant within the dialogue. It permits the proposition

of probability estimates for the different states of variables

of a BN model. For instance, debate participants can state

their beliefs of a risk treatment plan to have success, the

belief of a risk cause to be present in a software project,

and so on. Such statements are made on the grounds of the

pieces of evidence users have observed in the current pro-

ject or in debates of past projects. Preconditions: There

must have been utterance of the select(type, t, Pi) locution

by any participant within the dialogue.

In addition to the rules that define the set of permitted

protocol locutions, rules regulating the combined use of

these locutions are represented in this model. These rules

allow the RD System to automatically mediate the debate

that occurs, regulating the conditions in which certain

locutions can be utilized or not. Rule like these are also

relevant on the representation of transitions between dia-

logue phases as, for instance, the transition from a risk

identification phase to a risk dependency analysis phase, or

a risk dependency simulation phase.

IV. THE EXPLOITATION OF A BAYESIAN NETWORK

MODEL IN THE ANALYSIS OF RISK DEPENDENCIES

The process that leads to the construction of a BN model

representing risks, risk causes, risk treatment plans, and

the dependency relationships between these concepts is

implemented in the RD System. It is a semi-automatic

process in which the nodes and arcs of this Bayesian

graph are derived from users’ arguments captured when

the RD System is used. In essence, users advance these

arguments along with the “Propose Risk”, “Propose

Cause” and “Propose Plan” locutions. Then, this model is

imported in the Netica System [16], allowing the partici-

pants of a debate to compute with probabilities the out-

comes of queries executed in the BN model.

In the BN model for a problem situation, dependency

relationships link risks which were proposed previously in

a debate. In the RD System, these relationships can be

captured when the “Propose Dependency” locution is

used. Risks can also be dependent because they have

common causes, as described in [1]. In a debate, these

causal dependencies are not captured when users utilize

the “Propose Dependency” locutions. To do so, the RD

System automatically identifies pairs of risks that have

common causes since these statements are captured ex-

plicitly when the “Propose Cause” is utilized by debate

participants. It is relevant to notice that project stake-

holders can exploit these causal dependencies when they

plan mitigation actions to take advantage of these depend-

encies. Once plans are directed to the treatment of risk

causes that are relevant to multiple risks, these plans can

have a positive effect on these various risks at the same

time. To capture these situations, we represent nodes for

risk management plans in this BN model. As shown in

Fig. 2, the risk treatment plans proposed in a collaborative

risk debate are there in the BN graph, along with probabil-

ity estimates regarding the effectiveness of these plans.

317

Figure 2. Topology of a Bayesian Network model generated from a collaborative risk debate (part of a study case carried out in our project).

In our BN model, risk management nodes are anno-

tated with binary states (e.g. present and absent states of a

risk variable, as in Fig. 2). Then, probability estimates are

represented on the binary states of these nodes. In the

Netica System, alternative queries can be executed when

probability values for these variable states are input (e.g.

when users input a certain probability value representing

the likelihood of a risk being present in a project). This

kind of input can lead to the update of the probability

tables connected to the network variables of the BN

model, which is something that the Netica System does

automatically. In the assessment of these simulation sce-

narios, the RD System permits any discussion participant

to utilize the “Propose Simulation”, “Select Risk”, “Select

Cause”, “Select Plan” and “Propose Probability for State”

locutions. Moreover, these issues can be discussed further

when other general purpose locutions are utilized (see [8])

- e.g. when users discuss pros and cons of a simulation

situation through the utilization of “Argument pro” and

“Argument con” locutions. As a result, alternative simula-

tion scenarios can be recorded in a risk management de-

bate (see Fig. 1). For instance, through the combined use

of the “Select Risk” and the “Propose Probability for

State” locutions, users may state changes on the probabil-

ity values currently linked to a selected risk. Similarly,

changes on the probability values linked to risk causes and

risk treatment plans can be stated in such simulation phase

of a debate. Once new values of probability are presented

by debate users, they can be applied in the probabilistic

model which is loaded in the Netica System. This BN

model contains variables in which initial probability val-

ues are obtained from the participants’ statements collect-

ed through the use of “Propose Probability” locutions.

Other probability values (e.g. posterior probabilities) are

related to the outcomes produced when such probabilistic

model is computed according to Bayesian rules and prob-

ability tables linked to the network variables represented

in the BN model. In the simulation phase of a debate, for

instance, when users suggest alternative values for prob-

abilities of nodes representing risk treatment plans in the

BN model, this action allows the risk management team to

assess the impacts and consequent merits of risk manage-

ment strategies. In practice, such probability suggestions

aim to test different degrees of belief that users may have

on the effectiveness of these plans.

V. REMARKS OF A CASE STUDY

A preliminary case study developed in our project in-

volved the execution of collaborative tasks of risk identi-

fication, risk analysis and risk planning. In addition, a

group of participants carried out tasks of identification and

analysis of risk dependencies, as well as the simulation of

a BN model generated from the risk management concepts

proposed in a debate developed in the RD System.

The first task of this case study was the discussion of

the risks of a software project. As a result, the BN model

for the current risk management problem was generated –

through the use of the “Generate Bayesian Network” locu-

tion. Then, the resulting probabilistic graph generated by

318

the RD System was imported in the Netica System. Using

this model, alternative scenarios of simulation suggested

were executed. In doing so, participants stated queries

based on probability estimates for risks, risk causes and

risk treatment plans. To do that, they utilized locutions

such as “Propose Simulation”, “Select Risk” and “Propose

Probability for State”, for instance. As a positive feedback

from the simulation tasks executed, participants were able

to formulate new arguments (e.g. new proposals for risk

probability grounded on simulation outcomes) and submit

them on the current debate. As an example of this simula-

tions (see Fig. 2), it is possible to observe that the prob-

ability of the “Late deliveries of the system modules” risk

is 21.6%. This estimate is quite low since the users have a

plan to treat the cause of this risk (“The development tools

that are necessary to develop this system are not available

in this project”), and that the effectiveness of this plan is

80% as stated by debate participants. As identified col-

laboratively in the debate, this risk cause is also linked to

the “Difficulties with the requirements development” risk,

which has probability of 18.3% (very low as well). This

indicates that these two risks have a causal dependency

between them and the proposed treatment plan is being

applied to this common cause. So, this single plan is man-

aging to deal with two project risks at the same time,

which is one of the key advantages of treating risk de-

pendencies in risk management.

VI. CONCLUDING REMARKS

The collaborative analysis of risk dependencies in soft-

ware projects is a challenging problem that is tackled

superficially in standard risk management frameworks

[1][2][3][4]. To approach this problem, this paper dis-

cusses the augmentation of a dialogue game protocol for

collaborative risk management as presented initially in

[8][9]. In general, we show how one can integrate qualita-

tive and quantitative techniques in a collaborative risk

management setting. As implemented in a new version of

the RD System, this protocol now contains an expanded

set of locutions along with additional risk management

debate phases, which are directed to the explicit identifica-

tion and analysis of risk dependencies in a software pro-

ject. A key feature of this protocol is to offer knowledge

acquisition and representation resources to support project

stakeholders in the development of debates regarding the

occurrence and effects of such risk dependencies.

The proposed approach shows how this debate proto-

col can guide users on the capture and recording of alter-

native risk dependency simulation scenarios as they are

proposed and adjusted collaboratively in a debate. The

debate represented when this protocol is utilized by pro-

ject stakeholders can be imported in a standard BN system

permitting the execution of probabilistic simulations for

the investigation of dependent risks. Based on preliminary

tests, the outcomes of these simulations reveal possibili-

ties of risk management improvement allowing users to

re-estimate identified risks according to risk dependence

characteristics. These improvements can be assessed not

only by a small group of project managers, as commonly

developed in standard risk management frameworks, but

also by other project stakeholders through the proposition

of new arguments in their collaborative discussions. In

fact, the simulations offer feedback for the proposition of

new arguments back in the debate, resulting in a qualita-

tive enhancement of the collaborative risk management of

a software project.

As future work, we plan to develop new case studies in

order to obtain feedback for improving the usability of our

approach. We also plan to seek connections between our

collaborative risk management approach for the analysis

of risk dependencies and logic-based probabilistic argu-

mentation frameworks proposed in the literature [13], as

well as making the new version of the RD System avail-

able to the public on the web.

REFERENCES

[1] P. T. CMMI, “CMMI® for Development, Version 1.3,” Tech. Rep.

C. Carnegie Mellon Univ. Softw. Eng. Inst., no. November, 2010.

[2] I. Project Management Institute, A Guide to the Project Management
Body of Knowledge, Fifth Edit. Pennsylvania: Project Management

Institute, Inc., 2013.

[3] IBM, “Rational Unified Process (software).” IBM Rational, 2006.
[4] ISO, “ISO/IEC 15504: Information tecnology - Software process

assessment,” 2005.

[5] T. W. Kwan and H. K. N. Leung, “A Risk Management
Methodology for Project Risk Dependencies,” IEEE Trans. Softw.

Eng., vol. 37, no. 5, pp. 635–648, Sep. 2011.

[6] T. Alpcan and N. Bambos, “Modeling dependencies in security risk
management,” 2009 Fourth Int. Conf. Risks Secur. Internet Syst.

(CRiSIS 2009), pp. 113–116, Oct. 2009.

[7] T. O. a. Lehtinen, M. V. Mäntylä, J. Vanhanen, J. Itkonen, and C.
Lassenius, “Perceived causes of software project failures – An

analysis of their relationships,” Inf. Softw. Technol., vol. 56, no. 6,

pp. 623–643, Jun. 2014.
[8] F. S. Severo, L. M. Fontoura, and L. A. L. Silva, “A Dialogue Game

Approach to Collaborative Risk Management,” Proc. of the 25th Int.

Conf. on Software Engineering & Knowledge Engineering, 2013.
[9] R. C. B. Pozzebon, L. A. L. Silva, and L. Manzoni, “Argumentation

Schemes for the Reuse of Argumentation Information in

Collaborative Risk Management,” in IEEE 15th International
Conference on Information Reuse & Integration (IRI), 2014.

[10] P. Mcburney and S. Parsons, “Dialogue Games for Agent

Argumentation,” in Argumentation in Artificial Intelligence, G.
Simari and I. Rahwan, Eds. Boston, MA: Springer US, 2009, pp.

261–280.

[11] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. California, Los Angeles: Morgan Kaufmann,

1988.

[12] ISO, “ISO 31000:2009 - Risk management - Principles and
guidelines,” 2009.

[13] T. Benchcapon and P. Dunne, “Argumentation in artificial

intelligence,” Artif. Intell., vol. 171, no. 10–15, pp. 619–641, Jul.
2007.

[14] C.-F. Fan and Y.-C. Yu, “BBN-based software project risk

management,” J. Syst. Softw., vol. 73, no. 2, pp. 193–203, Oct. 2004.
[15] Y. Hu, X. Zhang, E. W. T. Ngai, R. Cai, and M. Liu, “Software

project risk analysis using Bayesian networks with causality
constraints,” Decis. Support Syst., vol. 56, pp. 439–449, Dec. 2013.

[16] S. C. Norsys, “Netica Bayesian Belief Network,” 1998. [Online].

Available: https://www.norsys.com/.

319

A Practical Approach to Software Continuous
Delivery Focused on Application Lifecycle

Management

Everton Gomede, Rafael Thiago da Silva and Rodolfo Miranda de Barros
Department of Computer Science

State University of Londrina
Londrina, Paraná, Brazil

e-mail: {evertongomede, rafathiago}@gmail.com, rodolfo@uel.br

Abstract—To deliver quality software continuously is a challenge
for many organizations. It is due to factors such as configu-
ration management, source code control, peer-review, delivery
planning, audits, compliance, continuous integration, testing,
deployments, dependency management, databases migration, cre-
ation and management of testing and production environments,
traceability and data post-fact, integrated management, process
standardization, among others. To overcome these challenges,
this paper presents a continuous delivery process that promotes
artefacts produced by developers, in a managed fashion, to pro-
duction environment, allowing bidirectional traceability between
requirements and executables, and integrating all activities of
software development using the concepts of Application Lifecycle
Management. As a result, we obtained an ecosystem of tools and
techniques put into production in order to support this process
1.

Keywords–Continuous Delivery; Process Quality; Application
Lifecycle Management

I. INTRODUCTION

Software Delivery Process (SDP) consists of several tasks
in order to promote artefacts created into the production
environment (servers where an executable is installed to de-
livery features to the users) [1]. These ones can occur in
either environment, producer or consumer. Due to the unique
characteristics of each software product, a general process
to various contexts probably cannot be set. Therefore, we
should interpret a SDP as a framework to be customized
according to the requirements and characteristics of each
product (Software Delivery Process, in this context, is a part
of Software Development Process).

This customization usually causes a manual execution of
SDP [2]. Production environment is configured in a manual
way by the infrastructure team using terminals and/or third-
party tools. Artefacts are copied from a continuous integration
server to a production environment and possibly some data
and/or metadata are adjusted before software is released.

However, this process has some weaknesses. Predictability
is the first one, because it increases risk, related with lost
business transactions, and downtime whether any unexpected
situation occurs [3]. Additionally, the repeatability factor may
compromise the diagnosis of post-deployment problems [2].
Finally, this process is not auditable and it does not allow

1DOI reference number: 10.18293/SEKE2105-126

the recovery of information about all events that were held to
deliver a version.

There is a growing interest in practices to overcome these
problems [4]. Such practices are known as Software Continu-
ous Delivery (SCD), defined as the ability to publish software
whenever necessary. This publication may be weekly, daily or
every change sent to the code repository. The frequency is not
important, but the ability to deliver when it is necessary [2].

This approach has great importance in software devel-
opment because it helps who is in charge of delivering to
understand better their process and, consequently, improve it.
Such improvements can be in terms of automation, decrease of
the delivery time, rework and risk reduction, or others. Among
them, the main is the ability to have a version of software,
ready for delivery, each new code added to the repository.

Additionally, the management of the activities of applica-
tion lifecycle, support this approach and help all team mem-
bers to improve their process [2], [4]. Application Lifecycle
Management (ALM) has been proposed with the objective
to provide a comprehensive technical solution for monitor-
ing, controlling and managing software development over the
whole application lifecycle [5].

Thus, we propose a question: Are the concepts of ALM aim-
ing at Software Continuous Delivery also an effective utility for
improving the software process? We try to answer this question
by describing the results and experiences from the introduction
of a Continuous Software Delivery solution complemented by
techniques of Application Lifecycle Management in a financial
industry company.

In this context, we present a practical approach to address
the problems of software continuous delivery and application
lifecycle management. The main objective is to contribute
with a setup of servers, process, techniques and tools that
assist to deliver software continuously. In addition, some
recommendations and further work are discussed. Issues re-
lated with software architecture, project management and other
dimensions of software development were omitted.

Therefore, this article was divided into five sections, includ-
ing this introduction. In Section II, we present fundamental
concepts and related works. In Section III, we present an
approach to Software Continuous Delivery focused on Ap-
plication Lifecycle Management. In Section IV, we present
the results. Finally, in Section V, we present conclusions,

320

recommendations and suggestions for future work.

II. FUNDAMENTAL CONCEPTS AND RELATED WORKS

There is a relation between quality of software products
and quality of the process used to build them. Implementation
of a process aims to reduce rework, delivery time and increase
product quality, productivity, traceability, predictability and
accuracy of estimates [2]. In general, a software development
process contains the activities shown in Fig. 1.

Figure 1. A simplified software development process [1], [2].

The configuration management tasks of deployment and
operation activities, highlighted in Fig. 1, are usually per-
formed manually [2]. This practice, according to Humble and
Farley [2], is accompanied by anti-patterns:

• Deploying software manually: there should be only
two tasks to perform manually; (i) choose a version
and (ii) choose the environment. These are goals to be
achieved in a SCD [5].

• Deploying after development (requirement, design,
code and tests) was complete: it is necessary to
integrate all activities of the development process and
put stakeholders working together since the beginning
of the project.

• Manual configuration management of the production
environments: all aspects of configured environments
should be applied from a version control in an auto-
mated way.

In this context, some Software Continuous Delivery Prac-
tices arises. It is a developing discipline, which builds up
software that can be released into production at any time, by
minimizing lead-time [3].

To assist this type of software delivery approach, from
construction to operation, Humble and Farley presents the De-
ployment Pipeline (DP), a standard to automate the process of
SCD. Despite each organization may have an implementation
of this standard, in general terms, it consists of the activities
shown in Fig. 2.

Figure 2. The deployment pipeline [2].

Over each change, artefacts are promoted to next instance
of pipeline through a series of automated tasks. The first step
of the pipeline is to create executables and installers from the
code repository, in a process known as Continuous Integration
(CI). Other activities perform a series of tests to ensure that the
executable can be published. If the release candidate passes all
tests and criteria, then it can be published [2].

To implement this pipeline, some approaches were pre-
sented. Among them, Krusche and Alperowitz [6] described
the implementation of a SCD process to multiple projects.
Their goal was to obtain the ability to publish software to
their clients with just a few clicks. The main contribution of
this work was to show that developers who have worked on
projects with SCD, understood and applied the concepts, being
convinced from the benefits of it.

Bellomo et al. [7] presented an architectural framework
together with tactics to projects that address SCD. The main
contribution of this work is a collection of SCD tactics in
order to get software products performing with a higher level
of reliability and monitoring into production environment.

Fitzgerald and Stol [4] published trends and challenges
related to what the authors called “Continuous *”, which is,
all topics related to software delivery that can be classified as
continuous. The authors addressed issues such as; Continuous
Integration (CI), Continuous Publication (PC), Continuous
Testing (CT), Continuous Compliance (CC), Continuous Se-
curity (SC), Continuous Delivery (EC), among others. An
important point of this paper is the distinction between the
Continuous Delivery and Continuous Publication. According
to the authors, Continuous Publication is ability to put into
production software products in an automated manner. This
definition is complementary to the software continuous deliv-
ery definition given above.

Although all these works have a practical nature, none of
them showed which tools were used, which recommendations
to similar scenarios and which were the techniques used during
deployment. Therefore, the work presented in this paper seeks
to fill these gaps.

III. A PRACTICAL APPROACH

A. Main Proposal
The Fig. 3 shows all macro elements involved in approach.

In the first line, there are two ones: (i) Development, represent-
ing the timeline of software development and (ii) Operation,
representing the timeline of software operation. The pipeline
of SCD is between both.

Figure 3. The big picture.

In the second and third line there are an ALM and activities
of software development and operation. Requirement, architec-
ture, build, repository, quality and component are related with
development, meanwhile incident and bug tracker are related
with operation. Log Monitor is used to collect and to integrate,
in an automated way, information about all elements. LDAP is
used to allow a single point of authentication and authorization
between all components.

321

B. Infrastructure
To provide an infrastructure that allows the Software Con-

tinuous Delivery is the main goal of setup shown in Fig. 4.
It has 4 areas: (i) Commit Stage (CS), (ii) Quality Assurance
(QA), (iii) Staging (ST) and (iv) Production (PD).

Figure 4. An overview of a setup of servers and areas.

C. Areas
The Commit Stage (CS) has primary responsibility to

implement continuous integration of all code reviews sent to
the repository. This area consists of the following services:

• Public Code Repository
◦ Purpose: to get code reviews that have not been

approved.
◦ Tool: Git (git-scm.com).
◦ Technique: it has a single branch, called mas-

ter, which receives revisions of all developers.
• Continuous Integration

◦ Purpose: to integrate all code reviews sent to
the server.

◦ Tool: Jenkins (jenkins-ci.org) and Maven
(maven.apache.org)

◦ Technique: it does integration performing unit
testing and adding first acceptance step in peer-
review server.

• Static Analysis
◦ Purpose: to make code analysis generating

quality reports.
◦ Tool: SonarQube (sonarqube.org).
◦ Technique: each integration performs a series

of tests, such as size metrics, complexity, test
coverage, dependency calculation, among oth-
ers. Creates a baseline quality of the project.

• Peer-Review
◦ Purpose: to enable promotion/rejection of

codes from public to canonical repository.
◦ Tool: Gerrit (code.google.com/p/gerrit).
◦ Technique: approval of two steps, the first

being carried out by continuous integration
server and the second by the configuration

manager. If the review through both sides, code
is promoted to canonical repository.

• Canonical Repository
◦ Purpose: to receive approved code reviews.
◦ Tool: Git (git-scm.com).
◦ Technique: it has a single branch, called mas-

ter, which receives revisions of peer-review
server.

• Repository Libraries.
◦ Purpose: to store libraries and components

used in integration.
◦ Tool: Nexus (sonatype.org/nexus).
◦ Technique: libraries and components are in-

stalled automatically or manually on the server
being available for use at the time of integra-
tion.

The layout and operation of Commit Area are shown in
Fig. 5.

Figure 5. Commit Stage Area (CS).

The Quality Assurance Area (QA) has the main purpose
of performing all automated tests and allow Quality Manager
perform manual tests, such as exploratory testing [2]. This area
consists of the following services:

• Continuous Integration
◦ Purpose: to obtain a copy of the code and

perform integration, functional and automated
load tests.

◦ Tool: Jenkins and Maven (maven.apache.org).
◦ Technique: get a copy of canonical repository

to generate executable, install them into library
server, application servers and database server.
After that, execute integration, functional and
load tests.

• Page Servers, Application and Database
◦ Purpose: to host application to test
◦ Tools: may vary according to the technology

used; Wildfly (wildfly.org) and MSSQL are
some examples.

◦ Technique: can vary depending on the technol-
ogy used (to install and configure, basically).

322

• Load Test
◦ Purpose: to perform a load test against the page

servers, application and database.
◦ Tool: Jmeter (jmeter.apache.org) and Vagrant

(vagrantup.com).
◦ Technique: it performs script created by quality

manager allocating hosts as required to test. It
generates a supported load from baseline.

The Operation of Quality Assurance area is shown in Fig.
6.

Figure 6. Quality Assurance Area (QA).

Staging Area aims to provide for monitoring users and
product owners an environment as close as possible to pro-
duction environment, so they perform approval tests. These
ones are related to user experience and their perception re-
garding how software product meets specified requirements.
This area has a copy of operating environments, both in terms
of operating systems, tools and settings, and in terms of data.
Monitored users are the ones chosen to perform approval tests
in a monitoring way. Occasionally, they are in the product
owner role. The Fig. 7 shows this area.

Figure 7. Staging Area (ST).

Finally, configuration manager makes promotion from
Staging Area artefacts to Production Area manually by Config-
uration Manager. However, developers and infrastructure staff
are present to perform this task. The Fig. 8 shows this area.

Figure 8. Production Area (PD).

Also, the following servers were used: (i) Log Server and
(ii) LDAP Server. The first has a very important function
in the setup; to get all events occurred by indexing logs.
This assists the diagnosis, providing information to reporting,
alerts and dashboard. The tool used in this case was Splunk.
The second server has a function to allow authentication and
authorization for all setup servers. This is necessary because
it is costly to maintain users across all the servers involved in
an individualized way, in addition this increase security flaws.
The tool used in this case was OpenLDAP (openldap.org).

D. Tools

The Tab. I summarizes all tools used with its URL. These
tools are used to Configuration Management (Git, Gerrit,
Nexus, Flywaydb and Vagrant), Continuous Integration (Jenk-
ins and Maven), Quality Assurance (SonarQube and Jmeter),
Application Lifecycle Management (Redmine) and infrastruc-
ture (Splunk and OpenLDAP).

TABLE I. TOOLS USED.

Goal Name URL
Continuous Integration Jenkins jenkins-ci.org
Source Repository Git git-scm.com
Build Maven maven.apache.org
Gathering Logs Splunk splunk.com
Peer-Review Gerrit code.google.com/p/gerrit
Static Analysis SonarQube sonarqube.org
Load Test Jmeter jmeter.apache.org
Library Repository Nexus sonatype.org/nexus
ALM Redmine redmine.org
Database Migration Flywaydb flywaydb.org
Automated Installation Vagrant vagrantup.com
Authentication/Authorization OpenLDAP openldap.org
Architecture Enterprise Architect sparxsystems.com.au

These tools were used because they are open/free software
or a well known tool among developers.

323

IV. RESULTS

Some results about this approach are related to automation
of many delivery tasks, coming out in a more predictable and
managed process. Another aspect, related to collaboration, is
due to communication between developers and infrastructure
team was increased in all aspects of the process, since planning
of a feature until its publication. These results are classified in
a process maturity level [2], as shown in Fig. 9.

Figure 9. Process maturity level [2].

The Fig. 10 shows the peer-review authorization. It helps
to protect the canonical repository and increase the quality
of code for 3 reasons: (i) improve the quality of commits,
each member tends to be more careful with a code that will
be evaluate by another one, (ii) allow to put a sequence in
commits avoiding collisions and wrong commits, (iii) allow to
configuration manager to decide if the code can be promoted
or not 2.

Figure 10. The peer-review authorization.

The Fig. 11 shows the integration of ALM tool (Redmine)
with the canonical repository. This allow traceability between
requirement, code, peer-review and repository. Among ben-
efits, some of them are: (i) vision end to end (requirement
to executable), (ii) fast diagnosis in case of mistake during
development (requirement, code, commit, release and other

2There are some words in portuguese because this picture was collected
from a real situation in a brazilian company. The same situation occurs in the
figures 10, 12, 13 and 14.

mistakes) and (iii) integrated management of application life-
cycle (requirement, models, code, issues, peer-review, release,
incidente, bugs, schedule, documents, wikis, forums, reports,
components, library, repository).

Figure 11. The integration of ALM tool with canonical repository.

The Fig. 12 shows a way, using some concepts of TOGAF
3, to developer the requirements (ecosystem, vision, require-
ment, rules, use case). A fashion used to link an element of
Enterprise Architect (EA) and the ALM tool was an ID, put
in each one (GNF001, for instance).

Figure 12. A way to developer requirements using some concepts of TOGAF.

The Fig. 13 shows the IC tool. Besides of all aspects
of IC, there are two related with quality, specifically with

3The Open Group Architecture Framework (TOGAF) is a framework to
enterprise architecture which provides an approach for designing, planning,
implementing, and governing an enterprise information technology architec-
ture. To see more, www.opengroup.org/togaf

324

tests: (i) snapshot of automated functional test, using Allure
Framework 4 and (ii) performance test, allowing identify the
performance of application during the builds evolution. The
first one is related with audit questions, as create evidence
about functional tests and the second one with technical
questions, as performance of some elements of application
(queries, class, methods, algorithms).

Figure 13. The IC tool.

The Fig. 14 shows the tool used to collect logs from all
elements. The importance of this tool is related with diagnosis
of all environments: (i) development and (ii) operation. There
are a lot of options of tools, for instance, Fluentd 5 and
Papertrail 6. The important is not the tool, but the concept
and to get the benefits of use. In case of doubt to choose one,
we recommend a method called Analytic Hierarchy Process
(AHP). More details about its use were shown in [8].

Figure 14. The tool used to collect logs from all elements.

In summary, the servers setup, tools and techniques were
used to support the main objective that is put software in opera-
tion in a managed fashion, reducing risk, rework and increasing
traceability, management, predictability and so forth.

As a macro result, the importance of this approach is
related with:

• Traceability and data post-fact: to allow to link all
elements using during software development process
(requirement, models, code, versions) and generate a
snapshot of all activities from each build (peer-review,
tests, deployment).

4github.com/allure-framework/
5fluentd.org
6papertrailapp.com

• Integrated management: all team members can use
the information generated by ALM tool, like releases,
issues, bugs, incidents, documents using only a local.

• Process standardization: a standard was created and
it is useful to communicate and help team to under-
stand better its process, allowing thus, a possibility of
quality increase.

V. CONCLUSION

This work presented a practical approach that can be used
in similar processes. Additionally, among the contributions can
be mentioned (i) a set of tools evaluated and (ii) a set of
techniques, that can be used for organizations that do not use
this type of approach, as for those which already have a higher
level of maturity.

Moreover, some further work may be developed to improve
setup provided in this article. The first one aims to get a strat-
egy for publication with less impact in terms of unavailability
of software products, including deployment across different
timezones. The second one is linked with multiple projects
scenarios. We can analyze how the artefacts, from several
projects, are promoted to production by the same team.

Finally, this article has a practical purpose. However, to
implement continuous delivery and application lifecycle man-
agement involves more than installing some tools and automate
some tasks. It depends on effective collaboration among all
of those involved in the delivery process, senior management
support and especially the desire of stakeholders in become
the changes a reality.

REFERENCES
[1] M. V. Mantyla and J. Vanhanen, “Software Deployment Activities and

Challenges - A Case Study of Four Software Product Companies,” 2011
15th European Conference on Software Maintenance and Reengineering,
Mar. 2011, pp. 131–140.

[2] J. Humble and F. David, Continuous Delivery: Reliable Software Re-
leases through Build, Test, and Deployment Automation. ser. Addison-
Wesley Signature Series. Pearson Education, 2010.

[3] T. Ernawati and D. R. Nugroho, “IT Risk Management Framework Based
on ISO 31000:2009,” International Conference on System Engineering
and Technology, vol. 11, 2012, pp. 1–8.

[4] B. Fitzgerald, “Continuous Software Engineering and Beyond : Trends
and Challenges Categories and Subject Descriptors,” RCoSE 14, 2014,
pp. 1–9.

[5] H. Lacheiner and R. Ramler, “Application Lifecycle Management as
Infrastructure for Software Process Improvement and Evolution: Experi-
ence and Insights from Industry,” 2011 37th EUROMICRO Conference
on Software Engineering and Advanced Applications, Aug. 2011, pp.
286–293.

[6] S. Krusche and L. Alperowitz, “Introduction of Continuous Delivery
in Multi-Customer Project Courses Categories and Subject Descriptors,”
ICSE Companion 14, 2014, pp. 335–343.

[7] S. Bellomo, N. Ernst, R. Nord, and R. Kazman, “Toward Design
Decisions to Enable Deployability: Empirical Study of Three Projects
Reaching for the Continuous Delivery Holy Grail,” 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works, Jun. 2014, pp. 702–707.

[8] E. Gomede and R. M. Barros, “A Non-Intrusive Process to Software
Engineering Decision Support focused on increasing the Quality of
Software Development,” The 25th International Conference on Software
Engineering and Knowledge Engineering, Boston, MA, USA, June 27-
29, 2013., Jun. 2013, pp. 95–100.

325

DOI reference number: 10.18293/SEKE2015-091

Towards Effective Developer Recommendation in

Software Crowdsourcing

Shixiong Zhao, Beijun Shen
*
, Yuting Chen, Hao Zhong

School of Electronic Information and Electrical Engineering

Shanghai Jiao Tong University

Shanghai, China

{649707869, bjshen, chenyt, zhonghao}@sjtu.edu.cn

* corresponding author

Abstract—Crowdsourcing has attracted increasing attention from

both industry and academia since it was proposed. Now a lot of

work is finished by crowdsourcing, such as logo design, website

promotion, industrial design, copywriting, software development,

translation and image annotation. Although software

crowdsourcing achieves positive results in practice, we still face a

challenge of assigning suitable developers to specific tasks. In this

paper, we propose a novel approach that recommends developers.

In particular, our approach supports: comprehensively

measuring the tasks and developers in software crowdsourcing,

and recommending developers on the basis of the developer-task

competence, task-task similarity, and soft power.

Keywords- software crowdsourcing; developer recommendation;

developer model

I. INTRODUCTION

Crowdsourcing is the act of taking a job traditionally
performed by a designated agent (usually an employee) and
outsourcing it to an undefined, generally large group of people
in the form of an open call [1]. It has attracted great attention
from both industry and academia. Now a lot of work is finished
by crowdsourcing, such as logo design, website promotion,
industrial design, copywriting, software development,
translation and image annotation. Meanwhile, when employing
crowdsourcing to accomplish software development tasks, we
face a challenge of assigning suitable developers to specific
tasks. Up to now, most development tasks are assigned in a
form of bidding or competition. As a result, much human effort
is wasted. Although many attendees would compete for the
tasks, some tasks are not well accomplished, since they are not
assigned to the most suitable developers.

To the best of our knowledge, most crowdsourcing
platforms still rely on crowdsourcers to assign tasks. As a result,
crowdsourcers have to spend much time in matching the tasks
and the developers. To make things worse, a crowdsourcer is
usually biased, since he or she may not have a thoroughly
understanding of all developers.

To address the above problem, in this paper, we propose a
novel approach that recommends suitable developers to tasks in
software crowdsourcing. In particular, our approach uses two
models to measure tasks and developers, respectively. For
given tasks and developers, our approach computes their

developer-task competences, task-task similarities, and soft
powers, and recommends the best candidate(s) to each task.

II. RELATED WORK

Most research on crowdsourcing is concentrated on several
topics, including how to apply crowdsourcing [2, 3], how to
control the quality of crowdsourcing [4, 5], how to allocate
crowdsourcing tasks.

Few researchers discuss how to recommend workers. In
particular, I. Boutsis and V. Kalogeraki [6] present REACT
that schedules tasks for the crowd under time constraints. It
collects worker profiles (e.g., real-time computational
capabilities) and dynamically assigns tasks to suitable workers.
Research [7] advocates replacing “pull” with “push” for task
allocation to achieve higher quality. They analyze the social
network of the crowd to gain better performance. E. Simpson
and S. Roberts [8] present an information-theoretic approach to
assigning workers to specific tasks in crowdsourcing using a
Bayesian method. Research [9] proposes to use auctions to map
tasks to workers. They organize auctions taking into account
price and the suitability of workers estimated based on
generated user profiles.

Meanwhile, the existing researches mainly focus on simple
tasks, e.g., image annotation, and most researchers just do
theoretic research or provide their frameworks. In addition,
most of their researches are not domain specific and not
complete. They are not able to be applied to software
crowdsourcing. We provide an approach to recommend
suitable developers to software development tasks.

III. TASK MODEL AND DEVELOPER MODEL

Our approach first abstracts software development tasks

and developers with two models. The models measure the

tasks and developers quantitatively and thus help establish

matching relations between them.

A. Task Model

We model a task as [ID, software category, software size,

ability requirement(s), enrolled deadline, task deadline, budget,

location].

Each task is associated with one or more ability

requirements, and each ability is composed of three sub-

attributes: “type” and “name” are the type and name of an

326

TABLE I. DEVELOPER MODEL

Attribute Sub-attribute Field

ID / /

Base

information

Address /

Education
background

Degree

Major

Work experience
Job

Duration

Service range / /

Ability and

development

experience

Ability

Type

Name

Level(1..5)

Development
experience

Date

Task

Earning

Evaluation

Credit and
guarantee

Credit

/

Guarantee

Task-specific

information

Task-ID

Bid price

Delivery time

ability requirement; and “level” represents the required degree

of skills. For example, [coding language, Java, 3] indicates

that the task requires a Java programmer at a level of “3”.

A task has other attributes: “software category” is the kind

of the software; “software size” is the size of the software, and

it could be an estimated value given by the crowdsourcer for

the developers to estimate a reasonable delivery time;

“enrolled deadline” is the deadline for the enrollment; and

“task deadline” is the deadline to complete the task. Each task

is also associated with “budget”, working “location”.

B. Developer Model

A developer model defines the attributes of developers. As
shown in Table I, the developer model has the key attributes of
a developer in software crowdsourcing.

“Base information” includes personnel information of a

developer: “address” determines whether a developer can be

assigned when a task has the location requirement; “education
background” and “work experience” are strong reference;

“service range” indicates what kinds of software a developer

is able to develop.

The “ability and development experience” attribute helps

crowdsourcer decide whether or not a developer is competent

for a task: “ability” is similar to the ability requirement in the

task model; “development experience” shows the history of a

developer in completing software tasks in the crowdsourcing

platform.

“Guarantee” is the guarantee provided by the developer. It
is measured by the security deposit of a developer. “Credit”
shows the status of development credits: after completing each
crowdsourcing task, the developer is evaluated by the
crowdsourcer. When calculating the credit of a developer, we
consider these factors: if two developers have the same credit
value (e.g., four stars), the one with more earnings is preferred
(reward-related); the credit changes over time, thus a credit that
is gained a long time ago has a weak effect (time-related).

The task-specific information is associated with the task

that the developer is enrolled in. It includes task-ID, bid price,

and promised delivery time.

IV. DEVELOPER RECOMMENDATION

After a task is released, the crowd can browse and enroll for
the task. We recommend the suitable developers among the
candidates to tasks. The crowdsourcer selects developers to
accomplish tasks according to recommendation list.

Employing our task model and developer model, we
calculate the developer-task competence (comd-t), the task-task
similarity (simt-t) and the soft power of developers (sftpwr),
when recommending developers. In particular, the developer-
task competence is used to measure whether a developer is
competent for a task; the task-task similarity measures whether
a developer has good similar work experience; and soft power
reflects personal inner qualities, e.g., the credit of the developer.
The three factors complement each other and are useful to
match tasks and developers comprehensively. Based on them,
we calculate recommendation index (recindex) of a developer
by (1). The larger recindex is, the higher the developer will be
in the recommendation list.

 x w (1)

where + + = 1.

Next, we will introduce how to calculate the developer-task
competence, the task-task similarity and the soft power.

A. Developer-task competence

The developer-task competence (comd-t) measures whether

a developer satisfies the requirements of a task. We calculates

this value by

 ⁄

 It is calculated from the software category competence

(comctg), the ability competence (comabi), the task deadline

competence (comdln), the budget competence (combgt), and

location competence (comloc). The requirement of task

deadline and category is compulsory, so in (2), comdln and

comctg act as multipliers. The formula of comdln, comctg, combgt,
comloc, and comabi are defined in Table II.

B. Task-task similarity

If a developer has the development experience of similar
tasks in the crowdsourcing platform, it will be an important

327

TABLE II. CALCULATION OF DEVELOPER-TASK COMPETENCE FACTORS

Factor Value Condition

comdln
1 v y ≤ k

0 otherwise

combgt
1 ≤ u

Bu ⁄ otherwise

comloc
1

the developer’s address is (in) the required

location

0 otherwise

comctg
1

 h v ’ v v h

 qu w y

0 otherwise

comabi0
 y v

calculating one of required abilities of the task

comabi
1 ⁄ ×∑

 0

𝒏

𝒊=𝟎

there are n required abilities in the task

comtyp
1

 v h h y w h h y
 h qu y

0 otherwise

comnam

1
 v h h y w h h

 h qu y

0.5

 v y h h y w h h

u h qu y

e.g., name of required ability: C, name of
developer’s ability: C

0 otherwise

comlev
1 v w ≤ v

 v w / v otherwise

reference. As a result, we take the task-task similarity into
account, and here defines a task as T = [cat, typ, nam, lev, bgt].
The i-th done task of a developer is presented with Ti = [cati,
typi, nami, levi, bgti, evli], where Cat, typ, nam, lev and bgt
represent category, ability type, ability name, ability level, and
budget, repectively; and evl is the evaluation of a developer
gotten from the crowdsourcer on this task.

We use Soft Jaccard’s Coefficient to measure the task-task
similarity. Suppose that the evaluation value is an integer from
1 to 5, and the developer has n finished tasks in total, simt-t is
calculated as follows:

 {
| |

| |

 }

For cat, if cat = cati, they are regarded as intersected.
Otherwise they are disjoint. So are typ and nam. For lev, if the
name of the i-th finished task is same with the task, and levi is
not lower than lev, they are regarded as intersected. Otherwise,
they are disjoint. For bgt, if 1/5≤bgt/bgti ≤5, they are regarded
as intersected. Otherwise, they are disjoint. When judging
whether they are intersected or not, the condition is relaxed but
not just depending on whether they are the same, so we call it
Soft Jaccard’s Coefficient.

Soft Power

Base information Credit and guarantee Recent performance

Education

background

Work

experience

Credit Number of

finished tasks

EarningsGuarantee

score Bas
weight Basw

score Edu
weight Eduw

score Wor
weight Worw

score CreGua
weight CreGuaw

score Rec
weight Recw

score Tas
weight Tasw

score Ear
weight Earw

score Cre
weight Crew

score Gua
weight Guaw

Figure 1. Composition of soft power

Although a developer has experience on a similar task,
she/he may not do the task well. Considering this issue, when
calculating the task-task similarity, our appoach introduces the
crowdsourcer’s evaluation, evli. All the similar tasks of a
developer are calculated one by one, and we select the
maximum value as simt-t.

C. Soft power

Some information of a developer are not reflected in comd-t

and simt-t, e.g., the education background, work experience (not
in software crowdsourcing), the credit, the guarantee of a
developer, and the recent performance. We call these factors
soft power. The composition of soft power is in Fig. 1. “sftpwr”
is calculated by

 w B B w u u w w ()
where Basw + CreGuaw + Recw = 1

Now we will focus on “Bas”, “CreGua” and “Rec”.

1) “Bas”
The base information includes education background and

work experience. The original “Bas0” is calculated by (5).
Suppose that BASE is the maximum value among all the
enrolled developers, we divide “Bas0” by BASE to get “Bas”.

B 0 u uw w (5)
 uw w

The education background includes some [degree, major]

tuples. “Edu” is calculated by (6). The work experience
includes some [job, duration] tuples. “Wor” is calculated by (7).
The score of degree (Degree) is 1, 2, 3 for bachelor, master,
doctor respectively, and 0 for others. The score of major
(Major) is 1 if the major is software-related, 0 otherwise, and
so is the score of Job (Job). We divide the duration into several
intervals, and the score of duration (Duration) is 1 if the

328

developer’s work duration is in [0, dura1), 2 if it is in [dura1 ,
dura2), and so on.

Edu = ∑

×

 1 ()

Wor ∑ × u

 1

2) “CreGua”
“CreGua” includes credit and guarantee. The original

“CreGua0” is calculated by (8). Suppose that CREGUA is the
maximum value among all the enrolled developers, we divide
“CreGua0” by CREGUA to get “CreGua”.

 0 w u w ()
where w w 1

“Cre” consists of two parts, good record and bad record.

The weight of bad record (Badw) is greater than weight of good
record (Goodw), because we punish those developers who have
“bad” record, since employers would not deliver tasks to
developers with bad credits. As the credit is time-related and
reward-related, we introduce two parameters, Timew and
Rewardw. Timew is calculated by (9), where T represents the
months of age of the crowdsourcing platform, and ∆t represents
the period (months) for the evaluation. This formula ensures
that the longer from now, the less effect the credit record has.
The effect won’t disappear. Rewardw is calculated using the
similar method as “Duration” but the intervals are divided by
reward. Since there can be many credit records, “Cre” of a
developer is calculated by (10).

w
 ⁄ × ()

 ∑ w× w × w w

 1

 ∑B w× w × w w 1

 1

 “Gua” presents the guarantee of a developer. It is
measured by the security deposit of a developer. “Gua” is
calcualted using the similar method as “Duration” but the
intervals are divided by security deposit.

3) “Rec”
The recent performance often reflects the activeness of a

developer. The more active a developer is, the more effort can
be put in crowdsourcing. “Rec” is calculated by combing the
number of finished tasks (“Tas”) of the developer, and earnings
he/she has made (“Ear”) in the recent 3 months. The original
“Rec0” is calculated by (11), where “Tas” and “Ear” are
calculated using the similar method as “Duration” but the
intervals are divided by number of recent finished tasks and
recent earnings, respectively. Suppose that REC is the

maximum value of all enrolled developers, we divide “Rec0” by
REC to get “Rec”.

 0 w w (11)
where w w 1

V. EVALUATION PLAN

In the future, we will evaluate our approach in the three

steps:

 Data preparation. We will fetch the most suitable data

of accomplished software development tasks and do

preprocessing.

 Parameter tuning. We will use greedy search to find

the best value of the parameters in our approach.

 Precision comparison. We will recommend developers

to tasks with our approach and compare the precision

of our approach with a general approach.

VI. CONCLUSIONS

There exists a challenge of assigning the most suitable
developers to specific tasks in software crowdsourcing. In this
paper, we proposed an approach of recommending developers
for software crowdsourcing. Firstly, our approach models the
task and the worker comprehensively. Then our approach
recommends developers for software crowdsourcing tasks
based on their developer-task competence, task-task similarities
and developer’s soft powers.

ACKNOWLEDGMENT

This research is supported by 973 Program in China (Grant
No. 2015CB352203) and National Natural Science Foundation
of China (Grant No. 61472242, 91118004).

REFERENCES

[1] J. Howe, “The rise of crowdsourcing,” Wired, pp. 1-4, June 2006.

[2] A. Brew, D. Greene, and P. Cunningham, “Using crowdsourcing and
active learning to track sentiment in online media,” in Proc. 19th
European Conf. on Artificial Intelligence. Lisbon, 2010, pp. 145–150.

[3] O. F. Zaidan and C. Callison-Burch, “Crowdsourcing translation:
Professional quality from non-professionals,” in Proc. 49th Annual
Meeting of the Association for Computational Linguistics. Portland,
2011, pp. 1220-1229.

[4] M. Allahbakhsh, B. Benatallah, A. Ignjatovic, H.R. Motahari-Nezhad, E.
Bertino, and S. Dustdar, “Quality Control in Crowdsourcing Systems:
Issues and Directions,” IEEE Internet Computing, Vol. 17, pp. 76-81,
March-April 2013.

[5] U. Hassan and E. Curry, “A Capability Requirements Approach for
Predicting Worker Performance in Crowdsourcing,” in 9th Int. Conf. on
Collaborative Computing: Networking, Applications and Worksharing.
Austin, 2013, pp. 429-437.

[6] I. Boutsis and V. Kalogeraki, “Crowdsourcing under Real-Time
Constraint,” in IEEE 27th Int. Symp. on Parallel & Distributed
Processing. Boston, 2013, pp. 753-764.

[7] D. E. Difallah, G. Demartini, and P. Cudré-Mauroux, “Pick-A-Crowd:
tell me what you like, and I’ll tell you what to do,” in WWW 2013. Rio
de Janeiro, 2013, pp. 367-374.

[8] E. Simpson and S. Roberts, “Bayesian Methods for Intelligent Task
Assignment in Crowdsourcing Systems,” in Studies in Computational
Intelligence, Springer, vol. 538, pp 1-32, Feburary 2015.

[9] B. Satzger, H. Psaier, D. Schall, and S. Dustdar, “Auction-based
crowdsourcing supporting skill management,” in Information Systems,
vol.38, pp. 547-560, June 2013.

329

Creating User Scenarios through User Interaction
Diagrams by Non-Technical Customers

Douglas Hiura Longo and Patrícia Vilain
Informatics and Statistics Department,
 Federal University of Santa Catarina,

Florianopolis, Brazil
douglashiura@inf.ufsc.br, patricia.vilain@ufsc.br

Abstract—This paper investigates the applicability of User
Interaction Diagrams (UIDs) as user scenarios for specifying
requirements of software built by non-technical customers. User
scenarios represent an alternative to representation of
Acceptance Test-Driven Development (ATDD). Two methods for
building user scenarios using UIDs were proposed: the
progressive and the regressive methods. The progressive method
for construction of scenarios provides a description from any
starting point until the expected result is reached. The regressive
method is based on the Assert-First technique, introduced in
Test-Driven Development (TDD), where the user scenario is
constructed the other way round, that is, from the expected result
to the starting point. These two methods were applied in an
experiment where the results demonstrated that the regressive
method requires significantly less effort as compared to the
progressive method. The quality criteria of the two methods were
different, where the regressive method yielded better results.

Keywords: Requirements Engineering; ATDD; Assert First;
TDD; User Scenarios.

I. INTRODUCTION
It is known that understanding user requirements is critical

to the success of a project [1]. The basic idea of Automated
Acceptance Testing - AAT is to document requirements and
desired outcomes in a format that can be automatically and
repeatedly tested [2]. AAT represents customer expectations
[1] and was adopted in agile software development holding
great promise of improving communication and collaboration
among those involved [2, 3, 4].

According to Hoffmann et al., Acceptance Test-Driven
Development - ATDD facilitates the requirements
specification, raising awareness, to those involved, of the
importance of testing as an auxiliary mechanism for quality
assurance. In theory, the customer expresses requirements as
input to the software paired with some expected result [5].
However, in practice, customers prefer to express requirements
at interaction meetings, while acceptance tests are written by
developers [2].

Alvestad investigated whether a non-technical customer
could express requirements based on domain specific
languages, but was not successful in confirming his
assumptions [6]. Domain specific languages are used by tools
for automated tests. The tools for AAT support these

requirements representations: formal, semi-formal and informal
(NL, Stories, Tables). However, such tools do not include the
end user in the requirements specification process [7].
According to Haugset and Hanssen, the application of AATs is
barely reflected in practice and it is somewhat inappropriate for
customers to express requirements in the form of automated
acceptance tests [2].

The tools or languages in general induce the sequential
creation of a requirement specification, which is where the
requirement is specified, starting from any point towards the
desired outcome. This is called the progressive method.

However, Test-Driven Development - TDD is a set of
development practices, where the code is developed from tests.
The Assert-First technique has a powerful simplifying effect
during test development [8]. This technique consists of writing
the test assertions first by following a regressive process in
order to complete the test, writing the minimum of code lines.
In this way, the regressive method consists of creating the
requirement specification from the result.

User Interaction Diagrams (UIDs) represent the interaction
between the user and the system, and can support the users’
representation of scenarios [9, 10]. The present study
investigates the possibility of a non-technical customer to
express the system requirements by using UIDs as user
scenarios. However, it also investigates the creation of
requirements specification using the progressive and regressive
methods.

To evaluate the proposal, we considered an experiment with
21 non-technical participants, and the requirements
specification for a game. The objective of the experiment is to
demonstrate the use of UIDs as an agile method for
requirements specification, and check different results between
the two methods.

This paper is organized as follows: Section II presents
details of the proposal. Section III describes the evaluation
methodology for verifying the proposal’s efficacy. The results
of the study are presented in Section IV. Section V presents
threats to validity. Finally, the conclusions are presented.

II. RESEARCH PROPOSAL
This study uses UIDs for representing software

requirements. This proposal replaces the information types

DOI reference number: 10.18293/SEKE2015-179
330

represented in the UIDs by values of the user scenarios. Fig. 2
shows an example of user interaction with a calculator and the
representation of a user scenario through a UID.

Figure 1. User scenario of a calculator for the sum function, with sample

pictures of the user’s interaction (points) with the calculator.

Fig. 1 shows the user's interaction with the calculator,
following the user scenario. In this example, the user enters the
values for the sum (3 + 1 =) and the system displays the result
(4).

Table 1 below presents the symbols for the language to
represent user scenarios through UIDs.

TABLE I. SYMBOLS FOR THE LANGUAGE OF USER SCENARIOS
REPRESENTATION THROUGH UIDS.

Symbol Use

Ellipse - represents a state of interaction

 Arrowed line - represents the transition
between interaction states and flow direction.

Rectangle – represents the user input, its
value is represented by a set of characters
contained within the ellipse.

Characters
sequence

Value - represents the system output, where a
set of characters is contained within the
ellipse.

Every interaction state (ellipse) contains the values of the
user input and system output. The flow of the interaction states
is represented by the direction of the transition. The initial state
is the first interaction state following the direction of the
arrows. The final state, in turn, is the last interaction state of the
flow. For the construction of the requirements specification as
user scenarios, the following methods are presented:

• Progressive: it indicates the expected result only at the
end of the construction flow. Initially, the interaction states are
built in order to achieve the expected result. Fig. 1 shows the
progressive flow of the construction of a requirement
specification, that is, every specification of the sum function is
constructed, and its result is shown only at the end of the flow.

• Regressive: similarly to the Assert-First technique [8],
the regressive method starts the construction of the user
scenario from the result, and adds other interaction states
specifically to reach the outcome (initial state). Fig. 2 shows
the scenario where the requirement is constructed with the
regressive method.

Figure 2. Regressive method to create the sum function scenario of a

calculator.

III. ASSESSMENT OF THE PROPOSAL
The purpose of user scenarios is the specification of

software requirements. Customers and developers to promote
communication and collaboration can use these scenarios
during development. However, it is important that such
requirements be complete, consistent and realistic [11, 12].

To assess applicability and usefulness of the proposal in
relation to completeness and consistency of requirements
represented by non-technical1 participants, we conducted an
experiment. The experiment aimed at the construction of user
scenarios of the 8-Puzzle game. We proposed to investigate the
following questions:

 RQ1: What quality factors (completeness and
correctness) of the requirements are represented in user
scenarios?

 RQ2: Are such quality factors (completeness and
correctness) associated with progressive or regressive methods?

 RQ3: Which of the proposed methods facilitates the
construction of user scenarios?

A. The 8-Puzzle Game
8-Puzzle is a game consisting of a board with 3 rows and 3

columns. The board has a number sequence from 1 to 8 and an
empty space. The goal is, starting from a random state, to order
the sequence of numbers. Fig. 3 shows the final state.

Figure 3. Final state of the 8-Puzzle game.

The operations for the configuration of the board include
moving the empty space up, left, right or down. In digital
implementations, the empty space is moved by using the
keyboard arrow keys or by clicking on a number next to the
empty space.

B. Methodology for assessment
For the assessment, we considered the construction of user

scenarios for the requirements specification of the 8-Puzzle
game with non-technical participants. The materials needed
were: a pencil or pen, an eraser, and blank paper. Fig. 4 shows
the diagram with the activities carried out during the three
evaluation stages: preparation, experiment and result analysis.

1 Non-Technical participants are not knowledgeable about UIDs, FIT,

and Automated Acceptance Testing.

331

Figure 4. Diagram of activity for assessment of user scenarios through UID.

1) Preparation: In order to answer the questions and
analyze the differences between the methods, the participants
were divided into three groups: progressive, regressive and
control (progressive/regressive). In the preparation stage, the
participants were trained for about 15 minutes, according to
each group. So, during the preparation stage of the progressive
group, explanation activities were carried out about: UIDs, the
progressive method, and the 8-Puzzle game. The regressive
group carried out explanation activities about: UIDs, the
regressive method, and the 8-Puzzle game. For the control
group, explanation activities were performed about: UIDs, the
progressive and regressive methods, and the 8-Puzzle game.
This way, the participants of the control group made their own
choice of method during the experiment. During the
explanations, the participants were allowed to use a pencil and
some paper in case they wanted some practice.

2) Experiment: In the experiment stage, each participant had
to specify the final state of the 8-Puzzle game, or victory, still
considering some user interaction for the board configuration.
The user scenarios had to be developed using paper and a
pencil or pen, at the participant's choice. Each participant had
the maximum time limit of 15 minutes for the experiment
performance. The time spent by each participant to complete
the task was collected during the experiment.

C. Analysis of question RQ1
Fig. 6 shows an expected user scenario of the 8-Puzzle

game.

Figure 5. Expected user scenario of the 8-Puzzle game.

User scenario variations such as user input to move the
pieces (numbers) on the board, quantity of interactions, and
direction of transition flows were considered adequate even
being different from the diagram in Fig. 5. Question RQ1 can
be answered by evaluating the user scenarios. The analysis
considered the evaluation of the quality factors: completeness
and correctness.

1) Completeness: It means that all user-required services
must be defined [11, 12]. Completeness can be evaluated by
assigning complete/incomplete values. It is considered to be
complete the user scenario that presents:

• The end result or state of victory; and

• At least one user input to the board configuration.

In [13], incompleteness is defined as ambiguity type. It
occurs when a statement fails to provide enough information to
have a single clear interpretation. It is considered to be
incomplete the user scenario that:

• Does not present state of victory;

• Does not present interaction of playing; or

• Is incorrect.

2) Correctness: It is the quality factor indicating whether
the participant understands and correctly applies the UID
language. Correct/incorrect values are assigned for this quality
factor. The correct value is assigned to the user scenarios
where the language symbols are properly applied in
accordance with Table I. The incorrect value is assigned to the
user scenario that:

• Contains cyclic transitions;

• Contains transitions to more than one interaction state;

• Contains transitions to random values; or

• Does not consider the flow of transitions.

D. Analysis of Question RQ2
Question RQ2 can be answered by the formula below with

the following hypothesis:

H! ∶ F!"#$"%&&'(% ! F!"#$"!!"#$

 And (1)

H! ∶ F!"#$"%&&'(% ! F!"#$"%%&'"

• F!"#$"%&&'(% is completeness and correctness of the
user scenarios progressively specified; and

332

• F!"#$"%%&'" is completeness and correctness of user
scenarios regressively specified.

The decision to accept H! or H! is made from the data
collected from the experiment. By accepting the H! hypothesis,
it can be stated that the quality factors of the expressed
requirements are indifferent, that is, these quality factors are
not associated with the method. However, by accepting the H!,
hypothesis, we affirm that the quality factors are different
between the two methods, that is, these quality factors are
associated with the method. The statistical test significance
level should be at least 5% (𝛼 = 0.05).

E. Analysis of Question QR3
The easiness or effort to construct the user scenarios are

analyzed through time data. Therefore, it is necessary to carry
out a distribution analysis of the time spent by the participants
according to the method used for comparison.

IV. RESULTS

A. Preparation Stage
The experiment was conducted with 21 participants. The

participants were prepared according to the progressive and/or
regressive methods, resulting in three groups. The progressive
group consisted of 8 participants. The regressive group was
composed of 6 participants. The control group consisted of 7
participants. The graph in Fig. 6 shows the education level of
the participants.

Figure 6. Education level of the participants.

 The participants’ ages range from 22 to 45 years. Fig. 7
shows box plots with the participants’ age variation in each
group.

Figure 7. Participants’ age variation in each group.

B. Experiment results
The user scenarios delivered by the participants were

initially classified according to the progressive or regressive
methods. Ten participants used the progressive method and
eleven participants used the regressive method. The choices of

the control group were 29% progressive method and 71%
regressive method. Table II presents the correlation matrix
between methods used during preparation and methods used by
the participants during the experiment.

TABLE II. CORRELATION MATRIX BETWEEN PREPARATION AND
EXPERIMENT.

Correlation Matrix Experiment
Progressive Regressive

Preparation
Progressive 8 0
Regressive 0 6
Control 2 5

The quality factors (completeness and correctness) of user
scenarios are evaluated according to Section IV (Analysis of
question RQ1).

1) Complete and Correct: The assessment considered
fourteen of the user scenarios as complete and correct. As an
example, Fig. 8 shows a user scenario that applied the
progressive method, which was assessed as correct and
complete.

Figure 8. Complete and correct user scenario using the progressive method.

Fig. 9 and 10 show two scenarios that applied the regressive
method and were assessed as correct and complete.

Figure 9. Complete and correct user scenario using the regressive method,

applying movement to the number adjacent to the empty space.

Figure 10. Complete and correct user scenario using the regressive method,
applying movement to the empty space.

333

2) Incomplete and Correct: The assessment considered five
of the user scenarios as incomplete and correct.

Figure 11. Incomplete and correct user scenario using the regressive method,

not specifying interaction of playing.

3) Incorrect and Incomplete: In only two cases, the
participants used UID incorrectly. In such cases, it is assumed
that the requirement was incomplete due to absence of syntax.

Figure 12. Incomplete and incorrect user scenario using the progressive

method, an unintelligible user scenario.

In an overall assessment result, the participants delivered
67% complete user scenarios where 90% of them used UIDs
correctly.

The graph in Fig. 13 displays the completeness and
correctness distribution divided according to the scenario
method of construction.

Figure 13. Graph showing the probability of correctness and completeness,

divided according to construction method.

Axis "x" on the graph in Fig. 13 represents the distribution
of correctness and axis "y" represents completeness. The
positive area of axes "x" and "y" represents the best quality
factor. It can be seen that the user scenarios specified by the
progressive method have a 40% probability of being complete,
and 80% of being correct. And the regressive method has 91%
probability of being complete, and 100% of being correct
(RQ1).

To demonstrate the difference of quality factors between
the methods, we used Fisher's statistical test [14].

Figure 14. Fisher's statistical test applied with the statistical tool R.

According to Fisher’s statistical test, p-value is 0.04928.
However, the confidence level of the test must be (𝛼 = 0.05).
Thus, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 then the alternative hypothesis (H!) is
considered, allowing to conclude that the quality factors are
different between the methods (RQ2).

The box plot in Fig. 15 shows the distribution of the time
spent divided according to the construction method.

Figure 15. Distribution of time spent, according to construction method.

The time spent by the progressive group is between 3 and
15 minutes, and the regressive group is between 1 and 6
minutes. The regressive method has an outlier. The outlier (6
minutes), out of the distribution of time spent by the group,
indicates that a participant may have found it more difficult to
specify and develop the user scenario. The average time used
by the progressive and regressive groups is 9 minutes and 3
minutes, respectively. Thus, according to the time distribution
analysis, the regressive method involves less effort (RQ3).

V. THREATS TO VALIDITY
While the 8-puzzle is simple and effective for experimental

purposes, abstracting from this game scenario to the use of UID
in real-world software project requirements is not easy. The
case study research is incomplete without a discussion of
concerns that may threaten results validity. Internal validity
refers to the causal inferences made based on experimental data
[15]. Our goal is simply to determine whether and how
participants create user scenarios through UIDs.

The case study has two important considerations:
knowledge of the case study; creation process of user scenarios.

334

The knowledge of the case study by participants refers to the
domain on the 8-puzzle, considering the logic and rules. This
knowledge is common to the participants. The user scenarios
creation process is different from the process of reproduction
(copy) of user scenarios. An example of reproduction is to copy
the calculator user scenario (Fig. 1) and simply change the user
setting values. Our case study avoids the process of
reproduction of the participants, considering only the creation
of user scenarios. We also observed that the problem domain
allowed the evaluation of the effort to create user scenarios
without interruption for fatigue.

Construct validity refers to the appropriate use of evaluation
metrics and measures [15]. We specifically avoid the use of
absolute measures of completeness and correctness conforms
the term as expressed in accepted IEEE standards [16]. To
calculate other statistical measures, we used accepted statistics
for agreement (Fisher's Exact Test) and scrupulously followed
recommended practices in applying them.

External validity refers to the ability to generalize the
findings to other domains [15]. The external validity of
research contains two threats: the problem domain studied and
the population of participants. The problem domain (8-puzzle)
contains user interactions with the system. These user
interactions are similar, such as: a calculator; authentication
systems; or in areas of other studies that consider the
applicability of UIDs in software engineering, as in [9] [10]
[17].

Unfortunately, the study used a small population of
participants, rather than a large population of participants.
However, the population of participants was composed of
different educational levels, and related areas of business,
engineering and science.

Reliability refers to the ability of other researchers to
replicate methodology [13]. We detail the proposal and the
evaluation technique and the result, and we consider important
other researchers to reproduce our study.

VI. CONCLUSIONS
The challenge of eliciting requirements from customers is

worthy of investigation and so is any effort to simplify or assist
in the process. The paper does both and some interesting results
are shared. The applicability of user scenarios in the present
study is related to agile software development, where
requirements are customer expectations and should as well be
used as tests for the application code. UIDs were used to allow
non-technical customers to represent user scenarios. In this
context, UIDs were quite suitable for creating user scenarios to
specify software requirements.

As for the assessment of this proposal, an experiment was
conducted with 21 non-technical participants to specify the
requirements of a game. With statistical analysis of the
experiment results, it was observed that the progressive and
regressive specification methods are different. The regressive
method resulted in 91% of complete requirements while the
progressive method resulted in 40% of complete requirements.
The participants delivered 67% complete user scenarios where
90% of them used UIDs correctly. However, in our study case,
the novelty of the proposed regressive method based on the

TDD assert-first technique is the reduction of effort, and
improvement in the assessed quality factors of the
requirements.

In spite of the fact that this study has considered only UIDs
for representing user scenarios, a tool for automated acceptance
tests is being built, with support for direct execution of user
scenarios.

REFERENCES
[1] R. Miller and C. T. Collins, “Acceptance testing,” Proc.

XPUniverse. 2001.
[2] B. Haugset and G. K. Hanssen, “Automated acceptance testing:

A literature review and an industrial case study,” Agile, 2008.
AGILE'08. Conference, IEEE. 2008, pp. 27-38.

[3] T. Dybå and T. Dingsøyr, “Empirical studies of agile software
development: A systematic review,” Information and software
technology. Elsevier, vol. 50, 2008, pp. 833-859.

[4] G. K. Hanssen and B. Haugset, “Automated acceptance testing
using fit,” System Sciences, HICSS'09, 42nd Hawaii
International Conference on. IEEE, 2009, pp. 1-8.

[5] L. F. S. Hoffmann, L. E. G. D. Vasconcelos, E. Lamas, A. M. D.
Cunha and L. A. V, Dias, “Applying Acceptance Test Driven
Development to a Problem Based Learning Academic Real-
Time System,” Information Technology: New Generations
(ITNG), IEEE, 11th International Conference on. 2014, pp. 3-8.

[6] K. Alvestad, “Domain Specific Languages for Executables
Specifications,” Institutt for datateknikk og
informasjonsvitenskap. p. 63, 2007.

[7] M. Kamalrudin, S. Sidek, M. N. Aiza, and M. Robinson,
“Automated Acceptance Testing Tools Evaluation in Agile
Software Development,” Sci. Int. 2013, pp. 1053-1058.

[8] K. Beck, Test Driven Development: By Example. Addison-
Wesley Professional, 2003.

[9] N. Güell, D. Schwabe and P. Vilain, “Modeling interactions and
navigation in web applications,” Conceptual Modeling for E-
Business and the Web. Springer, 2000, pp. 115-127.

[10] P.Valderas, V. Pelechano, “A survey of requirements
specification in model-driven development of web applications,”
ACM Transactions on the Web (TWEB). ACM, Vol. 5, p.10,
2011.

[11] I. Sommerville, Software Enginnering. 9th ed, p. 773. Addison-
Wesley, 2011.

[12] A. D. Lucia and A. Qusef, “Requirements engineering in agile
software development,” Journal of Emerging Technologies in
Web Intelligence. vol. 2, 2010, pp. 212-220.

[13] A. K. Massey, R. L. Rutledge, A. I. Anton, P. P. Swire,
“Identifying and classifying ambiguity for regulatory
requirements, ” Requirements Engineering Conference (RE),
2014 IEEE 22nd International, IEEE, 2014, pp. 83-92,

[14] E. L. Lehmann, and J. P. Romano, “Testing statistical
hypotheses”. Springer, 2006.

[15] R. K. Yin, Case Study Research: Design and Methods, 3rd ed.,
ser. Applied Social Research Methods Series, L. Bickman and
D. J. Rog, Eds. Sage Publications, 2003, vol. 5.

[16] IEEE Recommended Practice for Software Requirements
Specifications," IEEE Std 830-1998 , pp.1-40, 1998.

[17] N. V. Zeferino and P. Vilain, “A model-driven approach for
generating interfaces from user interaction diagrams,”
Proceedings of the 16th International Conference on Information
Integration and Web-based Applications & Services. ACM,
2014, pp.474-478.

335

How Stakeholders’ Commitment May Affect the
Success of Requirements Elicitation

Corentin Burnay∗†‡, Ivan Jureta∗†‡ and Stéphane Faulkner†‡
∗Fonds de la Recherche Scientifique – FNRS, Brussels

†Department of Business Administration, University of Namur
‡PReCISE Research Center, University of Namur

Abstract—Requirements elicitation consists in collecting infor-
mation about the requirements and the environment of a system-
to-be. It usually involves business analysts who are eliciting
information, and stakeholders who are providing information.
This paper investigates how the commitment of stakeholders to
a RE project influences the results of elicitation. We suggest a
way to measure the commitment of stakeholders during RE, and
propose the so-called “commitment matrix”, which shows what
analysts can expect from stakeholders who are more, as opposed
to those who are less committed. The matrix builds on a survey of
87 stakeholders. Our results suggest that commitment somehow
affects the information provided by stakeholders, and that it
is therefore a relevant criterion to account for when selecting
stakeholders to be involved in elicitation.

Keywords—Requirements Elicitation, Commitment, Involvement

I. INTRODUCTION

1) Context: Requirements Engineering (RE) focuses on the
elicitation, representation, and analysis of requirements and
environment of a system-to-be, in order to produce its speci-
fication. The specification should be such that, if the system-
to-be satisfies the specification, then it will also satisfy its re-
quirements within its environment. RE involves various tasks,
such as the elicitation of requirements, their representation, the
analysis of their consistency, their validation and negotiation
with the system stakeholders, and so on. We focus in this
paper on the elicitation aspect; that is, on the acquisition of
information about the expectations of stakeholders toward the
system-to-be, and about the environment in which that system
will run. We will say that this information is represented
in elicitation documentation, such as interview transcripts or
recordings, notes from field observation, questionnaires and
similar. There are at least three recurring challenges that should
be considered when preparing the elicitation documentation:

• Documentation Quality: information must be easily un-
derstandable, and should be sufficiently stable so that
analysts can actually rely on the information [1], [2];

• Documentation Quantity: information must cover the rel-
evant requirements of the stakeholders, and should not
overlook important aspect of the environment, so as to
minimize requirements incompleteness [1], [2], [3];

• Documentation Efficiency: information must be obtained
at reasonable cost and resource use, i.e., it is important
to achieve quality and quantity, but not at any cost [4].

In the rest of this paper, we refer to these three Require-
ments Elicitation Challenges as RECs. How successfully one
deals with REC is influenced, among other things, by the
choice of some elicitation techniques to apply [5] and the
selection of stakeholders to apply them with [6], [7].

2) Problem and Research Question: Identifying stakehold-
ers is hardly a new issue in RE [8]; most of the time, a person
is considered as a stakeholder whenever she has a stake in the
system [9]. In RE, it has been suggested that a stakeholder is
any person or organization who influences a system’s require-
ments or who is impacted by that system [10]. Such definition
likely leads to a large set of stakeholders, which can hardly be
entirely solicited. The question of selecting stakeholders to be
involved from the pool of available stakeholders is, to the best
of our knowledge, a topic that has received smaller attention
from RE community. More precisely, we believe that one
possible way of selecting some stakeholders is to account for
their respective level of commitment to the RE project, i.e., how
the stakeholders are intellectually or emotionally bounded to
the RE project. For instance, involving two stakeholders with
different commitment levels during elicitation could result in
elicitation documents that differ in terms of quality, quantity or
efficiency. In fact, the committed stakeholder may be cautious
and mention any piece of information she has, so that elicited
quantity increases. On the other hand, the same stakeholder
may be too cautious and share irrelevant information, thereby
decreasing the quality of the information. In this paper, we
therefore investigate the question of what changes whenever a
stakeholder is committed or not to a RE project. We do so for
the three main RECs, i.e., does commitment influence quality,
quantity and/or efficiency of the elicitation documentation.
Ultimately, we believe such contribution could help business
analysts to select more accurately stakeholders so as to improve
the chances of success for the system-to-be.

3) Contributions: Our contribution in this paper is twofold.
Firstly, we discuss and clarify the distinction between the
concept of involvement and commitment in elicitation, and
we describe reasons why commitment may be an important
criterion to account for when selecting stakeholders. Secondly,
we survey 87 stakeholders in order to better understand how
stakeholders’ commitment to a RE project may influence the
quality, quantity and efficiency of the elicitation documenta-
tion. Based on these results, we propose a commitment matrix,
showing the relative advantage of involving stakeholders with
various commitment levels. The matrix is shown in Figure
1 and reads as follows; if a business analyst needs to collect
information that is, for example, clear, then she can involve any(DOI reference number: 10.18293/SEKE2015-105)

336

St
ro

ng

M
ed

iu
m

Li

gh
t

Quality Quantity Efficiency
Feasible: stakeholders share requests about the
future system that they believe are relevant, legal,
ethical, and not too extravagent given available
resources;
Certain: stakeholders only share information
about the system that they know for sure are true.

Granularity: stakeholders speak about details
related to the system or the way they expect the
latter to work;
Rules: stakeholders speak about laws, norms,
standards, their habits, their culture, or any
other constraint that shaped their behaviour.

Scope: stakeholders discuss proactively about
topics, even though these topics have not been
suggested by the business analysts.

Requirements: stakeholders discuss proactively
about their requirements from the future system,
even if not asked by the business analysts;
Domain: stakeholders discuss proactively about
the context of the system-to-be.

Feedback: stakeholders provide feedback about
the way the project is going on, and what they
believe is good or bad;
Challenge: stakeholders never hesitate to
challenge or criticize a decision being made by
the business analysts.

Localization: stakeholders speak when and
where the system will be used;
Activity: stakeholders speak about the
intentions of the business;
Connection: stakeholders speak about
relationships or links between two ore more
agents of the business.

Clear: stakeholders requests are easy to
understand;
Priority: stakeholders share requests with a clearly
defined order of priority.
Concise: stakeholders share requests that are not
too long, and do not take to much time to
communicate them.
Mandatory: stakeholders distinguish between
optional and mandatory requests

Requirements Elicitation Challenges (RECs)

Le
ve

l o
f S

ta
ke

ho
ld

er
’s

C
om

m
itm

en
t

Item: stakeholders speak about people,
objects, concepts or other systems related with
the system-to-be.

Fig. 1: The Commitment Matrix

type of stakeholder, even those who are slightly commitment to
the project, i.e., commitment is not important to account for
when looking for clear information. However, if the analyst
needs information that is certain, then she might have better
chances to select strongly committed stakeholders. It is worthy
to note that the survey is exploratory; our goal is to discover
the impact of commitment on elicitation, and we have no a-
priori hypotheses to test in the study. Further validation of the
matrix is therefore required before going on the formulation
of actual recommendations for the selection of stakeholders
during elicitation, based on commitment profiles.

4) Structure of the paper: The paper explains with more
details how we obtained the commitment matrix illustrated
in Figure 1, and is structured as follows. In Section 2, we
review related work and distinguish between the concepts
of commitment and involvement. We also provide a more
accurate definition of commitment, and define the commitment
hierarchy. In Section 3, we describe our survey design. We
present our results in Section 4, discuss them in Section 5, and
finally provide a conclusion to the present work in Section 6.

II. RELATED WORKS AND DEFINITIONS

Involving stakeholders as a way to improve the chances of
development success is hardly new in RE and software engi-
neering [11], [12]. It is often acknowledged that involvement
is a good way to get faster to information about the domain,
and to collect more accurately information about requirements
[13], [7]. It is therefore frequently recommended as a best
practice during elicitation [10]. Using a case study, [14] shows
the different ways in which stakeholders (and more precisely
customers) may be involved, and confirms the positive influ-
ence of involvement on the acquisition of information about
the requirements. In [15], it is suggested that user involvement
can be improved using a model-driven requirements approach.
A systematic review of empirical studies about stakeholders
involvement is proposed in [7], which confirms the topic has
already been extensively discussed and tested in RE. Previous
works seem to agree on a definition of involvement as follows:

The act for a stakeholder to communicate directly
with the analysts, to share systematic feedback and
to participate actively in the different stages of the
development life-cycle [16].

Involvement requires that stakeholders are correctly iden-
tified and selected. This process is another important issue
during elicitation [10]. In [17], authors argue that the selection
of stakeholders somehow depends on their profile; depending
of the type of information the analysts look for, stakeholders
with different responsibilities, skills or knowledge will be
targeted. In [18], the selection of stakeholders is discussed in
the context of inter-organizational environments. Among other
things, the author describes a matrix to classify stakeholders
based on the interest they have in the system, and on the
influence they might have on this project. In [19], a systematic
review of stakeholders selection techniques is proposed. As
already discussed, previous stakeholders selection techniques
may lead to the identification of hundreds of stakeholders, and
it is hardly feasible to involve all of them during elicitation.
We suggest that commitment can be used as a criterion for
involving only a subset of the pool of available stakeholders.

The concept of commitment has been the center of rela-
tively little attention in RE. The distinction between commit-
ment and involvement is sometimes made in RE literature [7],
and stakeholders’ commitment is sometimes acknowledged as
a factor affecting the success of RE activities; in [20] for
example, it is clearly stated that the geographical dispersion of
teams likely decreases commitment of the stakeholders, which
may be harmful to the RE project success. The concept is
however scarcely studied as a main effect influencing quality,
quantity or efficiency of elicitation documentation. To the
best of our knowledge, no empirical research has gone on
commitment during elicitation.

Given the relatively small attention that has been paid to
commitment in RE, we clarify the concept of stakeholders
commitment based on more mature definitions from psychol-
ogy and management sciences. We use the influential definition
of organizational commitment suggested in [21] as a baseline
for our definition. We use that definition because it provides a
set of criteria for commitment which are easily transferable to
RE projects. Starting from Mowday’s definition of organiza-
tional commitment, we define stakeholders commitment to a
RE project as follows: the relative strength of a stakeholders
identification with and involvement in an RE project. As in
[21], it can be characterized by at least three factors:

• Acceptance - A strong belief in and acceptance of the RE

337

TABLE I: Possible Commitment Profiles toward a RE Project

Profile Description
Light Stakeholders who agree with the content, purpose and values of the

project, but unwilling to put much effort in the latter (Acceptance)
Medium Stakeholders who agree with the content of the project, its purpose

and its values, and who are willing to help under some time and/or
resource constraints (Acceptance and Effort)

Strong Stakeholders who agree with the content of the project, its purpose and
its values, and who are willing to help in the project with no limitations
on the time or resources (Acceptance, Effort and Membership)

project’s goals and values;
• Effort - A willingness to exert considerable effort on

behalf of the RE project;
• Membership - A strong desire to maintain membership in

the RE project.

We see these three criteria as necessary, to some extent, in
order to ensure a stakeholder is committed to a RE project.
In case a stakeholder respects none of these criteria, she can
be assumed to be uncommitted. If she respects one or more
of theses criteria, the stakeholder is assumed to be somehow
committed to the RE project. It is interesting to note that these
three criteria build a hierarchy of commitment. For example,
if there is Effort, then there is necessarily Acceptance, but
not systematically Membership, i.e., there is a generalisation
relationship between these different criteria. The commitment
criteria can therefore be used to build a hierarchy of stakehold-
ers’ commitment. In other words, it is possible to find, in the
pool of available stakeholders, stakeholders who have different
levels of commitment. We summarize these different possible
commitment profiles in Table I.

III. EXPLORATORY STUDY - EMPIRICAL DESIGN

Our objective is to investigate how commitment affects the
significance of RECs, i.e., we want to show that commitment
influences the quality, quantity and efficiency of the elicitation
documentation. To explore this aspect, we use a survey. Based
on the results of this survey, we have been able to draw
the commitment matrix, as presented in our introduction. The
survey we used was composed of three main sections.

A. Procedure

1) Assignment and Context: The first section was intended
to introduce the subject to the context of the survey and the
assignments. Subjects were told the survey was intended to
understand how the implication of stakeholders may help in
the design of a new information system. No more details were
given about the goal of the study. Subjects were put into
situation with the following paragraph:

We develop a new website for internal use in your
company. We need to collect information about your
expectations toward that website. Our goal is to
understand what you expect from such website, and
what you know about the future environment of that
software.

The system was then described with more details. There
were two different descriptions of the website, only one of
which being submitted randomly to the subject: each time a

subject opened the survey, a random number was computed
that was used to select one scenario or the other, so that
no subject faced the two descriptions. The objective was to
provide stimuli in order to ensure the subject was clearly
commitment or not toward the RE project that had been
presented. Although the situation was purely hypothetical, we
invited the subjects to recall the last project in which they
had been involved, and use it as a global context to answer
our survey. Ultimately, the decision to be committed or not
was left to the stakeholder, i.e., we did not force subjects to
be committed or not. The two possible descriptions were as
follows:

• The website is a positive move: “Imagine that you have
been waiting for the website for ages, that it will make
your job much easier, will be fun and easy to use and
will ease collaboration between colleagues”;

• The website is a negative change: “Imagine that you
are forced to used the new website, that it will change
your routines and make interactions with colleagues more
difficult, and that it need to be trained to use it”.

2) Group Assignation: The second section was intended
to measure the actual commitment of the stakeholder toward
the RE project. Once subjects had read the description of the
RE project that had been assigned to them, we measured how
committed they were toward the latter, i.e., subjects were not
forced into a group and were free to be committed or not to
the RE project. We classified subjects in three different groups.
These groups correspond to the commitment profiles defined in
Table 1, namely the Light commitment group (L), the Medium
commitment group (M) and the Strong commitment group
(H). To allocate a subject to one of these groups, we used
the three criteria of commitment presented in Section 2. For
each criterion, subjects were given a binary scale equivalent
to a “Yes/No” answer. The questions were as follows:

• Acceptance: Do you agree with the purpose of the project?
• Effort: Do you agree to spend time on the project?
• Membership: Do you want to participate on the long term

to this project?

Note again that the design enables subjects to face a
negative change and still be committed to the project, i.e.,
although we expect a positive change to lead to stronger
commitment, it may happen that a stakeholder is commitment
to a RE project implying a negative change, or vice-versa.

3) Collecting Survey Data: The third section was intended
to collect data about what information stakeholders would
share during the elicitation, i.e., our goal here was to actually
measure RECs. The three main hypotheses we wanted to test
- namely, that commitment influences quantity, quality and
efficiency of the documentation - were however too coarse
to be validated as such. As a consequence, we divided each
REC in a series of more specific questions, easier to measure
and hence to explore. We call these sub-questions variables
in the rest of this paper. Each variable of the survey was
measured using a five level Likert scale of agreement. Subjects
were asked how they were feeling about a given sentence, and
had to select one answer among Strongly Disagree, Disagree,
Neither Agree nor Disagree, Agree or Strongly Agree. The set
of variables that we used in our survey is reported in Table II.

338

The quality of documentation REC was studied using
some of the quality criteria defined in the quality requirement
framework suggested in [22]. Although the sentences shared by
stakeholders during elicitation were not proper requirements,
we consider the previous criteria can still be considered as
ways to evaluate quality of information. The quantity of
documentation REC was studied using some dimensions of
context defined in [23]. Our objective here was simply to
provide examples of topics that might be discussed during
interviews, and see how subjects were behaving toward the
latter. What we wanted to show is that, depending on their
commitment to the RE project, stakeholders tend to discuss
different topics to different extents. We do not claim such list
is a way to ensure completeness of the elicitation; it simply
comes as a basis to compare the groups. The efficiency of
documentation REC is, to the best of our knowledge, a less
common subject in RE, and we did not find any existing
list of efficiency variables for RE. We therefore proposed
some variables based on our experience. Given the exploratory
nature of this study, we do not expect this decision to have a
significant impact on our results.

B. Subjects

The subjects we targeted to answer previous survey are
frequent users of information systems. Users represent an
important proportion of the stakeholders’ population, and are
actors of the business whose commitment can significantly
vary across a same RE project. Users therefore represents
an interesting population for the present study. To make sure
subjects understand the problem of sharing requirements about
a system-to-be, we set three requirements on the demographic
of our population: it was mandatory (i) to have at least a one-
year working experience in a company, (ii) to be more than
20 years old and (iii) to be frequent user of an information
system for professional use. We used Amazon Mechanical

TABLE II: REC Variables in our Survey

Quality It is important to me to...
Clear ...explain my expectations with clear and precise words
Prioritized ...tell you which of my expectations are more/less important
Concise ...explain my expectations concisely and quickly
Feasible ...make sure what I say is relevant, legal, ethical, not extravagant
Certain ...share information I am certain of, avoid things I am not sure of
Mandatory ...make sure, during the interview, that you have understood the most

important expectations I have from the system
Quantity It is important to me to...
Items ...who will use the software, devices on which the software will run,

documents which need to be used and produced by the software
Localization ...how frequently the software will be used and the location where

the software will be used
Rules ...rules which apply to the software in my company, and laws and

norms that the software should comply with
Connections ...the relationships between the people in my company, in order to

understand my expectations from the software
Activities ...why my company needs the software, what the purpose of that

software is, which problems it should help solve
Granularities ...the programming language in which the software should be made,

the specifics of the databases it will manage, the components of the
software, the metrics used to evaluate the quality of that software

Efficiency It is important to me to...
Requirement ...share pro-actively information about what I expect
Domain ...share pro-actively the information I have about the environment in

which the software will operate
Feedback ...give feedback about the way the project is going on
Challenge ...ask questions about choices made by the designers, or challenges

decisions I do not agree with
Scope ...discuss topics other than those suggested by the business analysts

Turk (simply MTurk hereafter) to collect data for our study.
Mturk enables to access a large panel of subjects, who are
sufficiently diverse to be representative of actual stakeholders’
population. MTurk is based on a reward system: participants
have to select some tasks that they accept to complete in
exchange for a certain amount of money, determined a priori
by the experimenter. We discuss the validity issues related to
this approach in next section. We collected the answers of 87
subjects, all living in USA at the moment of the study: 49%
of them were women, 90% were between 26 and 54 years old,
and 85% had at least under-graduated. The most represented
business fields were services to people (16%), retail trade
(14%) and information technologies (11.5%).

C. Methodological Notes

A pre-study was performed; we submitted our survey to
a dozen of stakeholders, and asked them to provide feedback
about the overall readability, fluency and clarity of the survey.
Based on those feedbacks, we significantly improved the sur-
vey. Answers collected during this preliminary data collection
have not been included in our final data-set. The design we
used in this research is a survey. As any empirical design, it
may be subject to some internal and external threats. Threats to
internal validity include the selection bias, the experimental
arrangement and the confounding bias. To deal with them,
we left group assignation as a responsibility of the subjects
(based on commitment criteria), we randomized the position
of questions within our survey, so that the combination of
questions was always different for different subjects, and we
paid attention to use valid scales to measure our variables.
The main threat to external validity is the use of MTurk (see
next section); we had small control on the people answering
the survey, and people may not be have been sufficiently
involved in answering correctly the survey. To reduce this risk,
we only collected answers from Master MTurk profiles, i.e.,
elite groups of MTurkers who have demonstrated accuracy on
specific types of HITs (i.e. survey) on the Mechanical Turk
marketplace. We also made use of “attention check questions”.
These are questions where subjects are asked to remember
some simple words and to encode the latter at the end of the
survey; they enable to test attention of subjects and detect
spammers. Subjects who did not answer correctly to those
questions were excluded from our results.

IV. ANALYSIS OF RESULTS

This section discusses the results that we obtained using our
survey 1. We perform comparison between several groups and
want to see if there are significant differences between these
groups. ANOVA tests can be used to achieve such conclusion.
Given that our data are ordinal, we resort to the non-parametric
equivalent of the ANOVA for multiple groups, namely the
Kruskal-Wallis test. The null hypothesis being tested is then
that none of the groups being tested statistically dominate any
other one, i.e, if we can reject this hypothesis, we can conclude
that there are statistical differences between at least two of the
three commitment profiles. To build the commitment matrix,
we put variables for which the null hypothesis cannot be
rejected at the bottom of the matrix; these are the variables for
which we have no indications that commitment influences their

1Data are accessible at http://perso.unamur.be/∼cburnay/Commitment/

339

 http://perso.unamur.be/~cburnay/Commitment/

value, so that they can be elicited from any type of commitment
profile. Then, we look at the variables for which we can reject
the null hypothesis. For these variables, we have indications
that commitment influences their value, and we can then report
them in the relevant layer of our matrix. Since the tests we run
do not indicate the direction of the influence, we also resort
to graphical representations of the survey data to complement
our analysis. An important concern when measuring RECs -
Quantity, Quality and Efficiency of the documentation - with
several variables is the internal validity of these variables; for
example, do the Clear, Concise, Certain, ... variables reliably
measure the same latent Quality variable. The Cronbach’s
alpha is one common measure of such internal consistency.
It is typically used in surveys where several Likert questions
are used to build one main scale - such as in our survey
- and the reliability of that scale has to be measured. It is
common to interpret the Cronbach’s Alpha with the following
limits: a value from 0 to .50 is usually small and suggests
low internal validity of the scale, a value between .50 and .70
is low but acceptable, while values above .70 are high and
suggest that the scale has high internal validity. We computed
an alpha of 0.7139 for the Quality scale, an alpha of 0.7322 for
the Quantity scale, and an alpha of 0.8585 for the Efficiency
scale. We therefore conclude our scales provide reliable ways
to observe RECs.

1) Quality Variables: Results for the Quality REC are
presented in top area of Table III. The null hypothesis can be
rejected if the p-value is smaller than some significance levels,
which in this study are: 1% = ***, 5% =** and 10% =*. We
observe that answers from the three commitment groups only
significantly differ for the Feasible and Certain variables. The
tests do not enable to conclude more about the other variables
that we used to measure quality. Columns a and b in Table IV
show the distribution of answers across the groups (L=Low,
M=Medium and H=High profile), for these two significant
variables. We observe that a larger part of the strong and
medium commitment profiles strongly agrees with the fact
that they would pay attention to share feasible and certain
information. While the difference is smaller on the agree
answer, we also observe that the light commitment profile
tends to disagree more frequently than the two other groups
for such statements. This brings us to the conclusion that, in
order to increase the chances of collecting Feasible and Certain
information, business analysts should involve stakeholders with
a medium commitment profile or higher.

2) Quantity Variables: Results for the Quantity REC are
presented in the middle area of Table III. We observe that the
three commitment groups significantly differ for the Items,
Rules and Granularities variables. We cannot conclude any-
thing about the other quality variables. Columns c, d and e
in Table IV show the distribution of answers for the three
significant variables. We observe no clear differences between
the medium and strong commitment profiles, for the Items
variable. This suggests that business analysts can involve any
of these two profiles to reduce the risk of omissions about
objects and agents who (will) interact with the system. On the
contrary, we observe that strong commitment profile strongly
agrees more frequently than the two other profiles when con-
sidering rules and granularities. Besides, the light and medium
profiles answered more frequently that they (strongly) disagree
with sharing such information. This brings us to the conclusion

TABLE III: Kruskall-Wallis Tests on the Survey Variables

Quality Variables (Freedom degree = 2) X-Squared P-Value Significance
Clear 1.6192 0.445 -
Priority 2.2625 0.322 -
Concise 1.9774 0.372 -
Feasible 7.5268 0.023 **
Certain 5.9537 0.051 *
Mandatory 0.4599 0.7946 -
Items 4.6929 0.096 *
Localization 3.9085 0.142 -
Rules 4.8234 0.089 *
Connections 0.0413 0.9796 -
Granularities 7.6043 0.022 **
Activities 4.3940 0.111 -
Requirements 13.4056 0.001 ***
Domain 10.6544 0.004 ***
Feedback 3.1640 0.205 -
Challenge 2.7031 0.2588 -
Scope 9.6774 0.008 ***

that analysts should involve strongly committed stakeholders if
they want to reduce the risk of missing information about the
constraints applying on the system or about the details related
to how the system will operate.

3) Efficiency Variables: Results for the Efficiency REC
are presented in the bottom area of Table III. The three
commitment groups significantly differ for the Requirements,
Domain and Scope variables. We cannot conclude more about
the other efficiency variables. Columns f, g and h in Table IV
show the distribution of answers across the groups, for these
three significant variables. Although differences are small, we
observe that the strong commitment profile seems to be more
likely to (strongly) agree when being asked if they would
be pro-active in sharing their requirements. This brings us
to the recommendation that business analysts should involve
strongly committed stakeholders if they wish to collect more
efficiently information about requirements. Both medium and
strong commitment groups (strongly) agree that they would
share spontaneously information about the domain or the scope
of the project, while the light commitment group (strongly)
disagrees more frequently with these same variables. This
suggests business analysts should involve stakeholders that
are moderately committed (or higher) to the project, so as to
increase the chances of getting efficiently information about
the environment of the system, or details about its scope.

V. DISCUSSION

Our results clearly show that commitment is one factor that
seems to have a potentially significant impact on the overall
success of the elicitation process. However, it is interesting to
note that the effect of commitment is only partial; it seems that
commitment does not influence all the aspects of the elicitation
challenges we identified, but only some specific concerns. The
question is then to understand why a variable is impacted or not
by commitment. Under such perspective, our study becomes
a tool for identifying more specific research questions to be
investigated in some future research. A possible interesting
direction is to study the relation between the complexity of an
elicitation task and the overall commitment level. For example,
simple tasks like sharing clear information, speaking about
connections or challenging people seem less likely to fail even
when commitment profile is low. However, when the tasks
require more effort - that is, when tasks are more complex -,

340

TABLE IV: Distribution of Quality, Quantity and Efficiency Answers by Commitment Profiles

Certain (a) Feasible (b) Item (c) Granularity (d) Rules (e) Requirements (f) Domain (g) Scope (h)
L M H L M H L M H L M H L M H L M H L M H L M H

Str. Disagree 0 0 0 0 0 0 0 0 0 5 6 2 5 0 2 0 0 0 0 0 0 0 0 0
Disagree 5 0 2 10 6 2 14 18 2 33 41 22 19 29 10 29 0 2 29 6 0 38 24 4
Neutral 19 6 4 29 0 10 19 6 8 24 12 8 19 0 12 33 18 4 19 6 8 24 0 20

Disagree 57 65 51 46 65 51 52 47 61 29 41 45 52 65 53 19 65 67 38 59 63 29 65 53
Str. Agree 19 29 43 14 29 37 14 29 29 10 0 22 5 6 22 19 18 27 14 29 29 10 12 22

commitment appears to be a more important variable. Another
interesting direction is to study the link between commitment
and the recency of a task. In fact, it seems that more recur-
ring cognitive tasks such as sharing prioritized information,
speaking about localizations or giving feedback are less likely
to fail even if the commitment is low. In practice, these tasks
are likely to occur more frequently and are likely to be more
commonsense to stakeholders, so that even low commitment
profiles can deal with them correctly.Overall, we believe that
investigating such questions might help in the formulation
of additional guidelines for the selection and involvement of
stakeholders.

VI. CONCLUSIONS

In this paper, we discuss the concept of stakeholders’
commitment to a RE project, why it can be a relevant criterion
to select, among the large pool of stakeholders, those that
should be involved in the elicitation, and how it differs from
involvement. Based on the survey of 87 stakeholders, we
propose the commitment matrix, which describes the relative
advantages of involving stakeholders with light, medium and
strong commitment profiles. We observe that stakeholders with
different commitment share information which nature may
vary, in terms of quality, quantity or efficiency. It suggests
that, depending on the type of information a business analyst
is looking for, the commitment level of a stakeholder is more or
less important to account for. While the paper does not provide
any elicitation methodology, it suggests ways for accounting
for commitment in order to better deal with the RECs. The
commitment matrix is an exploratory study, not a proper
empirical validation; readers should bear in mind that it builds
on a small sample, and that further validation is required before
formulating recommendations for the selection of stakeholders.
We believe this does not hold us back from drawing relevant
conclusions about how commitment affects RECs, and about
what research is necessary in the future so as to better deal
with such aspect during elicitation.

REFERENCES

[1] M. G. Christel and K. C. Kang, “Issues in requirements elicitation,”
Technical Report CMU/SEI-92-TR-12 ESC-TR-92-012, 1992.

[2] D. Zowghi and C. Coulin, “Requirements Elicitation : A Survey of
Techniques , Approaches , and Tools,” in Engineering and managing
software requirements, C. Aurum, Aybüke and Wohlin, Ed. Springer
Berlin Heidelberg, 2005, pp. 19–46.

[3] A. Sutcliffe and P. Sawyer, “Requirements elicitation: Towards the
unknown unknowns,” in Proc. 21st IEEE International Requirements
Engineering Conference (RE). IEEE, Jul. 2013, pp. 92–104.

[4] A. M. Davis, O. Dieste, A. M. Hickey, N. Juristo, A. Moreno, and M.,
“Effectiveness of requirements elicitation techniques: Empirical results
derived from a systematic review,” in Proc. 14th IEEE International
Conference on Requirements Engineering, 2006, pp. 179–188.

[5] A. M. Hickey and A. M. Davis, “A unified model of requirements
elicitation,” Journal of Management Information Systems, vol. 20, no. 4,
pp. 65–84, 2004.

[6] R. Palanisamy and J. L. Sushil, “User Involvement in Information
Systems Planning Leads to Strategic Success: An Empirical Study,”
Journal of Services Research, vol. 1, no. 2, pp. 125–157, 2001.

[7] M. Bano and D. Zowghi, “Users’ involvement in requirements engineer-
ing and system success,” Proc. 3rd International Workshop on Empirical
Requirements Engineering (EmpiRE), pp. 24–31, Jul. 2013.

[8] A. Pouloudi, “Stakeholder analysis as a front-end to knowledge elici-
tation,” AI & Society, vol. 11, no. 1-2, pp. 122–137, Mar. 1997.

[9] R. K. Mitchell, B. R. Agle, and D. J. Wood, “Toward a Theory
of Stakeholder Identification and Salience: Defining the Principle of
Who and What Really Counts,” The Academy of Management Review,
vol. 22, no. 4, pp. 853–886, 1997.

[10] M. Glinz and R. J. Wieringa, “Stakeholders in Requirements Engineer-
ing,” IEEE Software, vol. 24, no. 2, pp. 18–20, 2007.

[11] D. Robey and D. Farrow, “User Involvement in Information System
Development: A Conflict Model and Empirical Test,” Management
Science, vol. 28, no. 1, pp. 73–85, 1982.

[12] H. Barki and J. Hartwick, “Rethinking the Concept of User Involve-
ment,” MIS Quartly, vol. 13, no. 1, pp. 53–63, 1989.

[13] S. Kujala, M. Kauppinen, L. Lehtola, and T. Kojo, “The role of user
involvement in requirements quality and project success,” in Proc. 13th
IEEE International Requirements Engineering Conference, 2005, pp.
75–84.

[14] J. Kabbedijk, S. Brinkkemper, S. Jansen, and B. van der Veldt,
“Customer Involvement in Requirements Management: Lessons from
Mass Market Software Development,” in Proc. 17th IEEE International
Requirements Engineering Conference. Ieee, 2009, pp. 281–286.

[15] J. M. Rivero, E. R. Luna, J. Grigera, and G. Rossi, “Improving user
involvement through a model-driven requirements approach,” Proc. 3rd
International Workshop on Model-Driven Requirements Engineering
(MoDRE), pp. 20–29, Jul. 2013.

[16] L. Damodaran, “User involvement in the systems design process - a
practical guide for users,” Behaviour & Information Technology, vol. 15,
no. 6, pp. 363–377, 1996.

[17] J. Coughlan, M. Lycett, and R. D. Macredie, “Communication issues in
requirements elicitation: a content analysis of stakeholder experiences,”
Information and Software Technology, vol. 45, no. 8, pp. 525–537, 2003.

[18] L. C. Ballejos and J. M. Montagna, “Method for stakeholder identifi-
cation in interorganizational environments,” Requirements Engineering,
vol. 13, no. 4, pp. 281–297, Sep. 2008.

[19] C. Pacheco and I. Garcia, “A systematic literature review of stakeholder
identification methods in requirements elicitation,” Journal of Systems
and Software, vol. 85, no. 9, pp. 2171–2181, Sep. 2012.

[20] D. Damian and D. Zowghi, “The impact of stakeholders’ geographical
distribution on managing requirements in a multi-site organization,” in
Proc. IEEE Joint International Conference on Requirements Engineer-
ing, 2005, pp. 99–108.

[21] R. T. Mowday, R. M. Steers, and L. W. Porter, “The measurement of
organizational commitment,” Journal of Vocational Behavior, vol. 14,
no. 2, pp. 224–247, Apr. 1979.

[22] A. Katasonov and M. Sakkinen, “Requirements quality control: a
unifying framework,” Requirements Engineering, vol. 11, no. 1, pp.
42–57, Oct. 2005.

[23] C. Burnay, I. J. Jureta, and S. Faulkner, “What stakeholders will or
will not say: A theoretical and empirical study of topic importance in
Requirements Engineering elicitation interviews,” Information Systems,
vol. 46, pp. 61–81, Nov. 2014.

341

An Exploration of System Architecture on Integrating
Building Management System in High-Rise Building

Zunhe LIU∗and Yan LIU†
School of Software Engineering, Tongji University

Shanghai, China
Email: ∗logangute@gmail.com, †yanliu.sse@tongji.edu.cn,

Abstract—High-rise building is bloomed into market with a
series of evolved requirements. Recently, it is of great interest
to adopt the Integrating Building Management System (IBMS)
in high-rise buildings. However, the current IBMS architecture
solution is far from the satisfaction of performance in integrat-
ing level. In the past decade, various system integrations and
collaboration technologies have been developed and deployed to
application domains. In this paper, we address system sensitive
problems and architecture bottlenecks by observing current
architectures. We provide a generic set of solutions to support
the data access flow, use of information, business systems and
collaborative creation. This paper presents a typical scenario for
potential system architecture in high-rise building.

Keywords-Building Management System; Integration; High-
Rise Building; System Architecture;

I. INTRODUCTION

In recent years, energy costs and finite energy resource
increased energy demand. At the same time, the concerns
about global warming have collectively contributed to a global
push for energy conservation. Modern commercial buildings
have become prime targets for energy efficiency research.
Improving energy efficiency in buildings has emerged as an
important research area. Commercial building energy already
consumes 35% of the total US electricity consumption and is
estimated to rise even more[1]. This expenditure constitutes
28% energy usage in residential and 12-13% in commercial
buildings. Better understanding of the building processes and
designing smarter building management systems that can both
maintain occupant comfort while reducing energy consumption
and lead to large improvements in building operation[2].

The advent of wireless sensors has enabled buildings to be
retrofit for improved monitoring of building processes and en-
ergy consumption information. This has led to several “green-
building” applications such as occupancy detection[3], plug-
load energy metering[4], load-disambiguation[5][6], lighting
control[7], and fine-grained HVAC control[8][3]. These sensor-
based applications however generate an immense amount of
data. Combined with existing building control systems (such
as those that run the HVAC), a significant amount of data
is being generated. Unfortunately, each of these systems is
closed off from each other, and thus the potential for truly
interesting data analysis or control applications is lost. In fact,
for many industrial systems, the data is not only inaccessible;
many times it is simply thrown away.

DOI reference number: 10.18293/SEKE2015-206

Therefore, developing a platform to allow for applications
that can span across the multiple systems that monitor and
control the building environment can potentially lead to a
much deeper understanding of building operations. In terms
of high-rise building, as the dimension of distance and time
increased, the demand and performance requirement to the
building system is increased at the same time. But the lack of a
structured and unifying view over the system architecture and
component distribution was the main obstacle to undertaking
the system design and deployment. Thus, we specifically
focus on the underlying architecture and technique in order
to achieve the need for performance and scalability.

In this paper, a discovery and analysis of the state-of-art in
IBMS solutions is presented. At the same time, we conducted a
series of onsite investigations for system architecture usage. It
is envisaged that this research will give the readers insights into
the critical concepts and issues for consideration in designing
the systems in this area.

The remainder of this paper is organized as follows. Section
2 provides a brief introduction and situation summary about
IBMS usage in our investigation building. Section 3 offers a
detail discussion of IBMS and provides a generic architecture
for such systems. Section 4 focuses on the challenges yet to be
addressed in high-rise building system including requirements
and quality attributes. Section 5 presents our preliminary 4-
layers architecture of IBMS.

II. PRODUCTION REVIEW AND ONSITE INVESTIGATION

A. Production Review

We conducted a comparative study on these peer so-
lutions from applications, protocols and architecture based
on literature survey. Findings are as follows: 1) Multiple-
Layered Architectures are well adopted; 2) Layering strategies
may be influenced by product strengths of the provider; 3)
Solutions share similar applications but with different focuses;
4) BACNet and Modbus are well supported. Current existing
building management systems however greatly limit analysis
and innovation potential.

These systems do not usually prioritize storing this data,
and thus most of it is simply lost. These systems also tend
to be independent from one another. This limits the amount
of innovation that can be applied since each system only has
information from its own network, and thus control algorithms
tend to be simplistic. Typically, data storage and aggregation
architecture are different between deployments, and account
on a data server to store and later access the sensor data.

342

B. Onsite Investigation

We have visited a series of modern buildings to identify
critical issues of the integration and collect demands from
different stakeholders. And we select 4 buildings to present
details of system. Brief information of these buildings has
listed in Table I. We conducted the summary from 4 aspects:
key features, application focus, integration level and limitations
as follows. In most of these buildings, limitations and weakness
are observed in the current interaction styles used for data and
service integration.

C. Conclusion

Based on literature survey and onsite investigation, we have
discovered that current solutions are integrated in application
layer, which caused limitations and weakness. To consider
challenges for high-rise buildings, IBMS performance may
suffer from high data sharing demands, such as frequent
data acquisition, limitation of communication capability and
connection channels, high data exchanging rates across appli-
cations and so on. Additional software utilities are needed for
the data integration.

III. CHALLENGES IN HIGH-RISE BUILDINGS

A. Generic Architecture

Prior to discussing improvements in IBMS in detail, it
is instructive to consider BMS in terms of their popular
constituent components. A generic architecture for building
management systems is presented in Fig. 1. Conceptually, it
can be considered consisting three key Layers.

(1) Sensor Layer: Buildings, and the electrical devices and
appliances within them, are monitored by a sensor configura-
tion that collects data and parameters.

(2) Computation Layer: Information regarding energy
wastage, control and recommendations is then generated by
an appropriate combination of algorithmic calculations and
statistical analysis.

(3) Application Layer: This layer can be further categorized
into two application sub-categories: appliance control and
the provision of user feedback across a range of modalities.
Implicit within this layer is a management component allowing
for system testing and maintenance activities.

B. Architecture Analysis

In order to help the readers get a better understanding of the
system analysis, we summarized architecture quality attributes.

TABLE I. Feature Comparison of buildings
Building ID Key Features Applications Focus Integration Level

A
3 floors
office

Solar energy system
Fire detection system

Generate electricity
Connect with Parking
system by hardware

Data level

B
16 floors

office
Access control system Check work attendance

C
32 floors

14 elevators
office and classroom

Security system
Elevator system

use infrared detection
and dynamic cameras

display real-time
elevator for detection

Data level
Service level

E
42 floors
6 elecator

hotel

Intelligent elevator
dispatching

Integration with
smart video engine

Data level
Service level

Figure 1. Generic Architecture Layers

This helps us make a profound glimpse in architecture analysis.
Secondly, we discovered the potential performance bottleneck
evolved if system architecture was applied to high-rise build-
ing. All the work above guide us to present an architecture
design scenario specific for high-rise building system .

1) Quality attributes: The quality that must be ensured as
part of the integration is an important criterion, as well as in
high-rise building consideration. Below we identify the quality
attributes that we have observed as being the most important
and common in architecture integration patterns, especially
which being neglected in building requirement considerations.
Interoperability assures the connectivity and information inter-
change among systems. It concerns technology and engineer-
ing challenges related to communication, data management.
Scalability requires that the integration is scalable across large
numbers of systems. Thus, the integration will work correctly
if more different systems are integrated.

2) Sensitive points and bottlenecks: In terms of business
process analysis, the key problem about the system is reliance
on central control in the computational layer. This leads to the
constraint that changes in the application functions that affect
one step might require changes in the whole process.

The system lacks data level integration. Each application in
application layer requests data from the central data storage.
The impact of data sharing limitation could dispread when
more applications trying to request data from data center.

IV. ARCHITECTURE SPECIFICATION

After the architecture analysis in the previous section, we
could discover a point that the improved architecture should be
data-centric and system-friendly. The integration architecture
should satisfy the quality attributes especially performance and
interoperability. In this section, we will present our integration
architecture scenario.

A. Architecture Description

We find out the current solution for architecture design and
system application usage has a great limitation and bottleneck
in high-rise building. In IBMS, it requires a high quality for

343

Figure 2. Four Layers of Integration System

system and architecture. Considering the huge amount of data
in high-rise building and weakness in current situation, we
could foresee the performance would be below the average
expectations. So we propose our suggestions in this section
especially for the architecture optimization. The architecture
and system component is shown in Fig. 2.

• Data collection layer: it collects data from subsystems,
for example elevator subsystem, HVAC subsystem and
fire alarm subsystem etc.

• Data management layer: it is central storage and
management point in the architecture. It takes control
on how to store history data and how long the data
stored in the database.

• Data analysis and service layer: it provides various
service interfaces for applications. In this layer, data
mining and information intelligent technology is pro-
posed to data analysis.

• Application layer: it provides user interface for the
user. And in this layer the system and program is
transparent to the user. This layer integrates different
systems and provides system level collaboration.

B. Architecture Improvements

We listed three main improvements respectively in different
levels.

Figure 3. Middleware or ESB component for third party system
integration

1. Data level: In high-rise building, the data storage and
data transferring are the sensitive points in the system. The
performance of them affects the whole integration system
seriously. We propose a data-sharing platform. In the platform,
we provide a series of data translating utilities. Meanwhile,
we build data integration layer. In the integration layer, the
system provides data sharing services for data reuse and
data encapsulation. Integration in data level optimizes the
performance in data transferring and requesting.

2. Application level: In high-rise building, there is a huge
demand in application level integration, as well as application
collaboration with third party system. The convention collab-
oration method is providing web service by using XML. To
avoid this limitation, the generic architecture designs an en-
terprise collaboration platform. Event-driven component based
architecture could be an option for the system optimization as
well as applying service bus in the architecture. The platform
provides service reuse and interfaces for third party system
integration. The suggestion of component architecture with
ESB or Middleware is shown in Fig. 3.

3. System level: This section describes the usability of
system level. In the integration system, there should be some
utilities and tools for the troubleshooting and debugging work
in system. In case the system breaks down, the system should
alert the detail information about reasons and point out the
reliable solutions. Also, the system should have a surveillance
tool on data transferring and correctness about data.

V. CONCLUSION AND FUTURE WORK

A. Achievements

This study identified problems and opportunities in the
design, construction and operation of IBMS for high-rise
buildings. We have designed questionnaires and conducted five
onsite investigations to discover the real situation of IBMS.
We have studied integration-centric demands, challenges, con-
straints, environments, contexts and potential patterns. And

344

based on the survey results, we have finished architectural anal-
ysis and system modeling to understand architectural issues
further.

1) Key Findings: With the study of common applications,
networking environment, typical solutions and emerging tech-
nologies in IBMS, we have discovered:

• Data conversion and Entity/Object/Device mapping
in IBMS for high-rise building need enhancement in
system architecture.

• high-rise building IBMS performance may suffer from
high data sharing demands; additional software utili-
ties are needed for the data integration.

• Emerging application based on IBMS solution is usu-
ally data-centric and event-driven, which should use
suitable architectural styles and patterns.

• Demands on cloud platform and intelligent data pro-
cessing frameworks are strong.

2) Major Outcomes: In this study, we have proposed a
four-layered generic architecture as a basis for architectural
analysis of high-rise building IBMS, identified quality at-
tributes for IBMS and conducted quality analysis to under-
stand IBMS architecture decision space, analyzed potential
adoption of additional platform, service bus, middleware and
components to improve integration quality for high-rise build-
ing, performed detailed data flow analysis to understand the
architectural weakness of one specific use case, and finally
explored IBMS architecture decision space from the system
level.

B. Future Work

In the next phase of the research,we will make a deeper
research on the data flow analysis. We will pick up some
practical use cases in system, having a more specific data flow
analysis in data collecting and data transferring. Meanwhile,
we will explore the brand-new market thus develop some
applications with user interaction data.

REFERENCES

[1] Y. Agarwal, T. Weng, and R. K. Gupta, “The energy dashboard:
improving the visibility of energy consumption at a campus-wide scale,”
in Proceedings of the First ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings. ACM, 2009, pp. 55–60.

[2] A. H. Kazmi, M. J. O’grady, D. T. Delaney, A. G. Ruzzelli, and G. M.
O’hare, “A review of wireless-sensor-network-enabled building energy
management systems,” ACM Transactions on Sensor Networks (TOSN),
vol. 10, no. 4, p. 66, 2014.

[3] Y. Agarwal, B. Balaji, S. Dutta, R. K. Gupta, and T. Weng, “Duty-
cycling buildings aggressively: The next frontier in hvac control,”
in Information Processing in Sensor Networks (IPSN), 2011 10th
International Conference on. IEEE, 2011, pp. 246–257.

[4] X. Jiang, M. Van Ly, J. Taneja, P. Dutta, and D. Culler, “Experiences
with a high-fidelity wireless building energy auditing network,” in
Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2009, pp. 113–126.

[5] D. Jung and A. Savvides, “Estimating building consumption break-
downs using on/off state sensing and incremental sub-meter deploy-
ment,” in Proceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems. ACM, 2010, pp. 225–238.

[6] A. Rowe, M. Berges, and R. Rajkumar, “Contactless sensing of appli-
ance state transitions through variations in electromagnetic fields,” in
Proceedings of the 2nd ACM workshop on embedded sensing systems
for energy-efficiency in building. ACM, 2010, pp. 19–24.

[7] D. T. Delaney, G. M. O’Hare, and A. G. Ruzzelli, “Evaluation of
energy-efficiency in lighting systems using sensor networks,” in Pro-
ceedings of the First ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings. ACM, 2009, pp. 61–66.

[8] J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben, J. Stankovic,
E. Field, and K. Whitehouse, “The smart thermostat: using occupancy
sensors to save energy in homes,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems. ACM, 2010,
pp. 211–224.

[9] T. Weng, A. Nwokafor, and Y. Agarwal, “Buildingdepot 2.0: An
integrated management system for building analysis and control,” in
Proceedings of the 5th ACM Workshop on Embedded Systems For
Energy-Efficient Buildings. ACM, 2013, pp. 1–8.

[10] C. Voss, N. Tsikriktsis, and M. Frohlich, “Case research in operations
management,” International journal of operations & production man-
agement, vol. 22, no. 2, pp. 195–219, 2002.

[11] H. Mintzberg, “An emerging strategy of” direct” research,” Administra-
tive science quarterly, pp. 582–589, 1979.

[12] P. Baxter and S. Jack, “Qualitative case study methodology: Study
design and implementation for novice researchers,” The qualitative
report, vol. 13, no. 4, pp. 544–559, 2008.

[13] Y. Kim, T. Schmid, Z. M. Charbiwala, and M. B. Srivastava, “Viridis-
cope: design and implementation of a fine grained power monitoring
system for homes,” in Proceedings of the 11th international conference
on Ubiquitous computing. ACM, 2009, pp. 245–254.

[14] J. Lifton, M. Feldmeier, Y. Ono, C. Lewis, and J. A. Paradiso, “A
platform for ubiquitous sensor deployment in occupational and domestic
environments,” in Information Processing in Sensor Networks, 2007.
IPSN 2007. 6th International Symposium on. IEEE, 2007, pp. 119–
127.

[15] T. Weng, B. Balaji, S. Dutta, R. Gupta, and Y. Agarwal, “Managing
plug-loads for demand response within buildings,” in Proceedings of
the Third ACM Workshop on Embedded Sensing Systems for Energy-
Efficiency in Buildings. ACM, 2011, pp. 13–18.

[16] Y. Kim, T. Schmid, Z. M. Charbiwala, J. Friedman, and M. B. Srivas-
tava, “Nawms: nonintrusive autonomous water monitoring system,” in
Proceedings of the 6th ACM conference on Embedded network sensor
systems. ACM, 2008, pp. 309–322.

[17] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, and T. Weng,
“Occupancy-driven energy management for smart building automation,”
in Proceedings of the 2nd ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Building. ACM, 2010, pp. 1–6.

345

Analyzing Exceptions in the Context of Test Data
Generation Based on Symbolic Execution

Marcelo Medeiros Eler
University of Sao Paulo
Sao Paulo - SP - Brazil

E-mail: marceloeler@usp.br

Vinicius H. S. Durelli
University of Groningen

The Netherlands
E-mail: v.h.serapilha.durelli@rug.nl

Andre Takeshi Endo
Federal Technological University of Parana

Cornelio Procopio - PR - Brazil
E-mail: andreendo@utfpr.edu.br

Abstract—Testing exception scenarios is a challenging task in
the context of test data generation based on symbolic execution.
In such a context, test data is generated based on constraints
explicitly declared in the code. However, constraints required to
activate specific exceptions may not be directly declared in the
code. In such a case, implicit constraints have to be inferred
from exception handling mechanisms. Given that exceptions can
be raised in several situations, finding constraints to generate
test data to exercise all possible faulty scenarios can significantly
increase the number of paths and constraints, which can cause
or aggravate path explosion issues. This paper reports on an
investigation that we carried out to gauge the cost (i.e., number
of path constraints) of four data generation approaches aimed
at covering exception dependent paths.

Keywords – Exception handling; symbolic execution; test
data generation; software analysis

I . I N T R O D U C T I O N

Automatic test data generation is a notorious complex
problem. Symbolic execution and constraint solving have
been used as an approach to generate test data that achieve
high control-flow coverage [5, 9]. During symbolic execution,
program elements are represented as functions of symbolic
input values [5, 9]. Each path is represented by a path constraint,
which is a sequence of constraints that should be satisfied so
that the underlying path can be traversed. Constraint solvers
are thus used to generate concrete input values (i.e., test data)
that satisfy each set of constraints.

Often, the constraints required to traverse a path are explicitly
declared in the code by means of control-flow statements,
such as if and while. However, some constraints are not
explicitly declared in the code because they do not stem from
conventional control-flow statements. Some of these constraints
implicitly derive from exception handling mechanisms such as
Java’s try-catch-finally blocks. For instance, a block
that declares a NullPointerException will be executed
only when such an exception is thrown. However, in general,
there are no constraint indicating in which condition such an
exception will be thrown.

We classify paths that depend on an exception being
thrown as exception-dependent paths (EDPs) [7], as oppose
to exception-free paths (EFPs) [14]. According to an analysis
performed over a sample of 100 open source projects called

SF100 [8]1, we discovered that almost one third of the methods
have at least one EDP [7]. Although the number of EDPs of a
program is high, and exception handling is an important topic
in software development [4], the influence of exception mech-
anisms to unit test data generation using symbolic execution
has not been widely explored [1, 3, 5].

Taking into account the implicit constraints that stem from
exception handling mechanisms can significantly increase the
number of path constraints. This has the potential to exacerbate
a well-known issue faced by symbolic execution approaches:
path explosion [1, 5, 6], which is usually caused by complex
loop structures.

The contribution of this paper is twofold. First, we discuss
the characteristics and possible approaches to identify con-
straints that exercise EDPs and faulty scenarios. Second, we
investigate how different approaches to generate test data that
cover EDPs may impact the number of path constraints.

This paper is organized as follows. Section II provides back-
ground on symbolic execution and EDPs. Section III discusses
possible ways to identify constraints that lead to exceptions
being raised and, in turn, the execution of EDPs. Section IV
describes the investigation we conducted to measure the path
constraint overhead brought by approaches that generate test
data tailored to execute EDPs. Section V shows related work.
Finally, Section VI presents concluding remarks.

I I . S Y M B O L I C E X E C U T I O N A N D E X C E P T I O N
D E P E N D E N T PAT H S (E D P S)

Symbolic execution is a program-analysis technique that
represents the elements of a program as symbolic input
values [9]. Each path is represented by a path constraint, i.e., a
set of constraints in a logical expression that must be satisfied in
order to execute the underlying path. To generate unit test data,
symbolic execution approaches resort to constraint solvers to
yield solutions to the path constraints. These solutions provided
by the constraint solvers are then used as test data to achieve
high coverage on control-flow criteria.

Using symbolic execution and constraint solving to generate
test data is appealing and straightforward. However, even
though this research area has come a long way over the past

1Details of the SF100 corpus of classes are available at http://www.st.cs.
uni-saarland.de/evosuite/SF100/

DOI reference number: 10.18293/SEKE2015-170 346

decades, several challenges still remain [1, 5–7, 10, 16], such
as path explosion and EDPs.

Path explosion is the problem of having to cope with too
many paths, which can overwhelm the constraint solver and
reduce the performance of the overall process [5]. The path
constraints assembled during symbolic execution are usually
based on individual constraints explicitly declared in the source
code by means of control-flow statements. EDPs, on the other
hand, are paths that can only be traversed if a specific exception
is thrown. The constraints required to raise the underlying
exception of an EDP, however, are not explicit in the code.
Therefore, the constraints that lead to the execution of EDPs
have to be abstracted from exception handling mechanisms,
viz., try-catch-finally blocks.

Listing 1 presents an illustrative example of EDPs. The
Java method evalBMI classifies the weight of a person as
underweight, healthy weight, or overweight, given its body
mass index (BMI) calculated by calcBMI, which might throw
an ArithmeticException.

Listing 1: Source code of evalBMI.� �
1 p u b l i c vo id evalBMI (Di a l og ud , f l o a t mass , f l o a t h e i g h t) {
2 w i n l a y o u t . s e t S t y l e (” d e f a u l t ”) ;

3 f l o a t bmi = 0 ; 01
4 t r y {
5 bmi = calcBMI (mass , h e i g h t) ; 02
6 S t r i n g msg = S t r i n g . va lueOf (bmi) ; 02
7 ud . p r i n t (msg) ; 02
8 i f (bmi < 1 8 . 5) 02
9 ud . p r i n t (” Underweigh t ”) ; 03

10 e l s e
11 i f (bmi < 25) 04
12 ud . p r i n t (” H e a l t h y w e i g h t ”) ; 05
13 e l s e {
14 ud . p r i n t (” Overwe igh t ””) ; 06
15 ud . g e t L a y o u t () . s e t C o l o r (” r e d ”) ; 06
16 }
17 } 07
18 catch (A r i t h m e t i c E x c e p t i o n e) {
19 ud . p r i n t (” He ig h t must be g r e a t e r t h a n z e r o ”) ; 08
20 } catch (N u l l P o i n t e r E x c e p t i o n e) {
21 e . p r i n t S t a c k T r a c e () ; 09
22 } f i n a l l y {
23 Cont ro lBoard . addBMI (bmi) ; 10 − 11
24 }
25 } 12
� �

Notice that evalBMI has a try-catch-finally con-
struct with two exception handlers: each catch block is
an exception handler whose argument declares the type of
exception that the handler can treat. The first handler catches
an unchecked exception: ArithmeticException. The
second handler catches another sort of unchecked exception:
NullPointerException. The finally statement en-
sures that all instructions within its block are executed regard-
less of what happens in the try block.

In Java, unchecked exceptions inherit from either
RuntimeException or Error. In general, good
programming practices can avoid raising unchecked exceptions.
Therefore, the compiler does not force the programmer to
handle such type of exceptions, albeit it is a common practice.
Notice, for example, that both winlayout.setColor (line
2) and ud.print (lines 7, 9, 12, and 14) instructions may
throw a NullPointerException, but only the latter are
within a try block. As oppose to unchecked exceptions, the
compiler force the programmer to catch or propagate checked
exceptions.

We represent the methods under test as control-flow graphs
(CFGs) [11, 17]. CFGs are directed graphs in which each node
usually represents a block of instructions without flow deviation
(i.e., a basic block) and directed edges represent transitions (i.e.,
unconditional branch or jump) in the control-flow.

Figure 1 shows the CFG generated for evalBMI. The
numbers after each instruction in Listing 1 indicate their
corresponding node in the CFG. Nodes related to try, catch,
and finally blocks are also shown. Dashed edges represent
branches that are executed when some exception occurs.
The exception handling mechanism of the Java language
is conservative: it considers that any instruction within a
try-catch-finally block may throw an exception. Thus,
there are edges from all nodes within the try statement to
the exception handling nodes.

Fig. 1: CFG for evalBMI.

Notice that nodes 2–6 have edges to nodes 8, 9, and 11;
we use only one edge from the try box for improving the
legibility of the graph. The exception handling notation we
use is adapted from the notations proposed by Sinha and
Harrold [13] and Vincenzi et al. [14].

347

Nodes within the try block can reach any exception
nodes (8, 9, and 11), depending on the type of the thrown
exception. Node 8 catches an ArithmeticException
and node 9 captures a NullPointerException. Node
11 is an implicit catch included by the compiler to capture
any uncaught2 exception, even those that might be thrown
within catch statements. Node 10 represents the finally
statement, which is reached by the exception nodes (8 and 9)
and by node 7. It is important to mention that Node 11 is a
copy of the finally block that was automatically created by
the compiler to assure that the instructions under the finally
block are executed even when an uncaught exception is thrown.
Node 11 is also an exit node since it throws an exception.

During symbolic execution, we adopted a breadth-first algo-
rithm whose goal is to generate paths that cover all branches
of a CFG. Table I shows all paths of evalBMI, which may
be either (i) EDP, when the path includes an exception edge
(dashed), or (ii) EFP.

TABLE I: EDPs and EFPs of evalBMI.

Path ID EDP 11 {1, 2, 4, 6, 8, 10, 12}
1 {1, 2, 11} 12 {1, 2, 4, 5, 8, 10, 12}
2 {1, 2, 4, 11} 13 {1, 2, 9, 10, 12}
3 {1, 2, 3, 11} 14 {1, 2, 3, 9, 10, 12}
4 {1, 2, 9, 11} 15 {1, 2, 4, 9, 10, 12}
5 {1, 2, 8, 11} 16 {1, 2, 4, 5, 9, 10, 12}
6 {1, 2, 4, 5, 11} 17 {1, 2, 4, 6, 9, 10, 12}
7 {1, 2, 4, 6, 11} EFP
8 {1, 2, 8, 10, 12} 18 {1, 2, 3, 7, 10, 12}
9 {1, 2, 3, 8, 10, 12} 19 {1, 2, 4, 5, 7, 10, 12}

10 {1, 2, 4, 8, 10, 12} 20 {1, 2, 4, 6, 7, 10, 12}

Symbolic execution approaches yield path constraints based
on the constraints explicitly declared along the underlying path.
However, there is no constraint associated with the exception
edges. Therefore, approaches that want to generate test data
to exercise EDPs must implement mechanisms to derive
constraints from exception handling mechanisms, otherwise
they will not be covered. For instance, edge 2–9 is executed
only when a NullPointerException is raised. In such
a case, an analysis of the code would show that the constraint
(ud==null) would result in the execution of that path.

Given that the constraints that cover EDPs are not explicit
in the code, many symbolic execution techniques ignore
EDPs, thereby building path constraints that take into account
only explicit constraints. A clear advantage of not dealing
with implicit constraints is that the number of paths to be
processed is low, which can speed up test data generation. The
disadvantage, however, is that many possible execution paths
remain uncovered.

I I I . H A N D L I N G E D P S A N D U N C A U G H T
E X C E P T I O N S

Current symbolic execution tools and approaches do detail
whether or not and how they handle EDPs. Therefore, we
devised four possible approaches to generate test data that

2An uncaught exception is an exception thrown that is not captured by an
exception handling mechanism. In Java, only unchecked exceptions may be
uncaught.

cover EDPs and uncaught exceptions in order to increase the
likelihood of covering more faulty scenarios. The impact of
using these approaches is discussed in Section IV.

A. Analyzing try-catch Statements: Single Constraint

This approach analyzes instructions declared within try
statements and tries to identify constraints that would throw
exceptions caught by the catch clauses. For example, if the
target exception is a NullPointerException, instructions
that access methods and fields of an object are considered. Even
though there are several instructions that could raise the target
exception, only one constraint is selected for each block of
instructions.

The advantage of this approach is that test data is gener-
ated considering both explicit and implicit constraints. The
drawback is the increase in the number of path constraints.
In addition, complex analysis techniques are required to de-
rive constraints from exception handling mechanisms, mainly
because each type of exception requires different constraints
to be raised. Also, selecting only one constraint to raise the
target exception may not be enough since it can be unsolvable,
i.e., it is not possible to find a concrete solution to satisfy all
constraints. For instance, if the constraint (ud==null) is
selected to execute the exception edge 6–9, path {1, 2, 4, 6, 9,
10, 12} would remain uncovered since edges 2–4 and 4–6 are
executed only if (ud!=null).

B. Analyzing try-catch Statements: Multiple Constraints

The analysis performed in this approach is similar to the
previous approach (Subsection III-A). However, instead of
selecting only one constraint for each block or node, all possible
constraints are used according to the target exception. In such
a case, one new path constraint is generated for each new
constraint identified. For instance, two path constraints would
be generated for EDP {1, 2, 4, 6, 9, 10, 12}: one considering the
constraint (ud== null), and other considering the constraint
(ud.getLayout()==null).

The advantage of this approach is that it explores all possible
situations in which an exception can be raised within an
exception handling environment. Even though many of the path
constraints generated may turn out to be unsolvable, choosing
several constraints increases the chances of finding test data
to cover the target EDP. Nevertheless, the main drawback is
that the number of path constraints yielded for each EDP may
be too high, leading to path explosion.

C. Beyond try-catch Statements

Both aforementioned approaches are based in the fact that,
in theory, programmers generally employ exception handling
mechanisms in scenarios where exceptions are more likely
to be thrown. According to Cabral and Marques [4], how-
ever, programmers do not catch enough unchecked exceptions
making applications crash even on minor error situations.
Therefore, deriving constraints only from instructions within
try-catch-finally blocks may let several faulty scenar-
ios uncovered due to how programmers write their code [4, 12].

348

In this context, we devised a thorough approach that iden-
tifies constraints that traverse EDPs by analyzing exception
handling mechanisms and also constraints aimed at raising
uncaught exceptions that can be raised outside the boundaries
of try-catch statements. Yet considering a try-catch
environment, the constraints generated are not limited to the
declared exception. For each constraint identified, the under-
lying path constraint is replicated and the new constraint is
added.

The main advantage of this approach is that it allows for
yielding path constraints to generate test data that traverse EDPs
and also raise uncaught exceptions. The test data generated
are not limited to exercise EDPs abstracted from exception
handling mechanisms. Rather, the test data generated by this
approach exercises every possible faulty scenario by activating
all possible exceptions.

The main drawback of this approach is the huge number of
path constraints to process. This alternative can clearly aggra-
vate the path explosion problem. Furthermore, the complexity
of finding a concrete constraint to raise an exception is greater
in this context since the analysis must take into account any
type of exception, not only the target exceptions within catch
statements.

Another drawback of yielding a huge number of path
constraints is that many of them may be unsolvable. In such
cases, resources will be spent to process constraints that will
not generate any test data. One possible solution to mitigate
this problem is to apply static analysis techniques to identify
and eliminate unsolvable path constraints prior to sending them
to the constraint solver.

D. Beyond try-catch Statements: An Optimized Version

We devised an optimized version of the previous approach
(Subsection III-C) in which new path constraints are only
created when the new constraint that activates an exception
follows these rules: (i) it does not contradict any constraint
in the underlying path constraint; (ii) it is not yet in the
underlying path constraint; (iii) it does not raise an uncaught
exception before reaching the block where the target exceptions
is supposed to be thrown. The advantage of this approach is
that the amount of path constraints is kept in check.

I V. S T U D Y O F T H E O V E R H E A D B R O U G H T B Y
A P P R O A C H E S T O G E N E R AT E T E S T D ATA T O F A U LT Y

S C E N A R I O S

A. Study Setup and Procedure

The main goal of this study is to investigate the impact
of generating unit test data to cover EDPs and uncaught
exceptions, taking into account the number of path constraints
for each of the four approaches presented above. Specifically,
we want to find out the overhead brought on the number of
path constraints.

To perform such an investigation, we selected a third party
benchmark named SF100 to be the object of our investiga-
tion [8]. SF100 is made up of a collection of 100 open
source Java projects that differ considerably in size, complexity,

and application domains. Altogether, these 100 Java projects
contain 18,344 classes and 136,156 methods.

We used a tool called CP4SE (Constraint Profiling for
Symbolic Execution) [7] to analyze the SF100 benchmark.
CP4SE can symbolically execute a program under test based
on its bytecode and provide the path constraints generated for
each execution path. It uses a breadth-first search to find all
paths considering only one loop iteration and also the aim of
covering all branches. In order to tailor CP4SE for our purposes,
we implemented the four test data generation approaches to
cover EDPs and uncaught exceptions discussed in Section III.
We adopted CP4SE as a static analysis tool, focusing on the
analysis of path constraints associated to EFPs and EDPs. It
is worth mentioning that the generation of test data is out of
the scope of this paper.

In this study, we investigate the effects of generating path
constraints related to four out of the seven most common
exceptions used in the Java language according to Cabral and
Marques [4]. The four exceptions we investigated are presented
as follows:

• NullPointerException: instructions such as
obj.field or obj.method(...) generate the
constraint (obj==null), where object is a program
element (e.g., variable or method return) whose type is
an object.

• NegativeArraySizeException: instructions such
as array = new type[size] generate the con-
straint (size<0), where size is any numeric element
(e.g., variable, method return or arithmetic expression).

• ArrayIndexOutOfBoundsException: instructions
such as array[i] generate the constraint
(i>=array.length) or (i<0), where array
is any array structure (e.g.,variable or method return) and
i is any numeric element.

• ArithmeticException: instructions such as (x/y)
generate the constraint (y==0), where y is a numeric
element (e.g, variable or arithmetic expression).

It is important to highlight that the first two approaches em-
ployed (Subsections III-A and III-B) only identify constraints
for specific exception. If an instruction such as (x/y) is within
a try statement caught by a NullPointerException,
no constraint will be identified. On the other hand, all types
of constraints are identified in handling mechanisms that
catch generic exceptions such as java.lang.Exception
or AnyException.

It is also worth mentioning that all instructions are analyzed
by CP4SE after the symbolic execution of the program under
test. Thus, CP4SE only identifies constraints to instructions
that follow the structure defined for each exception. For
example, consider a method with the instruction (x/y), but
the following assignment is always executed before: y=5. In
such a case, the constraint (y==0) is not identified since the
analyzed instruction becomes (x/5) after symbolic execution.
The same principle holds for the other types of instructions.

349

TABLE II: Path constraint overhead.

No EDPs Approach A Approach B Approach C Optimized Approach C
Exception–Approach # PC # PC Overhead # PC Overhead # PC Overhead # PC Overhead
NullPointerException 115,305 134,490 16.6% 149,991 30.1% 646,186 460.40% 295,701 156,5%
ArrayIndexOutOfBoundsException 115,305 125,099 8.5% 127,560 8.5% 191,414 66% 158,078 37,1%
ArithmeticException 115,305 124,150 7.7% 124,160 7.7% 126,758 9.9% 126,487 9,7%
NegativeArraySizeException 115,305 124,724 8.2% 124,768 8.2% 136,906 18.7% 130,580 13,2%
All four exceptions 115,305 134,560 16.7% 154,085 33.6% 724,233 528.1% 323,185 180,3%

B. Results

We executed CP4SE several times to generate path con-
straints to SF100 according to the four approaches presented
in Section III and the target exceptions commented in Sec-
tion IV-A. Each run of CP4SE considered a particular approach
and a particular exception. Table II summarizes the results of
these runs.

Rows 1 to 4 of Table II show the results for each type
of exception individually, while row 5 presents the results of
the four exceptions combined. The columns show the results
obtained by the execution of the four approaches discussed in
Section III. The first column shows how many path constraints
(#PC) were identified using CP4SE when no EDP or faulty
scenario is considered. This particular information is used in
the rest of the table as the basis to measure the overhead
brought by the implemented approaches. For each approach,
we present the number of path constraints (#PC) identified and
the overhead measure in percentage.

The results show that the NullPointerException type
brings more overhead than the other three types we investigated.
The overhead ranges from about 16% to 30%, when only
exception handling mechanisms are analyzed. On the other
hand, the overhead is increased by up to 460% when all blocks
of instructions are considered. The optimizations introduced
by the approach described in Subsection III-D seem to be a
possible solution to this problem since the overhead dropped
from 460% to 156%.

Although the number of path constraints with array elements
is low, as in previous results [7], the number of instructions
that uses arrays is high. As a result, the overhead brought
by exceptions related to arrays is relatively high (up to 66%).
The overhead regarding arithmetic exceptions is low, which is
consistent with the fact that complex and nonlinear arithmetic
expressions involving divisions are more frequent in specific
applications according to Barr et al. [2], such as mathematical
and scientific applications.

The overhead brought by the constraints identified within a
try-catch-finally block (Subsections III-A and III-B)
is significantly lower than the overhead brought by the analysis
of all instructions (Subsections III-C and III-D). This means
that there are several scenarios in which an uncaught exception
may be thrown. This seems to agree with the analysis of Cabral
and Marques [4], in which they state that, since programmers
are not forced by the compiler, they do not catch unchecked
exceptions properly, making applications crash even on minor
error situations.

When all exceptions are considered, the overhead brought

by Approach A (Subsection III-A) is not high. As Cabral and
Marques [4] remark, developers tend to catch generic excep-
tions. In such a case, only one exception is enough to exercise
that particular path. When Approach B (Subsection III-B) is
used, the overhead is a bit higher (around 33%). Considering
Approach C (Subsection III-C), the overhead is extremely
high (528%), which exacerbates the path explosion issue.
However, when Approach D (Subsection III-D) is considered,
the overhead is about 180%.

The results of our investigation show that, even considering
only four types of exceptions, the overhead of thoroughly
generating test data for most exception scenarios is prohibitive
for many symbolic execution approaches. Practitioners and
researchers must perform a carefully analysis in hopes of
deciding which approach or which combination of approaches
should be used in each situation.

V. R E L AT E D W O R K

Researchers have been investigating how exception handling
mechanisms have been used by programmers and how these
mechanisms can be tested properly. Cabral and Marques [4]
carried out a quantitative study on how programmers use
exception handling mechanisms. They looked at 32 projects,
written in Java and .NET, and found that although the apt
exceptions are thrown in most situations, programmers are not
concerned with writing specialized handling code. Hindered by
inflexible handling mechanisms [12], programmers fall back on
writing generic exception handlers which are empty, exclusively
dedicated to re-throw exceptions, or halting the method or
program.

Xiaoquan et al. [15] proposed a static method to detect
faults related to erroneous exception handling in Java programs.
Their method combines two types of analysis: a forward flow-
sensitive analysis to detect unsafe use of variables and a
backward path feasibility analysis to prune false positives.

Few studies have been conducted to understand the charac-
teristics of real-world software regarding exception handling
from a symbolic execution point of view [7, 10, 16]. Xiao et
al. [16] investigated path explosion in the context of dynamic
symbolic execution. They analyzed the characteristics of loops
in 16 open source projects written in the C# language, but
their study focused on the characteristics of loops rather than
their overall presence and relation with exceptions.

In a previous paper [7], we studied the distribution of path
explosion, constraint complexity, dependency, and EDPs over
the SF100 benchmark [8]. Regarding path explosion, the impact
caused by loops and nested loops was investigated. Concerning

350

EDPs, we found out that 36% of the analyzed methods of
SF100 had at least an EDP, but the impact on the number of
path constraints generated has not been analyzed.

The main difference between our study and the related
research is the investigation of how generating test data to cover
EDPs can impact path explosion according to three different
approaches. To the best of our knowledge, no other studies on
this subject has been carried out.

V I . C O N C L U D I N G R E M A R K S

Although symbolic execution has been extensively investi-
gated as a promising approach for test data generation, little
research has taken into account the generation of test data
that cover exception-related paths. Despite the fact that many
paths in a program are exception-dependent (i.e., EDPs), most
approaches have focused on exception-free paths (i.e., EFPs). In
this paper, we investigated this topic by looking at the increase
in the number of path constraints resulted from four different
test data generation approaches that cover exception scenarios.

The results would seem to suggest that the overhead caused
by common exceptions, as NullPointerException and
ArrayIndexOutOfBoundsException, is high, while the
overhead caused by the other two exceptions is relatively low.
When the four investigated exceptions are considered together,
the overhead may be manageable if constraints are derived
only from try-catch-finally statements (around 33%).
However, it may be impracticable if constraints are derived
from all instructions of the program under test (around 180%).

In conclusion, we believe that practitioners and researchers
that want to generate test data tailored to cover exception-based
scenarios should evaluate the trade-offs of using a thorough
approach: generating test data for most likely exception-based
scenarios results in a considerable overhead; on the other
hand, focusing only on instructions declared within exception
handling mechanisms or eschewing certain exceptions (e.g.,
NullPointerException) may leave many faulty scenar-
ios uncovered.

A C K N O W L E D G M E N T S

The authors would like to thank the financial support
provided by CAPES (BEX 1714/14-7), FAPESP (2014/08713-
9), and CNPq (445958/2014-6).

R E F E R E N C E S

[1] S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. McMinn.
An orchestrated survey on automated software test case
generation. Journal of Systems and Software, 86(8):1978–
2001, 2013.

[2] E. T. Barr, T. Vo, V. Le, and Z. Su. Automatic detec-
tion of floating-point exceptions. In Proc. of the 40th
Annual ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, pages 549–560, New York, NY,
USA, 2013.

[3] E. Bounimova, P. Godefroid, and D. Molnar. Billions
and billions of constraints: Whitebox fuzz testing in
production. In Proceedings of the 2013 International
Conference on Software Engineering, pages 122–131,
Piscataway, NJ, USA, 2013. IEEE Press.

[4] B. Cabral and P. Marques. Exception handling: A field
study in java and .net. In Proceedings of the 21st Euro-
pean Conference on Object-Oriented Programming, pages
151–175, Berlin, Heidelberg, 2007. Springer-Verlag.

[5] C. Cadar and K. Sen. Symbolic execution for software
testing: three decades later. Communications of the ACM,
56(2):82–90, 2013.

[6] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu,
K. Sen, N. Tillmann, and W. Visser. Symbolic execution
for software testing in practice: Preliminary assessment.
In Proceedings of the 33rd International Conference on
Software Engineering, pages 1066–1071. ACM, 2011.

[7] M. M. Eler, A. T. Endo, and V. H. S. Durelli. Quantifying
the Characteristics of Java Programs that May Influence
Symbolic Execution from a Test Data Generation Per-
spective. In The 38th Annual Int. Computers, Software
& Applications Conference, pages 181–190, 2014.

[8] G. Fraser and A. Arcuri. Sound Empirical Evidence in
Software Testing. In Proc. of the 2012 Int. Conf. on
Software Engineering, pages 178–188, 2012.

[9] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, July 1976.

[10] X. Qu and B. Robinson. A Case Study of Concolic
Testing Tools and their Limitations. In International
Symposium on Empirical Software Engineering and Mea-
surement, pages 117–126, 2011.

[11] S. Rapps and E. J. Weyuker. Selecting software test
data using data flow information. IEEE Transactions on
Software Engineering, 11(4):367–375, 1985.

[12] M. P. Robillard and G. C. Murphy. Designing Robust
Java Programs with Exceptions. ACM SIGSOFT Software
Engineering Notes, 25(6):2–10, 2000.

[13] S. Sinha and M. Harrold. Criteria for Testing Exception-
Handling Constructs in Java Programs. In Proc. of the
Int. Conf. on Sw Maintenance, pages 265–274, 1999.

[14] A. M. R. Vincenzi, M. E. Delamaro, J. C. Maldonado,
and W. E. Wong. Establishing structural testing criteria
for java bytecode. Software Practice & Experience, 36
(14):1513–1541, 2006.

[15] X. Wu, Z. Xu, and J. Wei. Static Detection of Bugs
Caused by Incorrect Exception Handling in Java Pro-
grams. In 11th International Conference on Quality
Software (QSIC), pages 61–66, 2011.

[16] X. Xiao, S. Li, T. Xie, and N. Tillmann. Characteristic
studies of loop problems for structural test generation via
symbolic execution. In Proc. 28th IEEE/ACM Int. Conf.
on Automated Software Engineering, November 2013.

[17] H. Zhu, P. A. V. Hall, and J. H. R. May. Software Unit
Test Coverage and Adequacy. ACM Computing Surveys,
29(4):366–427, 1997.

351

Automatically Evaluating the Efficiency of
Search-Based Test Data Generation for Relational Database Schemas

Cody Kinneer H Gregory M. Kapfhammer H Chris Wright I Phil McMinn I

H Allegheny College I University of Sheffield

Abstract

The characterization of an algorithm’s worst-case time
complexity is useful because it succinctly captures how its
runtime will grow as the input size becomes arbitrarily
large. However, for certain algorithms—such as those per-
forming search-based test data generation—a theoretical
analysis to determine worst-case time complexity is diffi-
cult to generalize and thus not often reported in the liter-
ature. This paper introduces a framework that empirically
determines an algorithm’s worst-case time complexity by
doubling the size of the input and observing the change in
runtime. Since the relational database is a centerpiece of
modern software and the database’s schema is frequently
untested, we apply the doubling technique to the domain
of data generation for relational database schemas, a field
where worst-case time complexities are often unknown. In
addition to demonstrating the feasibility of suggesting the
worst-case runtimes of the chosen algorithms and configu-
rations, the results of our study reveal performance trade-
offs in testing strategies for relational database schemas.

1 Introduction
Many disciplines, such as science, finance, and

medicine, rely on relational databases to maintain large
amounts of critical information [1]. The relational database
schema defines the structure of a database and protects
the integrity of the data. This makes testing the database
schema necessary to avoid the corruption of data. Search-
based algorithms, that use a fitness function to offer guid-
ance to a desirable solution, have been applied to this chal-
lenging problem [2]. Although data generation for rela-
tional schemas may also be handled, albeit less effectively,
with random generation techniques [3], the use of search-
based approaches ensures that data creation methods can
actively seek out test inputs that best fulfill testing goals [4].

Despite the effectiveness of search-based data generation
methods, there is, to the best of our knowledge, little prior
research that fully studies their efficiency and characterizes
their worst-case time complexity. In part, we attribute this
dearth of past work to the fact that these systems are com-
plex, thus making a generalizable theoretical analysis hard.

In response to the lack of insight into the performance
of search-based methods, this paper presents a fully au-
tomated performance evaluation framework that employs

doubling experiments to suggest worst-case time complex-
ities and conditional inference trees to identify efficiency
trends. Applying this framework to the automated perfor-
mance evaluation of search-based test data generation for
database schemas, the results reveal trade-offs in efficiency
with respect to the chosen testing goals, the structure of the
relational schema, and the data generation strategy.

Since the presented approach is fully automated, it en-
abled a comprehensive study suggesting the worst-case time
complexity of all the relevant data generator configurations.
Although this paper focuses on automatically evaluating
the efficiency of search-based test data generation for the
database schema, the presented technique can be applied to
a wide range of other methods using heuristic search. In
summary, this paper’s important contributions include:

1. A performance evaluation framework that automati-
cally conducts and analyzes the results from doubling
experiments with search-based methods.

2. Empirically derived suggestions for the worst-case
time complexity of search-based test data generators.

3. With a systematic focus on a wide variety of configura-
tions, an empirical study revealing trade-offs in search-
based test data generation for relational schemas.

2 Background and Related Work
Testing Database Schemas. The relational database, a

cornerstone of modern software, is protected by a schema
that defines integrity constraints ensuring the coherence of
data. These constraints defend the schema from manipula-
tions that could violate requirements such as “user names
must be unique” or “the host name cannot be missing or un-
known”. Prior work in this area proposed coverage criteria,
derived from logic coverage criteria, that establish different
levels of testing for the formulation of integrity constraints
in a database schema [3]. These range from simple crite-
ria that mandate the testing of successful and unsuccess-
ful INSERT statements into tables to more advanced crite-
ria that test the formulation of complex integrity constraints
such as multi-column PRIMARY KEYs and arbitrary CHECK
constraints. This family of criteria has been organized
into a subsumption hierarchy, with criteria such as Clause-
Based Active Integrity Constraint Coverage (ClauseAICC)
emerging as a stringent testing strategy. Space constraints
limit further commentary on testing methods for database
schemas; prior work [3] provides additional details.

DOI reference number: 10.18293/SEKE2015-205
352

Ratio f(2n)/f(n) Worst-Case Conclusion
1 constant or logarithmic
2 linear or linearithmic
4 quadratic
8 cubic

Table 1: Conclusions for worst-case time complexity.

Search-Based Test Data Generation. When testing a
schema’s integrity constraints for correctness, it is often
necessary to provide input to the database and then ob-
serve and evaluate its execution [2]. Since the database’s
behavior is dependant on the input from INSERTs, the input
space must be sufficiently explored to ensure thorough test-
ing. Due to the fact that it is challenging to manually create
input that supports high-quality testing, test data generation
is used to automatically produce it according to a criterion,
like ClauseAICC. A search-based test data generator is one
that explores that input space using, among other compo-
nents, a fitness function that rates the data’s quality, thus al-
lowing it to improve by repeatedly seeking better inputs [4].

Worst-Case Time Complexity. A useful understanding
of an algorithm’s efficiency, the worst-case time complex-
ity gives an upper bound on how an increase in the size of
the input, denoted n, increases the execution time of the al-
gorithm, f(n). This relationship is often expressed in the
“big-Oh” notation, where f(n) is O(g(n)) means that the
time increases by no more than on order of g(n). Since the
worst-case complexity of an algorithm is evident when n
is large [5], one approach for determining the big-Oh com-
plexity of an algorithm is to conduct a doubling experiment
with increasingly bigger input sizes. By measuring the time
needed to run the algorithm on an input of size n and the
time needed to run with input of size 2n, the algorithm’s
order of growth can be empirically determined [5, 6].

The goal of a doubling experiment is to draw a conclu-
sion regarding the efficiency of the algorithm from the ratio
f(2n)/f(n) that represents the factor of change in runtime
from input sizes n to 2n. For instance, a ratio of 2 would in-
dicate that doubling the input size resulted in the runtime’s
doubling, thus leading to the conclusion that the algorithm
under study is O(n) or O(n log n). Table 1 shows some
common time complexities and their corresponding ratios.

Related Work. Goldsmith et al. [7] developed a tool,
called Trend-Prof, that empirically evaluates the computa-
tional complexity of a program by using code instrumen-
tation to count the number of times each block of code is
executed and then grouping these blocks by their behav-
ior. Trend-Prof takes in a collection of workloads, user-
specified features of the workloads, and the program to be
studied. While this technique results in a more detailed
analysis than the one presented in this paper, Goldsmith et
al. did not address the issue of generating the workloads
necessary to achieve a meaningful result, which this paper’s
technique can handle automatically. Our paper is also con-

trasted with this prior work because it describes experiments
in a domain, search-based test data generation, where the
method’s worst-case time complexity is not always known.

Zhao et al. presented an empirical study of the perfor-
mance of search-based test data generation for extended fi-
nite state machine (EFSM) models [8]. Although this paper
focused on efficiency and made preliminary observations
about the relationship between performance and the charac-
teristics of an EFSM model, it did not, like our paper, use
doubling experiments to suggest worst-case time complex-
ities. Lakhotia et al. also reported on an experimental anal-
ysis of the efficiency and effectiveness of search-based test
data generation for C programs [9]. While our paper looks
at generator performance in a holistic manner, this prior
work considered the number of fitness evaluations during
data generation. Similar to our use of doublers that system-
atically increase the size of a schema, Mehrmand and Feldt
empirically studied, with a focus on code coverage, search-
based data generation as program size increased [10].

The empirical work presented in this paper is comple-
mented by theoretical runtime analyses in prior research.
For instance, Arcuri presented the first runtime analysis of a
search-based test data generator called the alternating vari-
able method (AVM) [11], which is also studied in this pa-
per. Arcuri proved the worst-case time complexity of AVM
when it generates data for a simple program called “trian-
gle classification”. More recently, Kempka et al. extended
the work of Arcuri with a theoretical and empirical run-
time analysis revealing that the use of certain local search
techniques with AVM yields better performance than AVM
alone [12]. While our paper’s automated framework can
easily be applied to new schemas—and even to other types
of search-based test data generators—the results in these
two aforementioned papers are more difficult to generalize.

3 Automated Doubling Experiments
Overview. The presented technique for performing au-

tomatic doubling experiments consists of two key compo-
nents. The first is a method for systematically doubling the
initially input relational schema, and the second is a rule for
determining when a valid conclusion can be drawn from the
experiment, thus allowing the doubling process to stop.

Doubling Schemas. Determining worst-case complex-
ity by a doubling experiment requires that the size of the
input be doubled. A relational database schema is a com-
plex artifact with many features and interrelationships. This
makes doubling rule implementation a non-trivial task.

A relational database schema contains tables and
columns, and constraints that restrict the values allowed into
these entities. Since the runtime of a schema testing tech-
nique may be affected by the number of any of these, it is
desirable to have a strategy for doubling each one. Dou-
bling the number of tables or columns in a schema is rel-
atively easy. It is possible to double the number of tables

353

SchemaAnalyst

Database
Schema

Schema
Doubler

Coverage
Criterion

Data
Generator

Doubler
Choice

Data
Generator

Coverage
Criterion

Database
Schema

Test Suite Runtime
Records

Runtime
Records

Convergence
Algorithm

Continue Experiment

SchemaAnalyst Execution

Experiment Manager

Figure 1: Technique for conducting automatic doubling experiments.

in a schema by following this rule: for every table present
in the schema, create a new empty table. It is important
that the new tables be empty to avoid changing more than
one doubling parameter at once—if the new tables con-
tained columns, for instance, then the number of tables and
columns in the schema both would be increased, thus in-
terfering with assessing table doubling’s impact on perfor-
mance. Additionally, doubling the number of columns can
be accomplished by, for every table in the schema, and for
every column, adding a new column to that table.

Doubling integrity constraints is more challenging. The
FOREIGN KEY constraint, for instance, denotes a relationship
between two tables, thus making it difficult to double with-
out introducing extraneous database entities or cyclic de-
pendencies. Since a CHECK constraint can express arbitrary
conditions, it is also challenging to double if the meaning
of each constraint must be considered to ensure satisfiabil-
ity. Since a table can only contain one PRIMARY KEY, if a
schema contains five tables, then at most it can have five
PRIMARY KEY constraints, as adding more keys would re-
quire creating more tables, which should be avoided.

Because of these issues, and others like them, we focus
our attention on constraints that can be doubled as follows:
for every table and for every constraint, duplicate that con-
straint and re-add it to the table. Constraints such as NOT
NULL, UNIQUE, and CHECK are amenable to doubling in this
fashion. It is worth noting that, since they amount to a re-
statement of existing constraints, entities doubled this way
would not have an impact on what data the schema would
allow or disallow into a database, However, since the goal is
to evaluate performance, the timing results should not be ad-
versely affected as long as the test data generation technique
must still process and consider these additional constraints.

Automatic Experimentation. To determine worst-case
complexity, an input of size n is doubled until the ratio
f(2n)/f(n) converges to a stable value. To account for ran-
dom error, every time n is doubled, f(n) is computed ten
times and the median time is used for calculating the ratios;

we chose the median to minimize the effect of outliers. If
the mean is used instead, then a single abnormally long run
could have an outsized impact on the result. Figure 1 shows
the overall structure of the experimentation framework.

Convergence checking is necessary because of the fact
that worst-case time is only evident for large values of n.
If too few doubles are tried, then the experiment may termi-
nate before n reaches a value where the true worst-case time
complexity is apparent. At the same time, for inefficient al-
gorithms, each additional doubling run incurs a substantial
time overhead. For the sake of efficiency, the doubling ex-
periment should terminate as quickly as is possible.

To test for convergence, for every time t, where t de-
notes the number of times the input has been doubled, we
record the doubling ratio rt = f(2tn)

f(2t−1n) . The current ra-
tio rc is compared to a previous ratio rp where p is deter-
mined by a lookback value, such that p = c − lookback .
The result of the comparison is a difference value, given by
difference = |rc−rp|. This is then compared to a tolerance
value, and the experiment is judged to have converged when
difference < tolerance. The lookback and tolerance val-
ues are both configured before the experiment is run.

Another consequence of worst-case time only being ap-
parent for large n is that a very small initial n may appear to
converge to 1, which would indicate constant time complex-
ity. To prevent the experiment from incorrectly terminating
given a small starting n, our method requires that a program
under study display a ratio of 1 for a minimum number of
times before judging that the ratio does in fact converge to
1. That is, if rc = 1, t > minimum must be true, in addi-
tion to the tolerance test, before the experiment is declared
convergent. The minimum parameter is also configured
before an experiment. Because a doubling ratio of 1 signi-
fies constant or logarithmic time complexity, requiring these
doubles does not significantly increase the experimentation
time needed, all the while providing further assurance that
a small ratio is not due to an insufficiently small n.

354

Schema Tables Columns Constraints
BioSQL 28 129 186

Cloc 2 10 0
iTrust 42 309 134

JWhoisServer 6 49 50
NistWeather 2 9 13
NistXTS748 1 3 3
NistXTS749 1 3 3

RiskIt 13 57 36
UnixUsage 8 32 24

Table 2: Database schemas used in the experiments.

4 Empirical Analysis
Experimental Design. To gain a full picture of the per-

formance trade-offs, we conducted an experiment for every
configuration of the parameter space (i.e., schema, cover-
age criterion, data generator, and doubling technique). Ta-
ble 2 shows that the experiments focused on nine database
schemas containing between 1 and 42 distinct tables, 3 to
309 columns, and up to 186 constraints. Including all of the
test adequacy criteria proposed by McMinn et al. [3], the ex-
periments study “weak” criteria (i.e., APC, NCC, ICC, and
UCC), “moderately strong” ones (i.e., ANCC, AICC, and
AUCC), and “strong” criteria (i.e., CondAICC and Clause-
AICC). More details about each criterion, including its for-
mal definition and relationship to the other criteria, are
available in prior work [3]. We used all six test data gen-
erators provided by the SchemaAnalyst tool for automated
test data generation [2], with four techniques employing a
variant of random search and two based on Korel’s alternat-
ing variable method. After a restart of the search, each data
generator could start with either default or random values.

In our study, we set tolerance to 0.40 and lookback to
4. These values were chosen by performing doubling ex-
periments on various algorithms, with known worst-case
time complexities, and observing that the ratio converged
to the correct value with this configuration. After observ-
ing that SchemaAnalyst stopped displaying constant behav-
ior after around five doubles, we set minimum to be four
times this number. Preliminary studies showed that, while
experiments for “fast” configurations could be completed
in less than an hour, “slower” configurations required days.
Since there are over two thousand possible configurations,
the study needed a substantial amount of computational
resources. As a solution, we ran the experiments on a
high-performance computing (HPC) cluster containing 195
worker nodes of various hardware configurations, ranging
from 12 to 16 CPU cores and 24 to 256 GB of memory, and
using a 64-bit GNU/Linux operating system.

Results. Our experiments reveal that, when doubling
UNIQUEs, NOT NULLs, and CHECKs, SchemaAnalyst displays
linear or linearithmic worst-case time complexity. Out of
the 699 experiments performed to double these schema
structures, 72% converged to linear or linearithmic. An-
other 8% failed to converge, and of these experiments, 80%

Tables
p < 0.001

1

≤ 196608 > 196608

Criterion
p < 0.001

2

ai, ap, i, n, u an, au, lai, oai

Node 3 (n = 19868)

0

200

400

600

800

1000
Node 4 (n = 15319)

0

200

400

600

800

1000

Tables
p < 0.001

5

≤ 393216 > 393216

Node 6 (n = 259)

0

200

400

600

800

1000
Node 7 (n = 111)

0

200

400

600

800

1000

Figure 2: Tree model using all variables to predict runtime
in minutes, demonstrating the important of the table count.
Due to space constraints, criterion names are abreviated.

failed because of memory limitations, 13% exceeded the
maximum time limit, and 8% failed for reasons that could
not be determined. The doubling ratios among these ex-
periments were primarily linear or linearithmic at the time
they were terminated, however there were 14 that were
quadratic and 3 that were cubic. The experiments that failed
to converge were primarily generating test data for complex
schemas, such as iTrust and BioSQL, and the most stringent
adequacy criteria, such as ANCC and AUCC. The remain-
ing 20% of the 699 experiments converged on constant or
logarithmic. Since there did not seem to be a pattern in
which configurations converged this way compared to lin-
ear or linearithmic, it is likely that they terminated before
the true worst-case time complexity was apparent.

When doubling the tables and columns in the schemas,
the results were less conclusive. Doubling the number of ta-
bles in the schema caused the runtime of SchemaAnalyst to
increase much faster than it did for the other integrity con-
straints. As a result, 56% of the 467 experiments doubling
this schema feature were terminated before convergence be-
cause they exceeded the time limit. Of the experiments that
converged, 72 converged to quadratic and 10 converged to
cubic. Of the experiments that terminated before they con-
verged, the doubling ratios for 205 indicated quadratic, 18
suggested cubic, and 37 were worse than cubic.

Experiments on the number of columns were also incon-
clusive. We noted that 208 of the converged experiments
showed linear or linearithmic time complexity, while 28
converged to quadratic and 2 cubic. Another 203 experi-
ments failed to converge; however, unlike the experiments
that doubled the number of tables, the experiments for dou-
bling the number of columns most frequently failed by run-
ning out of memory rather than exceeding the time limit.
The experiments that did not converge included 106 ratios
indicating quadratic behavior, 73 cubic, and 3 worse.

To gain a more nuanced understanding of the results, our
tool constructed a conditional inference tree model using

355

−12

−8

−4

0

4

APC
NCC ICC

UCC
ANCC

AICC
AUCC

CondAICC

Clause
AICC

Criterion

T
im

e
lo

g(
m

in
ut

es
)

Criterion vs log(Minutes)

(a) Coverage criterion versus runtime in minutes.

−12

−8

−4

0

4

Dire
cte

d Random Defaults

Dire
cte

d Random

AVM Defaults
AVM

Random Defaults

Random

Data Generator

T
im

e
lo

g(
m

in
ut

es
)

Data Generator vs log(Minutes)

(b) Data generator versus runtime in minutes.

Figure 3: Box and whisker plots for criterion and data generator.

the ctree package in the R language. These trees use the
values of predictor variables (e.g., the adequacy criterion)
to model the value of a response variable (e.g., Schema-
Analyst’s runtime); ctree accomplishes this by repeatedly
splitting the data according to what predictor variable has
the most influence on the response variable. Each tree node
represents a choice of predictor variable, and the level of the
node indicates its importance to the prediction, with higher
nodes being more important to predicting generation time.

Using predictor variables for the number of tables,
columns, UNIQUEs, NOT NULLs, and CHECKs; and the chosen
criterion and data generator, ctree produced the tree model
in Figure 2. In addition to confirming that the number of ta-
bles has the greatest impact on runtime, the tree also reveals
that, when the number of tables in the schema is small, the
choice of coverage criterion is most significant. While the
number of tables had a large impact when over 197, 000,
in practice schemas are unlikely to be this large. Another
invocation of ctree, excluding tables from the list of pre-
dictors, provided insight into the behavior of SchemaAna-
lyst for more practical table sizes. In this tree, not shown
due to space constraints, the coverage criterion emerged as
the most important predictor for runtime, followed by the
choice of data generator, and then the number of columns.

While the trees provide insight into the relative impact
of each predictor, the box and whisker plots shown in the
leaves of the trees do not furnish a detailed view of the
choices within each predictor. To gain a finer-grained un-
derstanding, we created box and whisker plots of our own:
Figure 3a shows the influence of coverage criterion on run-
time, while Figure 3b shows the effect of data generator on
runtime. Figure 3a shows that the strongest coverage crite-
ria in the subsumption hierarchy (i.e., AUCC, ClauseAICC,
and CondAICC) cause runtime to increase the most, fol-
lowed by ANCC and AICC, and then the remaining criteria
(i.e., APC through UCC). We anticipate that the stronger
criteria always lead to higher time overheads because they
force SchemaAnalyst to generate more tests. Also, criteria
at the same level in the hierarchy engender similar runtimes.

Figure 3b reveals that, by a substantial margin, the Ran-
dom and Random Defaults generators took the most time
to generate data. This counterintuitive result suggests that
less effective data generators actually take longer to create
data than those that are known to be more effective [2]. A
less pronounced difference between the remaining genera-
tors can be observed, with the use of default values consis-
tently being faster than the use of random values at restart.

While the box and whisker plots show how choices be-
tween coverage criteria and data generators affect runtime,
the question remains if these differences are statistically and
practically significant. To answer this question, we employ
the Wilcoxon rank-sum test and the Â12 effect size [3].

The Wilcoxon rank-sum test is a non-parametric test for
hypothesis testing. If the result of the test is greater than the
significance level (0.05 is frequently used), then the con-
figurations are indistinguishable. If, however, the result is
less than the chosen level, then they are different. The Â12

test is similar, but for drawing conclusions about the prac-
tical difference between two collections of data. A result
of Â12 = 0.50 means that any difference is not practically
significant, while Â12 > 0.56 or < 0.44 signifies a small
difference, Â12 > 0.64 or < 0.36 denotes a medium differ-
ence, and Â12 > 0.71 or < 0.29 indicates a large difference.

Table 3 shows the statistical tests calculated for every
pair of coverage criteria. The Wilcoxon rank-sum test
reveals that changing the criterion results in statistically
significant differences in runtimes, with the exception of
changing between the four criteria at the top of the sub-
sumption hierarchy and the two criteria at the bottom. The
Â12 results generally show a small to medium practical ef-
fect size when switching between criteria at the high or low
end of the hierarchy, and small or no effect when switching
between criteria at the same level of the hierarchy.

The statistical tests were calculated for all pairs of data
generators, but the resulting table was omitted due to space
constraints. All comparisons of data generators were sta-
tistically significant according to the Wilcoxon rank-sum
test. The Â12 values show that all choices of data gener-

356

APC ANCC CondAICC NCC AUCC AICC ClauseAICC ICC UCC
APC NA 0.425 0.337 0.484 0.334 0.413 0.329 0.481 0.449
ANCC 2.20E-16 NA 0.407 0.561 0.405 0.484 0.399 0.554 0.526
CondAICC 2.20E-16 2.20E-16 NA 0.671 0.503 0.581 0.492 0.656 0.634
NCC 1.20E-02 2.20E-16 2.20E-16 NA 0.335 0.417 0.322 0.491 0.461
AUCC 2.20E-16 2.20E-16 6.92E-01 2.20E-16 NA 0.577 0.490 0.651 0.628
AICC 2.20E-16 1.70E-02 2.20E-16 2.20E-16 2.20E-16 NA 0.412 0.571 0.547
ClauseAICC 2.20E-16 2.20E-16 2.72E-01 2.20E-16 1.40E-01 2.20E-16 NA 0.662 0.641
ICC 4.00E-03 2.20E-16 2.20E-16 1.83E-01 2.20E-16 2.20E-16 2.20E-16 NA 0.472
UCC 9.30E-16 3.83E-05 2.20E-16 7.36E-10 2.20E-16 5.73E-13 2.20E-16 9.29E-06 NA

Rank-Sum: significant insignificant Â12: none small medium large

Table 3: For each pair of coverage criteria, lower left shows Wilcoxon Rank-Sum Test, upper right shows Â12.

ator have at least a small practical impact, with the excep-
tion of choosing between random and random defaults, and
directed random and directed random defaults. Changing
between these data generators results in a large to medium
effect size, and comparing either of the AVM-based gener-
ators to the other primarily resulted in a small difference.

Threats to Validity. Our technique for doubling the
number of constraints in the schema is simply to duplicate
the existing constraints. It is possible that SchemaAnalyst
does less work processing these redundant constraints than
it would given non-restated ones. However, doubling the
constraints in this way is easy to implement and, as the re-
sults show, good at revealing performance trade-offs. Ad-
ditionally, since worst-case time is only apparent for large
n, it is possible that the experiments terminated too quickly.
While we attempted to configure the parameters of our tool
using algorithms with known worst-case complexities and
conducting preliminary experiments with various settings
and under manual supervision, it is possible that our config-
uration was not optimized for use on the HPC cluster.

5 Conclusions and Future Work
This paper presented an automated method for empiri-

cally suggesting the worst-case time complexity of search-
based test data generation methods. Focusing on the do-
main of relational database schemas, our approach repeat-
edly doubles the size of the input schema and observes the
commensurate change in runtime. Although some results
are inconclusive, we find that, in many cases, data genera-
tion is linear or linearithmic and, in others, it is quadratic,
cubic, or worse. Our automated method also revealed that,
for all of the test adequacy criteria in the subsumption hi-
erarchy presented by McMinn et al. [3], stronger criteria
always necessitate more time for test data generation.

Since this paper’s technique did not consider the dou-
bling of constraints like FOREIGN KEYs, future work will
focus on creating doublers for these unstudied constraints.
Additionally, the current doubling mechanism avoids intro-
ducing semantically invalid constraints by restating existing
constraints; in future work we plan to implement and eval-
uate more realistic ways to double relational schemas. Be-
cause certain experiments timed out before converging, we

also want to re-run these configurations with longer time
limits and more memory. Finally, we will investigate how
automated parameter tuning, instead of manual tuning be-
fore experimentation in a new execution environment, can
support choosing the convergence condition. Ultimately,
the combination of the presented framework with the com-
pleted future work will yield an effective way to empirically
understand the worst-case case time complexity of search-
based test data generation for relational database schemas.

References
[1] G. M. Kapfhammer, “A comprehensive framework for testing

database-centric applications,” Ph.D. dissertation, University of
Pittsburgh, 2007.

[2] G. M. Kapfhammer, P. McMinn, and C. J. Wright, “Search-based
testing of relational schema integrity constraints across multiple
database management systems,” in 6th ICST, 2013.

[3] P. McMinn, C. J. Wright, and G. M. Kapfhammer, “An analysis of
the effectiveness of different coverage criteria for testing relational
database schema integrity constraints,” Department of Computer Sci-
ence, University of Sheffield, Tech. Rep., 2015.

[4] P. McMinn, “Search-based software test data generation: A survey,”
Soft. Test., Verif. and Reliab., vol. 14, no. 2, pp. 105–156, 2004.

[5] C. C. McGeoch, A Guide to Experimental Algorithmics. Cambridge
University Press, 2012.

[6] R. Sedgewick and M. Schidlowsky, Algorithms in Java: Fundamen-
tals, Data Structures, Sorting, Searching, 3rd ed. Addison-Wesley
Longman Publishing Co., Inc., 1998.

[7] S. F. Goldsmith, A. S. Aiken, and D. S. Wilkerson, “Measuring em-
pirical computational complexity,” in 6th ESEC/FSE, 2007.

[8] R. Zhao, M. Harman, and Z. Li, “Empirical study on the efficiency
of search based test generation for EFSM models,” in 3rd ICSTW,
2010.

[9] K. Lakhotia, M. Harman, and H. Gross, “AUSTIN: An open source
tool for search based software testing of C programs,” Inf. Softw.
Technol., vol. 55, no. 1, 2013.

[10] A. Mehrmand and R. Feldt, “A factorial experiment on scalability of
search-based software testing,” in 3rd AITSE, 2010.

[11] A. Arcuri, “Full theoretical runtime analysis of alternating variable
method on the triangle classification problem,” in 1st SSBSE, 2009.

[12] J. Kempka, P. McMinn, and D. Sudholt, “Design and analysis of
different alternating variable searches for search-based software test-
ing,” Theor. Comp. Sci., 2015, In Press.

357

Similarity-based regression test case prioritization
Rongcun Wang

School of Computer Science
and Technology

China University of Mining and
Technology

Xuzhou, 221116, China
Email:rcwang@hust.edu.cn

Shujuan Jiang
School of Computer Science

and Technology
China University of Mining and

Technology
Xuzhou, 221116, China

Email:shjjiang@cumt.edu.cn

Deng Chen
Hubei Provincial Key Laboratory of

Intelligent Robot
Wuhan Institute of Technology

Wuhan, 430073, China
Email:chendeng8899@hust.edu.cn

Abstract—With the continuous evolution of software systems,
test suites often grow very large. Rerunning all test cases may
be impractical in regression testing under limited resources.
Coverage-based test case prioritization techniques have been pro-
posed to improve the effectiveness of regression testing. The origi-
nal test suite often contains some test cases which are designed for
exercising production features or exceptional behaviors, rather
than for code coverage. Therefore, coverage-based prioritization
techniques do not always generate satisfactory results. In this
context, we propose a global similarity-based regression test case
prioritization approach. The approach reschedules the execution
order of test cases based on the distances between pair-wise
test cases. We designed and conducted empirical studies on
four C programs to validate the effectiveness of our proposed
approach. Moreover, we also empirically compared the effects
of six similarity measures on the global similarity-based test
case prioritization approach. Experimental results illustrate that
the global similarity-based regression test case prioritization
approach using Euclidean distance is the most effective. This
study aims at providing practical guidelines for picking the
appropriate similarity measures.

Keywords—regression testing, test case prioritization, similar-
ity measures

I. INTRODUCTION

Regression testing is a very time-consuming and expensive
activity. It accounts for more than 50% of the cost of software
maintenance [1]. With the continuous evolution of software
systems, test suites grow very large. The execution of the
whole test suite consumes more time and resources. The high
testing cost conflicts with constrained time and resources.
Many test case prioritization techniques have been proposed
to solve the contradiction [2], [3]. They aim at rescheduling
the execution order of test cases to detect faults as early as
possible.

Coverage-based prioritization techniques have gained wide
attention. Most of these techniques resort to use greedy or
metaheuristic search algorithms [5] to maximize the possible
coverage. The original test suite often contains some test
cases which are designed for exercising production features
or exceptional behaviors, rather than for code coverage [6].
Therefore, coverage-based prioritization techniques do not
always generate satisfactory results.

More recently, similarity-based test case prioritization tech-
niques, incorporating clustering-based [7], ART-based [8] and

other similarity-based prioritization [9], have been developed.
Similarity-based test case prioritization techniques assume
that test case diversity aids to detect more faults[15], [13].
Clustering-based prioritization techniques assume that the test
cases within the same cluster have the same fault detection
capability. Clustering-based prioritization techniques signifi-
cantly depend on the number of clusters. Similarly, ART-based
prioritization technique selects a test case to be prioritized
from a subset of all remaining test cases. In other words, the
method does not assure global test case diversity. Therefore,
we propose a global similarity-based test case prioritization
approach. Our approach rearranges the execution order of
test cases from the global perspective. More importantly, our
proposed approach is nonparametric.

We empirically evaluate the effects of six similarity mea-
sures, including Jaccard Index (JI), Gower-Legendre (GL),
Soka-Sneath (SS), Euclidean distance (ED), Cosine similar-
ity (CS) [10], and Proportional distance (PD) [11]metric,
on the global similarity-based prioritization algorithm over
4 programs written in the C language. One way variance
analysis (ANOVAs) [12] is used to analyze the statistical
difference between different similarity measures. The results
illustrate that Euclidean distance is superior to other similarity
measures in terms of fault detection rate and standard devia-
tion. The global similarity-based prioritization algorithm using
Euclidean distance outperforms random prioritization and the
additional function coverage prioritization. Our proposed ap-
proach is comparable to the best coverage-based prioritization
techniques, i.e., the additional branch coverage prioritization
technique. This study provides a practical guide for picking
the optimal similarity measures.

The rest of this paper is organized as follows: Section
II describes our approach. Experimental design and results
analysis are presented in Section III and Section IV. The threats
to validity are discussed in Section V. Section VI summarizes
related works. The conclusions are described in Section VII.

II. METHODOLOGY

A. Overview

Figure 1 summarizes similarity-based test case prioritization
techniques, which mainly include four steps:

(1) Instrumentation

DOI reference number: 10.18293/SEKE2015-115 358

Distance matrix

Fault detection matrix

3

Modified programs

Test case pool

Results 1

Results 2

Instrumentation Profile
information

1

4

...tmtn

Prioritized test cases

Normalized APFD

Cosine similarity

Euclidean
distance

Proportional
distance

Jaccard Index and
its variants 2

Original programs

Candidate set

Fig. 1. Overview of similarity-based test case prioritization

With the dynamic instrumentation tool gcov, we collect
execution profiles and construct branch coverage vectors.

(2) Distance calculation
The distance between pair-wise test cases is calculated by

a certain distance measure.
(3) Test case prioritization
Test cases are prioritized based on the distance between

pair-wise test cases.
(4) Evaluation
The fault detection effectiveness of a prioritized test suite is

evaluated based on the relation between faults and test cases.

B. Similarity measures

All branches covered by a test case, can be represented as a
binary branch coverage vector V : < v1, v2, . . . , vn >, where
vi is 0 if the ith branch is covered, otherwise 1. Similarly, the
vector can also be implemented with numeric entries, i.e., vi
represents the number of times that ith branch is executed.

1) Cosine similarity: The binary branch coverage vec-
tors generated by executing test case t1 and t2 are X :<
x1, x2, . . . , xn > and Y :< y1, y2, . . . , yn >, respectively.
The similarity between t1 and t2 is defined as follows:

s(t1, t2) =
Xt · Y
∥X∥∥Y ∥

, (1)

where Xt is a transposition of vector X , and ∥X∥ is the
Euclidean norm of vector X . Similarly, ∥Y ∥ is the Euclidean
norm of vector Y . In essence, s is the cosine of the angle
between X and Y . For Cosine similarity, the corresponding
dissimilarity is defined as d(t1, t2)=1−s(t1, t2).

2) Euclidean distance: The Euclidean distance between test
case t1 and t2 is defined as follows:

d(t1, t2) =

√√√√ n∑
i=1

(xi − yi)2. (2)

3) Proportional distance: Let P :< p1, p2, . . . , pn >
and Q :< q1, q2, . . . , qn > stand for two coverage vectors
implemented with numeric entries by executing t1 and t2. The
proportional distance between t1 and t2 is defined as follows:

d(t1, t2) =

√√√√ n∑
i=1

(
|pi − qi|

maxi −mini
)2, (3)

where maxi and mini represent the maximum and minimum
number of times that the ith branch is executed over all tests
in the test suite, respectively. When the difference between
maxi and mini is equal to 0, the corresponding term is also
equal to 0.

4) Jaccard Index and its variants: The similarity between
t1 and t2 based on Jaccard Index and its variants is defined
as follows:

s(t1, t2) =
X · Y

X · Y + w(∥X∥2 + ∥Y ∥2 − 2(X · Y))
, (4)

where X ·Y is the inner product of X and Y . When w is equal
to 1, the above formula is called Jaccard Index. If w=2 and
1/2, this formula is called Soka-Sneath measure and Gower-
Legendre measure, respectively. For Jaccard Index and its
variants, the corresponding distance is d(t1, t2) = 1−s(t1, t2).

C. Prioritization Algorithm

The global similarity-based test case prioritization algorithm
(GSTCP) selects a test case from all not yet prioritized test
cases, rather than a candidate set of them [8]. Its pseudo-code
is described in Algorithm 1.

This algorithm randomly selects a test case tk from the
original test suite T , deletes it from T , and adds it to the tail
of a prioritized sequence P . The distance from test case t in
T to tk is viewed as the minimal set distance from t to P .
Function dist is responsible for the calculation of the distance
between two test cases. The process of test case prioritization
mainly includes two steps. The first step is to seek a test case
ti in T that has the maximum distance from the last test case
in P (Line 9-Line 13). Test case ti is added to the tail of P and
deleted from T . The second step is to update the minimal set
distance from test case t in T to P by comparing the distance
from t to ti and the set distance from t to P before adding ti
to P (Line 15-Line 19).

In the process of prioritizing test cases, this algorithm needs
to calculate the distance between remaining test cases in T
and the last test case in P . The number of times that this
algorithm calculates the distance gradually decreases from n−
1 to 1. The time complexity and space complexity of GSTCP
are O(n2) and O(n), respectively. Compared with the ART-
based prioritization algorithm, GSTCP significantly reduces
time complexity.

359

Algorithm 1: GSTCP
Input : A test suite T : {t0, t1, · · · , tn−1}
Output: A prioritized sequence P : ⟨p0, p1, · · · , pn−1⟩

1 P ← ∅; double dist min[n];
2 randomly select test case tk from T ;
3 max← k; T ← T\{tmax}; P ← ⟨tmax⟩;
4 for i← 0 to n− 1 do
5 dist min[i] = dist(tj , tmax);
6 end
7 repeat
8 max dist = 0.0;
9 for i← 0 to n− 1 do

10 if dist min[i] > max dist and ti ∈ T then
11 max dist = dist min[i]; max← i;
12 end
13 end
14 add tmax to the tail of P ; T ← T\{tmax};
15 for i← 0 to n− 1 do
16 if dist min[i] > dist(ti, tmax) and ti ∈ T then
17 dist min[i] = dist(ti, tmax);
18 end
19 end
20 until T is empty;
21 return P

III. EMPIRICAL STUDY

A. Research Questions

In the empirical study, we address the following two specific
research questions.

RQ1:Do different similarity measures have significant ef-
fects on the global similarity-based test case prioritization
algorithm?

RQ2:Can the most effective global similarity-based prior-
itization technique be as effective as coverage-based prioriti-
zation techniques?

B. Subject Program

Our experiments were conducted over four subject pro-
grams 1, incorporating 2 small-sized Siemens programs and
2 medium-sized UNIX utilities. Descriptive information about
the selected programs is presented in Table I, where the lines
of codes are calculated by the tool “SLOCCount” 2.

TABLE I
DESCRIPTIVE INFORMATION FOR SUBJECT PROGRAMS

Program Fault Lines of Test Suite
Name Versions Code Size

print tokens 7 341-343 4130
print tokens2 10 350-355 4115

make 33 12609-17153 1043
sed 18 4711-9204 370

1http://sir.unl.edu/php/showfiles.php
2http://www.dwheeler.com/sloccount

We eliminated the fault versions whose faults cannot be
detected by any test case. Likewise, if a fault can be detected
by more than 20% of test cases, the fault is also excluded.

C. Evaluation Metric

The average percentage of faults detected (APFD) [18] is
commonly used to evaluate the effectiveness of a prioritization
technique implemented on a whole test suite. Let T be a test
suite containing n test cases and let F be a set of m faults
exposed by T . APFD is defined as follows:

APFD = 1− TF1 + TF2 + . . .+ TFm

nm
+

1

2n
, (5)

where TFi is the first test case in a prioritized test suite that
detects fault i.

The application of APFD assumes that the whole test suite
can be run and find all of the faults. Only a part of test
suite is often executed in regression testing [14], [19]. In this
sense, APFD is unsuitable to measure the effectiveness of a
prioritization technique implemented on a part of test suite.
Therefore, we use a metric, called Normalized APFD [20],
which utilizes information on both fault finding and time of
detection. Let TFi be the first test case in the prioritized and
reduced test suite T ′ of T that detects fault i. Let n′ be the
size of T ′. Normalized APFD is defined as follows:

NAPFD = p− TF1 + TF2 + . . .+ TFm

n′m
+

p

2n′ , (6)

where p represents the quotient of the number of faults
detected by the prioritized and reduced test suite divided by
the number of faults detected in the whole test suite. If a fault
i is never detected by T ′, TFi is set 0.

Since all prioritization algorithms in this study have the
nature of randomness, we repeated 100 times for every pri-
oritization algorithm with different random seeds. The mean
NAPFD values of every sample were calculated.

IV. EXPERIMENTAL RESULTS

We took 10 samples starting from 2% to 20% with the
increment of 2% for every program so as to look deeper into
the statistical difference between different similarity measures.

A. Experiment 1

1) Experimental Results: The experimental results are
shown in Figure 2, where the x-axis of each graph indicates
the number of tests selected; while the y-axis shows the mean
NAPFD of each similarity measure.

From Figure 2, Cosine similarity performed better or as
good as Jaccard Index in terms of NAPFD. Likewise, Eu-
clidean distance also performed consistently better than Jac-
card Index for smaller samples. Particularly, Euclidean dis-
tance outperformed other similarity measures for all samples
over the program print tokens and print tokens2. The results
of Jaccard Index were very close to those of its variants.

Table II summarizes the standard deviations for all similarity
measures. The minimal standard deviations are reported high-
lighting cells in gray shade. From Table II, Euclidean distance

360

0% 4% 8% 12% 16% 20%
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Test cases selected

N
A

PF
D

CS

ED

GL

JI

PD

SS

(a) print tokens

0% 4% 8% 12% 16% 20%
0.7

0.75

0.8

0.85

0.9

0.95

1.0

Test cases selected

N
A

PF
D

CS

ED

GL

JI

PD

SS

(b) print tokens2

0% 4% 8% 12% 16% 20%
0.6

0.7

0.8

0.9

1.0

Test cases selected

N
A

PF
D

CS

ED

GL

JI

PD

SS

(c) schedule

0% 4% 8% 12% 16% 20%
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Test cases selected

N
A

PF
D

CS

ED

GL

JI

PD

SS

(d) schedule2

Fig. 2. NAPFDs of six similarity measures using the global similarity-based test case prioritization algorithm

TABLE II
THE STANDARD DEVIATIONS OF DIFFERENT SIMILARITY MEASURES BASED ON THE GLOBAL SIMILARITY PRIORITIZATION ALGORITHM

Program SM Sampling proportion
2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

CS 0.145 0.125 0.100 0.116 0.084 0.086 0.065 0.070 0.070 0.079
ED 0.098 0.085 0.083 0.062 0.055 0.045 0.043 0.037 0.039 0.035

print tokens PD 0.121 0.109 0.113 0.109 0.110 0.109 0.125 0.106 0.108 0.109
JI 0.136 0.112 0.108 0.093 0.099 0.086 0.068 0.067 0.078 0.074

GL 0.117 0.137 0.105 0.108 0.094 0.083 0.085 0.077 0.075 0.065
SS 0.145 0.122 0.111 0.094 0.099 0.087 0.089 0.077 0.073 0.069
CS 0.099 0.065 0.050 0.050 0.036 0.034 0.029 0.020 0.024 0.019
ED 0.066 0.036 0.027 0.025 0.015 0.013 0.012 0.009 0.008 0.007

print tokens2 PD 0.139 0.079 0.059 0.060 0.051 0.032 0.039 0.039 0.029 0.031
JI 0.109 0.070 0.050 0.040 0.030 0.035 0.023 0.023 0.022 0.023

GL 0.094 0.058 0.059 0.051 0.039 0.029 0.030 0.021 0.016 0.015
SS 0.097 0.080 0.048 0.044 0.044 0.033 0.028 0.026 0.024 0.017
CS 0.277 0.180 0.099 0.084 0.057 0.055 0.045 0.033 0.031 0.024
ED 0.167 0.133 0.079 0.058 0.046 0.051 0.036 0.035 0.046 0.025

make PD 0.280 0.265 0.220 0.241 0.233 0.177 0.158 0.196 0.156 0.116
JI 0.285 0.239 0.240 0.132 0.172 0.122 0.118 0.145 0.049 0.074

GL 0.213 0.204 0.178 0.137 0.138 0.193 0.053 0.096 0.049 0.068
SS 0.269 0.253 0.189 0.124 0.131 0.152 0.136 0.113 0.076 0.070
CS 0.055 0.064 0.056 0.055 0.053 0.054 0.048 0.040 0.038 0.042
ED 0.038 0.042 0.040 0.031 0.042 0.033 0.031 0.035 0.026 0.032

sed PD 0.062 0.540 0.054 0.041 0.043 0.048 0.039 0.406 0.034 0.043
JI 0.062 0.052 0.055 0.053 0.041 0.045 0.048 0.051 0.043 0.041

GL 0.058 0.056 0.043 0.060 0.042 0.052 0.051 0.052 0.047 0.041
SS 0.051 0.061 0.050 0.053 0.051 0.058 0.038 0.043 0.044 0.040

generated smaller standard deviations than other similarity
measures with the same sampling proportion. This means
that the application of Euclidean distance reduces the risk of
missing faults in practice.

2) Experimental Analysis: We conducted ANOVAs to ver-
ify whether different similarity measures generate the signifi-
cant effects on the global similarity-based prioritization algo-
rithm at 5% significance level. Having executed ANOVAs, we
find that the p-value was less than 0.05 for every sample across
every subject program. In other words, different measures have
significant effects on the global similarity-based prioritization
algorithm. We further conducted multiple comparisons so as to
seek which similarity measures can produce higher NAPFDs.

Table III shows the results of multiple comparisons between
pair-wise similarity measures, where each element (m,n)
denotes the “win/tie/loss” (win: the number of times that the
m-th row measure performs significantly better than the n-
th column measure; tie: the number of times that there is no
significant difference between the m-th row measure and the

n-th column measure; loss: the number of times that the m-
th row measure performs significantly worse than the n-th
column measure) value.

TABLE III
THE SUMMARIZED RESULTS OF MULTIPLE COMPARISONS BETWEEN

PAIR-WISE SIMILARITY MEASURES OVER 40 DIFFERENT EXPERIMENTAL
SETTINGS (4 PROGRAMS × 10 SAMPLING RATES)

CS ED GL JI PD
ED (27/12/1) - - - -
GL (1/31/8) (1/9/30) - - -
JI (1/32/7) (1/8/31) (2/34/4) - -
PD (6/20/14) (2/9/29) (8/19/13) (9/19/12) -
SS (0/32/8) (0/8/32) (1/36/3) (3/35/2) (12/20/8)

From Table III, Euclidean distance performed better than
other similarity measures. In the best case, Euclidean distance
outperformed Soka-Sneath on 32 settings, while Soka-Sneath
did not outperformed it on any setting. In the worst case, Eu-
clidean distance outperformed Cosine similarity on 27 settings,

361

while Cosine similarity outperformed it only on 1 settings. The
results generated by Jaccard Index were very close to those of
its variants. The plausible explanation is that the topologies of
Jaccard Index and its variants are very similar.

B. Experiment 2

1) Experimental Results: We mainly compared the global
similarity-based prioritization using Euclidean distance with
random prioritization (RP), the additional function coverage
prioritization (AF), the additional statement coverage prioriti-
zation (AS), and the additional branch coverage prioritization
(AB) [4]. Figure 3 shows the NAPFDs of different prioritiza-
tion techniques. Table IV summarizes the standard deviations
for different prioritization techniques.

TABLE V
THE SUMMARIZED RESULTS OF MULTIPLE COMPARISONS BETWEEN

DIFFERENT PRIORITIZATION TECHNIQUES OVER 40 DIFFERENT
EXPERIMENTAL SETTINGS (4 PROGRAMS × 10 SAMPLING RATES)

RP AF AS AB
AF (24/16/0) - - -
AS (40/0/0) (22/13/5) - -
AB (40/1/0) (25/9/6) (14/26/0) -
ED (39/1/0) (23/14/3) (10/22/8) (10/18/12)

2) Experimental Analysis: Table V shows the results of
multiple comparisons between different prioritization algo-
rithms. Our approach performed significantly better than RP,
and AF in terms of NAPFD. In general, the global similarity-
based prioritization algorithm using Euclidean distance was
equal to AS. ED outperformed AS on 10 settings, while
AS outperformed it on 8 settings. Particularly, our proposed
approach was comparable to the best coverage-based prior-
itization algorithm, i.e., AB. ED outperformed AB on 10
settings, while AB outperformed it on 12 settings.

Additionally, our proposed approach is superior to other
prioritization techniques with respect to the standard deviation
of NAPFD. This means that it can yield more reliable
results. In summary, the global similarity-based prioritization
algorithm using Euclidean distance is very promising as a
candidate for regression test case prioritization.

V. THREATS TO VALIDITY

This section discusses the potential threats to validity.
Threats to internal validity are from the effects of instrumen-

tation and the sampling rates. Therefore, we collected profile
information using a professional tool gcov. Additionally, we
took 10 samples for every subject program and reported the
mean value of every sample.

Threats to external validity for this study concern the
representativeness of the programs utilized. Although the four
programs are from different domains with different character-
istics, they may not be representative of all other programs.
The threat can be addressed by selecting larger scale and more
representative industrial programs in future work.

Threats to construct validity may be affected by the evalu-
ation metric. As previous studies, NAPFD is used to evaluate

the effectiveness of different prioritization techniques. This
may be insufficient for evaluating the effectiveness of different
combinations. There may be other metrics which are more
relevant to this study.

VI. RELATED WORK

Ledru et al. used string distances for test case prioritization
[9]. They empirically evaluated the effects of string edit
distances on test case prioritization. Test cases were ordered
before executing them. Similarly, Hemmati et al. introduced
a family of similarity-based test case selection techniques for
model-based testing [13], [15]. The above two methods were
applied to black-box testing. On the contrary, our approach
uses dynamic profile information generated by executing test
cases to reschedule the execution order.

Clustering algorithms have been also applied to test case
prioritization. Yoo et al. [7] combined clustering with expert
knowledge to achieve scalable prioritization. The process of
prioritization depended on human efforts, which is different
from ours. Dickinson et al. [11] presented distribution-based
filtering and prioritizing techniques incorporating sampling
methods. Clustering-based prioritization techniques signifi-
cantly depend on a parameter, i.e., the number of clusters.
On the contrary, our approach is nonparametric, i.e., it dose
not depend on the number of clusters.

More recently, similarity-based algorithms have been ap-
plied to regression test case prioritization. Krishna et al. [16]
used Levenshtein distance to similarity-based test prioritiza-
tion. Jiang et al. [8] proposed a new family of coverage-
based ART techniques and used Jaccard Index to measure
the distance between pair-wise test cases. Fang et al. [17]
introduced several similarity-based test case prioritization
techniques based on the edit distances of ordered sequences.
However, we represented the execution profile that a test case
exercised into a branch coverage vector, rather than an ordered
sequence [17]. Differently from Jiang et al. [8] and Krishna
et al. [16], where only one similarity measure was used, we
empirically evaluated six similarity measures.

VII. CONCLUSIONS

In this paper, we proposed a global similarity-based test case
prioritization algorithm based on the comparison of similarity
measures between test cases in a given test case suite. By
ANOVAs, we find that different measures have significant
effects on the global similarity-based test case prioritization
algorithm. Particularly, Euclidean distance perform better than
other five similarity measures in terms of NAPFD and stan-
dard deviation. Therefore, we recommend Euclidean distance.
Moreover, the global similarity-based prioritization algorithm
using Euclidean distance outperforms random prioritization
and the additional function coverage prioritization with respect
to NAPFD. It is comparable to the additional branch cover-
age. Since our proposed approach generates smaller standard
deviation, it can provide more reliable results.

For future work, much more similarity measures will be
empirically evaluated. Least but not last, we will collect more

362

0% 4% 8% 12% 16% 20%
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Test cases selected

N
A

PF
D

RP

AF

AS

AB

ED

(a) print tokens

0% 4% 8% 12% 16% 20%
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

Test cases selected

N
A

PF
D

RP

AF

AS

AB

ED

(b) print tokens2

0% 4% 8% 12% 16% 20%
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Test cases selected

N
A

PF
D

RP

AF

AS

AB

ED

(c) schedule

0% 4% 8% 12% 16% 20%
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Test cases selected

N
A

PF
D

RP

AF

AS

AB

ED

(d) schedule2

Fig. 3. NAPFDs of different test case prioritization techniques

TABLE IV
THE STANDARD DEVIATIONS OF DIFFERENT PRIORITIZATION ALGORITHMS

Program TCP Sampling proportion
2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

RP 0.155 0.149 0.135 0.126 0.113 0.105 0.095 0.089 0.087 0.084
AF 0.141 0.136 0.120 0.101 0.102 0.085 0.080 0.087 0.077 0.069

print tokens AS 0.128 0.114 0.097 0.084 0.092 0.085 0.074 0.076 0.077 0.062
AB 0.112 0.106 0.090 0.087 0.085 0.077 0.079 0.076 0.069 0.063
ED 0.098 0.085 0.083 0.062 0.055 0.045 0.043 0.037 0.039 0.035
RP 0.138 0.123 0.119 0.095 0.087 0.086 0.084 0.073 0.074 0.065
AF 0.130 0.107 0.098 0.083 0.074 0.077 0.052 0.048 0.044 0.039
AS 0.085 0.079 0.072 0.070 0.063 0.057 0.056 0.041 0.031 0.009

print tokens2 AB 0.075 0.068 0.054 0.057 0.049 0.036 0.030 0.021 0.020 0.008
ED 0.066 0.036 0.027 0.025 0.015 0.013 0.012 0.009 0.008 0.007
RP 0.260 0.225 0.194 0.156 0.121 0.116 0.105 0.096 0.073 0.082
AF 0.236 0.173 0.132 0.107 0.091 0.079 0.052 0.036 0.025 0.022
AS 0.190 0.141 0.093 0.080 0.055 0.035 0.049 0.026 0.013 0.011

make AB 0.172 0.152 0.095 0.072 0.053 0.034 0.038 0.039 0.012 0.015
ED 0.167 0.133 0.079 0.058 0.046 0.051 0.036 0.032 0.046 0.025
RP 0.126 0.113 0.095 0.097 0.073 0.052 0.061 0.045 0.038 0.029
AF 0.126 0.090 0.072 0.063 0.044 0.040 0.032 0.030 0.021 0.020
AS 0.086 0.073 0.069 0.043 0.024 0.022 0.035 0.017 0.025 0.021

sed AB 0.072 0.065 0.052 0.030 0.027 0.021 0.022 0.018 0.015 0.017
ED 0.038 0.042 0.043 0.040 0.031 0.042 0.033 0.031 0.026 0.032

coverage information test cases exercised and construct differ-
ently structural profiles. The effects of differently structural
profiles on test case prioritization will also be empirically
evaluated.

REFERENCES

[1] M. J. Harrold and A. Orso. Retesting software during development and
maintenance. In FOSM’08, pp. 99-108, 2008.

[2] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A stduy of
effective regression testing in practice. In ISSRE’97, pp. 230-238, 1997.

[3] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. Test case
prioritization: an empirical study. In ICSM’99, pp. 179-188, 1999.

[4] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioritiza-
tion: a family of empirical stdudies. IEEE Trans. Softw. Eng., 28(2):159-
182, 2002.

[5] Z. Li, M. Harman, R. M. Hierons. Search algorithms for regresion test
prioritization. IEEE Trans. Softw. Eng., 33(4):225-237, 2003.

[6] G. Rothermel, M. J. Harrold, J. V. Ronne, and C. Hong. Empirical
studies of test suite reduction. Softw. Test. Verif. Rel., 12: 219-249,
2002.

[7] S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases
to achieve effective and scalable prioritisation incorporating expert
knowledge. In ISSTA’09, pp. 201-212, 2009.

[8] B. Jiang, Z. Y. Zhang, W. K. Chan, and T. H. Tse. Adaptive random
test case prioritization. In ASE’09, pp. 233-244, 2009.

[9] Y. Ledru, A. Petrenko, and S. Borody. Prioritizing test cases with string
distances. Automat. Softw. Eng., 19(1):65-95, 2012.

[10] R. Xu and D. Wunsch. A surven of clustering algorithms. IEEE Trans.
Neural Networ., 16(3):645-678, 2005.

[11] W. Dickinson, D. Leon, and A. Podgurski. Finding failures by cluster
analysis of execution profiles. In ICSE’01, pp. 339-348, 2001.

[12] H. Scheffe. The Analysis of Varianc. John Wiley and Sons, New York,
1993.

[13] H. Hemmati, A. Arcuri, and L. Briand. Achieving scalable model-based
testing through test case diversity. ACM Trans. Softw. Eng. Methodol.,
22(1):1-42, 2013.

[14] J. Jones, and M. Harrold. Test suite reduction and prioritization for mod-
ified condition/decision coverage. IEEE Trans. Softw. Eng., 29(3):193-
209, 2003.

[15] H. Hemmati and L. Briand. An industrial investigation of similarity
measures for model-based test case selection. In ISSRE’10, pp. 141-
150, 2010.

[16] M. Krishna, M. Koyuturk, A. Grama, and S. Jagannathan. PHALANX:
A graph-theoretic framework for test case prioritization. In SAC’08, pp.
667-673, 2008.

[17] C. Fang, Z. Chen, K. Wu, Z. Zhao. Similarity-based test case prioriti-
zation using ordered sequences of program entities. Softw. Quality J.,
22(2):335-361, 2014.

[18] G. Rothermel, R. Untchm, C. Chu, and M. J. Harrold. Prioritizing test
cases for regression testing. IEEE Trans. Softw. Eng., 27(10):929-948,
2001.

[19] A. Smith, J. Geiger, G. Kapfhammer, and M. Soffa. Test suite reduction
and prioritization with call trees. In ASE’07, pp. 539-540, 2007.

[20] X. Qu, M. B. Cohen, and K. M. Woolf. Combinatorial interaction
regression testing: a study of test case generation and prioritization. In
ICSM’07, pp. 255-264, 2007.

363

(DOI reference number: 10.18293/SEKE2015-049)

Secure, Dynamic and Distributed

Access Control Stack for Database Applications

Óscar Mortágua Pereira¹, Diogo Domingues Regateiro², Rui L. Aguiar³

Instituto de Telecomunicações

DETI, University of Aveiro

Aveiro, Portugal

{omp¹, diogoregateiro², ruilaa³}@ua.pt

Abstract— In database applications, access control security layers

are mostly developed from tools provided by vendors of database

management systems and deployed in the same servers

containing the data to be protected. This solution conveys several

drawbacks. Among them we emphasize: 1) if policies are

complex, their enforcement can lead to performance decay of

database servers; 2) when modifications in the established

policies implies modifications in the business logic (usually

deployed at the client-side), there is no other possibility than

modify the business logic in advance and, finally, 3) malicious

users can issue CRUD expressions systematically against the

DBMS expecting to identify any security gap. In order to

overcome these drawbacks, in this paper we propose an access

control stack characterized by: most of the mechanisms are

deployed at the client-side; whenever security policies evolve, the

security mechanisms are automatically updated at runtime and,

finally, client-side applications do not handle CRUD expressions

directly. We also present an implementation of the proposed

stack to prove its feasibility. This paper presents a new approach

to enforce access control in database applications, this way

expecting to contribute positively to the state of the art in the

field.

Keywords-information security; access control; database; SQL;

software architecture.

I. INTRODUCTION

Access control [1], [2] is a critical security issue in many
software systems. Access control “is concerned with limiting
the activity of legitimate users.” [3]. Basically, it is a process to
supervise every user’s requests to access protected resources, in
our case data residing inside database management systems
(DBMS), by determining whether authorizations should be
granted or denied. Access to data stored in DBMS is mostly
achieved issuing Create, Read, Update and Delete (CRUD)
expressions from client-side applications. Nevertheless, access
control security layers are traditionally deployed in centralized
servers where the data to be protected are stored. Rephrasing,
the attackers are distributed and the security wall is built
around the data. Very few scientific contributions have been
proposed based on a distributed architecture. Basically, in a
distributed architecture the walls are not centralized but
deployed by putting them close to the attackers, as in [4], [5].
At first sight, the distributed architecture would seem the best
one. Although, distributed architectures raise additional
security concerns, such as how to trust that legitimate users are

issuing authorized requests only. To overcome this security
concern, in this paper we propose a security stack, herein
referred to as Secure, Dynamic and Distributed Access Control
Stack for Database Applications. The security stack comprises
the policies to be enforced and also the correspondent
authorized Create, Read, Update and Delete (CRUD)
expressions. In order to keep access control mechanisms
always aligned with the established policies, they are
automatically updated at runtime whenever policies are
modified. We also provide an empirical proof of concept to
demonstrate the feasibility of the proposed security stack. It is
expected that the outcome of this paper can contribute to new
approaches to enforce access control policies, namely by
deploying them based on distributed architectures.

The remainder of this paper is organized as hereafter
described. Chapter II presents the motivation for the work
detailed in this paper, chapter III presents the related work,
chapter IV presents the security stack, chapter V presents a
proof a concept of the security stack and chapter VI concludes
this paper and details the future work.

II. MOTIVATION

Currently, there is no standard to enforce access control
policies in database applications. Security experts complement
security layers built from embedded tools provided by vendors
of DBMS with additional security artifacts (components and/or
hard-coded inside the client-application) built from scratch and
tailored to the specific scenario. Approaches based on this
approach convey several drawbacks. Among them we
emphasize:

Scalability: security layers based on DBMS tools share
concurrently the computational resources allocated to DBMS.
When access control policies are many and complex, they can
lead to performance decay. Moreover, very often the security
layers resort to additional techniques, such query rewriting
techniques [6][7][8][9][10], the use of views
[10][11][12][11][12][6] and parameterized views [15].
Inevitably, these additional artifacts will lead to the allocation
of additional computational resources and, therefore, additional
performance decay, as explicitly recognized in most of the
papers by their authors.

Maintainability: security layers built from DBMS tools can
be easily maintained since they are centralized in a server. In

364

opposite, security artifacts deployed in client-side applications
can lead to huge maintenance efforts. For example, if an
attribute of a table becomes protected by a new or modified
policy, there is no other alternative than modify in advance all
the CRUD expressions violating that policy. Otherwise, CRUD
expressions are rejected while the updating process is not
completed.

Security gap: CRUD expressions are mostly issued from
client-side applications. If this process is not controlled,
malicious users can issue CRUD expressions systematically
against the DBMS expecting to identify any security gap. It is
very likely that professional malicious users will end up
violating the protected data to some extension. Malicious users
can follow additional malicious approaches, such as SQL
Injection, the use of sequences of valid CRUD expressions [16]
and also resorting to reflection [17] to get and/or modify the
way software works. Other security gaps can arise from
collecting data sent between a legitimate user and the DBMS
and also from personification.

To overcome these drawbacks, we propose a security stack
with the following properties: 1) access control mechanisms are
mostly distributed in each client-side system; 2) access control
mechanisms are updated whenever modifications occur in the
established policies; 3) client-side applications are prevented
from issuing CRUD expressions and, finally, 4) additional
security mechanisms are provided for user authentication and
secure connections.

III. RELATED WORK

We will now discuss the work in the field of access control
enforcement and how they relate to our proposed security
stack.

A complete architecture for web applications is presented in
[18], where the problem of sensitive data being stored in a
browser is solved by enforcing end-to-end security on data,
across the virtual machine, operating system, networking and
application layers. However, it relies solely on mandatory
access control to enforce the end-to-end security policies and it
is only concerned with web applications.

In [19] a new tool is presented, Ur/Web, where the access
control policies can be checked by CRUD expressions written
by programmers in a RDBMS backed system. It uses an
extension to the standard SQL language with predicates that
indicates ‘which secrets the users knows’ and determine what
information can be disclosed. However, these predicates are not
checked against the access control policies, potentially leaking
protected information. λDB [20] is a programming language that
enforces access control policies to data by static typing for
data-centric programs. It allows the definition of entities that
are checked at compile-time with the defined access control
policies. Each entity has a set of attributes that are given a read
and write permissions with different predicates, similarly to
Ur/Web. Another similar work is presented in [21] using
predicated grants. These solutions only provide access control
mechanisms, not addressing the rest of the stack.

The work presented in [22] aims to provide role-based
access control using proxy objects, generated using a custom
compilation tool. Each role has a set of different proxy objects,

which are made available through Java Remote Method
Invocation (RMI). Note that the proxy objects only implement
the methods that the given role can execute, therefore it is not
possible for a client to execute other methods. This method
guards against reflection mechanisms since they do not work
over sockets, but this solution is limited to RBAC and it
protects access to java objects, not the data layer itself.
Similarly, [23] is a security-typed programming language that
extends Java that aims to give support for information flow and
access control, enforced at both compile and runtime.
However, this solution is also mostly used to manage
information at the application level, leaving out other data
sources, like a RDBMS.

In [4], the authors present a proposal to extend the RBAC
model to control sequences of CRUD expressions. In [5], the
authors present a proposal to implement distributed RBAC
mechanisms. The content of both is relevant but they are
focused on RBAC policies only. Additionally, key issues such
avoiding the use of CRUD expressions at the client-side is also
not supported.

IV. ACCESS CONTROL STACK PRESENTATION

For a software solution to provide secure, dynamic and
distributed access control mechanisms we need to evaluate the
requirements and the problems that arise from this architecture.

A. Access Control Stack

We will now discuss the necessary requirements to build
Secure, Dynamic and Distributed Access Control Stack for
Database Applications. As previously described, the identified
fragilities of current solutions, and therefore to be addressed by
the stack, are: scalability, maintainability and security gap.
Figure 1 presents the general access control stack.

The data layer will obviously reside on the server side, so
that it can be provisioned to all the clients. It can use relational
DBMS[24] or some other form of data storage, e.g. a
distributed file system[25][26] (e.g. Apache Hadoop[27]).

The application layer requesting access to the protected
data resides on the client-side. It will access the data layer
through the Security Layer.

The Security Layer is the layer responsible to ensure that all
operations requested by the Application layer follow the
established security rules. It comprises three main components:
Security Manager, Access Control and Network Security.

Security Manager: The Security Manager component needs
to address three main issues. The first one is to ensure that
access control mechanisms are dynamically built and updated
at runtime. This is very important to overcome one of the
fragilities of current solutions: maintainability. The building
and updating processes need to be based on an automated
engine responsible for generating the necessary code for the
Access Control component. The automated engine takes as
input the policies to be enforced and also the architectural
model to be implemented, as shown in Figure 2. The place to
store the policies to be enforced depends on each particular use
case or scenario. The second one is ensure that the access to the
Data layer follows the established security rules. The third and
last one is provide a standard interface to Application layer.

365

Applcation

Security Manager

Access Control
Network
Security

Data

Security
Layer

Figure 1. General access control stack.

+ Access Control
Policies

Access
Mechanisms

Security
Model

Figure 2. Access control mechanisms generation process.

This is quite relevant because Access Control component is
not static as previously described. It depends on the policies to
be enforced.

Network Security: Connections to database need to follow
some security rules, namely authentication and secure
connections. These rules are enforced by the Network Security
component. Authentication mechanism forces users to present
some sort of identification before accessing the data. To
prevent malicious users from accessing the data when it is sent
to the authenticated users it should be possible to setup a secure
communication channel, which is typically done using the
SSL/TLS [28] communication protocols.

Access Control: The architecture and functionalities of the
Access Control component depend on the policy to be enforced
and also on the architectural model to be implemented.
Nevertheless, independently from the policy to be adopted, the
drawbacks related to security gaps need to be addressed. Three
main functionalities are required, as shown in Figure 3. The
first one is the type of policy to be used, such as RBAC. The
second one is the use of Sequence Controllers which are
responsible to only allow the execution of valid sequences of
CRUD expressions. The third one is the deployment of CRUD
pointers instead of CRUD expressions. The first functionality
enforces the top level functionalities of the policy to be
enforced. The second functionality prevents malicious users
from issuing sequences of authorized CRUD expressions to
disclose the protected data. The third functionality prevents
malicious users from resorting to techniques based on CRUD
expressions to violate the established policies.

Top Level Policy

Sequence Controller

CRUD pointers

Figure 3. Access Control sub-components.

B. Technical Issues

Like any other software solution, there are technical issues
that need to be solved before it can be expected to be
considered useful. As such, we will now discuss the issues
related to the Security Layer. However, it is impossible to
discuss every issue that can rise from every possible scenario,
so this chapter should be used as a starting point and the
scenario-specific issues analyzed separately.

The Security Layer handles the Security Manager, the
Access Control and the Network Security components. The
Network Security aims at addressing two security problems:
the network communication and the client authentication. The
access control layer is where the access control effectively
happens. It must be dynamic and distributed, which means that
it must adapt to policy changes and be enforced on the client
side. The Security Manager configures and manages the
Network Security and the access control mechanisms.

Regarding the access control, the first problem comes from
the fact that it is distributed. This means that the access control
mechanisms will be subject to all kinds of attacks by malicious
users that cannot be detected, since it happens on the client
side. Therefore, there must be some mechanisms in place in
order to prevent them. One of the major concerns are the
reflection mechanisms[17] that some programming languages
provide. These allow a program to inspect and modify the
structures and behavior of the program at runtime (specifically
the values, meta-data, properties and functions). This means
that a software solution based on this stack cannot blindly rely
on the distributed access control mechanisms to stop malicious
users. To address this problem the access mechanisms were
provided with CRUD pointers. CRUD pointers are some
identifying tokens that are used by the client application instead
of the actual CRUD expressions, which were pushed to the
server-side. By making these pointers hard to guess and valid
for a finite period of time, which must be small enough to
prevent other users from using it by guessing, the usage of
reflection mechanisms no longer threatens to manipulate the
CRUD pointers.

The dynamic counterpart of the access control layer
requires that the access control mechanisms in the client
applications change as the access control policies change. This
requires the clients to be notified somehow when they change
and to enforce the changes immediately. To achieve this we
have a Security Manager that implements the access
mechanisms using a security model that defines how the access
control mechanisms should be created from the access control
policies. It also provides them with the CRUD pointers
received from the server and handles the network security
procedures on behalf of the client application.

Finally, the network security has many problems to address,
of which we will emphasize two: the problem that the data sent
between two entities in a network can be read by anyone if no
measures are taken to prevent it, and the problem that the
entities involved generally do not prove their identity, allowing
impersonation to occur. The first problem does not make it
possible to the malicious user to manipulate the data being sent.
However, sensible data (e.g. a client’s identification) can still
be acquired, which poses a serious security breach. The second

366

problem not only allows the data that is sent to be manipulated
but also has all the problems the first problem implies, making
it a greater concern. A common approach to handle this is the
usage of SSL/TLS protocols, which can create a secure
communication channel over an insecure medium, like the
internet. SSL/TLS protocols verify the identity of servers and
optionally also of users. Authentication of users is usually
handled by a server side application that receives the client’s
identification tokens (e.g. a username and password) and
provides the client application with the means to access the
data if the tokens are valid.

V. PROOF OF CONCEPT

With this proof of concept we intend to demonstrate that
the proposed access control stack is feasible of getting
implemented. To achieve this we used a Java application as the
client and the SQL Server 2010 RDBMS to manage the sample
data we used. The implementation is called S-DRACA, which
stands for Secure, Dynamic and Distributed Role-based Access
Control Architecture.

A. Overview

We will now give an overview of the several components
that are part of S-DRACA.

Client

Client Application

Server

S-DRACAS-DRACA

Policy Manager

Business
Manager

Access
Mechanisms

Policy Extractor

Data

Authentication
/ Data

EncryptionAccess
Mechanisms
Awareness

Policy
Server

Figure 4. S-DRACA block diagram.

Figure 4 shows the block diagram of our proof of concept.
We can see that on the server side we store the data in a
database, along with the information about the access control
policies in place on the system, which was stored in the Policy
Server database. There is also a server application, the Policy
Manager, which implements the SSL/TLS encryption and
authentication mechanisms and also manages the policies to
enforce in the system. In our proof of concept we only had one
instance of a Policy Manager, but there could be many over
different servers to distribute load in a cluster. On the client
side we have the access mechanisms, which the client
application uses to access the data stored on the server. The
access mechanisms are instantiated by a Business Manager,
which follows the policies defined on the server. We also have
a Policy Extractor, a custom java annotation, which creates
interfaces that the client application can use to access the data,

using the Security Model and the defined access control
policies.

The access control policy used in our proof of concept is
the role-based access control (RBAC). We chose this type of
access control because it is natively supported by many DBMS,
but the model used in the Policy Server could be changed to
implement any type of access control policy without any
implication to our proof of concept.

We will now explain how each layer was implemented in
S-DRACA.

B. Layer Implementation

In S-DRACA, each layer was implemented independently
for each other. The data layer is managed by the SQL Server
2010 RDBMS and it is accessed by the Policy Manager. It
stores the data being protected as well as the access control
policies defined for the system. Any operation requested by the
client-application to manipulate the defined policies must go
through the Policy Manager, to which the client application
must be connected and authenticated. The requests to access
the data are sent directly to the RDBMS, reusing the secure
communication channel created when the client application
connected to the Policy Manager to authenticate.

The network security component is implemented both on
the client (Authentication and Data Encryption block), and on
the server side (Policy Manager block). It uses several
standards of the industry for data encryption and
authentication, such as SSL/TLS and using hashed and salted
passwords to store the client’s credentials, respectively.

For the remainder of the security layer, we had to resolve
the problems that originated from the programming language’s
reflection features and make it adapt dynamically to changes
made to the policies defined in the system. Our access
mechanisms are Java classes, called Business Schemas, see
Figure 5, which only implement functions to access and
manipulate data that the client application is allowed to. This is
possible because when the client application authenticates with
the Policy Manager, it receives the policies stored in the Policy
Server that applies to said client. The Business Manager then

Figure 5. S-DRACA usage example.

367

uses this information and the Security Model to generate the
Business Schemas with the appropriate methods (see Figure 2).
The client application can then use these runtime generated
Business Schemas because they implement interfaces
generated by the Policy Extractor during compilation, known
as Access Mechanisms Awareness, which also follow the
Security Model. This prevents the clients from requesting
operations that they do not have access to, but reflection
mechanisms can still expose the private connection objects the
Business Schemas use to request the operations. We have
solved this issue using the CRUD pointers approach. Figure 5
shows a simple example of the core interface S-DRACA
provides to the developers. The Business Schema S_Customers
is instantiated (line 100) and executed (line 102) to obtain the
data from the database. Then, if some data is returned,
information can be read (line 104), updated (lines 107-110),
inserted (lines 112-115) and deleted (line 117).

Note that not every user might see all the operations as
shown in Figure 5. Since the Business Schemas are created
dynamically from the access control policies retrieved from the
server, only the authorized operations are actually
implemented. This prevents developers from performing an
operation they are not allowed to, which would only be known
at runtime and could even go unnoticed for a long time if those
operations are issued under rare circumstances.

To guarantee that the access control mechanisms adapt to
changes made to the defined access control policies, the
database notifies the Policy Manager, through the use of
triggers, when and what information in the Policy Server was
inserted, deleted or altered. This prompts the Policy Manager to
verify which clients must be notified of the changes and send
them the modifications. The Policy Manager of each client,
upon receiving the changes, re-implements the Business
Schemas and loads them, which takes immediate effect on
current and future instantiations. However, the interfaces
created by the Policy Server cannot be modified, since they
were created during compilation, so until the client application
is updated it will generate errors when methods that are no
longer accessible are invoked.

Finally, we discuss the optional CRUD sequencer
component, see Figure 6. We allowed the definition of
sequences of Business Schemas on the policy model that is
used in the policy server, which can be turned on or off at any
time. This meant that the client application has to follow a
particular set of generated Business Schemas if it wants to
perform some operation. To ease the development of
applications, the Policy Extractor also creates a java class that
uses the Business Manager to create instantiations of the first
Business Schema of each sequence (factory object at lines 74
and 80). Then, each Business Schema has a method to
instantiate the next one in the sequence (lines 76 and 81). We
also allow the definition of sets of rules when a client moves in
a sequence in the access control policy, e.g. moving from the
first Business Schema in a given sequence to the second could
prevent the client application from using the first one again.

This implementation of the CRUD sequencer has a couple
of problems, however. First, to make sure that it can adapt to a
large number of scenarios the sequence definition model must

Figure 6. S-DRACA CRUD sequence usage.

be flexible. Secondly, when the same Business Schema is used
in more than one sequence it can potentially have a “next”
method for each sequence it belongs to. Work is being done to
address these problems.

Figure 6 shows the interface made available to the
developers to use the CRUD sequencer. The factory class (lines
74 and 80) allows to obtain the first Business Schema in a
sequence. When all the operations on that Business Schema are
performed, the next Business Schemas can be requested using
the “next” method (lines 76 and 81). These Business Schemas
can be used normally as shown in Figure 5.

C. Performance Assessment

In order to evaluate the overhead induced by our access
control stack solution, a performance assessment was carried
out. Basically, we compared the initialization, instantiation and
response time between the traditional solution using JDBC and
the solution proposed in this paper (pushing the CRUD
expressions to the server). We measured the time it took for the
system to be ready to be used (obtain the connection object in
JDBC or a Business Schema in S-DRACA), to execute a single
Select expression when the server has 500 CRUD expressions
stored, and for changes on the access control policy to be
applied on the clients, along with the bandwidth used. We did
not time the network security and authentication features, since
they should always be implemented if the use case requires it,
whether the proposed stack is used or not. For the adaptation
process, we modified the access control policies 1000 times
and measured the time it took for the changes to take effect on
the clients and the bandwidth used.

The two solutions were implemented and tested in a PC
with Windows 7 Enterprise and no network connection to
prevent delays. The data was stored using SQL Server 2010
and all unnecessary processes were shut down. We verified the
time it took for both solutions 10.000 times. Additionally, the
select statement was executed on a table with 100 and on
another with 100.000 records. We also cleared the DBMS
cache between each execution.

For the initialization, the JDBC solution only took about 12
ms to provide a connection object, while the S-DRACA
solution took 2905 ms. This time is explained with the initial
configuration that is needed: requesting the access control
policies, generate the access control mechanisms and
instantiate them. Although this process takes a significant
amount of time, it is only required once per session at the start.
Regarding the execution of the select statement, the table with
100 rows showed an average increase of 4 ms when using the

368

solution proposed in this paper, from 1ms to 5ms. When
targeting the table with 100.000 rows, the select statement took,
on average, 1745ms to execute the CRUD statement directly
while the solution proposed in this paper took 1750ms,
showing a 5ms increase. The dynamic adaptation process took
10 ms on average to complete and around 350 bytes of
bandwidth per Business Schema authorized, which also has the
associated CRUDs information, and only 50 bytes if revoked.
We can conclude, then, that the overhead introduced with our
proposal is very small and can in most cases be neglected.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented an access control stack that aims
at providing distributed and dynamic access control
mechanisms that enforce the access control policies on the
client side while maintaining the system secure. The main
drawbacks of current solutions were identified: scalability,
maintainability costs and security gaps. Scalability issues were
overcome by deploying most of the access control mechanisms
in client-side systems. Maintainability issues were overcome by
providing automated processes to dynamically update the
distributed access control mechanisms at runtime. The security
gaps were overcome by: 1) implementing Sequence
Controllers, 2) preventing client applications from directly
using CRUD expressions and, finally, 3) by using secure
connections between clients and DBMS. We also provided a
proof of concept to empirically demonstrate that the presented
solution is feasible.

A performance assessment has also been carried out to
evaluate the impact of our proposal. The collected results show
that its impact is unnoticeable when executing CRUD
expressions or changing the access control policies. In
opposite, the establishment of secure connections induced a
significant overhead. Nevertheless, we cannot forget that this
process is executed only once in each session. As a final
conclusion, the stack herein presented shows to be a promising
approach to overcome the identified drawbacks of most of the
current approaches to enforce access control policies.

VII. REFERENCES

[1] P. Samarati and S. D. C. di Vimercati, “Access Control: Policies,
Models, and Mechanisms,” in Foundations of Security Analysis and
Design (LNCS), vol. 2171, Springer, 2001, pp. 137–196.

[2] S. D. C. di Vimercati, S. Foresti, and P. Samarati, “Recent Advances in
Access Control - Handbook of Database Security,” in Handbook of
Database Security, M. Gertz and S. Jajodia, Eds. Springer, 2008, pp. 1–
26.

[3] R. S. Sandhu and P. Samarati, “Access Control: Principle and Practice,”
Commun. Mag. IEEE, vol. 32, no. 9, pp. 40–48, 1994.

[4] Ó. M. Pereira, D. D. Regateiro, and R. L. Aguiar, “Extending RBAC
Model to Control Sequences of CRUD Expressions,” in 26th Intl. Conf.
on Software Engineering and Knowledge Engineering, 2014.

[5] Ó. M. Pereira, D. D. Regateiro, and R. L. Aguiar, “Role-Based Access
Control Mechanisms Distributed, Statically Implemented and Driven by
CRUD Expressions,” in ISCC’14 - 9th. IEEE Symposium on Computers
and Communications, 2014.

[6] Oracle, “Using Oracle Virtual Private Database to Control Data Access,”
2011. [Online]. Available:
http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm#CI
HBAJGI.

[7] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D.
DeWitt, “Limiting disclosure in hippocratic databases,” 30th Int. Conf.

on Very Large Databases. VLDB Endowment, Toronto, Canada, pp.
108–119, 2004.

[8] Q. Wang, T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin, and J.-W. Byun,
“On the correctness criteria of fine-grained access control in relational
databases,” 33rd Int. Conf. on Very Large Data Bases. VLDB
Endowment, Vienna, Austria, pp. 555–566, 2007.

[9] S. Barker, “Dynamic Meta-level Access Control in SQL,” 22nd Annual
IFIP WG 11.3 Working Conf on Data and Applications Security.
Springer-Verlag, London, UK, pp. 1–16, 2008.

[10] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, “Extending Query
Rewriting Techniques for Fine-grained Access Control,” ACM SIGMOD
Int. Conf. on Management of Data. ACM, Paris, France, pp. 551–562,
2004.

[11] J. Eder, “View Definitions with Parameters,” 2nd Intl Workshop on
Advances in Databases and Information Systems. Springer-Verlag, pp.
170–184, 1996.

[12] Y.-J. Hu and J.-J. Yang, “A semantic privacy-preserving model for data
sharing and integration,” Proceedings of the International Conference
on Web Intelligence, Mining and Semantics. ACM, Sogndal, Norway,
pp. 1–12, 2011.

[13] L. E. Olson, C. A. Gunter, and P. Madhusudan, “A formal framework
for reflective database access control policies,” 15th ACM Int. Conf. on
Computer and Communications Security. ACM, Alexandria, Virginia,
USA, pp. 289–298, 2008.

[14] L. E. Olson, C. A. Gunter, W. R. Cook, and M. Winslett, “Implementing
Reflective Access Control in SQL,” 23rd Annual IFIP WG 11.3 Working
Conference on Data and Applications Security. Springer-Verlag,
Montreal, P.Q., Canada, pp. 17–32, 2009.

[15] A. Roichman and E. Gudes, “Fine-grained access control to web
databases,” 12th ACM symposium on Access Control Models and
Technologies. ACM, Sophia Antipolis, France, pp. 31–40, 2007.

[16] Canfora, G.; Visaggio, C.A.; Paradiso, V., “A Test Framework for
Assessing Effectiveness of the Data Privacy Policy’s Implementation
into Relational Databases,” in Intl. Conf. on Availability, Riliability and
Security, 2009, pp. 240–247.

[17] J. Malenfant, M. Jacques, and F. Demers, “A tutorial on behavioral
reflection and its implementation,” Proc. Reflect., 1996.

[18] B. Hicks, S. Rueda, D. King, T. Moyer, J. Schiffman, Y. Sreenivasan, P.
McDaniel, and T. Jaeger, “An architecture for enforcing end-to-end
access control over web applications,” 15th ACM symposium on Access
Control Models and Technologies. ACM, Pittsburgh, Pennsylvania,
USA, pp. 163–172, 2010.

[19] A. Chlipala, “Static checking of dynamically-varying security policies in
database-backed applications,” in 9th USENIX Conf. on Operating
Systems Design and Implementation, 2010, pp. 1–14.

[20] L. Caires, J. A. Pérez, J. C. Seco, H. T. Vieira, and L. Ferrão, “Type-
based access control in data-centric systems,” 20th European conference
on Programming Languages and Systems: part of the joint European
conferences on theory and practice of software. Springer-Verlag,
Saarbrucken, Germany, pp. 136–155, 2011.

[21] S. Chaudhuri, T. Dutta, and S. Sudarshan, “Fine Grained Authorization
Through Predicated Grants,” IEEE 23rd ICDE - Int. Conf. on Data
Engineering. Istanbul, Turkey, pp. 1174–1183, 2007.

[22] J. Zarnett, M. Tripunitara, and P. Lam, “Role-based Access Control
(RBAC) in Java via Proxy Objects Using Annotations,” in Proceedings
of the 15th ACM Symposium on Access Control Models and
Technologies, 2010, pp. 79–88.

[23] Y. Zhu, H. Hu, G.-J. Ahn, M. Yu, and H. Zhao, “JIF: Java + information
flow,” 2012. .

[24] H. Garcia-Molina, Database Systems: The Complete Book, 2nd E. 2008.

[25] S. Weil, S. Brandt, and E. Miller, “Ceph: A scalable, high-performance
distributed file system,” Proc. 7th …, pp. 307–320, 2006.

[26] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
in Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, 2003, pp. 29–43.

[27] M. Kerzner, “Hadoop Illuminated.”

[28] IETF, “RFC 6101: The Secure Sockets Layer (SSL) Protocol Version
3.0.”

369

Specifying and Dynamically Monitoring the

Exception Handling Policy

Joilson Abrantes

Dep. of Informatics and Applied Mathematics

Federal University of Rio Grande do Norte

Brazil

joilson@ppgsc.ufrn.br

Roberta Coelho

Dep. of Informatics and Applied Mathematics

Federal University of Rio Grande do Norte

Brazil

roberta@dimap.ufrn.br

Abstract — The exception handling policy of a system comprises

the set of design rules that specify its exception handling behavior

(how exceptions should be handled and thrown). Such policy is

usually undocumented and implicitly defined by the system

architect. For this reason, developers may think that by just

including catch-blocks in the code they can deal with exception

conditions. This lack of information may turn the exception

handling into a generalized “goto” mechanism making the

program more complex and less reliable. This work proposes a

domain-specific language called ECL (Exception Contract

Language) to specify the exception handling policy and a runtime

monitoring tool which dynamically checks this policy. The

monitoring tool is implemented in the form of an aspect library,

which can be added to any Java system without the need to

change the application source code. We applied this approach to

a large-scale web-based system and to a set of versions of the

well-known JUnit framework. The results indicate that this

approach can be used to express and to automatically check the

exception handling policy of a system, and consequently support

the development of more robust Java systems.

Keywords - exception handling; monitoring; dynamic analysis.

I. INTRODUCTION

Modern applications have to cope with an increasing
number of abnormal computational states that arise as a
consequence of faults in the application itself (e.g., access of
null references), noisy user inputs or faults in underlying
middleware or hardware. The exception handling (EH)
mechanism [24] is one of the most frequently used techniques
for developing robust systems, enabling such applications to
detect and recover from these exceptional conditions.

Although exception handling mechanisms have been
embedded in several mainstream programming languages (e.g.
Java, C++, C#), studies have shown that the exception handling
code is often poorly understood and the least-tested part of
software systems [13], [14], [15], [16]. The exception handling
behavior of a system is poorly understood, because it is
generally spread over several implementation artifacts, and
often the exception handling constructs (e.g., throw statements
and try-catch blocks) lead the developers into believing that by
just including EH constructs in the code that they can (i) deal
with exceptional situations, and (ii) focus on the development
of “happy path” scenarios [17]. This “ignore-for-now”
approach may turn the exception handling into a generalized
“goto” mechanism [17] making the program more complex and

even less reliable. As a consequence they may negatively affect
the system, favoring the introduction of failures such as
uncaught exceptions [30], [20] - which can lead to system
crashes, making the system even less robust [5].

Work has shown that the lack of information about how to
design and implement exceptional conditions leads to complex
and spaghetti-like exception structures [12]. To the best of our
knowledge, few studies have been proposed to better
understand and check the exception handling behavior of
systems. Some of them are based on the use of static analysis
tools [20][21][22] and others on automated testing tools [1][7].
Both approaches, however, have intrinsic limitations.

The static analysis approaches [20][21][22] propose tools
to discover the paths that exceptions take from signalers (i.e.,
elements that throw exceptions) to handlers (i.e., elements
responsible for catching them). However, due to the limitations
inherent in static analysis approaches combined with the
characteristics of modern languages (e.g., inheritance,
polymorphism and virtual calls) such approaches usually report
many false positives. On the other hand, approaches based on
the definition of test cases [1][7] limit the ability of checking
exception handling behavior to the execution of test scenarios.
Moreover, the high number of signaling and handling sites to
be tested may lead to the test explosion problem [18][19].

None of the work mentioned above enables the developer to
specify the exception handling behavior of a system and to
check such behavior while the system is running on its
production environment. Doing so, we could use the input data
provided by real users or acceptance testers in order to check
the exception handling behavior of a system.

This work proposes a domain-specific language (DSL) to
specify the exception handling policy of a system (i.e., a set of
design rules that specify the exception handling behavior of a
system such as, how exceptions should be handled and thrown
by its main elements). More often than not, such policies are
not documented, and usually remain implicit in the form of a
set of exception handling constructs spread over
implementation artifacts. Moreover, this work also provides a
runtime monitoring tool which verifies whether or not the
exception handling behavior of a system is in accordance with
the handling policy defined beforehand.

To evaluate the proposed language and the supporting tool,
we conducted two case studies. We specified and checked the

(DOI reference number: 10.18293/SEKE2015-133)

370

exception handling policy of large-scale web system (SIRH) –
which contains 593 KLOC of Java source code, 14781 throw
statements and 2912 catch-blocks - and the well-known JUnit
testing framework - for which four releases were evaluated.
Results have shown that the proposed approach could be used
to specify and dynamically check the exception handling policy
of both systems. The contribution of this work is two-fold:

 It introduces a domain-specific language to specify the
exception handling policy of a system.

 It presents a runtime monitoring tool implemented to
support the dynamic check of the exception handling
policy.

The remainder of this paper is organized as follows: Section
II presents the main concepts related to this work; Section III
presents a motivating example for using the proposed
approach; Section IV presents the domain-specific language to
define the exception handling policy and the supporting tool
which checks such rules during runtime; Section V presents the
case studies conducted in this work, and finally, Section VI
presents the conclusions and future work.

II. THE EXCEPTION HANDLING MECHANISM

In order to support the reasoning for exception handling
behavior of a system we present the main concepts of an
exception-handling mechanism. An exception handling
mechanism is comprised of four main concepts (i.e., the
exception, the exception signaler, the exception handler, and
the exception model - that defines how signalers and handlers
are bound [14]) and two supporting concepts (i.e., the
exception types and the exception interface) described next.

Exception Raising. An exception is raised by a method
when an abnormal state is detected. In Java an exception is
thrown using the throw statement [23].

Exception Handling. The exception handler is the code
invoked in response to a raised exception. It can be attached to
protected regions (e.g. methods, classes and blocks of code)
[14]. In Java the handler is represented by the try-catch block
[23].

Handler Binding. In many languages as in Java, the search
for the handler to deal with a raised exception occurs along the
dynamic invocation chain. This is claimed to increase software
reusability, since the invoker of an operation can handle it in a
wider context [11].

Exception Interfaces [11]: The caller of a method needs to
know which exceptions may cross the boundary of the called
method. In this way, the caller will be able to prepare the code
beforehand for the exceptional conditions that may happen
during system execution. For this reason, some languages
provide constructs to associate a method’s signature with a list
of exceptions that this method may throw. However, they are
most often neither complete nor precise [20], because
languages such as Java provide mechanisms to bypass this
mechanism by throwing a specific kind of exception, called
unchecked exception, which does not require any declaration
on the method signature.

 Exception Types. Object-oriented languages usually support
the classification of exceptions into exception-type hierarchies.
The exception interface is therefore composed of the exception
types that can be thrown by a method. Each handler is
associated with an exception type that specifies its handling
capabilities - which exceptions it can handle. In Java,
exceptions are represented according to a class hierarchy, in

which every exception is an instance of the Throwable class
[23].

III. MOTIVATING EXAMPLE

Consider a layered-information system structured in three
layers: the data layer (which accesses the database); the
business layer and the presentation layer. One of the exception
handling design rules that could be defined in this system is the
following: the exceptions thrown by the Data layer should be

a subtype of DAOException and should be handled in the

Presentation layer. However, usually such rules are informally
defined in the system documentation or, more often than not,
remain undocumented as an implicit knowledge of the
development team.

Both ways of dealing with the exception handling rules
threaten the development of robust systems. Firstly, once
documented such documentation may become outdated and be
of little use. Secondly, the undocumented rules may become
unknown for new members of the development team, and as a
consequence, will not be followed. Moreover, none of these
scenarios support the automatic check of such rules during
system compilation or execution.

Let’s consider that in such a system an instance of

DAOException is thrown by the Data layer and is
mistakenly handled by a generic handler defined in the Facade
class (defined in the Business layer). How can we check if the
aforementioned rule is obeyed? The approach shown in Section
IV enables the developer to define and check such an exception
handling rule.

IV. THE PROPOSED APPROACH

We propose an approach based on a DSL (Section IV-A)
and a dynamic analysis tool (Section IV-B) to enable
developers to define and verify the exception handling behavior
of a system. More specifically, this approach allows the
developer to create design rules for the exceptional flow, and
check if such rules related to the exception handling code are
neglected during the application execution.

A. The Exception Contract Language

We propose a domain-specific language called ECL
(Exception Contract Language) whose main goal is to allow the
creation of design rules for the exception handling behavior.
Figure 1 partially illustrates the grammar of ECL language in
BNF. In this version of BNF used, non-terminal symbols are
written in bold, terminals are written with capital letters. In
addition, the {} indicates zero or more repetitions of A. In
order to simplify the reasoning of the grammar we omitted the
definition of terminals such as ModID (which refers to a name
of any identifier).

371

S: Rule
Rule: signaler QualifiedNameWithWildcardSignaler

 exception SetOfNames
 handler SetOfNames ;

SetOfNames: QualifiedNameWithWildcard {:
 QualifiedNameWithWildcard }

QualifiedNameWithWildcardSignaler: QualifiedNameWithWildcard | *
QualifiedNameWithWildcard: QualifiedName |
QualifiedName+ | QualifiedName* | QualifiedName(..)
QualifiedName: ModID{.ModID}

Figure 1. Exception Contract Language (ECL) in Backus-Naur Form

notation.

The main elements of ECL are:

 signaler: this element represents a method, class or
package which can throw one or more types of
exceptions.

 exception: identifies the types of exceptions thrown
by the signaler.

 handler: this element represent the methods, classes
or packages that will be responsible for handling the types
of exceptions set to be launched by the signaler.

 Figure 2 shows an example of an exception handling design
rule created using ECL. This rule specifies that an exception of

type BusinessException launched by

login(..)method defined in SignSystemBean class,

must be handled by any method defined on LoginFilter

class.

Figure 2. Example of ECL design rule.

 The ECL language also supports the use of wildcards. The

first is ∗ : it matches any series of characters that can appear in
a Java identifier. So, for example, in Figure 1 it matches all

methods defined in LoginFilter class. The second is +
wildcard, which can be combined over types. It means ‘match
any subtype’. In Figure 1 we could add + to the exception
name, and in doing so the contract would be related to

BusinessException and its subtypes. We developed an
Eclipse plug-in using XText framework to support the
definition of design rules in ECL

1
.

B. Dynamic Analysis of Exception Handling

A runtime monitoring tool was developed to check such
rules while the program is running. This tool works in the
background, analyzing whether defined design rules are being
neglected. If a rule is not obeyed, a notification is sent to a
remote server which will store the non-compliance. The remote
server that receives such data, stores the notifications and
provides this information to other applications which can
generate EH reports, and mine such data.

1
 The language manual and the Eclipse plug-in is available at:

https://bitbucket.org/jvidalabrantes/daeh-tool/wiki.

Figure 3. DAEH architecture.

The monitoring tool is called DAEH (Dynamic Analysis of
Exception Handling), and consists of a set of monitors
responsible for monitoring any Java application and a central
server responsible for receiving the notifications from monitors
and storing them. Figure 3 illustrates DAEH architecture. This
architecture enables the implementation of other applications
that communicate with the DAEH server which may query the
monitoring information and perform any kind of data analysis.

C. DAEH Monitor

The DAEH monitor is added to the application to be
monitored and performs the verification of exception handling
design rules defined using ECL

2
. Such a monitor is

implemented as an aspect library which is combined at load-
time with the application code to be monitored. This library
was implemented using AspectJ and load-time weaving [8].
Since the monitor instrumentation is performed when the
application classes are loaded into the Java Virtual Machine,
there is no need to change the application source code. During
the load-time weaving the DAEH monitor (i) loads the
exception-handling design rules file and (ii) instruments every
place where an exception is handled (every catch block).
Hence, every time an exception is handled inside the system
the DAEH monitor checks whether or not the handling action
is breaking one of the existing exception handling design rules.

V. CASE STUDIES

This approach was used in two case studies: SIGRH - an
enterprise large-scale web-based system developed in Java and
the well known JUnit framework (from which 4 releases were
used). Table I illustrates the characteristics of both systems.

TABLE I. METRICS OF SYSTEMS

Metrics SIGRH
JUnit

4.6

JUnit

4.7

JUnit

4.8

JUnit

4.9

LOC 593.276 13098 14049 14373 15684

of classes 3841 268 290 293 308

of methods 51408 1724 1853 1885 2041

of catch-blocks 2912 156 152 153 164

of throw

 statements
1775 110 122 123 131

Since SIGRH had no exception design rules explicitly
documented, we needed to talk with the system architect in

2
 The ECL manual and plug-in and DAEH tool is available at:

https://bitbucket.org/jvidalabrantes/daeh-tool/wiki.

372

order to document the exception handling policy in the form of
ECL rules. As a result of this talk, five main exception
handling design rules were documented. Table II illustrates one
of them. This rule states that instances of

BusinessException thrown by any method should be

handled by any method of ViewFilter class.

TABLE II. EXAMPLE OF DESIGN RULE CREATED FOR THE MONITORED

SYSTEM

Id Exception Handling Design Rule

3
signaler { * }
exception { br.ufrn.arq.erros.BusinessException }
handler { br.ufrn.arq.web.ViewFilter.* };

After defining the rules, we added the DAEH monitor to the
application server on which the SIGRH system was running for
acceptance tests. In a 5-day period, the DAEH server received
12,027 notifications of broken design rules. Table III shows the
number of violations per design rule.

TABLE III. NUMER OF DESIGN RULES VIOLATIONS (DRVS).

SIGRH JUnit

Contract Id # DRVs Version # DRVs

1 6 4.6 0

2 0 4.7 0

3 12,015 4.8 0

4 6 4.9 0

5 0 - -

As can be seen, only three design rules were violated (i.e.,
rules 1, 3 and 4). Figure 4 illustrates one of such notifications.
Analyzing the violations associated with design rule 3 we
observed that all of them were caused by 8 handlers defined in

different locations outside the ViewFilter class (specified
in the design rule illustrated in Table II). Such violations
occurred often (i.e., 12,015) because the same pieces of code
were exercised more than once during acceptance testing.

<Exception:class br.ufrn.arq.erros.BusinessException >
expected: <Handlers:[br.ufrn.arq.web.ViewFilter.*]>
but was <Handler: UserMBean. login()>

Figure 4. Design rule violation message.

The proposed approach was also used to define and monitor
the exception handling design rules of the JUnit testing
framework. The design rules were defined manually by
inspecting the source code of the framework. Manual
inspection was needed because the JUnit documentation had no
reference to the exception handling policy adopted in the
framework. This task was possible since JUnit is a small-scale
framework and very well structured. As a result of this task we
were able to define 9 exception handling design rules. Table IV
illustrates two of them.

TABLE IV. EXAMPLE OF SET DESIGN RULES FOR JUNIT

Exception Handling Design Rule

signaler{ org.junit.experimental.max.MaxHistory.readHistory(..) }
exception {org.junitt.max.CouldNotReadCoreException}
handler {org.junit.experimental.max.MaxHistory.forFolder(..)};
signaler { * }
exception {junit.framework.AssertionFailedError}
handler {junit.framework.TestResult.* : junit.tests.*};

 In order to exercise the framework and to check for
exception design rule violations, we ran the test suite that
comes with the framework and added the DAEH monitor to the
JVM were the tests were executed. Although the rules where
defined for version 4.6 of JUnit, we used the same set of rules
to check the exception handling behavior of a set of subsequent
versions (i.e., 4.6, 4.7, 4.8 and 4.9). Our goal was to check
whether there had been changes in the exceptional behavior as
the framework evolved. To our surprise, none of the specified
contracts broke across the subsequent versions of JUnit. Such
behavior can be explained by the fact that JUnit is a very stable
framework and that although the exception handling design
rules are not explicitly documented, they are adequately
maintained by the development team.

VI. DISCUSSIONS

Exception handling policy: a global design problem. The
definition of the exception handling policy is a global design
problem [12]. However, none of the languages which have
embedded EH mechanisms provide a way to specify and check
such a policy. Due to this lack of guidance developers, tend to
focus their design activities on the normal behavior of the
application [2], [3] and forget the exceptional behavior design
[4]. In this work, we propose a language to express the
exception handling policy of a system in the form of simple
design rules, which link signaling and handling sites. Such sites
can be methods, classes or packages. The ECL language and
the supporting monitoring tool proposed in this work are the
first step towards providing an infrastructure to help developers
in specifying and analyzing the exception handling behavior of
a system as a whole.

Limitations of the proposed approach. The way the
exception handling policy is expressed in ECL could be
improved to (i) specify the handling action (i.e., what should be
performed inside the try-catch block) or to (ii) express a
complete set of rules (i.e., if no rule is specified for a signaler
no exceptions are allowed). However, the current grammar was
sufficient to express all exception handling design rules needed
during the execution of the case studies.

VII. RELATED WORK

Two approaches [1][7] extended the JUnit testing tool to
support the definition of automated tests for the exception
handling behavior. The limitations of both approaches are two-
fold: the developer needs to manually implement each test case,
and each test case focuses on one single exception flow (i.e.
throw-catch pair) at a time. Since most Java systems may
contain dozens or even hundreds of exception flows it is hard
to choose which ones should be tested. Our approach tackles
this limitation since the exception handling design rules involve

373

higher level modules than single methods (i.e., classes or
packages), enabling the checking of several flows at a time.

Terra and Valente [9] proposed a dependency constraint
language for specifying acceptable and unacceptable relations
among the elements of a system architecture. Such restrictions
are statically checked in order to detect the points in the source
code that violate the defined relations. This language allows the
developer to define which exceptions a given module (i.e.,
method, class or package) can throw. However, it does not
address the handling capabilities of modules nor how handlers
and signalers can be bound. Our approach supports the
specification of both handling and signaling design rules and
check such rules at runtime.

Brunet and Guerrero [10] proposed a tool called
DesignWizard that enables the developer to define design rules
in the same programming language of the analyzed application,
in the form of a set of JUnit test cases. Although such a tool
extends the JUnit framework, the checking of design rules is
performed statically based on ASM framework. DesignWizard
does not support the definition of design rules related to
exception signaling and handling capabilities nor how they are
bound.

Jin et al proposed JavaMOP [25] a monitoring framework
specific to Java programs. [20]. JavaMOP allows the definition
of properties based on event specifications and generates
AspectJ code for monitoring - weaved into the target program
in compile time. When a specification is validated or violated,
user-defined actions are executed. User-defined actions can be
any Java code from logging to runtime recovery. Our approach
differs form JavaMOP as our approach is specific to the
monitoring and checking of exception handling design rules.
The syntax of ECL is simpler than the one needed to specify
properties in JavaMOP, and there is a single action available in
our approach (send the violation information to DAEH server).

VIII. CONCLUSIONS AND FUTURE WORK

This paper introduces a domain-specific language to specify
the exception handling policy of a system, which is, more often
than not, undocumented and implicitly defined – negatively
impacting the system robustness [12]. This work also presents
a runtime monitoring tool to support the dynamic checking of
such an exception handling policy. Two case studies were
conducted to evaluate the proposed approach. Our findings
indicate that the approach can be used to specify and
dynamically check the exception handling design policy of a
system. We are currently working on evaluating the needs for
adding new language constructs to ECL.

REFERENCES

[1] R. Di Bernardo, R. Sales, F. Castor, R. Coelho, N. Cacho, S. Soares

Agile Testing of Exceptional Behavior. In Proc. of 25th Brazilian
Symposium on Software Engineering, 2011.

[2] H. Shah, et al., Why do developers neglect exception handling In Proc.
of the 4th International Workshop on Exception handling, 2008.

[3] R. A. Maxion and R. T. Olszewski, Eliminating exception handling
errors with dependability cases: a comparative, empirical study,
Software Engineering, IEEE Transactions on, vol. 26, 2000.

[4] H. Shah, Gerg, C. and M. J. Harrold,, Why do developers neglect
exception handling?. In Proc. of the 4th International Workshop on
Exception handling, 2008.

[5] F. Cristian. Exception handling and software fault tolerance.IEEE Trans.
Comput. 31(6):531540, 1982.

[6] J. Kienzle. On exceptions and the software development life cycle. In
Proc. of the 4th International Workshop on Exception Handling, 2008.

[7] R. Sales, R. Coelho, Preserving the ExceptionHandling Design Rules in
Software Product Line Context: A Practical Approach, In Proc. of the
1sr Workshop on Exception Handling on Contemporary Systems, 2011.

[8] Ramnivas Laddad. 2003. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications Co., Greenwich, CT, USA.

[9] R. Terra and M. Valente. A dependency constraint language to manage
object-oriented software architectures. Softw. Pract. Exper.,
39(12):1073–1094, 2009.

[10] J. Brunet, D. Guerrero, J. Figueiredo. Design Tests: An Approach to
Programmatically Check your Code Against Design Rules. In Proc. of
ICSE’09, 2009.

[11] R. Miller and A. Tripathi, Issues with exception handling in object-
oriented systems, In Proc. of ECOOP’97. 1997.

[12] M. P. Robillard and G. C. Murphy, Designing robust Java programs with
exceptions, In Proc. of FSE 2000.

[13] A. Garcia, C. Rubira et al., Extracting error handling to aspects: A
cookbook, In Proc. of ICSM 2007. IEEE.

[14] A. Garcia, C. M. Rubira, A. Romanovsky, and J. Xu, “A compara- tive
study of exception handling mechanisms for building dependable object-
oriented software,” Journal of systems and software, v. 59, n. 2, , 2001.

[15] B. Cabral and P. Marques, “Exception handling: A field study in Java
and .Net,” in Proceedings of ECOOP 2007. Springer, pp. 151–175.

[16] R. Coelho, A. von Staa, U. Kulesza, A. Rashid, and C. Lucena, “Un-
veiling and taming liabilities of aspects in the presence of exceptions: a
static analysis based approach,” Information Sciences, v.181, n.13, 2011.

[17] D. Mandrioli and B. Meyer, Advances in object-oriented software
engineering. Prentice-Hall, Inc., 1992.

[18] M. Bruntink, A. V. Deursen, T. Tourwe. Discovering faults in idiom-
based exception handling. In Proc. of ICSE’06, 2006.

[19] G. J. Myers. The Art of Software Testing. New York: John Wiley &
Sons, 2004..

[20] R. Coelho, A. Rashid, A. Garcia, F. Ferrari, N. Cacho, U. Kulesza, A.
von Staa, and C. Lucena, Assessing the impact of aspects on exception
flows: An exploratory study, In Proc. of ECOOP 2008.

[21] C. Fu, B. Ryder. Exception-Chain Analysis: Revealing Exception
Handling Architecture in Java Server Applications. In Proc. of ICSE’07,
2007.

[22] M. Robillard, G. Murphy. Static Analysis to Support the Evolution of
Exception Structure in Object-Oriented Systems. In ACM Trans. Softw.
Eng. Methodol, 2003.

[23] J. Gosling, The Java language specification. Addison-Wesley Profes-
sional, 2000.

[24] JB. Goodenough. Exception handling: Issues and a proposed notation.
Communic. of the ACM 1975.

[25] D. Jin, P. Meredith, C. Lee, G. Rosu. JavaMOP: Efficient parametric
runtime monitoring framework. In Proc. of ICSE’2012.

374

DefDroid: Securing Android with Fine-Grained
Security Policy

Chao Huang
School of Software

Shanghai Jiao Tong University
Shanghai, China

bujingyun beta@sjtu.edu.cn

Shuohong Wang
School of Computer Science

Fudan University
Shanghai, China

sh wang@fudan.edu.cn

Haiyang Sun
Faculty of Informatics

Università della Svizzera italiana
Lugano, Switzerland
haiyang.sun@usi.ch

Zhengwei Qi
School of Software

Shanghai Jiao Tong University
Shanghai, China

qizhwei@sjtu.edu.cn

Abstract—Android occupies the absolute dominant position
in mobile operating system and has the largest market share.
Meanwhile, Android faces the risk of malicious insiders leaking
sensitive information. In this paper, we present DefDroid, a
repackaging tool for enforcing security policies by modifying
Android applications without root privilege. The main advantages
of DefDroid are that it provides a user-friendly interface to
configure fine-grained policies and it supplies multiple deploy-
ment methods. We have implemented policies aimed at three
types of services of Android system, i.e., content provider, file
system, and network. We choose 74 arbitrary applications from
Android market and the experimental results show that the
successful rate of repackaging applications is about 94.6% which
effectively improve the privacy security of Android system while
the increased overhead can be tolerated.

Keywords—Android; permission restriction; repackage; bytecode

instrumentation

I. INTRODUCTION

Android OS (developed by Google) spreads around the
world and becomes one of the most important mobile oper-
ating systems. According to data from the International Data
Corporation (IDC), Android occupies 84.4% of Smartphone
OS Market Share in the second quarter of 2014 [1]. There
are more than 1 billion Android devices activated around the
global and Android is the dominant mobile OS in the world
[2].

According to the report of The Wall Street Journal [3],
antivirus software only catches 45% of malware attacks and
55% malware behaviors are missed. In Android ecosystem,
sensitive information leakage is a serious problem due to the
rapid expansion of Android mobile phone customers. The
native Android permission system follows an ‘all or nothing’
policy to restrict applications’ access to privileged resources.
That is to say, an application cannot be successfully installed
unless all permissions it applies for are allowed. This coarse-
grained access control system brings terrible security problem
and privacy leakage.

To overcome the issue, companies and researchers come up
with several methods [4]–[6] to provide fine-grained security
policy for Android which can be divided into three types.
The first approach is native library rewriting which imposes
fine-grained access control by intercepting the native calls.
However, it does not allow security administrator to write

and deploy unified security policies according to different
requirements of companies. The second one is fine-grained
access control that can be achieved by modifying the Android
operating system. The defect of it lies in that it demands
root privilege and it is unable to get more high-level, un-
formed information. The last approach is based on bytecode
instrumentation technique, which makes it possible to obtain
detailed information of application behaviors at Java level
and protect sensitive information at greater extent. However,
there is no satisfactory method based on this technique (to
our knowledge). Consequently, we propose a novel policy
enforcement system using this technique.
Our Approach To protect sensitive information of Android
system, we propose a novel and deployable tool with fine-
grained security policy. DefDroid does not need root privilege,
which avoids modifying the Android operating system. On the
contrary, security policies provided by DefDroid are imple-
mented into arbitrary applications by repackaging applications
itself. The repackaging applications can be installed on users’
mobile devices after signing them with valid keys. The poli-
cies provided by DefDroid are implemented into applications
through bytecode instrumentation. DefDroid translates user-
defined security policies into instrumentation code and inserts
these codes into specific code snippets to enforce security.

Theoretically, DefDroid is able to monitor all interaction
with Android operating system except invocation of native
code. DefDroid enables much more fine-grained policy en-
forcement than original permission model of Android and
other solutions, such as FireDroid [4] and Aurasium [5]. There
are three groups of policies and each group represents a service
of Android operating system, i.e., content provider, file system,
and network.

The main contributions of this paper are that
• We develop fine-grained policies to protect different types

of sensitive information in Android system, such as
protection of specific contacts and sandbox of file system.

• We provide groups of policies to customers so that users
can customize policies to protect their sensitive infor-
mation without knowing too much about implementation
details.

• We show a workable solution to deal with bytecode
instrumentation and repackaging applications.

DOI reference number: 10.18293/SEKE2015-162

375

Fig. 1. Architecture of DefDroid

• We propose a scheme for companies who need to manage
information security of multiple users’ mobile device.

II. DEFDROID SYSTEM DESIGN

The main idea of our proposal is that modifying source code
of Android applications can completely enforce fine-grained
permission policies and block malicious behaviors, although
there are several problems need to be solved.

DefDroid system is made up of several components, as
shown in Fig. 1. In order to implement security policies,
a convenient way to define these policies is necessary. So,
we create a configure file to edit and store security policies.
The Policy Service (PS) is made up of configure files. All
security policies written in the files are divided into two
parts, namely Global policies and Private policies. The Global
policies store security policies that influence all applications
in private Android market. Private Android Market (PAM) is
an Android application download platform inside the company
or non-public Android market that serves specific customers.
Applications in private Android market are repackaged and
inserted relevant code. Policy Deployment Service (PDS) is
the middle component of DefDroid. PDS gets configure file
of PS and parses it to related code. Then, PDS transmits
this policy information to Instrumentation component. Also,
PDS takes the task of publishing Android package file to
PAM. More specifically, PDS reads modified ‘classes.dex’
file, and other related files and compresses them to Android
package file. Bottom layer is made up of Instrumentation
part and Android System part. Instrumentation component
contains instrumentation code, instrumentation engineer (IE),
and DiSL. Instrumentation code is Java code based on gram-
matical rules of DiSL converted from PDS. IE is the core
module to implement bytecode instrumentation. IE compiles
instrumentation code to Java bytecode and inserts it into
specific code snippets. The whole policies are divided into
three parts, i.e., content provider, file system and network.
Content provider is the standard interface that connects data

in one process with code running in another process [7]. A
lot of sensitive information must be accessed through content
provider, such as contact list, sms information, and media
data. Policies aimed at content provider can effectively control
information leakage in mobile phone. File system manages
files and data stored in Android operating system. Policies
of file system are able to protect data of storage devices,
especially non-encrypted sensitive documents. Network is an
important part of sensitive information protection. In several
scenarios, some URL addresses are not allowed to be accessed
because of security issues. Instrumentation of network service
is able to enforce relevant policies.

III. IMPLEMENTATION DETAILS

In this section, we introduce the implementation details of
DefDroid. Different from FireDroid [4] which monitors appli-
cations’ interactions with the OS, DefDroid implements fine-
grained permission policies of sensitive resource by bytecode
instrumentation. Other related work, such as Aurasium [5] is
proposed to solve it by replacing Android system libraries.

We use DiSL as our instrumentation tool. DiSL (domain-
specific language for instrumentation) [8] is a domain-specific
language especially designed for dynamic program analy-
sis and is primarily designed to manipulate and transform
bytecode. We decompress the Android package file and get
‘classes.dex’ file and invoke several functions of dex2jar [9]
to convert the file to ‘classes.jar’. After instrumentation is
finished, we use Android dx tool [10] to convert jar file to
dex file. Finally, we compress all related files into Android
package file and sign applications with users’ private keys
before publishing to Android market.

For deploying fine-grained policies, there are two alterna-
tives adapted in DefDroid. One is static policies. This means
relevant instrumentation codes are going to carry out these
policies. The other is dynamic policies. The approach will
insert some codes in the application, these codes are able to
get specific operations on sensitive resources from the server.
Policy makers can rewrite data in the server to deploy security
policies rapidly.

The configure file that contains policy setting is an xml
format file, as shown in Fig. 2. We develop a component in
PDS to parse the configure file. The ‘Global’ tag and ‘Private’
tag determine the scope of policies, and the ‘name’ attribute
of ‘Private’ tag is the name of affected application. The next
level contains three kinds of tags, i.e., ‘ContentProvider’,
‘FileSystem’, and ‘Network’. Policies of DefDroid are mainly
aimed to harden protection of sensitive resource of these three
parts.

A. Content provider

Content provider is the standard interface to manage sensi-
tive data, such as audio, images, and personal contact infor-
mation. So, if we monitor ‘ContentResolver’ object, we can
monitor all operations aimed at content providers. The Con-
tacts provider, one of content providers, stores all information
about contacts of mobile phones. DefDroid provides contacts

376

<?xml version="1.0" encoding="UTF-8"?>

<Global>

<ContentProvider>

<Contacts groupName="Company"

operation="all">false<Contacts>

</ContentProvider>

</Global>

<Private name="applicationName">

<FileSystem>

<File filePath="file path"

operation="read">true<File>

<File extension="doc"

operation="write">false<File>

</FileSystem>

<NetworkSystem>

<network url="www.baidu.com" >false<Contacts>

</NetworkSystem>

</Private>

Fig. 2. Example of configure file.

sandbox for specific fields. For example, most contacts have
their own grouping, such as home, friend, and company, and
DefDroid can block operations of contacts in specific group, as
shown in Fig. 2. After being deployed, applications that have
access to contact list are only enforced to operate on contacts
in the ‘company’ group and other contacts are invisible.

B. File System

File system of Android operating system is similar to Linux
system. Android has external storage and it’s necessary to
add permissions for write/read access to external storage in
AndroidManifest.xml. It is ubiquitous that applications have
access to external storage, however, users who use their mobile
phones frequently are more likely to store critical files in
external storage of mobile devices. Hence, external storage
is not safe.

DefDroid is able to manage files in external storage, as
shown in Fig. 2. The policy means files with ‘doc’ extension
are unwritable for applications. The value of ‘filePath’ will be
appended to root path of external storage to get the absolute
path of the file. And the policy will be aborted when the file
is not found in the absolute path.

C. Network

Network is the most complicated interface in Android
framework. Malware and virus widely exist in network. Build-
ing website blacklist to block website access is a workable way
to protect mobile device and improve the security.

DefDroid is able to manage network access through URL
address in external storage, as shown in Fig. 2. The ‘url’
attribute of ‘network’ tag stores website address and the policy
means that accessing website by the URL are forbidden.

IV. PERFORMANCE EVALUATION

In this section, we present the performance evaluation result
of DefDroid. We implement security policies presented in

TABLE I. EVALUATION RESULTS OF REPACKAGING

Type of App Total Repackaged Success Rate
content provider 37 35 94.6%

file system 22 21 95.5%
network 15 14 93.3%

Section III. We evaluate repackage performance and execu-
tion time before and after instrumentation. Our evaluation is
conducted on a Google Nexus 7 Tablet running Android 4.4.2.

We download 74 applications from Android market, the
functions of these applications correspond to policy model of
DefDroid as introduced in Section III. There are 37 contacts
applications, 22 file-related applications, and 15 network-
related applications in total. Different applications are enforced
different types of policies. For contacts applications, the policy
is designed so that applications are only allowed to operate
on contacts in ‘Company’ group. For file-related applications,
we enforce a policy to prohibit write access of the applica-
tions to ‘data.txt’ file on the external storage. For network-
related ones, applications are forbidden to visit website of
“www.baidu.com” according to the policy.

As shown in Table I, there are altogether 4 applications
failed to be repackaged. The reason is that the translator tool
dex2jar still has several bugs resulting in several bytecodes
translated from Dalvik bytecode not recognized by DiSL.
Considering that the probability of this circumstance is very
small, we ignore these questionable applications in our test
set.

The experimental results of repackaging contacts applica-
tions, file-related applications and network related applications
are shown as histograms in Fig. 3(a), 3(b), 3(c) respec-
tively. The blue bins show the number of snippets modified
by bytecode instrumentation (the left vertical axis displays
their values) and the red ones show the execution time of
repackaging each application (the right vertical axis displays
their values). And the numbers on horizontal axis list each
application of the corresponding type.

As shown in Table II, we measure the execution time
of original and modified code snippets. The experimental
results present the increased overhead caused by policies of
DefDroid. For contacts, we need to query contacts table in
database multiple times to get group id by group name and
check if the contacts required by the applications are in this
group. It definitely increases execution time compared with
original code, and therefore we record these information of
group id to avoid querying database repeatedly when requir-
ing multiple contacts. According to the experimental results
and user experience of modified applications, the overhead
increases but can be tolerated. For policies of file system and
network, we provide two modes of policy deployment, which
are local and network respectively. Applications are forced to
obtain data from Internet when implementation information is
stored on servers, which will substantially increase execution
costs. Therefore, it is recommended to store implementation
information locally.

377

0 5 10 15 20 25 30 350

125

250

375

500

625

750

N
um

 o
f r

ep
ac

ka
ge

d
ap

p

0 5 10 15 20 25 30 35 0

2

4

6

8

10

12

14x 104

E
xe

cu
tio

n
tim

e
(\m

s)

Num of repackaged app
Execution time

(a)

0 2 4 6 8 10 12 14 16 18 20 220

100

200

300

400

500

600

N
um

 o
f r

ep
ac

ka
ge

d
ap

p

0 2 4 6 8 10 12 14 16 18 20 220

1

2

3

4

5

6

7x 104

E
xe

cu
tio

n
tim

e
(\m

s)

Num of repackaged app
Execution time

(b)

0 2 4 6 8 10 12 140

10

20

30

40

50

60

N
um

 o
f r

ep
ac

ka
ge

d
ap

p

0 2 4 6 8 10 12 14 0

1

2

3

4

5

6x 104

E
xe

cu
tio

n
tim

e
(\m

s)

Num of repackaged app
Execution time

(c)

Fig. 3. Evaluation results of repackaging applications. (a). Evaluation results of repackaging contacts applications. (b). Evaluation results of repackaging
file-related applications. (c). Evaluation results of repackaging network-related applications.

TABLE II. OVERHEAD MEASUREMENTS OF DEFDROID’S POLICIES

Original(/ms) DefDroid(/ms) Overhead
Group field sandbox

of contacts 9 23 60.9%

File system restriction 2 2 0%
157 98.7%

URL restriction
of network 168 168 0%

318 47.2%

V. RELATED WORK

In this section, we present an overview of the related work
that aimed to deal with information leakage and malware
detection.

Programing analysis has been applied to detect malicious
applications in Android market. TaintDroid [11] is proposed
and obtains good experiment results by employing dynamic
taint analysis. Malware detection is able to clean malware
applications in Android market. But malware that has already
been installed in mobile devices are still doing malicious
attacks.

Modifying Android application to enforce permission con-
trol policies through bytecode instrumentation is another ap-
proach to protect sensitive information. Aurasium [5] enforces
policies by replacing Android’s standard C libraries with
Aurasium native libraries and bytecode instrumentation,

Ptrace is a tool used to track processes and modify system
call. FireDroid [4] provides a fine-grained policy model by
monitoring Android process with ptrace. Meanwhile, Fire-
Droid contains a policy language to simplify policy making
process. However, deploying FireDroid system is a difficult
task, considering the high risk of rooting Android system.

VI. CONCLUSION

In this paper, we present DefDroid, a novel fine-grained
permission control solution including policy server and appli-
cation repackaging tool, which is able to act as defender of
malware and malicious behaviors of applications for billions
of Android mobile platform users. We implement DefDroid
without rooting device, which reduces the potential risk of
sensitive information leakage and is more acceptable to cus-
tomers. The experimental results show that DefDroid increases
overhead of applications compared with the original version.

However, considering the protection of sensitive information
that DefDroid provides, the performance reduction can be
tolerated.

VII. ACKNOWLEDGMENT

This work is supported by NSFC (No. 61272101), Na-
tional R&D Infrastructure and Facility Development Program
(No. 2013FY111900), and NRF Singapore CREATE Program
E2S2. We thank support from Shanghai Key Laboratory of
Scalable Computing and Systems for this research.

REFERENCES

[1] Smartphone OS Market Share, Q3 2014. [Online]. Available:
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[2] Android still the dominant mobile OS with 1 billion active users.
[Online]. Available: http://www.engadget.com/2014/06/25/google-io-
2014-by-the-numbers/

[3] Symantec Develops New Attack on Cyberhacking. [Online]. Available:
http://www.wsj.com/news/articles/SB10001424052
702303417104579542140235850578

[4] G. Russello, A. B. Jimenez, H. Naderi, and W. van der Mark, “Firedroid:
hardening security in almost-stock android,” in Proceedings of the 29th
Annual Computer Security Applications Conference. ACM, 2013, pp.
319–328.

[5] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium: Practical policy enforce-
ment for android applications,” in Proceedings of the 21st USENIX
Conference on Security Symposium, ser. Security’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 27–27.

[6] A. Bartel, J. Klein, M. Monperrus, K. Allix, and Y. L. Traon, “Improving
privacy on android smartphones through in-vivo bytecode instrumenta-
tion,” arXiv preprint arXiv:1208.4536, 2012.

[7] Content Providers. [Online]. Available: http://developer.android.com/
guide/topics/providers/content-providers.html

[8] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi,
“Disl: a domain-specific language for bytecode instrumentation,” in
Proceedings of the 11th annual international conference on Aspect-
oriented Software Development. ACM, 2012, pp. 239–250.

[9] Dex2jar. [Online]. Available: https://code.google.com/p/dex2jar/
[10] Android apktool. [Online]. Available: http://code.google.com/p/

android-apktool/
[11] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,

and A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’10. 2010, pp. 1–6.

[12] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: retrofitting android to protect
data from imperious applications,” in Proceedings of the 18th ACM
conference on Computer and communications security. ACM, 2011,
pp. 639–652.

378

Developers’ importance from the leader perspective

Guilherme Costantin Tângari
Faculdade de Ciência da Computação
Universidade Federal de Uberlândia

Uberlândia, Brazil
guilhermecostantin@mestrado.ufu.br

Marcelo de Almeida Maia
Faculdade de Ciência da Computação
Universidade Federal de Uberlândia

Uberlândia, Brazil
marcelo.maia@ufu.br

Abstract—Several companies use the amount of deliveries as a
metric of performance evaluation of the developer. However, the
productivity of a developer and his importance for the company
is not only related to the amount of lines of code produced. There
are a variety of factors that can contribute to the relevance of a
developer for a team. This paper aims at mapping some of these
factors, measuring those that are more important for companies
and propose an evaluation model of developer importance that
considers more than just deliveries. We have found that some
factors are more important than others and that there are minor
differences for different companies. We have also developed a
high accuracy classifier that can indicate the importance of the
developer based on a set of attributes.

Keywords—productivity, developers’ importance, pattern
recognition, human factors

I. INTRODUCTION

All kinds of companies have been investing in techniques
to increase productivity in order to increase competitiveness,
and this is no different in the software industry, which still
continues investing in new methods, tools and best practices
that could lead organizations to productivity improvement [1].

However, unlike hardware, which improves their price-
performance ratios by orders of magnitude per decade,
software productivity seems to have trouble to evolve in a
similar pace [2]. The current productivity rates are similar to
the rates of decades ago (one to two lines of code per man-
hour) [2]. Brooks et al. [3] states that there is no technical or
management technique that by itself promises one order-of-
magnitude improvement in software productivity, simplicity or
reliability.

Traditional productivity metrics for software development
are based either on lines of code (LOC) or function points (FP)
[4], for example, the amount of LOC or FP developers deliver
per hour. A slightly more abstract definition for productivity is
the ratio of delivered outputs to consumed inputs, where
outputs may be LOC, FP, or other relevant delivery, and inputs
are the resources used to produce that output, e.g., time, people
[2], [5], [6].

Nonetheless, the use of only these traditional metrics can
mislead the management of software teams. LOC does not take
into account the effort and knowledge required to write them.
Complex problems often require experienced developers to
solve them, and often, they do not require lots of LOC. In that
case, experienced developers would be penalized.

There are other notions of productivity that are not also
taken into consideration when evaluating just lines of code, for
example, developers with greater experience or with
knowledge in specific tools may be frequently consulted by
other developers to streamline and improve the development
process of the team as a whole, so the formers have an indirect
notion of productivity.

Talent retention and team motivation, for example, are two
fundamental issues for any software company [2], [7]–[11].
Software is made by people, and people, when have their work
recognized and well evaluated tend to produce more and better.
A performance evaluation that considers only one aspect, such
as the number of deliveries, and does not take into account tlhe
different levels of difficulty and the purpose of the code, so the
every day relationship with colleagues and the company would
be compromised by unfair assessment, demotivating
individuals and teams. Employee turnover its a common
problem in software companies [12] , and a high turnover rate
would lead to productivity losses, in addition to the increased
cost of hiring and training, and most importantly, the loss of
talents that search for recognition in other companies.

Several studies are devoted to discover the factors that have
influence in productivity of software development and
maintenance activities [1], [4], [7], [8]. Understanding those
factors and having some mechanism to evaluate productivity in
a fair way could provide to software team leaders a better tool
to evaluate and compare their developers. Several companies
are beginning to gain awareness of these issues and are
committed to improve the way they evaluate developer
performance. This work aims to investigate how team leaders
understand the notion of importance, indicating which factors
are most relevant in their developer overall assessment. We are
interested on the investigation of these questions:

1. What are the most important criteria used by leaders
while assessing developers?

2. It is possible to build a developer’s classifier with high
accuracy, using the proposed criteria? This question
can be refined in other two:

a. Is it possible to have a generic classifier, i.e.,
company-independent? or

b. Is it more appropriate to build customized
classifiers for each company?

(DOI Reference Number: 10.18293/SEKE2015-056)

379

As mentioned before, the performance of developers is
highly related with their productivity, within a classical concept
of the amount of deliveries. Nevertheless, managers and
leaders on their daily work with them have a different
perception of each one.

In this paper, we show an elicitation of factors, based on
previous studies, which can have an influence in the leader’s
evaluation. We conducted a survey with team leaders
representing software companies, where they evaluated their
developers based on those factors. The result was analyzed in
attempt to recognize a pattern in their evaluation. That way, we
identified factors that mostly influence the leaders evaluation
about their developers, and also built a high accuracy classifier
for developers’ importance.

 In the next section, we will present the factors that we will
use to achieve the developers importance classification, and the
studies from where those factors were retrieved. Section III
will present the methodology used to create and conduct a
survey with human subjects. Section IV presents the results,
and Section V discusses those results. Finally, Section VI
provides the conclusion.

II. IMPORTANCE FACTORS

 In this section, factors used to represent concrete evaluation
items for leaders about their developers are presented. Those
factors will be used to define the metrics under the Goal-
Question-Metric (GQM) approach used to design the survey
elaboration.

 Those factors were extracted from several studies available
in the literature and were grouped into categories that present
semantic affinity. Those categories will guide the formulation
of the questions in the GQM model.

TABLE I. ELICITATION OF THE IMPORTANCE FACTORS

Groups Importance factors References

Technical
characteristics

Past experiences

[5], [7], [8],
[10], [13]–[20]

Specialization (expert in some
technology or tool)
Generalization (diversity of skills)

Solve complex problems
Productivity (quantity of deliveries
per month)

Behavioral
characteristics

The main behavior of the developer
when faces a problem [5], [7], [8],

[10], [17], [18],
[19], [21],[22]

Communication with the team
members
Willingness to help a colleague

Individual
characteristics

Creativity

[23],[24]
Entrepreneurship

Pro-activity

Leadership

Commitment to
the team /
company

Planning and organization

[22], [25],[26]
Focus on the costumers

Focus on the results

Time of work in the organization

III. METHODOLOGY

To investigate the current practice of developers’

evaluation, we decided to perform a survey with human
subjects in real software companies to extract the desired
information and analyze it. In this survey, we ask the
respondent firstly to classify a subject developer and then fill
the rest of the survey with the respective developer’s
characteristics. To analyze the obtained data, we decided to
use automatic classification methods to get a clear view of
how those characteristics affect leaders’ classifications, and as
a product we still may have a classifier that can be used to
help leaders gain more insight about their teams’ productivity.

This section is aimed at explaining how the survey was
designed, and show how we conducted our data analysis
obtained from that survey, including the criteria analysis and
the classifier construction.

A. Survey

1) Goal-Question-Metric

We used an approach called Goal Question Metric (GQM)
[27] that helped us define our survey. GQM is a top-down
approach, that is based on the assumption that first, to measure
something, you need to specify goals, from what is possible to
derive questions that define those goals, and then specify the
metrics that need to be collected to answer those questions.

To fulfill the purpose of a goal, we have to determine three
coordinates:

a) Issue: The subject/matter you are dealing with.
b) Object (process): What is the central object of the

analysis.
c) ViewPoint: Under whom perspective the analysis is

being made.

TABLE II. shows our GQM model, with our purpose, the
questions derived from it and the metrics defined to answer
those questions.

For all those factors, the leader used a Likert scale with 5
options, ranging from “Very low” to “Very high”, except from
two factors: “The time of work in the organization”, that
receive a numeric value representing the months that the
developers work in the organization, and “The main behavior
of the developer when faces a problem”, where the leader have
to choose between one of the following options:

 Try to solve on your own (Introspective)
 Search in documentation or books (Introspective)
 Search or ask in Question and Answer sites and

forums (Comunicative)
 Ask helps for the team or leaders (Comunicative)

TABLE II. GOAL QUESTION METRIC

Goal

Purpose Measure

Issue the importance

Object of a developer

Viewpoint under the leader perspective

380

Question What is the technical-skills level of that developer?

Metrics

Productivity

Past experiences

Specialization (expert in some technology or tool)

Generalization (diversity of skills)

Solve complex problems

Question What is the social-skills level of that developer?

Metrics

The main behavior of the developer when facing a problem
a

Communication with the team members

Willingness to help a colleague

Question
What is the level of these behavior characteristics in the
developer’s profile?

Metrics

Leadership

Creativity

Entrepreneurship

Pro-activity

Question
How is the commitment of the developer with the
company?

Metrics

Planning and organization

Focus on the costumers

Focus on the results

Time of work in the organization
a

a. Factors that had different types of evaluation

2) Survey application

We applied the survey remotely, to give the freedom that
our respondent needs to answer the question. For that, we used
the Google Form tool.

We also, to preserve the companies’ privacy, we did not get
any kind of identification, both for the respondent and the
developer being analyzed. The only asked identification was
the company name from where those evaluations are. This was
necessary for a deeper investigation specific for cases where
companies reach the minimum of 10 developers evaluated.

3) Participant characterization

The survey was applied to software companies that has a
software development environment with a minimum
hierarchical structure where exists the role of leaders, or
managers, or chief engineers, etc. (for future references, we call
that person, the leader). All participant companies work in their
own products (they are not only software factories), but they
vary in size, considering amount of employees (developers),
sector of operation (ERP, Telecom, etc.) and may vary in used
technologies.

The respondents of the survey are team leaders. We
understand that they are the right people to do it because,
unlike the owner or higher level managers, they are close
enough to the daily work, and can judge who are the most
important developers and why, even if they do not use a formal
method to assess it. They should answer one assessment per
developer, i.e., if they evaluated 10 developers to reach the
minimum to have their company individually analyzed, they
answered 10 questionnaires.

B. Feature Selection

In order to conduct the analysis to determine which factors
are the most relevant and have major influence in the leader

evaluation, we use the WEKA[28] tool, an open-source
software for data mining and machine learning.

Many real world problems, like ours, have a lot of features
involved and only some of them are relevant to the target
concept [29], in our case, the importance of a developer. To
solve this issue, we will use a strategy called feature selection,
where we select a subset of features to focus our attention, and
ignore the rest to speed up learning, improve our classifier
quality and achieve the best accuracy of the learning algorithm
[29], [30].

The algorithm that we will use is called
GainRatioAttributeEval, which is a single-attribute evaluator,
that evaluates the attributes one by one independently and then
rank them. Our feature selection will make a choice based on
that ranking. That method does not eliminate the redundant
attributes (only the irrelevant ones), but that is not a problem
because we know all the attributes, and this kind of evaluator
does not need a search method, what makes it very fast.

C. Classification

As a result of our survey, one dataset with several leaders’
evaluations about the developers is generated. In this dataset
machine-learning algorithms are applied to generate a
classifier. The machine learning algorithms need two sets of
data: one for training and one for testing, to verify the accuracy
of the classifier. Fig. 1 shows the schema that best represent
this scenario.

To evaluate the performance of a classifier, we used 10-fold
cross-validation that divided the dataset in 10 equal parts
(called folds), take 9 pieces to use for training and use the last
piece for testing, and then do it 9 more times, always
alternating the piece used for testing, that way, a single fold
will be used 9 times for training and 1 for testing. The result
will be the average of the 10 runs.

Fig. 1. Machine Learning algorithms schema

The used machine-learning algorithms are J48, a tree
classifier, and Naïve Bayes, a bayesian classifier. There is no
strong reason to choose them, but they tend to produce high
quality classifiers in general, whenever possible.

 J48 is a variation of a famous system called C4.5 which is
described by Quinlan [28] that uses decision trees to build a
classifier (WEKA actually let us have a look in the tree
generated with all the weights).

Naïve Bayes is a probability method that has two
assumptions: that the attributes are equally important and that

381

they are statistically independent (this independence
assumption is never correct but the methods based on it often
works well in practice).

We will also use a third algorithm called
AttributeSelectClassifier, which actually use a method of
feature selection (in our case, Gain Ratio) and an algorithm to
perform the classification (in our case, J48 or Naïve Bayes).
This way to apply feature selection only selects features in the
training set, assuring we get more reliable results.

Finally, to conduct all those analysis, we will use a feature
from WEKA called EXPERIMENTER, that allow us to run the
same experiment more than one time and determine the mean
and standard deviation, to avoid a misleadingly high or low
accuracy based on the attribute selection to the training and
testing sets. It also let us to compare the results of different
algorithms.

IV. RESULTS

Following the steps presented in the previous section, we
show the results of the application of the survey, the feature
selection performed in the dataset generated by the survey and
the application of the classifiers and their accuracy in the
developers’ classification.

A. Survey

Firstly, we present the data achieved with the survey
application. Eleven respondents (leaders) provided 61 answers
(unique developers evaluated). In a few cases, some leaders
work at the same company, but they run different teams. There
were eight companies involved in the collected data.

We asked for the leaders to classify the developer in five
degrees of importance. Those degrees and the distribution of
the 61 developers among them are shown in Fig. 2.

Fig. 2. Distribution of developers per degree of the class

TABLE III. NEW DEVELOPER’S SET OF CLASSES

New class Original class

High importance
Very important

Important

Low importance

Average importance

Little important

Very little important

Analyzing the results of the survey, we came to the
conclusion that the leaders were conservative in some degree to

classify their developers in the lowest classification of
importance.

From this analysis, we decided to group the developers also
in only two classes based on the original five classes, as shown
in TABLE III. in order to understand a more general picture of
the intention of those leaders.

B. Feature Selection

As explained in the Section III.B, we used the algorithm
GainRatio to rank the proposed attributes, in order to proceed
with feature selection. TABLE IV. shows the rank ordered by
the Average merit (the rate that the attribute influences in the
classification) resulted of that algorithm application, using the
original set of classes (five classes) and TABLE V. show the
same view, now using the new set of classes (two classes).

TABLE IV. ATTRIBUTE RANKING (ORIGINAL SET OF 5 CLASSES)

Features Average merit

Capacity of solving complex problems 0.303

Subjective evaluation of the productivity 0.29

Proactivity 0.226

Past experiences 0.211

Generalization (diversity of skills) 0.202

Specialization (expert in some technology or tool) 0.2

Time of work in the organization 0.184

Creativity 0.18

Focus on the results 0.167

Focus on the customer 0.148

Main behavior of the developer 0.14

Communication with the team members 0.137

Planning and organization 0.122

Leadership 0.097

Entrepreneurship 0.087

Willingness to help a colleague 0.084

TABLE V. ATTRIBUTE RANKING (NEW SET OF 2 CLASSES)

Features Average merit

Proactivity 0.168

Subjective evaluation of the productivity 0.156

Capacity of solving complex problems 0.126

Focus on the results 0.112

Past experiences 0.107

Creativity 0.095

Planning and organization 0.09

Generalization (diversity of skills) 0.08

Specialization (expert in some technology or tool) 0.071

Focus on the customer 0.063

Time of work in the organization 0.063

Willingness to help a colleague 0.057

Leadership 0.052

Communication with the team members 0.039

Entrepreneurship 0.015

Main behavior of the developer 0.016

382

If we choose the three most relevant attributes, or expand
our selection and choose the first ten, we will see that, even in a
different order, they are the same, which supports our decision
to group the class values.

C. Classification (all companies)

Considering that attributes have been ranked, we applied
feature selection technique and use only the most relevant
attributes in the classification. To determine how many features
need to be selected to get a higher performance, we conducted
an exhaustive test (we ran the classifiers with a crescent
numbers of features selected, from 2 to 16) and chose the
configuration with better performance (8 attributes). As we
have two classes, we will show the results for the application of
the J48 and Naïve Bayes for both of them, selecting the 8 first
attributes more relevant and ignoring the rest.

TABLE VI. shows the results for the application of the
algorithms using the first classification schema (5 classes). As
we can see, J48 did not present good performance (close of
50% accuracy). Naïve Bayes had a better performance, but the
accuracy could be considered still low for our purposes.

Now using the reduced set classes, we achieved better
results, as expected, shown in TABLE VII. Again, Naïve
Bayes had a better performance than J48, achieving now a
relevant accuracy (85% of correctness).

TABLE VI. CLASSIFIERS APPLICATION (ORIGINAL SET OF CLASSES)

Algorithm Percent correct

J48 51.88%

Naïve Bayes 61.12%

TABLE VII. CLASSIFIERS APPLICATION (REDUCED NEW SET OF CLASSES)

Algorithm Percent correct

J48 75.88%

Naïve Bayes 85.21%

D. Classification (single company)

In our survey, out of the eight participant companies, 3 of
them achieved the minimum numbers of responses that would
allow an individual analysis of the company. We show the
results of that individual analysis for one company (to preserve
the company privacy, we call it Company A).

Company A evaluated 20 developers, and they presented
reasonable distribution of the developers across the new classes
(TABLE VIII.). TABLE IX. shows the attribute ranking for
this particular company (we can see that there is a few
differences from the relative generic attribute ranking in
TABLE V. , which is discussed in Section V).

In this particular case, we had large difference between J48
and Naïve Bayes in what refers to feature selection. The
selection did not produce a positive effect, and therefore
classification performed better with all the attributes (results
are shown in TABLE X.), and coincidently they both
presented the same accuracy. For this analysis, we considered
only the new classification that proved to improve the accuracy
of the classifiers.

TABLE VIII. DISTRIBUTION OF THE DEVELOPERS ACROSS THE REDUCED
NEW SET OF CLASSES

High importance 10

Low importance 9

TABLE IX. ATTRIBUTE RANKING (INDIVIDUAL COMPANY)

Features Average merit

Proactivity 0.323

Capacity of solving complex problems 0.298

Communication with the team members 0.254

Focus on the results 0.23

Creativity 0.206

Subjective evaluation of the productivity 0.187

Planning and organization 0.191

Specialization (expert in some technology or tool) 0.189

Past experiences 0.173

Entrepreneurship 0.171

Main behavior of the developer 0.172

Willingness to help a colleague 0.156

Focus on the customer 0.158

Leadership 0.137

Generalization (diversity of skills) 0.136

Time of work in the organization 0.123

TABLE X. CLASSIFIERS APPLICATION (INDIVIDUAL COMPANY)

Algorithm Percent correct

J48 (with 2 features) 79.50%

Naive Bayes (with all features) 79.50%

V. DISCUSSION

The first point considered in this discussion is the creation
of the reduced new set classes. As shown in TABLE III. based
on the original set of classes, that had five different classes, we
grouped those 5 classes in only 2, creating a new set of classes
that proved, as expected, to improve the performance of all the
classification algorithms applied. As we could observe in
TABLE IV. and TABLE V. , that this new reduced set of
classes did not change the importance of attributes. So, this
new classification scheme preserves the meaning of the
original classification performed by the leaders because of the
small variation in the attributes position. Moreover, we could
observe that the classifier accuracy is around 80%, which gives
a reasonable level of confidence on the coherence of the impact
of the respective relevant factors on the importance level of
developers.

The top 3 factors, which appear in both rankings, have a
positive correlation with the class, which means that the better
is the factor evaluation, the better is the position in the
developer’s importance classification. One of them is the
productivity of the developer, under the leader perspective,
where productivity represents the amount of work delivered.
This was not a surprise because, as we mentioned in the
beginning of the paper, because this is the classic metric to
evaluate the developer’s performance. On the other hand, the
other two features bring new information to the discussion.

383

Capacity to solve complex problems lead to the opposite
direction of the classic metric (amount of work delivered),
because it often leads to the production of a lower rate of
outputs (LOC or FP) over inputs (resources, time) consumed.
This is an important qualitative point to consider whenever
awarding high productive developers.

Proactivity is actually a required behavior characteristic of
teams involved in the solution of complex problems instead of
more canonical systems where the tasks are more predictable.
The human resources area can conduct better hiring processes
knowing that their software team leaders evaluated this as a
fundamental requirement for developers.

The classification results evaluating all companies together
with Naïve Bayes provided a classifier with 85.2% accuracy
that can be considered a successful and useful result. The use
of this classifier can help leaders conducting more coherent
analysis of the team profile.

When analyzing an individual company, we noticed some
major changes in some features’ position in the feature ranking
(TABLE IX.). Behavioral characteristics (creativity) and
attributes related to the developer’s commitment with the
company (focus on results) in some cases were more important
than the classic metric of productivity. We credit those
differences to the culture and values of that particular
company. So, different companies may assess the importance
factors with some variation.

Finally, it is important to point out some few threats of the
validity of this study. The limited number of developers and
companies involved in this study may limit the generalization
for other contexts. Nonetheless, we have observed several
intersections in different companies that mitigate part of this
threat. The classification provided by leaders tended to be more
positive, maybe because they would not like to say that they
maintain developers with low importance in their teams. The
reduced classification mitigates part of this threat.

VI. CONCLUSION

In this study, we provided a set of criteria used by the
leaders of IT companies to evaluate their developers, and also
ranked those criteria, finding that capacity of solving complex
problems, quantitative evaluation of productivity and
proactivity were generally the most important factors.

Moreover, we created a high accuracy classifier, which can
help, for example, the human resource managers to look for
candidates that have the necessary needed characteristics and
more potential to become an important part of the team.

A qualitative analysis, considering the culture of the
company and their values, and the application of that classifier
in the collaborators of open-source software repositories, to
validate the results or spot the differences, could be suggestions
of future work.

REFERENCES
[1] S. C. Sampaio, et al, “A Review of Productivity Factors and

Strategies on Software Development,” in 5th Proc. of ICSEA, 2010,
pp. 196–204.

[2] B. W. Boehm, “Improving Software Productivity,” Computer, vol.
20, no. 9, pp. 43–57, 1987.

[3] F. P. Brooks Jr, “No silver bullet-essence and accidents of software
engineering,” IEEE Comput., vol. 20, no. 4, pp. 10–19, 1987.

[4] S. Wagner and M. Ruhe, “A Structured Review of Productivity
Factors in Software Development Technical ,” 2008.

[5] C.Walston and C. Felix, “A method of programming measurement

and estimation,” IBM Syst. J., vol. 16. pp. 54–73, 1977.
[6] W. D. Yu, D. P. Smith, and S. T. Huang, “Software productivity

measurements,” in Proc. of COMPSAC’91, 1991, pp. 558–564.
[7] B. W. Boehm, et al, Software Cost Estimation with Cocomo II,

Upper Saddle River, NJ, USA: Prentice Hall PTR, 2000.
[8] P. D. Chatzoglou and L. A. Macaulay, “The importance of human

factors in planning the requirements capture stage of a project,” Intl
Journal of Project Management, vol. 15. pp. 39–53, 1997.

 [10] R. A. Scudder and A. R. Kucic, “Productivity Measures for

Information Systems,” Inf. Manag., v. 20, n. 5, pp. 343–354, 1991.
 [11] H. Sharp, et al, “Models of Motivation in Software Engineering,”

Inf. Softw. Technol., vol. 51, no. 1, pp. 219–233, 2009.
 [12] L. Wallace, M. Keil, and A. Rai, “Understanding Software Project

Risk: A Cluster Analysis,” Inf. Manag., vol. 42, no. 1, pp. 115–125,
2004.

[13] K. D. Maxwell and P. Forselius, “Benchmarking software
development productivity,” Software, IEEE, v. 17, pp. 80–88, 2000.

[14] R. D. Banker, S. M. Datar, and C. F. Kemerer, “A Model to

Evaluate Variables Impacting the Productivity of Software
Maintenance Projects,” Manag. Science, vol. 37. pp. 1–18, 1991.

[15] W. D. Brooks, “Software Technology Payoff: Some Statistical
Evidence,” J. Syst. Softw., vol. 2, no. 1, pp. 3–9, 1981.

[16] G. R. Finnie, G. E. Wittig, and D. I. Petkov, “Prioritizing software
development productivity factors using the analytic hierarchy
process,” J. Syst. Softw., vol. 22. pp. 129–139, 1993.

[17] B. Lakhanpal, “Understanding the factors influencing the

performance of software development groups,” Inf. and Softw.
Tech., v. 35. pp. 468–473, 1993.

[18] J. Vosburgh, et al, “Productivity factors and programming

environments,” in ICSE ’84 Proceedings of the 7th International
Conference on Software Engineering, 1984, pp. 143–152.

[19] C. Wohlin and M. Ahlgren, “Soft factors and their impact on time to
market,” Softw. Qual. J., vol. 4, pp. 189–205, 1995.

[20] C. Wohlin and A. Andrews, “Assessing Project Success Using

Subjective Evaluation Factors,” Softw. Qual. J., v. 9, pp. 43–70,
2001.

 [21] R. H. Rasch, “An Investigation of Factors That Impact Behavioral
Outcomes of Software Engineers,” in Proceedings of the 1991
Conference on SIGCPR, 1991, pp. 38–53.

[22] V. Lalsing, S. Kishnah, and S. Pudaruth, “People Factors in Agile

Software Development and Project Management,” Int. J. Softw.
Eng. Appl., vol. 3, pp. 117–138, 2012.

 [23] R. E. Boyatzis, “Competencies in the 21st century,” J. Manag. Dev.,
vol. 27, no. 1, pp. 5–12, 2008.

[24] A. Shirazi and S. Mortazavi, “Effective management performance a
competency-based perspective,” Int. Rev. Bus. Res. Pap., vol. 5, no.
1, pp. 1–10, 2009.

[25] C. Melo, et al, “Agile Team Perceptions of Productivity Factors,” in
Agile Conference, 2011, pp. 57–66.

[26] M. Coram and S. Bohner, “The impact of agile methods on software

project management,” in Proc. of IEEE ECBS ’05, 2005, pp. 363–

370.
[27] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question

metric approach,” Encycl. Softw. Eng., vol. 2, pp. 528–532, 1994.
[28] Mark Hall, et al (2009); The WEKA Data Mining Software: An

Update; SIGKDD Explorations, Volume 11, Issue 1
[29] K. Kira and L. A. Rendell, “The Feature Selection Problem:

Traditional Methods and a New Algorithm,” in Proc. of the Tenth
National Conference on Artificial Intelligence, 1992, pp. 129–134.

[30] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artif. Intell., vol. 97, no. 1–2, pp. 273–324, Dec. 1997.

384

Stability of Three Forms of Feature Selection Methods on
Software Engineering Data

Huanjing Wang
Western Kentucky University

Bowling Green, Kentucky 42101
huanjing.wang@wku.edu

Taghi M. Khoshgoftaar
Florida Atlantic University
Boca Raton, Florida 33431

khoshgof@fau.edu

Amri Napolitano
Florida Atlantic University
Boca Raton, Florida 33431

amrifau@gmail.com

Abstract—One of the major challenges when working with software
metrics datasets is that some metrics may be redundant or irrelevant
to software defect prediction. This may be addressed using feature
(metric) selection, which chooses an appropriate subset of features for
use in downstream computation. There are three major forms of feature
selection: filter-based feature rankers, which uses statistical measures to
assign a score to each feature and present the user with a ranked list;
filter-based subset evaluation, which uses statistical measures on feature
subsets to find the best choice; and wrapper-based subset selection, which
builds classification models using different subsets to find the one which
maximizes performance. Software practitioners are interested in which
feature selection methods are best at providing the most stable feature
subset in the face of changes to the data (here, the addition or removal
of instances). In this study we select feature subsets using fifteen feature
selection methods and then use our newly proposed Average Pairwise
Tanimoto Index (APTI) to evaluate the stability of feature selection
methods. We evaluate the stability of feature selection methods on a
pair of subsamples generated by fixed-overlap partitions algorithm. Four
different levels of overlap are considered in this study. Four software
metric datasets from a real-world software project are used in this study.
Results demonstrate that ReliefF (RF) is the most stable feature selection
method and wrapper based feature subset selection shows least stability.
In addition, as the overlap of partitions increased, the stability of the
feature selection strategies increased.

I. INTRODUCTION

For most software systems, superfluous software metrics (e.g.,
number of loops, number of global variables, and number of exit
nodes) are often collected during the software development cycle.
Some metrics may be redundant or irrelevant to software defect
prediction. Therefore the identification and selection of of a small set
of relevant features from a metric dataset could be used by software
developers to guide their efforts to reduce software development cost
and produce more reliable software systems [1]. The identification
and selection process is called metric (feature) selection. Feature
selection algorithms (which select a subset of features from the
original dataset) are often used to reduce the original feature set down
to a subset containing only the most important features. Numerous
feature selection methods have been proposed in the data mining and
software engineering domains.

While feature selection is a necessary step, very little work has
focused on the robustness (stability) of the feature selection methods
in regards to software metrics data. The purpose of studying the
stability of a feature selection technique is to determine which
technique provides the feature subset that is the most robust to
changes in the data. In this study, we used a fixed-overlap partitions
algorithm which was proposed by our research group to generate
a pair of subsamples which have same number of instances and a
specified degree of overlap (fraction of instances in common). Then

(DOI reference number: 10.18293/SEKE2015!-198)

feature subset chosen from the pair of subsamples using a feature
selection method are compared. The proposed algorithm is different
from the approaches used by most researchers, which either generate
multiple random subsamples of the original dataset and compare the
features chosen from these with one another, or compare the features
from the subsamples directly with the features from the original data.
It can be noted that the first approach can not control the overlap
between subsamples, while the second approach compare features
from different size of datasets.

The primary focus of this paper is to evaluate the stability of fifteen
feature selection methods through a case study of four consecutive
releases of a very large telecommunications software system (denoted
as LLTS). We consider fifteen different feature selection strategies:
three feature rankers each coupled with three feature subset sizes,
the Correlation-based Feature Selection (CFS) filter-based subset
evaluator, and wrapper-based feature selection using one of five
different learners inside the wrapper. We evaluate the stability of
feature selection methods on a pair of subsamples generated by the
fixed-overlap partitions algorithm. Four different levels of overlap
are considered in this study. We find that in general, the most stable
feature selection methods is a ranker-based approach. Among the
rankers, ReliefF (RF) is the most stable one. The trends of rankers
being the most stable feature selection overall, CFS often being a
moderate stable feature selection, and wrappers being extremely poor
choices of feature selection in terms of stability were all present in
the results. In addition, as the overlap of partitions increased, the
stability of the feature selection strategies increased.

The rest of the paper is organized as follows. We review relevant
literature on feature selection and stability in Section II. Section III
provides detailed information about the three classes of feature
selection, fixed-overlap partitions , and metrics used for measuring
stability (including our newly-proposed extension on the Tanimoto
Index) used in our study. Section IV provides a description of the
software measurement datasets used and presents empirical results
of our study. Finally, in Section V, the conclusion is presented and
the suggestions for future work are indicated.

II. RELATED WORK

Feature selection is a necessary step in data mining. The main goal
of feature selection is to select a subset of features that minimizes
the prediction errors of classifiers. A number of papers have studied
the use of feature selection techniques as a data preprocesing step.
While many works have focused on the performance of models built
using features selected by feature selection techniques, another way
to evaluate a feature selection technique is through stability. Few
studies exist on the stability of feature selection algorithms, but a

385

small number of studies have considered the stability of wrapper-
based feature selection, which is often calculated in a similar fashion.
Somol and Novovičová [2] conducted a comprehensive study of the
stability of feature selection techniques and investigated the problem
of evaluating the stability of feature selection techniques that produce
subsets of varying size. They compared the stability of three wrapper
techniques (Gaussian classifier, 3-Nearest Neighbor, and Support
Vector Machines). Lustgarten et al. [3] proposed a stability measure
called the Adjusted Stability Measure (ASM, based upon extending
the consistency index to varying feature subset size), as opposed to
Unadjusted Stability Measure (USM, based on the Jaccard index),
that computes robustness of a feature selection technique with respect
to random feature selection. They compared the stability of three
wrapper approaches. Haury et al. [4] evaluated a number of feature
ranking methods and one wrapper-based subset evaluation technique
and considered stability in terms of how many features are in common
between two subsets generated from independent subsamples of
the original data. Dunne et al. [5] considered wrappers using a
3-nearest neighbor learner and three choices of search technique,
evaluating stability by resampling the original dataset and finding
the Hamming distance between the various feature subset masks. The
overall stability is then defined by the average Normalized Hamming
Distance. Kalousis et al. [6] used the Tanimoto coefficient that is a
generalized version of the Jaccard index to measure similarity be-
tween two subsets of features. They concluded that stability provides
an objective criterion to choose among feature selection algorithms.
Selecting the most stable algorithm gives higher confidence in the
quality of selected feature subset.

Few works consider the impact of dataset similarity when perform-
ing perturbation experiments, one paper, Alelyani et al. [7], does. In
this paper, the authors note that without controlling for overlap, it
is difficult to tell whether two feature subsets are different due to
underlying stability issues with the ranker or due to differences in
the datasets they were drawn from. To evaluate this, the researchers
sampled 25% of the instances into one subset, and then created nine
more subsets with exactly c of their instances in common with the
first. The pairwise stability of the features from these subsets were
evaluated as c varied from 0 to 1. They found that some algorithms
were not able to outperform the inherent stability of the underlying
datasets, and so should not be considered “stable” regardless of their
stability performance. Although Alelyani et al. raises an important
question about the role of dataset similarity, it does not necessarily
address this question to the extent it deserves. Notably, during their
experiments with varying the amount of overlap between subsets,
only the overlap between the first subset and the remaining nine is
considered; the overlap among the nine is not, and will depend on
random chance. In addition, by consistently using only 25% of the
instances from their datasets (which have as few as 85 instances to
start with), they discard much of their data. Finally, although their
proposal to compare a ranker’s stability with the minimum stability
provided by the dataset is useful, it doesn’t address the problem of
selecting stable rankers for different subset sizes, degree of class
balance, size of underlying dataset, or difficulty of learning of the
underlying dataset. These questions and more remain open.

Another work, Haury et al. [4], considers the role of overlap when
considering the stability of gene subsets. In addition to other analysis
of their datasets, the researchers consider the fraction of instances in
common when comparing feature lists generated from subsamples
of the original data which either have 80% or 0% overlap. They
also compare feature lists among four distinct (but related) datasets.
They found that the stability measures for the 0% overlap case more

closely resembled the between-datasets case than did the results from
the 80% overlap case. However, unlike the 0% case, where it is noted
that the original data was divided into two mutually-exclusive groups
(which therefore have 0% overlap), for the 80% case the two groups
were generated by adding 80% of the data from the original dataset
into each group, and then splitting the remaining 20% in half and
putting each half into one of the groups. Thus, the 80% refers to
proportion of the original data shared by the two groups, not the
overlap between the two groups. This makes it difficult to generalize
the approach to create datasets with arbitrarily-chosen overlaps.

The main contribution of the present work is that we consider
stability of three forms of feature selection techniques by comparing
the selected features generated from two subsamples which have same
number of instances and a specified level of overlap, rather than
directly comparing separate subsamples of the original dataset with
original datasets. In addition the Average Pairwise Tanimoto Index
(APTI), which does not require feature subsets have the same size,
is used to evaluate the stability of a feature selection technique.

III. METHODOLOGY

We consider fifteen different feature selection strategies: three
feature rankers each coupled with three feature subset sizes, the
Correlation-based Feature Selection (CFS) filter-based subset eval-
uator, and wrapper-based feature selection using one of five different
learners inside the wrapper. The feature selection techniques are
presented in Section III-A, while the Fixed-Overlap Partitions are
discussed in Section III-B, and the stability measure is presented in
Section III-C.

A. Feature Selection

Many techniques exist for choosing the optimal feature subset,
but these can generally be placed into two categories: ranking-based
methods and subset-based methods. Within the subset group, either
filters or wrappers can be used to perform the actual evaluation.
Filters are algorithms in which a feature subset is selected without
involving any learning algorithm. Wrappers are algorithms that use
feedback from a learning algorithm to determine which feature(s)
to include in building a classification model. Feature rankers tend
to be more efficient than subset-based methods, because a ranker
need only provide a single score for each feature, and then subsets
can be built based on ranked feature lists. For subset-based methods,
different subsets must be considered, with the number of calculations
reaching to 2n (n is the number of features) if exhaustive search is
used. Subset-based methods will take more computational resources
than feature rankers.

1) Feature Ranking: For feature ranking, we choose three repre-
sentative techniques: Relief (RF), Area Under the Receiver Operating
Characteristic (ROC) Curve, and Signal-To-Noise (S2N). These were
chosen for two reasons. First of all, they represent three major
groupings of feature ranking technique: RF is a commonly-used
algorithm for ranking features, while ROC is an example of threshold-
based feature selection (TBFS) [8], and S2N is an example of first-
order statistics-based feature selection (FOS) [9].

Relief is an instance-based feature ranking technique [10]. ReliefF
is an extension of the Relief algorithm that can handle noise and
multi-class datasets. When the ‘weightByDistance’ (weight nearest
neighbors by their distance) parameter is set as default (false), the
algorithm is referred to as RF.

Threshold-based Feature Selection Techniques (TBFS) were pro-
posed and implemented by our research group [8]. In TBFS, each

386

attribute is evaluated against the class, independent of all other fea-
tures in the dataset. After normalizing each attribute to have a range
between 0 and 1, simple classifiers are built for each threshold value
∈ [0, 1] according to two different classification rules (e.g., whether
instances with values above the threshold are considered positive
or negative class examples). The normalized values are treated as
posterior probabilities and the performance of these probabilities is
evaluated using a chosen metric, in much the same way that the
posterior probabilities from a standard classifier would be evaluated.
However, as the feature values are used directly, no actual classifier
is built. In the present work, we used the Area Under the ROC
Curve metric (ROC), which plots the True Positive Rate vs. the False
Positive Rate over all possible threshold values and then uses the area
under this curve as the performance of the posterior probabilities.
When used as a ranker, this area is the quality of the feature.

First-order statistics-based feature selection (FOS) [9] is a family
of related techniques which all center around the use of first-order
statistics such as mean and standard deviation. Signal-to-noise (S2N)
ratio is a technique in this family which is a measure used in electrical
engineering to quantify how much a signal has been corrupted by
noise. It is defined as the ratio of signal’s power to the noise’s power
corrupting the signal. The S2N ratio can also be used as feature
ranking method [11]. For a binary class problem (such as fp, nfp),
the equation for signal to noise is:

S2N = (µP − µN)/(σP + σN) (1)

where µP and µN are the mean values of that particular attribute
in all of the instances which belong to a specific class, either P or
N (the positive and negative classes). σP and σN are the standard
deviations of that particular attribute as it relates to the two classes,
respectively. If one attribute’s expression in one class is quite different
from its expression in the other, and there is little variation within
the two classes, then the attribute is predictive. The larger the S2N
ratio, the more relevant a feature is to the dataset [12].

For all three rankers, we considered three different feature subset
sizes: 3, 4, and 5. These were chosen based on previous research [13]
and to give a wider spectrum of the most common choices used for
feature ranking on software metrics datasets.

2) Filter-Based Subset Evaluation: In this study, we evaluate
one filter-based feature subset selection algorithms: Correlation-based
(CFS) [14] feature subset selection. CFS employs the Pearson corre-
lation coefficient [14], which can be calculated using the following
formula:

MS =
krcf√

k + k(k − 1)rff
(2)

In this formula, MS is the merit of the current subset of features, k is
the number of features, rcf is the mean of the correlations between
each feature and the class, and rff is the mean of the pairwise
correlations between every two features. The numerator increases
when the set of features is particularly good at classifying the data,
while the denominator increases when the set has a significant amount
of self-correlation, which implies redundancy.

3) Wrapper-based Feature Subset Evaluation: Wrapper-based fea-
ture subset selection is building a model using a potential feature
subset and using the performance of this model as a score for
the merit of that subset [15]. The wrapper-based feature selection
methods employ some predetermined learning algorithms (classifiers
or learners) to evaluate the goodness of the subset of features being
selected. The performance of this approach relies on three factors: (1)
the strategy to search the feature space for possible optimal feature

subsets; (2) the criterion to evaluate the classification model built
with the selected subset of features; (3) and the learner.

Suppose a large set of n features is given, we need to find a small
subset of features for future model building. Inspecting all candidate
subsets (2n) is impractical. There are some strategies that can solve
the problem. One way is to use a search algorithm to generate the
possible feature subsets. Based on preliminary experimentation, we
chose the Greedy Stepwise approach, which uses forward selection to
build the full feature subset starting from the empty set. At each point
in the process, the algorithm creates a new family of potential feature
subsets by adding every feature (one at a time) to the current best-
known set. The merit of all these sets are evaluated, and whichever
performs best is the new known-best set. The wrapper and CFS
procedures terminate when none of the new sets outperform the
previous known-best set.

During the search process, classification models are built using
a potential feature subset and using the performance of this model
as a score for the merit of that subset [15]. For our experiments
the wrapper process uses five-fold cross-validation: the training set is
divided into five equal folds (partitions), a classifier is trained on four
folds, then tested on the last (fifth) fold. This process is repeated five
times, and the results are averaged to give the merit of the potential
feature subset. In this study, the classification models are evaluated
using the Area Under ROC (Receiver Operating Characteristic) Curve
(AUC) performance metric.

In this work, five diverse learners are used within the wrapper-
based feature subset selector, consisting of naı̈ve Bayes, multilayer
perceptron, k-nearest neighbors, support vector machine, and logistic
regression. The five learners were selected because of their common
use in the software engineering and other application domains, and
also because they do not have a built-in feature selection capability.
Unless stated otherwise, we use default parameter settings for the
different learners as specified in WEKA [16]. Parameter settings
are changed only when a significant improvement in performance
is obtained.

1) Naı̈ve Bayes (NB) utilizes Bayes’s rule of conditional prob-
ability and is termed ‘naive’ because it assumes conditional
independence of the features.

2) Multilayer Perceptron (MLP) is a neural network of simple
neurons called perceptrons. Some related parameters of MLP
were set as follows: the ‘hiddenLayers’ parameter was set to
3 to define a network with one hidden layer containing three
nodes and the ‘validationSetSize’ was set to 10 (with 10%
of the data being held aside for validating when to stop the
backpropagation procedure).

3) K-Nearest Neighbors (KNN) [17], also called instance-based
learning, uses distance-based comparisons. KNN was built with
changes to two parameters. The ‘distanceWeighting’ parameter
was set to ‘Weight by 1/distance’ and the ‘kNN’ parameter was
set to 5.

4) Support Vector Machine (SVM), also called SMO in WEKA
[16], had two changes to the default parameters: the ‘complex-
ity constant c’ was set to 5.0 and ‘build Logistic Models’ was
set to true. By default, a linear kernel was used.

5) Logistic Regression (LR) [18] is a statistical regression model
for categorical prediction by fitting data to a logistic curve.

B. Fixed-overlap Partitions

Many approaches have been used to test the stability of feature
selection techniques. Some take random subsamples from the original
dataset and compare the features chosen on these subsamples with

387

each other; others compare the features chosen on the subsamples
with those chosen from the original dataset. The first of these
approaches has a known flaw: it does not control for the degree of
overlap between the subsamples being compared (instead leaving this
to random chance). This makes it difficult to determine whether the
stability between feature subsets is due to similarity of the underlying
datasets or is a property of the feature selection technique used.
The second approach is somewhat limited in scope: although it is
useful for observing stability in the case of adding or removing
instances from a dataset, its use of two datasets of different sizes can
impact how well the results generalize to other perturbation scenarios.
Neither is able to evaluate how similar the feature subsets will be
for two datasets which are equal in size and have a known degree
of overlap. To address this, our research group proposed the Fixed-
Overlap Partitions Algorithm [19] (Algorithm 1), which will create
two new subsets that have the desired properties while also being
as large as possible for the given degree of overlap. Note in this
algorithm that c, the desired degree of overlap, can vary from 0 to
1, including the endpoints. A choice of c = 0 will find two entirely
disjoint subsets, which will each contain half of the instances from
the original dataset. On the other hand, c = 1 will create two copies
of the original dataset which share all instances. This is generally not
an interesting case to study, but is permitted by the algorithm.

Algorithm 1: Fixed-Overlap Partitions
input : Original dataset S with N instances

: c, the fraction of instances the two subsampled datasets
should have in common (0 ≤ c ≤ 1)

output: Datasets S1 and S2 which have c of their instances in
common while being identical in size and as large as
possible for the given c

Let d = 1/(2− c) (e.g., c = (2d− 1)/d)
S1 and S2 start out empty
Randomly select dN instances from S and add them to S1

Randomly select cdN instances from S1 and add them to S2

Take all instances in S which are not in S1 and add them to S2

There are three properties which must be guaranteed when select-
ing these subsets: 1) that they contain the same number of instances,
2) that they have the specified degree of overlap, and 3) that they are
as large as possible while the first two properties hold true (since there
is no reason to discard instances if they could be used to improve
feature selection or classification). Based on Algorithm 1, we can see
that S1 contains dN instances. To find the number of instances in S2,
we note that two steps add instances to that dataset: one adds cdN
instances and the other adds the instances not included in S1 (e.g.,
(1− d)N instances). Working from here and using the definition of
d in the algorithm, we have:

|S2| = cdN + (1− d)N

=

(
2d− 1

d

)
dN + (1− d)N

= (2d− 1)N + (1− d)N

= 2dN −N +N − dN

= dN

Thus, we have |S1| = |S2| = dN , satisfying the first property. As
for the second property, recall that S1 and S2 share precisely cdN
instances; thus, they have cdN/dN = c of their instances in common,
as desired. For the third property, observe that adding any instances

to either S1 or S2 would necessarily increase the fraction of overlap
(since these would have to be instances already found in the other
subsampled dataset). Thus, S1 and S2 are the largest datasets which
are identical in size and have an overlap of precisely c. In this study,
the degree of overlap is chosen from the set {0.25, 0.5, 0.7, 0.85}.
A choice of c = 0.85 will generate two subsets with 0.87 (d =
1/(2− c))×N instances.

C. Stability Measurement

In order to measure stability, first we have to decide the measure-
ment metric. In this study we choose the Average Pairwise Tanimoto
Index (APTI), derived from work originating in Kalousis et al. [6],
since it does not require feature subsets have the same size. Let Si

and Sj be two different subsets of features. The original Tanimoto
Index defines the stability between the two feature subsets as follows:

T (Si, Sj) =
|Si ∩ Sj |
|Si ∪ Sj |

= 1− |Si|+ |Sj | − 2|Si ∩ Sj |
|Si|+ |Sj | − |Si ∩ Sj |

(3)

where |Si|+|Sj |−2|Si∩Sj |
|Si|+|Sj |−|Si∩Sj |

is the Tanimoto distance between the two
feature subsets. In this work, we propose Average Pairwise Tanimoto
Index (APTI) that can be used to determine the stability of a set of
feature subset pairs which are generated by same feature selection
method on a pair of subsamples:

APTI(S1, S2) =
1

W

W∑
i=1

T (S1
i1, S

2
i2) (4)

Here, we assume that S1 and S2 are paired feature subsets
generated by same feature selection method on a pair of subsamples.
For each pair of subsamples Si1 and Si2, there are two corresponding
feature subsets, S1

i1 and S2
i2. The stability index (APTI) defined in

Equation 4 varies in the interval of [0,1]. As APTI is an average of
Tanimoto Index values, its maximum of 1 represents the case where
all pairwise comparisons are identical subsets, and the minimum of
0 means that no pairs ever have any features in commons. In our
experiments, W is set to 30. That means for each dataset, 30 pairs
subsamples are generated with certain level of overlap.

IV. EXPERIMENTS

A. Experimental Datasets

Experiments conducted in this study used software metrics and
defect data collected from a real-world software project, and included
data from four consecutive releases of a very large telecommunica-
tions software system (denoted as LLTS). The LLTS software system
was comprised of several million lines of code. The data collection
effort used the Enhanced Measurement for Early Risk Assessment of
Latent Defect (EMERALD) system [20]. The software measurement
dataset of LLTS contains data from four consecutive releases, which
are labeled as SP1, SP2, SP3, and SP4. Each dataset includes 42
software metrics, including 24 product metrics, 14 process metrics,
and four execution metrics. The dependent variable is the class of the
program module: fault-prone (fp) or not fault-prone (nfp). A program
module with one or more faults is considered fp, and nfp otherwise.
Table I summarizes the numbers of the fp and nfp modules and their
percentages in each dataset. A unique characteristic of these datasets
is that they all are highly imbalanced datasets, where the proportion
of fp modules is much lower than the nfp modules.

388

TABLE I
SOFTWARE DATASETS CHARACTERISTICS

Data #Metrics #Modules %fp %nfp
SP1 42 3649 6.28% 93.72%

LLTS SP2 42 3981 4.75% 95.25%
SP3 42 3541 1.33% 98.67%
SP4 42 3978 2.31% 97.69%

TABLE II
STABILITY OF FEATURE SELECTION FOR SP1

Feature Selection Overlap
0.25 0.5 0.7 0.85

RF, 3 0.8333 0.9000 0.8833 0.9333
RF, 4 0.8267 0.8400 0.8533 0.9067
RF, 5 0.6667 0.7111 0.7222 0.8111
ROC, 3 0.6400 0.7900 0.9167 0.9167
ROC, 4 0.5200 0.6000 0.6622 0.7778
ROC, 5 0.4266 0.4901 0.5909 0.7000
S2N, 3 0.4967 0.6000 0.5667 0.6500
S2N, 4 0.4159 0.5111 0.5644 0.6400
S2N, 5 0.4762 0.5540 0.6937 0.7667
CFS 0.4216 0.5223 0.5633 0.5972
Wrapper-NB 0.3973 0.5365 0.5696 0.6761
Wrapper-MLP 0.2645 0.3064 0.3419 0.3297
Wrapper-5NN 0.1679 0.1745 0.1988 0.2304
Wrapper-SVM 0.1000 0.0931 0.1056 0.1413
Wrapper-LR 0.3329 0.3504 0.4049 0.4707

B. Experimental Design

Experiments are conducted with fifteen different feature selection
strategies on four software engineering metric datasets from a real-
world software project. These feature selection strategies include
three feature rankers each coupled with three feature subset sizes,
the Correlation-based Feature Selection (CFS) filter-based subset
evaluator, and wrapper-based feature subset selection using one of five
different learners inside the wrapper. The goal of the experiments is to
study how these feature selection methods can affect the stability of
feature selection process. Thirty pairs of subsamples were generated
from each original dataset with four different levels of overlap, and
each feature selection method was applied to each pair of subsample.
Once these feature subsets were created, the stability of the pairs
of feature subset generated by same feature selection method were
compared using our newly proposed Average Pairwise Tanimoto
Index (APTI) described in Section III-C. In total, we calculate 240

TABLE III
STABILITY OF FEATURE SELECTION FOR SP2

Feature Selection Overlap
0.25 0.5 0.7 0.85

RF, 3 0.6167 0.6167 0.7000 0.6500
RF, 4 0.6756 0.7156 0.6978 0.6978
RF, 5 0.7571 0.8254 0.9254 0.9778
ROC, 3 0.6800 0.8233 0.9167 0.9833
ROC, 4 0.6400 0.6933 0.7867 0.8800
ROC, 5 0.6143 0.6476 0.7206 0.7698
S2N, 3 0.4067 0.4233 0.5867 0.7067
S2N, 4 0.4438 0.5117 0.6889 0.7333
S2N, 5 0.4898 0.6333 0.7444 0.8175
CFS 0.45 0.49 0.54 0.64
Wrapper-NB 0.4259 0.5069 0.5417 0.6462
Wrapper-MLP 0.2015 0.2120 0.2783 0.2246
Wrapper-5NN 0.1461 0.1949 0.2898 0.2900
Wrapper-SVM 0.0728 0.0787 0.0717 0.0739
Wrapper-LR 0.2871 0.2780 0.4063 0.4401

TABLE IV
STABILITY OF FEATURE SELECTION FOR SP3

Feature Selection Overlap
0.25 0.5 0.7 0.85

RF, 3 0.5667 0.6000 0.7000 0.7833
RF, 4 0.4889 0.6044 0.7511 0.7867
RF, 5 0.4675 0.5619 0.7381 0.8778
ROC, 3 0.2633 0.3633 0.4167 0.4000
ROC, 4 0.2590 0.3263 0.4006 0.4356
ROC, 5 0.2381 0.3636 0.4706 0.4964
S2N, 3 0.4833 0.6000 0.7800 0.8567
S2N, 4 0.4654 0.5473 0.7244 0.8133
S2N, 5 0.4516 0.5340 0.6353 0.6635
CFS 0.1685 0.2352 0.3022 0.3890
Wrapper-NB 0.2094 0.3133 0.3417 0.4135
Wrapper-MLP 0.1412 0.2274 0.2511 0.2667
Wrapper-5NN 0.1305 0.1368 0.2289 0.2706
Wrapper-SVM 0.0862 0.1589 0.1223 0.1262
Wrapper-LR 0.1767 0.2126 0.2759 0.2663

TABLE V
STABILITY OF FEATURE SELECTION FOR SP4

Feature Selection Overlap
0.25 0.5 0.7 0.85

RF, 3 0.7167 0.7667 0.8000 0.8000
RF, 4 0.7911 0.8933 0.9333 1.0000
RF, 5 0.7349 0.8667 0.8556 0.8667
ROC, 3 0.0767 0.1433 0.2533 0.3800
ROC, 4 0.1254 0.2108 0.3321 0.4470
ROC, 5 0.1696 0.2696 0.4106 0.5362
S2N, 3 0.5600 0.7033 0.8067 0.8833
S2N, 4 0.5689 0.6711 0.7422 0.7378
S2N, 5 0.5639 0.6492 0.7429 0.8063
CFS 0.2634 0.3485 0.4231 0.5061
Wrapper-NB 0.2839 0.3426 0.5246 0.4964
Wrapper-MLP 0.1323 0.1673 0.1879 0.3063
Wrapper-5NN 0.1596 0.1510 0.2082 0.1978
Wrapper-SVM 0.0379 0.0636 0.0784 0.0317
Wrapper-LR 0.2004 0.2539 0.3282 0.3628

APTI values (4 datasets × 15 feature selection × 4 overlap levels).

C. Results and Analysis

Table II through Table V list the stability results for each dataset.
These tables show the stability of subsets generated by each feature
selection method (row) on subsamples with different level of overlap
(column). For example, the first value in Table II, 0.8333, represents
the stability of two feature subsets selected by Relief (RF) with fea-
ture subset size three and the overlap level of the pair of subsamples
is 0.25. For each overlap level, the most and least value (stability)
are printed in bold and italics, respectively. Figure 1 shows stability
on average across all four datasets. From these tables and figure, we
can observe the following facts:

• Overall, we can order the three classes of feature selection
strategies from the most stability to least stability, ranker, filter-
based subset evaluators, and wrapper-based subset evaluators. In
terms of ranker, RF shows extremely high stability. The highest
stability is found for RF with subset size four and overlap level
0.85 on dataset SP4. Followed by RF, ROC shows more stability
than S2N for SP1 and SP2 datasets, while S2N shows more
stability than ROC for SP3 and SP4 datasets. There are no
patterns to show the relationship between feature subset size
and stability of selected feature subsets.

• Comparing to other classes of feature strategies, the similarities
of wrappers are low. Among the five wrappers, NB wrapper

389

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.25 0.5 0.7 0.85

RF, 3

RF, 4

RF, 5

ROC, 3

ROC, 4

ROC, 5

S2N, 3

S2N, 4

S2N, 5

CFS

NB

MLP

5NN

SVM

LR

Overlap Constant

A

P

T

I

Fig. 1. Similarities of Feature Selection Methods

shows the most stability regardless of overlap level. The next
similar wrapper is LR wrapper. SVM wrapper shows least
stability, no feature subset pairs generated by SVM wrapper
have a stability greater than 0.1 for SP2 and SP4 datasets and the
stability value does not exceed 0.16 for SP1 and SP3 datasets.
It is clear from these results that the choice of learner will have
a very important effect on the chosen features.

• While intuitive, the results show that as the overlap of parti-
tions increased, the stability of the feature selection strategies
increased. This indicates that with enough change any selected
subset become unstable.

V. CONCLUSION

Software metrics collected during project development play a
critical role in software quality assurance. A typical project often
collects large number of metrics. Metric (feature) selection plays an
important role in data preprocessing step. By removing irrelevant and
redundant features from a training dataset, software quality estimation
based on some classification models may improve. One consequence
of removing redundancy can be reducing stability: that is, the subset
of chosen features may change significantly in the face of relatively
small changes to the input dataset. In this paper, we propose a new
metric for measure the stability on subset selected by feature selection
techniques.

In this study, we present a stability analysis of of 15 feature
selection methods (three feature ranking with three different subset
sizes, one filter-based subset evaluator, and five wrappers) on a real-
world software project. A newly-proposed variation of the Tanimoto
Index (the Average Pairwise Tanimoto Index (APTI)) was used to
evaluate the stability between subsets selected by feature selection
methods. Experimental results demonstrate that the choice of feature
selection methods has a major effect on the feature subsets. We find
that there is the most stability (though not congruence) between the
subsets chosen using rankers especially the RF ranker. The subsets
selected by wrappers are even more dissimilar from one another. In
addition, as the overlap of partitions increased, the stability of the
feature selection strategies increased.

Future work may compare stability of a wide range of feature
ranking techniques with more feature subset sizes, filter-based subset
evaluators, and wrappers with different choices of learners and
performance metrics. Experiments may be conducted on additional
software metrics datasets from the software engineering domain.

REFERENCES

[1] T. M. Khoshgoftaar, K. Gao, A. Napolitano, and R. Wald, “A com-
parative study of iterative and non-iterative feature selection techniques
for software defect prediction,” Information Systems Frontiers, vol. 16,
no. 5, pp. 801–822, 2014.

[2] P. Somol and J. Novovičová, “Evaluating stability and comparing output
of feature selectors that optimize feature subset cardinality,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32,
no. 11, pp. 1921–1939, 2010.

[3] J. L. Lustgarten, V. Gopalakrishnan, and S. Visweswaran, “Measuring
stability of feature selection in biomedical datasets,” in AMIA 2009
Annual Symposium Proceedings, 2009, pp. 406–410.

[4] A.-C. Haury, P. Gestraud, and J.-P. Vert, “The influence of feature
selection methods on accuracy, stability and interpretability of molecular
signatures,” PLoS ONE, vol. 6, no. 12, p. e28210, 12 2011. [Online].
Available: http://dx.doi.org/10.1371%2Fjournal.pone.0028210

[5] K. Dunne, P. Cunningham, and F. Azuaje, “Solutions to Instability Prob-
lems with Sequential Wrapper-Based Approaches To Feature Selection,”
Machine Learning, no. TCD-CD-2002-28, pp. 1–22, 2002.

[6] A. Kalousis, J. Prados, and M. Hilario, “Stability of feature selection
algorithms: a study on high-dimensional spaces,” Knowledge and Infor-
mation Systems, vol. 12, no. 1, pp. 95–116, May 2007.

[7] S. Alelyani, Z. Zhao, and H. Liu, “A dilemma in assessing stability
of feature selection algorithms,” in High Performance Computing and
Communications (HPCC), 2011 IEEE 13th International Conference on,
Sept. 2011, pp. 701 –707.

[8] H. Wang, T. M. Khoshgoftaar, and J. Van Hulse, “A comparative
study of threshold-based feature selection techniques,” in 2010 IEEE
International Conference on Granular Computing, GrC 2010, San Jose,
California, USA, 14-16 August 2010, 2010, pp. 499–504.

[9] H. Wang, T. M. Khoshgoftaar, R. Wald, and A. Napolitano, “A study on
first order statistics-based feature selection techniques on software metric
data,” in The 25th International Conference on Software Engineering and
Knowledge Engineering, Boston, MA, USA, June 27-29, 2013., 2013, pp.
467–472.

[10] K. Kira and L. A. Rendell, “A practical approach to feature selection,” in
Proceedings of 9th International Workshop on Machine Learning, 1992,
pp. 249–256.

[11] C.-H. Yang, C.-C. Huang, K.-C. Wu, and H.-Y. Chang, “A novel ga-
taguchi-based feature selection method,” in IDEAL ’08: Proceedings of
the 9th International Conference on Intelligent Data Engineering and
Automated Learning, Berlin, Heidelberg, 2008, pp. 112–119.

[12] M. Wasikowski and X. wen Chen, “Combating the small sample class
imbalance problem using feature selection,” IEEE Transactions on
Knowledge and Data Engineering, vol. 22, pp. 1388–1400, 2010.

[13] H. Wang, T. M. Khoshgoftaar, and N. Seliya, “How many software
metrics should be selected for defect prediction?” in Proceedings of
the Twenty-Fourth International Florida Artificial Intelligence Research
Society Conference, May 18-20, 2011, Palm Beach, Florida, USA, 2011.

[14] M. Hall, “Correlation-based feature selection for machine learning,”
Ph.D. dissertation, The University of Waikato, Hamilton, New Zealand,
April 1997.

[15] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324, Dec. 1997.
[Online]. Available: http://dx.doi.org/10.1016/S0004-3702(97)00043-X

[16] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.

[17] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning
algorithms,” Machine Learning, vol. 6, no. 1, pp. 1573–0565, January
1991.

[18] S. Le Cessie and J. C. Van Houwelingen, “Ridge estimators in logistic
regression,” Applied Statistics, vol. 41, no. 1, pp. 191–201, 1992.

[19] H. Wang, T. M. Khoshgoftaar, R. Wald, and A. Napolitano, “A novel
dataset-similarity-aware approach for evaluating stability of software
metric selection techniques,” in IEEE 13th International Conference on
Information Reuse & Integration, IRI 2012, Las Vegas, NV, USA, August
8-10, 2012, 2012, pp. 1–8.

[20] J. P. Hudepohl, S. J. Aud, T. M. Khoshgoftaar, E. B. Allen, and
J. Mayrand, “EMERALD: Software metrics and models on the desktop,”
IEEE Software, vol. 13, no. 5, pp. 56–60, September 1996.

390

Building a Large-scale Software Programming
Taxonomy from Stackoverflow

Jiangang Zhu
School of Software

Shanghai Jiao Tong University
jszjgtws@sjtu.edu.cn

Beijun Shen*
School of Software

Shanghai Jiao Tong University
bjshen@sjtu.edu.cn

Xuyang Cai
School of Software

Shanghai Jiao Tong University
bakercxy@hotmail.com

Haofen Wang*
East China University of

Science & Technology
whfcarter@ecust.edu.cn

Abstract—Taxonomy is becoming indispensable to a growing
number of applications in software engineering such as software
repository mining and defect prediction. However, the existing
related taxonomies are always manually constructed. The sizes of
these taxonomies are small and their depths are limited. In order
to show the full potential of taxonomies in software engineering
applications, in this paper, we present the first large-scale software
programming taxonomy which is more comprehensive than any
existing ones. It contains 38,205 concepts and 68,098 subsumption
relations. Instead of learning from a open domain, we focus on
taxonomy construction from Stackoverflow which is one of the
largest QA websites about software programming. We propose a
machine learning based method with novel features to create a
taxonomy that captures the hierarchical semantic structure of tags
in Stackoverflow. This method executes iteratively to find as many
relations as possible. Experimental results show that our approach
achieves much better accuracy than baselines. Compared with
taxonomies related to software programming which are extracted
from the general-purpose taxonomies such as WikiTaxonomy,
Yago Taxonomy and Schema.org, our taxonomy has the widest
coverage of concepts, contains the largest number of subsumption
relations, and runs up to the deepest semantic hierarchy.

Keywords—Taxonomy Construction, Stackoverflow, Software
Engineering

I. INTRODUCTION

Taxonomy plays an important role in software engineer-
ing. For example, in software maintenance such as measuring
quality and predicting defects, taxonomies are used to measure
the relatedness between documents and create links between
bugs and committed changes [1]. In program comprehension,
taxonomies provide an effective way to compute the semantic
similarities between words from the comments and identifiers
in software [2].

However, most existing taxonomies used in these applica-
tions are often manually created according to application spe-
cific requirements and their sizes are not large enough. A recent
literature [3] argued that the quality and the scale of taxonomy
would significantly benefit the performance when applied in
software engineering. On the other hand, there have been a
considerable amount of research works on taxonomy construc-
tion [4], [5], [6], [7], [8]. The value of automatic taxonomy
construction is two folds. Automatic taxonomy construction
can achieve large scale taxonomies while manual construction
is a laborious process. Moreover, compared with automatic
approaches that are data-driven, taxonomies built manually are

*Corresponding author

Fig. 1: An example from Stackoverflow

often highly subjective. Unfortunately, the resulting taxonomies
of these existing automatic approaches would probably lead to
poor results when applied in software engineering for several
reasons. First is timeliness. The techniques in software engi-
neering are fast changing, while the general web pages and
encyclopedic sites are insensitive to this change and always
fail to update in time. So it is not suitable to select text
corpora such as general web pages or Wikipedia as its input.
Second is granularity. Since the input of traditional taxonomy
construction approaches is from a open domain, some fine-
grained terms about software programming cannot be found in
these taxonomies. For example, “hashmap” about a well-known
data structure is not included in either Yago Taxonomy [9]
or WikiTaxonomy [4] which are the largest existing public
available taxonomies.

Recently, Stackoverflow has becoming one of the largest
QA websites about software programming. Specifically, ques-
tions are the key elements in Stackoverflow. Besides the ques-
tion description, as shown in Fig. 1, a question is also associated
with tags and authors. Formally, a question q is a triple in
form of (tq , bq , TSq), where tq is the title of the question,
bq is the body while TSq is the tag set which annotate the
question. A tag a in Stackoverflow can be represented as a

DOI reference number: 10.18293/SEKE2015-135
391

four-tuple (ta, da, ca, Qa), where ta is the name of the tag,
da is the description of a, ca is the number of questions that
it has annotated, Qa is the set of questions annotated by a.
These tags represent vocabularies about software programming.
They can also reflect the fast changing nature of technique
terms because they are created on the fly by Web users. So
the large amount of tags provide a promising way to build
the taxonomy. Therefore, in this paper, we try to construct a
software programming taxonomy from tags in Stackoverflow.

The problem is non-trivial and poses unique technical
challenges. First, tags in Stackoverflow are always composed
of domain-specific terms. While natural language processing
techniques like segmentation or pos tagging are basis of some
Web-based approaches for taxonomy construction, directly ap-
plying these approaches to our scenario will lead to poor results.
Second, most tag-based taxonomy construction approaches only
use tag co-occurrences and annotated documents to help the
subsumption detection between tags [8], [7]. However, Stack-
overflow contains unique information such as wiki descriptions
of tags. We argue that these information will significantly
increase the performance of taxonomy construction. How to
design an algorithm to incorporate these information when
detecting subsumptions between tags has not been studied yet.
Moreover, there are tens of thousands of tags in Stackoverflow,
it is time-consuming and sometimes impractical to enumerate
all tag pairs for subsumption relation detection. How to perform
subsumption relation detection in a large scale scenario is also
a challenge problem.

In order to solve the above challenges, we propose a
machine learning based approach. Specifically, our approach
leverages several features from different aspects to measure
the semantic relatedness between tags. Then a semi-supervised
learning method is used to predict subsumption relations. To
the best of our knowledge, we are the first to focus on building
a software programming taxonomy from Stackoverflow. Our
contributions mainly include:

• To overcome the informality of tags, we leverage
different information from Stackoverflow to represent
these tags. Specifically, we design the co-occurrence-
based features to measure the semantic relatedness.
Moreover, we also use the wiki description and an-
notated questions of each tag to learn a topic rep-
resentation by applying Latent Dirichlet Allocation
(LDA) [10]. Together with a lexical feature, our pro-
posed approach can combine evidences from the co-
occurrence relevance, the implicit topic relevance and
the lexical relevance.

• We propose a unified model that incorporates these
features to automatically construct a software program-
ming taxonomy. Specifically, we design a blocking
mechanism to reduce the number of tag pairs to be
calculated which ensure our approach can be applied
to a large scale scenario. Then, we treat subsump-
tion relation detection as a binary-class classification
problem to solve. A semi-supervised learner is applied
which executes iteratively to find as many relations as
possible. Note that the blocking mechanism and semi-
supervised learning make our approach quite general
and can be applied to other domains.

• We present a taxonomy about software programming.
Experimental results show that our taxonomy not only
contains a large number of concepts and subsumption
relations, but also have a deep semantic hierarchy. That
is to say, concepts and subsumption relations in our
taxonomy are more fine-grained and can be applied in
many software engineering applications.

II. RELATED WORK

There have been a considerable amount of research works
on taxonomy construction. Approaches for automatic taxonomy
construction can be encyclopedic-based or Web-based.. For the
encyclopedic-based approaches, they mainly focus on extract-
ing concept hierarchies from Wikipedia. WikiTaxonomy [4]
builds a taxonomy from the Wikipedia category system. It
contains 105,000 subsumption relations with the accuracy of
88%. Kylin Ontology Generator (KOG) [5] uses Markov Logic
Network (MLN) to predict subsumption relations between
Wikipedia infobox classes. Yago [9] interlinks Wikipedia cat-
egories to WordNet synsets. There are over 200,000 classes
and 400,000 subsumption relations in Yago and the accuracy
is estimated to be 96%. Our research is quite different from
the encyclopedic-based approaches because there has been no
structure information between tags in Stackoverflow.

Regarding Web-based approaches, it can be free text based
or social tag based. For the free text based approaches, Hearst
patterns [11] are widely used. The most recent effort is
Probase [12]. It builds the largest taxonomy which contains
over 2.7 million classes from 1.7 billion web pages. For the
social tag-based approaches, Mianwei Zhou et al. [6] introduced
an unsupervised model to automatically derive hierarchical
semantics from social annotations. Jie Tang et al. [7] proposed a
learning approach to capture the hierarchical semantic structure
of tags. Xiance Si et al. [8] proposed three methods to estimate
the conditional probability between tags and used a greedy
algorithm to eliminate the redundant relations. Huairen Lin et
al. [13] described an integrated method for extracting ontolog-
ical structure from tags that exploits the power of low support
association rule mining supplemented by an upper ontology
such as WordNet. Zhishi.schema [14] is the first effort to
publish a general taxonomy from tags and categories in popular
Chinese Web sites. These traditional tag-based approaches for
a general domain only use the annotated documents to help
the subsumption detection. However, Stackoverflow is more
domain specific which contains other information such as wiki
descriptions. So traditional tag-based approaches may not be the
best because the additional information in Stackoverflow will
probably increase the performance of taxonomy construction.

Regarding taxonomy construction in software program-
ming, the most recent research is Lexical Views [3]. It applied
some natural language processing techniques to automatically
extract and organize concepts from software identifiers in
a WordNet-like structure. But more software programming
terms would not be included in this taxonomy since Lexical
Views only use the software identifiers as its input. In our
research, we first focus on automatically constructing a software
programming taxonomy from Stackoverflow. Specifically, we
design several novel features which can capture similarities
between tags from several aspects. Also, we use a more

392

sophisticated semi-supervised learning approach by generating
labeled examples semi-automatically.

III. APPROACH

In this section, we start with a brief introduction of our
proposed approach, and then describe it in details.

A. Approach Overview

We now provide a workflow to explain the whole process
and how different components interact with each other. As
shown in Fig. 2, we have four main components, namely
Candidate Selection, Labeled Data Generation, Feature Engi-
neering, and Semi-supervised Learning. The input of Candi-
date Selection is tags collected from Stackoverflow. Candidate
Selection tries to divide all tags into blocks. Each block
includes similar tags which can form candidate tag pairs for
further processing. Candidate Selection leads to a significant
reduction of the number of tag pairs to be further processed for
subsumption relation detection, which guarantees the scalability
and efficiency of our approach. We generated labeled data (both
positive and negative) semi-automatically using a rule-based
method. All the tag pairs are fed to Feature Engineering to
extract features like co-occurrence-based features and the topic-
based features. A semi-supervised learning algorithm is adapted
to discover hypernym-hyponym relations. The learned classifier
can be updated iteratively by adding new labeled data of high
confidence. Finally we build a software programming taxonomy
composing subsumption relations between tags.

B. Candidate Selection

Since Stackoverflow contains tens of thousands of tags
and the number is still increasing, it is time-consuming and
sometimes impractical to enumerate all tag pairs as candidates
for subsumption relation detection. To avoid brute-force com-
parison, we leverage the co-occurrence information to limit the
number of candidates. Previous research [8], [15] shown the
effectiveness of the co-occurrence information in subsumption
relation detection. So, only if two tags have once co-occurred,
they can be divided into the same block and can be selected
as candidate pairs. Note that given a candidate tag pair (a, b),
both a subsumes b and b subsumes a will be checked in the
next learning process. Given we collected 38,205 tags from
Stackoverflow, there would be over one billion pairs without
blocking. Only less than 3 million candidates will be retained
after using the above candidate selection mechanism. It is
obvious that the blocking mechanism reduces the number of
candidate pairs significantly.

C. Feature Engineering

The purpose of feature engineering is to quantitatively
characterize the similarities or relatedness between tags. We
define six features to characterize the tag relations. The details
of these features are as follows:

Lexical Feature:

1) Lexical Feature: Given a tag pair “asp.net” and “asp.net
mvc”, it is intuitive that they hold the subsumption relation
in term of the lexical pattern. So we define a Token-based
Longest Common Sub-string Asymmetric Similarity as lexical

feature by considering the length information. Then the lexical
similarity between two tags a and b is computed by

s(a, b) =
|LCS(seq(ta), seq(tb))|

|seq(ta)|
(1)

Where seq(ta) is the word sequence of the name of the tag a,
|.| returns the length of a word sequence, and LCS is a function
to calculate the longest common sub-string sequence between
two tag labels. This similarity measure captures the lexical
similarity between two tags. Since we treat version number
as a seperated token, this metric can also capture subsumption
relations between those tags and their instance versions. For
example, “c++” and “c++11”.

Co-occurrence-based Features: Although the lexical fea-
ture works well, its limitation is obvious. Many tag pairs
which actually hold the subsumption relations have very low
lexical similarities. Thus, we also leverage the co-occurrence
information to measure the semantic relatedness between tags.
For example, “word2vec” and “deep-learning” do not share any
lexical tokens. However, by considering the co-occurrences of
them in questions, we can find that they always co-occur and
may be semantically closed.

2) Question Divergence Feature: We define this feature to
measure the co-occurrence of tags in questions based on the
Normalized Google Distance [16].

d(Qa, Qb, Q) =
log(max(|Qa|, |Qb|))− log(|Qa ∩Qb|)

log(|Q|)− log(min(|Qa|, |Qb|))
(2)

where Qa and Qb are the sets of questions annotated with
a and b, respectively; and Q is the set of all questions in
Stackoverflow.

3) Sentence Divergence Feature: Stackoverflow additional-
ly provides wiki description for each tag. The wiki description
provides a more precise explanation for each tag. If two tags
have co-occurred in the same sentence such as “java” and
“programming language”, they may be semantically closed
even if the question divergence feature of them is rather low.
Inspired by this idea, we define the sentence divergence feature
which aims to measure the co-occurrence of tags in sentences.
These sentences are extracted from wiki descriptions of all
tags. The computation of this feature d(Sa, Sb, S) is similar as
Equation 2, where Sa and Sb are the sets of sentences which
contain a and b, respectively; and S is the set of all sentences
in all wiki descriptions from Stackoverflow.

4) Tag Divergence Feature: Given two tags a and b, if
both of them have co-occurred with tag c, they tend to hold a
semantic relation. Inspired by this basic idea, we also design a
tag divergence feature to measure the relatedness between tags.
We compute this feature d(Ta, Tb, T) as Equation 2, where Ta
and Tb are the sets of tags of Qa and Qb, Qa and Qb are the
sets of questions annotated with a and b, respectively; and T
is the set of all tags in Stackoverflow.

Topic-based Features: The lexical feature and the co-
occurrence features only capture the semantic relation in an
explicit way which can not detect the implicit relations between
tags. For example, most people tend not to annotate “ma-
chine learning” together with “artificial intelligence” because
“artificial intelligence” is too high-level. But it is obvious
that “artificial intelligence” is semantically closed to “machine

393

…

Candidate

Selection

Unlabeled

Tag Pairs

Feature

Engineering

Labeled Data

Generation

Labeled Tag

Pairs

Lexical Feature

Co-occurrence-

based Features

Topic-based

Features

Semi-supervised

Learning

Tags

Questions

Software Programming Taxonomy

Data:

Component:

…

Fig. 2: The workflow to generate taxonomy for Stackoverflow

learning”. So we also try to represent each tag in a sematic
level and design some topic-based features. We leverage a
topic modeling method named LDA [10] to generate a topic-
based representation for each tag. In our proposed approach, we
model a tag using both of its wiki description and the bodies
of its annotated questions, and learn its topic representation by
LDA. In our experiments, the number of topics was empirically
set as 150.

5) Wiki Topic Divergence Feature: This feature is the
measure of the difference or dissimilarity between two topic
distributions of wiki descriptions of tag a and tag b. We define
this feature based on KL-divergence [17], a standard measure of
the difference between two probability distributions. Note that it
is an asymmetric metric, i.e. dKL(pwa, pwb) 6= dKL(pwb, pwa).

dKL(pwa||pwb) =

K∑
i=1

pwa(i)log
pwa(i)

pwb(i)
(3)

where pwa(i) and pwb(i) denote the probability of i-th topic
in the topic distribution of a and b respectively, using wiki
descriptions as document.

6) Question Topic Divergence Feature: In Stackoverflow,
some tags only contain few contents in their wiki descriptions,
especially when the tags are newly created or have fewer
editors. In this circumstance, wiki topic divergence cannot
accurately assess the dissimilarity between tags. However, the
topic of questions can better represent their tags, since the
same tag in different questions is annotated by different editors,
which can avoid the subjectivity. Therefore, for a given tag, we
also use questions annotated by it to represent the tag. Similarly,
we compute this feature as Equation 3.
D. Labeled Data Generation

We treat subsumption relation detection as a binary-class
classification problem to solve. Classification (binary or multi-
class) is supervised learning, which requires labeled data for
training. The classification performance depends on whether
the labeled data is adequate and whether training data and test
data have the similar distributions. In order to ease the burden
of manual labeling and to avoid distribution bias, we propose an
effective rule-based method to create labeled data. Both positive
and negative examples are checked manually. These examples
are not only used to boost the learning process but also treated
as ground truth to evaluate our approach in Section IV.

For positive examples, we apply some lexical-syntactic
patterns on descriptions of tags. These patterns are extended
from the Hearst patterns [11] (e.g. NP1 is a/an NP2). Finally, we
have 12,608 hypernym-hyponym candidate relations between
tags and 2,870 of them are manually checked as positive
examples.

For negative examples, we define a conditional probability
metric to measure the probability of a as the hypernym given b.
This metric relies on an implication, that if a user has annotated
a document d with b, he also tend to annotate tags that subsumes
b. Specifically, we use the following formula:

p(a|b) = Nd(a, b)

Nd(b)
(4)

where Nd(a, b) is the number of documents that are annotated
by both a and b, and Nd(b) is the number of documents that
are annotated by b. Given a tag b, we select the tag a as its
hypernym with its probability less than 0.01 and treat the pair
(a, b) as negative examples. Besides, we also manually select
those relations, which do not hold subsumption relations but
their probabilities p(a|b) are more than 0.5 to enrich the set of
negative examples. Finally, among these enriched sets, 3,000
negative examples are manually checked and selected.
E. Semi-supervised Learning

While we generate labeled data by applying some lexical-
syntactic patterns and heuristic rules semi-automatically, the
number of positive and negative examples is very small com-
pared with that of the candidate tag pairs. So a natural idea
is to use some kind of semi-supervised learning algorithm to
predict new semantic relations between these candidate pairs.

We select the simplest and the most efficient one - self-
training. In each iteration, self-training accepts the labeled data
as training data and learns a classifier. Then the classifier
is applied to the unlabeled data and adds tag pairs of high
confidence to the labeled data to train a new classifier for the
next iteration. The whole process will terminate if the difference
between the predicted labels of these candidates (whether they
satisfy subsumption relations or not) given by classifiers in
the two consecutive iterations is smaller than a threshold or
we have achieved the maximal number of iterations. Note that
we use the Support Vector Machine (SVM) algorithm to train
the binary classifier, which is known as one of the best single
classifiers [18].

IV. EXPERIMENTS

A. Experiment Setup

1) Data Statistics: In order to evaluate our approach, we
use the Stackexchange dump from https://archive.org/details/
stackexchange. Note that before further process, we first singu-
larize the names of all tags and then replace underscores and
hyphens by spaces as preprocess. In total, there are 38,205 tags
and 7,990,787 questions. Among these tags, 25,798 tags have
descriptions. The number of questions annotated by the tag
ranges from 1 to 708,533. On the average, each tag annotated
617 questions.

394

0

10

20

30

40

50

60

70

80

90

Precision Recall F1-score

TL CT CTL

Fig. 3: Three models with different feature sets

2) Comparison Methods: We select several state of the
art methods as comparison methods, namely Tag-Tag Co-
occurrences (TTC) method and Tag-Word Co-occurrences
(TWC) method.

• Tag-Tag Co-occurrences (TTC). The TTC
method [15] uses Equation 4 to estimate p(a|b).
One of its benefits is that it does not rely on the
content of the annotated document, so it can be
applied to tags for non-text objects.

• Tag-Word Co-occurrences (TWC). This method [8]
uses the content of the annotated document to estimate
p(a|b). We use the following formula to estimate p(a|b)
by tag-word co-occurrences:

p(a|b) =
∑
w∈W

p(a|w)p(w|b)

=
∑
w∈W

Nd(a,w)

Nd(w)

Nd(b, w)

Nd(b)

(5)

where Nd(a,w) is the number of documents that
contains both tag a and word w, and Nd(w) is the
number of documents that contains the word w. Instead
of computing tag-tag co-occurrences directly, TWC
uses words in the document as a bridge to estimate
p(a|b).

For these two comparison methods, we first sort the discov-
ered relations by their probabilities in descending order. Then,
we take the top-n relations, discarding the others. Here we
evaluate these methods with n = 1 and n = 5.
B. Result Analysis

1) Feature Contribution Analysis: We discuss the effect
of different features for predicting subsumption relations. We
use the labeled data generated in Section III-D as the ground
truth. Then we train three SVM classifiers based on different
combinations of features. The first classifier (denoted as TL)
only uses topic-based features and the lexical feature. The sec-
ond classifier (CT) combines the co-occurrence-based features
and the topic-based features. The third one (CTL) includes
all features. We apply 5-fold cross validation to train the
three classifiers. Precision, recall, and F-measure are used for
effectiveness study. As shown in Fig. 3, the classifier with all
features performs best. That is to say, all these features are use-
ful in predicting new subsumption relations. We can also find
all classifiers use topic-based features, this is mainly because
the subsumption relation is asymmetric, so only asymmetric

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Iter1 Iter2 Iter3 Iter4 Iter5

A
cc

u
ra

cy
(%

)

Fig. 4: Accuracy in each iteration

metrics can capture this relation semantically. In our feature
set, only topic-based features can measure the subsumption
relations while the co-occurrence-based features are symmetry
and the lexical feature can only capture the surface patterns.

2) Accuracy Evaluation of Iterations: We applied the itera-
tive semi-supervised learning approach with all features to build
a taxonomy containing 68,098 subsumption relations. Since
there are no ground truths available for the whole taxonomy, the
qualities of these relations have to be verified manually. Due
to the large number of relations, it is impossible to evaluate
all of them by hand. Therefore, we design an evaluation theme
including a sampling strategy and a labeling process. Sampling
aims to extract a subset of relations (called samples) which can
represent the distribution of the whole result set. Then we can
perform manual labeling to evaluate the correctness of samples.
The accuracy assessment on the subset can further be used to
approximate the correctness of the resulting taxonomy.

We first evaluate the performance improvements in each
iteration compared with the estimated accuracy produced by
the previous iteration if existed. We randomly select 1,000
subsumption relations from the resulting taxonomy. We record
their predicted labels after each iteration. Four students from
our laboratory are invited to participant in the labeling process.
We provide them three choices namely agree, disagree and
unknown to label each sample. Then we can compute the
average accuracy. Finally, the Wilson interval [19] at α = 5%
is used to generalize our findings on the samples to the whole
taxonomy. Fig. 4 shows the accuracy of each iteration. Accord-
ing to the results, the accuracy increases consistently when we
perform more iterations. In particular, after the fifth iteration,
our approach achieves the best accuracy of 75.90%± 2.64%.

C. Performance Comparision

We further compare the two baseline approaches with ours.
Accuracy and scale are used as evaluation metrics. According
to the result, the TTC and TWC method get a similar scale of
184,818 and 184,816 subsumption relations respectively with
n = 5. It is obvious because they all apply a ranking mechanism
by probability. For accuracy, the TTC method achieves accuracy
of 53.29% ± 3.09%, while the TWC method only achieves
accuracy of 37.05% ± 3.0%. Even the threshold n is set to
1, the accuracy of TTC and TWC method is only 70.42% ±
2.82% and 43.03%± 3.06% respectively with the trade-off of
scale which is only 38,166. Compared with these two baseline
methods, our method can find 68,098 subsumption relations
and the accuracy of resulting taxonomy using our proposed
method is 75.90% ± 2.64%. Therefore, our approach can not

395

TABLE I: Comparison with other datasets

Ours Yago WikiTaxonomy Schema.org
Concept Number 38,205 898 711 10
Concept Overlap / 29 27 2

Subsumption Number 68,098 870 630 0
Subsumption Overlap / 0 1 0

Maximum Depth 28 3 6 1
Minimum Depth 1 2 1 1
Average Depth 6.99 2.24 1.39 1.00

only discover more subsumption relations but also achieve a
better accuracy.

D. Comparison with Other Datasets

Since there is no public software programming taxonomy,
we only compare our taxonomy with the subsets about soft-
ware programming extracted from other well-known general-
purpose datasets namely Yago Taxonomy, WikiTaxonomy and
Schema.org1 in terms of concepts and subsumption relations.
Table I not only shows the concept and subsumption informa-
tion of each dataset, but also lists the concept overlaps and
subsumption overlaps between our taxonomy and the other
datasets. Moreover, we present the maximum, minimum and
average depth of each dataset to illustrate the granularity and
richness. As for the concept and subsumption number, our
taxonomy is much larger than any other datasets. The overlaps
of both concept and subsumption with these datasets are not
so high. The reason mainly comes from two aspects. First,
concepts in our taxonomy are fine-grained while those in Yago
Taxonomy, WikiTaxonomy and Schema.org are more high-
level. Second, the overlaps between our taxonomy and any
of the other three (i.e., Yago Taxonomy, WikiTaxonomy, and
Schema.org) are the lower bounds and can actually be larger
due to the fact that we compute the overlaps using the exact
string matching and tag from Stackoverflow are not as formal
as those in the three compared datasets.

Regarding to the granularity and richness of concepts,
our taxonomy has the largest average depth and maximum
depth. That is to say, our taxonomy has a more fine-grained
concept hierarchy compared with other existing datasets. As
a representative example, our taxonomy contains a hyper-
nymy path like “machine learning”→“bayesian”→“bayesian
network”→“belief propagation”. Moreover, some newly terms
can also be found in our taxonomy such as “neural
network”→“deep learning”→“word2vec”. So our taxonomy
contains not only many newly-added and fine-grained concepts,
but also a richer semantic hierarchy.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a machine learning based
approach with some novel features to automatically create
hypernym-hyponym relations between tags in Stackoverflow,
which results in a taxonomy about software programming con-
taining 38,205 concepts and 68,098 relations. The experiments
show the high-quality of this taxonomy.

As for future work, we will try to extract more concepts
about computer programming from Wikipedia, Github and
other Web sites to enrich our taxonomy. Moreover, it would be
interesting to explore some more potential applications based
on this taxonomy such as linked data based recommendation,

1https://schema.org/

semantic relatedness measuring between terms about software
programming and so on.

VI. ACKNOWLEDGMENT

This research is supported by 973 Program in China (Grant
No. 2015CB352203) and National Natural Science Foundation
of China (Grant No. 61472242).

REFERENCES

[1] Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung.
Relink: recovering links between bugs and changes. In Proceedings of
the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, pages 15–25. ACM, 2011.

[2] Giriprasad Sridhara, Emily Hill, Lori Pollock, and K Vijay-Shanker.
Identifying word relations in software: A comparative study of semantic
similarity tools. In ICPC 2008, pages 123–132. IEEE, 2008.

[3] J-R Falleri, Marianne Huchard, Mathieu Lafourcade, Clementine Nebut,
Violaine Prince, and Michel Dao. Automatic extraction of a wordnet-like
identifier network from software. In Program Comprehension (ICPC),
2010 IEEE 18th International Conference on, pages 4–13. IEEE, 2010.

[4] Simone Paolo Ponzetto and Michael Strube. Wikitaxonomy: A large
scale knowledge resource. In ECAI, volume 178, pages 751–752, 2008.

[5] Fei Wu and Daniel S Weld. Automatically refining the wikipedia infobox
ontology. In WWW, pages 635–644. ACM, 2008.

[6] Mianwei Zhou, Shenghua Bao, Xian Wu, and Yong Yu. An unsupervised
model for exploring hierarchical semantics from social annotations.
Springer, 2007.

[7] Jie Tang, Ho-fung Leung, Qiong Luo, Dewei Chen, and Jibin Gong.
Towards ontology learning from folksonomies. In IJCAI, volume 9,
pages 2089–2094, 2009.

[8] Xiance Si, Zhiyuan Liu, and Maosong Sun. Explore the structure
of social tags by subsumption relations. In Proceedings of the 23rd
International Conference on Computational Linguistics, pages 1011–
1019, 2010.

[9] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard
Weikum. Yago2: a spatially and temporally enhanced knowledge base
from wikipedia. Artificial Intelligence, 194:28–61, 2013.

[10] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet
allocation. the Journal of machine Learning research, 3:993–1022, 2003.

[11] Marti A Hearst. Automatic acquisition of hyponyms from large text
corpora. In Proceedings of the 14th conference on Computational
linguistics-Volume 2, pages 539–545. Association for Computational
Linguistics, 1992.

[12] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q Zhu. Probase: A
probabilistic taxonomy for text understanding. In SIGMOD 2012, pages
481–492. ACM, 2012.

[13] Huairen Lin, Joseph Davis, and Ying Zhou. An integrated approach to
extracting ontological structures from folksonomies. In The semantic
web: research and applications, pages 654–668. Springer, 2009.

[14] Haofen Wang, Tianxing Wu, Guilin Qi, and Tong Ruan. On publishing
chinese linked open schema. In ISWC 2014, pages 293–308. Springer,
2014.

[15] Patrick Schmitz. Inducing ontology from flickr tags. In Collaborative
Web Tagging Workshop at WWW2006, volume 50, 2006.

[16] Rudi L Cilibrasi and Paul MB Vitanyi. The google similarity distance.
IEEE Transactions on Knowledge and Data Engineering, 19(3):370–383,
2007.

[17] Solomon Kullback. Information theory and statistics. Courier Corpora-
tion, 1997.

[18] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani
Amorim. Do we need hundreds of classifiers to solve real world classifi-
cation problems? Journal of Machine Learning Research, 15:3133–3181,
2014.

[19] Lawrence D Brown, T Tony Cai, and Anirban DasGupta. Interval
estimation for a binomial proportion. Statistical Science, pages 101–
117, 2001.

396

An empirical study on predicting defect numbers
Mingming Chen1,2 and Yutao Ma2,3,*

1. State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China
2. School of Computer, Wuhan University, Wuhan 430072, China

3. WISET Automation Co., Ltd., Wuhan Iron and Steel Group Corporation, Wuhan 430080, China
*E-mail: ytma@whu.edu.cn

Abstract—Defect prediction is an important activity to make
software testing processes more targeted and efficient. Many
methods have been proposed to predict the defect-proneness of
software components using supervised classification techniques in
within- and cross-project scenarios. However, very few prior
studies address the above issue from the perspective of predictive
analytics. How to make an appropriate decision among different
prediction approaches in a given scenario remains unclear. In
this paper, we empirically investigate the feasibility of defect
numbers prediction with typical regression models in different
scenarios. The experiments on six open-source software projects
in PROMISE repository show that the prediction model built
with Decision Tree Regression seems to be the best estimator in
both of the scenarios, and that for all the prediction models, the
results yielded in the cross-project scenario can be comparable to
(or sometimes better than) those in the within-project scenario
when choosing suitable training data. Therefore, the findings
provide a useful insight into defect numbers prediction for those
new and inactive projects.

Keywords: defect prediction; predictive analytics; cross-project
scenario; regression model

I. INTRODUCTION
Nowadays, defect prediction has attracted much attention

from both academia and industry because of its importance in
software quality assurance. It has been widely recognized that
the defect-proneness of software components (such as classes
and code modules) is closely related to a considerable number
of software metrics (the so-called features) [1], e.g., static code
metrics, code change history, process metrics and network
metrics [2], all of which are easy to collect now. Therefore,
many defect prediction approaches using statistical methods or
machine learning techniques have been proposed to forecast
defect-prone software components [3].

To the best of our knowledge, the vast majority of prior
defect prediction approaches predict whether a given software
component is defect-prone by means of binary classification
techniques [3, 4]. However, estimating the defect-proneness of
a given set of software components is not enough for software
testing in practice due to plenty of criticisms of practicality [4].
Furthermore, if we are able to predict the exact number of bugs
in each software component to be tested, software developers
or software testers will pay special attention to those software
components that contain more defects, which can make testing
processes more efficient in the case of limited time and human
resources. Thus, defect prediction is not just a simple binary
classification problem but a specific problem with predictive
analytics [5].

Due to the limitations of data analysis techniques and
available training data, the focus of early studies about this
topic was on building linear prediction models based on the
correlations between defects and some important code features,
e.g., lines of code [6] and McCabe’s cyclomatic complexity.
After object-oriented design metrics and process quality
metrics were proposed in the 1990s, the researchers in this filed
developed many new prediction models by means of multiple
regression analysis [7]. With the development of data mining
and machine learning techniques, a few of complex prediction
models for the number of defects were presented in recently
published literature. For example, Wang et al. proposed an
approach based on a defect state transition model [8]. The
experimental results on open-source software projects showed
that the complex models outstripped other competing models in
terms of evaluation measures such as the mean absolute error,
but their generality and construction cost were questioned.

Interestingly, several recent studies with respect to software
defect classification [3, 9, 10] have found that simple classifiers,
e.g., Naïve Bayes and Logistic Regression, were able to
perform well in both within-project and cross-project scenarios,
though those complex ones always achieved high precision. As
we know, newly created or unpopular software projects have
little historical data available to train any classifiers, which is
very similar to the typical problem cold start in recommender
systems [11]. Hence, cross-project defect prediction (CPDP)
emerges as a promising solution to the above issue. Overall, it
applies the prediction model learned from other selected
projects to a target project [12], and the feasibility of CPDP has
been widely examined by the researchers in this field [13, 14].
However, compared with within-project defect prediction
(WPDP), in most cases the prediction performance of CPDP is
relatively poor on account of the diversity of data distributions
between source and target projects [10, 12-14].

As far as we know, very few prior studies evaluated and
compared the existing approaches that predict defect numbers
in different scenarios. How to make an appropriate decision
among those prediction approaches in a given scenario remains
unclear. Inspired by the recent studies on software defect
classification, in this paper our goal is to validate the feasibility
of CPDP approaches (based on regression models) to
predicting defects, and to investigate which frequently-used
regression model can achieve the best result in both within- and
cross-project scenarios. With the pre-designed experiments that
were conducted on six open-source software projects in the
famous PROMISE repository, we hope our empirical findings
could refine the previous work on predicting software defects.

(DOI reference number: 10.18293/SEKE2015-132)
 397

In particular, we provide a more comprehensive and detailed
suggestion about choosing appropriate predictive modeling
approaches and training data to build a simple, highly cost-
effective prediction model according to specific requirements.

The remainder of this paper is organized as follows: Section
II introduces the related work; the research questions to be
discussed are presented in Section III; Section IV and Section
V show the experimental setups and results, respectively; in the
end, Section VI concludes this paper and gives a research
agenda for our future work.

II. RELATED WORK
Defect prediction has been an active research topic in

software engineering for decades [3]. For the theme of this
paper, earlier studies focused on analyzing the relationship
between defects and code complexity metrics (such as lines of
code) with the methods of linear regression [15]. With the rapid
development of object-oriented programming and software
process management techniques, some of new prediction
models began to utilize more types of metrics to predict defect
numbers by means of multiple regression analysis [7, 16].
According to a recent survey [1] conducted on 106 papers that
were published between 1991 and 2011, the proportions of
object-oriented, source code, and process metrics used are
about 49%, 27%, and 24%, respectively. Radjenovic et al. also
find that the Chidamber and Kemerer (CK) metrics are the
most commonly used metrics [1]. However, the accuracy of
these prediction models is not completely satisfying.

The rise of data mining and machine learning techniques
fosters a few complex prediction models using random forest
[17], linear discriminant analysis (LDA) [18], artificial neural
networks [19], k-nearest neighbors (KNN) algorithm [20],
Bayesian networks [21], support vector machines (SVM) [22],
and so on. For example, Nguyen et al. proposed a similarity-
based approach employing an improved KNN algorithm to
predict defect numbers [5]. So far, they have been widely used
to estimate the defect-proneness of software components, and
more details of these approaches can refer to the recent surveys
[3, 4]. On the other hand, considering a large number of
software metrics, feature subset selection and dimensionality
reduction techniques have also been applied to these new
defect prediction methods [22, 23], and many empirical studies
have demonstrated that they are able to achieve higher
accuracy and computing efficiency by removing redundant and
irrelevant software metrics [10].

Generally speaking, most of the above-mentioned studies
about defect prediction are conducted in WPDP settings,
because this is intuitive and easy to use. But, WPDP is not
always practicable when lacking historical defect data in a
given project. So, CPDP models are investigated to predict
defect-prone software components according to the information
or knowledge extracted from other similar software projects.

To the best of our knowledge, CPDP was first introduced to
this field by Briand et al. [24]. They trained a prediction model
according to the Xposem project, and used it to predict the
defect-proneness of the Jwriter project. The experimental result
showed that CPDP outperformed a random prediction model.
Then, Zimmermann et al. [12] employed 622 cross-project

combinations among 12 open-source software projects to
validate the feasibility of CPDP, but they found that only 21
out of 622 combinations worked successfully. In fact, the
quality of cross-project training data, rather than the total
quantity of data available from other projects, is more likely to
affect the performance of CPDP models to some extent [25].
Hence, how to select the most appropriate cross-project data for
a target project has recently become an interesting problem
[26]. For example, Turhan et al. [26] applied a nearest neighbor
filtering technique to filter out those irrelevant project data in
the setting of CPDP, leading to a better prediction performance.
More discusses on the comparison between WPDP and CPDP
please refer to [4, 10, 27, 28]. Unfortunately, very few prior
studies paid attention to the issue in question in CPDP settings.

III. RESEARCH QUESTIONS
Regression analysis is a commonly-used, effective method

for predictive analytics, which analyzes current and historical
data to make predictions on future or unknown events by
estimating the relationships among different variables. In this
paper, we investigate the problem related to defect numbers
prediction by means of regression analysis. More specifically,
we attempt to find empirical evidence to address the following
two research questions:

• RQ1: Which type of regression models is the most
suitable approach to predicting the number of defects
in different scenarios?

As mentioned earlier, many prediction models, built with
regression analysis (such as linear regression, Bayesian
regression, and SVM regression), have been used to predict the
number of defects. They are a group with excellence as well as
shortcomings. So, we should take into consideration various
factors (rather than just accuracy) when applying them to
different types of actual projects with limited resources, which
is required to make an optimal (or near-optimal) tradeoff
among generality, performance and construction cost. That is,
we want to find one or more appropriate regression models that
can be used in different scenarios, because the previous studies
about defect-proneness prediction have showed that the
classifiers which are simple and easy to use tend to perform
well in both within- and cross-project scenarios [10, 27]. In
particular, is this still practicable for defect numbers prediction?

• RQ2: Are the accuracies of CPDP regression models
under discussion comparable to those of WPDP
regression models?

It is acknowledged that the defect prediction models trained
from the same project are, in general, better than those trained
from other similar projects, because different projects may
have different contextual characteristics, e.g., development
process, developers, and project organization. But, does it
definitely happen when training data and test data have similar
distributional features? So, we attempt to empirically compare
the performance differences among the regression models
discussed in this paper in both within- and cross-project
scenarios. Note that, if the distributions of two sets of
prediction results (A and B) have no statistically significant
difference, in our opinion, A is comparable to B.

398

IV. EXPERIMENTAL SETUPS

A. Data Collection
To validate the feasibility of defect numbers prediction in

the cross-project scenario, six open-source software projects
with 26 releases collected from the online, publicly available
PROMISE repository are used as our experimental data set.
The brief introduction to all releases of the projects is shown in
Table I, where #Instances indicates the number of instances
(class files), #Defects denotes the total number of defects in the
release, %Defect represents the percentage of defect-prone
instances, and Max is the maximum value of defects.

 Due to space limitations, the list of software metrics used
as features in different regression models please refer to [10].
In our experiments, there are 20 independent variables (such as
the CK metrics suite and LOC) and one dependent variable (the
number of degects), and the goal of our experiments is to
estimate the prediction results calculated using six commonly
used regression models in different scenarios.

TABLE I. BRIEF INTRODUCTION TO THE EXPERIMENTAL DATA SET

Project Release #Instances #Defects %Defect Max

Ant

Ant-1.3 125 33 16.0% 3
Ant-1.4 178 47 22.5% 3
Ant-1.5 293 35 10.9% 2
Ant-1.6 351 184 26.2% 10
Ant-1.7 745 338 22.3% 10

Camel

Camel-1.0 339 14 3.4% 2
Camel-1.2 608 522 35.5% 28
Camel-1.4 872 335 16.6% 17
Camel-1.6 965 500 19.5% 28

Forrest
Forrest-0.6 6 1 16.7% 1
Forrest-0.7 29 15 17.2% 8
Forrest-0.8 32 6 6.3% 4

Jedit

Jedit-3.2 272 382 33.1% 45
Jedit-4.0 306 226 24.5% 23
Jedit-4.1 312 217 25.3% 17
Jedit-4.2 267 106 13.1% 10
Jedit-4.3 492 12 2.2% 2

Prop

Prop-1 18471 5493 14.8% 37
Prop-2 23014 4096 10.6% 27
Prop-3 10274 1640 11.5% 11
Prop-4 8718 1362 9.6% 22
Prop-5 8516 1930 15.3% 19
Prop-6 660 79 10.0% 4

Synapse
Synapse-1.0 157 21 10.2% 4
Synapse-1.1 222 99 27.0% 7
Synapse-1.2 256 145 33.6% 9

B. Experiment Design
To answer the two research questions presented in Section

III, the overall framework of our experiments and empirical
analysis is shown in Figure 1.

First, for a target release (test data) of a given project, two
training data selection approaches (viz. application scenarios)
are considered in our experiments. (1) WPDP: all historical

releases prior to the target release within the same project are
used as training data; and (2) CPDP: all available releases from
the most suitable project (rather than from the same project) are
used as training data. Take Ant-1.7 as an example, the four
releases from the same project, namely Ant-1.3, Ant-1.4, Ant-
1.5, and Ant-1.6, are selected as training data in the within-
project scenario, and all of the releases from the Camel project
are chosen as training data in the cross-project scenarios (see
the example in Figure 1).

Figure 1. Overall Framework of Our Experiments: An Example of Ant-1.7

Second, we determine the number of experiments according
to the experimental data and the training data selection methods.
Because the first release of each project is impossible to be test
data in the within-project scenario, there are 20 (4 + 3 + 2 + 4 +
5 + 2 = 20) groups of tests among all the releases of the six
projects. To keep the comparison between WPDP and CPDP in
the same condition, we select only 20 groups of corresponding
tests for CPDP, though there is a total of 26 test data sets.

Third, according to the 20 software metrics (independent
variables) and the number of bugs (dependent variable), we
build different prediction models based on six commonly used
regression methods (see the upcoming subsection) and apply
them to 12 (2 × 6 = 12) cases. For each case (in either WPDP
or CPCP scenario) in question, we conduct the above-
mentioned experiment (viz. prediction) 20 times.

Fourth, we preprocess the predicted defect numbers of all
experiments before estimating the experimental results. Since
the number of bugs in every software component must be a
non-negative integer, we make appropriate adjustments for
those original defect numbers if necessary. That is, if the
predicted defect number is negative, it will be set to 0; if the
result is a positive decimal, it will be set to an integer by a
rounding method.

Finally, we compute the accuracy of a prediction model in
terms of several evaluation measures, and compare the
differences on the distributions of prediction results using
statistical methods such as the Wilcoxon signed-rank test.

C. Regression Models
Regression methods assess the expectation of a dependent

variable according to a set of given independent variables.
More specifically, a regression model can help understand how
a dependent variable changes when independent variables vary
in training data sets, and tries to estimate the expectation of the
dependent variable with those given independent variables in

399

test data sets. For the issue discussed in this paper, we assume
that the vector X of software metrics includes all independent
variables and the numerical value of defect number y is the
dependent variable. Each regression model under discussion
learns a function y = f(X) according to the relationship between
X and y extracted from training data, and then uses the function
f to predict defect numbers of test data. Considering the
motivation of this paper, we select only six typical regression
models, excluding those complex ones. To avoid reinventing
the wheel all the time, we build and implement these regression
models based on the python machine learning library sklearn.
Unless otherwise specified, the default parameter settings for
different regression models used in our experiments are
specified by sklearn. That is, we do not perform additional
optimization for each regression model. The brief introduction
to the six regression models is described as follows:

• LR (Linear Regression): it is always used to solve the
least squares function of the linear relationship
between one or multiple independent variables and one
dependent variable.

• BRR (Bayesian Ridge Regression): it is similar to the
classical Ridge Regression. The hyper parameters of
such type of models are introduced by prior probability
and then estimated by maximizing the marginal log
likelihood with probabilistic models.

• SVR (Support Vector Regression): it is extended from
the well-known Support Vector Machines, which only
depends on a subset of training data, because the cost
function for building a SVR model ignores any training
data close to the prediction results of the model.

• NNR (Nearest Neighbors Regression): it is based on
the k-nearest neighbors algorithm, and the regression
value of an instance is calculated by the weighted
average of its nearest neighbors. And, the weight is
settled proportional to the inverse of the distance
between the instance and its neighbors.

• DTR (Decision Tree Regression): it learns simple
decision rules to approximate the curve of a given
training data set, and then predicts the target variable.

• GBR (Gradient Boosting Regression): it is in the form
of an ensemble of weak prediction models. Several
base estimators are combined with a given learning
algorithm in order to improve the prediction accuracy
over a single estimator.

D. Evaluation Measures
To evaluate the prediction results of our experiments, in this

paper we utilize the metrics precision (P) and root mean square
error (RMSE), which are described as follows:

• P: Precision addresses the percentage of correctly
predicted instances to the total number of test data. The
higher the precision, the better accuracy a prediction
model achieves.

P = 𝑁𝑟�=𝑟
𝑁

, (1)

where N is the number of instances in test data, and
𝑁𝑟̂=𝑟 indicates the number of instances whose
predicted values (𝑟̂) are equal to their real values (r).

• RMSE: It measures the difference between the values
predicted by a model or an estimator and the values
actually observed. Compared with the mean absolute
error, because of being scale-dependent, RMSE is a
good measure of accuracy to compare prediction errors
of different models for a given variable, e.g., the
number of defects in this paper.

RMSE = �∑ |𝑟𝚤�−𝑟𝑖|2𝑁
𝑖=1

𝑁
. (2)

V. EXPERIMENTAL RESULTS

A. Answer to RQ1
First, for each prediction model built with a regression

model in question, we conduct the pre-designed experiment 20
times in the scenario of WPDP. The prediction results of an
example are shown in Table II, where each record in the table
is denoted by a two-tuple/pair (P, RMSE). In this example, the
last release of each project is used to be test data, and all of the
previous releases in the same project are selected as training
data. The number in bold in this table indicates the best
estimator among the six prediction models. Note that BRR and
GBR achieve the same value of precision, but the former is
better than the latter because of a smaller RMSE value.

Figure 2. Standardized box plots of evaluation measures for the six prediction

models in the scenario of WPDP (P: left, RMSE: right)

 Moreover, the distributions of the values of P and RMSE
for the 20 experiments are shown in Figure 2, where the X-axis
means the prediction models under discussion and the Y-axis
indicates the value of an evaluation measure. The legends from
the bottom to the top of a standardized box plot are minimum,
first quartile, median (red line), third quartile, and maximum.
Note that the small cycle within each box is the mean value of
the 20 predictions. It is obvious from Figure 2 that the median
and mean of DTR are larger than those of the other five
prediction models with respect to precision. On the other hand,
considering the distribution of RMSE values, DTR is similar to
LR and BRR, closely followed by GBR and NNR. To sum up,
in the scenario of WPDP, DTR seems to be the best estimator
for the experimental data in this paper.

Second, in the scenario of CPDP, we conduct the pre-
designed experiment 20 times in a similar way as described for
WPDP. The prediction results of an example corresponding to
the above example are listed in Table III. In this example, for
each target release, we select all available releases from the

400

most appropriate project as training data. That is, each record in
this table represents the best outcome among the other projects.
Surprisingly, the results about precision in Table III are, on

average, higher than those in Table II, implying that CPDP
achieves better performance than WPDP in this example. This
finding is different from the results of many prior studies [3, 9].

TABLE II. ESTIMATING PREDICTION RESULTSS IN THE SCENARIO OF WPDP: AN EXAMPLE

Project LR BRR SVR NNR DTR GBR
Ant-1.7 0.740, 0.924 0.753, 0.924 0.771, 1.227 0.719, 0.987 0.761, 0.943 0.754, 0.921

Camel-1.6 0.616, 1.868 0.614, 1.813 0.550, 1.761 0.694, 1.775 0.739, 1.862 0.662, 1.686
Forrest-0.8 0.750, 0.728 0.531, 0.952 0.906, 0.810 0.812, 0.847 0.718, 1.457 0.714, 1.794
Jedit-4.3 0.597, 1.954 0.583, 1.941 0.706, 0.832 0.691, 1.651 0.798, 1.666 0.680, 2.068
Prop-6 0.886, 0.421 0.887, 0.419 0.868, 0.447 0.809, 0.554 0.868, 0.483 0.887, 0.431

Synapse-1.2 0.632, 1.011 0.668, 0.988 0.656, 1.208 0.636, 1.077 0.652, 1.034 0.652, 1.019

TABLE III. ESTIMATING PREDICTION RESULTS IN THE SCENARIO OF CPDP: AN EXAMPLE

Project LR BRR SVR NNR DTR GBR
Ant-1.7 0.762, 1.016 0.764, 1.015 0.756, 1.132 0.745, 1.128 0.756, 1.132 0.775, 1.113

Camel-1.6 0.771, 1.752 0.773, 1.770 0.842, 1.599 0.754, 1.807 0.778, 1.795 0.764, 1.145
Forrest-0.8 0.931, 0.780 0.938, 0.791 0.894, 0.792 0.875, 0.829 0.927, 0.740 0.786, 1.804
Jedit-4.3 0.821, 0.666 0.823, 0.664 0.749, 0.687 0.829, 0.813 0.880, 0.486 0.896, 0.789
Prop-6 0.779, 0.529 0.826, 0.488 0.891, 0.421 0.818, 0.486 0.885, 0.478 0.849, 0.478

Synapse-1.2 0.668, 1.084 0.648, 1.046 0.711, 1.240 0.648, 1.137 0.684, 1.093 0.664, 1.108

Similarly, Figure 3 shows that in the scenario of CPDP
DTR is also the best estimator when considering precision.
With regard to RMSE, DTR is similar to LR, which is next to
BRR. Note that any data not included between the whiskers is
plotted as a cross in Figure 3.

Figure 3. Standardized box plots of evaluation measures for the six prediction

models in the scenario of CPDP (P: left, RMSE: right)

B. Answer to RQ2
In both within- and cross-project scenarios, the results of a

prediction model are actually two groups of samples, and the
goal of RQ2 is to assess whether their population mean ranks
differ. The Wilcoxon signed-rank test, also known as a non-
parametric statistical hypothesis test, is suitable for this case,
because the population cannot be assumed to be normally
distributed (see Figures 2 and 3, the median and mean within
each box are not equal). The software program for such tests is
realized based on scipy, which is a Python-based software
ecosystem for mathematics, science, and engineering.

Assuming that two groups of samples are drawn from the
same distribution (null hypothesis), the Wilcoxon signed-rank
test is executed with an alternative/opposite hypothesis. A p-
value generated in the test is used to reject the null hypothesis
in favor of the opposite hypothesis. But, if the p-value is more
than 0.01, one cannot reject the null hypothesis. The test results
are shown in Table IV, which highlights that there are no

significant differences among WPDP and CPDP models,
indicated by the majority of p > 0.01 (10/12) for these models
evaluated by the two measures, though two exceptions (whose
numbers are in bold font) exist with respect to precision. More
interestingly, for the two exceptions, the Cliff’s effect sizes for
NNR and DTR are negative, which suggests that the results of
CPDP models are better. From the perspective of statistical
analysis, the finding indicates that in this paper CPDP models
are comparable to (or sometimes better than) WPDP models
with regard to accuracy, largely due to that in some cases we
select a large and mature project (Prop) as training data in the
scenario of CPDP. Hence, the selection of historical data from
those suitable mature projects to train a prediction model for
defect numbers is a significant factor for the success of CPDP.

TABLE IV. A COMPARISON OF THE DISTRIBUTIONS OF PREDICTION
RESULTS IN BOTH SCENARIOS USING THE WILCOXON SIGNED-RANK TEST

Measure LR BRR SVR NNR DTR GBR
Precision 0.011 0.044 0.030 0.002 0.001 0.033
RMSE 0.314 0.108 0.941 0.970 0.084 0.296

C. Threats to Validity
Although we obtain some interesting findings to answer the

research questions, there are still potential threats to the validity
of our work, one of which concerns the generalization of the
results obtained in this paper. The main reasons include the
following four aspects: (1) we randomly select six projects (a
very small subset of all of the projects) from the PROMISE
repository when conducting the experiments; (2) we only use
the 20 static code metrics when building prediction models,
because the six projects do not include the information of
process metrics and social network measures [29]; (3) we select
training data in a simple way, though there are many time-
consuming but effective selection methods [30]; and (4) we
only utilize six typical regression methods without additional
optimization for a given data set.

The prediction model based on Decision Tree Regression is
the best estimator for defect numbers in different scenarios.

CPDP models are comparable to (or sometimes better than)
WPDP models with respect to prediction performance.

401

VI. CONCLUSION AND FUTURE WORK
Defect numbers prediction is an interesting problem in the

field of defect prediction. Compared with the prior studies on
defect classifiers (viz. supervised classification models), in this
paper we empirically investigate the feasibility of defect
numbers prediction using regression methods in both within-
project and cross-project defect scenarios. The experiments on
six open-source software projects show that those simple,
typical regression methods are also able to perform well in
different scenarios, e.g., the prediction model built with
Decision Tree Regression is proven to be the best estimator in
our experiments, and that the six prediction models under
discussion can achieve similar (or sometimes even better)
results in both within- and cross-project scenarios. The findings
would provide useful empirical evidence for software
developers or software testers to choose appropriate training
data and regression methods in the case of urgent deadlines and
limited resources.

Our future work will further investigate the issues related to
defect numbers prediction so as to improve prediction precision,
including (1) building the best prediction model according to
the actual distribution of defects in a given software project,
and (2) selecting the most suitable training data for defect
numbers prediction using transfer learning techniques [31] in
the scenario of CPDP.

ACKNOWLEDGMENT
This work is supported by the National Basic Research

Program of China (973 Program) (No. 2014CB340401), the
National Natural Science Foundation of China (Nos.
61272111and 61273216), the Youth Chenguang Project of
Science and Technology of Wuhan City in China (No.
2014070404010232), and the open foundation of Hubei
Provincial Key Laboratory of Intelligent Information
Processing and Real-time Industrial System in China (No.
znss2013B017).

REFERENCES
[1] D. Radjenović, M. Heričko, R. Torkar, A. Živkovič, “Software fault

prediction metrics: A systematic literature review,” Information and
Software Technology, 2013, 55(8): 1397-1418.

[2] A. Meneely, L. Williams, W. Snipes, J. Osborne, “Predicting failures
with developer networks and social network analysis,” in: Proc. of the
16th ACM SIGSOFT FSE, Atlanta, Georgia, USA, 2008, pp. 13–23.

[3] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, “A systematic
review of fault prediction performance in software engineering,” IEEE
Transactions on Software Engineering, 2012, 38 (6): 1276–1304.

[4] R. Malhotra, “A systematic review of machine learning techniques for
software fault prediction,” Applied Soft Computing, 2015, 27: 504–518.

[5] T.T. Nguyen, T.Q. An, V.T. Hai, T.M. Phuong, “Similarity-based and
rank-based defect prediction,” in: Proc. of the 2014 Int’l Conf. on Adv.
Technol. for Commun., Hanoi, Vietnam, 2014, pp. 321-325.

[6] J.E. Gaffney Jr., “Estimating the Number of Faults in Code,” IEEE
Transactions on Software Engineering, 1984, 10(4): 459-465.

[7] N.E. Fenton, M. Neil, “A Critique of Software Defect Prediction
Models,” IEEE Transactions on Software Engineering, 1999, 25(5):
675-689.

[8] J. Wang, H. Zhang, “Predicting defect numbers based on defect state
transition models,” in: Proc. of the 6th ACM-IEEE Int’l Symp. on
Empirical Softw. Eng. and Measurement, Sweden, 2012, pp. 191-200.

[9] D.M. Ambros, M. Lanza, R. Robbes, “Evaluating defect prediction
approaches: a benchmark and an extensive comparison,” Empirical
Softw. Eng., 2012, 17(4-5): 531–577.

[10] P. He, B. Li, X. Liu, J. Chen, Y.T. Ma, “An empirical study on software
defect prediction with a simplified metric set,” Information and Software
Technology, 2015, 59: 170-190.

[11] A.I. Schein, A. Popescul, L.H. Ungar, D.M. Pennock, “Methods and
metrics for cold-start recommendations,” in: Proc. of the ACM SIGIR
SIGIR’02, Tampere, Finland, 2002, pp. 253-260.

[12] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, B. Murphy, “Cross-
project defect prediction: a large scale experiment on data vs. domain vs.
process,” in: Proc. of the ESEC/FSE’09, Netherlands, 2009, pp. 91-100.

[13] Z. He, F. Shu, Y. Yang, M.S. Li, Q. Wang, “An investigation on the
feasibility of cross-project defect prediction,” Autom. Softw. Eng., 2012,
19(2): 167–199.

[14] F. Rahman, D. Posnett, P. Devanbu, “Recalling the imprecision of cross-
project defect prediction,” in: Proc. of the 20th ACM SIGSOFT FSE,
Cary, NC, USA, 2012, p. 61.

[15] H.Y. Zhang, “An Investigation of the Relationships between Lines of
Code and Defects,” in: Proc. of the 25th IEEE Int’l Conf. on Softw.
Maintenance, Edmonton, Alberta, Canada, 2009, pp. 274-283.

[16] F. Lanubile, A. Lonigro, G. Visaggio, “Comparing models for
identifying fault-prone software components”, in: Proc. of the 7th Int’l
Conf. on Softw. Eng. and Knowl. Eng., USA, 1995, pp. 312-319.

[17] A. Kaur, R. Malhotra, “Application of random forest in predicting fault-
prone classes,” in: Proc. of the ICACTE’08, Thailand, 2008, pp. 37-43.

[18] J.C. Munson, T.M. Khoshgoftaar, “The detection of fault-prone
programs,” IEEE Trans. Softw. Eng., 1992, 18(5): 423–433.

[19] A. Kaur, P. Sandhu, A. Bra, “Early software fault prediction using real
time defect data,” in: Proc. of the 2nd Int’l Conf. on Machine Vision,
Dubai, UAE, 2009, pp. 242 –245.

[20] G.D. Boetticher, “Nearest neighbor sampling for better defect prediction,”
in: Proc. of the IEEE PROMISE’05, Missouri, USA, 2005, pp. 1-6.

[21] G. Pai, J. Dugan, “Empirical analysis of software fault content and fault
proneness using bayesian methods,” IEEE Transactions on Software
Engineering, 2007, 33(10): 675–686.

[22] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings,” IEEE Transactions on Software
Engineering, 2008, 34(4): 485–496.

[23] K. Gao, T.M. Khoshgoftaar, H. Wang, N. Seliya, “Choosing software
metrics for defect prediction: an investigation on feature selection
techniques,” Softw., Pract. Exper., 2011, 41(5): 579-606.

[24] L.C. Briand, W.L. Melo, J. Wüst, “Assessing the applicability of fault-
proneness models across object-oriented software projects,” IEEE Trans.
Softw. Eng., 2002, 28(7): 706–720.

[25] P. He, B. Li, D. Zhang, Y.T. Ma, “Simplification of Training Data for
Cross-Project Defect Prediction,” CoRR, abs/1405.0773, 2014.

[26] B. Turhan, T. Menzies, A. Bener, J.D. Stefano, “On the relative value of
cross-company and within-company data for defect prediction,”
Empirical Softw. Eng., 2009, 14(5): 540–578.

[27] F. Zhang, A. Mockus, I. Keivanloo, Y. Zou, “Towards building a
universal defect prediction model,” in: Proc. of the IEEE MSR’14,
Hyderabad, India, 2014, pp. 182-191.

[28] B. Turhan, A.T. Misirli, A. Bener, “Empirical evaluation of the effects
of mixed project data on learning defect predictors,” Information and
Software Technology, 2013, 55(6): 1101-1118.

[29] T. Zimmermann, N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in: Proc. of the 30th Int’l Conf. on
Softw. Eng., Leipzig, Germany, 2008, pp. 531–540.

[30] F. Peters, T. Menzies, A. Marcus, “Better cross company defect
prediction,” in: Proc. of the 10th Workshop on Mining Software
Repositories, San Francisco, CA, USA, 2013: 409-418.

[31] Y. Ma, G. Luo, X. Zeng, A. Chen, “Transfer learning for cross-company
software defect prediction,” Information and Software Technology, 2012,
54(3): 248–256.

402

Causes of Architecture Changes: An Empirical Study

through the Communication in OSS Mailing Lists

Wei Ding
1,4

, Peng Liang
1*

, Antony Tang
2
, Hans van Vliet

3

1
State Key Lab of Software Engineering, School of Computer, Wuhan University, China

2
Faculty of Science, Engineering and Technology, Swinburne University of Technology, Australia

3
Department of Computer Science, VU University Amsterdam, The Netherlands

4
Key Laboratory of Earthquake Geodesy, Institute of Seismology, China Earthquake Administration, China

tingwhere@whu.edu.cn, liangp@whu.edu.cn, atang@swin.edu.au, hans@cs.vu.nl

Abstract—Understanding the causes of architecture

changes allows us to devise means to prevent architecture

knowledge vaporization and architecture degeneration. But the

causes are not always known, especially in open source

software (OSS) development. This makes it very hard to

understand the underlying reasons for the architecture

changes and design appropriate modifications. Architecture

information is communicated in development mailing lists of

OSS projects. To explore the possibility of identifying and

understanding the causes of architecture changes, we

conducted an empirical study to analyze architecture

information (i.e., architectural threads) communicated in the

development mailing lists of two popular OSS projects:

Hibernate and ArgoUML, verified architecture changes with

source code, and identified the causes of architecture changes

from the communicated architecture information. The main

findings of this study are: (1) architecture information

communicated in OSS mailing lists does lead to architecture

changes in code; (2) the major cause for architecture changes

in both Hibernate and ArgoUML is preventative changes. (3)

more than 45% of architecture changes in both projects

happened before the first stable version was released, which

indicates that the architectures of the investigated OSS projects

are relatively stable after the first stable release.

Keywords-architecture change; cause of change; open source

software; mailing list; communication

I. INTRODUCTION

Software architecture (SA) represents “the fundamental
concepts or properties of a system in its environment
embodied in its elements, relationships, and in the principles
of its design and evolution” [1]. Systems continuously evolve
and change to be adapted to new uses, just as buildings
change over time [2], which consequently leads to
architecture changes. Understanding the causes of
architecture changes is important to help practitioners to
understand the knowledge of the design decisions that lead to
the architecture changes [3], and also allows researchers to
devise means to prevent architecture knowledge vaporization
and architecture degeneration [4]. The causes of architecture
changes are regarded as an essential element of architectural
design decision, which is a first-class entity to represent
architecture [5], and are used to develop related methods to
deal with specific architecture changes, for example,
architects analyze due to what cause the property of an

architecture is inhibited in order to transform the architecture
to satisfy non-functional requirements [6]; architectural
styles as analysis tools are used to analyze the causes of
architecture changes, and in turn to predict the effect of the
architecture changes [7]. Architectural knowledge
vaporization (e.g., design decisions and causes of
architecture changes) will lead to increased maintenance
costs [5]. To prevent this problem, developers (especially
architects) need a way to record and communicate the causes
of changes in architecture. With an explicit description of
architecture as well as their changes [8], software
maintainers can better understand the ramification of
architecture changes and thereby more accurately analyze the
impact and estimate costs of modifications [9]. But the
reality is that the rationale of architectural design decisions
(e.g., their causes) is often not available in SA documentation
[10], especially in OSS development when SA is rarely
documented (only 5.4% of 2000 investigated OSS projects
have some SA documentation) [11]. We conjecture that
causes of architecture changes are communicated between
developers through various media, especially in a distributed
development context when face-to-face communication is
difficult. Mailing list is an important social media for
knowledge sharing between knowledge providers and
knowledge seekers in OSS projects [12]. Our recent study
has shown that communication on architecture does exist in
the mailing lists of two popular OSS projects (Hibernate and
ArgoUML) [13], and OSS development mailing lists may act
as a potential source to extract and identify the cause
information of architecture changes in a project.

One of the characteristics of many successful OSS
projects is the existence of a SA [14]. Architecture change is
also a widespread phenomenon in OSS development, for
example, an investigation of the changes in Linux kernel’s
evolution indicates that most remarkable growth for a
“stable” version has been in the addition of new features and
support for new architectures rather than fixing defects [15].
To understand the causes of architecture changes [16][17],
we conducted an empirical study to extract, identify, and
analyze the architecture change information communicated
in the OSS mailing lists of two popular OSS projects:
Hibernate and ArgoUML based on the data (i.e., architectural
threads, which are a set of communication posts on the same
topic that contain architecture information in mailing lists)
we collected in [13]. The identified architecture changes in

* Corresponding author
This work is sponsored by the NSFC under Grant No. 61170025, 61472286.

(DOI reference number: 10.18293/SEKE2015-193) 403

mailing lists were further located and verified (confirmed) in
the source code of the two projects, and the causes of the
architecture changes were classified through the
communicated content in architectural threads. The goal of
this work is to provide a practical understanding of the
causes of architecture changes through communication in
OSS mailing lists: Does architecture communication in
mailing lists lead to architecture changes in source code?
What types of causes that lead to the architecture changes?
When do OSS developers communicate the causes of
architecture changes?

To answer these questions, we first extracted architecture
change information from the architectural threads of OSS
mailing lists and further classified the causes of architecture
changes with a top-down approach (i.e., using an existing
categorization of causes of architecture changes provided in
[16]), then checked and verified these changes against source
code. We conducted this study based on the architectural
threads collected in two popular OSS projects: Hibernate and
ArgoUML) [13], in which we identified 131 architectural
threads from 20,413 posts in the mailing list of Hibernate
from Jan 2002 to Aug 2014; and 200 architectural threads
from 26,439 posts in the mailing list of ArgoUML from Jan
2001 to Aug 2014. These architectural threads in Hibernate
and ArgoUML are used to extract, identify, and analyze the
causes of architecture changes. The results show that the
major cause for architecture changes in both Hibernate and
ArgoUML is preventative changes, which ease future
maintenance by restructuring or reengineering the system.

The rest of this paper is organized as follows. A brief
review of related work is discussed in Section II. The
methodology, including research questions and study
process, is described in Section III. The results of this study
are presented and discussed in Section IV. Threats to validity
are discussed in Section V. We conclude and outline the
future directions of this work in Section VI.

II. RELATED WORK

A. Cause of Architecture Change

The causes of architecture changes have been explored in
software development in various perspectives. The work in
[16] uses a systematic literature review to characterize
architecture changes from existing literatures. As part of the
Software Architecture Change Characterization Scheme
(SACCS), a general classification of causes of architecture
changes presented in [16] and another work [17] by the same
authors can be used as the basic categorization of the causes
of architecture changes in the two OSS projects in this study,
which is elaborated in Section III. The work in [18] analyzes
group interviews in various workshops for different levels of
participants, e.g., developers, testers, and architects in five
companies. The results validated a taxonomy of the causes
for architecture technical debt, a kind of architecture
inconsistency, which can be incurred and repaid by
architecture changes. The work in [19] uses various versions
of an ATM Simulator to observe and analyze what happens
when a system evolves and new requirements are added. The
results of this work show that changes in requirements may

lead to architecture changes and drift, and consequently
developers (architects) that do not fully understand the
design may take sub-optimal decisions, resulting in design
erosion. The authors also identified the causes of design
erosion, which can also be the causes for architecture change.

B. Communication through Mailing Lists in OSS Projects

Mailing lists in OSS development, as a rich source of
communication of development, have been investigated in
many studies. The work in [12] discusses the altruistic
sharing of knowledge between knowledge providers and
knowledge seekers in the developer and user mailing lists of
Debian project. The authors developed the Knowledge
Sharing Model (KSM) to show how knowledge can be
shared (communicated) in OSS mailing lists, and used email
exchanges between mailing list participants as quantifiable
measures of knowledge sharing activities in OSS
development. Some keywords in the subject of posts of
mailing lists are used to identify posting and replying posts,
e.g., “Re:”. The study in [20] examined the first posts of
newcomers in the mailing lists of four popular OSS projects:
MediaWiki, GIMP, PostgreSQL, and Subversion. The
authors found that knowledge communication (nearly 80% of
newbie posts received replies) was positively correlated with
their future participation. Mockus and his colleagues used
email archives of source code change history and problem
reports to quantify aspects of developer participation, core
team size, code ownership, productivity, defect density, and
problem resolution intervals, for two large OSS projects,
Apache and Mozilla [21]. These works pay attention to all
the posts and threads in a mailing list during a certain period,
while our study specifically extracts, identifies, and analyzes
architecture changes and their causes through the
communication in mailing lists.

III. METHODOLOGY

To explore the causes of architecture changes through the
communication in OSS mailing lists, we select and analyze
the mailing lists of two popular OSS projects: Hibernate and
ArgoUML, based on the data (i.e., architectural threads)
collected in our recent work [13]. In this section, we describe
the design of this study with following components: the
objective and research questions are presented in Section
III.A, the selection criteria of the OSS projects are described
in Section III.B, and the study process is elaborated in
Section III.C.

A. Objective and Research Questions

The goal of this study, formulated using the Goal-
Question-Metric (GQM) approach [22] is: to analyze
architecture changes through the communication in mailing
lists for the purpose of characterizing the causes of
architecture changes from the point of view of OSS
developers in the context of OSS development. We formulate
the following research questions (RQs) based on the
abovementioned goal.

RQ1: What are the causes that lead to architecture
changes in OSS development?

404

Rationale: Mailing lists have been used as a major
vehicle for the communication in OSS development [23].
Architecture information is communicated in the mailing
lists of OSS projects [13]. Some of them may discuss
specific architecture information, e.g., the causes of
architecture changes. With the existing categorization of
architecture changes provided in [16], we want to understand
in a practical perspective the causes of architecture changes
in OSS development through the communicated content
extracted from architectural threads. Knowledge and
understanding about the causes of architecture changes
(evolution) as well as their risks can facilitate the
development of strategies to mitigate these risks in software
evolution [24].

RQ2: What are the trends of causes that lead to
architecture changes in a time perspective?

Rationale: We intend to identify when various types of
architecture changes happened and their causes were
communicated in a time perspective. The answer of this
question would allow us to further identify the best timing
for performing treatments to various types of causes of
architecture changes, and help practitioners to understand
distribution of various causes of the changes in the
development lifecycle. To investigate the relationship
between causes of architecture changes and time point of
releases, the studied period of both OSS projects is divided
into two stages according to their first stable releases, i.e.,
ArgoUML v0.10

1
 and Hibernate v1.0 final

2
.

B. Selection Criteria of OSS Projects

Three criteria are used in this study to select OSS projects
that have mailing lists: (1) The duration of the project is
more than 10 years. (2) There are more than 1000 posts in
the development mailing list of the project, which provides
rich data to mine architecture information. (3) There are
more than 50 developers who ever used the mailing list,
which is meaningful to analyze the behavior of the
developers on communicating architecture information using
the mailing list.

Based on these selection criteria, we chose Hibernate and
ArgoUML as the OSS projects which mailing lists were
analyzed. Hibernate provides an Object/Relational mapping
(ORM) framework which implements the Java Persistence
API, and is popularly used in Java applications. Hibernate
has 20,413 posts in its development mailing list between Jan
2002 and Aug 2014, when the release version was evolved
from v0.9.1 to v4.3.6. Note that, the mailing list of Hibernate
was migrated from Sourceforge to JBoss in Aug 2006. The
mailing list of Hibernate in Sourceforge was initially
maintained by a core developer, but he did not continue this
administration effort after 11-Aug-2006

3
. Hence, the

investigated time period of the mailing list of Hibernate in
this study covers the time period of two mailing lists hosted
at Sourceforge and JBoss respectively. ArgoUML is a
popular open source UML modeling tool developed in Java.

1 http://argouml.tigris.org/servlets/NewsItemView?newsItemID=128
2 http://sourceforge.net/p/hibernate/mailman/message/5497028/
3 http://sourceforge.net/p/hibernate/mailman/message/13328372/

ArgoUML accumulates 26,439 posts in its development
mailing list between Jan 2001 and Aug 2014, when the
release version was updated from v0.8 to v0.34. The
information of the Hibernate and ArgoUML development
mailing lists are elaborated in TABLE I.

TABLE I. HIBERNATE AND ARGOUML DEVELOPMENT MAILING LISTS

OSS

Project

Mailing list URL Time
period

Num. of
Posts

Hibernate http://sourceforge.net/p/hibernate/ma
ilman/hibernate-devel/

Jan 2002 -
July 2006

8,913

http://lists.jboss.org/pipermail/hibern
ate-dev/

Aug 2006 -
Aug 2014

11,500

ArgoUML http://argouml.tigris.org/ds/viewFor
umSummary.do?dsForumId=450

Jan 2001 -
Aug 2014

26,439

The IEEE 1471-2000 standard suggests ten main

architecture elements for architectural description [25],

which were employed as the categorization of architecture

elements in our prior work to identify various architecture

elements documented in an architecture document [11]. In

this study, we also use this categorization to identify various

architecture information communicated in mailing lists.

C. Study Process

This study is conducted in three phases. The first phase
is data collection. We first identify the architectural threads
in the mailing lists from the two OSS projects selected in
Section III.B. We then extract and classify the causes of
architecture changes in the following steps:

Step1: Select 30 architectural threads as the data for a
pilot study;

Step2: Identify architectural threads that lead to
architecture changes by checking and verifying source code;

Step3: Extract architecture changes and further classify
the causes of architecture changes with a top-down approach
(i.e., following an existing categorization provided in [16]);

Step4: Review the identified and classified types of
causes of architecture changes by two researchers to partially
mitigate the threat of personal bias;

Step5: Repeat Step1 to Step4 on the rest architectural
threads in the mailing lists of Hibernate and ArgoUML.

The second phase is verification of architecture changes
in source code. The Classes, Packages, or architecture design
discussed in mailing lists are checked and located in source
code. A semi-automatic static code analysis tool Understand

4

is used to identify the changes of source code. Understand
can identify the existence of a specific Class or Package in
an Understand project compiled with OSS source code by
searching with the name of the Class or Package. The
difference between continuous releases in source code can be
used to locate and verify the changes of architecture. For
example, if a new Class discussed in an architectural thread
appears in a certain release, e.g., v1.0, but does not exist in a
previous version, e.g., v0.8, we can confirm that the

4 https://scitools.com/

405

http://argouml.tigris.org/servlets/NewsItemView?newsItemID=128
http://sourceforge.net/p/hibernate/mailman/message/5497028/
http://sourceforge.net/p/hibernate/mailman/message/13328372/
http://sourceforge.net/p/hibernate/mailman/hibernate-devel/
http://sourceforge.net/p/hibernate/mailman/hibernate-devel/
http://lists.jboss.org/pipermail/hibernate-dev/
http://lists.jboss.org/pipermail/hibernate-dev/
http://argouml.tigris.org/ds/viewForumSummary.do?dsForumId=450
http://argouml.tigris.org/ds/viewForumSummary.do?dsForumId=450
https://scitools.com/

communication in this architectural thread caused an
architecture change (i.e., adding the new Class).

The third phase is data analysis. Qualitative and
quantitative data of architecture changes are extracted from
architectural threads, and used to answer the research
questions. We manually checked architecture changes
discussed in each architectural thread in the mailing lists and
recorded the causes of architecture changes identified in the
threads in an Excel spreadsheet for further analysis.

IV. RESULTS AND DISCUSSION

A. Cause of Achitecture Change
Using a top-down approach by analyzing the extracted

architecture changes, we identified the categories of causes
of architecture changes. Architecture changes can be
classified in different perspectives. Cause of architecture
change is one of them. A recent literature review specifies
four categories of causes for architecture changes [16]: (1)
Perfective changes result from new or changed
requirements. These changes improve the system to better
meet user needs. (2) Corrective changes occur in response
to defects in software products. (3) Adaptive changes occur
when moving to a new environment, platform, or
accommodating new standards. (4) Preventative changes
ease maintenance by restructuring/reengineering the system.

We intend to identify whether architecture
communication in mailings lists lead to architecture changes
by checking source code in continuous releases. For
example, when a new Class is suggested by a developer in a
mailing list, we will check the name of this Class in the
following releases and verify whether this Class is added or
not. If the answer is “Yes”, we can further extract the cause
of this architecture change from the discussion in the
architectural thread of the mailing list. The extracted causes
of architecture changes can be directly mapped to the
abovementioned four categories of causes for architecture
changes with the top-down approach (i.e., following an
existing categorization provided in [16]). The percentages of
the four types of causes of architecture changes in Hibernate
and ArgoUML are showed in TABLE II.

TABLE II. PROPORTIONS OF FOUR TYPES OF CAUSES OF ARCHITECTURE

CHANGES IN HIBERNATE AND ARGOUML

OSS

Project

Perfective

changes

Corrective

changes

Adaptive

changes

Preventative

changes

Hibernate 25.7% 5.7% 20.0% 48.6%

ArgoUML 43.3% 10.8% 2.7% 45.9%

The proportions of the four types of causes of

architecture changes before and after the first stable releases
of Hibernate and ArgoUML are showed in TABLE III. The
abbreviations BFR and AFR represent two stages as
described in the rationale of RQ2, i.e., before and after the
first stable version was released. Note that, the sum of the
percentages of ArgoUML shown in TABLE II and TABLE
III exceeds 100%, because one architecture change may be
caused by several types of reasons (e.g., adaptive change and
perfective change).

TABLE III. PROPORTIONS OF FOUR TYPES OF CAUSES OF ARCHITECTURE

CHANGES BEFORE AND AFTER THE FIRST STABLE RELEASE IN HIBERNATE

AND ARGOUML

OSS Project Perfective

changes

Corrective

changes

Adaptive

changes

Preventative

changes

BFR Hibernate v1.0

(45.7%)
17.1% 5.7% 0.0% 22.9%

AFR Hibernate v1.0

(54.3%)
8.6% 0.0% 20.0% 25.7%

BFR ArgoUML v0.10

(89.1%)
35.1% 8.1% 2.7% 43.2%

AFR ArgoUML v0.10

(13.5%)
8.1% 2.7% 0.0% 2.7%

Answer to RQ1: There are four types of causes of
architecture changes in OSS development: perfective
changes, corrective changes, adaptive changes, and
preventative changes, which cover all the types of causes of
architecture changes in [16]. As shown in TABLE II, the
major cause for architecture changes in both Hibernate and
ArgoUML is preventative changes.

Answer to RQ2: Perfective changes and preventative
changes are the main causes of architecture changes before
the first stable releases in both Hibernate and ArgoUML. As
shown in TABLE III, after the first stable version was
released, the causes of architecture changes of Hibernate are
mixed, e.g., adapted to JDK5 (adaptive change) and
redesigning Hibernate to be more event-oriented
(preventative change); the causes of architecture changes of
ArgoUML are mostly perfective changes, e.g., adding a data
interface for a new component.

B. Discussion of Study Results

Categorization of causes of architecture changes: All
the causes of architecture changes in Hibernate and
ArgoUML can be mapped to the four categories of causes of
architecture changes provided in [16] and no new category
was identified, which empirically validates that this existing
categorization does work with OSS projects.

Stable and maintainable architecture: As shown in
TABLE III, 45.7% architecture changes in Hibernate and
89.1% architecture changes in ArgoUML happened before
the first stable version. It implies that the major part of the
architectures was formed and became stable in the initial
stage of the two projects. As illustrated in TABLE II,
preventative changes are the major cause for architecture
changes in both projects. It is not a surprising result.
Preventative changes are made to easy future maintenance
and evolution. OSS developers tend to make preventative
changes (anticipation) in order to achieve a maintainable and
evolvable architecture (e.g., refactoring architecture design to
be prepared for new or changed requirements). Corrective
and adaptive changes are in a small proportion in all
architecture changes. The reasons are diverse, potential
defects and environmental changes can be prevented and
mitigated through preventative changes, or corrective
changes are communicated in other sources (e.g., JIRA).

Role of core developers: Core developers refer to those
that are actively involved in high levels of communication
and knowledge sharing in development [26] (i.e.,
architecture information communication in this work), e.g.,

406

GK
5
 in Hibernate and AC in ArgoUML. In this study, we

find that 68.5% architecture changes are made by the top two
core developers in Hibernate, and 75.7% architecture
changes are conducted by the top three core developers in
ArgoUML, according to the core developers identified in
[13]. These results show that core developers dominate the
changes of architecture. These core developers also act as the
role of architect in the two OSS projects.

C. Implications for Researchers and Practitioners

For researchers: The results of this study empirically
show that architecture communication in OSS mailing lists is
correlated with architecture changes in source code. One of
the merits of the architecture information communicated in
mailing lists is that it contains rich design rationale
information about architecture (e.g., cause information about
architecture changes), which is particularly useful to enrich
architectural design decisions [27] and architecture
documentation [28]. Another promising benefit of
architecture changes classification in a cause perspective is
that it allows researchers to develop a common approach to
deal with the changes with similar causes, instead of
addressing each change individually (e.g., the purpose of
requirements changes classification [29]). To support the
approach, a tool for addressing various types of architecture
changes can be developed, e.g., certain architecture changes
are better addressed by resolving their conflicts with related
design decisions [19].

For practitioners: Participants of OSS projects may use
the study results to guide them to trace architecture changes
from mailing lists. As we have discussed in Section IV.B,
architecture changes frequently happened before the first
stable version was released. For example, if a new developer
of an OSS project wants to get the basic knowledge about the
architecture design in order to have a preliminary
understanding of the system, s/he can check the architectural
threads that suggest, negotiate design, and interpret design
implementation through the mailing list during the early
stage of development before the first stable release.

V. THREATS TO VALIDITY

The threats to the validity of this study are discussed
according to the guidelines in [30].

Construct validity in this study focuses on whether we
extracted architecture information from the mailing lists,
identified architecture changes, and interpreted the results of
this study correctly. To mitigate the bias on architecture
information definition, we chose the architectural description
model in IEEE Standard 1471-2000 [25] as a benchmark
model to identify the threads that contain architecture
information in mailing lists. To identify architecture changes,
we compare the changed Classes/Packages between
continuous releases in source code using Understand tool,
which mitigates the bias on confirming architecture changes.
There is a risk that the results of this study might be affected

5 Only the abbreviations of the developers’ names are provided due

to the privacy concern.

by the interpretation of the criteria for extracting and
identifying architecture information and architecture changes
by different researchers. A pilot data extraction was
conducted by two researchers to mitigate the bias on
understanding and identifying architecture changes. We
admit that some causes of architecture changes at the system
level are too abstract to be verified in source code by the
identification method used in this study. This threat can be
mitigated with an understanding of the code structure
through the communication with core developers (architects).

Internal validity focuses on the avoidance of
confounding factors that may influence the interpretation of
the results of a study. There is a risk that the scope of
architecture changes might be affected by the identification
method used in this work. To mitigate this potential issue, we
used the changed Classes/Packages to identify the
architecture changes in source code by Understand tool.
Some architecture changes at the system level discussed in
architectural threads were excluded from analysis, because
they are too abstract and we could not verify them in source
code. We employed a descriptive statistics method to present
the results of this study, and the threats to internal validity
are minimized. We did not intend to establish any causal
relationship between architecture changes and other aspects
(e.g., change time) of OSS development in this study.

External validity refers to the degree to which our
findings from this study can be generalized. In order to
improve the generalizability of the study results and findings,
we chose two popular and representative OSS projects that
have mailing lists based on the selection criteria in Section
III.B. Studying the mailing lists of more OSS projects based
on the selection criteria can also alleviate this threat.

Reliability focuses on whether the study yields the same
results if other researchers replicate it, which in this work is
related to the collection and analysis of architecture changes
as well as their causes. By making explicit the process and
criteria of data collection and data analysis of this study in
Section III, and using Understand (a third-party tool) for
verifying architecture changes, this threat is mitigated.

VI. CONCLUSION AND FUTURE WORK

In this empirical study, we analyzed the architecture
information communicated in architectural threads of the
mailing lists of two popular OSS projects: Hibernate and
ArgoUML, and located and verified architecture changes by
comparing the differences between the source code of
continuous OSS releases. Four types of architecture changes
in a cause perspective are classified. The main findings of
this work are: (1) architectural information communicated in
OSS mailing lists does lead to architecture changes in code;
(2) the major cause for architecture changes in both
Hibernate and ArgoUML is preventative changes. (3) more
than 45% of architecture changes in both projects happened
before the first stable version was released, which indicates
that the architectures of the investigated OSS projects are
relatively stable after the first stable release.

The results of this study provide several promising
research directions: (1) The results and findings of this work

407

can be further validated through a survey with the core
developers of the two OSS projects; (2) As we mentioned in
Section IV.C, a tool for a certain type of causes of
architecture changes can be developed to deal with similar
architecture changes based on the results of this work; (3)
Other sources in OSS development, e.g., forums, commit
data [31], and blogs [32], may also contain information about
architecture changes and their causes. We may explore the
possibility to identify architecture changes and their causes
from these sources.

REFERENCES

[1] ISO/IEC/IEEE, ISO/IEC/IEEE Std 42010-2011 International
Standard, Systems and software engineering - architecture
description, 2011.

[2] D. E. Perry and A. L. Wolf, "Foundations for the study of software
architecture", Software Engineering Notes, ACM, vol. 17, no. 4, pp.
40-52, 1992.

[3] J. Bosch, "Software architecture: The next step", in: Proceedings of
the 1st European Workshop of Software Architecture (EWSA), St
Andrews, UK, Springer, pp. 194-199, 2004.

[4] A. Jansen, J. van der Ven, P. Avgeriou, and D. K. Hammer, "Tool
support for architectural decision", in: Proceedings of the 7th working
IEEE/IFIP Conference on Software Architecture (WICSA), Mumbai,
India, IEEE, pp. 44-53, 2007.

[5] A. Jansen and J. Bosch, "Software architecture as a set of architectural
design decisions", in: Proceedings of the 5th Working IEEE/IFIP
Conference on Software Architecture (WICSA), Pittsburgh, USA,
IEEE, 2005.

[6] J. Bosch and P. Molin, "Software architecture design: evaluation and
transformation", in: Proceedings of the 6th IEEE Conference and
Workshop on Engineering of Computer-Based Systems (ECBS),
Nashville, USA, IEEE, pp. 4-10, 1999.

[7] M. H. Klein, R. Kazman, L. Bass, J. Carriere, M. barbacci, and H.
Lipson, "Attribute-based architecture styles", in: Proceedings of the
1st Working IFIP Conference on Software Architecture (WICSA),
San Antonio, USA, Springer, pp. 225-243, 1999.

[8] W. Ding, P. Liang, A. Tang, and H. van Vliet, "Knowledge-based
approaches in software documentation: A systematic literature
review", Information and Software Technology, Elsevier, vol. 56, no.
6, pp. 545-567, 2014.

[9] D. Garlan, "Software architecture: A roadmap", in: Proceedings of the
the 22th Conference on Software Engineering, Future of Software
Engineering Track (ICSE), Limerick, Ireland, ACM, pp. 91-101,
2000.

[10] R. Weinreich, I. Groher, and C. Miesbauer, "An expert survey on
kinds, influence factors and documentation of design decisions in
practice", Future Generation Computer Systems, Elsevier, vol. 47, no.
6, pp. 145-160, 2015.

[11] W. Ding, P. Liang, A. Tang, H. van Vliet, and M. Shahin, "How do
open source communities document software architecture: An
exploratory survey", in: Proceedings of the 19th International
Conference on Engineering of Complex Computer Systems
(ICECCS), Tianjin, China, IEEE, pp. 136-145, 2014.

[12] S. K. Sowe, I. Stamelos, and L. Angelis, "Understanding knowledge
sharing activities in free/open source software projects: An empirical
study", Journal of Systems and Software, Elsevier, vol. 81, no. 3, pp.
431-446, 2008.

[13] W. Ding, P. Liang, A. Tang, and H. van Vliet, "Communicating
architecture information in open source software development using
mailing lists", in: Proceedings of the 9th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement
(ESEM), Beijing, China, IEEE, 2015. (under review)

[14] A. Brown and G. Wilson, "The Architecture of Open Source
Applications", Creative Commons, 2012.

[15] M. W. Godfrey and Q. Tu, "Evolution in open source software: A
case study", in: Proceedings of the 16th International Conference on
Software Maintenance (ICSM), San Jose, CA, IEEE, pp. 131-142,
2000.

[16] B. J. Williams and J. C. Carver, "Characterizing software architecture
changes: A systematic review", Information and Software
Technology, Elsevier, vol. 52, no. 1, pp. 31-51, 2010.

[17] B. J. Williams and J. C. Carver, "Examination of the software
architecture change characterization scheme using three empirical
studies", Empirical Software Engineering, Springer, vol. 19, no. 3, pp.
419-464, 2014.

[18] A. Martini, J. Bosch, and M. Chaudron, "Architecture technical debt:
Understanding causes and a qualitative model", in: Proceedings of the
40th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA), Verona, Italy, IEEE, pp. 85-92,
2014.

[19] J. van Gurp and J. Bosch, "Design erosion: Problems and causes",
Journal of Systems and Software, Elsevier, vol. 61, no. 2, pp. 105-
119, 2002.

[20] C. Jensen, S. King, and V. Kuechler, "Joining free/open source
software communities: An analysis of newbies' first interactions on
project mailing lists", in: Proceedings of the 44th Hawaii International
Conference on System Sciences (HICSS), Kauai, USA, IEEE, pp. 1-
10, 2011.

[21] A. Mockus, R. T. Fielding, and J. D. Herbsleb, "Two case studies of
open source software development: Apache and Mozilla", ACM
Transactions on Software Engineering and Methodology, ACM, vol.
11, no. 3, pp. 309-346, 2002.

[22] V. R. Basili, "Software modeling and measurement: The
Goal/Question/Metric paradigm", University of Maryland at College
Park, 1992.

[23] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. van Deursen,
"Communication in open source software development mailing lists",
in: Proceedings of the 10th International Working Conference on
Mining Software Repositories (MSR), San Francisco, USA, IEEE, pp.
277-286, 2013.

[24] O. P. N. Slyngstad, J. Y. Li, R. Conradi, and M. Ali Babar,
"Identifying and understanding architectural risks in software
evolution: An empirical study", in: Proceedings of the 9th
International Conference of Product Focused Software Development
and Process Improvement (PROFES), Monte Porzio Catone, Italy,
Springer, pp. 400-414, 2008.

[25] IEEE, IEEE Std 1471-2000, Recommended Practice for Architectural
Description of Software Intensive Systems, 2000.

[26] S. A. Licorish and S. G. MacDonell, "Understanding the attitudes,
knowledge sharing behaviors and task performance of core
developers: A longitudinal study", Information and Software
Technology, Elsevier, vol. 56, no. 12, pp. 1578-1596, 2014.

[27] M. Shahin, P. Liang, and M. R. Khayyambashi, "Architectural design
decision: Existing models and tools", in: Proceedings of the Joint 8th
Working IEEE/IFIP Conference on Software Architecture & 3rd
European Conference on Software Architecture (WICSA/ECSA),
Cambridge, UK, IEEE, pp. 293-296, 2009.

[28] A. Jansen, P. Avgeriou, and J. S. van der Ven, "Enriching software
architecture documentation", Journal of Systems and Software,
Elsevier, vol. 82, no. 8, pp. 1232-1248, 2009.

[29] N. Nurmuliani, D. Zowghi, and S. P. Williams, "Using card sorting
technique to classify requirements change", in: Proceedings of the
12th IEEE International Requirements Engineering Conference (RE),
Kyoto, Japan, IEEE, pp. 240-248, 2004.

[30] M. Höst, P. Runeson, M. C. Ohlsson, B. Regnell, and A. Wesslén,
"Experimentation in Software Engineering", Springer, 2012.

[31] J.S. van der Ven and J. Bosch, "Making the right decision: supporting
architects with design decision data", in: Proceedings of the 7th
European Conference on Software Architecture (ECSA), Montpellier,
France, Springer, pp. 176-183, 2013.

[32] D. Pagano and W. Maalej, "How do open source communities blog?",
Empirical Software Engineering, Springer, vol. 18, no. 6, pp. 1090-
1124, 2013.

408

A Behavior Marker tool for measurement of the Non-
Technical Skills of Software Professionals: An

Empirical Investigation
Lisa L. Lacher1, Gursimran S. Walia2, Fabian Fagerholm3, Max Pagels4, Kendall Nygard5, Jürgen Münch6

Department of Computer Science
University of Houston-Clear Lake1; North Dakota State University2, 5; University of Helsinki3, 4, 6

Lacher@uhcl.edu1; {gursimran.walia2, Kendall.Nygard5}@ndsu.edu; {fabian.fagerholm3, max.pagels4, juergen.muench6}@cs.helsinki.fi

Abstract— Managers recognize that software development project
teams need to be developed and guided. Although technical skills
are necessary, non-technical (NT) skills are equally, if not more,
necessary for project success. Currently, there are no proven tools
to measure the NT skills of software developers or software
development teams. Behavioral markers (observable behaviors
that have positive or negative impacts on individual or team
performance) are beginning to be successfully used by airline and
medical industries to measure NT skill performance. The purpose
of this research is to develop and validate the behavior marker
system tool that can be used by different managers or coaches to
measure the NT skills of software development individuals and
teams. This paper presents an empirical study conducted at the
Software Factory where users of the behavior marker tool rated
video clips of software development teams. The initial results show
that the behavior marker tool can be reliably used with minimal
training.

Keywords-Non-technical Skills; behavior marker; performance.

I. INTRODUCTION

Most software is developed by teams and the success of a
software project depends on the effective performance of the
software project team. The PMI and the most recent PMBOK
Guide [1] acknowledges that, non-technical (NT) skills in
comparison to the technical skills are equally important for
project success and team development. Several authors agree
that the NT skills are critical to project success [2, 3]; and there
are even some that assert that NT skills can have the largest
impact on software development [4, 5].

The growing need for an agile workforce is one major factor
that is driving the demand for NT skills [6]. Agile Manifesto’s
[7] first principle - “ individuals and interactions over processes
and tools” clearly points to the importance of NT skills. Agile
teams depend greatly on NT skills such as efficient
communication, taking responsibility, initiative, time
management, and leadership.

While it is obvious that NT skills are important, and that the
performance of individuals is very important to creating an
effective team, there are no established guidelines for measuring
team effectiveness. Different criteria for assessing team
effectiveness have been identified by different authors [8, 9].
Generally, these criteria include measurements of task
performance as well as the interpersonal skills of the team
members. The interpersonal skills include attitudes and
behaviors. Although there is extensive literature with respect to
different ways to measure task performance for software
development (e.g., lines of code) [10], scant research has been

performed on the measurement of NT skills, especially for
software developers. A couple of notable exceptions can be
found in the aviation and health care industries. Both industries
have already recognized the importance of NT skills to the
success of their teams, and have been using behavioral marker
(BM) systems (e.g., LOSA, ANTS) to structure individual and
team assessments of these NT skills. We believe that software
teams can also draw upon these BM’s from the aviation and
health care industries. It is often Software Development
managers and coaches that are responsible for assessing the
performance of their development teams – not HR departments,
thus a tool like a BM system needs to be available to them.

As educators and software project development managers,
we are concerned with questions such as: how can managers
objectively measure the NT skills of their employees to
determine if their NT skills need improvement or how would
feedback be provided to the team members so that they could
improve their performance? This research attempts to begin
answering these kinds of questions.

II. BACKGROUND – NT SKILLS, BEHAVIOR MARKERS

Non Technical (NT) Skills: NT skills are the cognitive,
personal resource, and social skills that complement a person’s
technical skills and contribute to overall task performance [11].
Some classic examples of NT skills include communication,
cooperation, decision making, leadership, stress management,
and workload management. Basically; NT skills cover the
cognitive and social sides of a person. In the most recent survey
released by the Association of American Colleges and
Universities [12], it was found that employers feel that NT skills
are more important than a particular major. Several different
surveys of U.S. employers have also identified a lack of NT
skills as the area where young job-seekers have the largest
deficiency [13]. Even professional organizations such as
Professional Engineering Competence (UKSPEC), IEEE
Computer Society state that professionals have an obligation to
possess NT skills [14].

Behavior Markers (BM): Behavioral markers (BM) are
defined [15] as “observable, non-technical behaviors that
contribute to superior or substandard performance within a
work environment”. They are derived by analyzing data
regarding performance that contributes to successful and
unsuccessful outcomes. The overall purpose of a BM system is
to use markers as a method to assess both team and individual
behaviors. These BM systems provide an observation-based

(DOI reference number: 10.18293/SEKE2015-227)

409

mailto:Lacher@uhcl.edu
mailto:gursimran.walia
mailto:Kendall.Nygard@ndsu.edu5
mailto:fabian.fagerholm
mailto:max.pagels
mailto:juergen.muench%7d@cs.helsinki.fi
http://business.time.com/2013/11/10/the-real-reason-new-college-grads-cant-get-hired/
http://business.time.com/2013/11/10/the-real-reason-new-college-grads-cant-get-hired/

method to capture and assess individual and team performance
on data rather than on gut feelings. The BM tool is designed in
the form of a structured list of behaviors. The Observers then
use this form during a selected work situation to rate
performance. This allows an individual’s or team’s skills to be
rated in their real context. BM systems can provide a common
language for giving feedback as well as discussing and teaching
NT skills.

Behavior Marker (BM) Systems: BM systems have
demonstrated value for assessing and providing feedback on
these NT skills, for improving training programs, and in the use
of building databases to identify norms and prioritize training
needs. It is important to recognize that BM systems need to be
specific to the domain and culture. A brief description of
successful BM systems (airline, medicine) follows:

The first BM system, Line Operation Safety Audit (LOSA) is
a very successful BM system that focuses on interpersonal
communication, leadership, and decision making in the cockpit.
Trained observers ride along in the cockpit and observe the
flight crews during normal flight operations. They score the
behaviors of the crew using the LOSA tool. LOSA has been
endored by the International Civil Aviation Organiztion
because it has been used so successful in measuring the
strengths and weaknesses of flight crews’ interpersonal skills
[16]. The Anesthetists’ NT Skills (ANTS) [17] used in
healthcare has proven very useful in assessing the NT skills of
anesthetists in simulation training and has provided important
performance feedback for the individuals. Another successful
healthcare BM system is the Observational Teamwork
Assessment of Surgery (OTAS). Many studies have shown that
poor communication, coordination, and other aspects of
teamwork, rather than technical failures, have been the primary
causes of adverse events in surgery. OTAS has been found to
be a valid measure of the NT performance of surgical teams
[18].

Our goal is to develop and validate a BM system that can
improve software professional team member performance by
providing feedback in the form of an objective and documented
assessment of the NT skills of the team members. We wanted
to create a tool that is very usable by practitioners: it requires
little or no training to use and does not require unreasonable
effort to use. It is a concern of the researcher that if the tool took
a lot of training or was too difficult to use, that the potential
practitioners, such as project managers and team leads for
whom the tool was meant to assist, would not find the tool
useful because of the amount of effort required.

III. BEHAVIOR MARKER SYSTEM DEVELOPMENT

The development process for our behavioral marker system
for software developers is detailed in our previous work [19].
As a first step, we performed a systematic literature review to
develop NT skill inventory. The high-level question addressed
by the review was: “What are the NT skills required of software
professionals performing well in their field and how can we
discover what NT skills are valued by employers?”

Details on the review protocol (sources searched, search
execution, inclusion and exclusion criteria, quality assessment,

data extraction) can be referred to in a report [20]. The output
of this step was an initial list of 35 NT skills that were clustered
into four major categories: communication, interpersonal,
problem solving, and work ethic (see Fig. 1). The detailed
desription of each skill can be referred [20].

During the second step, the initial list of NT skills had their
quality assessed and were validated by focus group of experts
in industry and academia. Two surveys (and focus groups) were
conducted online (using a cross sectional design) to gather NT
skill priorities, missing NT skills, description clarifications, and
examples of examples of good and poor behaviors for the top
rated NT skills of software developers. So that we could
prioritize our efforts, focus group ranked the importance of each
NT skill to software professionals during the first survey. After
the survey analysis, we had a reduced list of 16 skills to focus
on. During the second focus group survey, we gather a total of
408 examples of observable actions that indicated good
performance and behavior of each NT skill as well as examples
of observable actions that indicate poor performance and
behavior of each NT skill. These examples were reviewed,
clarified, and redundancies were eliminated. The final set of NT
skills consisted of: teamwork, initiative/motivation to work,
listening, attitude, critical thinking, oral communication,
problem solving, attention to detail, flexibility,
integrity/honesty/ethics, time management, and questioning.
Some behavioral examples, such as “being a good team player”
and “body language and persona emitting that you do not enjoy
your work”, were too ambiguous and removed. It was also felt
that the “Leadership” skill did not have enough observable

 Fig. 1: Desired NT skills of Software Professionals

Fig. 2: Example of “Listening” behaviors (good and bad examples)

410

behaviors that would be able to be clearly identified, so that NT
skill was removed. The result of the second survey was a
behavior-based software engineer NT skills taxonomy. Fig. 2
shows the resultant examples of good and poor behavior for the
“Listening” skill. The same process was used to create examples
of good and poor behavior for each NT skill.

During the third step, the behavior marker systems being
used in aviation, health care, rail transport and maritime
transport were examined. Each system’s structure was examined
to select which elements would have the most potential for use
in software development and our final tool was a composition of
several systems. The NT skills validated by the focus group
along with the good and bad behavior examples for those skills
were structured into a BM audit tool for software development.
For reference, we refer to the BM audit tool as the Non-
Technical Skill Assessment for Software Developers (NTSA).

The NTSA is designed to be used by an observer (i.e.
manager, team leader, coach) during routine team interactions or
meetings. It is intended that each time a behavior is observed, a
mark is placed in the appropriate column by placing a tick mark
in that column: observed and good, or expected but not observed.
Observations can be clarified by placing explanations in the
comments section. The observer can see skill definitions and
examples of good and poor behavior for a particular behavioral
marker by viewing the second page. A manager is allowed to
list as many or as few skills as desired in the behavioral marker
column. The observer will score the behaviors based on how
well the behavior meets the behavioral examples and its
definition.

IV. EMPIRICAL VALIDATION OF BEHAVIOR MARKER

In order to evaluate our BM tool, an empirical study rated
video clips of student software development teams that were
working on industrial strength projects within the Software
Factory (as shown in Fig. 3 and explained).

1) Software Factory Background
The Software Factory is a software development laboratory

created by the University of Helsinki, Department of Computer
Science. All research was performed in Finland due to the
requirements of international privacy laws. The University of
Helsinki is consistently ranked in the top 100 out of world's
15,000 universities, in part because the university promotes
science and research together with European's top research-
intensive universities. The master’s degree programs are taught
in English in order to support the large number of international

students who study at the university. The Software Factory’s
primary participants are students, but the businesses provide
team members who work with the students, and university
faculties oversee the projects, although the faculty involvement
is kept to a minimum. Almost all project communication is in
English. Faculty involvement consists primarily of project
orientation and project intervention if problems cannot be
resolved by the students, coach, and customer. The coach is
generally an upper level student with Software Factory project
experience. University students take on the role of the
development team for projects provided by businesses. The
customer has company representatives that take on the role of
the product owner and represents the interests of the company.
Although these representatives are not co-located, they do come
by the Software Factory for weekly demos, sometimes for
meetings, and are generally available via telephone and email.
Researchers are able to observe what happens in the project due
to the seven cameras that provide multiple angles of view and
four microphones that record activities in the Factory room. In
Software Factory projects, the participants take on the core roles
of a typical Scrum project. Projects at the Software Factory last
for seven to eight weeks; the students work approximately 6
hours per day, 4-5 days per week.

2) Study Design
This study investigates whether the BM system can be used

with consistency by different raters to capture a measurement of
the NT skills of software developers, thus facilitating objective
feedback to software development teams and individuals. This
study used a blocked subject-project study. This type of analysis
allows the examination of several factors within the framework
of one study. Each of the non-technical skills to be studied can
be applied to a set of projects by several subjects and each
subject applies each of the non-technical skills under study. In
this study, raters evaluated the NT skills of project teams using
the NTSA tool. The project teams worked together using state-
of-the-art tools, modern processes and best practices to
prototype and develop software for real business customers in an
environment that emulates industry. Video tapes of the projects
were evaluated to rate the student team’s NT skill performance.
The details of the study are provided as follows.

Independent and dependent variables: The experiment
manipulated the following independent variable:

a) Behavioral Marker System tool and Example
Behaviors: Each non-technical skill has its own set of good and

Fig. 3: Software Factory

411

poor behavioral examples that are used by the raters to evaluate
team performance of each non-technical skill.

The following dependent variable was measured:
b) Rater’s Evaluations: The behavioral rating for each

non-technical skill by each rater. This measure includes the
percent positive for each rater for each non-technical skill.

Participating Subjects: The participant subjects (students in
the Computer Science master’s degree) were software
developers from two different projects. There were two different
projects that were evaluated. One project had five team members
and the other had seven team members. The students worked
together to develop a software solution to a project posed by the
business customer.

 Artifacts: Although the NTSA tool could be used to evaluate
the NT skills of both individuals and teams, it was decided to
test for team skills first. Because we were primarily interested
in how the team member’s NT skills manifested when
interacting with others, it was decided that the first clips to be
evaluated would be of team meetings, and so standup meetings,
impromptu team meetings, and customer demos were targeted.
After extracting all of these clips, it was determined that we
would focus on standup meetings because of the consistency
and quantity of footage. Two raters used the NTSA tool to
independently rate each clip. The NTSA was in the form of a
spreadsheet on a computer.

 Experiment Procedure: Study steps as described below:

Step 1 – Project Selection: We decided to focus on two
projects. We selected one project that had gone well and one
that had not gone well (as the first project) in the expectation of
producing diverse scorings.

Step 2– Video Clip Collection: Video and audio recordings
of the entirety of each project were collected. The Software
Factory deployed 7 video cameras and 4 microphones. The
cameras were situated such that one could not actually view
what was on the computer monitors or clearly see any of the
paper artifacts, although anything written on the white board or
displayed on either of the two projectors could be clearly
viewed. Video clips were labeled with the type of meeting along
with date and start and end times so if the clip because corrupted
and needed to be re-created, the researcher would know exactly
what day and time to go retrieve the clip. A spreadsheet was
used to store this information along with which cameras and
microphone were used in the clip.

Step 3 – Test Rater Understanding of the NT Skill and
Behavioral Descriptions: During the initial phase of the
empirical evaluation, two researchers from the Software
Factory reviewed the NTSA tool to make sure they understood
the descriptions of the good and poor behaviors. Each
researcher has extensive experience with project teams in the
Software Factory. Each of the researchers reviewed the
behavioral descriptions independently, and added comments.
Then we met as a group to discuss potential changes. Following
the discussion, some behavioral descriptions were modified,
some eliminated and some added. Ultimately, the group reached
a consensus on all descriptions. It was also determined that it

was unrealistic to observe the behaviors for Integrity, Honesty,
and Ethics, Attention to Detail, and Time Management and that
it would be better to look at other documents and devices, such
as Kanban metrics, bug reports and customer feedback to
observe and rate those non-technical skills.

Step 4 – Test Usability of the Tool: The Software Factory
researchers used the initial NTSA tool to evaluate several clips
to test usability. First, each researcher reviewed the descriptions
of each behavior and the good and poor behavioral examples.
Then, each researcher did independent evaluations of the clips,
after which we met for discussion of the evaluations. There was
consensual agreement that fine gradations in quality were
difficult to determine and the researchers agreed that the tool
would only include ratings for good and poor behavioral
observations. The final NTSA tool is shown in Fig. 4. The raters
also noted that it was very difficult to determine how often to
place a mark for exhibition of good and poor behavior because
the meetings were continuous. Because the raters are not
classifying discreet events or statements, it was decided that the
raters would be notified when a minute had passed, which
would prompt them to decide if the team exhibited any good
behaviors or poor behaviors and to put a mark in the appropriate
column. If they did not feel that any good or poor behaviors
were exhibited by the team, they did not place a check mark. If
they felt that both good and poor behaviors were exhibited, they
put a check mark in each column. After the evaluation of the
last clip and post discussion, there was consensus that the tool
was ready for testing.

Step 5 – Actualizing Rater’s Evaluations: Each rater
individually rated forty five standup meetings over the course
of ten weeks. The time spread of the ratings simulates the
frequency with which a manager, team lead, or coach would use
the tool. We also wanted to eliminate the amount of fatigue that
could transpire. The raters used the spreadsheet version of the
NTSA behavioral marker system tool with the one minute
timer. Unlike the trial evaluations, the raters rated all NT skills
while viewing the video clip as opposed to only rating one non-
technical skill per viewing.

Fig. 4: NT skills assessment instrument

412

V. RESEARCH RESULTS

Because we were primarily interested in how the team
member’s NT skills were manifested when interacting with
others, it was decided that standup meetings would be the focus
of our analysis. We were able to limit the video footage to view
based on the schedule that the development team agreed upon.
Generally, the team limited their development efforts to
Monday through Friday from eight in the morning to five in the
afternoon. Thus, for a typical seven to eight week time period,
this means that there were approximately 2,205 to 2,520 hours
of video footage per project available, with four different audio
choices for each hour.

We evaluated the percentage of positive ratings, and
developed a binary data set for statistical analyses. By
inspecting the distributions of the raters when examining the
skills, a critical value (specific to each NT skill) was chosen to
separate the 0 or 1. For example, for the Listening NT skill, a
critical value of 0.8 was chosen. This value was chosen because
it approximately separated the raw data evenly into two parts.
Thus, if the good percentage was greater than or equal to 0.8,
the rating was assigned to 1, and the rating was assigned to 0 if
the good percentage was less than 0.8. Using this information,
a 2X2 table containing the good and bad percentages of two
raters was created. Next, a McNemar’s test was used to evaluate
whether or not there are significant differences between the
raters. A value of p <0.05 would tell us that there is a significant
difference between the raters and p value greater than 0.05
would signify inter-rater reliability.

As mentioned earlier, an analysis of the quantitative data
includes the rater’s evaluations for good and poor behaviors
observed in the standup meetings. It was decided to follow John
Uebersax’s [21] recommendation to run McNemar’s test of
marginal homogeneity and calculate the inter-rater reliability
between two individuals. Cohen’s kappa could not be used
because the sample size was not large enough to be reliable.

To analyze the agreement between the two raters, analyses
were performed for each of the nine NT skills: listening, oral
communication, questioning, attitude, teamwork, critical

thinking, problem solving, flexibility, and initiative and
motivation to work. Figure 2 shows the McNemar test results
for each of the NT behaviors evaluated.

To test this study hypothesis, we ran McNemar’s on the
percentage positive ratings (calculated to produce a binary data
set) for each rater and for each NT skill to test for rater agreement
in cases where there were enough observation data points. The
results showed that, inter-rater reliability of NTSA was found for
eight of the nine NT skills in the tool. These results provide
initial evidence that NTSA can be a useful tool that could be
easily used by managers, team leaders, etc. responsible for the
development of these skills, to objectively and consistently
measure their employee’s NT skills. A tool, such as the NTSA,
provides a mechanism to not only improve a team and by
extension the software that they produce.

The fundamental finding is that inter-rater reliability of
NTSA was found for eight of the nine NT skills in the tool. The
“Problem solving” NT skill needs further enhancements and
subsequent validation before it could be used. In fact, it is
possible that “problem solving” simply is not observable. The
Non-Technical Skills Assessment for Software Developers
(NTSA) system can be used reliably by individuals responsible
for the NT skills of software development teams, such as
educators, managers, team leads, etc. Although the raters did
practice rating several video clips with the tool, and this is
equivalent to a few meetings, it is also very interesting to note
that the raters do not need to be human factors experts, nor did it
require extensive initial training for the tool to be used reliably.
Although the raters felt that it was very easy to use the tool in its
spreadsheet form while working with the form on a computer
where the behavioral examples are only a click away, they also
noted that they would like to keep the electronic capability if
they were rating a live event rather than a video recorded event.
The raters also noted that the tool could be customized to only
include the NT skills of interest to the rater – not all non-
technical skills need to be rated at the same time. This would
make the tool even easier to work with. While, these results are
encouraging, only two projects and two raters were used.
Therefore, more studies need to be performed. A positive aspect
of this study is that the raters had different levels of project
management experience, and were able to use to tool and get
reliable results.

VI. THREAT TO VALIDITY

Although the results of this study are encouraging, there are
certain threats to validity that exist. One such threat is that only
two projects were evaluated. Like any study, the more a subject
is tested, the more empirical studies that are performed, the more
one can see if the results are repeatable. Rater agreement testing
should continue to be performed on more projects. Another
threat is that both projects were rated by the same two judges.
More empirical will be performed with different raters using the
NTSA tool to ensure the robustness of the tool. One positive
aspect about the raters is that each had different levels of
software development project management experience. That

Fig.2:

Fig. 5 Aggregation of McNemar Test Results

413

means that the raters do not have to have the same level of
experience or backgrounds in order to use the tool and get
reliable results. Another potential threat is that both projects
were fairly successful, and thus may not have exercised the poor
behavior examples enough. Lastly, the projects were performed
by student teams and thus many not be generalizable; although
this threat was mitigated by the level of professional business-
like environment that can be found in the Software Factory and
by the fact that both projects were real-world projects.

VII. CONCLUSION AND FUTURE WORK

 Our results establish that the NTSA tool can be reliably used
with minimal effort. This is valuable knowledge for managers
and educators. We recognize that teams need members with the
correct technical skill set and knowledge, by using NTSA
software development team mangers can identify the areas in
which the team’s NT skills could use some improvements.
Using the same tool on subsequent projects will allow us to
determine if there was any improvement in a given skill. Such
as tool provides a mechanism with which to improve a team and
by extension the software they produce. The NTSA provides a
common language with which to understand and communicate
about NT skills important to software professionals

In the future, we would plan on repeating this study on other
projects. Specifically, we would like to use the tool on more
unsuccessful software development project to see if there is a
correlation between poor NT skills and an unsuccessful project.
This research can be extended to include all of the NT skills
deemed important to software developers as identified in the NT
skills taxonomy. This would give educators and managers a rich
set of NT skills and behaviors that could be evaluated. This tool
also needs to be tested on individual software developers within
software development teams to see if it can be effectively used
to assess the NT skills of the individual as well as the team. This
tool should also be tested in industry to verify that it works for
professional software developer and teams, as well as student
software development teams.

REFERENCES

[1] Project Management Institute. A Guide to the Project Management
Body of Knowledge (PMBOK Guide). Newton Square, PA:
Project Management Institute, 2008, pp. 215.

[2] S. Acuna, N. Juristo, and A.M. Moreno, “Emphasizing Human
Capabilities in Software Development”, IEEE Software, vol. 23,
2006, pp. 94-101.

[3] E. Amengual, and A. Mas, “Software Process Improvement
through Teamwork Management,” in Proceedings of the 8th
International Conference on Product-Focused Software Process
Improvement, 2007, pp. 108-117.

[4] A. Cockburn, and J. Highsmith, “Agile software development: The
people factor”, Computer, vol. 34, 2001, pp. 131-133.

[5] N. Gorla, and Y. Wah Lam, “Who Should Work With Whom?”
Communications of the ACM, vol. 47 No. 6, pp. 79– 82, Jun. 2004.

[6] Abell, Angela, Information World Review; Dec 2002; 186;
ABI/INFORM Complete pg. 56.

[7] http://agilemanifesto.org/

[8] S.G. Cohen, and D.E. Bailey, “What Makes Teams Work: Group
Effectiveness Research from the Shop Floor to the Executive
Suite”, Journal of Management, vol. 23, 1997, pp. 239-290.

[9] J.J. Jiang, J. Motwani, and S.T. Margulis, “IS team projects: IS
professionals rate six criteria for assessing effectiveness”, Team
Performance Management, vol. 3, 1997, pp. 236-242.

[10] O. Hazzan and I. Hadar, “Why and how can human-related
measures support software development processes?” The Journal
of Systems and Software 81, 2008. Pp/ 1248-1252.

[11] R. Flin, P. O’Connor, and M. Crichton., “Safety at the sharp end:
A guide to non-technical skills”, 2008, Burlington, VT: Ashgate
Publishing Company. Pg. 264

[12] Higher Ed News, “Survey Finds Business Executives Aren’t
Focused on Majors They Hire” accessed Mar. 14, 2014,

[13] http://business.time.com/2013/11/10/the-real-reason-new-
college-grads-cant-get-hired/

[14] UKSPEC,”UK-SPEC UK Standard for Professional Engineering
Competence,” accessed Mar. 14, 2014,
www.engc.org.uk/ecukdocuments/internet/document library/UK-
SPEC third edition.pdf

[15] B. F. Klampfer, R. L. Helmreich, B. Hausler, B. Sexton, G.
Fletcher, P. Field, S. Staender, K. Lauche, P. Dieckmann, and A.
Amacher. “Enhancing performance in high risk environments:
Recommendations for the use of behavioral markers.” Behavioral
Markers Workshop, 2001, pp. 10.

[16] B. F. Klampfer, R. L. Helmreich, B. Hausler, B. Sexton, G.
Fletcher, P. Field, S. Staender, K. Lauche, P. Dieckmann, and A.
Amacher. “Enhancing performance in high risk environments:
Recommendations for the use of behavioral markers.” Behavioral
Markers Workshop, 2001, pp. 10.

[17] G. Fletcher, R. Flin, P. McGeorge, R. Glavin, N. Maran and R.
Patey, “Development of a Prototype Behavioural marker System
for Anaesthetists’ Non-Technical Skills (ANTS),” Workpackage 5
Report, Version 1.1. (2003)

[18] G. Fletcher, R. Flin, P. McGeorge, R. Glavin, N. Maran and R.
Patey, “Development of a Prototype Behavioural marker System
for Anaesthetists’ Non-Technical Skills (ANTS),” Workpackage 5
Report, Version 1.1. (2003)

[19] L.L. Bender, G.S. Walia, F. Fagerholm, M. Pagels, K.E. Nygard,
and J. Münch, “Measurement of Non-Technical Skills of Software
Professionals: An Empirical Investigation”, Proceedings of the
26th IEEE International Conference on Software Engineering and
Knowledge Engineering. July 1- 3, SEKE 2014 Vancouver,
Canada.

[20] L.L. Bender and G.S. Walia, “Measurement of Non-Technical
Skills of Software Development Teams”, Department of Computer
Science, North Dakota State University, Fargo, ND, Tech. Rep.
NDSU-CS-TR-14-001, Mar. 2014.

[21] J. Uebersax. “Statistical Methods for Rater and Diagnostic
Agreement” Internet: http://www.john-
uebersax.com/stat/agree.htm [Apr. 14, 2013]

414

http://www.john-uebersax.com/stat/agree.htm
http://www.john-uebersax.com/stat/agree.htm

DOI reference number: 10.18293/SEKE2015-066

A Platform for Empirical Research on Information System Evolution∗

Robert Heinrich1, Stefan Gärtner2, Tom-Michael Hesse3, Thomas Ruhroth4,
Ralf Reussner1, Kurt Schneider2, Barbara Paech3, and Jan Jürjens4

1Karlsruhe Institute of Technology, Germany, {heinrich, reussner}@kit.edu
2Leibniz Universität Hannover, Germany, {stefan.gaertner, kurt.schneider}@inf.uni-hannover.de

3University of Heidelberg, Germany, {hesse, paech}@informatik.uni-heidelberg.de
4TU Dortmund, Germany, {thomas.ruhroth, jan.jurjens}@cs.tu-dortmund.de

Abstract

Software-intensive systems are subject to continuous
change due to modification of the systems themselves and
their environment. Methods for supporting evolution are
a competitive edge in software engineering as software is
operated over decades. Empirical research is useful to val-
idate the effectiveness of these methods. However, empir-
ical studies on software evolution are rarely comprehen-
sive and hardly replicable. Collaboration in empirical stud-
ies may prevent these shortcomings. We analyzed the sup-
port for such collaboration and examined existing studies
in a literature review. Based on our findings, we designed
CoCoMEP– a platform for supporting collaboration in em-
pirical research on software evolution by shared knowledge.
We report lessons learned from the application of the plat-
form in a large research programme.

1 Introduction

In industrial practice, many information systems [1] are
operated over decades. During operation they face vari-
ous modifications, e.g. due to emerging requirements, bug
fixes, and environmental changes, such as legal constraint
or technology stack updates. In consequence, the systems
change continually which is named software evolution [2].
Supporting software evolution is a competitive advantage
in software engineering. A variety of methods aim at sup-
porting different aspects of software evolution. However,
it is hard to assess their effectiveness and to compare them
due to divergent characteristics. Empirical research in terms
of case studies and controlled experiments is useful to val-
idate these methods. However, empirical studies on soft-
ware evolution are rarely comprehensive. They often cover
only one of the many aspects needed to study evolution:

∗This work was partially supported by the DFG (German Research
Foundation) under the Priority Programme SPP1593: Design For Future
– Managed Software Evolution.

(i) long time-frames of observation are required to analyze
changes, (ii) large amount of artifacts and (iii) various types
of artifacts are affected by evolution, (iv) artifacts repeat-
edly change, (v) changes partly build upon each other, (vi)
various stakeholders are involved, (vii) access to relevant
project data, (viii) relevant project data must be documented
over long time spans, (ix) relevant context knowledge must
be documented beyond the code base and issue trackers.

To study evolution comprehensively, we believe it is im-
portant to collaborate by joint research in order to increase
coverage of the aspects. Joint research supports sharing of
knowledge and resources [3]. In particular, this allows repli-
cating studies which in general is important to confirm and
to strengthen results of empirical research [4] and thus en-
hance evidence. Our goal is to support joint research by
collaboration and replication in empirical studies based on
common evolution scenarios and artifacts. Currently, em-
pirical studies on software evolution are seldom compara-
ble as they vary in analyzed subjects and execution process.
Furthermore, these studies are rarely reusable as important
artifacts (e.g., requirements, design decisions, or context
knowledge) are often not provided to the community. To
the best of our knowledge, there is neither a community-
accepted case study for software evolution nor a common
benchmark available. Consequently, a common basis for
study collaboration and replication is missing.

In this paper, we propose CoCoMEP1 – a platform for
collaborative empirical research on information system evo-
lution. Under a “platform” we understand a comprehen-
sive knowledge base for the evaluation process that can
be exploited and extended by other researchers with dif-
ferent backgrounds and research interests. It provides as-
sistance on diverse characteristics important for software
evolution, e.g. the life-cycle of the system, artifacts in
different revisions, and comprehensive evolution scenarios.

1The term is a combination of Common Component Modeling Exam-
ple “CoCoME ” [5] and “Platform”

1
415

CoCoMEP builds upon the established CoCoME case study
[5]. CoCoMEP is already in use for collaboration between
several projects within the DFG Priority Programme De-
sign For Future - Managed Software Evolution (SPP1593)
[6]. These projects collected knowledge on experiences and
lessons learned on research collaboration in software evo-
lution. CoCoMEP, however, is not limited to SPP1593
but open for reuse and extension by researchers outside
the scope of the priority programme. For constructing
CoCoMEP, we first analyzed the current support for re-
search collaboration (Sec. 2). Second, we conducted a liter-
ature review to examine existing empirical studies (Sec. 3).
Based on identified issues and requirements derived, we de-
signed CoCoMEP (Sec. 4). We discuss lessons learned from
applying CoCoMEP in SPP1593 (Sec. 5). The paper con-
cludes in Sec. 6.

2 Related Work in Empirical Research

In this section, we analyze related work with regard to
collaboration. In particular, we focus on replicability and
comparability that are both indispensable to enable research
collaboration. The aim is to learn from experiences in em-
pirical research and derive requirements (R1-6) as basis for
the design of CoCoMEP. On this account, we focus on how
other research communities standardized their evaluations
to compare different solutions. We are interested in proper-
ties that enable or constrain comparability. Furthermore, we
examine papers discussing replication in empirical research
to consider replicability in our platform.

Standardized Evaluation within certain Research
Communities: In Espinha et al. [7], a standard and open-
source case study for SOA is proposed. The authors dis-
cussed that for case studies in the SOA research community
a wide variety of small and closed systems is used limiting
comparability of obtained results. Therefore, standardized
study subjects are needed to enable assessment of ideas and
methods within this community. Another attempt to stan-
dardize evaluation has been made in Proksch et al. [8]. They
described a framework focusing on evaluations of developer
assistance tools. As discussed in the mentioned papers, the
standardized case studies have to address the major chal-
lenges within a particular community. Otherwise, it will
not find broad acceptance.

To compose suitable case studies, we can learn a lot from
the repository mining community. In this community, de-
velopment histories (repositories) are analyzed with respect
to certain research questions. To compare results, some
projects (e.g., Apache Tomcat, Mozilla Firefox, etc.) exist
that are used by several research teams. For example, Lott
et al. [9] and Lessmann et al. [10] proposed frameworks for
comparative software defect prediction experiments. Ac-
cording to this, all artifacts of the study subject should be

made available to motivate a certain community to conduct
necessary empirical studies and to achieve better and more
convincing result as well as research collaboration. Hence,
we consider standardized evaluation as requirement R1 for
joint empirical research.

Replication of Empirical Studies: The aim of standard-
ized evaluation is to enable comparison and replication of
empirical and complementary studies. As described in Ju-
risto et al. [4], replication in empirical studies is required
to confirm or deny original results as well as to comple-
ment the original experiment. However, experiences have
shown that replication is hard to achieve [4]. One rea-
son is to establish identical conditions of the experimental
context which might be impossible in some cases. In ad-
dition, the replicating researchers need to fully understand
the experimental design, but most rationale is not provided
(tacit knowledge). To enable replication effectively, Schull
et al. [11] proposed to provide laboratory packages for ex-
periments. The authors defined a laboratory package as
an experimental infrastructure including experiment design,
necessary material, and possible variation points. As stated
in Mendonça et al. [12], the problem is to compose static
laboratory packages that cover all aspects of the experi-
ment. The replicating researchers need to fully understand
the experiment and the corresponding material to avoid un-
predictable variants in the experiment limiting the meaning
of the achieved results. As a consequence, Mendonça et
al. proposed that effective replications also require well-
defined processes involving the original researchers. This
implies the need for an effective collaboration structure
among researchers, which we consider as requirement R2.
For this purpose, they introduced a framework for improv-
ing the replication of experiments (FIRE) and emphasize
the importance of knowledge sharing for internal and exter-
nal replications (e.g., experimental details and rationale).

Requirements on a Research Platform: As stated in
Demeyer et al. [13], case studies are popular for assessing
new approaches relating to evolution, but most of them use
toy examples that have a bias towards the approach. More-
over, as stated in Runeson et al. [14], different study sub-
jects and missing documentation of the evaluation process
decrease replication and comparability of case studies. To
cope with these issues, a standardized study as well as eval-
uation process is needed. Regarding evolution, Demeyer et
al. proposed a set of requirements. R3: the case must com-
prise artifacts that correspond to all life-cycle phases (life-
cycle requirement). R4: the evolution process must contain
iterations and increments (evolution requirement). R5: the
application, problem, and solution domains of the case must
be qualified (domain requirement). R6: tools necessary to
replicate the case must be evaluated (tool requirement). Our
research platform must address these six requirements prop-
erly.

2
416

3 A Literature Review on Empirical Studies

To understand how well existing studies on software evo-
lution support the requirements identified above we con-
ducted a literature review. This section provides the search
strategy, process documentation, and findings of the litera-
ture review. Basically, the review followed the guidelines
by Kitchenham and Charters [15]. However, it was not con-
ducted as a strict review as every paper was only reviewed
by one of the authors. As empirical methods we considered
case studies and experiments. We neither aimed at giving a
comprehensive overview of approaches for supporting soft-
ware evolution nor at presenting the approaches found. The
research questions (RQ) for our review were:

Which aspects of evolution are addressed explicitly
in case studies and experiments? (RQ1) According to
the requirements of Demeyer et al. [13], we consider the
following aspects of evolution: Life-cycle which covers the
artifacts, activities and their relationships that correspond
to all phases in the system’s life-cycle. Evolution process
covering iterations in the life-cycle which we surveyed by
the time horizon of the study (i.e. design-time, run-time, or
post-mortem). Domain which covers the artifacts to provide
a concrete study setting. We did not include the requirement
tool as this is hard to examine by literature review.

With RQ2 we again refer to the focus of Sec. 2 by asking
how is comparability and replication supported in case
studies and experiments?

3.1 Paper Search and Selection Process

To answer the research questions publications were re-
quired to be related to evolution, information systems or
software engineering, and empirical studies. In conse-
quence, three sets of keywords were created. The evolution
set covers the keywords evolution, maintenance, change-
ability, and modifiability. The domain set contains the key-
words information system and software. The methods set
comprises case study and experiment. We did not derive
search terms from RQ2 as comparability and replicability
is typically not stated within the single study, but has to
be assessed manually. We searched journals (e.g., ESEJ,
TOSEM, TSE, KAIS, and ICSM) and conference proceed-
ings (e.g., CSMR, ESEM, ICSE, and FSE) related to empir-
ical research and software evolution with an impact factor
greater or equal one and an acceptance rate lower than 30%,
respectively.

We performed two selection iterations on the initial
amount of 272 search hits. Each iteration was performed by
one author guided by defined inclusion and exclusion cri-
teria as proposed by Kitchenham and Charters [15]. The
first iteration evaluated whether the papers conformed to
the formal requirements on case studies and experiments

as described by Runeson et al. [14]. In the second itera-
tion, the contribution of the papers to one or both research
questions was evaluated. After the first iteration 105 papers
were selected for further analysis. Within the second itera-
tion 53 papers were identified that contribute to the research
questions. The identified papers are listed online (www.
dfg-spp1593.de/cocome/platform) due to page
restrictions in this paper.

3.2 Findings

As a general answer to RQ1, no study has been found
considering the entire evolution life-cycle. In addition, nei-
ther artifacts nor relations between the different develop-
ment activities are comprehensively covered by existing
studies. Distributions for the findings are depicted in Fig. 1.
Focus on design-time: Our review shows that design-time
and post-mortem studies (52 out of 53) outweigh run-time
studies (1 out of 53). Focus on a specific activity: Most
studies are only focused on a specific activity within the life-
cycle. In particular, requirements engineering and mainte-
nance phase were least covered. Focus on a specific arti-
fact: For supported activities, the approaches usually con-
sider a typical type of artifact, like code or UML models.
Only a few studies (2 out of 53) focus on changes of addi-
tional documentation. We could not find a study focusing on
changing decisions during evolution. Moreover, only a few
studies (10 out of 53) cover co-evolution of development
artifacts. The majority of these (6 out of 10) covers co-
evolution within the same type of artifact, like co-evolution
of components or test cases. Relationships between activi-
ties mostly not considered: Only a few studies (8 out of 53)
examine the relationships between activities within differ-
ent life-cycle phases (requirements engineering and imple-
mentation, design and implementation, implementation and
maintenance).

The following findings answer RQ2. Missing compara-
bility and replicability of studies: Most empirical studies
and their results are not comparable in terms of domain,
size, or complexity. In particular, this is true for controlled
experiments, where the complexity of tasks is limited which
may lead to less realistic settings. Thus, the obtained results
have only limited evidence for software evolution in prac-
tice. This is related to the problem of replicating empirical
studies [4]. Regarding software evolution, replication is dif-
ficult to achieve due to a large amount of changes required
in the study subjects within a long period of time. Con-
sequently, a complete change history would be required for
the study subjects. Moreover, no study in our review made a
clear distinction which types of evolution were addressed by
given changes. As introduced by Lientz and Swanson [16],
three types can be distinguished – corrective, perfective and
adaptive evolution. If a case study does not specify the ad-

3
417

www.dfg-spp1593.de/cocome/platform
www.dfg-spp1593.de/cocome/platform

20

1
32

Time Horizon of Study

Design-time

Run-time

Post-mortem

4

20
23

5
2

Supported Activities

Requ. Engineering

Design

Implementation

Test

Maintenance

1 1 2
1

7

3

38

3

2

Supported Artifacts

Product-lines

Use Cases

Database Schema

Design Tasks

UML Models

Components

Code

Bugs

Documentation 45

2

4
1 1

Supported Relationships

No relationship

Requ. Engineering and

Implementation
Design and

Implementation
Implementation and

Maintenance
Not clear

Figure 1. Distribution of Supported Development Time Horizon, Activities, Artifacts and Relationships

dressed evolution type, it is difficult for other researchers to
assess whether the study is appropriate for their approach.

Only a few publications provide enough details about
their empirical study to enable replication. Most of these
studies are performing a post-mortem analysis on code
repositories. However, there exist only a few open-source
projects for repository mining studies, on which the com-
munity for post-mortem analysis agreed. Overall, no com-
mon guidelines have been found for studies on software
evolution in order to support joint research.

4 The CoCoME Platform

The findings of our literature review clarified the need
for improvement in case study research on information sys-
tem evolution. According to the requirements identified in
Sec. 2, we developed the research platform CoCoMEP de-
picted in Fig. 2. On this account, the established CoCoME
system [5] serves as the study subject (Sec. 4.1). We devel-
oped examples of change scenarios in information system
evolution (Sec. 4.2), constructed sample activities in system
development and operation, and arranged them in life-cycle
form (Sec. 4.3).

4.1 Evolution Subject

An evolution subject is the amount of artifacts in dif-
ferent revisions (e.g., requirements or monitoring data) that
represent an information system. We used CoCoME [5] as
evolution subject. CoCoME has been set up in a Dagstuhl
research seminar as a common case study on which sev-
eral methods in the context of component-based software
engineering have been applied. Since more and more peo-
ple do research on software evolution, CoCoME has been
applied in new areas as a demonstrator for software evo-
lution methods. CoCoME represents a trading system as

Figure 2. Overview of the CoCoME Platform

it can be observed in a supermarket chain handling sales.
This includes processing sales at a single store of the chain,
e.g. scanning products or paying, as well as enterprise-wide
administrative tasks, e.g. inventory management or report-
ing. A detailed description of CoCoME is given in [5].
Since CoCoME has been applied and evolved successfully
in various research projects, e.g. SLA@SOI (http://
sla-at-soi.eu) and Q-Impress (www.q-impress.
eu), several variants exist that span different platforms and
technologies, such as plain Java code or service-oriented
frameworks. Furthermore, various development artifacts
are available, such as requirements specification or design
documentation, which changed over time. CoCoME is well
suited to serve as evolution subject because the supermarket
context is commonly comprehensible and the complexity of
the system is appropriate. As CoCoME is a distributed sys-
tem, several quality properties are affected by evolution.

4.2 Evolution Scenarios

An evolution scenario describes changes to a certain evo-
lution subject. Based on CoCoME, we implemented dis-
tinct evolution scenarios (S1-S3) covering the categories
adaptive and perfective evolution (cf. Sec. 3). Corrective
evolution is not considered as this merely refers to fixing de-
sign or implementation issues. A perfective evolution with
regard to a changing environment is represented in S1 by
emerging user requirements. An adaptive evolution is re-
flected in S2 by platform alterations due to evolving tech-
nology. Furthermore, in order to accommodate the self-
adaptiveness of modern software architectures, reconfigura-
tion during system operation is addressed in S3. Implemen-
tation details are visualized online (www.dfg-spp1593.
de/cocome/platform) due to page restrictions.

S1: Web Shop Extension: A web shop is added where
the customers can order online and pick-up the goods at the
store. This design-time modification includes adding new
use cases and modifying existing design models. S1 rep-
resents a requirements-driven evolution that transforms a
closed system (only employees can access) to an open sys-
tem (customers can accessed via internet). Hence, various
quality properties are affected, e.g. privacy, security, perfor-
mance, and reliability.

S2: Platform Migration: The enterprise server and its
connected database are now running in the Cloud to reduce

4
418

http://sla-at-soi.eu
http://sla-at-soi.eu
www.q-impress.eu
www.q-impress.eu
www.dfg-spp1593.de/cocome/platform
www.dfg-spp1593.de/cocome/platform

operating costs of resources. The introduction of the Cloud
enables flexible adaptation and reconfiguration of the sys-
tem, however, causes new challenges regarding aforemen-
tioned quality properties.

S3: Database Migration: During a big advertise cam-
paign, the performance of the system may suffer due to lim-
ited capacities of the Cloud provider currently hosting the
database. Migrating the database from one Cloud provider
to another may solve the scalability issues. S3 represents
a reconfiguration at run-time. Migrating the database may
cause privacy issues, as described in further detail in [17].

4.3 Evolution Life-Cycle

An evolution life-cycle integrates activities and their re-
lationships required to implement one or more evolution
scenarios. We developed a set of sample activities typical
in information system evolution and arranged them in life-
cycle form (cf. Fig. 2) to cope with aforementioned evolu-
tion scenarios.

An iteration in the life-cycle starts with a change request,
e.g. for S1 or S2. Decisions are made and documented. A
static quality analysis is conducted to identify quality issues
at design-time. The design is adapted and implemented. Af-
ter deployment, a dynamic quality analysis is conducted for
the running system which may result in automated adapta-
tion at run-time (S3) or a new iteration for manual evolution.

The life-cycle addresses the findings from literature re-
view as it (i) spans design-time and run-time, (ii) covers var-
ious activities located in different phases of software devel-
opment and operation, (iii) contains a variety of heteroge-
neous artifacts associated to the life-cycle activities, e.g. re-
quirements, decisions, UML models, monitoring data, sim-
ulation data, and (iv) covers relationships between the ac-
tivities. Tab. 1 gives an excerpt of the review findings and
how they are supported by CoCoMEP.

Diverse variants of the three parts of CoCoMEP are pos-
sible. However, CoCoMEP is appropriate to conduct empir-
ical studies on software evolution as it covers the require-
ments (see Sec. 2). R1: It provides standardized study sub-
ject, evolution scenarios, and life-cycle activities. R2: This
standardization in conjunction with the community offers a
structure for collaboration and study replication (see Sec 5).
R3: CoCoMEP comprises activities and artifacts that cor-
respond to all phases in the system’s life-cycle (life-cycle
req.). R4: It covers iterations and increments in the devel-
opment process (evolution req.). R5: It provides a concrete
setting to qualify the application domain (i.e. supermar-
ket), problem domain (i.e. web-based system) and solution
domain (e.g., architecture, code, etc.) of the case (domain
req.). R6: It supports evaluating the tools necessary to repli-
cate the case, such as implementation/design languages, op-
erating system, or development environments (tool req.).

Finding Dimension in Fig. 1 CoCoME Platform
Time horizon design- and run-time both [18]
Activities requirements, design, use cases [19]/static [20]/

maintenance dynamic analysis [18]
Artifacts documentation, design decisions [19],

UML models, code simulation/instrumentation
data [18, 21], java code

Relation req. and impl. all phases related

Table 1. Supported Review Findings (excerpt)

5 Lessons Learned

In this section, we discuss experiences (wrt. outcomes of
Sec. 2 and 3) from applying CoCoMEP in the DFG Prior-
ity Programme 1593 which comprises 13 research projects
with a focus on long-living systems [6]. The application is
exemplified in [18, 19, 20, 21]. CoCoMEP proved to be a
suitable knowledge base and supported us in: (i) Gathering
project-spanning understanding on activities and artifacts
wrt. evolution. Mapping the diverse activities and artifacts
specific to the single projects within the priority programme
into the given life-cycle structure enabled a common un-
derstanding of them. Furthermore, common understanding
has been supported by a joint communication and documen-
tation infrastructure, i.e. mailing lists, media wiki, SVN
repository. The wiki contains all the information about life-
cycle activities and related artifacts to be shared and refined
among the projects. We use the SVN repository to share
source code as well as configuration and documentation ar-
tifacts. Based on the life-cycle and infrastructure it was easy
to identify and solve uncertainties and misunderstandings
among the projects and to create a project-spanning under-
standing. This is one foundation for research collaboration
(i.e. comparability and replication). (ii) Identifying common
artifacts. Mapping activities and artifacts into the life-cycle
allows for identifying artifacts used by diverse projects and
relations between artifacts. This is another foundation for
research collaborations. (iii) Reuse of activities and arti-
facts. Mapping activities and artifacts into the life-cycle al-
lows for reusing them among the projects and for others.
In the priority programme context, the output of activities
associated to one project is often reused as an input for ac-
tivities associated to another project. Using the artifacts in
subsequent activities by another project contributes to the
evaluation of the artifacts and thus the applied approaches.
Furthermore, activities are reused as they are performed by
two or more projects. This also contributes to the evaluation
of the approaches applied by one projects by comparison to
another project. (iv) Clarifying interfaces between projects.
Project-spanning understanding and knowledge about de-
pendencies between activities and artifacts supports clarify-
ing the interfaces between the single projects. This leads to
distribution of responsibilities and thus results in more effi-
cient collaborations. For example, if a required artifact has

5
419

already been created by one project, it can often be reused
by another project without additional effort. (v) Using feed-
back loop. Including design-time and run-time in the life-
cycle allows for analyzing the effects of design decisions at
run-time within the same study. This is in contrast to exist-
ing studies, which are mostly limited to design and imple-
mentation. (vi) Establishing a technical basis. CoCoMEP
contributed to the development of a common technical basis
between the single projects. It supported us in developing
tools that interact with each other based on clearly defined
interfaces and in configuring common execution environ-
ments. Joint tool development and configuration reduces
effort for the single projects. Additionally, the integrated
tooling eases collaboration while evaluation.

Applying CoCoMEP in the priority programme context,
however, showed some potentials for improvement. Change
history of some artifacts is rather short. Since the prior-
ity programme started in 2012, artifacts still face few evo-
lutionary changes compared to ordinary repository mining
studies for instance. This is caused by the fact that CoCoME
is a research prototype and we do not have the amount of
resources (human and financial) involved in real-life devel-
opment. Nevertheless, as shown by studies in the priority
programme, CoCoME provides a sufficient knowledge ba-
sis so far for conducting various analysis, e.g. on use cases,
decisions, or monitoring and simulation data. We are confi-
dent to produce a larger change history in the future as the
priority programme continues for further three years and si-
multaneously CoCoME is applied in a growing number of
studies beyond the programme.

6 Conclusion

Based on requirements for collaboration support from re-
lated work and a literature review on empirical studies on
software evolution, we developed CoCoMEP. The platform
consists of three interconnected parts – an established study
subject, related evolution scenarios, and a life-cycle cov-
ering activities to address the scenarios. Thus, it supports
collaboration in and replication of empirical studies by en-
abling common understanding and reuse of activities and
artifacts, interfaces between projects and technical infras-
tructure, as perceived while applying CoCoMEP in a large
research priority programme. In short, CoCoMEP is ex-
pected to provide the following benefits to researchers: (i)
less effort in scenario definition, study setup and execution,
as well as (ii) increased evaluation confidence and (iii) com-
munity acceptance by interaction with others. In the fu-
ture, the subject CoCoME will be further modified to create
new and evolve existing artifacts by new evolution scenarios
such as the introduction of mobile clients. These scenarios
may include parallel evolution and co-evolution of artifacts
which are difficult to achieve in most empirical settings.

References

[1] J. O’Brien and G. Marakas, Introduction to Information Sys-
tems, 15th ed. McGraw-Hill, 2010.

[2] M. M. Lehman and L. A. Belady, Eds., Program Evolution:
Processes of Software Change. Academic Press, 1985.

[3] D. I. Sjoberg et al., “The future of empirical methods in soft-
ware engineering research,” in Future of Software Engineer-
ing. IEEE, 2007, pp. 358–378.

[4] N. Juristo and O. Gómez, “Replication of software engineer-
ing experiments,” Empirical software engineering and veri-
fication, pp. 60–88, 2012.

[5] S. Herold et al., “CoCoME – the common component mod-
eling example,” in The Common Component Modeling Ex-
ample. Springer, 2008, pp. 16–53.

[6] U. Goltz et al., “Design for future: managed software evolu-
tion,” CSRD, pp. 1–11, 2014.

[7] T. Espinha et al., “Maintenance research in SOA - towards a
standard case study,” in CSMR. IEEE, 2012, pp. 391–396.

[8] S. Proksch et al., “Towards standardized evaluation of
developer-assistance tools,” in RSSE’14. ACM, pp. 14–18.

[9] C. Lott and H. Rombach, “Repeatable software engineer-
ing experiments for comparing defect-detection techniques,”
Empirical Software Engineering, vol. 1, no. 3, 1997.

[10] S. Lessmann and B. Baesens, “Benchmarking classification
models for software defect prediction: A proposed frame-
work and novel findings,” IEEE TSE, vol. 34, no. 4, pp. 485–
496, 2008.

[11] F. Shull et al., “Replicating software engineering experi-
ments: addressing the tacit knowledge problem,” Intl. Sym-
posium on Empirical Software Engineering, pp. 7–16, 2002.

[12] M. G. Mendonça et al., “A Framework for Software Engi-
neering Experimental Replications,” ICECCS, pp. 203–212,
2008.

[13] S. Demeyer et al., “Towards a Software Evolution Bench-
mark,” in IWPSE. ACM, 2001, pp. 174–177.

[14] P. Runeson et al., Case Study Research in Software Engi-
neering: Guidelines and Examples. Wiley, 2012.

[15] B. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Keele
University, Tech. Rep., 2007.

[16] B. P. Lientz and B. E. Swanson, Software Maintenance Man-
agement: A Study of the Maintenance of Computer Ap-
plication Software in 487 Data Processing Organizations.
Addison-Wesley, 1980.

[17] R. Heinrich et al., “Integrating run-time observations and de-
sign component models for cloud system analysis,” in MRT.
CEUR Vol-1270, 2014, pp. 41–46.

[18] W. Hasselbring et al., “iObserve: integrated observation and
modeling techniques to support adaptation and evolution,”
CAU Kiel, Tech. Rep. 1309, 2013.

[19] S. Gaertner et al., “Capturing and Documentation of Deci-
sions in Security Requirements Engineering through Heuris-
tics,” SWT-Trends, vol. 34, no. 1, pp. 21–22, 2013.

[20] R. Heinrich et al., “Architecture-based analysis of changes in
information system evolution,” WSRE, SWT-Trends, vol. 34,
no. 3, 2015.

[21] R. Heinrich et al., “Run-time architecture models for dy-
namic adaptation and evolution of cloud applications,” CAU
Kiel, Tech. Rep. 1503, 2015.

6
420

A JVM-based Testing Harness for Improving
Component Testability

Weifeng Xu
Department of Computer Science

Bowie State University, Bowie, USA
frank.w.xu@gmail.com

Omar El Ariss
Department of Computer Science & Mathematical Science,

Penn State Harrisburg, PA, USA
oue1@psu.edu

Abstract— Software testing is a critical activity in increasing
our confidence of a system under test and improving its quality.
The key idea for testing a software application is to minimize the
number of faults found in the system. The higher the testability of
software, the better our chances to reveal these faults. We
introduce a new type of testing harness called GannonJVM that
improves the testability of software components. GannonJVM
enhances the Java Virtual Machine (JVM) with a predicate
analyzer and a bytecode interpreter. Our automated test
framework is able to extract and visualize paths from the control
flow graph of a given component. We also observe and analyze the
predicates in a given a path during runtime.

Keywords— Software testing, test harness, bytecode, testing tool,
visualization.

I. INTRODUCTION

Testability is a measure of how complex it is to test a
software application. The lower the testability of a software, the
lower the quality of the generated test cases. On the other hand,
the higher the testability of software the better the test cases are.
Two major factors that contribute to the testability of software
are controllability and observability. Controllability is the ability
to access, and the ease of testing the features and functionalities
of an application. Observability is the extent to which the output
or the observable states of the system assist in the verification of
the test results.

A test harness typically refers to a testing framework. It is
used to execute test cases and to check whether the actual results
match the expected ones. Junit is a popular test harness. For
example, the assertion assertEquals(“Isosceles”, new
Trianlge (7,7,6).getTriType()) in JUnit checks
whether a triangle object reports the correct triangle type, which
is an isosceles for the given three side values: 7, 7 and 6.
Although JUnit and other similar unit testing frameworks are
capable of executing test cases and checking their results
automatically, they usually do not focus on improving the
testability (i.e., testing observability and controllability) of
software components. For example, JUnit does not provide any
feedback that helps the testers to redesign test inputs. It also does
not provide useful runtime states for debugging when the test
case fails.

To deal with these limitations, we introduce a novel approach
to develop a test harness directly on top of the Java Virtual
Machine (JVM). We call this approach GannonJVM. Its aim is to
improve the testability of Unit Under Test (UUT). Fig. 1 shows
the three main components of GannonJVM: (1) a predicate
analyzer that is designed to improve the testing observability of
UUT. The analyzer defines how the internal states of UUT are
monitored and inferred by the knowledge of its external input. It
checks the predicate values and monitors their execution paths in
terms of the test inputs. (2) a Bytecode interpreter that improves
the testing controllability of UUT. The interpreter defines how to
stabilize an execution path based on its observation. It is used to
adjust the original test input (i.e., seed value) to create additional
input that forces the UUT to execute a designated path. (3)
Control Flow Graph (CFG) visualizer. It is responsible for
automatically determining the layout of a CFG.

Fig. 1. Overview of the test harness

The rest of this paper is organized as follows: Section II
introduces the basic concepts through a running example. Section
III and IV describe the predicate analyzer and inference engine.
Section V describes the CFG visualizer. Section VI reviews the
related work. Section VII concludes the paper.

II. A RUNNING EXAMPLE

We use the classical Triangle Problem [1] as a running
example to illustrate the test harness with embedded features for
observability and controllability to generate test input without
fitness functions. Given three positive integers that represent the

(DOI Reference Number: 10.18293/SEKE2015-043)

421

lengths of the three sides of a triangle, the Triangle program
reports the triangle type: Equilateral (type 1), Isosceles (type 2),
Scalene (type 3), or NotATriangle (type 4). The source code for
this problem is shown below:

int getTriType (a,b c) {

if ((a<b+c) && (b<a+c) && (c<a+b)){

if (a==b && b==c) return 1;

else if (a!=b && a!=c &&b!=c) return 3;

else return 2;}

else return 4;}

Java bytecode is a stack-oriented language, which pops data
(operands) from the top of the stack and pushes data back on the
top of the stack. The stack is commonly referred to as an operand
stack [2]. For example, the bytecode instruction iadd pops two
integer values from the stack and pushes their sum back to the
stack. Two integer values are pre-loaded from a local variable
table using two iload instructions. To facilitate the discussion,
the bytecode of Triangle instructions are divided (see dashed
lines) into 20 blocks shown below [3].

1. iload 1
2. iload 2
3. iload 3
4. iadd
------------[1]
5. if_icmpge 37
------------[2]
6. iload 2
------------[3]
7. iload 1
8. iload 3
9. iadd
10.if_icmpge 37
------------[4]
11. iload 3
------------[5]
12. iload 1
13. iload 2
14. iadd
15.if_icmpge 37
-----------[6]

16. iload 1
------------[7]
17. iload 2
18.if_icmpne 24
------------[8]
19. iload 2
20. iload 3
------------[9]
21. if_icmpne 24
------------[10]
22. iconst_1
-----------[11]
23. ireturn
24. iload 1
------------[12]
25. iload 2
26.if_icmpeq 35
-----------[13]
27. iload 1
------------[14]

28. iload 3
29. if_icmpeq 35
------------[15]
30. iload 2
------------[16]
31. iload 3
32. if_icmpeq 35
------------[17]
33. iconst_2
------------[18]
34. ireturn
35. iconst_3
------------[19]
36. ireturn
37. iconst_4
38. ireturn
------------[20]

Bytecode instructions have unique properties. First, they have
an implicit effect on the stack as each instruction has no explicit
named operands. For example, iadd (instruction 4) in block 1
does not specify the two operands that will be fetched for integer
addition. These values are determined by iload 2 and iload
3 (instructions 2 and 3) as they are the top two values on the
current operand stack. Note that the operand of iload points to
the index of the local variable table [2]. The local variable table
contains bytecode instructions and input parameters after
initializing the method invocation. For example when the method
is invoked, the three input variables a, b, and c of the triangle
program are stored in the first three spots of the local variable
table. During execution, iload 1, iload 2, and iload 3
push the values stored in the indices 1, 2, and 3 to the operand
stack. Second, predicates with multi-conditions in Java source
code are represented by multi-level conditions in bytecode. For
example, the multi-condition (a<b+c)&&(b<a+c)&&

(c<a+b) in the Triangle source code is decomposed into three
block sets, i.e., blocks 1 and 2, blocks 3 and 4, as well as blocks 5
and 6. Blocks 2, 4, and 6 are three identical if_icmpge
statements. They are depicted in Fig. 2 by the CFG of Triangle
bytecode. This property facilitates observability and
controllability by decomposing component conditions into
several simple conditions.

A path that is generated from a CFG consists of a sequence of
blocks. For example, p1=[1]→[2]→[3]→[4]→[5]→
[6]→[7]→[8]→[9]→[10]→[11] is a path for testing if a triangle
is equilateral. To execute all the blocks in p1, the values that
participate in the evaluation of predicates [2] [4] [6] [8] and [10]
need to be adjusted so that the predicates produce the desired
outcomes to reach the last block. Thus, the desired outcome for
each predicate in p1 should be achieved as p1:

[1]→[2] 	
୊
→ [3]→[4]

୊
→ [5]→[6]

୊
→ [7] →[8]

୊
→ [9]→[10]

୊
→ [11],

where F (False) is the expected outcome of the corresponding
predicate. Such a path is called a tagged path. A tagged path is a
sequence of edges that have at least one tagged edge, where a
tagged edge is defined as v

	௢

	
>u. The variable v is the source

block that represents a predicate in a statement, o is a tagged
value for v, which represents the desired outcome of v (i.e., true
or false), and u is the reachable block if the assertion
asserEquals(o, runtime(v)) returns true.

Fig. 2. CFG of the Triangle Problem in bytecode

Table 1 shows some representative tagged paths of the
Triangle program based on decision coverage. In tagged path

422

p12, the tagged edge [2]
୘
→ [20] indicates that block 2 is a

predicate if_icmpge and its outcome must be true in order to
reach block 20.

Table 1. Tagged paths for Triangle problem

Goal ID Path
Equilateral 1 [1]→[2]	

୊
→	[3]→[4]

୊
→ [5]→[6]

୊
→[7]→[8]

୊
→[9]→[10]

୊
→[11]

Isosceles 2 [1]→[2]	
୊
→	[3]→[4]

୊
→

[5]→[6]
୊
→[7]→[8]

୊
→[9]→[10]

୘
→[11]→[12]→[13]

୘
→[19]

…
Scalene 8 [1]→[2]

୊
→	[3]→[4]

୊
→ [5]→[6]

୊
→[7]→[8]

୘
→[12]

→[13]
୊
→[14]→[15]

୊
→[16] →[17]

୊
→[18]

..
NotATriangle ..

12 [1]→[2]
୘
→	[20]

III. PREDICATE ANALYZER

The predicate analyzer is designed to improve the
observability of UUT. It examines bytecode instructions to
discover relationships between input variables and variables used
in predicates. Discovering relationships relies on variable binding
and variable dependency analysis.

The process of binding explicit variables to bytecode
instructions is called variable binding. As bytecode instructions
have an implicit effect on the evaluation stack, an effective
approach is to use instruction tree unit (ITU) as an intermediate
representation of instructions. Each ITU is a binary tree, which
consists of three nodes, one parent node and two child nodes, as
well as an operator (i.e., the opcode of the instruction) between
the two children. The child nodes are the explicit named
operands. The root is a named intermediate result of the
operation. An ITU can be simply represented by a four-tuple
(opcode, root, leftNode, rightNode). One of the essential
characteristics is that ITUs are restricted to the least number of
operands (2 in most cases, such as for arithmetic and logic), and
these operands must either be constants or locals. For example,
for a given Java expression statement x=a+b+c, the
corresponding two arithmetic ITUs are shown in Fig. 3. Local
variables i0, i1, i2 are stored in the local variable table and
correspond to the variables a, b, c and x in the given Java
statement. Variables with a “$” sign are intermediate local
variables, e.g., $i4 is an intermediate variable for holding the
value of i0 + i1 and $i5 holds the result of $i4 + i2.
iadd is the opcode of the instruction iadd #index, where
#index is the index of the local variable table.

Fig. 3. Two ITUs of Java expression statement x=a+b+c

Variable binding is a dynamic process, which builds the ITUs
along with the execution of bytecode. We utilize an additional
stack, called variable binding stack, and a variable table, called
variable binding table, to bind variables to instructions. We gave
them these names to distinguish them from the operand stack and
the local variable table specified by the JVM specification. The
variable binding stack and variable binding table work very
similar to the JVM operand stack and the local variable table
except that 1) the variable binding stack and variable binding
table store the names of the bytecode intermediate variables
instead of the operands for tracking intermediate variables, and 2)
each element of the variable binding table also has a reference
point to the root of the ITU containing itself.

Variable binding during instruction execution in the JVM
works as follows: 1) whenever an instruction pushes a value into
the operand stack, and the value is loaded from the local variable
table, the index of the value in the local variable table is used as
the intermediate local variable name. This index is pushed into
the variable binding stack. Otherwise, a new generated unique ID
is used as the name and is pushed into the variable binding stack.
2) whenever an instruction pops a value from the operand stack,
the top of the variable binding stack is removed as well. The
popped intermediate local variable names are used for
constructing the ITUs. Note that for the purpose of dependency
analysis, we build ITUs only for instructions that produce an
effect on the operand stack and are influenced by the effect, i.e.,
instructions that produce and use intermediate variables.
Therefore, ITUs are categorized into two groups: expression ITU
and predicate ITU. Expression ITUs are built from expression
instructions [4] producing intermediate variables, including load,
arithmetic, and logic instructions. Predicate ITUs are built from
predicate instructions using the intermediate variable to compute
the tagged values, including all if_* Instructions. The algorithm
can be applied for binding other instructions. Fig. 4 shows the
variable binding results (i.e., the two ITUs) for the tagged path

p12: [1]→[2]
୘
→ [20] in Table 1. The block list is a variable

binding table. The first three variables, i0, i1, and i2, are the
names of the input parameters. $i10 and $i11 are intermediate
variables pointing to the root of the two ITUs shown in Fig. 4.
The letter “i” is added before the generated ID as part of variable
name for readability.

423

Fig. 4. Variable binding for path P12

Variable dependency analysis is the process of backtracking
input variables for a given intermediate bytecode variables for
making the assertion asserEquals(o, runtime(v)) to
be true. Again, considering the simple tagged path p12: the goal
is to find a test input to execute this path (i.e., find a triangle
type of “NotATriangle”). As [2]

୘
→	[20] is the only tagged edge,

the path will be covered if a test input forces the constraint in the
instruction if_icmpge to be true (statement 5 is the only
instruction in block [2]). The predicate ITU (if_icmpge,
$i11, $i1, $i10) indicates that to generate a test input to
cover p12, however, we need to determine the input variables
that are associated with $i10. The association will allow the
proposed system to backtrack the input variables so that they can
be adjusted to meet the constraint. It is not difficult to see that
$i10 (shown in the expression ITU iadd on the left of Fig. 4)
is associated with input variables i1 and i2 by backtracking
$i10 in the predicate ITU on the right. Variable dependency
can be graphically captured using a Variable Dependency Tree
(VDT). A VDT consists of a set of ITUs, where the root and
each intermediate node are intermediate variables, and all leaves
are the bytecode input variables. The algorithm below describes
the procedure for building VDTs from ITUs. The algorithm
recursively expands child nodes containing intermediate
variables with ITUs. The red dashed line shown in Fig. 4
indicates a backtracking relation of $10.

Algorithm: Building VDTs

Inputs: VBT: A variable binding table

Outputs: VDT: A variable dependency tree

procedure buildVDTs(VBT)

for each element E of VBT

 (opeCode, root, leftNode, rightNode) ⟵

E.getITU()

if leftNode/rightNode of the ITU containing

intermediate variable

newITU ⟵ find a new ITU based on leftNode or

rightNode

Point from leftNode/rightNode to newITU

end if

end for

end procedure

IV. BYTECODE INTERPRETER

Bytecode interpreter aims to improve testing controllability of
UUT, i.e., how to control the predicate evaluation results to force
a given path to be executed at run-time. Note that the evaluation
results are determined by the input, where the rule-based
inference engine provides input changing guidelines.

Bytecode interpreter controls the order of which bytecode
instruction will be fetched and executed. It reads each bytecode
instruction and returns the evaluation result. It mainly consists of
a program counter, which points to the next instruction to be
fetched and executed, a local variable table, and an operand
stack. In addition, a Java stack is needed for method invocations.
Each element of the Java stack is a Java frame, which stores
execution status. To make the interpreter more flexible, we utilize
a factory design pattern to encapsulate instruction creation and a
strategy pattern to encapsulate the execution algorithm in each
instruction. A snapshot of the implementation of BIFicmpge
instruction is shown below. The execution method implements
the abstract method defined in the Instruction class. This
comparison instruction pops two values from the operand stack
and returns the predicate result. It is worth noting that the
bytecode input parameters are stored at the beginning of the local
variable table. They will be fetched for UUT interpretation. It is
not difficult to overwrite them with new generated input in order
to make the input generating process automatic. Along with the
predicate analyzer and rule inference engine, this overwriting
mechanism makes the UUT running until a given path is
executed.

public class IFicmpge extends Instruction {

@Override

public Object execute(JavaFrame frame) {

 Stack<Integer> opStack =

frame.getOperandStack();

 Integer rightValue = (Integer) opStack.pop();

 Integer leftValue = (Integer) opStack.pop();

 boolean result=rightValue>= leftValue;

return result;

}

The Bytecode interpreter then collaborates with the Bytecode
generator. Compiled Java class files are in the form of
hexadecimal. Therefore, ASM [5] is utilized to convert
hexadecimal numbers to readable bytecode instructions. ASM is
a very small and very fast Java bytecode manipulation
framework supported by Open Solutions Alliance.

V. CONTROL FLOW GRAPH VISUALIZER

A directed graph G = {V, E} consists of two types of
elements V and E, where V is a set of vertices and E is a set of
edges. A Control Flow Graph (CFG) is a graph with some special
vertices and edges: 1) it has source and sink vertices and 2) it
consists of loops and jumps. Control Flow Graph (CFG)
visualizer is responsible for determining the layout of a CFG

424

automatically. CFG visualizer needs to solve three challenges: 1)
how to calculate the layout of graph if we treat CFG is a general
type of graph, 2) how to handle with two special vertices, i.e.,
source and sink, and 3) how to determine two special edges of
CFG, i.e., loops and jumps.

A. Visualizing CFG as A Normal Graph

Force-directed algorithms are the most flexible and popular
algorithms for calculating layouts of simple undirected graphs.
These algorithms calculate the layout of a graph using only
information contained within the structure of the graph itself. For
a given directed graph G = {V, E}, a force-directed algorithm
models edges as springs and vertices as charged particles.
Springs represent attractive forces based on Hooke’s law, which
are used to attract pairs of connected vertices towards each other.
Charged particles represent repulsive forces based on Coulomb’s
law, which are used to separate all pair of vertices. Force is
represented as a vector, which includes a magnitude and
direction. In a force-directed algorithm, we start with assigning a
random position for each vertex. Then each vertex applies the
attractive and repulsive forces. This will cause the vertex to move
to a new position. The calculating and moving activities repeat
until the graph reaches equilibrium states. In equilibrium states
for a given graph, edges tend to have uniform length because of
the spring forces, and nodes that are not connected by an edge
tend to be drawn further apart because of the electrical repulsion.

Fig. 5 shows the automated layout calculation using the
attractive and repulsive forces on the Triangle problem CFG.
Vertices in Fig. 5 (a) are assigned random positions. Fig. 5 (b)
shows the equilibrium states of the CFG.

The force-directed algorithm is defined below and is based on
Eades’ idea [6]:

Algorithm SPRING(G: graph)

 Place vertices of G in random locations

 Repeat M times

 Calculate the force FሬԦሺvሻ on each vertex

 Move the vertex based on force on vertex

 Draw graph on screen

End of Algorithm

The force ܨԦ (v) is defined as:

ሻݒԦሺܨ ൌ 	∑ ሬሬԦ௨௩ܪ ൅ሺ௨,௩ሻ∈௏ൈ௏ ∑ Ԧ௨௩ሺ௨,௩ሻ∈ாܥ (1)

Where ܪሬሬԦ௨௩ represents the attractive force between two
connected vertices, u and v, calculated based on Hooke’s law.
 Ԧ௨௩ represents the repulsive force between vertices u and v, andܥ
is calculated based on Coulomb’s law.

B. Positioning Source and Sink Vertices

The control flow graph G(f) = {V, E, vin, vout} of a
function f has two additional vertices, source and sink vertices,
referred as vin and vout, respectively. A source vertex is a vertex
with indegree zero, while a sink vertex is a vertex with outdegree
zero. The control flow graph of an empty function, i.e., a function
without any statements consists of V = {vin, vout} and E =
{(vin, vout)}.

Unlike the layout solution shown in Fig. 5, traditionally, all
vertices of a CFG are arranged in the form of top-to-bottom
where vin and vout are placed on the top and bottom positions,
respectively. In order to rearrange vin and vout in Fig. 5, the
third force, named Earth Gravitational Force, is added to
formula (1). The gravity of Earth, denoted as ሬܶԦ , refers to the
acceleration that the Earth imparts to objects on or near its
surface.

The Earth Gravitational Force is defined as:

ሬܶԦሺݒሻ ൌ ݉݃  

Where, m is the mass of the vertex and g is the gravitational
content.

The new formula for handling source and sink vertices is now
defined as:

ሻݒԦሺܨ ൌ 	∑ ሬሬԦ௨௩ܪ ൅ሺ௨,௩ሻ∈௏ൈ௏ ∑ Ԧ௨௩ܥ ൅	∑ ሬܶԦ
௨ሺ௨ሻ∈ாሺ௨,௩ሻ∈ா 

Fig. 6 shows the automated calculated Triangle CFG layout
with the additional Earth gravitational force. Fig. 6 (a) (b) (c) (d)
illustrates the evaluations of the CFG layout.

(a) Initial state (c) Iteration 20

(a) Initial state (b) Equilibrium states

Fig. 5. Triangle CFG layout with two forces

425

(b) Iteration 10 (d) Equilibrium states

Fig. 6. Triangle CFG layout with Earth gravitational force

C. Positioning Loops and Jumps Edges

There are two types of special edges, loops and jumps (i.e.,
loop and if-else statements) in a CFG. For example, v2 in Fig. 6
is a predicate node containing an if-else statement. Without an
appropriate positioning algorithm, the edge (v2, v20) will be a
straight line. Positioning such special edges need (1) Identifying
dominator relationships: In a CFG graph, a vertex v dominates
another node w if and only if every directed path from vin to w
in the CFG contains v. The dominators of node w is defined as
dom (w) = {v | v dominates w}. For example, dom
(v20) = {v0, v1, v2}. (2) Identifying special edges: The node
vshortest = v ∈ dom (w) has the shortest path from v to w,
where v is the start node and w is the end node, i.e., the special
edge is defined as (vshortest, w), and (3) Adding invisible
vertices to special edges: The number of invisible vertices equals
to the number of vertices from vshortest to w.

VI. RELATED WORK

Various testing harnesses have been explored to monitor the
runtime state of UUT. These tools mainly fall into two
categories: aspect-oriented approaches and symbolic execution
based approaches. MOP [7] is a Monitoring-Oriented
Programming (MOP) framework, which automatically generates
monitors from the specified properties and then integrates them
together with the user-defined code into the original system. In
the implementation, parametric specifications are translated into
AspectJ [8] code, and then weaved into the application using off-
the-shelf AspectJ compilers. Tracematches [9] is another aspect-
oriented trace-matching tool to observe the execution of a base
program; when certain actions occur, the aspect runs some extra
code of its own. Java Pathfinder (JPF) [10][11] is a system to
verify executable Java bytecode programs. It is based on
symbolic execution for test case generation. The core of JPF is a
Java Virtual Machine that is also implemented in Java. JPF
executes normal Java bytecode programs and can store, match
and restore program states. KLOVER [12] is similar to JPF. It
executes and monitors the states of running C++ program in the
form of LLVM bytecode. GannonJVM implements the features
of testing observability and controllability, which monitors,
interpreters and controls the Java bytecode instructions directly
using a stack-based approach.

VII. CONCLUSION

This paper presents a novel approach to embed two testability
features, including testing observation and testing control
features. We also introduce a CFG visualization in Java Virtual
Machine (JVM) for building a new testing harness to facilitate
software testing. The implementation of GannonJVM, a demo
video, and the triangle example are publicly available1.

VIII. ACKNOWLEDGMENT

We thank Syed Aqeel Raza and Bader Aldawsari for
assistance with the implementation of the system.

REFERENCES

[1] P. C. Jorgensen, Software Testing: A Craftman's Approach, 3rd ed.,
Auerbach Publications, 2008.

[2] T. Lindholm, F. Yellin, G. Bracha and A. Buckley, Java Virtual Machine
Specification, Java SE 7 Edition, Boston, USA: Addison-Wesley
Professional, 2013.

[3] J. Zhao, "Analyzing Control Flow in Java Bytecode," in 16th Conference
of Japan Society for Software Science and Technology, Japan, 1999.

[4] R. Vallee-Rai and L. J. Hendren, "Jimple: Simplifying Java Bytecode for
Analyses and Transformations," Sable Research Group, School of
Computer Science, McGill University, Montreal, Canada, 1998.

[5] O. Consortium, "ASM," [Online]. Available: http://asm.ow2.org/.
[Accessed 23 08 2013].

[6] P. Eades, "A heuristic for Graph Drawing," Congressus Numerantium, vol.
160, no. 42, p. 149, 1984.

[7] F. Chen and G. Rosu, "MOP: An Efficient and Generic Runtime
Verification Framework," in Object-Oriented Programming, Systems,
Languages & Applications, Nashville, Tennessee, 2007.

[8] "AspectJ," Eclipse Foundation, [Online]. Available:
http://eclipse.org/aspectj/. [Accessed 10 Sep 2013].

[9] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O.
Lhotak, O. d. Moor, D. Sereni, G. Sittampalam and J. Tibble, "Adding
Trace Matching with Free Variables to AspectJ," in Object-Oriented
Programming, Systems, Languages & Applications, San Diego, California,
2005.

[10] N. A. R. Center, "Java Pathfinder," NASA Ames Research Center ,
[Online]. Available: http://babelfish.arc.nasa.gov/trac/jpf. [Accessed 27 1
2014].

[11] C. S. Pasareanu, et al., "Symbolic PathFinder: Integrating Symbolic
Execution with Model Checking for Java Bytecode Analysis," Automated
Software Engineering, vol. 20, no. 3, p. 391-425, 2013.

[12] G. Li, I. Ghosh and S. P. Rajan, "KLOVER: A Symbolic Execution and
Automatic Test Generation Tool for C++ Programs," in 23rd International
Conference on Computer Aided Verification, Snowbird, Utah, 2011.

1 Implementation and example:http://perceval.gannon.edu/xu001/research/GannonJVM/.
Source code: git@github.com:Gannon-University/GannonJVM.git. Demo video:

https://www.youtube.com/watch?v=Ey4JfVhhHQg.

426

Detecting Reporting Anomalies in Streaming Sensing Systems
Shiree Hughes1, Yuheng Du2, and Jason O. Hallstrom1

1I-SENSE, Florida Atlantic University, {shughes2015, jhallstrom}@fau.edu
2School of Computing, Clemson University, yuhengd@clemson.edu

Abstract

Sensor networks must be monitored to identify and cor-
rect problems as they occur. We present a comparison of two
approaches to monitoring deployed sensors. The first re-
lies on configuration parameters to define expected report-
ing behavior. The second automatically identifies normal
reporting patterns based on a combination of configuration
parameters and an analysis of reporting times. Using these
patterns, the system notifies personnel of possible malfunc-
tions. We present empirical evaluations in the context of the
Intelligent River R© system [11].

1. Introduction
Wireless sensor networks are often used to collect data

over large geographic areas. Environmental factors, rang-
ing from changes in cellular or satellite signal strength to
equipment damage can disrupt data collection. It is impor-
tant to identify when sensors are malfunctioning to avoid
prolonged data loss. Equally important is the ability to ig-
nore routine or minor fluctuations in reporting behaviors to
avoid spurious maintenance notifications.

We present two approaches to monitoring the behavior
of deployed sensors. The static approach is based on user
configuration data that captures the expected reporting pe-
riod of each sensor. The adaptive approach relies on an on-
line time-series analysis of reporting times. The ability to
automatically identify reporting patterns enables the deter-
mination of whether a sensor is more likely to be damaged,
versus exhibiting normal variation in reporting behavior.

We evaluate the performance of both approaches using
historical data from 122 devices reporting at various rates
over a six-month period within the Intelligent River R© net-
work. Many of these devices are enclosed in bouys de-
signed to keep them afloat and protect them from the water.
We explore the effects of various parameters on the sensi-
tivity of the monitoring system.

2. Related Work
Many authors have considered methods to identify sen-

sor malfunction and proposed various solutions [5, 6, 7, 13,
17], most concerned with the validation of received data.

DOI reference number: 10.18293/SEKE2015-181

Ramanathan et al. [10] present Sympathy, a tool to detect
and debug sensor failures. Similar to our static approach,
Sympathy assumes an expected time period in which a sen-
sor should report, and then flags the sensor if it does not
report within the expected time. Sympathy requires each
sensor to transmit a set of metrics, including information on
network connectivity, packet reception rate, and packet cor-
ruption rate. When a failure is detected, the metrics are an-
alyzed to determine cause and location. Sympathy does not
adapt to periodic network delays and will repeatedly send
notifications during periods of abnormal network behavior.

Shebaro et al. [12] focus on determining the cause of
packet loss. Their method employs comparisons of RSSI
and LQI values. While link quality can be a good indica-
tor of malfunction, information detailing when sensors are
expected to report is also needed to diagnose sensor failure.

Duche and Sarwade [2] use round-trip delay (RTD) to
detect malfunction in multi-hop scenarios. When a sensor
fails to transmit, the RTD of the sensor approaches infinity.
By defining an initial threshold for comparison, a malfunc-
tioning sensor can be identified if its RTD is greater than
the threshold. Each sensor has several paths it may trans-
mit over, and each path may have a different RTD. Their
approach assumes a circular topology.

Guo et al. [4] concentrate on the detection of faulty data.
Their approach considers both sensor data and location and
assumes that all sensors observe and report data on the same
event. Sensors are designated as faulty if they do not ad-
here to distance monotonicity. The goal is to create a list of
sensors reporting faulty data ranked by probability, not to
notify personnel of sensors’ failure to report.

Warriach et al. [14] propose a hybrid fault detection ap-
proach that combines rule-based, linear least-squares esti-
mation and hidden Markov methods to identify data faults.
The approach does not detect the absence of data.

Bartzoudis and McDonald-Maier [1] describe a method
to validate sensor readings. Their approach compares prior
readings to current readings to identify improbable discrep-
ancies, such as drastic temperature changes in a short time
period. Reported values are also verified to be within the
operating limits specified by the manufacturer. The purpose
is to identify data faults, not to identify reporting failures.

Zang et al. [16] use a combination of principal compo-
nent analysis and wavelet analysis to detect sensor failure

1
427

in small and medium-scale networks. Detection of a mal-
functioning sensor is dependent upon data collected from
neighboring sensors. Our goal is to identify malfunctioning
sensors independent of other sensors within a network.

Friend et al. [3] are concerned with commercial credit-
card fraud. We take inspiration from methods of fraud de-
tection in this context to identify malfunctioning sensors.
Like people, each sensor has an identifiable reporting pat-
tern which can be used to detect changes in behavior. Com-
mercial fraud detection is achieved by comparing current
observations with expected values derived from previous
observations. Friend et al. find that a customer’s transac-
tions can be represented by a standard bell curve. The av-
erage value of a customer’s transactions defines the peak of
the curve. Each standard deviation away from the average
contains transactions that are more likely to be fraudulent.
The authors find that only 1% of transactions are more than
3 times the standard deviation. We use this principle and
apply it to sensor reporting periods in the adaptive approach
to determine sensor malfunction.

3. The Static Approach
We now detail our implementation of the static approach.

3.1. Configuration
Configuration data is specified using JSON data stored

in MongoDB. Sensors are separated into groups based
on deployment area, and each group is represented as a
JSON object, such as the example shown in Listing 1.
Six properties are defined for each group: groupID
is a unique group identifier. members specifies a list
of sensors included in the group, each identified by ID.
expectedInterval specifies the maximum number of
seconds that may pass between reports from sensors within
the group. notificationTime specifies the number
of seconds to wait between personnel notifications while
a sensor is malfunctioning. maxNotifications spec-
ifies the maximum number of notifications that should be
sent to network personnel while a sensor is malfunction-
ing. The configuration data also stores notification group
objects, which define personnel contact information. A
sample notification group object is shown in Listing 2. The
notificationGroupID in Listing 1 specifies the iden-
tifier corresponding to the notification group defined in List-
ing 2, declaring the list of personnel to be contacted if a
malfunction is identified within the sensor group.

3.2. Implementation
The monitoring service was developed as part of the

Intelligent River R© system [15], a network of sensing de-
vices deployed throughout the Savannah River Basin to sup-
port water management and agricultural applications [11].
Each sensor transmits environmental data through the net-
work using RabbitMQ [9], an open source implementation

1 {"GroupID":"Sensor-Group-1",
2 "members":["sensor-1",
3 "sensor-2",
4 "sensor-3"],
5 "notificationGroupID":"Notification-Group-1",
6 "expectedInterval":900,
7 "notificationTime":1500,
8 "maxNotifications":5 }

Listing 1. Sample Sensor Group

1 {"notificationGroupID":"Notification-Group-1",
2 "addresses":["user1@domain.com",
3 "user2@domain.com"] }

Listing 2. Sample Notification Group

of the AMQP standard [8]. In the Intelligent River R© sys-
tem, RabbitMQ receives data reports routed through ded-
icated queues. The sensor monitoring service uses one
of these queues to obtain device readings, and to moni-
tor time-stamps. The implementation is developed in Java
and consists of three main classes: MessageHandler,
StatusChecker, and Notifier.

3.2.1. MessageHandler
The MessageHandler class consumes messages from a
dedicated message queue. Each message is parsed to de-
termine the identity of the reporting device and the time-
stamp of the report. Instances of the class maintain a local
hashmap, mapping from sensor ID to a data object contain-
ing the time-stamp of the most recent report, the time-stamp
of the most recent notification, the number of notifications
sent, and the current status of the sensor (i.e. alive or dead).

3.2.2. StatusChecker
The StatusChecker class determines if a sensor’s sta-
tus should be updated. At startup, a StatusChecker
thread is created for each sensor group identified in
the input configuration. Listing 3 summarizes the core
logic used in each thread. StatusChecker wakes ev-
ery expectedInterval seconds (line 2) and queries
MessageHandler for the latest time-stamp associated
with each sensor within the group (lines 3–4). The
system then calculates the most recent reporting inter-
val, timeDifference (line 5). If the reporting in-
terval is not within the expectedInterval, the sen-
sor’s status is set to dead (lines 6–7). After marking
a sensor as dead, StatusChecker determines the in-
terval between the last time of notification and the cur-
rent system time (line 8). If the interval is more than
notificationTime and the number of notifications
sent is less than maxNotifications, a Notifier in-
stance is created to handle notification (lines 9–10).
StatusChecker also detects revivals; i.e. sen-

sors marked as dead which begin to report. When

2
428

1 while(true) {
2 wait(expectedInterval);
3 for each sensorID in members {
4 sensor = hashmap.get(sensorID);
5 timeDifference = currentTime-sensor.lastReportTime;
6 if(timeDifference>expectedInterval) {
7 sensor.status(dead);
8 notifyInterval = currentTime-sensor.notifyTime;
9 if(notifyInterval < notificationTime &&

sensor.notificationsSent<maxNotifications) {
10 new Notifier(sensor);
11 sensor.notificationsSent++;
12 sensor.notifyTime = currentTime; }
13 } else if (sensor.status == dead) {
14 sensor.reset();
15 new Notifier(sensor); } } }

Listing 3. StatusChecker Algorithm

StatusChecker identifies such a sensor, the sensor’s
status, notification count, and time of last notification are
reset, and a notification is generated (lines 13–15).

3.2.3. Notifier
A Notifier instance is created to notify personnel of
node malfunctions and revivals. The sensor’s data object
is passed to the object at construction. The Notifier ob-
ject then retrieves the addresses within the notification
group identified by notificationGroupID and com-
poses a message containing the sensors’ status, identifier,
and time of last report. Malfunction notifications also con-
tain the notification count to remind network personnel of
how many messages they have already received.

4. The Adaptive Approach
Although each sensor is programmed to transmit at a

specific interval, environmental and other factors introduce
regular fluctuations in observed reporting behavior. In In-
telligent River R© deployments, wind, rain, dam discharge
events, and other factors can cause bouys to drop below the
water surface, preventing the enclosed sensors from trans-
mitting via cellular or satellite. We have observed that in
most locations, changes in transmission intervals due to
temporary environmental factors follow regular patterns.

Since each sensor deviates from its programmed report-
ing interval differently, it is difficult to set a uniform max-
imum time interval that encompasses the behavior of all
sensors. It would also be tedious to manually update the
expected behavior of every sensor within the network. To
avoid excessive notifications without requiring significant
effort from network administrators, we developed an ap-
proach that detects normal variance and estimates a best-fit
interval for each sensor within a given group.

4.1. Configuration
A sample configuration showing the definition of a sen-

sor group in the adaptive approach is shown in Listing 4.
We continue to use the parameters from the static ap-
proach, with three additions. numberOfStdDevs repre-

sents the number of standard deviations from the average
reporting interval considered to be an acceptable deviation.
windowSize represents the number of previous reporting
intervals to be considered when calculating metrics such
as standard deviation and mean. decayConstant rep-
resents how quickly a sensor is expected to return to normal
reporting behavior after experiencing failure.

1 {"GroupID":"Sensor-Group-1",
2 "members":["sensor-1",
3 "sensor-2",
4 "sensor-3"],
5 "notificationGroupID":"Notification-Group-1",
6 "expectedInterval":900,
7 "notificationTime":1500,
8 "maxNotifications":5,
9 "numberOfStdDevs":3,

10 "windowSize":25,
11 "decayConstant":12 }

Listing 4. Sample Sensor Group (adaptive)

4.2. Implementation
In the adaptive implementation, StatusChecker is

modified, and an Analyzer class is added.

4.2.1. Analyzer
Each time a sensor reports, an instance of the Analyzer
class calculates the interval between the two most recent
reports and stores the interval in a circular buffer. The size
of the buffer is determined by windowSize. Each sensor
has a dedicated Analyzer object stored in the hashmap
discussed in Section 3.2.1. The object maintains the buffer
and provides mean and standard deviation methods.

4.2.2. StatusChecker
In the adaptive approach, we define three sensor states: (i)
initial, indicating that sufficient data to accurately predict
the sensor’s behavior has not yet been collected; (ii) nor-
mal, indicating that the sensor is reporting within the ex-
pected range; and (iii) abnormal, indicating that the sensor
is reporting outside its expected range.

As in the static approach, each StatusChecker
thread wakes every expectedInterval seconds to
check the status of the sensors within its associated group.
A new check() method is invoked at wake-up to deter-
mine the status of the sensor, as discussed in the next para-
graphs. Each time the MessageHandler object receives
a report from a sensor, the associated StatusChecker
updates its timer, its Analyzer object, and its last time-
stamp. This is handled in the update() function of
MessageHandler. As in the static approach, if a sensor
is identified as dead or revived, the system takes the nec-
essary notification steps. Listing 5 shows the update()
method for the adaptive version of StatusChecker.
timeDifference represents the observed interval be-
tween consecutive sensor reports (line 1). average rep-
resents the average of the intervals stored in the sensor ob-
ject’s buffer (line 3). stddev represents the standard devi-

3
429

1 timeDifference = currentReport - sensor.lastReport;
2 sensor.addToBuffer(timeDifference);
3 average = Analyzer.getAverage(sensor);
4 stddev = Analyzer.getStdDev(sensor);
5 allowable = average + stddev*numberOfStdDevs;
6 switch(sensor.state) {
7 case(INITIAL):
8 sensor.resetTimer(configExpectedInterval);
9 break;

10 case(NORMAL):
11 if(timeDifference>allowable) {
12 sensor.state = ABNORMAL;
13 sensor.expectedInterval = timeDifference;
14 sensor.resetTimer(timeDifference);
15 } else { sensor.resetTimer(allowable); }
16 break;
17 case(ABNORMAL):
18 if(timeDifference<sensor.expectedInterval){
19 sensor.expectedInterval -= (

(sensor.expectedInterval-allowable) /
decayConstant);

20 if(sensor.expectedInterval < allowable) {
21 sensor.state = NORMAL;
22 }
23 } else { sensor.expectedInterval = timeDifference;}
24 sensor.resetTimer(sensor.expectedInterval);
25 break;
26 }
27 sensor.lastReport = currentReport;
28 if(sensor.status == dead) {
29 sensor.status == alive;
30 new Notifier(sensor); }

Listing 5. StatusChecker update() Method

ation of these intervals (line 4). allowable represents the
allowable maximum interval between normal sensor reports
(line 5).

Initial State. Initially, the Analyzer’s buffer is empty.
Before the buffer contains the required number of inter-
vals, the average and standard deviation may not reflect the
longer-term values and may fluctuate significantly. In this
state, the system expects to receive the next report within the
period specified in the configuration (line 8). Regardless of
state, the time-stamp of the most recent report is updated to
reflect the new time-stamp (line 27). Finally, update()
checks if the reporting sensor is flagged as dead and notifies
network personnel of revivals (lines 28–30).

Listing 6 shows the logic for check() in the adaptive
version of StatusChecker. On wake-up in the initial
state, the system compares the time difference between the
current system time and the last known reporting time to
the expectedInterval specified in the configuration
file (lines 6–11). If the sensor has not reported within the
expectedInterval, a notification is sent (lines 7–8).
Next, the system checks if Analyzer contains enough
data to move the senor to the normal state (lines 9–10).

Normal State. Consider the update() logic for a
sensor in the normal state, shown in Listsing 5 (lines 10–
16). The method queries the corresponding Analyzer
for the average and standard deviation of the sensor’s re-
porting intervals (lines 3–4). The maximum reporting in-
terval is calculated based on the current average and the

numberOfStdDevs parameter, which controls the sen-
sitivity of acceptability. The system places the sensor in the
abnormal state if the observed reporting interval is outside
of allowable, and the timer corresponding to that sensor
is then reset (lines 11–14). When the sensor is moved to the
abnormal state, the sensor’s expectedInterval is set
to the observed reporting interval (line 13). This outlying
interval serves as an estimate of the delay the sensor will
experience while in the abnormal state.

Once a sensor enters the normal state, the check()
method follows the actions in Listing 6 on wake-up
(lines 12–16). allowable is calculated as before, in the
update()method. The system then checks if the time dif-
ference between the current system time and the last known
reporting time is outside allowable (line 13). If so, the
sensor object is updated to reflect its change in status, and a
notification is sent (lines 14–15).

Abnormal State. When a sensor reports outside of
its expectedInterval, it is placed in the abnor-
mal state. In this state, the system assumes the sen-
sor is malfunctioning and does not expect it to re-
port within the calculated expectedInterval. The
update() logic for the abnormal state is shown in List-
ing 5 (lines 17–25). allowable is calculated as in
the normal state. If the observed reporting interval is
less than the expectedInterval stored in the sensor
object, it is assumed that the sensor is recovering, and
the stored value is adjusted to reflect this (lines 18–19).
The rate at which the adjusted interval is decreased is
dependent on expectedInterval, allowable, and
decayConstant. The rate is calculated as the differ-
ence between the sensor object’s expectedInterval
and allowable, divided by decayConstant (line 19).
decayConstant enables network administrators to con-
trol how quickly abnormal behavior is expected to con-
verge to normal behavior. If a sensor reports out-
side of its expectedInterval, expectedInterval
is raised to the outlying value (line 23). Once
expectedInterval is within allowable, the sensor
is returned to the normal state (lines 20–22). This process
ensures that a sensor is consistently demonstrating normal
behavior before being returned to the normal state.

The check() method for the abnormal state follows
the actions shown in Listing 6. The system checks if the dif-
ference between the current system time and the last known
reporting time is within expectedInterval, and noti-
fies network personnel accordingly (lines 17–20).

5. Evaluation
We collected data over a six-month period for 122 unique

devices in various locations with various reporting intervals.
These devices provided a total of 2,648,267 transmissions to
analyze. First, we perform a baseline evaluation of the noti-

4
430

1 timeDifference = currentTime-sensorID.lastReportTime;
2
3 ... average, stddev, and allowable are calculated as in

Listing 5 on lines 3, 4, and 5 respectively ...
4
5 switch(sensorID.state) {
6 case(INITIAL):
7 if(timeDifference > configExpectedInterval) {
8 new Notifier(sensor); }
9 if(sensorID.isFull()) {

10 sensorID.state = NORMAL; }
11 break;
12 case(NORMAL):
13 if(timeDifference>allowable) {
14 sensor.status = dead;
15 new Notifier(sensor); }
16 break;
17 case(ABNORMAL):
18 if(timeDifference > sensor.expectedInterval) {
19 new Notifier(sensor); }
20 break; }

Listing 6. StatusChecker check() Method

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.5 1 1.5 2 2.5

N
um

be
r

of
 D

ev
ic

es

Notifications per Transmission

Figure 1. Static Approach Performance

fication tool’s performance using the static approach. Next,
the effects of the 3 configuration parameters introduced in
the adaptive approach are evaluated. We then compare the
performance of the adaptive and static approaches in terms
of the number of notifications generated and the ability to
customize performance based on user needs.
5.1. Static Approach

For the static method, expectedInterval was set
for each device by personnel familiar with the reporting be-
havior of the device. The number of notifications generated
was then compared to the number of transmissions sent by
each device. The findings are shown in Figure 1. Figure 1
shows the distribution of notification rates across devices.
Devices were placed in bins of width .265 (notifications per
transmission) based on notification rate. The x-axis rep-
resents the number of notifications sent per transmission.
The y-axis represents the number of devices with a notifi-
cation rate within the given range. 93 out of 122 devices
(76%) exhibited a notification rate of less than .265 notifi-
cations per transmission. This means that for the majority
of devices, out of every 100 transmissions, approximately
26 or less of the transmissions were flagged as irregular,
generating a notification. The other 29 devices exhibited
notification rates greater than .795 notifications per trans-

mission. Devices with a notification rate greater than .795
notifications per transmission generated at least 79 notifi-
cations for every 100 transmissions. Due to the configura-
tion of notificationTime, which enables multiple no-
tifications to be generated during a single interval between
transmissions, some devices had a rate greater than 1 noti-
fication per transmission. The maximum rate observed was
2.12 notifications per transmission.
5.2. Adaptive Approach

To evaluate changes in notification rate as a function
of changes to the three configuration parameters used in
the adaptive monitoring approach, we first determine the
value of windowSize for each device corresponding to
a 24-hour period. Each device is placed in one of seven
groups based on its programmed reporting interval: 6-
second, 5-minute, 10-minute, 15-minute, 20-minute, 30-
minute, and 1-hour. For each group, we run the adaptive
approach using various combinations of numStdDevs and
decayConstant. We varied numStdDevs between 0
and 5, and decayConstant between 0 and 1.4e6. This
range was chosen to explore expected time to recovery rang-
ing from instantaneous (decayConstant equal to 0) up
to 6 months (decayConstant equal to 1.4e6).

Figure 2 summarizes the effects of these two parameters
on notification rate for 3 of the groups. The graphs were
subdivided to provide a more detailed understanding of per-
formance. Figures 2(a), 2(b), and 2(c) show the effects of
decayConstant in the range of 0 to 1000, while Fig-
ures 2(d), 2(e), and 2(f) show its effects in the range of 1000
to 1.4e6. For each group, the worst performance (i.e., the
highest notification rate) occurs when both numStdDevs
and decayConstant are equal to 0. This case is equiv-
alent to the static approach. With the exception of the 6-
second group shown in Figures 2(a) and 2(d), the notifi-
cation rate generally decreases as decayConstant in-
creases. Again, with the exception of the 6-second group,
each group has a trough around decayConstant equal
to 400,000 where it reaches a local minimum and then in-
creases slightly before permanently decreasing toward 0.
Devices reporting at 6-second intervals are virtual machines
experiencing very little disruption. This is why devices in
this group experience the lowest notification rate, as well as,
the least variance in rate with respect to the parameters.
5.3. Static Versus Adaptive

Figure 3 depicts the behavior of both methods on a sin-
gle device over time. The x-axis represents time, and the
y-axis represents the interval between consecutive reports,
in seconds. The static approach is considered in Figure 3(a),
and the adaptive approach is considered in Figure 3(b). We
observe a more tailored fit to the behavior of the device in
the adaptive approach. Using the static approach, the major-
ity of devices exhibit a notification rate below 30%, while
some generate notification rates of 100%, and a few gen-
erate rates of 200%. The highest notification rate for the

5
431

 0
 1

 2
 3

 4
 5 0

 200
 400

 600
 800

 1000
 0.0115
 0.012

 0.0125
 0.013

 0.0135
 0.014

 0.0145

Notifications per
Transmission

numberOfStdDevs

decayConstant

Notifications per
Transmission

(a) 6-Second Group (low range)

 0
 1

 2
 3

 4
 5 0

 200
 400

 600
 800

 1000

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18

Notifications per
Transmission

numberOfStdDevs

decayConstant

Notifications per
Transmission

(b) 15-Minute Group (low range)

 0
 1

 2
 3

 4
 5 0

 200
 400

 600
 800

 1000

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Notifications per
Transmission

numberOfStdDevs

decayConstant

Notifications per
Transmission

(c) 30-Minute Group (low range)

 0
 1

 2
 3

 4
 5 0

 200000
 400000

 600000
 800000

 1e+006
 1.2e+006

 1.4e+006

 0.01175

 0.0118

 0.01185

 0.0119

 0.01195

 0.012

 0.01205

Notifications per
Transmission

numberOfStdDevs

decayConstant

Notifications per
Transmission

(d) 6-Second Group (high range)

 0
 1

 2
 3

 4
 5 0

 200000
 400000

 600000
 800000

 1e+006
 1.2e+006

 1.4e+006

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

Notifications per
Transmission

numberOfStdDevs

decayConstant

Notifications per
Transmission

(e) 15-Minute Group (high range)

 0
 1

 2
 3

 4
 5 0

 200000
 400000

 600000
 800000

 1e+006
 1.2e+006

 1.4e+006

 0.052

 0.054

 0.056

 0.058

 0.06

 0.062

 0.064

 0.066

Notifications per
Transmission

numberOfStdDevs

decayConstant

Notifications per
Transmission

(f) 30-Minute (high range)

Figure 2. Effect of decayConstant and numOfStdDevs (windowSize=24-hours)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

05/31 06/14 06/28 07/12 07/26 08/09 08/23

R
ep

or
tin

g
In

te
rv

al
 (

in
 s

ec
on

ds
)

Time (M/D)

Acutal Time Difference
expectedInterval

Average

(a) Static Approach

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

05/31 06/14 06/28 07/12 07/26 08/09 08/23

R
ep

or
tin

g
In

te
rv

al
 (

in
 s

ec
on

ds
)

Time (M/D)

Acutal Time Difference
expectedInterval

Average

(b) Adaptive Approach

Figure 3. Static vs. Adaptive Approach

adaptive approach is 45%. This shows that in terms of noti-
fication rate, the adaptive approach can be used to generate
fewer notifications. In some cases, variation may be intol-
erable, and users may wish to define malfunction using a
constant threshold.

6. Conclusion
We presented two approaches to identifying malfunc-

tioning sensors in a streaming monitoring network: a static
approach and an adaptive approach. Trade-offs exist be-
tween the two approaches. The static approach may gen-
erate too few or too many notifications based on network
managers’ estimates of reporting behavior. The adaptive ap-
proach may generate too many notifications in sensors with
sporadic variation. However, we found that both approaches
are successful in detecting variations in a sensor’s behavior
and notifying personnel of sensor failure in real-time. With
this method, a sensor cannot be flagged as malfunctioning
unless it is actually exhibiting abnormal behavior. Due to
decayConstant, it is possible to neglect repeated mal-
functions within a close time frame, but this is by design.
This work was supported by the NSF (CNS-0745846).

References
[1] N. Bartzoudis and K. McDonald-Maier. An adaptive processing node architec-

ture for validating sensors reliability in a wind farm. In BLISS 2007., pages
83–86, Aug 2007.

[2] R.N. Duche and N.P. Sarwade. Sensor node failure detection based on round
trip delay and paths in wsns. Sensors Journal, IEEE, 14(2):455–464, Feb 2014.

[3] Stephen O. Friend and others. Standard deviaion: The new standard for out-of-
pattern transaction analysis. ACAMS Today, January/February 2009.

[4] Shuo Guo et al. Find: Faulty node detection for wireless sensor networks.
SenSys ’09, pages 253–266, New York, NY, USA, 2009. ACM.

[5] MichaelA Hayes and MiriamAM Capretz. Contextual anomaly detection
framework for big sensor data. Journal of Big Data, 2(1), 2015.

[6] Chun Lo et al. Pair-wise reference-free fault detection in wireless sensor net-
works. IPSN, pages 117–118. ACM, 2012.

[7] M.R. Napolitano et al. Kalman filters and neural-network schemes for sensor
validation in flight control systems. Control Systems Technology, IEEE Trans-
actions on, 6(5):596–611, Sep 1998.

[8] OASIS. AMQP:advanced message queuing protocol. www.amqp.org/
about/what, 2015.

[9] Pivotal. RabbitMQ: messaging that just works. www.rabbitmq.com, 2014.
[10] Nithya others Ramanathan. SenSys ’05, pages 255–267. ACM, 2005.
[11] Intelligent River. Intelligentriver R©: from observational to operational.

intelligentriver.org, 2015.
[12] Bilal Shebaro et al. Fine-grained analysis of packet loss symptoms in wireless

sensor networks. In Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’13, pages 38:1–38:2, New York, NY, USA,
2013. ACM.

[13] S. Taniguchi and Y. Dote. Sensor fault detection for uninterruptible power sup-
ply (ups) control system using fast fuzzy-neural network and immune network.
In Systems, Man, and Cybernetics, 2001 IEEE International Conference on,
volume 1, pages 99–104 vol.1, 2001.

[14] Ehsan Ullah Warriach et al. Fault detection in wireless sensor networks: A
hybrid approach. IPSN, pages 87–88, New York, NY, USA, 2012. ACM.

[15] D.L. White et al. The Intelligent River c©: Implementation of sensor web en-
ablement technologies across three tiers of system architecture: Fabric, middle-
ware, and application. pages 340–348, May 2010.

[16] Xi-Liang Zhang et al. Sensor fault diagnosis and location for small and
medium-scale wireless sensor networks. In Natural Computation 2010, vol-
ume 7, pages 3628–3632, Aug 2010.

[17] J. Zhao et al. Computing aggregates for monitoring wireless sensor networks.
In The IEEE International Workshop on Sensor Network Protocols and Appli-
cations, 2003., pages 139–148, May 2003.

6
432

Fault-Based Testing of Combining Algorithms in
XACML3.0 Policies

Dianxiang Xu, Ning Shen, Yunpeng Zhang
Department of Computer Science

Boise State University
Boise, ID 83725, USA

{dianxiangxu, ningshen, yunpengzhang}@boisestate.edu

 Abstract— With the increasing complexity of software, new
access control methods have emerged to deal with attribute-
based authorization. As a standard language for attribute-based
access control policies, XACML offers a number of rule and
policy combining algorithms to meet different needs of policy
composition. Due to their variety and complexity, however, it is
not uncommon to apply combining algorithms incorrectly, which
can lead to unauthorized access or denial of service. To solve this
problem, this paper presents a fault-based testing approach for
determining incorrect combining algorithms in XACML 3.0
policies. It exploits an efficient constraint solver to generate
queries to which a given policy produces different responses than
its combining algorithm-based mutants. Such queries can
determine whether or not the given combining algorithm is used
correctly. Our empirical studies using sizable XACML policies
have demonstrated that our approach is effective.

Keywords— Combining algorithm, constraint solving, fault-
based testing, test generation, XACML.

I. INTRODUCTION

In security-intensive software, access control is a
fundamental mechanism for preventing malicious or accidental
violation of security requirements by regulating user access to
resources. An access control policy defines the conditions
under which access to resources can be granted and to whom.
Given an access request, it yields an access decision such as
permit or deny. With the increasing complexity of software,
access control methods have evolved from popular role-based
access control to Attribute-Based Access Control (ABAC).
ABAC enables fine-grained access control by combining
various attributes of authorization elements into access control
decisions. These attributes are predefined characteristics of
subjects (e.g., job title and age), resources (e.g., data, programs,
and networks), actions, and environments (e.g., current time
and IP address) [7]. ABAC also facilitates collaborative policy
administration within a large enterprise or across multiple
organizations. In a large enterprise, for example, elements of
authorization policies may be managed by different
departments, such as the Information Technology department,
Human Resources, the Legal department, and the Finance
department [13]. Individual rules or policies are composed into
a whole in order to make consistent access decisions.

XACML (eXtensible Access Control Markup Language)
[13] is an OASIS standard for specifying ABAC policies in the

XML format. To support flexible policy composition, XACML
3.0 provides 11 rule combining algorithms and 12 policy
combining algorithms. A combining algorithm aims at
rendering a single access decision by combining the decisions
of individual access control rules or policies. Due to the variety
of combining algorithms and subtle similarities between the
combining algorithms, it is not uncommon to use them
incorrectly when XACML3.0 policies are authored. A user
may inadvertently select an incorrect combining algorithm or
intentionally apply an incorrect combining algorithm due to
misunderstanding. Furthermore, for certain rules (or policies),
different combining algorithms can be functionally equivalent
and result in the same response to every access request. In an
evolving process of policy development and maintenance,
however, a previously working combining algorithm may
become incorrect after new rules or policies are added in a way
that implicitly breaks the constraints on functional equivalence.
Needless to say, incorrect combining algorithms in XACML
policies can lead to devastating consequences, such as
unauthorized access and denial of service.

This paper presents a fault-based testing approach for
determining existence or absence of incorrect combining
algorithms in XACML 3.0 policies. Given an XACML policy
(or policy set), our approach analyzes whether the given
combining algorithm is functionally equivalent to each of the
candidate combining algorithms with respect to the rules in the
given policy (or policies in the given policy set). If they can be
different, our approach exploits a constraint solver to generate
a query to which the two combining algorithms result in
different responses. The combining algorithm is correct only if
it produces correct responses to such queries. In theory, the
query generation involves an NP-hard problem because the
targets and conditions in XACML rules, policies and policy
sets can be complex first-order logic formulas with user-
defined functions. In practice, our case studies have
demonstrated that the implementation of our approach based
on an efficient constraint solver Z3-str [6][15] is both feasible
and effective for dealing with sizable XACML policies.

The remainder of this paper is organized as follows.
Section II gives a brief introduction to XACML policies and
combining algorithms. Section III describes the fault-based
testing approach. Section IV elaborates on fault-based test
generation. Section V presents the empirical studies. Section
VI reviews related work. Section VII concludes this paper.

(DOI reference number: 10.18293/SEKE2015-244)

433

II. XACML POLICIES AND COMBINING ALGORITHMS

 The main components of the XACML3.0 model are rule,
policy, and policy set. A rule consists of a target, a condition,
and an effect. The target is a logical expression that specifies
the set of requests to which the rule is intended to apply. The
condition is a Boolean expression that refines the applicability
of the rule established by the target. Predicates in target and
condition are defined over attributes and attribute values (e.g.,
age>=18). A policy comprises a policy target, a rule-combining
algorithm identifier, and a list of rules. A policy set consists of
a policy set target, a policy-combining algorithm identifier, and
a list of policies or policy sets. Figure 1 shows the relationships
between the main elements of XACML3.0. For simplicity, this
paper focuses on policies and rule combining algorithms.

Figure 1. Main language elements of XACML 3.0

 Formally, a policy P= <PT, CA, R> consists of a policy
target PT, a rule combining algorithm CA, and a list of rules R1.
Each rule ri∈R is a triple <rti, rci, rei>, where rti is the rule’s
target, rci is the rule’s condition, and rei is the rule’s effect
(either Deny or Permit). ri is called a permit rule if rei=Permit;
ri is called a deny rule if rei=Deny; rti and rci are optional. A
rule without target and condition, denoted by <_, _, rei> is
called a default rule.

 An access request (also called query) consists of a list of
attribute assignments: {x1=V1, x2=V2,…}, where xi is an
attribute name and Vi is a value assigned to xi. The decision of
rule r=<rt, rc, re> with respect to request q, denoted by d(r,
q), is defined as follows:

 Permit: access is granted when rule effect re = Permit,
query q matches policy target PT and rule target rt, and
rule condition rc is true with respect to q.

 Deny: access is denied when re = Deny, q matches PT
and rt, and rc is true with respect to q.

 N/A: q is not applicable – q does not match rt or rc
evaluate to false with respect to q.

 I(D): An error occurred when rt or rc was evaluated and
re=Deny. The decision could have evaluated to Deny if
no error had occurred.

1 In XACML, a policy also has other components, such as obligations

and advice. We do not consider these components due to their
irrelevance to the research in this paper.

 I(P): An error occurred when rt or rc was evaluated and
re=Permit. The decision could have evaluated to
Permit if no error had occurred.

 For convenience, we use N/A, I(D), I(P), and I(DP) to
denote the following decisions respectively: NotApplicable,
Indeterminate {D}, Indeterminate {P}, and Indeterminate
{DP}. So d(r, q)  {Permit, N/A, I(P)} if r is a permit rule, and
d(r, q) {Deny, N/A, I(D)} if r is a deny rule. For a default rule
r = <_, _, re>, d(r, q) = re for any q.

 Given query q, rules r1, r2…, rn in policy P=<PT, CA, R>
may yield different decisions. The rule combining algorithm
CA combines the decisions of individual rules into a single
policy-level decision, denoted as d(P, q). In XACML 3.0, there
are 11 rule combining algorithms. Four are for compatibility
support of old versions - Legacy Ordered-deny-overrides,
Legacy Permit-overrides, Legacy Ordered-permit-overrides,
and Legacy Ordered-permit-overrides. In Balana [1] (an open
source implementation of XACML3.0 based on which our
approach is developed), the implementations of Ordered-deny-
overrides and Ordered-permit-overrides are the same as Deny-
overrides and Permit-overrides. Thus, this paper focuses on
five rule combining algorithms: Deny-overrides, Deny-unless-
permit, Permit-overrides, Permit-unless-deny, and First-
applicable. Their meanings are as follows:

 Deny-overrides: Intended for those cases where a deny
decision should have priority over a permit decision;

 Permit-overrides: Intended for the cases where a permit
decision should have priority over a deny decision.

 Deny-unless-permit: Intended for those cases where a
permit decision should have priority over a deny
decision, and an “Indeterminate” or “NotApplicable”
must never be the result.

 Permit-unless-deny: Intended for those cases where a
deny decision should have priority over a permit
decision, and an “Indeterminate” or “NotApplicable”
must never be the result.

 First-applicable: Rules are evaluated in the order in
which they are listed. If a rule’s target matches and
condition evaluates to "True", then return the rule’s
effect (Permit or Deny). If the target or condition
evaluates to "False", the next rule is evaluated. If no
further rule exists, then return "NotApplicable". If an
error occurs, then return "Indeterminate", with the
appropriate error status.

 Given policy P=<PT, CA, R>, the set of possible policy
decisions depends on CA. For example, Deny-overrides,
Permit-overrides, and First-applicable may yield one of the
following six decisions: {Permit, Deny, N/A, I(D), I(P),
I(DP)}, where I(DP) refers to Indeterminate{DP}. I(DP)
results from one of the following situations: (a) an error
occurred when policy target PT was evaluated and the decision
could have evaluated to Deny or Permit if no error had
occurred; (b) there is a permit rule that evaluates to I(P) and a
deny rule that evaluates to I(D) or Deny when CA=Permit-
overrides; (c) there is a deny rule that evaluates to I(D) and a
permit rule that evaluates to I(P) or Permit when CA=Deny-
overrides. Deny-unless-permit and Permit-unless-deny result in
either Permit or Deny.

434

III. FAULT-BASED TESTING OF COMBINING ALGORITHMS

 Fault-based testing aims to determine the existence or
absence of a hypothesized fault [12]. It has been widely used to
generate test cases or evaluate the quality of given tests. This
paper focuses on fault-based test generation for incorrect
combining algorithm in policy P = <PT, CA, R>. The basic
idea is as follows: assuming CA is faulty and CA' is the correct
combining algorithm, the fault-based approach generates a
query q such that d(P, q) ≠ d(P', q), where P' = <PT, CA', R>,
called P’s mutant. P' has the same policy target and rules as P.
According to the correct response to q (called oracle value,
denoted as o(q)), we can determine whether CA or CA' is
faulty. Note that, when testing P, we do not know which
combining algorithm is the right one. However, it must be in
the given set of rule combining algorithms (denoted as RCA).
RCA does not have to contain all the combining algorithms in
XACML. It can be a subset, depending on the application. For
instance, a meaningful set of combining algorithms to be
considered for a particular application might be {Permit-
overrides, Permit-unless-deny, First-applicable}, rather than
all the 11 rule combining algorithms in XACML 3.0. As such,
our approach considers each possible mutant P' = <PT, CA',
R> where CA' ∈ RCA and CA'≠CA and aims to generate a
query to show the difference between P and each P'.

Although CA and CA' are meant to be different, P and P' can
be functionally equivalent for certain PT and R, i.e., d(P,
q)=d(P', q) for any query q. For example, if R has only permit
rules, Deny-overrides and Permit-overrides would make no
difference. Let query (P, P') denote the function that returns
null if P and P' are functionally equivalent, otherwise returns a
query q such that d(P, q) ≠ d(P', q). Let Q = {q: q= query (P,
P’)  q ≠ null for each mutant P' =<PT, CA', R>, CA' ∈ RCA
and CA'≠CA}. CA in P is correct if and only if d(P, q)=o(q) for
any q∈ Q. In other words, CA is incorrect if there exists q∈Q
such that d(P, q) ≠ o(q). Here, determining whether the given
combining algorithm is correct or not requires user to define
o(q) according to the access control requirements. In our
approach, the maximum number of queries for which user
needs to define oracle values is |RCA| -1. This is much more
effective than reviewing all the rules in the policy or testing the
policy with many queries. As reviewed in Section VI, the
existing testing methods for XACML policies do not target the
detection of incorrect combining algorithms. They all generate
a large number of queries to which user has to define the oracle
value of each query.

The fault-based testing of XACML combining algorithms
in our approach involves two issues: (1) determine when P and
P' are functionally equivalent with respect to the given policy
target and rules; and (2) when P and P' are not functionally
equivalent, find a query q such that d(P, q) ≠ d(P', q). To
address the first issue, our technical report [14] has formalized
the semantic differences between the five rule combining
algorithms and between the six policy combining algorithms
with 49 theorems. These theorems describe the necessary and
sufficient conditions under which different combining
algorithms are functionally equivalent. Based on [14], this
paper focuses on the second issue by exploiting a constraint
solver for automated test generation. For example, the
following two theorems capture the semantic difference

between rule combining algorithms Deny-overrides and
Permit-overrides. Detailed proofs can be found in [14].

Theorem 1. Given policy P = <PT, Deny-overrides, R> and
P'= <PT, Permit-overrides, R>. If ri (1 i n) are all permit
rules or ri (1 i n) are all deny rules, then P and P' are
functionally equivalent.

Theorem 2. Given policy P=<PT, Deny-overrides, R> and
P'=<PT, Permit-overrides, R>, where R has at least one permit
rule and at least one deny rule. For any q, d(P, q) ≠ d(P', q) if
and only if there exists permit rule ri=<rti, rci, Permit> R,
deny rule rj =<rtj, rcj, Deny>  R , and query q, such that:
 (a) d(ri, q) = Permit  d(rj, q) ∈{Deny, I(D)} or

(b) d(ri, q) = I(P)  d(rj, q) = Deny.

 The above theorems lay the foundation for generating
query q such that d(P, q) ≠ d(P', q). The corresponding test
generation algorithm is described in the next section.

IV. FAULT-BASED TEST GENERATION

This section discusses how to design and implement query
(P, P') using constraint solver Z3-str. Z3 [6] is an efficient
SMT (Satisfiability Modulo Theories) Solver from Microsoft
Research. SMT generalizes Boolean Satisfiability (SAT) by
adding equality reasoning, arithmetic, fixed-size bit-vectors,
arrays, quantifiers, and other useful first-order theories. Z3
supports basic data types (e.g., Int and Bool) as well as data
structures (e.g., Array, List, BitVec, and Records). However,
Z3 does not directly deal with strings. To address this issue,
Z3-str [15] extends Z3 by treating strings as a primitive type
and supporting common string operations.

 In the following, we first introduce the basic functions that
generate queries for a pair of rules and then describes how they
are used in the query generation algorithms for comparing
combining algorithms. These basic functions represent the
queries used in the detailed proofs of the theorems [14]. We
also discuss how to implement the basic query generation
functions by transforming the corresponding targets and
conditions of an XACML policy into the input of Z3-str.

A. Query Generation Functions

Suppose r1 =<rt1, rc1, re1> and r2 =<rt2, rc2, re2> are two
rules. E, N, and I stand for Effect (Permit or Deny), N/A, and
Indeterminate, respectively. For simplicity, here we do not
consider targets of policies or policy sets, which are handled
similarly. The basic query generation functions are as follows:

 queryE_E(r1, r2): generate a query q to make both r1
and r2 produce the specified effects re1 and re2,
respectively (i.e., d(r1, q) = re1 and d(r2, q) = re2). In
this case, the rule targets and conditions are all satisfied,
i.e., rt1  rc1  rt2  rc2.

 queryE_N(r1, r2): generate a query q to make r1 produce
the specified effect re1 and r2 produce N/A (i.e., d(r1, q)
= re1 and d(r2, q) = N/A). In this case, rt1  rc1   (rt2
 rc2).

 queryE_I(r1, r2): generate a query q to make r1 produce
the specified effect re1 and r2 produce Indeterminate

435

(i.e., an error in the process of evaluation). d(r1, q) = re1
and d(r2, q) = I(D) when re2= Deny or I(P) when re2=
Permit.

 queryI_N(r1, r2): generate a query q to make r1 produce
Indeterminate and r2 produce N/A. In this case, d(r1, q)
= I(D) when re1= Deny or I(P) when re1= Permit. d(r2,
q) = N/A.

 queryN_N(r1, r2): generate a query q to make both r1
and r2 produce N/A (i.e., d(r1, q) = N/A, d(r2, q) = N/A).
In this case,  (rt1  rc1)   (rt2  rc2).

 queryI_I(r1, r2): generate a query to make both r1 and r2
produce Indeterminate.

Using the above functions, we can formalize the algorithms
for each pair of the combining algorithms according to the
formalized semantic difference [14]. Consider Deny-overrides
and Permit-overrides as an example. Algorithm 1 below
describes the query generation process based on Theorems 1
and 2. According to Theorem 1, if the rules are all permit rules
or all deny rules, they are functionally equivalent and thus no
query can be generated. This is corresponding to lines 1-4 in
Algorithm 1. According to Theorem 2, if a query makes a pair
of permit and deny rules produce Permit and Deny (or I(D))
respectively (i.e., condition (a) in Theorem 2), then Deny-
overrides and Permit-overrides produce different responses to
this query. This is corresponding to lines 6-18 in Algorithm 1.
Similarly, if a query makes a pair of deny and permit rules
produce Deny and I(P) respectively (i.e., condition (b) in
Theorem 2), Deny-overrides and Permit-overrides also
produce different responses to this query. This is done by lines
19-26 in Algorithm 1.

Algorithm 1: query(P=<PT, Deny-overrides, R>, P'=<PT,
Permit-overrides, R>)
Function: generate q such that d(P, q) ≠ d(P', q) if feasible.
Input: P=<PT, Deny-overrides, R>, P'=<PT, Permit-
overrides, R>
Output: query q or null

1. if rei= Permit for all i (1 i n) // Theorem 1
2. return null;
3. else if rei= Deny for all i (1 i n) // Theorem 1
4. return null;
5. else // Theorem 2
6. for ri = 1st permit rule to last permit rule, do
7. for rj =1st deny rule to last deny rule, do:
8. q = queryE_E(ri, rj);
9. if (q!=null)
10. return q;
11. else
12. q = queryE_I(ri, rj);
13. if (q!=null)
14. return q;
15. end if
16. end if
17. end for
18. end for // condition (a)
19. for ri = 1st deny rule to last deny rule, do:
20. for rj = 1st permit rule to last permit rule, do:
21. q = queryE_I(ri, rj);
22. if (q!=null)
23. return q;

24. end if
25. end for
26. end for // condition (b)
27. return null;
28. end if

B．Transforming XACML Constructs to Z3-str

The aforementioned basic query generation functions are
realized by transforming XACML constructs (i.e., targets and
conditions) to the input of Z3-str, executing Z3-str with the
transformed input, and translating the result of Z3-str to an
XACML query. Converting XACML targets and conditions
consists of two steps. In the first step, attributes in the given
targets and conditions (i.e., rt1, rc1, rt2, and rc2 in the
aforementioned basic query generation functions) are defined
as typed variables in Z3-str. The attributes have to be renamed
in Z3-str because the syntax of identifiers is different. The data
type of each XACML attribute is also changed to a data type in
Z3-str. XACML3.0 has 17 basic data types: string, Boolean,
integer, double, time, date, dateTime, anyURI, hexBinary,
base64 Binary, dayTimeDuration, yearMonthDuration,
rfc822Name, x500Name, xpathExpression, ipAddress, and
dnsName. Each of these data types can be mapped to a basic
data type or data structure in Z3-str. For example, date in
XACML can be corresponding to a record with three integer
fields. In the second step, the logical expressions of targets and
conditions are converted into Z3-str expressions. As the
conversion involves many non-trivial details, here we use some
examples to illustrate the idea. Consider the following rule
target in XACML (for clarity, URI links are omitted):

<AnyOf>
 <AllOf>
 <Match MatchId="…:function:string-equal">
 <AttributeValue DataType="…string">book</AttributeValue>
 <AttributeDesignator AttributeId="…resource:resource-id"
 Category="…attribute-category:resource"
 DataType="…string" MustBePresent="true"/>
 </AttributeDesignator>
 </Match>
 <Match MatchId="…:function:string-equal">
 <AttributeValue DataType="…string">buy</AttributeValue>
 <AttributeDesignator AttributeId="…:action:action-id"
 Category="…:attribute-category:action"
 DataType="…string" MustBePresent="true"/>
 </AttributeDesignator>
 </Match>
 </AllOf>
 <AllOf>
 <Match MatchId="…function:string-equal">
 <AttributeValue DataType="…string">teacher</AttributeValue>
 <AttributeDesignator AttributeId="…subject:subject-id"
 Category="…subject-category:access-subject"
 DataType="…string" MustBePresent="true"/>
 </AttributeDesignator>
 </Match>
 </AllOf>
</AnyOf>
<AnyOf>
 <AllOf>
 <Match MatchId="…function:string-equal">
 <AttributeValue DataType="…string">workday</AttributeValue>
 <AttributeDesignator AttributeId="…environment:day"
 Category="…environment-category: environment"
 DataType="…string" MustBePresent="true"/>
 </AttributeDesignator>

436

 </Match>
 </AllOf>

</AnyOf>

The above target has the same meaning as the following
logic formula:

((resource-id = book  action-id = buy)
 subject-id = teacher)  (day=workday)

where attributes resource-id, action-id, subject-id, and day are
all of the string type. A non-error query should provide a value
for each attribute because of MustBePresent="true". To
generate a query to satisfy the target condition, it can be
converted into the following Z3-str input:

(declare-variable resourceid String)
(declare-variable actionid String)
(declare-variable subjectid String)
(declare-variable day String)
(assert (and (or (and (=resourceid "book")(= actionid

"buy")) (and (=subjectid "teacher"))) (or (and (= day
"workday")))))

(check-sat)
(get-model)

The “declare-variable” statements define variables for the
attributes, and the “assert” expression describes the constraint
to be solved.

For query generation functions queryE_E(r1, r2),
queryE_N(r1, r2), queryN_N(r1, r2), we only need to make the
targets and conditions true or false (e.g., rt1  rc1  rt2  rc2 for
queryE_E(r1, r2)). The other functions, queryE_I(r1, r2),
queryN_I(r1, r2), and queryI_I(r1, r2), however, generate
queries to produce Indeterminate by triggering an error status.
Generation of such queries is much more complicated as
discussed below. Typically, such a query should make part of a
target (or condition) produce an error while ensuring the other
part to evaluate to true or false. Therefore, query generation
may involve selecting an appropriate attribute to trigger an
error. In the above example, if we choose attribute day to
trigger an error (e.g., a query that provides no value for day),
then we have to ensure the resultant query must satisfy the
following condition:

 ((resource-id=book  action-id = buy)  subject-id = teacher)

If a query does not meet this condition, then day=workday
will not be evaluated. Thus, it will not produce an error. If we
choose subject-id to produce an error, then the resultant query
should make (resource-id = book  action-id = buy) evaluate
to false, otherwise subject-id = teacher will not be evaluated.

Generally, there are a great variety of errors that can result
in a response of Indeterminate in XACML 3.0 [12]. The errors
can be caused by problematic policies, queries, or both. Here
our focus is on the errors caused by queries, assuming that the
given policy is well-defined except for incorrect combining
algorithm. In addition, queryE_I(r1, r2), queryN_I(r1, r2), and
queryI_I(r1, r2) need to consider interactions of attributes in
both rules. When both rules use the same set of attributes, it
may be infeasible to create a particular type of error to obtain
Indeterminate. This is because a query making one rule
evaluate to I(D) or I(P) may also make the other rule evaluate
to I(D) or I(P).

V. EMPIRICAL STUDIES

We have implemented our approach based on Balana [1]
and applied it to nine case studies with different levels of
complexity. The case studies are summarized in Table I. K-
market is a sample application of Balana with a total of 12
rules in three policies. It is the only one that is originally
encoded in XACML 3.0. itrust, pluto, conference, and fedora
are real-world policies from literature. They were originally
encoded in XACML 2.0 or 1.0. In this paper, we manually
converted them into XACML 3.0 with the same semantics.
itrustX (X=5, 10, 20, or 40) is a policy synthesized from itrust.
It has X times as many rules as itrust. The new rules in itrustX
are created by replicating the existing rules with new attribute
values. Because the real-world policies from literature have a
small number of rules, we use itrustX to evaluate whether or
not our approach is applicable to large-scale policies.

TABLE I. SUBJECT POLICIES OF EMPIRICAL STUDIES

Name #Rules
Combining
algorithm

Equivalent
combining
algorithms

K-market [1] 12 Deny-overrides None

itrust2 64 First-applicable
Permit-overrides/
Deny-overrides

pluto 21 Permit-overrides None

conference 15 Permit-overrides None
fedora3 12 Deny-overrides None

itrust5 320 First-applicable
Permit-overrides/
Deny-overrides

itrust10 640 First-applicable
Permit-overrides/
Deny-overrides

itrust20 1,280 First-applicable
Permit-overrides/
Deny-overrides

itrust40 2,560 First-applicable
Permit-overrides/
Deny-overrides

We treat the combining algorithm in each original policy as

the correct one and inspect each policy to determine which
combining algorithms are functionally equivalent and which
are non-equivalent for each given policy. As shown in Table I,
the policies in itrust and its variations have equivalent
algorithms. As the correct combining algorithms in the given
policies are already assumed, the goal of our evaluation is to
demonstrate whether or not our approach can detect incorrect
combining algorithms and functionally equivalent combining
algorithms. Let P0 and CA0 denote the correct policy (or policy
set) and original combining algorithm respectively. We used
the following protocol to conduct the experiment:

 Use the correct policy P0 to create a policy or policy
set P with a different combining algorithm CA (i.e.,
CA ≠ CA0);

 Apply our approach to P, comparing CA to each of
the other combining algorithms (including CA0) and
try to generate a query for each pair;

 If no query is generated for <P, P0> and d(P, q) =
d(P0, q) for each query q generated in the above step,
then CA is correct and functionally equivalent to CA0,
otherwise CA is incorrect.

2 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=start
3 http://www.fedora.info

437

The results of our experiments have shown that our
approach was able to identify all correct and equivalent
combining algorithms as defined in Table I. Consider itrust (or
itrustX). First-applicable, Deny-overrides, and Permit-
overrides are equivalent. When any two of them were
compared, no query was generated, which means they have no
difference. When one of them was compared to Deny-unless-
permit or Permit-unless-deny, however, a query was generated,
which means they are different. In K-market, pluto, conference,
or fedora, a query was generated for each pair of combining
algorithms. This means that all the combining algorithms are
different with respect to the given policy target and rule.

VI. RELATED WORK

In Cirg [9], tests are generated from counterexamples
produced by the change-impact analysis of two synthesized
versions. The difference of the two versions of a policy targets
a test coverage goal (e.g., rule, or condition). Targen [10] is a
test generator for XACML policies that derives access requests
to satisfy all the possible combinations of truth values of the
attribute id-value pairs found in a given policy. Access requests
generated by Cirg and Targen typically use a limited number of
subject, resource, action, and environment attributes. A real
request, however, could use any combination of attributes.
Because requests are encoded in XML, they must conform to
the XML Context Schema. To address this issue, Bertolino et
al., have developed different test generation algorithms by
considering the structures of the Context Schema [2][3][5].
These algorithms can generate requests that use more than one
subject, resource, action, or environment attribute. They can
also produce robustness tests, where invalid attribute values are
generated randomly.

Li et al. have applied symbolic execution technique to
generation of access requests for testing XACML policies [8].
They convert the policy under test into semantically equivalent
C Code Representation (CCR) and symbolically execute CCR
to create test inputs and translate the test inputs to access
control requests. Mutation of the XACML policies [4][11] has
been commonly used to evaluate the above testing methods. In
this paper, however, we use combining algorithm-based
mutants to generate queries for determining whether or not the
given combining algorithm is correct.

VII. CONCLUSIONS

We have presented the fault-based approach to automated
test generation for determining existence or absence of
incorrect combining algorithms in XACML3.0 policies. Based
on the formalized semantic differences between combining
algorithms, our approach exploits a constraint solver to
generate a query to show the difference between the given
combining algorithms and each of the mutants. Our case
studies have demonstrated that the approach is effective and
applicable to sizeable policies. As a byproduct, our approach
can be a useful tutoring tool for learning about XACML
combining algorithms and their essential differences. When a
user is uncertain about which combining algorithm should be
used, she may compare similar algorithms and generate
requests to show the difference. This will help the user get an

accurate understanding and choose the right combining
algorithm.

This paper offers a first step towards general fault-based
testing of XACML policies. Incorrect combining algorithms
are just one type of faults in XACML policies. Other fault
types include incorrect (policy set, policy, and rule) target,
incorrect rule effect, and incorrect rule conditions [4][11]. Our
future work will investigate fault-based test generation
algorithms for each of these uncovered fault types.

ACKNOWLEDGMENT

This work was supported in part by US National Science
Foundation (NSF) under grants CNS 1123220 and 1359590.

REFERENCES
[1] Balana, “Open source XACML 3.0 implementation,”

http://xacmlinfo.org/2012/08/16/balana-the-open-source-xacml-3-0-
implementation/, 2012.

[2] A. Bertolino, S. Daoudagh, F. Lonetti, and E.marchetti. "Automatic
XACML requests generation for policy testing." Fifth IEEE
International Conference on Software Testing, Verification and
Validation (ICST), 2012, pp.842-849.

[3] A. Bertolino, S. Daoudagh, F. Lonetti, and E.marchetti. "The X-
CREATE Framework-A Comparison of XACML Policy Testing
Strategies." Proc. of the 8th International Conference on Web
Information Systems and Technologies (WEBIST). pp.155-160.

[4] A.Bertolino, S.Daoudagh, F.Lonetti, and E.Marchetti. "Xacmut: Xacml
2.0 mutants generator." Sixth IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW),.
2013, pp.28-33.

[5] A.Bertolino, S.Daoudagh, F.Lonetti, E.Marchetti and L.Schilders.
"Automated testing of extensible access control markup language-based
access control systems." Software, IET 7.4 (2013), pp.203-212.

[6] L.De.Moura, and N.Bjørner. "Z3: An efficient SMT solver." Tools and
Algorithms for the Construction and Analysis of Systems. Springer
Berlin Heidelberg, 2008, pp.337-340.

[7] V.C.Hu, D.Ferraiolo, R.Kuhn, A.Schnizer, K.Sandlin, R.Miller and
K.Scarfone. "Guide to Attribute Based Access Control (ABAC)
Definition and Considerations." NIST Special Pub 800 (2014): 162.

[8] Y.C.Li, Y.Li, L.Z.Wang, and G.Chen. "Automatic XACML Requests
Generation for Testing Access Control Policies." Proc. of the 26th
International Conf. on Software Engineering and Knowledge
Engineering (SEKE'14), Vancouver. July 2014.

[9] E. Martin and T. Xie. “Automated test generation for access control
policies,” in Supplemental Proc. of ISSRE, November 2006.

[10] E.Martin, and T.Xie. "Automated test generation for access control
policies via change-impact analysis." Proceedings of the Third
International Workshop on Software Engineering for Secure Systems.
IEEE Computer Society, 2007, pp.5-11.

[11] E.Martin, and T.Xie. "A fault model and mutation testing of access
control policies." Proceedings of the 16th International Conference on
World Wide Web. ACM, 2007, pp.667-676.

[12] L.J. Morell. “A theory of fault-based testing”, IEEE Trans. on Software
Engineering, Vol. 16, no.8, August 1990, pp. 844-857.

[13] OASIS, “eXtensible Access Control Markup Language (XACML)
Version 3.0,” http://www.oasisopen.org/committees/xacml/. 2013.

[14] D. Xu, Y. Zhang, N. Shen. “Formalizing semantic differences of
combining algorithms in XACML 3.0,” Technical Report, Boise State
University. http://cs.boisestate.edu/~dxu/research/TR-BSU-CS-
SEAL2014-001.pdf

[15] Y. Zheng, X. Zhang, and V. Ganesh, “Z3-str: A Z3-based string solver
for web application analysis,” Proc. of the 9th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE’13), pp.114-124.

438

http://xacmlinfo.org/2012/08/16/balana-the-open-source-xacml-3-0-implementation/
http://xacmlinfo.org/2012/08/16/balana-the-open-source-xacml-3-0-implementation/
http://www.oasisopen.org/committees/xacml/

Combining Feature Subset Selection and Data
Sampling for Coping with Highly Imbalanced

Software Data
Kehan Gao

Eastern Connecticut State University
Willimantic, Connecticut 06226

gaok@easternct.edu

Taghi M. Khoshgoftaar & Amri Napolitano
Florida Atlantic University
Boca Raton, Florida 33431

khoshgof@fau.edu, amrifau@gmail.com

Abstract—In the software quality modeling process, many
practitioners often ignore problems such as high dimensionality
and class imbalance that exist in data repositories. They directly
use the available set of software metrics to build classification
models without regard to the condition of the underlying software
measurement data, leading to a decline in prediction performance
and extension of training time. In this study, we propose an
approach, in which feature selection is combined with data
sampling, to overcome these problems. Feature selection is a
process of choosing a subset of relevant features so that the
quality of prediction models can be maintained or improved. Data
sampling seeks a more balanced dataset through the addition
or removal of instances. Three different approaches would be
produced when combing these two techniques: 1- sampling
performed prior to feature selection, but retaining the unsampled
data instances; 2- sampling performed prior to feature selection,
retaining the sampled data instances; 3- sampling performed
after feature selection. The empirical study was carried out on
six datasets from a real-world software system. We employed
one filter-based (no learning algorithm involved in the selection
process) feature subset selection technique called correlation-
based feature selection combined with the random undersampling
method. The results demonstrate that sampling performed prior
to feature selection, but retaining the unsampled data instances
(Approach 1) performs better than the other two approaches.

Index Terms—software defect prediction, feature selection,
data sampling, subset selection

I. INTRODUCTION

Quality and reliability are the most important factors that
determine success or failure of software projects, especially
for high-assurance and mission-critical systems. Early detec-
tion of faults prior to system deployment and operation can
help for reducing development costs and allowing for timely
improvement to the software product. Various techniques have
been developed for this purpose, and some of them have
achieved beneficial results. One such technique is software
quality classification, in which a classifier is constructed
on historical software data (including software metrics and
fault data) collected during the software development process,
then that classifier is used to classify new program modules
under development as either fault-prone (fp) or not-fault-prone
(nfp) [1]. This prediction can help practitioners to identify
potentially problematic modules and assign project resources

accordingly. However, two problems, high dimensionality and
class imbalance, may affect the classifier’s performance.

In the software quality modeling process, high dimension-
ality occurs when a data repository contains many metrics
(features) that are either redundant or irrelevant to the class
attribute. Redundant features refer to those having information
which is already contained in other features, while irrelevant
features are features with no useful information related to
the class variable. Several problems may arise due to high
dimensionality, including high computational cost and memory
usage, a decline in prediction performance, and difficulty of
understanding and interpreting the model.

Feature selection is a process of selecting a subset of rele-
vant features for use in model construction, so that prediction
performance will be improved or maintained, while learning
time is significantly reduced. Feature selection techniques
can be categorized as either wrappers or filters based on
whether a learning algorithm is involved in the selection
process, or be classified into feature subset selection and
feature ranking depending on whether features are assessed
collectively or individually [2]. Feature ranking scores the
attributes based on their individual predictive power. A po-
tential problem of feature ranking is that it neglects the
possibility that a given attribute may have better predictability
when combined with some other attributes, as compared to
when used by itself. Feature subset selection that evaluates a
subset of features as a group for suitability can overcome this
problem. Wrappers evaluate each subset through a learning
algorithm, while filters use a simpler statistical measure or
some intrinsic characteristic to evaluate each subset rather
than using a learning algorithm. Unfortunately, the building of
the classifiers required for wrapper-based feature selection are
frequently computationally infeasible. Thus, filter-based subset
selection is a promising option as it evaluates subsets but is
relatively faster than wrapper-based methods. In this study, we
would like to examine one filter-based feature subset selection
technique called correlation-based feature selection [3] in the
context of software quality modeling.

In addition to an excess number of features, many real-
world software datasets have the class imbalance problem,

(DOI reference number: 10.18293/SEKE2015-182)
439

wherein nfp modules significantly outnumber fp modules
(the class of interest). When training data is imbalanced,
traditional machine learning algorithms may have difficulty
distinguishing between instances of the two classes. In this
scenario, they tend to classify the fp modules as nfp modules
to increase overall prediction accuracy. However, these models
are rarely useful, because in software engineering practice,
accurately detecting the few faulty modules is of upmost
importance at the final stage of system testing, as it can
avoid defective software in deployment and operation. Many
solutions have been proposed to address the class imbalance
problem. A frequently used method is data sampling [4], which
attempts to achieve a certain balance (ratio) between the two
classes by adding instances to (oversampling), or removing
instances from (undersampling), the dataset. In this work, we
employ a simple and effective sampling technique, random
undersampling.

To cope with both high dimensionality and class imbalance,
we proposed a data pre-processing technique in which feature
selection is combined with data sampling. Some questions
may arise when we combine the two techniques, such as
which activity, feature selection or sampling, should be per-
formed first? In addition, given the subset of selected features,
should the training data be formed based on the sampled
dataset or unsampled dataset? To answer all these questions,
we investigate three different approaches: 1- data sampling
performed prior to feature selection and the training data
formed using selected features along with unsampled data;
2- data sampling performed prior to feature selection and
the training data formed using selected features along with
sampled data; and 3- data sampling performed after feature
selection. In this study, we are interested in learning the impact
of the feature subset selection technique on classification
results when used along with a sampling method as well as the
effects of three approaches on classification performance. To
our knowledge, no study have been done for combining a filter-
based feature subset selection method with data sampling and
investigating the three approaches in the domain of software
quality engineering.

The empirical study was carried out over two groups of
datasets (each group having three datasets) from a real-
world software system, all of which exhibit a high degree
of class imbalance between the fp and nfp classes. Five
different learners were used to build classification models. The
experimental results demonstrate that data sampling performed
prior to feature selection and the training data formed using
selected features along with unsampled data (Approach 1)
had significantly better performance than sampling performed
after feature selection (Approach 3), or retaining the sampled
data (Approach 2). As to the classification algorithms, Support
Vector Machine presented the best (or close to the best)
performance irrespective of training data or approach adopted,
and therefore was recommented. Multilayer Perceptron and K
Nearest Neighbors showed moderate performance, followed
Naı̈ve Bayes. Logistic Regression had fluctuate performance
with respect to various approaches used.

The rest of the paper is organized as follows. Section II
discusses related work. Section III provides methodology,
including more detailed information about feature subset se-
lection, data sampling, three combination approaches, learners,
performance metric, and cross-validation applied in this work.
A case study is described in Section IV. Finally, the conclusion
and future work are summarized in Section V.

II. RELATED WORK

Feature selection is an effective technique to solve the high
dimensionality problem, and therefore has been significantly
researched. Liu et al. [2] provided a comprehensive survey
of feature selection and reviewed its developments with the
growth of data mining. At present, feature selection has been
widely applied in a range of fields, such as text categoriza-
tion, remote sensing, intrusion detection, genomic analysis,
and image retrieval [5]. Hall and Holmes [6] investigated
six attribute selection techniques (information gain, ReliefF,
principal components analysis, correlation-based feature se-
lection (CFS), consistency-based subset evaluation (CNS), and
wrapper subset evaluation) and applied them to 15 datasets.
The comparison results show no single best approach for all
situations. However, a wrapper-based approach is the best
overall attribute selection schema in terms of accuracy if speed
of execution is not a considered factor. Otherwise, CFS, CNS,
and ReliefF are overall good performers. Feature selection also
gets more attention in the software quality assurance domain
[7]. Akalya et al. [8] proposed a hybrid feature selection model
that combines wrapper and filter methods and applied it to
NASA’s public KC1 dataset obtained from the NASA IV&V
Facility Metrics Data Program (MDP) data repository.

Besides an excess number of attributes, many real-world
classification datasets suffer from the class imbalance prob-
lem. A considerable amount of research has been done to
investigate this problem. Weiss [4] provided a survey of the
class imbalance problem and techniques for reducing the
negative impact imbalance has on classification performance.
An important technique discussed for alleviating the problem
of class imbalance is data sampling. The simplest form of
sampling is random sampling. Besides that, several more
intelligent algorithms for sampling data have been proposed,
such as SMOTE [9] and Wilson’s Editing [10].

While a great deal of work has been done for feature
selection and data sampling separately, limited research has
been done and reported on both together, especially in the
context of software quality assurance. Among the few studies,
Wahono et al. [11] proposed the combination of genetic
algorithms with the bagging (bootstrap aggregation) technique
for improving the performance of software defect prediction.
Genetic algorithms were applied to deal with the feature
selection, and bagging was employed to deal with the class
imbalance problem. In one of our previous studies [12], we
investigated combing feature ranking techniques with data
sampling and also examined different combination scenarios.
That previous study was focused on feature ranking, while the
present research concentrates on feature subset selection.

440

III. METHODOLOGY

A. Feature Subset Selection

For any feature subset selection method, a key issue dis-
cussed is the search strategy which determines how the subsets
are generated in the first place in order to avoid the O(2n)
models built with exhaustive search. We use the Greedy
Stepwise search mechanism in this paper. Greedy Stepwise
starts with an empty working feature set and progressively add
features, one at a time, until a stopping criterion is reached.
Greedy Stepwise uses forward selection to build the full
feature subset starting from the empty set. At each point in the
process, the algorithm creates a new family of potential feature
subsets by adding every feature (one at a time) to the current
best-known set. The merit of all these sets are evaluated, and
whichever performs best is the new known best set. This
process is repeated until none of the new subsets improve
performance. The final new “known-best” subset (that is, the
last subset which improved performance over its predecessor)
is then given as the procedure’s output.

The main goal of feature selection is to select a subset
of features that minimizes the prediction errors of classifiers.
In this study, we employ correlation-based subset selection
algorithm [3].

The correlation-based algorithm uses the Pearson correla-
tion coefficient [3], which can be calculated using the follow-
ing formula:

MS =
krcf√

k + k(k − 1)rff

In this formula, MS is the merit of the current subset of
features, k is the number of features, rcf is the mean of the
correlations between each feature and the class variable, and
rff is the mean of the pairwise correlations between every
two features.

B. Data Sampling

A variety of data sampling techniques have been studied
in the literature, including both majority undersampling and
minority oversampling techniques [9], [13]. We employ ran-
dom undersamping as the data sampling technique in this
study. Random undersampling is a simple, yet effective, data
sampling technique that achieves more balance in a given
dataset by randomly removing instances from the majority
(nfp) class. The post-sampling class ratio (between fp and nfp
modules) was set to 50:50 throughout the experiments.

C. Three Combination Approaches

The primary goal of this study is to evaluate the data pre-
processing technique in which the correlation-based feature
subset selection technique is combined with random under-
sampling. Three different scenarios (also called approaches)
would be produced depending on whether sampling is per-
formed before or after feature selection and which dataset,
sampled or unsampled data, is used to build a classifier. The
three different approaches are described as follows:

• Approach 1: sampling then feature selection retaining the
unsampled data instances

• Approach 2: sampling then feature selection retaining the
sampled data instances

• Approach 3: feature selection then sampling
Fig. 1 shows the three approaches denoted as DS-FS-

UnSam, DS-FS-Sam, and FS-DS, respectively.

D. Learners

The software defect prediction models in this study are
built using five different classification algorithms, including
Naı̈ve Bayes (NB) [14], MultiLayer Perceptron (MLP) [14],
K Nearest Neighbors (KNN) [14], Support Vector Machine
(SVM) [15], and Logistic Regression (LR) [14]. Due to space
limitations, we refer interested readers to these references
to understand how these commonly-used learners function.
The WEKA machine learning tool is used to instantiate the
different classifiers. Generally, the default parameter settings
for the different learners are used (for NB and LR), except for
the below-mentioned changes. A preliminary investigation in
the context of this study indicated that the modified parameter
settings are appropriate.

In the case of MLP, the hiddenLayers parameter was
changed to ‘3’ to define a network with one hidden layer
containing three nodes, and the validationSetSize pa-
rameter was changed to ‘10’ to cause the classifier to leave
10% of the training data aside for use as a validation set to
determine when to stop the iterative training process. For the
KNN learner, the distanceWeighting parameter was set
to ‘Weight by 1/distance’, the kNN parameter was set to ‘5’,
and the crossValidate parameter was turned on (set to
‘true’). In the case of SVM, two changes were made: the
complexity constant c was set to ‘5.0’, and build
Logistic Models was set to ‘true’. A linear kernel was
used by default.

E. Performance Metric

The Area Under the ROC (receiver operating characteristic)
curve (i.e., AUC) is one of the most widely used single
numeric measures that provides a general idea of the predictive
potential of the classifier. The ROC curve graphs true positive
rates versus the false positive rates. Traditional performance
metrics for classifier evaluation consider only the default de-
cision threshold of 0.5. ROC curves illustrate the performance
across all decision thresholds. A classifier that provides a large
area under the curve is preferable over a classifier with a
smaller area under the curve. A perfect classifier provides an
AUC that equals 1. AUC is of lower variance and is more
reliable than other performance metrics such as precision,
recall, and F-measure [16].

F. Cross-Validation

For all experiments, we employed 10 runs of 5-fold cross-
validation (CV). That is, for each run the data was randomly
divided into five folds, one of which was used as the test data
while the other four folds were used as training data. All the

441

Selected

Attributes

Sampled

Fit Data

Original

Fit Data

Selected

Attributes

Data

Sampling

(DS)

Feature

Selection

(FS)

Original

Fit Data

DS-FS-UnSam

(Approach 1)

FS-DS

(Approach 3)

DS-FS-Sam

(Approach 2)

Feature

Selection

(FS)

Fig. 1. Three approaches for combining feature selection with data sampling

TABLE I
DATA CHARACTERISTICS

Dataset Rel. thd #Attr. #Inst. fp nfp
% # %

2.0 10 209 377 23 6.1 354 93.9
Eclipse 1 2.1 5 209 434 34 7.8 400 92.2

3.0 10 209 661 41 6.2 620 93.8
2.0 5 209 377 52 13.8 325 86.2

Eclipse 2 2.1 4 209 434 50 11.5 384 88.5
3.0 5 209 661 98 14.8 563 85.2

preprocessing steps (feature selection and data sampling) were
done on the training dataset. The processed training data was
then used to build the classification model and the resulting
model was applied to the test fold. This cross-validation was
repeated five times, with each fold used exactly once as the
test data. The five results from the five folds then was averaged
to produce a single estimation. In order to lower the variance
of the CV result, we repeated the CV with new random splits
10 times. The final estimation is the average results over the
10 runs of 5-fold CV.

IV. A CASE STUDY

A. Datasets

In our experiments, we use publicly available data,
namely the Eclipse defect counts and complexity met-
rics dataset obtained from the PROMISE data repository
(http://promisedata.org). In particular, we use the metrics and
defects data at the software packages level. The original data
for Eclipse packages consists of three releases denoted 2.0, 2.1,
and 3.0 respectively. Each release as reported by Zimmerman
et al. [17] contains the following information: the name of
the package for which the metrics are collected (name), the
number of defects reported six months prior to release (pre-
release defects), the number of defects reported six months
after release (post-release defects), a set of complexity metrics
computed for classes or methods and aggregated in terms of
average, maximum, and total (complexity metrics), and the

abstract syntax tree of the package consisting of the node size,
type, and frequency (structure of abstract syntax tree(s)). For
our study we transform the original data by: (1) removing all
non-numeric attributes, including the package names, and (2)
converting the post-release defects attribute to a binary class
attribute with fault-prone (fp) being the minority class and not-
fault-prone (nfp), the majority class. Membership in each class
is determined by a post-release defects threshold thd, which
separates fp from nfp packages by classifying packages with
thd or more post-release defects as fp and the remaining as
nfp. In our study, we use thd = {10, 5} for releases 2.0 and
3.0 while we use thd = {5, 4} for release 2.1. This results
in two groups. Each group contains three datasets, one for
each release. The reason why a different set of thresholds is
chosen for release 2.1 is that we would like to keep similar
class distributions for the datasets in the same group. All
datasets contain 209 attributes (208 independent attributes and
1 dependent attribute). Table I shows the characteristics of the
datasets after transformation for each group. These datasets
exhibit different distribution of class skew (i.e., the percentage
of fp examples).

B. Results and Analysis

The results (in terms of AUC) of the correlated-based
feature subset selection technique combined with random
undersampling averaged over 10 runs of 5-fold CV for each
dataset are reported in Table II, which contains the results for
all five learners and three combination approaches. For a given
learner, the best combination approach is highlighted in bold
for each dataset. Among the 30 best performers, 23 are from
Approach 1, 6 from Approach 3 and the remaining one from
Approach 2.

Fig. 2 provides comparisons of three combination ap-
proaches along with various classification algorithms averaged
over the respective groups of datasets. The charts intuitively
demonstrate that

• Approach 1 performed better than the other two ap-
proaches for all the learners in Eclipse 1 (see Fig. 2(a)).

442

TABLE II
CLASSIFICATION PERFORMANCE

(a) Eclipse 1
Release Approach NB MLP KNN SVM LR

1 0.8437 0.8513 0.8738 0.8772 0.8657
2.0 2 0.8234 0.8301 0.8555 0.8488 0.7626

3 0.8205 0.8011 0.8606 0.8458 0.7193
1 0.8312 0.8612 0.8688 0.9031 0.8730

2.1 2 0.8204 0.8327 0.8507 0.8734 0.7894
3 0.8319 0.8371 0.8867 0.8861 0.7885
1 0.8891 0.8844 0.8834 0.9146 0.9097

3.0 2 0.8843 0.8605 0.8747 0.9075 0.8445
3 0.8783 0.8696 0.8628 0.9068 0.7721

(b) Eclipse 2
Release Approach NB MLP KNN SVM LR

1 0.8273 0.8654 0.8705 0.9064 0.8880
2.0 2 0.8302 0.8624 0.8736 0.8807 0.8383

3 0.8397 0.8580 0.8656 0.8934 0.7865
1 0.8219 0.8509 0.8377 0.8909 0.8818

2.1 2 0.8150 0.8355 0.8364 0.8657 0.8395
3 0.8119 0.8363 0.8544 0.8828 0.8548
1 0.8766 0.8963 0.8915 0.9336 0.9348

3.0 2 0.8708 0.8951 0.8878 0.9180 0.9186
3 0.8777 0.9025 0.9006 0.9222 0.9268

TABLE III
ANOVA FOR THE ECLIPSE DATASETS

(a) Eclipse 1
Source Sum Sq. d.f. Mean Sq. F p-value
Approach 0.1217 2 0.0609 25.89 0.000
Error 1.0508 447 0.0024
Total 1.1725 449

(b) Eclipse 2
Source Sum Sq. d.f. Mean Sq. F p-value
Approach 0.0156 2 0.0078 5.20 0.006
Error 0.6701 447 0.0015
Total 0.6856 449

• Approach 1 performed better than the other two ap-
proaches for the MLP, SVM, and LR learners in Eclipse
2, while for the NB and KNN learners, Approach 1
displayed similar or slightly worse performance than
Approach 3 (see Fig. 2(b)).

• The advantage of Approach 1 is obvious when the SVM
and LR learner were employed.

• Some learners, like LR, are significantly affected by the
combination approach adopted, while others, like NB and
KNN, are more robust with different approaches.

We further carried out a one-way analysis of variance
(ANOVA) F-test on the classification performance to examine
if the three combination approaches are statistically different
or not. Note that all the statistical analysis was performed over
each individual group of datasets, since each group displayed
a distinct degree of class imbalance. In addition, as learner is
not the focus of this paper, the factor taken into account only
is the three combination approaches. The null hypothesis for
the ANOVA test is that all the group population means are the
same, while the alternate hypothesis is that at least one pair of

0.65

0.70

0.75

0.80

0.85

0.90

0.95

NB MLP KNN SVM LR

Eclipse 1

Approach 1

Approach 2

Approach 3

(a) Eclipse 1

0.80

0.82

0.84

0.86

0.88

0.90

0.92

NB MLP KNN SVM LR

Eclipse 2

Approach 1

Approach 2

Approach 3

(b) Eclipse 2

Fig. 2. Comparisons of three approaches

means is different. Table III shows the ANOVA results. The
p-value is less than the cutoff 0.05 for the factor, meaning
that the alternate hypothesis is accepted, namely, at least two
approach means are significantly different from each other.

We further conducted a multiple comparison test on the
factor with Tukey’s honestly significant difference (HSD)
criterion. For both the ANOVA and multiple comparison tests,
the significance level was set to 0.05. Fig. 3 shows the multiple
comparisons for both groups of datasets. The figures display
graphs with each group mean represented by a symbol (◦)
and 95% confidence interval as a line around the symbol. Two
means are significantly different if their intervals are disjoint,
and are not significantly different if their intervals overlap.
The assumptions for constructing ANOVA and Tukey’s HSD
models were validated. From these figures we can see the
following points:

• Approach 1 had significantly better classification per-
formance than Approaches 2 and 3 for both groups of
datasets.

• Approach 2 and Approach 3 showed similar performance
(no significant difference). Approach 2 performed slightly
better than Approach 3 for Eclipse 1, while Approach
2 had slightly worse performance than Approach 3 for
Eclipse 2.

Overall, when the correlation-based feature selection tech-
nique is used along with the random undersampling method,
we strongly recommend the data pre-processing approach in
which sampling is performed prior to feature selection and
the training data is formed using selected features along with
unsampled data. This approach is especially effective when
SVM and LR are used as classifiers.

443

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

Approach 3

Approach 2

Approach 1

(a) Eclipse 1

0.855 0.86 0.865 0.87 0.875 0.88 0.885 0.89

Approach 3

Approach 2

Approach 1

(b) Eclipse 2

Fig. 3. Multiple comparison for three approaches

V. CONCLUSION

In this study, we proposed feature subset selection combined
with data sampling to overcome the high dimensionality and
class imbalance problems that often affect software quality
classification. Three approaches were investigated: 1- sampling
performed prior to feature selection, retaining the unsampled
data instances; 2- sampling performed prior to feature selec-
tion, retaining the sampled data instances; and 3- sampling
performed after feature selection. More specifically, we were
interested in investigating the correlation-based feature se-
lection method used along with random undersampling and
studying the effect of three combination approaches.

In the experiments, we applied these techniques to six
datasets from a real-world software system. We built classifi-
cation models using five learners. The results demonstrate that
among the three data pre-processing approaches, sampling per-
formed prior to feature selection and retaining the unsampled
data (Approach 1) had significantly better performance than
sampling performed after feature selection (Approach 3) or
sampling performed prior to feature selection but retaining the
sampled data (Approach 2). Of the five learners, Support Vec-
tor Machine presented the best performance, while Multilayer
Perceptron and K Nearest Neighbors demonstrated average
performance. Logistic Regression performed variously with
respect to different data pre-processing approaches. In contrast,
Naı̈ve Bayes showed relatively consistent performance for
various approaches.

Future work will involve comparisons between feature rank-

ing and feature subset selection as well as between wrapper
subset selection and filter subset selection.

REFERENCES

[1] A. K. Pandey and N. K. Goyal, “Predicting fault-prone software module
using data mining technique and fuzzy logic,” Special Issue of Interna-
tional Journal of Computer and Communication Technology, vol. 2, no.
2-4, pp. 56–63, 2010.

[2] H. Liu, H. Motoda, R. Setiono, and Z. Zhao, “Feature selection: An
ever evolving frontier in data mining,” in Proceedings of the Fourth In-
ternational Workshop on Feature Selection in Data Mining, Hyderabad,
India, 2010, pp. 4–13.

[3] M. A. Hall, “Correlation-based feature selection for machine learning,”
Ph.D. dissertation, The University of Waikato, Hamilton, New Zealand,
1999.

[4] G. M. Weiss, “Mining with rarity: A unifying framework,” SIGKDD
Explorations, vol. 6, no. 1, pp. 7–19, 2004.

[5] V. Kumar and S. Minz, “Feature selection: A literature review,” Smart
Computing Review, vol. 4, no. 3, pp. 211–229, June 2014.

[6] M. A. Hall and G. Holmes, “Benchmarking attribute selection techniques
for discrete class data mining,” IEEE Transactions on Knowledge and
Data Engineering, vol. 15, no. 6, pp. 1437 – 1447, Nov/Dec 2003.

[7] K. Gao, T. M. Khoshgoftaar, and N. Seliya, “Predicting high-risk pro-
gram modules by selecting the right software measurements,” Software
Quality Journal, vol. 20, no. 1, pp. 3–42, 2012.

[8] C. Akalya devi, K. E. Kannammal, and B. Surendiran, “A hybrid feature
selection model for software fault prediction,” International Journal on
Computational Sciences and Applications, vol. 2, no. 2, pp. 25–35, Apr.
2012.

[9] N. V. Chawla, K. W. Bowyer, L. O. Hall, and P. W. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[10] R. Barandela, R. M. Valdovinos, J. S. Sanchez, and F. J. Ferri, “The
imbalanced training sample problem: Under or over sampling?” In Joint
IAPR International Workshops on Structural, Syntactic, and Statistical
Pattern Recognition (SSPR/SPR’04), Lecture Notes in Computer Science
3138, no. 806-814, 2004.

[11] R. S. Wahono, N. Suryana, and S. Ahmad, “Metaheuristic optimization
based feature selection for software defect prediction,” Journal of
Software, vol. 9, no. 5, pp. 1324–1333, May 2014.

[12] K. Gao and T. M. Khoshgoftaar, “Software defect prediction for high-
dimensional and class-imbalanced data,” in Proceedings of the 23rd
International Conference on Software Engineering & Knowledge Engi-
neering (SEKE’2011), Eden Roc Renaissance, Miami Beach, USA, July
7-9, 2011, 2011, pp. 89–94.

[13] C. Seiffert, T. M. Khoshgoftaar, J. V. Hulse, and A. Napolitano,
“Rusboost: A hybrid approach to alleviating class imbalance,” IEEE
Transactions on Systems, Man, and Cybernetics, Part A, vol. 40, no. 1,
pp. 185–197, 2010.

[14] I. H. Witten, E. Frank, and M. Hall, Data Mining: Practical Machine
Learning Tools and Techniques, 3rd ed. Morgan Kaufmann, 2011.

[15] J. Shawe-Taylor and N. Cristianini, Support Vector Machines, 2nd ed.
Cambridge University Press, 2000.

[16] Y. Jiang, J. Lin, B. Cukic, and T. Menzies., “Variance analysis in
software fault prediction models,” in Proceedings of the 20th IEEE In-
ternational Symposium on Software Reliability Engineering, Bangalore-
Mysore, India, Nov. 16-19 2009, pp. 99–108.

[17] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proceedings of the 29th International Conference on Soft-
ware Engineering Workshops. Washington, DC, USA: IEEE Computer
Society, 2007, p. 76.

444

A Software Defect-Proneness Prediction Framework: A new approach using
genetic algorithms to generate learning schemes

Juan Murillo-Morera
Department of Informatics

National University of Costa Rica
Heredia, Costa Rica

juan.murillo.morera@una.cr

Marcelo Jenkins
Department of Computer Science

University of Costa Rica
San José, Costa Rica

marcelo.jenkins@ecci.ucr.ac.cr

Abstract

Recently, defect prediction software is an important re-
search topic in the software engineering field. The demand
for development of good quality software has seen a rapid
growth in the last few years. The software measurement
data collected during the software development process in-
clude valuable information about software projects status,
progress, quality, performance, and evolution. The software
fault prediction in the early phases of software develop-
ment can help and guide software practitioners to focus the
available testing resources on the weaker areas during the
software development. OBJECTIVE: This paper presents
an approach that combines three phases: data preprocess-
ing, attribute selector and learning algorithms using a ge-
netic approach and select the best combination. METHOD:
The framework is comprised of 1) scheme learning gener-
ator. This component evaluates performance of the learn-
ing schemes and suggests the best option according to each
data set analyzed, 2) defect predictor component builds
models according to the evaluated learning schemes and
predicts software defects with new data agreed to the con-
structed model. CONCLUSIONS: The framework has con-
sidered more combinations of learning schemes than other
proposals which select the model configuration manually,
which means that there are more possibilities to find better
learning schemes for each data set. The computational pro-
cessing of the genetic approach was less costly than Song
approach. Finally, The Genetic approach presented an im-
provement of 0.032 equivalent to 3.2% more than Song ap-
proach.

Index terms— software metrics, learning schemes, ge-
netic algorithms, fault prediction models, software quality.

doi:10.18293/SEKE2015-099

I. INTRODUCTION

Software fault prediction has been an important research
topic in the software engineering field for more than 30
years [1]. The software measurement data collected dur-
ing the software development process include valuable in-
formation about software projects status, progress, quality,
performance, and evolution. Software fault prediction mod-
els is a significant part of software quality assurance and
commonly used to detect faulty software modules, based
on software measurement data (software metrics) [2], [3],
[4].

Current defect prediction that works on: estimating the
number of defects remaining in software systems, dis-
covering defect associations, and classifying the defect-
proneness of software components, typically into two
classes, defect-prone and non defect-prone [1].

The first approach, employs statistical methods to esti-
mate a number of defects or defect density [5], [6]. The
prediction result can be used as an important measure for
the software developer and can be used to control the soft-
ware process, for example, decide whether to schedule fur-
ther inspections or pass the software artifacts to the next de-
velopment step. The second approach, borrows association
rule mining algorithms from the data mining community to
reveal software defect associations [7]. The third approach,
works classifying software components as defect-prone and
non-defect-prone, means of metric based classification: [8]
and [2]. Being able to predict which components are more
likely to be defect-prone supports better targeted resting re-
sources and therefore improved efficiency. Unfortunately,
classification remains a largely unsolved problem. In or-
der to address this, researchers have been using increas-
ingly learning schemes that include data preprocessing, at-
tribute selector and learning algorithms. The main prob-
lem is how to select the best learning scheme, according to
specific data set?. Actually does not exist a proposal that

445

uses genetic algorithm with the objective to select the best
learning scheme configuration using a specific data set. The
learning schemes have an important problem, it is how to
select a correct combination of data preprocessing, attribute
selection and learning algorithm for a particular data set.
This novel framework has the capacity to combine different
learning schemes with the objective to find the best solution
according to the parameters selected and the evaluation of
the performance metrics proposed.

The general objetive of this research is to propose a
Defect-Proneness Prediction Framework with two specific
components: learning scheme generator and defect predic-
tor.

The remainder of the article is structured as follows. Sec-
tion 2 presents the background. Section 3 presents the re-
lated work. The proposed framework is presented in Sec-
tion 4. Section 5 genetic approach. Section 6 experimental
setup. Finally, Section 7 conclusions and future work.

II. BACKGROUND

A. Metrics

Defect predictors from static code attribute were used
and defined by McCabe [9] and Halstead [10]. McCabe
and Halstead are module-based metrics, where a module
is the smallest unit of functionality (In other computational
languages, modules may be called function or method).
The static code attributes are useful, easy to use, and widely
used.

Useful. The static code attributes have been used for the
prediction of software projects with similar characteristics
[1], [11]. Easy to use. Static code attribute like lines of
code and the McCabe/Halstead attribute can be automati-
cally and cheaply collected, even for very large systems. By
contrast, other methods, such as manual code reviews, are
labor-intensive. Depending on the review methods. Widely
used. Many researchers use static attribute to guide soft-
ware quality predictions: [1], [12], [13].

Halstead attribute were derived by Maurice Halstead in
1977. He argued that modules that are hard to read are more
likely to be fault prone. Halstead estimates reading com-
plexity by counting the number of operators and operands
in a module. A complete reference [11].

An alternative to Halstead attributes, are the complexity
attributes proposed by Thomas McCabe in 1976. Unlike,
Halstead and McCabe argued that the complexity of path-
ways, between module symbols is more than just a count of
the symbols. A complete reference [11].

B. Data sets

The most frequent data sets used by software fault pre-
diction researchers are: CM1, JM1, KC1, KC2, KC3, KC4,
MW1, MC1, MC2, PC1, PC2, PC3, PC4, PC5, AR1, AR3,
AR4 and AR6. These data sets have been evaluated respect
to metrics, number of attribute, number of modules among
other parameters [1].

C. Learning Schemes

The Learning schemes are composed by: data prepro-
cessing, attribute selector and learning algorithms [1]. Data
preprocessing: It is very important to build learners. The
data are pre-processed, such as removing outliers, handling
missing values, and discretizing or transforming numeric at-
tribute. Attribute selection: It is important when the data
set may not have originally been intended for defect predic-
tion. Not all the attributes may be helpful for defect predic-
tion. Attribute selection methods can be categorized as fil-
ters or wrappers [15]. Learning algorithms: Once attribute
selection has been completed, the best attribute subset are
processed. Then the data set represents those attribute sub-
set and the learning algorithm are used to build the learner.

III. RELATED WORK

Traditionally, many researchers have explored issues like
the relative metrics of McCabe’s cyclomatic complexity,
Halstead’s software science measures, and lines of code
counts for building defect predictors. However, Menzies et
al. [11], published a study in 2007 in which they compared
the performance of two machine learning techniques (Rule
Induction and Naive Bayes) to predict software components
containing defects. To do this, they used the NASA MDP
repository, which, at the time of their research, contained 10
separate data sets. They claimed that “such debates are ir-
relevant since how the attributes are used to build predictors
is much more important than which particular attributes are
used” and “the choice of learning method is far more im-
portant than which subset of the available data is used for
learning”

Song et al. [1] published a study in which they proposed
a fault prediction framework based on Menzies study but
analyzing only 12 learning schemes. They argued that al-
though “how is more important than which”. The choice of
which attribute subset is used for learning is not only cir-
cumscribed by the attribute subset itself and available data,
but also by attribute selectors, learning algorithms, and data
preprocessors. It is well known that there is an intrinsic
relationship between a learning method and an attribute se-
lection method.

446

Malhotra [14] published a systematic review in which
she proposed as future work “There are very few studies
that examine the effectiveness of evolutionary algorithms”.
She points out “The future studies may focus on the predic-
tive accuracy of evolutionary algorithms for software fault
prediction”.

The aim of this paper is to build a framework that gen-
erates learning schemes using genetic algorithms. Previous
works have analyzed relationships between data preprocess-
ing, attribute selection and learning algorithms. They have
used a few combinations, mainly because the evaluation of
the learning schemes is processed manually, selecting the
combinations. The novel proposed framework tries to se-
lect the best combination per data set, according to AUC
value(maximum value).

IV. PROPOSED FRAMEWORK

It is very important before building defect prediction
model(s) to decide which learning schemes should be used
to construct the model. Thus, the predictive performance of
learning scheme should be determined for future data. This
novel framework is based on Song framework [1]. The pro-
posed framework uses the methodology of Song except how
this select the learning schemes. The novel framework con-
sists of two components: 1) Learning Schemes Generator
and 2) Defect Prediction. Figure 1, contains the details.

Figure 1. Fault prediction framework with ge-

netic implementation

A. Learning Schemes Generator

The Learning Schemes Generator is a fundamental part
of the software defect prediction framework. At this stage,

different learning schemes are evaluated, the best one is
selected. A Genetic algorithm is used to select the best
learning scheme for each data set analyzed based on their
AUC. The historical data (represented by 90% of the origi-
nal data) was divided into training and test data applying a
MxN cross-validation based on [1].

The main steps of the Learning Scheme Generator are:

• Each data set is divided into two parts: One part is used
as historical data and the other part is viewed as the
new data. The historical data are represented by 90%
of the original data, while the new data are represented
by 10% of the original data.

• The historical data is divided into training set and test
set, using a MxN cross-validation.

• The learning scheme elements (data preprocessing, at-
tribute selector and learning algorithm) are selected by
a genetic approach considering the fitness function.

• Data preprocessing is applied to both: training and test
set. The test set is selected by the genetic algorithm.
The result is training data(’) and test data(’) (see Fig-
ure 1).

• Attribute selector is applied to only training set and
the best subset of attribute is applied to training and
test set. The result is training data(”) and test data(”)
see Figure 1. The attribute subset is computed in-
teractively using a Filter strategy with NxM cross-
validation different than Song, who used Wrapper
evaluation. The difference is that Wrapper is compu-
tationally more costly. This a task of the genetic ap-
proach.

• Learning algorithm are build with a training set, and
evaluated with a test set. This a task of the genetic
approach.

B. Defect Prediction

The defect prediction is part of the proposed frame-
work, consists of predictor construction and defect predic-
tion. The inputs in this stage are: newData, is a data set that
represents the new datas. It represents the 10% of the whole
data. The other input is the HistoricalData that represents a
data set with the other 90% data. Finally, the last input is
the learned scheme selected by genetic algorithm. The fi-
nal results are a log file with two labels: actual value and
predicted value.

The main steps of the defect prediction are:

• This component uses the learning scheme selected by
genetic algorithm in the previous stage.

447

• A predictor is build with the selected learning scheme.
The whole historical data is used (not apply NxM
cross-validation). All the historical data is used to
build the predictor, it is expected that the constructed
predictor has stronger generalization ability.

• After the predictor is build, new data are preprocessed
in the same way as historical data, then the constructed
predictor can be used to predict software defect with
preprocessed new data.

C. Difference between the approach proposed and
Song approach

The approach proposed is based on Song methodology
[1]. The contributions of this novel proposal are:

• Song framework only works with 12 learning schemes.
The proposed framework works with more combina-
tions. Our maximum search space is: Data prepro-
cessing = 7, attribute selector = 40 and learning algo-
rithms = 41 in total (7*40*41) = 11480. Selecting au-
tomatically the best learning scheme per data set, while
Song framework selects the learning scheme manually
working with backward elimination and forward selec-
tion.

• Song framework works with Wrapper in the attribute
selection. This computationally is very costly. The
proposed framework works with Filter using NxM
cross-validation.

• Song framework has a scheme evaluation component.
The outcome of this component is a performance re-
port. The proposed framework has a generator of
schemes and the outcome is the best scheme learning
per data set processed.

V. GENETIC SETUP

The genetic approach to be explained in the following
sections: Chromosome, Operators and Fitness Function.

A. Chromosome

The chromosome is represented by a binary chain of 0s
and 1s. The representation is a triple of < DP,AS,LA >
that genetically is modified. The first part of the chromo-
some represents the data pre-processing. For the data pre-
processing(DP) there are 7 possibilities, represented by a
binary chain of 23 = 3 bits. Additionally, for the attribute
selector(AS), there are a maximum of 40 metrics (Hasteald,
McCabe and LOC), representing a binary chain maximum

of 26 = 6 bits. A bit with value 1 represent that this met-
ric is present in the data set, while a bit with value 0 that
it is not represented. Finally for the learning algorithms
(LA) there are 41 different possibilities, representing a bi-
nary chain maximum of 26 = 6 bits.

B. Operators

The operators of selection, reproduction, crossover and
mutation used were applied using the following configura-
tion: (Population size = 50, Generations = 100, Crossover
probability = 0.6, Mutation probability = 0.1 and Elitism
2%

C. Fitness Function

The Fitness was defined: f(x) = AUC value. AUC
value (min 0 - max 1) is defined by X-Axis and Y-Axis.
It is an Area Under Curve. Y-Axis is represented by True
Positive Rate or Sensitivity and X-Axis is represented by
False Positive Rate or (1-Specificity).

VI. EXPERIMENTAL SETUP

A. Data sets

The data sets used were taken from the public NASA
MDP repository. This study used 10 data sets: CM1, KC3,
MW1, PC1, PC2, PC3, PC4, KC1, MC1 and MC2.

B. Performance Measures

This study has used the metric AUC for the comparison
between approaches. Table 1 shows a complete description
about this metric.

Table 1. Metrics

Name Description Representation
TPR Sensitivity TP/(TP + FN)
FPR 1- Specificity 1� (TN/(TN + FP))
AUC Area Under Curve Plot Specificity (X-axis)

Plot Sensitivity (Y-axis)

However, AUC was selected for the comparison to re-
spect other approaches [1].

C. Learning Schemes

The learning schemes used in this study were:

• Data Preprocessing (DP): Replace Missing Values,
Math Expression, RandomSubset, Remove, Standard-
ize, Numeric transform and Numeric to nominal.

448

• Attribute selector (AS): This selection is a task of the
genetic approach. A subset of metrics or predictors
variables are selected according to the genetic selec-
tion.

• Learning Algorithm (LA): The families are: Bayes (9),
Functions (9), Rules (9) and Trees (14). A complete
reference [15]

D. Baseline and Comparison

The Song study [1] (Song-Approach) was selected as
baseline for this article. The mean of Backward Selection
(BS) algorithm and the mean of Forward Elimination (FE)
algorithm were calculated and the best result compared with
the Genetic approach (G-Approach). Table 2 shows the
comparison results with the same decimal representation
[1].

Table 2. AUC-Average

Data
set

Attributes Modules Song-
Approach

G-
Approach

CM1 38 344 0.634 (1) 0.728 (3)

KC3 40 200 0.689 (10) 0.679 (17)

MW1 38 759 0.635 (7) 0.697 (2)

PC1 38 264 0.711 (15) 0.727 (8)

PC2 37 1585 0.684 (11) 0.635 (14)

PC3 38 1125 0.687 (18) 0.718 (16)

PC4 38 1399 0.789 (13) 0.829 (6)

KC1 22 2096 0.697 (4) 0.778 (20)

MC1 39 9277 0.828 (19) 0.858 (12)

MC2 40 127 0.654 (5) 0.679 (9)

Table 2 shows that G-Approach had a better perfor-
mance according to AUC metric. The G-Approach pre-
sented an average of 0.732 while Song-Approach presented
an average of 0.700. The difference between G-approach
and Song-approach has been an improvement of 0.032
equivalent to 3.2%. The order of the runs are represented
by tiny numbers (see Table 2).

E. Statistical Analysis and Discussion

Figure 2 shows that Genetic approach is better than Song
approach per each data set except PC2 and KC3, where the
model proposed presented less performance. The MC1 data
set has presented the best performance with AUC = 0.85.
Additionally, other datasets where the Genetic approach
presented better performance were: MW1, PC1, PC3, PC4,
KC1, MC1 and MC2.

The data sets with the worst performance in the Genetic
approach were: PC2 with a difference of 0.045 respect to
Song approach and KC3 with a difference of 0.01 respect to
Song. The data set that presented with the Genetic approach

the best performance was CM1 with a difference of 0.094.
(see Figure 2).

The order of runs was random. Twenty runs was exe-
cuted using the model proposed in section IV.

The first factor used was the framework. This factor has
been represented by two levels (Genetic and Song). Other-
wise, the second factor was the data set and has been rep-
resented by ten levels: CM1, KC3, MW1, PC1, PC2, PC3,
PC4, KC1, MC1 and MC2.

Figure 2. Performance Frameworks

The hypotheses were:

• Hypothesis 1: test the relationship between frame-
works according to their performance
H0frm: Are there significant difference between
frameworks respect to AUC? H1frm: Are there not
significant difference between frameworks respect to
AUC?

• Hypothesis 2: test the relationship between data sets
according to their performance H0ds: Are there sig-
nificant difference between data sets respect to AUC?
H1ds: Are there not significant difference between
data sets respect to AUC?

Wilcoxon signed rank test was applied for the first hy-
pothesis. A significant difference was found in H0frm.
This means that H0frm is rejected and exist a difference
statistically significant. The pvalue reported was pvalue =
0.04883 < ↵ = 0.05. This represented that Genetic ap-
proach was better than Song approach, 0.7328 and 0.7004
respectively. Further, the Genetic approach was computa-
tionally less costly than Song approach, because the ge-
netic approach has implemented the evaluation with the fil-
ter strategy while Song approach has implemented the eval-
uation with the wrapper strategy.

The second hypothesis was evaluated with an one-way
anova study. The first step of this study has been the
study of normality, homogeneity of variances and inde-
pendence assumption. Shapiro-Wilk and Bartlett test were

449

applied. The results for both test were: normality test,
pvalue = 0.9051 > ↵ = 0.05 and homogeneity of vari-
ances test pvalue = 0.898 > ↵ = 0.05 (framework) and
pvalue = 0.90 > ↵ = 0.05 (data set). The independence
principle was assumed. This means not violation of nor-
mality assumption. Then the next step was the validation of
pvalue for Hds. A significant difference was found into Hds,
this reported a pvalue = 0.0496 < ↵ = 0.05. This means
that H0ds is rejected and a Fisher Test can be applied. The
Fisher test presented the following results:

Table 3. Group of data sets

Group DataSets
Group 1 MC1
Group 2 PC4
Group 3 PC1,KC1
Group 4 CM1, PC3
Group 5 KC3,MW1, PC2,MC2

Table 3 shows the groups with significant difference. All
the data sets from different groups have presented signifi-
cant difference. The group with more data sets is the group-
5, and the rest of the groups have been represented with one
or two data sets. An important issue is the interval represen-
tation. For example, Genetic approach presented an AUC
value: min = 0.635, max = 0.858 while Song approach pre-
sented an AUC values: min = 0.635, max = 0.828.

VII. CONCLUSIONS AND FUTURE WORK

The framework has included more combinations of
learning schemes than other proposals. This means, there
are more possibilities to find better learning schemes for
each data set. The genetic approach has presented bet-
ter performance than Song approach in the majority of the
cases, representing eight of ten data sets. The data set where
the Genetic approach had less performance was PC2 while
the data set with more performance was MC1.

The predominant learning schemes were: DP= {Replace
Missing Values, Math Expression}, AS={Genetic selec-
tion} and LA={Naive Bayes, Decision Tree, Lineal Regres-
sion, Boosting, Bagging, Support Vector Machine}.

Another important conclusion has been the size of the
data sets. For example MC1 is the data set with more size
(9277 modules). This data set represented the best AUC
(0.858) in the Genetic approach. A similar situation with
KC1, this data set represented the second in size (2096 mod-
ules) and the second with the best AUC (0.82). This situa-
tion is different in Song approach where the AUC was re-
ported with a value of 0.82 (MC1) and (0.69) KC1 respec-
tively.

As Future work, it is necessary to include more data
sets with different size, noise level and imbalance data from

public and private repositories. It is very important more ex-
perimentation with different parameters configuration and
others methods of crossover and mutation that improvement
the performance.

VIII. ACKNOWLEDGMENTS

This research was supported by Doctoral Program in
Computer Science at the University of Costa Rica. Costa
Rican Ministry of Science, Technology and Telecommuni-
cations (MICITT).

REFERENCES

[1] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general soft-
ware defect-proneness prediction framework,” Software Engineer-
ing, IEEE Transactions on, vol. 37, no. 3, pp. 356–370, 2011.

[2] H. Wang, T. M. Khoshgoftaar, and A. Napolitano, “Software mea-
surement data reduction using ensemble techniques,” Neurocomput-
ing, vol. 92, pp. 124–132, 2012.

[3] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A sys-
tematic literature review on fault prediction performance in software
engineering,” Software Engineering, IEEE Transactions on, vol. 38,
no. 6, pp. 1276–1304, Nov 2012.

[4] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and
comprehensive investigation of methods to build and evaluate fault
prediction models,” Journal of Systems and Software, vol. 83, no. 1,
pp. 2–17, 2010.

[5] J. Munson and T. Khoshgoftaar, “Regression modelling of software
quality: empirical investigation,” Information and Software Technol-
ogy, vol. 32, no. 2, pp. 106–114, 1990.

[6] N. B. Ebrahimi, “On the statistical analysis of the number of errors
remaining in a software design document after inspection,” Software
Engineering, IEEE Transactions on, vol. 23, no. 8, pp. 529–532,
1997.

[7] Q. Song, M. Shepperd, M. Cartwright, and C. Mair, “Software defect
association mining and defect correction effort prediction,” Software
Engineering, IEEE Transactions on, vol. 32, no. 2, pp. 69–82, Feb
2006.

[8] R. Malhotra, “Comparative analysis of statistical and machine learn-
ing methods for predicting faulty modules,” Applied Soft Computing,
vol. 21, pp. 286–297, 2014.

[9] T. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308–320, December 1976.

[10] M. Halstead, Elements of Software Science. Elsevier, 1977.
[11] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code

attributes to learn defect predictors,” Software Engineering, IEEE
Transactions on, vol. 33, no. 1, pp. 2–13, Jan 2007.

[12] F. Rahman and P. Devanbu, “How, and why, process metrics are bet-
ter,” in Proceedings of the 2013 International Conference on Soft-
ware Engineering. IEEE Press, 2013, pp. 432–441.

[13] R. Malhotra and A. Jain, “Fault prediction using statistical and ma-
chine learning methods for improving software quality.” JIPS, vol. 8,
no. 2, pp. 241–262, 2012.

[14] R. Malhotra, “A systematic review of machine learning techniques
for software fault prediction,” Applied Soft Computing, vol. 27, pp.
504–518, 2015.

[15] I. H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2005.

450

Using Time Series Models for Defect Prediction in
Software Release Planning

James Tunnell and John Anvik
Computer Science Department
Central Washington University
Ellensburg, WA 98926, USA
[tunnellj, janvik]@cwu.edu

Abstract—A time series model is presented that uses historical
project information to predict the number of future defects, given
the number of proposed features and improvements to be
completed. This allows for hypothetical release plans to be
compared by assessing their predicted impact on testing and
defect-fixing time. We selected the VARX time series model as a
reasonable approach. The accuracy of the model appeared low
for a single dataset, but the error was found to be normally
distributed.

Keywords-software defect prediction; quality assurance; release
planning; time series model;

I. INTRODUCTION

There are two primary concerns in software release
planning: improving functionality and maintaining high
quality. Both objectives are constrained by limits on
development time and budget, so the scope of the planned work
must be limited to accommodate fixing inevitable defects
(bugs) that will arise. In this way, a high quality software
product can be produced while also improving its functionality.

A significant consideration in the release planning process
is the amount of time allocated for testing and bug-fixing. If
this factor is not considered, the project risks a slip in the
schedule or in the quality of the product. As the time and effort
required for testing and bug-fixing will likely be a function of
the defects introduced during development, it is desirable to be
able to predict the number of expected defects.

A potential application for defect prediction is to compare
different release plans according to their estimated bug fallout
and subsequent impact on testing and bug-fixing times. This
would assist release planners in ensuring that the total
development time does not exceed the project’s time budget for
a release. The comparison of different release plans is integral
to release plan optimization, which is the focus of The Next
Release Problem [2], a key problem in Search-Based Software
Engineering (SBSE) [9, 13].

Most approaches to defect prediction focus on either code
analysis [1, 5, 6, 8, 11] or historical defect information [7, 10,
13]. However, for the defect prediction model to be useful in
comparing release plans, the model should also depend on the
planned features and improvements planned for the next
release, as well as the defects from past releases.

This paper presents an approach to defect prediction that
can be applied for a proposed release. A multivariate time
series model is used that incorporates information about
proposed features, improvements, and historical defect data.

The paper proceeds as follows. First, Section II presents
further motivation for the use of a time series model for
predicting defects. Next, we present an overview of concepts in
time series modeling in Section III. Section IV presents our
modeling methodology and Section V presents the application
of the approach, which is applied to a software project dataset.
Related work is presented in Section VI, and the paper
concludes in Section VII.

II. MOTIVATION

Release planners typically rely on both their experience and
project conventions to generate a release plan by selecting
planned features and improvements such that the estimated
time to test for and fix defects will not cause a schedule slip.

However, if the defect estimation technique is only loosely
based on past experience, as with a rule-of-thumb, then it may
prove too coarse for comparing multiple release plans, and may
not provide any quantitative difference between release plans
that are similar (but not the same). Even for dissimilar release
plans, such an approach still has the disadvantage of lacking
confidence intervals to quantify prediction uncertainty.

An alternative approach is to develop a model that will take
into account the differences in composition of features and
improvements between the release plans. Such a model would
assume some explanatory relationship.

Since predictive models rarely have perfect accuracy,
confidence levels are an important part of any prediction to
allow release planners to assess the risk of relying on the defect
prediction. Planners can choose a more narrow prediction
window, in exchange for a larger risk that the prediction is
inaccurate. Conversely, a wider prediction window means that
the potential cost range is also wider with a lower risk of
inaccuracy.

III. TIME SERIES MODELING

In this section, time series and autoregressive models are
introduced. Then, further concepts related to modeling,
exogeneity and stationarity, are discussed.

(DOI reference number: 10.18293/SEKE2015-174)

451

A. Time Series

A time series is a collection of observations that occur in
order, with an underlying process that is stochastic. Critically,
the sequence of observations cannot be re-arranged, as each
observation is typically dependent on one or more previous
observation. This dependence is termed autocorrelation and
accounting for it is one of the primary functions of a time series
model.

B. Autoregressive Models

A basic autoregressive (AR) model is formed as a linear
combination of previous values, plus a white noise term that
accounts for random variations (the stochastic portion). When
the AR model is extended to the multivariate case (i.e. allowing
for multiple time series), a Vector AR (VAR) model is formed.
This model will support not only a time series for defect count,
but also time series for the two release plan variables:
improvements and new features.

The VAR model can be further extended by considering
one or more variables to be exogenous, making a VARX
model. Exogenous variables are used to explain the other non-
exogenous variables, but the model does not attempt to explain
the exogenous variables themselves. This model meets the
requirements of the explanatory model described in the
Motivation section, since it would allow release plan variables
to be kept exogenous and used only to explain defect count.

C. Stationarity and Trends

A strictly stationary process has a probability distribution
that is time-invariant. This means statistics such as mean and
variance do not change. The AR, VAR, and VARX models
discussed so far require time series data that is stationary,
where the probability distribution of the underlying stochastic
process is time-invariant. Testing can identify a time series as
being stationary, trend stationary, or non-stationary.

A time series can be established as non-stationary by testing for
the presence of a unit root in the underlying AR model. The
unit root test used is the Augmented Dickey Fuller (ADF) test.
On the other hand, a stationarity test establishes a time series as
trend stationary by testing for the presence of a deterministic
trend function (either a constant or a line). The stationarity test
used is the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test.

IV. MODELING METHODOLOGY

The typical methodology used for building time series
models involves specification, estimation, and diagnostics
checking [4, p. 478]. Once specified and estimated, the
diagnostic checking step ensures that only valid models are
considered for selection. The final step of modeling is
selection, where the models are compared by some model
selection criterion [4, p. 581]. This section presents our
approach to specifying, estimating, diagnostics checking, and
model selection for defect prediction.

A. Model Specification & Estimation

The specification of a VARX(p) model is accomplished by
choosing an order p, which is the number of autoregressive

terms to include in the model. Then the model parameters can
be estimated by a procedure such as least squares regression.

The model order will directly affect the number of
parameters included in the model. One goal of specification is
to avoid having too many parameters relative to the number of
observations. To this end, we establish a ratio K of the number
of observations to the number of parameters. By choosing a
minimum value for this ratio, Kmin, and using the formula for
the number of parameters in a VARX(p) model, the following
equation can be used to obtain a maximum model order pmax:

where there are m time series variables and n samples. This
establishes an upper bound on model order, so model
specification will include the generation of models having
order 1, 2, …, pmax. These models, with their estimated
parameters, will be candidates for final model selection after
undergoing diagnostic checking.

B. Diagnostics Checking

Diagnostic checking is performed to verify that a model can
be accepted. This step includes testing for stability and for
model inadequacy. A stability test checks that the roots of the
AR process characteristic equation lie outside the unit circle [4,
p. 56]. To test inadequacy, the Ljung-Box is used to compare
the model residuals to white noise.

C. Model Selection

Model selection criteria are used to compare models by
their fit, to minimize residual error, and to penalize the model
to some degree based on the number of parameters. Of the
commonly used selection criteria, the standard Akaike
Information Criterion (AIC) was used because “[t]he penalty
for introducing unnecessary parameters is more severe for BIC
and AICC than for AIC” [3]. A less severe penalty for the
number of parameters would be preferred in this case, since we
are already limiting the number of parameters in the model
specification step, and because additional parameters may in
fact be necessary to account for time series autocorrelations
with higher lags.

V. APPLICATION OF METHODOLOGY

To validate our approach of using a time series model to
predict defects, we used historical data taken from a software
project’s issue tracking system. Issue tracking systems are used
by projects for tracking development tasks, features,
enhancements, and bugs, both past and present.

We chose the MongoDB1 Core Server project as the data
set. This project was chosen as it has been active since May
2009 and uses JIRA2 for issue tracking, which made it easy to
collect data. Issues for versions 0.9.3 through 3.0.0-rc6 were
exported from the project’s JIRA web interface into XML

1 MongoDB is an open source, document-oriented database system.
2 JIRA is an issue tracking and project management system made by

Atlassian.

452

format. The fields collected from each issue report were: type,
priority, creation date, and resolution date.

Only issues marked as fixed, complete, or done were used
for modeling. In the data collected, 18 (0.26%) issues did not
meet this criterion and were excluded. Also, JIRA supports
issues having sub-tasks. Any sub-task whose parent issue was
not in the dataset was considered orphans and discarded. There
were 20 (0.28%) orphaned sub-tasks in the dataset. The final
dataset contained 7042 issues.

A. Data Preparation

After creation, the dataset was operated on to prepare it for
time series modeling. The data was sampled, made stationary,
and windowed. These three steps are discussed next.

1) Sampling
First, the data was sampled at regular periods to measure

the following: number of improvements resolved, number of
features resolved, and number of bugs created. A 7-day
sampling period was used.

2) Establishing Stationarity
To establish stationarity, the ADF unit root and KPSS

stationarity tests were applied. In both tests, it was assumed
that the deterministic component was constant (without slope).
These test results did not agree, so the time series data was
differenced and the tests were rerun. The test results then
agreed, establishing the stationarity of the differenced data.

3) Time Windowing
It can be assumed that the software development process

underlying a given project changes over time. Rather than
developing a model that also changes over time, the data was
kept for modeling only if it occurred within a time window.
This was done to limit the effect of process change on the
model. A time window of 78 weeks (approximately 18 months)
was selected to balance between more observations (to capture
consistent long-term behaviors), and fewer observations (to
limit exposure to behavioral changes).

Applying this time window, the data was divided into three
78-week windows. As the data was differenced, the first
sample was skipped in each data period. These windowed
periods are denoted W2-79, W80−157, and W158−235.

B. VARX Modeling

1) Use of the VARX Model
The VARX model was chosen to model the time series

because there are multiple time series to be considered jointly.
The Y∆imp and Y∆new time series were both considered exogenous,
so that hypothetical future values could be considered when
comparing release plans. And by selecting Kmin = 4, a
maximum model order of pmax = 6 is obtained, so only model
orders 1 through 6 were estimated for later diagnostic checking.

C. Model Diagnostic Checking

Candidate models were tested for stability and inadequacy.
A 5% significance level was used in the Ljung-Box test. All
model orders were found stable for all windowed periods.

Several model orders were found to be inadequate, specifically
orders 1-2 for period W2-79, and order 5 for period W158−235.

D. Model Selection

Models that were not rejected for instability or inadequacy
were then compared and the best for each windowed period
was selected by AIC selection criterion. The best model orders
found were 4, 1, and 1, for windowed periods W2-79, W80−157,
and W158−235, respectively. The fit for each of these models was
demonstrated by plotting one-step predictions along with actual
values, as shown for each model in Fig. 1. The fit for each
appears to track well with many of the significant changes in
the time series.

Figure 1. One-step predictions vs actual values, for each model selected by
AIC score.

E. Forecasting

Selected models were used to forecast the number of
defects in the next sample after the end of the window. The
input for making these predictions was the number of
improvements and features that were expected to be resolved.

Table I shows the resulting single-step, out-of-sample
defect prediction data for the first time window, W2-79,
including the upper and lower bounds of the confidence
intervals. The actual number of improvements, features, and
bugs in the prediction sample period was 4, 0, and 18,
respectively. Notice that the actual number of bugs, 18, is
outside of the 90% confidence interval, which spans from 6.4
to 13.79 (see the outlined row in Table I). On the other hand,
the actual number of future defects in the next window,
W80−157, was 17. This was inside the 90% confidence interval,
which spans from 13.38 to 18.00.

453

TABLE I. FORECASTING AT THE END OF THE FIRST TIME WINDOW, W2-79.

FUTURE OUTPUT VALUES ARE PREDICTED FOR A NUMBER OF HYPOTHETICAL
INPUT VALUES.

Improvements Features
90%

lo
75%

lo mean
75%

hi
90%

hi
2 0 5.61 6.72 9.31 11.89 13.00
2 1 5.54 6.66 9.24 11.82 12.93
2 2 5.48 6.59 9.17 11.75 12.86
2 3 5.41 6.52 9.10 11.69 12.80
4 0 6.40 7.51 10.09 12.68 13.79
4 1 6.33 7.44 10.03 12.61 13.72
4 2 6.27 7.38 9.96 12.54 13.65
4 3 6.20 7.31 9.89 12.48 13.59

To gauge how well prediction will work in general, a

sliding 78-week window was applied, starting at the first
sample period, and shifting by one sample period after
modeling. Only actual numbers were used in this forecasting.
The resulting distribution of errors between the mean
forecasted bugs and the actual number of bugs is shown as a
histogram in Fig. 2. Note that the histogram appears to be
normally distributed. The actual number of bugs was inside the
90% confidence interval for 23.87% of the sliding window
ranges.

Figure 2. Histogram of forecast mean errors obtained using a 78-week
sliding window.

VI. RELATED WORK

Prior defect prediction techniques generally fall into two
categories: those based on code analysis and those based on
statistical analysis.

Code analysis techniques typically involve a detailed
analysis of code, using metrics such as lines of code (LOC) [1]
or decision points [5]. Henry and Kafura [8] defined metrics
from design document information for use in defect prediction.

Statistical analysis techniques create mathematical models
based on historical defect occurrence information, such as
regression analysis and extrapolation [10]. Graves et al. [7]
developed a weighted time-damping model using a statistical
analysis of change management data. And Singh et al. [12]
applied the Box-Jenkins method to time series datasets from
the Eclipse and Mozilla projects to predict defect counts using
an ARIMA model, though their model is non-explanatory and
is only in terms of past defects. We included past features and
improvements as model inputs, so defects can be predicted
using values for any given hypothetical release plan.

VII. CONCLUSIONS AND FUTURE WORK

The VARX modeling methodology was successfully
applied to the time series data collected from the MongoDB
project. A model was created for each of three time windows
and then used to make defect predictions for a range of
hypothetical values for the number of improvements and
features. Also, a picture of the prediction performance was
obtained by applying the approach with a sliding window. This
resulted in a normally distributed error between the mean
forecasted and actual number of bugs. A low proportion
(23.87%) of the sliding window ranges included the actual
number of bugs using a 90% confidence interval. These results
indicate that the VARX model had a low prediction accuracy
for the actual number of defects in the MongoDB dataset.

Having applied the VARX time series model to one project
dataset, a next step is to apply the methodology to other
software project data sets, such as Eclipse or Firefox, to better
determine the applicability of the modeling approach.

REFERENCES
[1] F. Akiyama. An example of software system debugging. In IFIP

Congress (1), volume 71, pages 353–359, 1971.

[2] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley. The next release
problem. Information and software technology, 43(14):883–890, 2001.

[3] S. Bisgaard and M. Kulahci. Time series analysis and forecasting by
example. John Wiley & Sons, 2011.

[4] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis.
John Wiley, 2008.

[5] J. E. Gaffney. Estimating the number of faults in code. Software
Engineering, IEEE Transactions on, SE-10(4):459–464, July 1984.

[6] E. Giger, M. Pinzger, and H. C. Gall. Comparing fine-grained source
code changes and code churn for bug prediction. In Proceedings of the
8th Working Conference on Mining Software Repositories, pages 83–92.
ACM, 2011.

[7] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault
incidence using software change history. Software Engineering, IEEE
Transactions on, 26(7):653–661, 2000.

[8] S. Henry and D. Kafura. The evaluation of software systems’ structure
using quantitative software metrics. Software: Practice and Experience,
14(6):561–573, 1984.

[9] H. Jiang, J. Zhang, J. Xuan, Z. Ren, and Y. Hu. A hybrid ACO algorithm
for the next release problem. In Software Engineering and Data Mining
(SEDM), 2010 2nd International Conference on, pages 166–171. IEEE,
2010.

[10] P. L. Li, M. Shaw, J. Herbsleb, B. Ray, and P. Santhanam. Empirical
evaluation of defect projection models for widely-deployed production
software systems. SIGSOFT Softw. Eng. Notes, 29(6):263–272, Oct.
2004.

[11] N. Nagappan and T. Ball. Use of relative code churn measures to predict
system defect density. In Software Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on, pages 284–292. IEEE,
2005.

[12] L. L. Singh, A. M. Abbas, F. Ahmad, and S. Ramaswamy. Predicting
software bugs using arima model. In Proceedings of the 48th Annual
Southeast Regional Conference, page 27. ACM, 2010.

[13] J. Xuan, H. Jiang, Z. Ren, and Z. Luo. Solving the large scale next
release problem with a backbone-based multilevel algorithm. Software
Engineering, IEEE Transactions on, 38(5):1195–1212, 2012.

454

An Ontology for Describing Security Events

Hossein Fani

University of New Brunswick
Fredericton, NB, Canada
hosseinfani@gmail.com

Ebrahim Bagheri
Ryerson University

Toronto, ON, Canada
bagheri@ryerson.ca

Abstract— Mining security events helps with better
precautionary planning for community safety. However, incident
records are expressed in diverse and application dependent
formats which impedes common comprehension for automatic
knowledge extraction and reasoning. In this paper, we present
Security Incident Ontology, SIO, a novel light-weight domain
ontology for security incidents. We use Timeline to annotate the
temporal facts of incidents and adopt Event to represent any
security issues from indecent behavior to assault to more adverse
crime which raise the security alarm in a community. It will
present a unique way to the security incident detectors, a police
officer, Robocops, or intelligent CCTV cameras, to report
security events. We use SIO in populating security incident
notifications of Integrated Risk Management (IRM) at Ryerson
University to evaluate its competency, for Ryerson University
campus has both business and housing area in the vicinity and
encompass not only high rate, but also wide variety of different
security issues. SIO is developed in OWL 2 with Protégé.

Ontology; Semantic Web; OWL; Security Incident; Event.

I. INTRODUCTION

Environmental health and safety is the utmost priority of
any municipal governor. In order to enhance the continual
security of a community nearly real-time software systems are
developed to monitor the area, record the events and send
alarm notifications [1] [2]. For an ounce of prevention is worth
a pound of cure, lots of efforts have been put to find security
incidents’ root cause, prediction, and prevention by mining
huge datasets of records [3]. Unfortunately, these records do
not comply with a widely accepted standard in representation
which impede the automatic knowledge extraction and
reasoning. Local and official security guards or crime detector
CCTV cameras [4] express same event with different schemes.
In such a situation, we desperately need an ontology which, to
our knowledge, thus far, we do not have any. In this paper, we
devised a novel light-weight domain ontology, Security
Incident Ontology (SIO), which is able to describe any kind of
security risk from indecent behavior to assault to more adverse
crime. Temporal aspects of security incidents are indispensable
and SIO links to Timeline [5] ontology. Timeline is an
extension to OWL-Time [6] [7] [8]. Timeline together with
Event [9] ontology are able to address any general events.
However, in SIO we specify the Event to security incident
types and Agent class to Victim and Subject. SIO is developed
in OWL2 with Protégé ontology editor. To show SIO
capability in answering any competency question in security
paradigm, we automatically extracted security incidents from
security notifications of Integrated Risk Management (IRM)
system at Ryerson University during year 2014 and represent
them in SIO. Ryerson University campus has both business and

housing area in its neighborhood and located at Toronto
downtown. As a result, it can be a well suited area for not only
high security threat rate, but also embodies vide variety of
different crimes. According to our populated dataset, on a
monthly basis, two security incidents of different types occur in
the campus. Moreover, we are going to publish our populated
dataset in Linked Data [10] to not only get it into the Linked
Open Data Cloud [11], but also provoke SIO as the widely
accepted representation for security events.

The remainder of this paper is organized as follows. Section
2 introduces the background and the initiatives for the work. In
section 3, we construct event oriented security incident
ontology. Section 4 presents the ontology evaluation by
automatically populating security incident instances from
Ryerson IRM notifications. Finally, the conclusions are given
in section 5.

II. BACKGROUND

Ryerson University believes an informed community is a
safer one. The Integrated Risk Management (IRM) system
notifies all Ryerson staff, students, faculty and alumni (who
have graduated within the past five years) by security incident
alarms which are delivered directly via email [12]. For the
urban campus is located at the downtown center of Toronto, the
most populous, yet commercial capital city in Canada [13],
such system seems indispensable to continually enhance the
safety and security of the community. Each notification
includes temporal facts of the incident, location, victim and
suspect details, and a brief account of whole event. Likewise,
Toronto Police Service (TPS) provides several mailing lists for
which citizens of different divisions can sign up to be kept up-
to-date on current happenings across the city, and in their
community [14]. However, lack of standard way between
reporting parties in representing security happenings and
verification mechanism impedes automatic, yet reliable crime
analysis and knowledge discovery for long-term planning. As a
result, TPS has a disclaimer in its crime statistics webpage [15]
and states firmly they make no warranty to the content,
accuracy, timeliness or completeness of the statistics.

In order to provide a reliable, yet explicit understanding of
incidents reported from vast variety of detectors we took an
ontological approach. The ontology-based description approach
is not novel. There are several initiatives to model event-
focused concepts in knowledge representation [16], medical
informatics [17] [18], sports [19], business news [20], scholarly
events [21], life events [22] and multimedia community [23]
[24]. Crime Emergency Event Model (CE2M) [25], despite
what its name implies, is an ontology for emergency events

This work is funded by the Natural Sciences and Engineering
Research Council of Canada.
DOI reference number: 10.18293/SEKE2015-101

455

rather than crimes. [26] constructs an event ontology to
describe cyber-crimes on the level of event for crimes in Web
such as online fraud, internet pornography, illegal trade, false
advertising, violations of privacy, etc. And it is still not a
general crime domain ontology. [27] describes a knowledge
base of Politically Motivated Violent Events (PMVE)
consisting of a domain ontology and of instance data. Although
the work explain almost nothing about its ontology and focus
more on extracting violent crimes from online news reports, it
provides us, along with the aforementioned ontology models,
an insight into how to model our generic security event
structure. We reuse a most cited event ontology, Event [9],
instead of recreating a new one and specifically adopt it to
Security Incident Ontology, SIO, a novel explicit specification
of security incident conceptualization.

III. SECURITY INCIDENT ONTOLOGY

A. Ontology Engineering

Ontology development is not an easy task. It requires skills
and is still an art rather than technology. People need a
sophisticated methodology to help them develop an ontology
[28] . We use UPON, a methodology for ontology building
derived from the Unified Software Development Process [29].
UPON is use-case driven and iterative process methodology,
well-suited for developing domain ontologies. The iteration
counts for inception, elaboration, construction, and transition
phase are 1, 2, 2, and 1 respectively in the first release version
of our ontology. Our ontology editor is Protégé. The
environment not only facilitates reusing other ontologies by
importing ontologies as well as its ontology library [30], but
also has visualization tools which help an engineer to have big
clear picture of ontology compartments. Finally, our ontology
language is OWL2.

B. Event Ontology Adoption

Security incident is an event. That simply means:

<owl:Class rdf:ID="SecurityIncident">
 <rdfs:subClassOf rdf:resource="#Event" />
</owl:Class>

We either can create a new upper level core ontology for event
or reuse the most cited, yet suitable one for our work. We
prefer the latter one and adopt Event [9]. This ontology is based
on the view expressed by James F. Allen and George Ferguson
in [31] which states that events are primarily linguistic or
cognitive in nature and the world contains no events. Events
are just certain useful and relevant patterns of world changes.
Nonetheless, this ontology has already been proven useful in a
wide range of context, due to its simplicity and usability. The
ontology has event:Event at the heart and reuses Timeline [5]
ontology for temporal predicate event:time and Geo RDF
vocabulary [32] for spatial predicate event:place. Timeline
ontology itself has OWL-Time [6] at heart to express
instantaneous or extended time object along with a temporal
algebra. Additionally, it is able to describe timelines other than
the universal one which may be used in a recorded track or on
any media with a temporal extent. event:factor is everything
used in an event, event:product is whatever produced by an
event and event:sub_event provides a way to split a complex
event into simpler ones. Fig. 1.

However, security incidents have some discriminatory
characteristics. The event:agents in Event ontology is a victim
or suspect with this respect. event:product in security event is
presumed as a crime or safety threat. Furthermore, an incident
in this area may have spatial trajectory which demands change
in event:place property. Thus, Event ontology should be
customized to meet these needs.

C. Reification

From the survey and analysis of various security incidents,
glossary of terms is formed. . TABLE 1 are lists of new concepts
included in our SIO and Fig. 2 shows its inter-relations. SIO
leverage event:agent predicate of event:Event class for
modeling the sio:Victim and sio:Subject of
sio:SecurityIncident. We assume that security incident
should have at least one event:agent of type sio:Subject
which is owl:subClassOf foaf:Agent indirectly. This entity is
the most enriched and has predicates to describe and track the
subject in an incident such as. sio:height, sio:weight,
sio:hairColor, sio:image, sio:preState, sio:postState.
sio:preState explain the subject how he/she start to make a
security concern and sio:postState shows the his/her final
destiny e.g. flee, arrest, killed. sio:Victim, likewise, has these
predicates. It is worth mentioning that on the one hand
sio:Subject or sio:Victim may be sio:CommunityMember,
and on the other hand there is no is-a or kind-of relationship
between them. SIO leave it to the time when we instantiate a
security incident. By then, we can add rdf:type to manage the
security incident types. Moreover, a taxonomy of incidents has
been defined. Each type of incidents has its own class.

In addition to the mentioned concepts, we found that a same
incident can be reported by different report party, sometimes
with time lag between them. Hence, we add similarity relation
between incident entities to identify duplicated of a same
incident. We eschewed the obfuscation of relativity of
simultaneity [33] for the first version SIO and identify two
incidents which are simultaneous in location of space
(event:place) and location of time identical. As different
source of detection fortify the incident integrity, we do not
remove the duplicates and instead make an association between
them by built-in OWL property owl:sameAs.

Figure 1. The Event Model. This ontology deals with the notion of reified
events. It defines one main Event concept. An event may have a location,
a time, active agents, factors and products.

456

The SIO ontology specification and its Turtle version are
available at http://semionet.rnet.ryerson.ca/ontologies/sio.owl

TABLE I. A list of the major concepts and entities (second level) in the SIO
ontology version 1.0

Term Description

Security Incident

The set of connected events which reflects an
occurrence, unusual problem, incident,
deviation from standard practice, or situation
that requires follow-up action.

Sexual Assault

A form of sexual violence, is any involuntary
sexual act in which a person is threatened,
coerced, or forced to engage against their will,
or any non-consensual sexual touching of a
person

Assault with Weapon
In committing an assault, the subject carries,
uses or threatens to use a weapon or an
imitation thereof

Assault

The direct or indirect application of force to
another person, or the attempt or threat to apply
force to another person, without that person’s
permission

Indecent Exposure

Indecent exposure is the deliberate exposure in
public or in view of the general public by a
person of a portion or portions of his or her
body, in circumstances where the exposure is
contrary to local moral or other standards of
appropriate behavior

Voyeurism

Voyeurism is the sexual interest in or practice
of spying on people engaged in intimate
behaviors, such as undressing, sexual activity,
or other actions usually considered to be of a
private nature

Robbery
The act of taking or another person's property
(including attempts)

Victim

A victim of a security incident is an identifiable
person who has been harmed individually and
directly by the suspect, rather than by society as
a whole

Subject
A subject is a known person who initiate the
security incident usually by committing crime.

IV. EVALUATION

We believe that a successful domain ontology should I) be
capable of expressing any instance data and answer any
competency questions in the associated domain, II) become
popular and be reused by knowledge engineers in similar
domains. To show the first one, we populate the security
incidents which happens at Ryerson University urban campus.
Integrated Risk Management (IRM) system at Ryerson notifies
its community members including staff, students, faculty, and
alumni (who have graduated within the past five years) about
security incidents in a near real-time manner. The notification
is delivered to the email which has a hyper link to the incident
specific webpage. Ryerson could have provided us with the
whole incidents as this work is done partly under Ryerson
affiliation. Then we could easily extract information and
transform it to SIO way of representation by an Extract-
Transform-Load (ETL) engine or a mapper.

However, other engineers who wants to reuse our ontology
may not have same chance of data accessibility. Hence, we
continue to obtain the incidents information independently by
crawling the incidents webpages. This way, we accompany our
SIO with its crawlers as a fully-fledged solution. Moreover, we
have provided SPARQL and JDBC endpoint to our dataset in
jdbc:virtuoso://semionet.rnet.ryerson.ca:1111/charset=UTF-
8/log_enable=2 and http://semionet.rnet.ryerson.ca:8890/sparql
with Graph IRI http://ls3.rnet.ryerson.ca/SecurityIncident/test.
That means we have satisfy the 5 steps of Linked Open Data.
The steps (stars) are [34]:

★Available on the web (whatever format) but with an open
license, to be Open Data

★★Available as machine-readable structured data (e.g. excel
instead of image scan of a table)

★★★non-proprietary format (e.g. CSV instead of excel)

★★★★Use open standards from W3C (RDF and SPARQL) to
identify things, so that people can point at your stuff

★★★★★Link your data to other people’s data to provide context

Figure 2. A brief snapshot concepts reuse from foaf, geo, wn, time, event, and our sio. Red arrows imply inheritance or owl:subClassOf and the blues are
associations.

sio:Assault

sio:AssaultWithWeapon sio:SexualAssault

sio:Robberysio:Voyeurism

sio:SecurityIncident

event:Event

sio:IndecentExposure

sio:ServiceSecurity

sio:Student

sio:Subject

sio:FacultyMember

sio:CommunityMember

foaf:Organization

foaf:Agent

sio:Staff

sio:Victim

foaf:Person

time:Instant time:Interval

time:TemporalEntity

time:DateTimeExpr

sio:ProximityAdverb

geo:SpatioalThing

owl:Thing

foaf:Image

wn:word-approximitely

wn:Afterwn:early

rdf:Literal

rdf:Literal

sio:weapon

sio:related

event:product

event:sub-event

geo:lat

geo:long

event:time

sio:reportedTime

sio:finalState

foaf:agent

foaf:agent

foaf:agent

time:inDateTime

sio:timeProximity

sio:ageProximity

event:place

sio:postState
sio:preState

sio:wearing
sio:carrying

457

To provoke SIO reuse, as a future work, we show that our
work is endorsed by the Semantic Web community by
registering our dataset to Linked Open Data [11] and adding it
to the Linked Open Data Cloud.

A. Automatic Instance Data Population

We develop an infrastructure to transform textual
notification of security incidents to machine readable
representation in SIO. The software system, namely Machine
Readable Security Incident Notification (MRSIN), has two
main components, Security Incident Service and Security
Incident Data Mart. Fig. 3. The former consists of I) Natural
Language Layer (NLL) which extracts temporal and factual
information from incident notification text to data objects, II)
Semantic Web Layer (SWL) which serializes objects to Web
Ontology Language individuals, sio:SecurityIncident in
particular, and III) Triple Access Layer (TAL) which stores the
individuals to the well-known triple store, Virtuoso Universal
Server1. All layers are in compliance with layering architecture
and are working within a passive run on service. The later
component incorporates a geographical distribution data mart
of security incidents to support police and government with
decisions, and criminologists with suggestions. This layer plays
as the user interface to the system.

NLL is supposed to parse the textual content of the security
incident report and extract entities and their property-values
along with the co-references. Extracting temporal expression
such as incident report date and event date, finding the victim
and subject of the event and their associated property-values
are the major tasks in this layer. There are toolkits for this kind
of task among which the Apache OpenNLP2 and Stanford

1 http://virtuoso.openlinksw.com/
2 http://opennlp.apache.org

University Stanford Named Entity Recognizer (NER)3 are the
most cited. However, these libraries working properly in
general text corpus and will fail in our domain specific context.
Therefore, we should train them (the model) to learn our
textual paradigm. Since this task make a research shift to the
current one, we leave it for future work and stay with the NER
(7 class model trained: Time, Location, Organization, Person,
Money, Percent, Date) along with some customizations

Java JDK 1.8 and PHP 5.5 are the programming languages
for the service and data mart components respectively,
NetBeans4 8.0 is the Integrated Development Environment
(IDE). We use Apache Jena5 in our SWL and Virtuoso Jena
Provider6 for TAL.

B. Knowledge Extraction

The ontology allows users to semantically search and
retrieve security incident information. Examples of semantic
search scenarios may be: finding incidents with a specific type
of security threat, retrieving sub-incidents of an incident, or
searching incidents in which one particular suspect is involved.
These queries can be expressed by SPARQL query language
and be asked from our dataset SPARQL or JDBC endpoint. We
show a SPARQL query example in Fig. 4 to search different
types of security incidents in a date range. The sample result
would be such in Fig. 5.

3 http://nlp.stanford.edu/software/CRF-NER.shtml
4 https://netbeans.org/
5 https://jena.apache.org/
6
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
VirtJenaProvider

Figure 3. Machine Readable Security Incident Notification
software system architecture. The left hemisphere is the
software service which polls each 2 minutes a gmail
account, seurityincidentsemanticweb@gmail.com, which is
subscribed to be notified for any security incident by
Ryerson University Integrated Risk Management. After
fetching new incidents, the Natural Language Layer parse
the text and extract information to an object of type
SecurityIncident, defined in Common, and hand it to
next layer. The Semantic Web Layer serialize the populated
object to OWL individuals and pass them to Triple Access
Layer to store them in the Virtuoso triple store. The right
hemisphere is the primitive dashboard at
http://semionet.rnet.ryerson.ca/sio/ which shows the
incidents geographical distribution filtered by the date of
event.

458

V. RELATED WORK

There are several similar initiatives to model event-focused
concepts in knowledge representation [16], medical informatics
[17] [18], sports [19], business news [20], scholarly events
[21], life events [22] and multimedia community [23] [24]. In
[17] the authors present Adverse Events Reporting Ontology
(AERO) to report adverse event, any untoward medical
occurrence in a patient or clinical investigation. [18] designs an
event ontology for application in the machine understanding of
infectious disease-related events reported in natural language
text. Concepts and terminology in the field of sports events and
their relationships are studied in [19]. Pattern-based approach is
used in [20] to build newsEvents ontology to model business
events, the affected entities and relations between them. [21]
presents a very thorough process from creating ontology,
automatic data instance population, and knowledge extraction
interface in domain of scholarly events. We highly appreciate
this work and mainly follow the same approach in our work.

Much closer to our work’s domain we can name Crime
Emergency Event Model (CE2M) [25]; although, despite what
its name implies, it is an ontology for emergency events rather
than crimes. Also, [26] constructs an event ontology to describe
cyber crimes reflected in Web such as online fraud, internet
pornography, illegal trade, false advertising, violations of
privacy, network gambling, damage to reputation; it is still not
a general crime domain ontology. [27] describes a knowledge
base of Politically Motivated Violent Events (PMVE)

consisting of a domain ontology and of instance data. Sadly,
this work does not publish its ontology specification.

Barring [20], all aforementioned works create their own
event ontology for their domain of study, despite the fact that
we have capable event ontologies. Event [9] and TimeML [35]
are two cases based on different ontological view of the world.
The latter employ linguistics and uses mark-ups to express
event and time entities while the former prefer to focus on real
happening of the event and comply with RDF/N3
representation. Event also reuse the Timeline [5] for temporal
references in events. Timeline reuse, also, OWL-Time [6]. We
respect reuse practice and not only adopt Event as the base
ontology for security incidents instead of creating a new one,
but also develop our SIO with regard to reuse principle.

VI. CONCLUSION

In this paper, we present Security Incident Ontology, SIO, a
novel light-weight domain ontology for security incidents. We
use Timeline ontology to express time references and adopt
Event ontology to representing any security threats which raise
the security alarm in a community. SIO is developed in OWL2
with Protégé by UPON ontology engineering methodology.
SIO wants to present a unique ontological machine readable
way to the security incident detectors to report security events.
To reinforce the feasibility and capability of our work, we
populating security incident notifications of Integrated Risk
Management (IRM) at Ryerson University in SIO. To comply
with the Semantic Web community principles we publish our
dataset and provide SPARQL endpoint to extract knowledge.
We hope that SIO wedge his way into the Web and obtain
highest reuse rank to raise human and machine readability and
common ubiquitous comprehension of security incidents.

ACKNOWLEDGMENT

The authors graciously acknowledge funding from the
Natural Sciences and Engineering Research Council of Canada.

REFERENCES
[1] PublicEngines, "CrimeReports," PublicEngines, [Online]. Available:

https://www.crimereports.co.uk/. [Accessed 17 10 2014].

[2] Ryerson University, "Integrated Risk Management (IRM)," [Online].
Available: http://www.ryerson.ca/irm. [Accessed 17 10 2014].

PREFIX sio: <http://ls3.rnet.ryerson.ca/ontologies/sio/>
PREFIX event: <http://purl.org/NET/c4dm/event.owl#>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX time: <http://www.w3.org/2006/time#>
SELECT distinct ?type ?lat ?lng ?year ?month ?day
WHERE
{
 GRAPH <http://ls3.rnet.ryerson.ca/SecurityIncident/test>
 {
 {?securityIncidentId rdf:type sio:Assault}
UNION
 {?securityIncidentId rdf:type sio:AssaultWithWeapon}
UNION
 {?securityIncidentId rdf:type sio:SexualAssault}
UNION
 {?securityIncidentId rdf:type sio:Robbery}
UNION
 {?securityIncidentId rdf:type sio:Voyeurism}
UNION
 {?securityIncidentId rdf:type sio:IndecentExposure}
UNION
 {<p> <p> <o>}

 ?securityIncidentId rdf:type ?type.

 ?securityIncidentId event:place ?placeId.
 ?placeId geo:lat ?lat.
 ?placeId geo:long ?lng.

 ?securityIncidentId event:time ?timeId.
 ?timeId time:inDateTime ?dateTime.
 ?dateTime time:year ?year.
 ?dateTime time:month ?month.
 ?dateTime time:day ?day.

 FILTER
 (
 (?type != owl:NamedIndividual) &&
 (
 1 = 1
)
)

 }
}

Figure 4. Base query to search different types of security incidents in a
date range

Figure 5. The snapshot of system dashboard at
http://semionet.rnet.ryerson.ca/sio/. It locates the incidents geographically
with its type color and capital letter from the query result in Figure . The
shown icons are incidents within the 2014 year.

459

[3] Canadian Broadcasting Corporation, "Toronto Crime by
Neighbourhood," [Online]. Available:
http://www.cbc.ca/toronto/features/crimemap/. [Accessed 17 10 2014].

[4] BRS Labs, "AI Sight," BRS Labs, [Online]. Available:
http://www.brslabs.com/index.html#aisight. [Accessed 17 10 2014].

[5] Y. Raimond and S. Abdallah, "The Timeline Ontology," Centre for
Digital Music, Queen Mary, University of London, [Online]. Available:
http://motools.sourceforge.net/timeline/timeline.html. [Accessed 17 10
2014].

[6] J. R. Hobbs and F. Pan, "Time Ontology in OWL," The World Wide
Web Consortium, [Online]. Available: http://www.w3.org/TR/owl-time/.
[Accessed 17 10 2014].

[7] J. R. Hobbs and F. Pan, "An Ontology of Time for the Semantic Web,"
ACM Transactions on Asian Language Information Processing (TALIP),
vol. 3, pp. 66-85, 2004.

[8] J. R. Hobbs, "OWL-Time (formerly DAML-Time)," [Online]. Available:
http://www.isi.edu/~hobbs/owl-time.html. [Accessed 17 10 2014].

[9] Y. Raimond and S. Abdallah, "The Event Ontology," Centre for Digital
Music, Queen Mary, University of London, [Online]. Available:
http://motools.sourceforge.net/event/event.html. [Accessed 17 10 2014].

[10] T. Heath, "Linked Data - Connect Distributed Data across the Web,"
Linked Data community, [Online]. Available: http://linkeddata.org/.
[Accessed 17 10 2014].

[11] M. Schmachtenberg, C. Bizer, A. Jentzsch and R. Cyganiak, "The
Linking Open Data cloud diagram," [Online]. Available: http://lod-
cloud.net/. [Accessed 17 10 2014].

[12] Ryerson University, "Ryerson Security Incident Records," [Online].
Available: http://www.ryerson.ca/irm/alerts_reports/alerts/index.html.
[Accessed 17 10 2014].

[13] Wikimedia Foundation, "Toronto," Wikimedia Foundation, Inc.,
[Online]. Available: http://en.wikipedia.org/wiki/Toronto. [Accessed 17
10 2014].

[14] Toronto Police Service, "Toronto Police Service Mailing Lists,"
[Online]. Available: https://secure.torontopolice.on.ca/tpsml/. [Accessed
17 10 2014].

[15] Toronto Police Service, "TPS Crime Statistics," [Online]. Available:
http://www.torontopolice.on.ca/statistics/. [Accessed 17 10 2014].

[16] J. F. Sowa, Knowledge Representation: Logical, Philosophical, and
Computational Foundations, Brooks/Cole, 1994.

[17] M. a. B. R. R. a. R. A. Courtot, "Reporting Adverse Events: Basis for a
Common Representation.," in ICBO: International Conference on
Biomedical Ontology, Bufallo, NY, USA, 2011.

[18] A. Kawazoe, H. Chanlekha, M. Shigematsu and N. Collier, "Structuring
an Event Ontology for Disease Outbreak Detection," BMC
bioinformatics, vol. 9, p. S8, 2008.

[19] J. Xiao and J. Chen, "Features, Improvements and Applications of
Ontology in the Field of Sports Events During the Era of the Semantic
Web," in Chinese Lexical Semantics, Springer, 2013, pp. 718-727.

[20] U. Losch and N. Nikitina, "The newsEvents Ontology: An Ontology for
Describing Business Events," Citeseer, 2009.

[21] S. Jeong and H.-G. Kim, "SEDE: An Ontology for Scholarly Event
Description," Journal of Information Science, 2010.

[22] I. Trochidis, E. Tambouris and K. Tarabanis, "An Ontology for
Modeling Life-events," in IEEE International Conference on Services
Computing, 2007.

[23] S. Abdallah, Y. Raimond and M. Sandler, "An Ontology-based
Approach to Information Management for Music Analysis Systems,"
2006.

[24] Y. Raimond, T. Gängler, F. Giasson, K. Jacobson, G. Fazekas, S.
Reinhardt and A. Passant, "The Music Ontology," [Online]. Available:
http://musicontology.com/. [Accessed 17 10 2014].

[25] W. Wang, W. Guo, Y. Luo, X. Wang and Z. Xu, "The Study and
Application of Crime Emergency Ontology Event Model," 2005.

[26] L. Cunhua, H. Yun and Z. Zhaoman, "An Event Ontology Construction
Approach to Web Crime Mining," in Seventh International Conference
on Fuzzy Systems and Knowledge Discovery (FSKD), 2010.

[27] P. O. Wennerberg, H. Tanev, J. Piskorski and C. Best, "Ontology Based
Analysis of Violent Events," in ntelligence and Security Informatics,
2007 IEEE, 2007.

[28] R. Mizoguchi, "Tutorial on Ontological Engineering Part 2: Ontology
Development, Tools and Languages," New Generation Computing, vol.
22, pp. 61-96, 2004.

[29] A. a. M. M. a. N. R. De Nicola, "A proposal for a unified process for
ontology building: UPON," in Database and Expert Systems
Applications, 2005.

[30] Stanford Center for Biomedical Informatics Research, "Protege
Ontology Library," Stanford Center for Biomedical Informatics
Research, [Online]. Available:
http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library.
[Accessed 17 10 2014].

[31] J. F. Allen and G. Ferguson, "Actions and Events in Interval Temporal
Logic," Journal of Logic and Computation, vol. 4, pp. 531--579, 1994.

[32] W3C Semantic Web Interest Group, "Basic Geo (WGS84 lat/long)
Vocabulary," W3C Semantic Web Interest Group, [Online]. Available:
http://www.w3.org/2003/01/geo/. [Accessed 18 10 2014].

[33] A. Einstein, "The Relativity of Simultaneity," in Relativity: The special
and general theory, New York: Henry Holt and Company, 1920.

[34] T. Berners-Lee, "Linked Data," The World Wide Web Consortium
(W3C), [Online]. Available:
http://www.w3.org/DesignIssues/LinkedData.html. [Accessed 19 10
2014].

[35] J. Pustejovsky, J. M. Castano, R. Ingria, R. Sauri, R. J. Gaizauskas, A.
Setzer, G. Katz and D. R. Radev, "TimeML: Robust Specification of
Event and Temporal Expressions in Text," New directions in question
answering, vol. 3, pp. 28-34, 2003.

460

CARP: Correlation-based Approach for Researcher

Profiling

Hassan Noureddine
EDST

Lebanese University
Beirut, Lebanon

HES-SO/FR

Iman Jarkass
IUT

Lebanese University
Saida, Lebanon

Hussein Hazimeh*
HES-SO/FR

Fribourg, Switzerland

Omar Abou Khaled
HES-SO/FR

Fribourg -Switzerland

Elena Mugellini
HES-SO/FR

Fribourg –Switzerland

Fribourg, Switzerland

Abstract—The accelerating progress in science with the active
role of the communication media – mainly the web – make person
in front of a difficult task, in finding appropriate information
during a brief time. In a narrower context, many researches were
created in the expertise retrieval domain, as an interesting and
complicated task for the scientific community, in face of this huge
amount of data scattered across the web. Benefiting from the
semantic web technologies and the efforts of data structuring, in
this paper we propose a novel approach of correlation based
profile building, by exploiting heterogynous web sources. The
aim is to generate comprehensive and validated profiles about
researchers and experts in the computer science domain.

Keywords- Expertise Retrieval; Profile Matching; Profiling;
quality of data; Semantic Web

I. INTRODUCTION

Since the web has established, it is still growing in a rapid
manner. Where, every second millions of bytes are added
around the world. Inconsistent with this growth, many web
technologies have been emerged and participate in enhancing
the efficiency of the web, like semantic web technologies.
Therefore this massive growth forms the main motive to use
web as a rich source of information and interactions. But at the
same time, create more complex problems in the information
retrieval domain. For instance, extracting specific and accurate
web information must take into consideration the problems of
conflicted, repeated and outdated data. In this context, the
essential role that played by the web in the scientific progress,
make the scientific community interested to solve this problem,
especially in the profiling and expertise retrieval domains [1,8].

In this paper we proposed a Correlation based Approach for
Researcher Profiling: CARP. The profiling task is going
worsen with this massive and scattered amount of increased
information across the world of web. As we proposed that we
are going to cover the part of the problem relating to researcher
profiling. The problem can be briefed as follows: if someone
wants to search for a profile related to a specific researcher X,
this will be a time-consuming process, especially there are no
such standard sources that contain confirmed-content
researchers’ profiles. Even if we can find many systems as in
[8,2,12] and others that provide scientific information related to
researchers in several domains. However these data are still
lacking to the quality in several cases. Cases lack such
researchers’ information, and others contain conflicted or
outdated ones. Therefore we propose a new profiling approach

based on correlating information from heterogeneous web
sources, which contain confirmed data about researchers. The
objective is to overcome the quality of data issue, and provide
comprehensive and validated information about researchers,
passing through a matching procedure.

In the rest of paper, the proposed approach is described as
follow: The section 2 reviews and discusses the related work.
The next section gives an overview on the proposed approach
and describes the system architecture. The section 3 presents
the obtained results, which are evaluated in the section 4.
Finally, the paper is concluded in the last section.

II. RELATED WORKS

This section is composed of two parts. The first one
mentions and explains the recent approaches in expert finding,
and the other lists the latest approaches related to profile
matching among multiple web resources.

A. Expert Finding Systems

The approaches submitted in this area are dealing with finding
experts, where the most critical issue is what sources they are
going to choose to find experts and create their profiles. The
most popular system is Arnetminer, this system is based on
finding and creating experts profiles in computer science
domain and represents them semantically [8]. Microsoft
Academic Search, another expert finding system, offers a
diversity of functions for searching experts in several domains
of sciences [2]. Other systems like INDURE, are limited to a
set of organizations or universities, it provide functions for
exploring profiles across these organizations in multiple
disciplines [1,3]. The majority of the mentioned systems
operate by extracting information from a single source, and
even if some use multiple sources, they focus on a single
source as the principal one compared to other sources. For
example, Arnetminer is based on the home pages as source to
extract the basic profile attributes, and then complete the
profiles with the information extracted from DBLP [14].
While, our approach is to apply the concept of correlation
between multiple web sources, leading to merge the discarded
information in a unified profiles. Therefore, we consider that
each source has his separate profiles, and all profiles from
different sources must pass through a profile matching stage.

B. Profile Matching

Many approaches have proposed in this context and each
one address this issue from his perspective, in this section we

DOI reference number: 10.18293/SEKE2015-145

*The first and third authors contributed equally to this work.

461

will focus on those who concentrate on web and social
networks as a main source of information. In some approaches
as in [4], they address this problem at the level of only two
social networks, also they suppose that we have only one
person profile among each social network, this approach and
others use machine learning algorithms to resolve their
decisions regarding the matching process. In [5], they proposed
an expert finder system based on semantic matching between
user profiles, they use the process of spreading to include
additional related terms to a user profile by referring to an
ontology (Wordnet or Wikipedia) [5]. Jain, Kumaraguru and
Joshi [6] proposed an approach that matches profiles across
Facebook and Twitter, by exploiting syntactic and image
matching methods to discover the similarity between user
profiles. In [7], they propose a vector based comparison
algorithm that computes the similarity between two profiles
according to their vector of attributes, and then classify whether
they are the same or not based on a specific threshold. The
mentioned approaches solve the problem partially. On the one
hand they always apply the correspondence between social
networks that are similar and almost have the same profile
attributes. On the other hand they ignore the problem of name
disambiguation by assuming that there is a unique profile for
each person in different social networks. In contrast, we are
working on matching profiles between multiple sources with
different types, and we consider also the problem of name
disambiguation by investing the detected similarity between
profiles, as described in the next section.

III. PROPOSED APPROACH

Our proposed approach CARP is aiming to find a solution
that addresses the problem of researchers’ profiling, by
benefiting from the heterogeneity of structured and
unstructured data distributed across the web, this will carried
out through a complete architecture composed of six main
components as illustrated in figure 1.

Problem Definition and formulation: the main goal of
CARP approach is to produce researchers’ profiles by
correlating information coming from several web resources.
Let Ri be a specific web source (DBLP, MAS, LinkedIn),
contains a set of profiles that belongs to a specific author name:
Ri= {P1, P2,…..,Pn}, and each profile Pj contains a set of
attributes Pj= {A1, A2,…..,An}, where Ri.Pj.Ak is a specific
attribute for a profile that belongs to a specific web resource.
The aim is to find similar profiles among these sources by
matching information extracted from their attributes, and then
merge this information to produce complete profiles.

A. Ontologies

The initial stage in our architecture is to construct the
system ontology. It covers all classes and properties describing
the researchers’ profiles, their relationships and their scientific
products. It support and facilitates the information extraction
and storage processes. Our ontology is based on the SWRC
ontology (Semantic Web for Research Communities) [13], and
it is composed of four major classes: the class person,
document, education, position and organization, where each
person (researcher) has a set of object and data properties. For
instance a researcher has an education (PhD, Master,
Bachelor), or he is an author for a document.

Figure 1. Architecture Components

B. Data Sources
Since our proposal is to apply the concept of correlation

between multiple web sources, we have analyzed the data
granted from different web sources. Then, we decided to use
two types of sources: The bibliographic sources and the social
networks. On the one hand, bibliographic sources provide
essential information about researchers, their scientific
activities and publications. On the other hand, there is a big
trend to use social networks and especially professional
networks. In this context we have chosen MAS, DBLP [2,14]
as bibliographic sources and LinkedIn [9] as a social network.

C. Information extraction

The system starts operations with the structured information
extraction, where the provided information are granted by the
API of each source. However due to the limitation of the
provided structured information, our system also extracts
information from unstructured text, from home pages,
publications and biographies. Two methods are used for this
task. The first one is GATE (General Architecture for Text
Engineering) as rule based method. It is used to extract the
existing contact information (affiliation, email and location)
from the publications headers. Thus GATE is suggested
because it shows an average precision and recall of 90-95% on
extracting contact information [10]. The second method is CRF
(Conditional Random Fields), this method is employed to
extract other attributes (education and the list of historical
positions) from biographies existed in publications, homepages
and LinkedIn profiles, by tagging them based on a built
training set. We decide to use CRF, because it has lowest error
rates for POS tagging compared to other methods [11]. Based
on the chosen methods, the extraction process produces a set of
preliminary profiles, presenting the attributes available in each
source.

D. Profiling Engine

The main goal of this engine is to generate unified and
confirmed profiles, passing through a correlation between the
preliminary profiles. The correlation process is composed on
three steps: matching, clustering and merging, as shown in the
figure 2. The profile engine starts operating firstly with the
matcher M1 that aimed at finding the similarity between

462

profiles from DBLP and MAS. We decide to use these two
sources according to the permanent availability of two common
profile attributes (affiliation and publication title), and to
achieve this we have employ two string matching algorithms.
We chose Jaro-Winkler (1) to calculate the similarity between
affiliations, because Jaro-Winkler metric seem to be intended
primarily for short strings (e.g., personal names), and Jaccard
index (2) to calculate the similarity between publication titles.

 (1)

 (2)

Let Sa be the similarity result of matching between two
affiliations where Sa =SimJW(R1.Pi.affiliation, R2.Pi.affiliation).
Sp is the similarity result of matching between two publications
titles where Sp=SimJaccard(R1.Pi.Publication, R2.Pi.Publication),
and Sc is the similarity result of matching between two
coauthors titles where Sc=SimJW(R1.Pi.coauthor,
R2.Pi.coauthor). Additionally, ta , tp and tc are the threshold
numbers, which represent the percent of matching between
affiliations, publications and coauthors respectively, where Sa >=

ta , Sp >= tp and Sc >= tc. The matching process between each
profile from DBLP with each profile from MAS starts by
comparing the list of publications, if the number of matched
publications >= tp we decide that the two profiles belong to the
same entity, else we continue the matching process by
comparing the rest of publications using affiliation extracted
from each publication, if the matching remains null we resolve
the similarity based on the coauthors attribute. For each set of
matched profiles we create a cluster Ci, and populate each
matched profile to its parent cluster. After obtaining set of
clusters, each cluster must undergoes to a merging operation,
this step aims at unifying the set of profiles in each cluster into
one profile and validate its attributes by applying several
merging rules for each attribute.

After finishing the first correlation by matching (M1),
clustering and merging between DBLP and MAS, we obtain a
set of unified profiles. These profiles will act as an input for the
matcher M2 that aim to complete the profiling operation by
complementing the rest of profile attributes from LinkedIn.
Each unified profile will be matched by a set of LinkedIn
profiles using three attributes: affiliation, publication and
education. The matching process starts by comparing
publication titles, if there is common publication between two
profiles we decide that the two profiles belong to the same
person, else we compare the affiliations if there are the same
we decide that the two profiles are for the same person, else we
compare the list of education organizations to detect the
similarity between two profiles. In this case, deciding whether
two profiles belong to the same person will be easier, because
the LinkedIn data are typed by the users themselves, and
consequently there is an absence of the name disambiguation
problem. This is the reason to not repeat the clustering method,
and merging directly the matched profiles into the final unified
profiles (the output) as shown in the figure 2.

Figure 2. Profiling engine steps

E. Semantic storage

The Semantic Web technologies enhance the ability to
discover relations between properties more than current
traditional databases, thus we propose to store the extracted
profiles in a semantic database in form of RDF triples
according the system ontology.

F. Quering

The final step in our architecture is to retrieve information
about researchers, where the query will be a researcher name.
The query language used for this task is SPARQL.

IV. PERFORMANCE EVALUATION AND RESULTS

Referring to the architecture described in figure 1, we have
implemented the various system elements, and thus provided
web interface for receiving user requests and respond with
relevant results. The prototype of our architecture is
implemented using JavaEE, where all the tests are performed
on Intel 2.93 core i7, 8GB of RAM PC.

Figure 3. An example of researcher profile

The figures 3 present an example of profile generated by
the system. We can see the benefit of the correlation, mainly by

463

obtaining comprehensive and confirmed profile, with attributes
retrieved from various sources. The obtained results show that
the same attribute is not always recovered from the same
source, so that the missed attribute from some source can be
provided in the other. This increases the possibility of
retrieving information. For instance, the attribute “summary”
are extracted from LinkedIn, and in case of absence, it can be
extracted from the biography inside publications.

Figure 4. Precision and recall measures for each attribute

The figure 4 presents the precision and recall for four
different attributes among 25 tested profiles, which they form
the principal profile attributes. Based on these measures we are
analyzed the results, thus the attributes “email” and
“affiliation” are extracted from publication using GATE. Hence
the strength of the precision and recall depends partially on the
accuracy of GATE, and as we observe that we are obtaining 98
percent and 84 percent for email and affiliation respectively.
The affiliation is sometimes failed to be extracted by GATE
because of some problems. For instance, the language in
which the affiliation is written, however in our case we are
considering only the English language. The attribute “image” is
extracted from three different resources: biographies, LinkedIn
and MAS, resulting a precision of 75 percent. However we still
need a strong face recognition method to validate the
correctness of this attribute. Finally, the attribute “location” is
extracted from two different sources publications and LinkedIn,
this attributes has 100 percent of both precision and recall
because location names are easy to be validated due to their
limitation unlike affiliation and other attributes.

Additionally, the study of the availability of each attribute
before and after the correlation has proved the efficiency in
increasing it, especially for the attribute not strongly available.
For instance the “image” attribute as shown in the Table I.

TABLE I. AVAILABILITY OF IMAGE ATTRIBUTE BEFOR AND AFTER
CORRELATION

 Image from
biography(publication)

Image from
LinkedIn

Image from
MAS

Before 53% 38% 57%

After 89%

On another side, our approach was able to address the issue
of name disambiguation in a low proportion, by benefiting
from the partitioning of profiles among resources, which allows
us to detect the diversity between profiles. Table II shows four
profiles with name disambiguation tested between DBLP and

MAS. This issue is directly affected by the resolution rate of
this problem by each source. In LinkedIn, it does not exist
because users enter information by themselves. In MAS the
problem is opposed, where we can find several profiles for the
same researcher. Therefore the problem must be resolved in
DBLP, where the disambiguation exists in various cases.

TABLE II. NAME DISAMBIGUATION RESULTS TESTED ON FOUR
DIFFERENT AUTHOR NAMES

Author
name

Num. of
MAS

profiles

Num. of
DBLP
profiles

Actual
Num. of
profiles

Num. of
profiles after

merging

Kai Eckert 4 2 2 2

Hong Shen 11 1 4 3

Michael
Wagner

1 3 12 4

Feng Liu 1 1 4 2

V. CONCLUSION AND FUTURE WORK

In this paper we present CARP approach, which based on the
concept of correlating information from several web resources,
to satisfy the production of qualified profile information, our
investigated approach shown promised results. Moreover, this
approach has overcome the problem of name disambiguation in
some cases by benefiting from the variety of profiles among the
different sources. However we still need a strong approach
addressing this problem, and as a future work, we propose to
add a name disambiguation block aiming to split the target
profiles before the correlation.

REFERENCES

[1] K. Balog, Y. Fang, M. de Rijke, P. Serdyukov and L. Si. Expertise

Retrieval.(2012)

[2] (2014,July). Microsoft Academic Search [Online]. Available:
http://academic.research.microsoft.com/.

[3] E. A. Jansen. A Semantic Web based approach to expertise finding at
KPMG.(2010).

[4] Raad, E., Chbeir, R., Dipanda, A. User Profile Matching in Social
Networks. In NBiS, 2010.

[5] Thiagarajan, R., Manjunath, G. and Stumptner, M. Finding experts by
semantic matching of user profiles. Technical Report, HP Laboratories.
(October 2008).

[6] P. Jain, P. Kumaraguru, and A. Joshi. @ i seek ‘fb.me’: identifying users
across multiple online social networks. IW3C2, 2013.

[7] Vosecky, J.; Hong, D.; and Shen, V. Y. User identification across
multiple social networks. In Int. Conference on Networked Digital
Technologies (2009).

[8] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. ArnetMiner:
Extraction and Mining of Academic Social Networks. In SIGKDD 2008.

[9] (2014,July). LinkedIn [Online]. Available: https://www.linkedin.com/.

[10] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: An
architecture for development of robust HLT applications. In ACL, 2002.

[11] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In
Eighteenth international Conference on Machine Learning, 2001.

[12] (2014,July).Google scholar. Available: https://scholar.google.com

[13] (2013,July) The Semantic Web for Research Communities Ontology
(SWRC). [Online]. Available: http://ontoware.org/swrc/

[14] (2014,July). DBLP XML dataset [Online]. Available: http://dblp.uni-
trier.de/xml/

464

APRImora: A Semantic Architecture for Patterns

Reuse

Angélica Aparecida de Almeida Ribeiro1, Jugurta Lisboa-Filho1, Lucas Francisco da Matta Vegi1,

Alcione de Paiva Oliveira1, Regina Maria Maciel Braga Villela2 and Emílio José de S. Fonseca1
1 Departamento de Informática

Universidade Federal de Viçosa

Viçosa-MG, Brazil, 36570-000

2 Departamento de Ciência da Computação

Universidade Federal de Juiz de Fora

Juiz de Fora-MG, Brazil, 36036-900

angelica.ribeiro@fagoc.br, jugurta@ufv.br, lucas.vegi@ufv.br, alcione@dpi.ufv.br, regina@acessa.com, emiliojsf@gmail.com

Abstract— Software patterns are computing artifacts used to

document knowledge that may be reused during software

development process. There are several types of patterns, such as

analysis, design, and architectural, among others. Design patterns

are the most well known by designers, but many of them are

described in books and scientific papers, a recurring way of

documenting patterns that limits their reuse potential. Aiming to

not only minimize this limitation but also provide ways of

recovering contextualized knowledge in these patterns, the present

paper presents the architecture APRImora, an extension based on

Semantic Web of the Analysis Patterns Reuse Infrastructure

(APRI). In this architecture, the patterns are documented by

metadata defined as application profiles of the Dublin Core

standard and stored in the RDF format, allowing them to be

discovered by search engines. The APRImora architecture helps

designers discover and reuse software patterns based on semantic

relations, which favors their dissemination and reuse.

Keywords- semantic Web; analysis pattern; design patterns;

retrieving information; pattern repositories.

I. INTRODUCTION

Reuse mechanisms such as design patterns [8] and analysis
patterns [7] are crucial computing artifacts in the software
development process. However, the great challenge a designer
still faces today is discovering a pattern that solves a given
problem. Search engines not always help because, although the
search is facilitated by its constant improvement, a simple query
may return a large number of results, many not relevant for the
context. For example, when searching on Google for the design
pattern Singleton typing only the word Singleton, with no
additional information, approximately 6.6 million results are
returned, a great number of which irrelevant and inappropriate
to solve the problem.

According to Cunha et al. [5], web data are organized to be
read and understood by humans and not by software agents. This
is due to the way the Web organizes the information available
on the Internet by using hypertext provided by the HTML
language. Its organization allows for a more user-friendly
interaction with the global network, however, the HTML
language is used only to list resources to the user with no
meaning presented or association on the meanings.

In order to solve this issue, the Semantic Web was created,
which aims to transform the Web of documents into the Web of
data, in which all data on the Web must be associated to a given

semantics and are connected among themselves. In the Web
setting, this would represent attributing meaning to the data,
connecting them with other datasets or knowledge domains, and
creating a relation of meaning among the content published on
the Internet so that they can be analyzed not only by humans, but
also by software agents [5]. That results in more effective
searches with results closer to what the user wants.

In order for computing artifacts to be easily retrieved and
reused, Vegi et al. [20] proposed the APRI, i.e., Analysis
Patterns Reuse Infrastructure. Its goal is to allow the analysis
patterns to be documented, disseminated, and enhanced through
an approach based on metadata and Web services. The analysis
patterns added to the APRI are documented by an application
profile of the Dublin Core metadata standard and stored in the
RDF format so that they are accessible to search engines [21].

The present paper describes a proposal for extending the
APRI architecture for an architecture based on the Semantic
Web, turning it into a Patterns Reuse Semantic Infrastructure
called APRImora. The remaining of the paper is structured as
follows. Section 2 presents a review of the Semantic Web,
besides other technologies related to the research. Section 3 lists
some correlated studies. The architecture proposed for
APRImora is presented in section 4. The final considerations and
some future studies are described in section 5.

II. THEORETICAL FRAMEWORK

A. Semantic Web

According to Berners-Lee et al. [1], the Web developed more
quickly as a medium for documents to the people than to the data
and information that can be automatically processed.
Consequently, most times a search is conducted, thousands of
results with little or no relevance are obtained. This occurs
because the meaning of the Web content cannot be processed by
machines, besides the ability of software to interpret sentences
and extract useful information for the users being limited.

From this context appeared the Semantic Web, which makes
up for this issue by providing means of organizing data and
allowing them to be interpreted by computers. The Semantic
Web resources allow search results to be improved and
facilitates the automation of relevant tasks. Berners-Lee et al. [1]
add that the Semantic Web is not a separate Web, but an
extension of the current one.

(DOI reference number: 10.18293/SEKE2015-186)

465

The challenge of the Semantic Web is to provide a language
that expresses both the data and the rules to think such data, and
that allows the rules of any knowledge system to be exported to
the Web [1]. Figure 1 illustrates the layers that make up the
Semantic Web. Details on each layer can be found in [2].

Figure 1. Architecture of the Semantic Web [2]

B. SPARQL Protocol and RDF Query Language

RDF is a flexible and extensible format used to represent
information on Web resources such as personal information and
metadata on digital artifacts such as music and images, among
others. Moreover, it provides means to integrate different
sources of information by means of a set of triples, formed by
the concepts of subject, predicate, and object [10].

SPARQL Protocol and RDF Query Language (SparQL) is a
language and a data-access protocol developed and
recommended by the W3C for queries on RDF files [9].

C. Linked Data

The goal of the Semantic Web is to provide means to
organize data and enable its interpretation by computers, thus
making work more helpful, besides developing systems that can
support reliable interactions on the network [22]. Moreover, the
Semantic Web is seen as a layer of the Web in which one can
publish, obtain, and use data that may be directly or indirectly
processed by machines [22].

However, its importance goes beyond only making data
available on the Web since it connects such data so that a person
or machine is able to explore them. This interconnection of data
allows for more information related to a given piece of data
searched to be found [3]. It provides means for the conventional
Web to be transformed into a Web with machine-processable
data. This connection is called Linked Data.

Linked Data refers to the set of best practices to publish and
connect data on the Web. These practices led to the creation of a
global data space that contains billions of pieces of information,
the so-called Web of Data [4]. As with the hypertext Web, the
Web of Data is built from Web documents [3]. However, the
difference between them is that on the hypertext Web the related
links are anchored in documents written in HTML. On the Web
of Data, arbitrary things are connected by the description in RDF
using Uniform Resource Identifiers (URIs), which identify any
type of object or concept.

The URI provides a simple and extensible way of uniquely
identifying through a string of characters an abstract or physical
resource [2].

D. Web Service

Web service is a solution used in systems integration and
communication between different applications, with the
advantage of standardized communication between services,
which allows the platform and programming language to be
independent, such as a system developed with Java running on a
Linux server being able to seamlessly access a service
implemented on .NET running on a Microsoft server [15].

Semantic Web Service (SWS) is an intersection of the Web
services and Semantic Web. According to Martin et al. [12], the
main focus of SWSs is the use of richer and more declarative
descriptions of elements in the distributed computing dynamics.
These descriptions enable complete automation, more flexible
service, the use and construction of more powerful tools.

E. Dublin Core Metadata Standard

The set of elements of the Dublin Core metadata standard is
composed by 15 basic and generic elements, which allows it to
be used to describe a wide range of resources [6].

Although it is a simple metadata standard that doesn’t offer
enough resources to describe data of complex domains, Dublin
Core’s versatility in documenting artifacts of several types is
achieved by extensions known as application profiles. Since
2000, the Dublin Core community has proposed profiles to
adequate the elements to generate new metadata sets to meet the
specific requirements from different domains.

In the APRI context, two Dublin Core metadata profiles were
defined: DC2AP [18] to document analysis patterns and DC2DP
[17] to document design patterns.

The DC2DP elements were defined from the combination of
the Dublin Core metadata standard elements, the elements of the
template by Gamma et al. [8], and the DC2AP elements. Dublin
Core is the basis of DC2DP, so all elements belonging to this
metadata standard are part of the DC2DP profile. The template
by Gamma et al. contributes with the specific elements to
document design patterns, while the version control elements
were reused from the DC2AP profile.

Similarly to DC2AP, DC2DP is also machine processable,
allowing design patterns to be described and published as Linked
Data through RDF files, therefore the patterns can be retrieved
and reused more precisely by a computer. A detailed technical
description of these two application profiles can be found at
http://www.dpi.ufv.br/projetos/apri.

III. RELATED WORK

Monteiro [13] proposes an architecture based on Semantic
Web for digital educational repositories in healthcare that make
available learning objects with educational aspects described in
metadata forms. Learning objects (LO) are structured resources
used to make self-learning content available and are appropriate
to develop Distance Learning content. Making LO available on
the Web contributes to lower costs with their production. In
order to allow LOs to be available, Learning Management
System (LMS) collections are created so that the LOs are
accessed from the course environments themselves. Digital
Educational Repositories (DER) can also be developed, where
an increasingly larger number of objects is shared. Hence, the

466

DER must have an appropriate architecture and carry enough
descriptive information for the selection of LOs, particularly
regarding educational aspects.

Thus, Monteiro [13] proposes adding technologies to the
DER architecture capable of refining the search result in LO by
using the Semantic Web as a key element to contribute to the
search refinement.

Another study directly related with the proposal presented in
the current paper is the Analysis Patterns Reuse Infrastructure
(APRI) [20]. APRI’s architecture is inspired by the Spatial Data
Infrastructures (SDIs), which, in turn, are defined as collections
of technologies, policies, and institutional arrangements that
facilitate the availability of and access to spatial data [14]. Many
SDIs employ the concept of service-oriented architecture
(SOA), thus allowing shared, distributed, and interoperable
environments to be developed based on Web services.

Similarly to the SDI, APRI uses metadata to describe the
analysis patterns to be stored in its repository. Its goal is to
provide mechanisms for the analysis patterns to be made
available and found by designers, which helps in these patterns
being publicized and, consequently, reused.

IV. APRIMORA: AN ARCHITECTURE BASED ON SEMANTIC

WEB FOR PATTERN REUSE

Initially, the APRI was developed focusing only on the reuse
of analysis patterns [19]. Later, Ribeiro et al. [17] proposed
adding design patterns to the APRI repositories, thus broadening
its application scope and allowing the patterns to be reused not
only during the software development analysis, but also during
the design stage.

The patterns stored in the APRI repository can be retrieved
from a Web browser and also through services that allow the
patterns to be discovered, catalogued, and reused from the
Pattern Portal (Figure 2). However, since search engines are
used, the system may return a number of results that are
irrelevant to the research context and inappropriate to meet the
needs of the search.

The patterns documented in the APRI are described as
Linked Data, which helps in their retrieval. Nevertheless, the
metadata still have a limited formal semantics. The most
common method to search for a dataset consists in searching for
the elements using keywords that match the metadata.

The fact that metadata-based searches return a large amount
of results outside the research context when using search engines
requires the elements to be semantically defined. That gives the
meaning of the elements and is a key point to help recover
information from the repositories precisely. Thus, the present
study extends the APRI to an architecture based on the Semantic
Web able to help the user better recover patterns contained in its
repositories, which originates APRImora, a Pattern Reuse
Semantic Infrastructure (Figure 3).

APRImora architecture’s core consists of the same
components of the APRI, but with semantics added to the
elements and to the way they are retrieved and inserted into the

structure. The following subsections describe the components of
this architecture.

Figure 2. APRI architecture

A. Pattern Portal

The Pattern Portal is a portal composed of a set of websites
focused on obtaining patterns. It provides tools and services for
the discovery, cataloguing, and reuse of these patterns. Also
available in the Pattern Portal is the metadata profile editor for
analysis patterns (DC2AP Metadata Editor) [16] and the profile
editor for design pattern metadata (DC2DP Metadata Editor).

Each element part of the metadata set of these two editing
tools has rules regarding its enforcement, occurrence, and value
type, which must be validated for the documented pattern to be
consistent. After documenting the analysis or design pattern, the
enforcement rules referring to these metadata are validated by a
Web service called Validation Service. This service verifies, for
example, if all fields whose occurrence rule is Mandatory have
been filled. If not, the user will receive an error message.

The occurrence rules, regarding the plurality of the elements,
are validated by the interface itself using buttons that add fields
to elements that must be multiple while omitting simple fields.

Some elements are filled and validated by controlled
vocabularies, i.e., sets of standardized terms that aid the data
input and output in an information system, thus promoting
greater precision and effectiveness in the communication
between users and the information system [11]. Examples of
controlled-vocabulary elements include type, format, language
(DC2AP), and type and language (DC2DP).

When the Validation Service returns an affirmative response,
the RDF Service can be used to generate an RDF document of
the new pattern, which is automatically stored in the Metadata
Repository in a user-defined folder.

Besides the metadata editing tools, the Apache Jena
framework1, is part of the Pattern Portal. Jena is a free, open-
source Java framework to build Semantic Web and Linked Data
applications. This framework is made up of different APIs
interacting among themselves to process RDF data.

In the APRImora architecture, this framework is used to
retrieve information from the data and metadata repositories,
along with SparQL language, using the ARQ module, a query
mechanism used by Jena that supports the SparQL language.

467

Figure 3. APRImora architecture

B. Semantic Web Layers

The URI, XML and Namespace, RDF and RDFS, and OWL
technologies, belonging to the Semantic Web layers, are used
directly in the documents contained in APRImora’s Metadata
Repository. Other Semantic Web layers (Figure 1), such as
Logic Framework, Proof, Trust, Signature, and Encryption, were
not added to APRImora’s structure since there are still no
recommendations by the W3C to use these layers [13].

The URI layer is used to assign a unique name to the
elements using the Unicode standard, which is the universal
standard adopted for this addressing. The URI guarantees the
uniqueness of the elements, thus preventing ambiguity. In
APRImora, the URI is used to uniquely name the patterns and
relate them to other patterns. The field Identifier is responsible
for receiving the URI value, indicating the uniqueness of the
patterns in APRImora through the DC2AP or DC2DP metadata,
since the field Relation and its specializations are responsible for
receiving URI values that associate several patterns documented
in the reuse infrastructure described in this study.

In APRImora, the field Identifier receives a user-informed
URI address generated using Persistent Uniform Resource
Locators (PURLs)2. PURLs are Web addresses that act as
permanent identifiers, i.e., allow the resources to change address
(server) without affecting the systems that depend upon them.
Thus, the Web addresses may migrate from one domain to
another without losing the reference of the allocated resource. In
order to generate a URI, the user must have an administrator
account on the site purl.org, fill out the fields referring to the
PURL they wish to create, and await the verification of whether
the URI they intend to register is available.

On the XML layer, the Namespaces allow the content syntax
to be made available on the Web to be defined and its structure
to be specified [13]. APRImora uses controlled vocabulary and
syntax in some elements of the DC2AP and DC2AP. Using the
XML layer in APRImora allows the metadata to be defined with
the syntax that comprehend the DC2AP and DC2DP profiles.

The XML language allows the syntax of the content
available on the Web to be defined, i.e., the content structure, the
presentation form, and the content itself. However, only the
syntax might not be enough. For example, based only on the
term “author” of a design pattern, it cannot be inferred whether
the “author” is a person or a team, nor other patterns belonging
to the same “author” can be listed. In order to solve this
limitation, the use of the RDF data model is proposed, presented
in the third layer of the Semantic Web architecture.

These types of data are not dealt with in an RDF document,
but rather their properties or information units. Hence, RDF goes
beyond XML in terms of syntax and structure of the documents
available on the Web, although this advance is not enough since
it still does not allow the terms to be conceptualized and
disambiguated [13]. In APRImora, the RDF layer is used to
formalize the metadata semantics.

The ontology layer is used to describe the domain of interest.
It is implemented using the OWL language, which was designed
to be used by computing applications that need to process
content from the information instead of only presenting it to
humans [13]. This language expands the ability of inferences
aided by XML, RDF, and RDFS, thus providing an additional
vocabulary along with formal semantics. In APRImora, the
OWL layer is used to help filling out the metadata.

SparQL is a query language used to retrieve information
from an RDF document. SparQL provides protocols to query
and handle RDF graphs, thus allowing several inferences [13].
This language is used perpendicularly to the RDF and OWL
layers. In APRImora, the information is retrieved from
repositories using the SparQL in the ARQ module belonging to
the Apache Jena framework.

C. Linked Open Data

The patterns stored on the Metadata Repository are described
using the Linked Data, generating a cloud among the patterns in
this repository (Figure 4). The light-gray nodes indicate design
patterns and the dark-gray nodes illustrate analysis patterns. This

1 https://jena.apache.org/getting_started/index.html
2 http://purl.oclc.org/docs/index.html

468

Linked Data cloud represents the connections made through the
URI among the design and analysis patterns.

Figure 4. Linked Data cloud of part of the APRImora metadata repository.

The connections presented in Figure 4 indicate a pattern is
related with others. Some patterns can be used as a set, e.g.,
Composite is constantly used along with Iterator or Visitor [8].
Some patterns can be used as alternatives, as is the case of
Prototype used in place of Abstract Factory. Moreover, some
patterns can result in similar designs, although their purposes are
different, such as the structure diagrams of Composite and
Decorator being similar.

The main advantage of relations among patterns is allowing
the designer to have multiple ways of thinking about the
patterns, thus deepening their perception on what each pattern
does and in which situation it can be employed. These multiple
ways allow to choose the best way to use the pattern and those
that complement it, enhancing designing with patterns reuse.

Linked Open Data is a worldwide data publication effort,
making them open and available to be used anywhere [23]. In
order for these data to be published and connected, Linked Data
must be used. Thus, it was added to the APRImora architecture
through a connection with the Metadata Repository to indicate
that the Linked Data cloud generated by the patterns documented
and stored in this repository are now part of the Linked Open
Data, which makes the patterns open and available to be used.

D. Pattern Repository

The Pattern Repository is a repository containing
descriptions of diagrams expressed in XMI (XML Metadata
Interchange), JPG, and PNG, which represent the solutions
proposed by the patterns, thus allowing them to be used by
portrayal and collaboration services. In APRImora, the Pattern
Repository is made up of two repositories, Design and Analysis,
which relate to each other through Linked Data. So, a design
pattern can be referenced by an analysis pattern and vice-versa.

The relation between the analysis and design patterns has the
advantage of sharing the experience of using these patterns, i.e.,
the analyst can list which design patterns can be used to
implement a given analysis pattern. The same occurs regarding
design patterns, in which the designer can indicate which
analysis patterns that design pattern can implement.

E. Web Service and Semantic Web Service

Patterns and services can be searched for in APRImora either
by a Human User through search engines or by Client Software
through Web Service or Semantic Web Service.

As seen in Figure 3, the connection between the Web
Service/Semantic Web Service and the Pattern Portal is two-way
since the services can use the tools to carry out searches and the
Pattern Portal uses these services along with its tools. For
example, the metadata editors use Web Services to validate
(Validation Service) the metadata fields, visualize diagrams
(Portrayal Service), and download the RDF files (Access
Service) that contain the pattern descriptions. The Semantic Web
Service, is used by the Pattern Portal to generate an RDF
document (RDF Service) and the Hyperbolic Tree.

With the search result returned, the user can use a Semantic
Web Service to generate a hyperbolic tree, which is an easily
understood graph on the pattern relationship. In APRImora, the
central node of this tree will always be the pattern returned
according to the search criteria, while the other nodes connected
to the central node are patterns related with it. This is possible
thanks to the use of Linked Data.

Figure 5 illustrates a hyperbolic tree corresponding to the
connections of possible design patterns existing in the pattern
repository, whose root node is the pattern Prototype. Using a
hyperbolic tree is possible to visually navigate among the
connections between the patterns.

Figure 5. Hyperbolic tree with design patterns

APRI had only the component Web Service, which in the
APRImora architecture is divided into two components, Web
Service and Semantic Web Service. Web Service makes the
following services available:

 Portrayal Service – support the visualization of the
diagrams of solutions proposed by the patterns;

 Catalog Service – allows the patterns and services to be
discovered and used based on their describing metadata;

 Access Service – allow accessing and downloading the
patterns;

 Collaboration Service – allow designers and developers
to share their use experiences to improve the patterns;

469

 MDA Service – allows source code to be generated from
diagrams;

 Validation Service – allows metadata to be validated.

The Semantic Web Service component makes the following
services available:

 RDF Service – allows RDF documents to be generated;

 Hyperbolic Tree – generates a visualization of the
connections among the patterns and enables navigation.

The Web Service and Semantic Web Service components
have a two-way connection with Linked Open Data, which
indicates the services can carry out external searches as long as
the result obtained is in a format compatible with those
supported by the search carried out by APRImora. Both in
APRImora and in the environment external to the infrastructure
at hand, the language used to retrieve information is SparQL,
while the search is done only in RDF files.

The connection between Web Service/Semantic Web
Service and Linked Open Data leads to the possibility of
discovering other data sources related to the patterns whenever
these are published. The opposite is also possible since external
agents can search the APRImora repositories using services.

V. CONCLUSIONS AND FUTURE WORK

One of the big issues faced by developers regarding the
analysis and design steps is discovering reuse patterns that meet
their needs. The search engines used to retrieve the patterns do
not always help since a simple search returns a large number of
results, many of which irrelevant to that software-design context.

The APRI was proposed to help developers search for
patterns. The analysis and design patterns contained in the APRI
are documented using the DC2AP and DC2DP application
profiles, and later stored in their repositories. However, storing
the patterns in repositories is not enough since there are hundreds
of patterns and a manual search can be exhausting while search
engines can return a large number of results.

To help the user better retrieve patterns contained in its
repositories, the APRI was extended in this paper to an
architecture based on the Semantic Web, which originates
APRImora, a Pattern Reuse Semantic Infrastructure. The
Semantic Web layers were used to extend the APRI since they
provide means for data to be organized in a way that they can be
easily interpreted by computers. Moreover, the way the
Semantic Web organizes the data allows the search results to be
improved. Hence, by adding Semantic Web layers to the APRI,
it is expected that the information on the computing artifacts
stored in the repositories are more precisely retrieved, thus
allowing the user to reuse the patterns that best meet the needs.

As future work, it is intended to create a functional prototype
of the APRImora so that experiments can be made to prove its
efficiency. In addition, adding software agents to the APRImora
is proposed to help in the automatic recovery of knowledge.

ACKNOWLEDGMENT

This work was financed by FAPEMIG, CNPq and CAPES.

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific
American, vol. 284, n. 5. pp. 28-37, 2001.

[2] T. Berners-Lee, “Semantic Web Concepts”. 2005. [Online]. Available:
http://www.w3.org/2005/Talks/0517-boit-tbl

[3] T. Berners-Lee, “Linked Data”. 2006. [Online]. Available:
http://www.w3.org/DesignIssues/LinkedData.html

[4] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data – the story so far,”
Int. Journal on Semantic Web and Information Systems, vol. 5 n. 3. pp.
01-22, 2009.

[5] D. R. B. Cunha, B. F. Lóscio, and D. Souza, “Linked Data: da Web de
Documentos para a Web de Dados,” in Livro Texto dos Minicursos
ERCEMAPI, A. M. Santana et al., SBC: Teresina, BR, 2011, pp. 79-99.

[6] DCMI - Dublin Core Metadata Initiative, “Dublin Core Metadata Element
Set, Version 1.1: Reference Description”. 1999. [Online]. Available:
http://www.dublincore.org/documents/1999/07/

[7] M. Fowler, Analysis Patterns: reusable object models. Addison-Wesley
Publishing, 1997.

[8] E. Gamma, R. et al., Design patterns: elements of reusable object-oriented
software. Addison-Wesley Publishing, 1994.

[9] S. Hawke, “SPARQL Query Results XML Format (Second Edition)”.
2013. [Online]. Available: http://www.w3.org/TR/2013/REC-rdf-sparql-
XMLres-20130321/

[10] G. Klyne, J.J. Carroll, and B. McBride, “RDF 1.1 Concepts and Abstract
Syntax”. 2014. [Online]. Available: http://www.w3.org/TR/rdf11-
concepts/

[11] N. Y. Kobashi, “Vocabulário controlado: Estrutura e Utilização”. 2008.
[Online]. Available: http://www2.enap.gov.br/rede_escolas/arquivos/
vocabulario_controlado.pdf

[12] D. Martin, and J. Domingue, “Semantic Web Service, Part 1,” IEEE
Intelligent Systems, vol. 22, n. 5. pp. 12-16, 2007.

[13] F. S. Monteiro, “Web semântica e repositórios digitais educacionais na
área de saúde: uma modelagem com foco no objetivo de aprendizagem
para refinar resultados de busca,” unpublished.

[14] D. D. Nebert, “Developing spatial data infrastructures: the SDI
cookbook”. 2004. [Online]. Available: http://www.gsdi.org/docs2004/
Cookbook/cookbookV2.0.pdf.

[15] V. F. Pamplona, “Web Services: Construindo, disponibilizando e
acessando Web Services via J2SE e J2ME”. 2010. [Online]. Available:
http://javafree.uol.com.br/artigo/871485/Web-Services-Construindo-
disponibilizando-e-acessando-Web-Services-via-J2SE-e-J2ME.html

[16] D. A. Peixoto, L. F. M. Vegi, and J. Lisboa-Filho, “DC2AP Metadata
Editor: A metadata editor for an Analysis Patterns Reuse Infrastructure,”
Proc. of the CAiSE’13 Forum. pp. 138-145, 2013.

[17] A. A. A. Ribeiro, J. Lisboa-Filho, L. F. M. Vegi, and A. P. Oliveira,
“DC2DP: a Dublin Core Application Profile to Design Patterns,” Proc. of
the 16th ICEIS. pp. 209-215, 2014.

[18] L. F. M. Vegi, J. Lisboa Filho, G. L. S. Costa, A. P. Oliveira, and J. L.
Braga, “DC2AP: A Dublin Core Application Profile to Analysis
Patterns,” Proc. of the 24th Int. Conf. on Software Engineering and
Knowledge Engineering (SEKE). pp. 511-516, 2012.

[19] L. F. M. Vegi, J. Lisboa-Filho, and J. Crompvoets, “A machine-
processable Dublin Core application profile for analysis patterns to
provide linked data,” Proc. of the Int. Conf. on Dublin Core and Metadata.
pp.23-32, 2012.

[20] L. F. M. Vegi, D. A. Peixoto, L. S. Soares, J. Lisboa-Filho, and A. P.
Oliveira, “An infrastructure oriented for cataloging services and reuse of
Analysis Patterns,” Proc. of BPM 2011 Workshops, pp. 338 – 343, 2012.

[21] L. F. M. Vegi, J. Lisboa-Filho, J. Crompvoets, L. S. Soares, and J. L.
Braga, “A Dublin Core application profile for documenting analysis
patterns in a reuse infrastructure,” IJMSO, vol.8, n. 4. pp.267-281, 2013.

[22] W3C, “Semantic Web”. [Online]. Available: http://www.w3.org/
standards/semanticweb/

[23] F. H. Zaidan, “LOD – Linked Open Data – Dados Abertos Vinculados”.
2013. [Online]. Available: http://itweb.com.br/blogs/lod-linked-open-
data-dados-abertos-vinculados/

470

http://www.w3.org/2005/Talks/0517-boit-tbl

Mining Universal Specification Based on

Probabilistic Model

Deng Chen1, a, Yanduo Zhang2, b, Rongcun Wang3, c, Xun Li2, d, Li Peng4, e, Wei Wei1, f
1 Industrial Robot Engineering Center, Wuhan Institute of Technology, Wuhan, P.R. China

2 Hubei Provincial Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, P.R. China
3 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, P.R. China

4 Hubei Radio & TV University, Wuhan, P.R. China
a chendeng8899@hust.edu.cn
b zhangyanduo@hotmail.com

c rcwang@hust.edu.cn
d linuxfly@gmail.com

e peling9901@126.com
f weiwei@huawei-elec.com

Abstract—Class temporal specification is a kind of important

program specifications, which specifies that methods of a class

should be called in a particular sequence. Dynamic specification

mining is a promising approach to achieve this kind of

specifications automatically. However, they always infer partial

specifications, that is, the mined specifications are biased to input

programs or program execution traces. In this paper, we propose

to mine class temporal specifications based on a probabilistic

model in an online mode. Since our method can evolve mined

specifications persistently, universal specifications can be

achieved. To investigate our technique’s feasibility and

effectiveness, we implemented it in a prototype tool ISpecMiner

and used the tool to perform experiments. Experimental results

show that our method is promising to infer universal

specifications if sufficient traces are provided for mining.

Keywords- program specification mining; Markov model; class

temporal specification; dynamic analysis; program execution trace

I. INTRODUCTION

Class temporal specification (which is also referred to as
component interface [1], object behavior model [2], object
usage model [3], [4], etc.) is an important kind of program
specifications, which imposes temporal constraints regarding
the order of calls of class public methods (a public method of
class c is a method that can be accessed outside c). For example,

calling peek() on java.util.Stack without a preceding

push() gives an EmptyStackException, and calling

next() on java.util.Iterator without checking

whether there is a next element with hasNext() can result in

a NoSuchElementException. Client programs that
violate such specifications do not obtain the desired behavior
and may even crash the program [5]. However, class temporal
specification is always implicit in programs and undocumented.
Even when available, there is no guarantee of their consistence,
completeness, and correctness. Dynamic specification mining
is a promising approach to resolve the problem.

Dynamic specification mining techniques [6]-[8] run

applications with test cases generated automatically or
manually, and extract specifications from program execution
traces. Since dynamic specification mining techniques do not
require program source code as input, compared with static
specification mining [9]-[11], they can be used extensively,
especially when source code is unavailable. However, existing

dynamic specification miners (such as ADABU [2]) always
achieve partial specifications. In order to mine specifications,
these miners first run an application program and collect
program execution traces into a traces file leveraging
instrumentation techniques. Then, they take the trace file as
input and synthesize specifications based on various kinds of
sequential data mining approaches. Each run of an application
will generate a trace file and corresponding specifications. The
problem with this approach is that mined specifications may be
biased to the application program and input traces.

In this paper, we propose to mine class temporal
specifications in an online mode. Different from existing work,
our approach does not save program execution traces in any file.
It takes each method call from an execution trace sequentially
and evolves existing specifications or creates a new one. The
online approach does not require loading all traces into
memory at once. Thus, it has minimum space overhead.
Additionally, since execution traces extracted from different
application programs can be used to refine existing
specifications persistently, universal specifications may be
achieved. Another characteristic of our technique is that, we
describe class temporal specification using a probabilistic
model extended from Markov chain. Compared with
commonly used Finite State Automaton (FSA), probabilistic
model has an inherent ability to tolerate noise. Above all, it can
facilitate our online mining strategy.

To investigate the effect of our approach, we implemented
our technique in a prototype tool ISpecMiner and used it to
conduct experiments. Experimental results show that, our
approach is promising to achieve universal specifications, if
enough application programs are provided for learning.

The contributions of this paper are as follows:
(DOI reference number: 10.18293/SEKE2015-219)

471

mailto:%7D@hust.edu.cn
mailto:zhangyanduo@hotmail.com
mailto:peling9901@126.com

 An online approach is used to mine class temporal
specifications.

 A probabilistic model extended from Markov chain is
used to describe class temporal specifications.

 A prototype tool ISpecMiner that implements our
technique is presented.

 Experiments are performed to investigate the effect of
our method.

The rest of this paper is organized as follows: Section II
discusses related work. Section III introduces our technique.
Section IV presents our experimental results. Section V gives
our conclusions.

II. RELATED WORK

Generally, program specification mining techniques can be
categorized into static analysis approaches and dynamic
analysis approaches. These two kinds of approaches collect
method call sequences (or program execution traces) in
different manners. Static analysis approaches do not require
running application programs. They extract method call
sequences from program source code, bytecode or other
artifacts based on program static analysis techniques [12].
Dynamic analysis approaches do not take program source code
as input. They collect program execution traces by running
instrumented application programs. After that, temporal
specifications can be synthesized from method call sequences
(or program execution traces) based on sequential data mining
techniques.

Currently, a commonly used mining approach is based on

FSA. For instance, Wasylkowski et al. [1] proposed to mine
object usage models (which are finite state automata) from Java

bytecode and a tool JADET was developed. Lorenzoli et al.
[13] modeled class temporal specification using EFSM which

extends from FSM. Alur et al. [14] synthesized FSA model of
class temporal specification using L* learning algorithms
combined with model checking and abstract interpretation
techniques. These approaches work in a similar manner. First,
they split program execution traces into a set of object usage
scenarios (an object usage scenario is a method call sequence,
all method calls of which have the same receiver object). Then,
they reduce the problem of inferring temporal specifications
from a set of method call sequences (or traces) to the well
known grammar inference problem [15] by regarding method
call sequences and specifications as sentences and languages
respectively. As a result, a specification is described using one
or multiple finite state automata, where states represent states
of involved objects and transitions represent method calls.
Method calls in each path from an initial state to a final state

constitute a valid execution trace. Figure 2 shows an example

of specification for class java.io.FileOutputStream.
The specification illustrates that, to use class

FileOutputStream, we should first initiate it through
calling its constructor method. Next, we can call method

write(byte[],int,int) multiple times to write data

into the stream. Finally, method close() should be called to
close the stream.

FSA is a kind of deterministic model with inability to

tolerate noise. Ammons et al. [16] proposed to mine temporal
specifications among application programming interfaces (API)
or abstract data types (ADT) based on probabilistic finite state
automaton (PFSA). A PFSA is a nondeterministic finite
automaton (NFA), in which each edge is labeled by an abstract
interaction and weighted by how often the edge is traversed
while generating or accepting scenario strings. To mine
temporal specifications, first an off-the-shelf PFSA learner was
used to analyze scenario strings and generated a PFSA. Next,
another component corer was employed to transform PFSA to
NFA by discarding rarely-used edges and weights. The NFA
obtained was used for program verification and manual
inspection.

However, existing tools (such as Daikon [17] and

ADABU [2]) always work in a two-step mode. In the first step,
they collect execution traces from application programs using a
tracer and then store the traces in a trace file. In the next step,
they take the trace file as input and synthesize specifications.
Each run of an application will generate a trace file and
corresponding specifications. The problem with this approach
is that results of multiple runs cannot be merged. Thus, the
mined specifications are biased to the input trace file. In this
work, we mine class temporal specifications based on an online
approach. In addition, a probabilistic model extended from
Markov chain is employed to describe specifications.

III. OUR TECHNIQUE

In this section, we present our online specification mining
technique. We first provide an intuitive description of our
technique and then discuss its main characteristics in detail.

A. General Approach

The working principle of our approach is illustrated in

Figure 2. The tracer is responsible for collecting program
execution traces from application programs via instrumentation
technique. Different from existing approaches, our method

does not save execution traces into any file. The tracer

passes each method call of a trace sequentially to the online

specification miner. The online

specification miner learns class temporal
specifications based on a probabilistic model. For each class, it

S2

FileOutputStream(String) close()

write(byte[], int, int)

S3S1

Figure 1. Temporal specification of class FileOutputStream described

using FSA.

Tracer
Application

Program

Online

Specification

Miner

Specifications

Method Call

Figure 2. Working principle of our online specification mining technique.

472

first creates an empty specification described using the
probabilistic model. Then, it evolves the probabilistic models

persistently in terms of method calls passed by the tracer.

As we can see, our approach does not require loading all
traces into memory. It refines existing probabilistic models
based on a method call continuously. Therefore, compared with
existing approaches, our method has lower space overhead.
Furthermore, since method calls of any traces or application
programs can be used to learn specifications, universal
specifications may be achieved.

B. Collecting Program Execution Traces

To collect program execution traces, we should instrument
application programs. Many approaches and frameworks exist
to instrument Java applications statically or dynamically. We
adopt Java agent technique, which is a service provided by Java
since 1.5 [18]. Java agents can instrument classes at bytecode
level. When a class is loaded, a Java agent catches the bytecode
of this class on the fly. Then, it parses the class, injects new
bytecodes. Finally, the instrumented class is returned back to
the JVM.

To manipulate class bytecodes, we utilize a library

Javassist [19], [20]. Compared with similar tools [21], [22],

Javassist can provide the source level API, which enables
programmers to edit a class file without knowledge of Java
bytecodes. Furthermore, code can be inserted into class files in

the form of Java source text and Javassist will compile it
on the fly.

In order to collect program execution traces from an

application program, we load a Java agent at startup using the -

javaagent command-line switch. The agent will insert an

event writer into the body of interested methods. Once

the methods are called, the embedded event writer passes
all necessary information regarding the method call to the
specification miner for learning.

C. Mining Specification

1) Markov Chain with Final Probability
We mine class temporal specifications based on an

extended Markov chain with final probability (MCF) [23].
MCF extends Markov chain by introducing a probability
distribution over final states (final probability). The final
probability is similar to initial probability. The difference is
that final probability indicates which states a chance process
should end with (rather than start from). The formal definition
of MCF is given below.

DEFINITION 1 (Markov chain with final probability). A Markov

Chain with Final Probability (MCF) M is a 4-tuple (, , ,)Q    ,

where Q is a set of states,  : [0,1]Q Q  is the transition

probability function, which is always described using a
transition matrix P,  : [0,1]Q  is the probability

distribution over initial states.  : [0,1]Q  is the probability

distribution over final states. The functions  and  must

satisfy the requirements: q Q  , () 1q Q q  and

() 1q Q q  .

As shown in the definition, MCF preserves most of
characteristics of Markov chain, except violation of the

requirement: q Q  , ' (, ') 1q Q q q  , because of

introduction of final states.

Relying on MCF, we can model class temporal
specification by regarding states as methods and transitions as
temporal relationships among methods. Consider the class
temporal specification described using FSA illustrated in
Figure 1, it can be described using a MCF as shown in Figure 3.
The rounded rectangles are states labeled with method
signatures above the line. Arrows denote transitions with

transition probability labeled beside them. InitPro is the

probability of a state to be initial state. FinalPro is the
probability of a state to be final state. Actually, all the states

have properties InitPro and FinalPro. We omit the ones
whose value is zero. From the MCF, we can see that the usage

of class FileOutputStream should start with a method call

FileOutputStream(String). At the end, methods

close(), FileOutputStream(String) and

write(byte[],int,int) may be called with a
probability of 0.9, 0.05 and 0.05 respectively.

2) Online Specification Learning
Our approach learns class temporal specifications described

using MCF in an online mode. It accepts a method call of an
OUS as input and evolves existing specifications or creates a
new one.

Let R be a repository of OUSs for learning, M be the MCF
specification synthesized from R, q be a state of M, tij be a
transition from state i to j. Our learning strategy represents M
using a weighted directed graph GM, where nodes and edges
denote states and transitions respectively. In addition, the
following properties are attached to GM.

 ouscount(M) denotes the number of OUSs, which have
been used to learn M.

 emgcount(q) denotes the total occurrence number of
state (or method) q in R.

 initcount(q) denotes the count of q to be beginning
method in all the OUSs of R.

 finalcount(q) denotes the count of q to be end method
in all the OUSs of R.

 emgcount(tij) denotes the total occurrence number of
method pair (i, j) in all the OUSs of R.

At the beginning, we initialize GM to be an empty graph.
Then, we pick up a method call from an OUS in R sequentially

write(byte[], int, int)

FinalPro = 0.05

close()

FinalPro = 0.9

0.9

0.08

0.6

0.38
InitPro = 1

FinalPro = 0.05

FileOutputStream(String)

Figure 3. Class temporal specification of FileOutputStream described

using MCF

473

and update GM continuously until all OUSs have been
processed. For each pair of method calls q and p received
currently and previously, we update GM based on the following
strategy.

 if node q does not exist in GM, add q to GM or else
update properties associates with q.

 if edge (p, q) does not exist in GM, add (p, q) to GM or
else update properties associated with (p, q).

 if q is the end method of an OUS, update ouscount(M).

After that, we recompute probabilities  ,  and 

according to the following equations.

(,) () / ()
ij

i j emgcount t emgcount i  (1)

() () / ()q initcount q ouscount M  (2)

() () / ()q finalcount q ouscount M  (3)

In words, (,)i j is the ratio between count of transition (i, j)

and that of state i in all the OUSs used for learning. ()q is the

ratio between number of OUSs beginning with state q and the

total number of OUSs. ()q is the ratio between number of

OUSs ending with state q and the total number of OUSs.

3) Transformation from Probabilistic Model to

Deterministic Model
MCF is a kind of probabilistic model, including frequent

behaviors and infrequent behaviors. In order to use the mined
specifications for program verification, we should prune away
infrequent behaviors (noise) in the model and obtain a
deterministic model. Chen et al. [23] proposed a deterministic
model Class Interface Model (CIM) and showed that it is
straightforward to transform MCF to CIM.

DEFINITION 2 (Class interface model). A Class Interface Model

(CIM) M of class c is a 4-tuple (, , ,)M S F , where M is the

set of public methods of c, M M   is a binary relation on

M, S M is the set of beginning methods, F M is the set

of end methods. Let ,p q M be two methods, if they have

the relation  (denoted by (,)p q), it means that method p

should be called preceding q.

A CIM of class c specifies that the usage of c should start
from a method in S and then moves successively from a

method mi to mj, where (,)i jm m , finally ends in a method of

F. Any violations of the above rules are taken as errors.

In order to transform MCF to CIM, we first prune away
infrequent behaviors according to initial threshold (Ti), final
threshold (Tf) and transition threshold (Tt), which are used to
filter initial states, final states and transitions respectively.
After that, we discard all the probabilities attached with states

and transitions. In detail, given a MCF : (, , ,)Q    , we

transform  to CIM : (, , ,)M S F in terms of the

following rules:

 q Q  , add ()q to M, where :Q M  is a

function which maps a state in MCF to a method in
CIM with method names the same as state labels.

 q Q  , if ()
i

q T  , add ()q to S.

 q Q  , if ()
f

q T  , add ()q to F.

 ,i Q j Q   , if (,)
t

i j T  , we have ()i j  .

Figure 4 presents the CIM of class FileOutputStream,
which is transformed from the MCF illustrated in Figure 3
based on threshold values Ti = 0.2, Tf = 0.2, Tt = 0.2. In the
CIM, each ellipse represents a public method of the class.
Arrows denote temporal relationships between pairs of
methods. The methods with an arrow coming in from nowhere
are beginning methods and those denoted graphically by a
double ellipse are end methods. The dashed-line arrows
represent the discarded transitions of MCF. As we can see, the
previous MCF before transformation has three possible final

states FileOutputStream(String), close() and

write(byte[],int,int) with a probability of 0.9, 0.05
and 0.05 respectively. The CIM discards the first and last final
states because they are infrequent. In addition, the transition

from state FileOutputStream(String) to close() is
also pruned away due to a lower probability than Tt.

What should be noted is that results of transforming MCFs
to CIMs largely depend upon values of thresholds. If thresholds
are set too high, useful information will be discarded
mistakenly. If thresholds are set too low, noise will remain.
Even worse for our work, improper thresholds will cause
unconnected CIMs. We employ the method proposed by Chen
et al. [23] to compute threshold values, which can eliminate
noise utmostly and obtain connected CIMs.

IV. EXPERIMENTS

In order to investigate the effectiveness of our technique,

we implemented it in a prototype tool ISpecMiner and used
the tool to mine specifications from several real-world
applications. In this section, we first introduce subjects used in
our experiments. Then, we present specifications mined by

ISpecMiner.

A. Subjects

The subjects used in our experiment are listed in Table I,
which consists of four real-world Java applications. We
selected them based on the following criteria:

FileOutputStream(String) write(byte[], int, int) close()

Figure 4. Class temporal specification of FileOutputStream described

using CIM.

474

 Open source software. Though ISpecMiner is a
dynamic specification miner and source code is not
necessary, it is helpful for us to figure out problems
encountered in the mining process and validate results.

 Mature software. Mature software contains fewer bugs
than the unstable one. Thus, program execution traces
with less noise can be collected, which is essential for
dynamic mining tools to learn precise specifications.
There exist many methods to measure the maturity of
software. We perform the task based on a heuristic: if
an application has been maintained for a long time and
undergone a large number of revisions, we believe it is
mature.

 Large-scaled software. Large-scaled software can
provide abundant program execution traces for
learning, which is the basis of mining useful program
specifications.

 Applications coming from various domains.
Applications from various areas can provide diverse
program execution traces, which is a strong assurance
for mined specifications to be complete.

B. Mining Specifications

In this experiment, we used ISpecMiner to mine
specifications from the subject programs presented in Table I.
We ran each application once with manual input data

sequentially in the order of FreeMind, RapidMiner,

SQuirreL SQL Client and OpenProj. After that, we
examined the university of mined specifications achieved at the
end of each run. The classes that we investigated are illustrated
in Table 2. We selected these classes based on the following
considerations: (1) they are widely used in various Java
applications and well documented; (2) they are familiar to us;
and (3) since their class temporal specifications have some
distinguishing characteristics (such as the usage of a class

should end with a method call close()), we can check their
validity conveniently.

Figure 5 shows an example of mined specification for class

java.io.FileInputStream, where (a), (b), (c) and (d)
were achieved when we finished the run of subject programs

FreeMind, RapidMiner, SQuirreL SQL Client and

OpenProj respectively. As we can see, along with more
applications used for mining, the specification grew universal,
that is, more states and transitions were added to the
specifications. For example, after the run of application

TABLE I. THE SET OF SUBJECTS

Subject Version Description KLoCa # Revisions Create Date Last Update Date

FreeMind 0.9 Mind-mapping software 22 6469 March, 2001 April, 2013

RapidMiner 5.3
Environment for machine learning and data

mining
513 867 August, 2004 April, 2013

SQuirreL SQL Client 3.4 Java SQL client 253 3272 June, 2004 May, 2013

OpenProj 1.4 Project management software 120 1498 January, 2008 October, 2012

a. Kilo lines of code.

TABLE 2 INVESTIGATED CLASSES

 Class Class

1 java.io.FileInputStream 6 java.io.InputStreamReader

2 java.io.BufferedReader 7 java.io.PushbackInputStream

3 java.io.FileOutputStream 8 java.io.FileReader

4 java.io.ByteArrayOutputStream 9 java.io.PrintWriter

5 java.io.BufferedWriter 10 java.util.Stack

(a)

(b)

(c)

(d)

Figure 5. Example of mined probabilistic specification

475

RapidMiner, a new state

FileInputStream(FileDescriptor) and transition

<FileInputStream(File), close()> shown in Figure
5 (b) were added to the previous specification illustrated in
Figure 5 (a). Furthermore, since more applications were used to
evolve the specification, probabilities of normal and abnormal

behaviors (such as the FinalPro of state close() and that

of state FileInputStream(File)) in the specification
were increased and decreased respectively. Finally, the gap
between probabilities of useful information and noise will
become large, and then correct deterministic specifications can
be achieved by transforming the final MCF to CIM. The

specification of class FileInputStream described using
CIM is illustrated in Figure 6, which is transformed from the
final MCF under threshold values computed according to the
method by [23]. After a close investigation, the CIM is correct
and consistent with JDK documentations.

In conclusion, we used ISpecMiner to mine class
temporal specifications from four real-world Java applications
and examined specifications of 10 JDK classes. We found that
our technique can refine mined specifications persistently. In
addition, the probabilities of useful information will be
enhanced, which is beneficial for transforming probabilistic

models to correct deterministic models. ISpecMiner and
other specifications mined in our experiment can be obtained at
the URL http://ispecminer.com.

V. CONCLUSIONS

In this paper, we proposed an online program specification
mining approach based on an extended Markov model.
Different from existing approaches which work in a two-step
mode, our method does not require saving collected program
execution traces into a trace file. It first creates an empty
probabilistic model for each class, and then evolves the
probabilistic model persistently based on method calls in input
traces. Since our approach does not require loading traces into
memory at once, it has low space overhead. Additionally, if
enough applications are provided for mining, universal
specifications may be achieved.

ACKNOWLEDGMENT

Supported by Natural Science Foundation of Hubei
Province (No. 2014CFB1006).

REFERENCES

[1] A. Wasylkowski, A. Zeller, C. Lindig, Detecting object usage anomalies.
Proceedings of the 6th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ACM , Dubrovnik, 2007.

[2] V. Dallmeier, C. Lindig, et al., Mining object behavior with ADABU.
Proceedings of the 2006 International Workshop on Dynamic Systems
Analysis, ACM, Shanghai, 2006.

[3] M. Pradel and T.R. Gross, Automatic generation of object usage
specifications from large method traces. Proceedings of the 2009
IEEE/ACM International Conference on Automated Software
Engineering, IEEE Computer Society, 2009.

[4] A. Wasylkowski, Mining object usage models. Companion to the
Proceedings of the 29th International Conference on Software
Engineering, IEEE Computer Society, 2007.

[5] M. Pradel and T.R. Gross, Leveraging test generation and specification
mining for automated bug detection without false positives. Proceedings
of the 34th International Conference on Software Engineering, Zurich,
Switzerland, 2012, 288-298.

[6] M.D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, Dynamically
discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering, vol. 27, 2001, 99-123.

[7] M. Gabel and Z. Su, Javert: fully automatic mining of general temporal
properties from dynamic traces. Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
ACM, Atlanta, 2008.

[8] J.H. Perkins and M.D. Ernst, Efficient incremental algorithms for
dynamic detection of likely invariants. SIGSOFT Softw. Eng. Notes, vol.
29, 2004, 23-32.

[9] M.K. Ramanathan, A. Grama, and S. Jagannathan, Static specification
inference using predicate mining. SIGPLAN Not., vol. 42, 2007, 123-
134.

[10] S. Thummalapenta, and T. Xie, Alattin: mining alternative patterns for
defect detection. Automated Software Engineering, vol. 18, pp. 293-323,
2011.

[11] D. Lo, G. Ramalingam, et al., Mining quantified temporal rules:
formalism, algorithms, and evaluation. Science of Computer
Programming, vol. 77, pp. 743-759, 2012.

[12] D. Chen, R. Huang, et al., Improving static analysis performance using
rule-filtering technique. Proceedings of the 26th International
Conference on Software Engineering and Knowledge Engineering, 2014.

[13] D. Lorenzoli, L. Mariani and M. Pezz, Automatic generation of software
behavioral models. Proceedings of the 30th International Conference on
Software Engineering, ACM, Leipzig, 2008.

[14] R. Alur, P. Cerny, et al., Synthesis of Interface Specifications for Java
Classes. SIGPLAN Not., vol. 40, 2005, 98-109.

[15] J.E. Cook and A.L. Wolf, Discovering models of software processes
from event-based data. ACM Trans. Softw. Eng. Methodol., 7(3), 1998,
215-249.

[16] G. Ammons, R. Bodik and J.R. Larus, Mining specifications. SIGPLAN
Not., vol. 37, 2002, 4-16.

[17] M.D. Ernst, J.H. Perkins, et al., The Daikon system for dynamic
detection of likely invariants. Science of Computer Programming, vol.
69, 2007, 35-45.

[18] P. Caserta and O. Zendra, JBInsTrace: a tracer of Java and JRE classes
at basic-block granularity by dynamically instrumenting bytecode.
Science of Computer Programming, vol. 79, pp. 116-125, 2014.

[19] S. Chiba and M. Nishizawa, An easy-to-use toolkit for efficient Java
bytecode translators. Proceedings of the 2nd International Conference on
Generative Programming and Component Engineering, Springer-Verlag,
New York, 2003.

[20] M. Tatsubori, T. Sasaki, et al., A bytecode translator for distributed
execution of “legacy” Java software. Proceedings of the 15th European
Conference on Object-Oriented Programming, Springer-Verlag, 2001.

[21] ASM, http://asm.ow2.org.

[22] BCEL, http://commons.apache.org/proper/commons-bcel.

[23] D. Chen, R. Huang, et al., Ming class temporal specification
dynamically based on extended Markov model. International Journal of
Software Engineering and Knowledge Engineering, 2014, in press.

Figure 6. Example of mined deterministic specification

476

http://ispecminer.com/
http://asm.ow2.org/
http://commons.apache.org/proper/commons-bcel

Topic Matching Based Change Impact Analysis
from Feature on User Interface of Mobile Apps

Qiwen Zou1, Xiangping Chen2,∗, Yuan Huang1,3
1School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China, 510006

2Institute of Advanced Technology, Sun Yat-sen University, Guangzhou, China, 510006
3Ocean University of China, Qingdao Haier Intelligent Home Appliance Technology Co.,Ltd, Qingdao, China

Email: cathyzqw@163.com, chenxp8@mail.sysu.edu.cn, huangyjn@gmail.com

Abstract—The complexity of mobile applications often lies in
the user interface (UI). To update function provided by UI or just
fix bugs related to UI, software maintainers primarily need to
obtain the location of source code implementation and detect
change set. Since UI related feature is tightly related to the
class containing the declaration of the UI component, this paper
proposes a topic matching based change impact analysis method
from feature on user interface of mobile apps. Our approach
combines LDA model with program dependency to realize the
change impact analysis. Considering app′s small scale and few
comments, a novel preprocessing method combining tf-idf with
term weight based on structural information is applied to LDA
model. Experiments on 16 update records of 4 open source apps
show the effectiveness of our proposed method.

I. INTRODUCTION

With the rapid development of mobile application industry,
most mobile applications (i.e., apps) are updating frequent-
ly, which challenges software maintainers. During software
maintenance, developers must spend much efforts on program
comprehension when related documents are missing and even
original developers are no longer available. However, to seek
out relative classes manually is difficult and time-consuming.
Change impact analysis [12] is always a special topic of
determining potential consequences of a proposed change.

Different from traditional software, the user-friendly of apps
has become a key point to attract users thus modifying user
interface (UI) is frequent. In addition, app has to deal with
users′ various requirements through UI and this can be error
prone for UI with the complexity of the demands [1]. Thus we
guess frequent function update is associated with app UI and
it′s an active area of software maintenance tasks. To validate
our conjecture, we manually browse 1007 update records of
306 apps collected from Google Play Store1, in which 458
changes are related to function provided by UIs, excluding
these changes such as data storage, configuration file and
ambiguous changes (fix bugs, improve performance, etc.). The
rate which reaches 45% shows a frequent modification of
source code related to UI. Detailed data are available in the
online appendix2. Further, we investigate keywords on UI and
want to know how many words appearing on UI will exist in

1http://www.androidcentral.com/google-play-store
2http://research.defool.me/dataset/website/1.html
DOI reference number: 10.18293/SEKE2015-078

the topics. Results suggest an average of 35%, which indicates
that function provided by UI can be well described by topics.

To update function provided by UI or just fix bugs related to
UI, software maintainers primarily need to obtain the location
of source code implementation and detect change set (i.e.,
classes that may be modified to accomplish an update of app
UI). Feature location is always an option and then change
impact analysis can help to find relative classes. A UI related
software feature is tightly related to the class containing the
declaration of the UI component providing its corresponding
function. In this context, locating the feature on UI can
automatically detect an initial class for impact analysis.

In recent years, text retrieval model such as Latent Dirichlet
Allocation (LDA) [3] is generally used to locate feature while
impact analysis depends on program dependency [9, 10, 12].
However, to do impact analysis for the update of feature
provided by UI, those information implied by keywords on
UI is very important, using LDA to mine relative classes and
combining program dependency, we expect to obtain improved
recommended list of classes. Considering app′s small scale
and few comments, using entire source code corpus not
just identifiers and comments is essential. If so, the words
extracted may contain too much noise, extracting topic directly
from source code may be less effective. Novel preprocessing
techniques term frequency-inverse document frequency (tf-idf)
and structural information based term weight can be applied
to filter out less meaningful words and make topics prominent.

In this paper, we propose a topic matching based change
impact analysis method for maintaining UI of apps. Our
approach starts from locating software feature on UI to its
implementation in source code as the initial class for impact
analysis. Then, we combine LDA with program dependency
to realize change impact analysis. For LDA, a novel prepro-
cessing method combining tf-idf with term weight is applied.

We have conducted experiments on 16 update records of 4
open source apps to evaluate the effectiveness of our method,
results show that our approach works well for recommending
appropriate classes for corresponding feature on UI.

II. RELATED WORK

A. Feature Location
Feature location, also called concept location, is a program

comprehension phase during software maintenance to detect

477

source code implementation of features of target system [2]. In
recent years, most researches on feature location have focused
on (semi-)automated techniques to alleviate manual operation.
The most common analysis techniques are static, dynamic,
textual, or a blend of several analysis approaches. Static anal-
ysis just uses source code text. Independently and in parallel,
some other researches [6, 7] use dynamic information (i.e.,
execution trace) gathered from scenarios to locate features.

In particular, textual analysis based on modern information
retrieval technique, LDA [3] and LSI [4], has been increasing
popular. Marcus et al. [4] propose LSI-based feature location.
Dynamic analysis combining with LSI (SITIR) results in a
better performance comparing with LSI alone [7]. Lukins et al.
[8] have evaluated LDA-based feature location. Experiments
with Eclipse and Mozilla suggest LDA-based approach is more
effective than using LSI for this task. An approach based on
genetic algorithm is proposed by Annibale Panichella [10] to
detect a near-optimal configuration for LDA which leads to a
higher accuracy of feature location. Considering the structural
characteristics of source code different from natural language,
Blake Bassett [9] introduces a novel term weighting scheme
for LDA to improve accuracy of feature location.

In our research of detecting relative classes for correspond-
ing function provided by UI, feature location with character-
istics of apps is used to find initial class for change impact
analysis. Meanwhile, considering the effectiveness of LDA for
detecting functional related classes in those previous works,
we combine the information mined by LDA with program
dependency to perform impact analysis.

B. Change Impact Analysis
Change impact analysis is used to determine the potential

consequences of a proposed change during software main-
tenance [12]. In recent years, change impact analysis for
software maintenance is hot. Acharya, M. et al. [11] design
a static program slicing based method to do change impact
analysis for large and evolving industrial software systems.
Malcom Gethers et al. [13] configure a best-fit including
information retrieval, dynamic analysis, and data mining of
past source code commits to present an adaptive approach to
perform impact analysis from a proposed change. Hoa Khanh
Dam Dam [12] makes efforts on impact analysis for client-
based systems. On the whole, there have various techniques
supporting change impact analysis from procedural to object-
oriented system [11, 12, 13, 14, 15].

Different from those researches, our method starts change
impact analysis with a recommended class which is auto-
located with our tool while traditional approach selects an
initial class that needs to be changed by developers. In
addition, we perform change impact analysis by combining
linguistic information with structural dependency of source
code.

III. APPROACH

A. Approach Overview
Fig. 1 shows the overview of our approach. In the general

framework, users provide interface feature as a query and a

Fig. 1. The approach overview

recommended list related to the function of the UI is identified
with which developers can easily detect relative classes.

Our approach starts from locating software feature on UI
of mobile apps to its implementation class in source code by
matching the ID of UI component.

For topic extraction, novel preprocessing techniques, tf-
idf and term weight, are applied. Term weight technique
based on the conjecture that the importance of words among
different entities (e.g., classes, methods, attributes and others)
are different and tf-idf technique stemming from information
retrieval are applied to filter out less meaningful words and
core words are taken as input for LDA.

Two class lists ranked based on dependency relation and
topic matching degree are taken as input to rank its possibility
of being impacted when maintaining the app feature on UI.

B. Feature Location
For change impact analysis, the primary step is locating the

initial source code implementation of function provided by
app UI, feature location is always an option.

Considering the special characteristics of apps, we model
feature on UI of apps as feature =< ID, keywords >, in
which ID is the unique identifier of UI component in the whole
app project and keywords are core words on UI or close related
to this component (i.e., words existing in the ID). When text
information on UI is too long and indistinctive or there has
no words on the corresponding component, words in ID are
considered to build keywords. Keywords are used to construct
query for LDA model described in next part. ID is used to
locate the initial class declaring this component. Based on our
previous work on searching UI component of apps [18], we
develop an auto-locating tool3 to find ID and detect the initial
class by just clicking this component using a screenshot of the
UI. This tool is developed based on the characteristics of apps
that every component has unique ID and unique location on
its belonging UI. When user is running an app and he wants to
modify one component or function provided by the component
on a UI, our tool can help to locate the initial location.

Fig. 2 represents examples of optimization of message list
in project Faceless and music scan in project Kjmusic. The
red rectangular box in Fig.2 (a) shows a message list in which

3http://research.defool.me/uidroid/

478

Keywords: message list
ID: R.id.listViewMessages

(a)

Keywords: scan
ID: R.id.scan_music_title

(b)
Fig. 2. Examples of components on UI of apps.

text is too long and words are less significant, we use core
words in the id R.id.listViewMessages to build keywords. If
we need to alter the display of message or add information on
the list, we can click this part and locate the initial class. And
in Fig.2 (b), we build keywords with text information (scan
music) in the red rectangular box which is distinctive after
being translated into English. We can click this part to obtain
corresponding initial class and update the function of music
scan.

C. Topic Extraction
The generation of topic model has following steps. Abstract

Syntax Tree (AST4) can be used to extract the information
of source code. Then, the documents are preprocessed. LDA
outputs the word-topic probability distribution and the topic-
document probability distribution. Thus, LDA model is con-
structed and can be queried with keywords of feature on UI.

1) Source Code Preprocessing: Common preprocessing
steps include identifiers splitting, abbreviations expanding,
removing stop words and stemming. In our method, we use
novel preprocessing techniques, term weight and tf-idf to
process source code corpus aiming at filtering out noise words
and making topics prominent.

a) Term weight technique: This technique is proposed based
on the experience that term in different entities (i.e. class,
method etc.) has different importance by Girish Maskeri [16].
Considering the hidden but important information, term weight
is taken into account to make important terms outstanding.

Empirically, a weight-based rule f : Ttype
yields→ v that

assigns various positive integers v to five types of terms (i.e.,
all types T={term in class names, term in method names,
term in attribute names, term in comments, term in others}) is
applied. To differentiate the importance, for example, v(class)
is assigned higher than v(method) because in object-oriented
software system, class as functional implementation of do-
main problem, it is more promising to acquire the intended
functional knowledge encoded in the class name than method.
And empirically, other values v(comment), v(attribute),
v(other) are assigned diminishingly. Then, we use formula

4c2.com/cgi/wiki?AbstractSyntaxTree

weighti,j =
∑

Ttype∈T

v(Ttype)× ni,j (1)

to calculate weight sum of term i in document j. ni,j denotes
the number of occurrences of i in the forms of Ttype in
document j. Further, we normalize term weight weighti,j to
ωi,j with the fomula

ωi,j =
weighti,j∑

k∈D

weightk,j
(2)

because different documents have different size of vocabulary
and ωi,j reflects term′s importance to the document j.

b) tf-idf technique: This technique is used to evaluate the
importance of a word to a document in corpus and has been
widely used in the domain of information retrieval. In our
study aiming at removing noise words, tf-idf is applied.

tw (term weight) denotes the proportion of word i in
document j. tfi,j is the number of occurrences of word i in
document j and m stands for the number of different words
occurring in document j.

twi,j =
tfi,j

m∑
k=1

tfk,j

(3)

tf-idf (term frequency-inverse document frequency) is pro-
posed with the principle that the importance of word i to doc-
ument j is in proportion to tfi,j while inversely proportional
to the number of documents dfi containing the word i. And n
is the number of all documents in the corpus.

tf − idfi,j = twi,j × log
n

dfi
(4)

Both in term weight and tf-idf technique, threshold needs to
be set to filter out less meaningful words. A word with higher
value is more representative of the document than others. We
use cut points δweight and δtf−idf . Word i in the document j
will be retained if ωi,j > δweight and tf − idf i,j > δtf−idf , if
the weight ωi,j or tf − idf i,j for a word is low, that means the
word is not significant and can be considered as noise word.

2) Model Generation: Latent Dirichlet Allocation (LDA) is
a probabilistic generation model from the term occurrences in
a corpus, proposed by Blei et al [3]. Source code documents
are taken as input for LDA, the documents are considered
unstructured and described as bag-of-words in which the
order of the words is neglected. Through training, LDA
expects to obtain two matrix θd =< pt1, pt2, ..., ptk > and
φt =< pw1, pw2, ..., pwn >. For each document d, pti denotes
probability that d maps to topic ti. For each topic t, pwi

denotes probability that word wi belongs to t. For those results,
documents having the same relevant topic are grouped into the
same cluster.

In our approach, the classes of app source code are taken
as a collection of documents. For that, we use term weight
technique and tf-idf technique for preprocessing, appropriate
thresholds should be set to choose the most likely words
reflecting corresponding document, which lays a solid foun-
dation for our purpose of change impact analysis. Therefore,

479

we invite three graduate students of Sun Sat-sen University
to manually check the words retained by preprocessing with
a large number of experiments through reduplicated adjusting
and feedback, so that near-optimal thresholds can be obtained.
To avoid any bias, students are not aware of the experimental
goals.

We apply LDA to this entire collection of preprocessed data
with Gibbs sampling. The number of Gibbs iterations n is
required while every iteration samples a topic for each word.
In addition, the Dirichlet hyperparameter for topic proportions
∂ and the Dirichlet hyperparameter for topic multinomials β
need to be set to control the smoothing of the model. For those
configuration parameters, we use suggested values from [17],
∂ = 0.5, β = 0.1. Moreover, we set the number of topics and
the number of top words in a topic by taking account of both
app scale and the number of keywords on app UI.

3) Feature Query: As is illustrated in the section of intro-
duction, we find that core words on UI will exist in topics. In
that case, feature on UI can be matched with a topic and even
mapped to source code classes. Having modeled feature on UI,
we use keywords of feature as query, those words have been
processed so that they can be matched with topic words. For
each query, we compute the similarity of the feature and all
topics and select the most similar topic using words matching
(i.e., the topic is more relative when more words exist in both
query and this topic). Then topic-document distribution is used
to sort classes with descending order, we name it as LDA list.

D. Change Impact analysis
Having located the initial class, change impact analysis is

used to detect recommended list. Dependency graph (actually a
tree, the child B of a node A is its relative class, including two
cases that A depends on B and B depends on A) starting with
the initial class can be obtained. This dependency graph gives
relative classes and dependency depth and can be constructed
as a dependency list (DG list) in which the initial class is
always in the first place, and the children of a node have
no certain sequence. Source code class with smaller depth
indicates it is more likely to be changed to adapt to the update.
To keep the parent-child relationship, parent class is attached
to every class in the DG list.

Finally, an improved recommended list will be generated
by change impact analysis combining LDA list with DG
list. Topics are functional description of source code, and
dependency graph represents structural relations. However, in
DG list, a class as a child node may have higher probability
assigned by LDA than a class as parent node when parent class
is used as an interface to this child class and doesn′t implement
core function. In theory, the parent class is important for
feature update. In that case, we reassign the probability P
of every class A in the LDA list considering the probabilities
of its all children B1, B2, ..., Bn, namely,

P (A) = max(P (A), P (B1), P (B2), ..., P (Bn)) (5)
where n is the number of A′s all children. And the parent-
child relationship can be detected in the DG list. In addition,
the class in LDA list may be unreachable in DG list, in most

TABLE I
THE PERCENTAGE OF KEYWORDS AND TOPIC WORDS

App
project

Classes Words
on UI

Keywords Nt =
Ni

Nt =
2Ni

Nt =
3Ni

Lightning-
Browser

21 131 74 24.32% 39.19% 39.19%

Notify 95 339 114 26.32% 35.09% 35.09%
Jamendo 115 70 52 21.15% 28.85% 28.85%
EasyToken 24 198 78 15.38% 24.36% 25.64%

cases, this class is not related to the function of the UI and
can′t be impacted by the update, so we remove it from LDA
list. Consequently, the order of classes in the topic is optimized
and we obtain final recommended list.

IV. EXPERIMENTS

We have conducted an empirical study to evaluate the effects
of our method. In this section, we discuss the significance of
change impact analysis from feature on app UI, as well as
present and evaluate the resulting data.

A. Research Motivation
The key point of our research is based on the following

question:
Is the change impact analysis from feature on app UI

meaningful and promising?
We extract words on app UI, the data are simply prepro-

cessed and we remove repeated words. Meanwhile, we use
LDA to extract topics, composed of a couple of words, from
source code corpus. We expect to validate that the function of
UI can be well described by topics. Representative results are
shown in Table I. The percentage of how many words existing
on UI are in topics lists in the five column when the number of
topic words Nt equals the number of keywords Ni, and when
Nt is double of Ni the percentage lists in the six column, and
so on.

From Table I, we can see that core words on UI will appear
in topics, the large percentage is near 40% when the rate
is double and it is lower when Nt = Ni. However, many
experiments show no larger percentage when we continue
increasing the number of the topic words. In that case, we
go deep in the projects to check those unmatched words, such
as please, sure, thanks for EasyToken. Obviously, those words
are less significant for this app comparing with these words
such as easy token. Therefore, we can conclude that those
unmatched words are not core words, if appropriate number
of topics and number of top words in a topic are set, the
query using keywords on UI can find matched topic, and then
find corresponding classes with different probability. For more
data, this online appendix5 is avaliable.

B. Data Set & Effectiveness Measure
Our approach is used to recommend a list of classes which

are probably affected by maintaining a software feature on UI.
We evaluate our method with update history of apps to see the
position of changed classes related to an update of UI in the
list. As a result, we choose open source apps with well-written
source code and available update records.

5http://research.defool.me/dataset/website/2.html

480

TABLE II
THE EXPERIMENT DATA

App
project

Change Update
Date

All
Classes

Update
Classes

Change Description Feature-keywords

Oschina

01 2014-02-19 162 9 Fixes the function of report message report message
02 2014-02-24 162 7 Added welcome screen to start different figure with different festivals start welcome
03 2014-02-10 162 1 Fixes flashing with tweet audio player audio player tweet
04 2014-03-03 162 5 Fixes the keyboard up when refreshing detail message detail editor
05 2012-09-14 162 2 Fixes a bug that users cant use the camera to upload new image user image editor

Kjmusic

06 2014-01-29 41 5 Optimization of scan interface scan
07 2014-01-28 41 1 Repair the bug that current play pictures is hidden after disappearing player picture
08 2014-01-28 41 2 Optimization of lyrics playlist UI display interface lrc
09 2014-01-15 41 4 Repair logic error of playing a looping pattern loop mode play

Faceless

10 2014-12-09 30 5 Display approximate distance to message author on Android message list
11 2014-12-09 30 2 Added location input when composing message in Android location input
12 2014-12-11 30 5 Added ’Nearby’ messages feature on Android nearby message
13 2014-12-15 30 1 Hide secondary options in message compose window by default advance option

expand message

Jamendo

14 2012-09-13 114 1 Fixes preset naming preset equalizer
15 2012-07-05 114 2 User can customizer equalization customizer

equalization
16 2011-04-14 103 9 Added paginated retrieval of all Album’s tracks album track

We choose 4 open source apps in our experiment: Oschina6,
Kjmusic7, Faceless8, Jamendo9. Oschina is an open source
china community for sharing open source software. Faceless
is an anonymous social software where you can talk freely.
Kjmusic and Jamendo are two music players. The words on
UI of Oschina and Kjmusic are Chinese, we use a translator
to translate them into English during feature location.

Table II summarizes app information that we use to conduct
the experiments, including update date, the number of classes
and update classes, change description and feature-keywords.
We use a number to denote a change in our paper.

To evaluate the performance of our method, we use the
effectiveness measure in [9] to evaluate our results. Descriptive
statistics is to go deep in the ranked list to check the position
of the updated classes including min, median, max. And min,
median, max represents the rank of first class, middle class,
last class that are related to the update, respectively.

In addition, we change mean reciprocal rank (MRRC) as the
average of the reciprocal of the location of relevant classes:

MRRC =
1

|C|

|C|∑
i=1

1

ri
(6)

where C are all classes related to an update, and ri is the rank
of the relevant class in the recommended list. A higher MRRC
implies a better rusults.

C. Results and Analysis
In this section we represent the results of topic matching

based change impact analysis method from feature on UI for
four apps. For the reason that it′s firstly proposed, we use
traditional LDA results without considering term weight and
tf-idf (LDA), LDA list (CLDA) and DG list (DG) to compare
with and discuss the advantages of our method.

6http://git.oschina.net/oschina/android-app
7http://git.oschina.net/kymjs/KJmusic
8https://github.com/delight-im/Faceless
9https://www.jamendo.com/en/

1) MRRC: Fig. 3 shows MRRC for 16 changes described
in Table II. Compared with LDA, CLDA and DG, our method
generally obtains higher MRRC than others which implies a
better performance. And obviously, LDA with novel prepro-
cessing obtains higher accuracy than traditional LDA. Some-
times, our method seems poorer than DG when doing minor
changes, actually they are the same because the probabilities
of the first few classes are the same such as change 15, the
probability of the first class is the same as that of the second
class. In addition, it′s obvious that there have break points
in the DG line for change 03, 07, 13, 14 because we don′t
show MRRC of DG when there is only one changed class.
For that, feature location can always detect the initial class
and the comparison is less promising.

2) Descriptive Statistics: This part we report the descriptive
statistics for 16 changes of our method compared with LDA,
CLDA and DG in Table III.

The character “-” in the table denotes meaningless results
as explained in MRRC. We note a better performance (i.e.,
lower rank) of our method compared with LDA, CLDA and
DG. In addition, the results of traditional LDA show that
topics are scattered and its accuracy is lower than CLDA. Our
method takes advantage of both DG and CLDA so that min
is almost 1 (some are not because the probabilities of the first

Fig. 3. MRRC of our method compared with LDA, CLDA and DG

481

TABLE III
DESCRIPTIVE STATISTICS OF OUR METHOD COMPARED WITH LDA, CLDA, DG

Change Our Method LDA CLDA DG
Min Median Max Min Median Max Min Median Max Min Median Max

01 1 7 105 2 76 162 2 106 161 1 22 94
02 1 5 70 1 106 152 1 16 162 1 13 60
03 1 1 1 10 10 10 9 9 9 - - -
04 1 4 7 2 4 6 1 3 6 1 23 25
05 1 1.5 2 4 46 84 1 15 30 1 37.5 75
06 1 8 11 1 9 39 1 6 40 1 3 18
07 4 4 4 18 18 18 3 3 3 - - -
08 3 6 9 8 14 20 7 10.5 14 2 4 6
09 1 5 30 1 20 40 1 9 39 1 3.5 9
10 1 5 17 1 4 29 1 24 30 1 12 19
11 1 2 3 4 16.5 29 1 5.5 10 1 5 9
12 1 7 15 3 14 29 1 11 26 2 9 19
13 3 3 3 7 7 7 3 3 3 - - -
14 3 3 3 2 2 2 3 3 3 - - -
15 2 3 4 1 1.5 2 1 1.5 2 1 40 79
16 1 9 90 1 31 115 1 36 92 1 13 24

several classes are the same) and most of the classes that are
updated are in lower rank. However, this combination may
make some results (larger rank) worse when CLDA and DG
interact together. For change 02, our method obtains lower
rank except max because the max of CLDA is large that affects
our recommended list. For that, Fig. 3 shows overall results
that the effect is little and our method is effective for change
impact analysis from feature on app UI.

V. CONCLUSION AND FUTURE WORK

In this paper we propose topic matching based change
impact analysis from feature on UI of mobile apps. Focusing
on the function of app provided by UI, we firstly model it
with keywords and ID and help users find appropriate classes
related to the update of the function.

In our method, we develop a tool to locate the initial location
by just clicking this component using a screenshot of the UI.
Then, we use LDA to model source code in which novel
preprocessing techniques (i.e., term weight, tf-idf) are applied
and keywords related to UI are used as query to acquire proper
class list with descending probability. Finally, dependency
graph (DG) starting with initial class is detected, we take
the advantage of DG and LDA with novel preprocessing
techniques to do impact analysis, experiments with four apps
show a better performance of our method.

In future work we plan to investigate change impact analysis
from feature on UI at method level. In addition, we find some
updates related to UI just modify the layout file (i.e., .xml),
how to discover those files is also meaningful.

ACKNOWLEDGMENT

This research is supported by NSFC-Guangdong Joint Fund
(No. U1201252), the Educational Commission of Guangdong
Province (No. 2013CXZDB001), the Fundamental Research
Funds for the Central Universities, and the National Science
& Technology Pillar Program (No. 2012BAH12F02).

REFERENCES
[1] Zhifang Liu, Xiaopeng Gao and Xiang Long, Adaptive random testing of

mobile application, in Proceedings of the 2nd International Conference
on Computer Engineering and Technology (ICCET 10), IEEE Computer
Society, Washington, DC, USA, 2, 297-301.

[2] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, Feature location in
source code: a taxonomy and survey, Journal of Software: Evolution and
Process, vol. 25, pp. 53-95, 2013.

[3] Blei, D. M., Ng, A. Y., Jordan M I, and Jordan, M. I. , Latent Dirichlet
Allocation, Journal of Machine Learning Research, vol. 3, pp. 993-1022,
2003.

[4] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and
Harshman, R., Indexing by Latent Semantic Analysis, Journal of the
American Society for Information Science, vol. 41, pp. 391-407,1990.

[5] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic, An information
retrieval approach to concept location in source code, in Proc. of the11th
Working Conf. on Reverse Engineering, 2004, pp. 214C223.

[6] Cornelissen, B., Zaidman, A., Van Deursen, A., Moonen, L., and Koschke,
R., A systematic survey of program comprehension through dynamic
analysis, Software Engineering, IEEE Transactions on, 2009, 35(5): 684-
702.

[7] D. Poshyvanyk, Y. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich,
Feature location using probabilistic ranking of methods based on execu-
tion scenarios and information retrieval, IEEE Transactions on Software
Engineering, vol. 33, no. 6, pp. 420C432, Jun. 2007.

[8] S. Lukins, N. Kraft, and L. Etzkorn, Source code retrieval for bug
localization using latent Dirichlet allocation, in Proc. of the 15th Working
Conf. on Reverse Engineering, 2008.

[9] B. Bassett and N. A. Kraft, Structural information based term weighting
in text retrieval for feature location, in IEEE Int’l. Conf. on Program
Comprehension, 2013, pp. 133-141.

[10] Panichella A, Dit B, Oliveto R, et al., How to effectively use topic models
for software engineering tasks? An approach based on genetic algorithms,
in ICSE, 2013, pp. 522C531.

[11] Acharya, M., Robinson, B, Practical change impact analysis based on
static program slicing for industrial software systems, in Proceedings of
the 33rd international conference on software engineering. ACM, 2011.

[12] Hoa Khanh Dam Dam, Automated change impact analysis for agent
systems, in Software Maintenance (ICSM), 2011 27th IEEE International
Conference on (pp. 33-42). IEEE.

[13] M. Gethers, H. H. Kagdi, B. Dit, and D. Poshyvanyk, An adaptive
approach to impact analysis from change requests to source code, in
ASE, 2011, pp. 540C543.

[14] Yi Wang, Jian Yang, Weiliang Zhao, Change impact analysis for service
based business processes, IBM Systems Journal, 2005, 44(4): 653-668.

[15] Kama, N., Azli, F, A change impact analysis approach for the software
development phase, in Software Engineering Conference (APSEC), 2012
19th Asia-Pacific (Vol. 1, pp. 583-592). IEEE.

[16] Maskeri, Girish, Santonu Sarkar, Kenneth Heafield. Mining business
topics in source code using latent dirichlet allocation, in Proceedings
of the 1st India software engineering conference. ACM, 2008.

[17] Biggers L R, Bocovich C, Capshaw R, et al., Configuring latent Dirichlet
allocation based feature location, Empirical Software Engineering, 2012.

[18] Kaiyuan Li, Zhensheng Xu, Xiangping Chen, A platform for searching
UI component of android application, in ICDH 2014, Nov. 28-30, 2014,
Guangzhou, P. R. China.

482

Learning Folksonomies for Trend Detection in Task-
Oriented Dialogues

Gregory Moro Puppi Wanderley
Postgraduate Program in Informatics - PPGIa

Pontifícia Universidade Católica do Paraná - PUCPR
Curitiba, Brazil

gregory@ppgia.pucpr.br

Emerson Cabrera Paraiso
Postgraduate Program in Informatics - PPGIa

Pontifícia Universidade Católica do Paraná - PUCPR
Curitiba, Brazil

paraiso@ppgia.pucpr.br

Abstract— Dialogues are created by the interaction between
people, who speak different kinds of topics using natural
language. Task-oriented dialogue aims the solution of a given
task in a given domain. Folksonomies are knowledge structures
composed of users, tags and resources. Folksonomies emerge
from the tagging process in collaborative tagging systems.
Dialogues and folksonomies have in common their social
dimension. One of the main characteristics of the folksonomies is
its social dimension (users), which is also presented in dialogues,
through the interaction between human beings. In this research,
we describe a method that performs the learning of folksonomies,
represented by a quadripartite model, from task-oriented
dialogues. Using the learned folksonomies, we propose an
approach for trend detection (those topics being discussed more
than others). The main difference from others approaches is that
we use the content of each resource in this process. This can be
useful for instance, to retrieve the topics addressed by the
interlocutors of the dialogues, in different time intervals.
Experiments with a real-world task-oriented dialogue corpus
were done.

Keywords - Folksonomies, Dialogue, Trend Detection.

I. INTRODUCTION
Dialogue is essentially the interaction between speakers

and listeners, called interlocutors, composed of utterances.
Among the types of dialogues that exist, task-oriented
dialogue aims the solution of a given task in a given domain.
Such dialogue brings the concise sequence of the solution of a
task, based on the request of someone in order to accomplish
something, until the solution given by another interlocutor,
which may be used to determine the solution path of that task.
Task-oriented dialogues have two kinds of interlocutors (see
Table I for an example), one asking for help (named user in
this research) and another with the knowledge of the domain
(the attendant), aiming to support the former in solving the
task. For Traum and Hinkelman [1], one of the main
characteristics of task-oriented dialogues is the dissemination
of knowledge, i.e., the interlocutor with more knowledge
transfers it to the one asking for help [2].
1

1 (DOI reference number: 10.18293/SEKE2015-098)

Folksonomies are structures of knowledge representation
that emerge from the tagging process in collaborative tagging
systems [3]. The tagging process corresponds to the assignment
of tags to resources by users. Thus, folksonomies are composed
by users, tags and resources. Resources can be any object that
users are interested in tag, such as photos and videos. One of
the main characteristics of the folksonomies is its social
dimension (users), which is also presented in dialogues,
through the interaction between human beings.

TABLE I. EXCERPT OF A TASK-ORIENTED DIALOGUE.

Interlocutor Utterance

u1 Hello, I’d like to ask a question.

a1 Of course, go ahead!

u1
How many years of work I need to have in

order to ask for retirement?

a1
According to the constitution, 35 years for a

men or 30 years for women.
This research introduces a method to perform the learning

of folksonomies from dialogues. We intent to retrieve
information from the dialogues, for instance, the topics
addressed by people in different time intervals. Trending
topics are those topics being discussed more than others.

This article is organized as follows: Section 2 presents the
concept of folksonomy. Section 3 describes the method to
obtaing a folksonomy from dialogues. Section 4 presents our
proposed approach. Experiments and results obtained are
shown in Section 5. Finally, conclusions and future work are
presented in Section 6.

II. FOLKSONOMIES
Collaborative tagging systems are characterized by the idea

of tagging resources or objects through terms or keywords
(tags). Such terms are freely created by different users in their
own words and serve as reference for a particular resource or
object of their interest. Examples of tagging systems and their
resources include Delicious (URLs), Flickr (pictures), and
last.fm (music). In such systems, users tag resources (URLs,
pictures, or music) in order to describe or categorize them [4].
According to [5], tagging systems offer benefits including

483

future information retrieval, contribution and sharing, task
organization, expression of opinion, among others.

The structure of knowledge representation that emerges
from the tagging process is called a folksonomy [3].
According to Thomas Van der Wal [6], who coined the term
“folksonomy,” the word is a portmanteau of “folk” and
“taxonomy,” i.e., taxonomy created by the people.

Folksonomies can be defined using a formal and well-
accepted model called the “tripartite model” [7], compounded
by three entities – users, tags, and resources – beyond a
relationship that connects them. Based on the approach
suggested by Schmitz and his colleagues [8], a folksonomy
can be defined as a tuple 𝔽 ≔ (𝑈, 𝑇, 𝑅, 𝑌), where: 𝑈, 𝑇, 𝑅 are
the finite sets of users, tags and resources, respectively, and 𝑌
is the ternary relation between them, i.e., 𝑌 ⊆ 𝑈×𝑇×𝑅. This
relation is also called “Tag Assignment.”

The “personomy” 𝑃u of some user u ∈ 𝑈 is the restriction
in 𝔽 for u, i.e., 𝑃u := (𝑇u, 𝑅u, 𝐼u) with 𝐼u := { 𝑡, 𝑟 ⊆ 𝑇×𝑅 ∶
𝑢, 𝑡, 𝑟 ∈ 𝑌}. The personomy of a user corresponds to the set

of all tag assignments that he/she has generated while tagging
a given domain. Based on this, we can infer that a folksonomy
is the union of all personomies of all users who participated in
tagging the domain in question.

Computationally, folksonomies can be represented by a
tripartite graph 𝐺 :=(V,E) composed of users, tags and
resources [9]. This graph has the following characteristics:

• The set V of vertices is formed by the three entities
users, tags and resources, that is, 𝑉 := 𝑈 ∪ 𝑇 ∪ 𝑅;

• An edge e ∈ E (set of edges) connects two nodes, only
if exists a Tag Assignment (a user has assigned a tag to
a resource) that correlates them:

o ∀𝑢 , 𝑟 ET (𝑢 , 𝑟) → ∃𝑡 Y (𝑢 , 𝑡 , 𝑟) (a tag
linking a user to a resource)

o ∀𝑢 , 𝑡 ER (𝑢 , 𝑡) → ∃𝑟 Y (𝑢 , 𝑡 , 𝑟) (a
resource linking a user to a tag)

o ∀𝑡, 𝑟 EU (𝑡, 𝑟) → ∃𝑢 Y (𝑢, 𝑡, 𝑟) (a user
linking a tag to a resource)

So, E := ET ∪ ER ∪ EU.
Figure 1 shows an example of folksonomy. The ternary

relationship Y between the entities is represented by the lines
connecting them.

The fact that two any tags often appear together tagging
the same resources is a sign of the existence of a relationship
between them. Thus, in a folksonomy it is possible to associate
its tags, such as using the number of resources they have
tagged together [10]. In this case, two any tags tA and tB have a
relationship b between them if and only if they have appeared
together (tagging the same resources) at least x times.
Moreover, x can be considered to be the weight w in this
relationship. Formally, the sentence that defines the existence
of the co-occurrence relationship between two tags is given
by: ∀𝑢, 𝑟, tA, tB ⎢(𝑢, tA, 𝑟) ∈ Y ∧ (𝑢, tB, 𝑟) ∈ Y → b(tA, tB) ∧ tA
≠ tB.

III. THE LEARNING METHOD
In this section we present a method for learning

folksonomies from task-oriented dialogues. In order to explain
better our approach, firstly we present an extension of the
formal definition of the tripartite model of Folksonomies.

Figure 1. An example of folksonomy.

A. Formal Definition of Folksonomy Obtained from Task-
oriented Dialogues
We represent users, tags, and resources of folksonomies as

follow: users are “attendants” of task-oriented dialogues,
resources are the utterances of attendants, and tags are the
nouns of these utterances. Tagging is implicitly carried out
according to our conception, i.e., tags assigned to resources
are obtained from utterances generated in dialogues.
Nevertheless, these utterances (resources) and, consequently,
tags (nouns) are created, in this case, by the interlocutors of
dialogues. We have chosen to use attendants as the users of
folksonomies and their utterances as the resources because we
assume that attendants have complete knowledge of a given
domain. By contrast, interlocutors of type “user” need help to
solve a problem or carry out a task.

According to [11], in order to refer and distinguish between
objects, humans use “nouns.” This is one reason for using only
nouns (instead of verbs, etc.) of the attendants’ utterances as
tags of the folksonomies. Furthermore, in collaborative tagging
systems, users typically use nouns to represent objects, such as
“house,” “airplane,” and “violin.” According to [12], in the
Delicious system, objects represent the vast majority of tag
assignments performed by users and account for 76% of all
tags. In terms of nouns as the grammatical class of tags used,
this percentage is still higher at 88%.

Now, we present the necessary definitions related to a
folksonomy learned from task-oriented dialogues:

Definition 1. A subset of users l belongs to a given
attendant a and is composed of all users with whom he/she has
dialogued in a given domain. Each attendant has one, and only
one, subset of users. Formally, let

• 𝐴 be the finite set of attendants (a be an attendant
belonging to 𝐴);

• 𝑈 be the finite set of users (u be a user belonging to 𝑈);
• 𝐷 be a dialogue corpus (𝑑 be a dialogue belonging to

𝐷);
• Du be a function Du: 𝐴 × 𝐷 → 𝑈 that returns the user

attended by an attendant in some dialogue;
• Ut be the set of utterances of all dialogues.
The subset of users for the attendant a (a is a constant)

can then be defined by the predicate l: ∀d ((a, d) ∈ 𝐴×𝐷) →
l(Du(a, d)).

Definition 2. Formally, a folksonomy obtained from task-
oriented dialogues can be defined as a tuple 𝔽 ≔ (𝐴, 𝑇, 𝑅, 𝑈,
𝑌’), where

484

• 𝐴 is the finite set of the users of the folksonomy. That
is, the attendants of the task-oriented dialogues (who
have full knowledge of a given domain);

• 𝑇 is the finite set of tags, which are the nouns of the
utterances that attendants have generated in the
dialogues;

• 𝑅 is the finite set of resources of the folksonomy, and
consists of the attendants’ utterances;

• 𝑈 is the finite set of users;
• 𝑌’ is the quaternary relation among the above, i.e.,

𝑌’ ⊆ 𝐴 × 𝑇 × 𝑅 × 𝑈. This relation is also called “tag
assignment.”

Thus, a folksonomy obtained from task-oriented dialogues
is represented by a “quadripartite model” in that it has four
dimensions – attendants, tags, resources, and subsets of users –
in contrast to the three dimensions of the tripartite model
(users, tags, and resources).

The personomy 𝑃 a of a given attendant a ∈ 𝐴 is the
restriction in 𝔽 on a, i.e., 𝑃 a := (𝑇a, 𝑅a, 𝑙 a, 𝐼 a) with 𝐼 a :=
∀𝑡, 𝑟, 𝑢 𝐼! 𝑡, 𝑟, 𝑢 → a, 𝑡, 𝑟, 𝑢 ∈ 𝑌’. Intuitively, the personomy
of a given attendant corresponds to the set of all tag
assignments obtained from utterances produced by the
attendant. Based on this, we can infer that a folksonomy is the
union of all personomies of all attendants who have
participated in the dialogues of a given domain.

We also adopted the notion of “relationship between its
tags” as described in Section 2. Any two tags tA, tB of a
folksonomy will have a relationship b ∈ 𝐵 (set of relationships
between tags) between them if and only if such tags appear
together (tagging the same resources) at least x times.
Formally, this is given by the sentence: ∀a, 𝑢, 𝑟, tA, tB b(tA, tB)
→ ((a, tA, 𝑟, 𝑢) ∈ Y’ ∧ (a, tB, 𝑟, 𝑢) ∈ Y’ ∧ tA ≠ tB ∧ w(tA, tB) ≥ x).

The weight w adopted in this research for the relationship
between two tags is the number of dialogues in which the
relevant tags have appeared together. It is important to note
that for two tags to be considered as appearing together does
not require that they be in the same utterance in a given
dialogue. These tags may belong to different utterances, but
must belong to the same dialogue. The weight w of the
relationship between two tags tA and tB belonging to T can be
defined as a function 𝑤: 𝑇×𝑇 → ℕ , where ℕ is the set of
natural numbers.

B. Learning Folksonomies
The method of learning consists of two steps: preprocessing

and learning. It is important to note that this method is based on
the principle that utterances in dialogues are identified in the
dialogue corpus according to type of the interlocutor
(attendants or users) that have generated them. It does not
require or use information regarding people (attendants/users)
that have generated the dialogues of the corpus.

Firstly, the preprocessing activity receives the dialogue
corpus as input and makes it fit for use in the remainder of the
process. As shown in Figure 2, the steps that compose
preprocessing are “Extract Attendants’ Utterances,” “Extract
Nouns,” and “Remove Duplicate Nouns.”

“Extract Attendants’ Utterances” receives the dialogue
corpus and extracts only the attendants’ utterances from it. The
main purpose of this “filtering” is to forward to the subsequent

steps of the method only utterances that represent the relevant
domain.

Formally, we can represent obtaining the set of the
attendants’ utterances as an unary predicate Ut =
∀𝑎,𝑑, 𝑢𝑡 𝑈𝑡 𝑢𝑡 → 𝑎,𝑑, 𝑢𝑡 ∈ 𝐴×𝐷×𝑈𝑡 , where 𝑢𝑡 is an
utterance of the attendant a in a dialogue 𝑑 belonging to the
dialogue corpus 𝐷.

Figure 2. The Preprocessing step.

The next step is “Extract Nouns,” which extracts the nouns
from the attendants’ utterances obtained in the previous step.
The purpose of this extraction is to initiate the process of
obtaining the nouns that are later converted into tags of the
learned folksonomy. The nouns in the attendants’ utterances of
Ut are identified by a morphological analysis using a parser.
Formally, the nouns extracted from 𝐸𝑛𝑢 can be represented by
a multiset (which admits repetitions in its elements) 𝑆 :=
∞. 𝑠𝑢𝑏 ∶ 𝑠𝑢𝑏 ∈ 𝑢𝑡 ∧ 𝑢𝑡 ∈ 𝑈𝑡 , where 𝑠𝑢𝑏 represents the

nouns in the utterances of the attendants.
“Remove Duplicate Nouns” eliminates repetitive nouns

from 𝑆. The final output of this step, and of the preprocessing
stage, is a set 𝐿𝑠 of unique nouns. Formally, 𝐿𝑠 can be
represented by the set 𝐿𝑠 := {𝑠𝑢𝑏 ∶ (𝑠𝑢𝑏 ∈ 𝑆)}, where 𝑠𝑢𝑏 is a
noun of the multiset 𝑆.

The “Learning” activity builds a folksonomy automatically
from the dialogue corpus. It consists of the following steps:
“Obtain Folksonomy Tags,” “Obtain Folksonomy Resources,”
“Obtain Relationships between Tags,” “Obtain Attendants of
the Folksonomy,” “Obtain Users of the Folksonomy,” and
“Generate Folksonomy,” as shown in Figure 3.

“Obtain Folksonomy Tags” selects nouns from 𝐿𝑠 as
candidates for tags of the folksonomy. For this, the method
performs a “ranking of nouns.” The aim of this ranking is to
obtain the inverse document frequency (IDF) [13] of each noun
of 𝐿𝑠 in the dialogues of the dialogue corpus. The nouns
(“sub”) with IDF values (called “IDFsub”) below a threshold
frequency fc1 (see (1)) are discarded. In the context of this
research, the IDF represents the importance of each noun of 𝐿𝑠
in the dialogue corpus. Moreover, we assume that nouns that
have a lower value (are less important) than the threshold
represented by fc1 should not be part of the given domain.
Thus, if those nouns are incorporated into the folksonomy as
tags, the representation of the domain will be divergent. The
nouns that are retained after applying fc1 are considered part of
the domain and are tags of the set 𝑇 of tags of the folksonomy.
Formally the set 𝑇 can be represented as: 𝑇 = { 𝑠𝑢𝑏 :
(𝑠𝑢𝑏 ∈ 𝐿𝑠) ∧ (IDFsub ≥ fc1)}.

fc1 =
!"#$%!!

|!"|
!!!

|!"|
 (1)

485

Figure 3. The Learning activity.

“Obtain Folksonomy Resources,” obtains the resources
(attendants’ utterances) of the folksonomy that is being learned.
To select the attendants’ utterances “ 𝑢𝑡 ”, which will
subsequently become resources, we use tags of the set 𝑇
(output of the previous step). Given that these tags are nouns
belonging to the given domain, we count the number of nouns
(“sub”) of a given utterance that belong to 𝑇, i.e., are tags. The
purpose of this is to verify the attendants’ utterances that
belong to the domain so that these can be adopted as resources.
For each utterance, it calculates a Ratio of Inclusion put (see
(2)). This ratio measures the percentage of nouns of an
utterance that are tags of the folksonomy, i.e., those belonging
to the domain. Utterances with a Ratio of Inclusion put, greater
than or equal to p1 (see (3)) are adopted as folksonomy
resources. It is important to note that, we calculate the Ratio of
Inclusion only for utterances containing more than one noun.
This is because utterances containing only a noun may be
generic and therefore may not add any knowledge to the given
domain.

put = |{!"# ∶ !"# ∈ !" ∧ !"# ∈ ! ∧(!" ∈ !")}|
|{!"# ∶ !"# ∈ !" ∧ (!" ∈ !")}|

×100 (2)

p1 =
!!"!

|!"|
!!!
|!"|

 (3)

The step “Obtain Relationships between Tags” locates
possible relationships between tags that comprise the
folksonomy being learned. For this, all possible pairs of tags
from the set 𝑇 are first generated, i.e., a combination 𝐶!!, where
k is the number of tags of 𝑇. For each generated pair of tags, we
calculate the frequency (fpar), which indicates that the two
relevant tags appear to tag the same resources. That is, the pairs
of tags with frequencies (fpar) lower than fc2 (see (4)), are
discarded. By contrast, pairs of tags with frequencies greater
than or equal to fc2 represent a relationship between members
of the pair, and thus will be part of the set B of relationships
between tags. Formally, 𝐵 ∶= {b}, where b is a relationship
between two given tags, and b can be given by: ∀a, 𝑢, 𝑟, tA, tB
b(tA, tB) → ((a, tA, 𝑟, 𝑢) ∈ Y’ ∧ (a, tB, 𝑟, 𝑢) ∈ Y’ ∧ tA ≠ tB ∧ fpar
≥ fc2).

fc2 =
!"#!!

|!!
!|

!!!
|!!!|

 (4)

The “Obtain Attendants of the folksonomy” step obtains
the set 𝐴 of attendants of the folksonomy. For each resource of
the set R, the method extracts all attendants a, and this forms
the set 𝐴 of the folksonomy. Formally, 𝐴 ∶= 𝑎 ∶ 𝑎 ∈ 𝑟 ∧
𝑟 ∈ 𝑅 , where r ∈ 𝑅.

The step “Obtain Users of the Folksonomy” acquires the
set 𝑈 of users. The set 𝑈 of interlocutors of type “user”
(asking for the assistance of the attendants) is obtained by
extracting all interlocutors of type u from the dialogue corpus
used as input in the method. Formally, 𝑈 is obtained as
follows: 𝑈 ∶= 𝑢 ∶ 𝑢 ∈ 𝑑 ∧ 𝑑 ∈ 𝐷 , where d is a dialogue
of the dialogue corpus 𝐷.

The last step is “Generate folksonomy,” which generates
the final structure of the folksonomy. Given sets 𝐴, T, R, U,
and B obtained in the preceding steps of the learning activity,
the method connects the elements of these sets through the
quaternary relation 𝑌’ (from Definition 2 in this section). For
each element from the set 𝐴 of attendants, who are the “users”
of the proposed folksonomy, we extract their personomies 𝑃a
based on 𝑌’. The set of personomies of all attendants
represents the folksonomy 𝔽 , i.e., 𝔽 ∶= (∀ a ∈ 𝐴) {𝑃 a } ,
where 𝑃 a := (𝑇a, 𝑅a, 𝑙 a, 𝐼 a) with 𝐼 a := ∀𝑡, 𝑟, 𝑢 𝐼! 𝑡, 𝑟, 𝑢 →
a, 𝑡, 𝑟, 𝑢 ∈ 𝑌’. The tags of the personomies are then

connected through relationships in set B (relationships
between tags).

IV. TREND DETECTION THROUGH FOLKSONOMIES
In our context, trend detection refers to retrieving topics

addressed at different time intervals by interlocutors in a
dialogue. Trending topics are issues that are being discussed
more often than others. The topics detected in a given time
interval are retrieved from a folksonomy learned from
dialogues in the dialogue corpus belonging only to that
particular time interval. Thus, for a sufficiently long period of
time, we might have several folksonomies (each learned from
dialogues within a given time interval).

Once found, each topic may be compared with topics from
other learned folksonomies in order to find common elements.
If a given topic appears at different time intervals, i.e., in
distinct folksonomies, it can be considered a trend. In other
words, this means that interlocutors of the type “user” have
been addressing some topic at different time intervals.
Furthermore, by ranking each retrieved topic according to the
number of dialogues in which it has appeared within a
particular time interval, one may retrieve the most discussed
topics in a given period of time. It is also possible to verify
whether a given topic has gained or lost popularity in different
time intervals. This can be accomplished by checking to see
whether a given topic has appeared in different folksonomies,
and whether it has changed its position in the rankings of those
folksonomies.

The main difference from others approaches is that we use
the content of each resource in the process. The first step is to
divide the dialogue corpus according to time intervals. For this
partitioning, the dialogues must either contain information that
identifies the period in which they were produced, or they
should only be organized in chronological order inside the

486

corpus. The number of partitions can vary, and depends on the
time period from which topics are retrieved.

Having partitioned the dialogue corpus, we use each
partition as an input to build a distinct folksonomy. We then
retrieve from each learned folksonomy topics that were
addressed in the dialogues used to learn them. This step is
shown in detail in Figure 4, which also shows the content
generated by artifacts. The “Retrieve the Topics Addressed” is
done using the sets 𝑇, 𝑈, and 𝑅, of tags, users, and resources,
respectively. It is important to note that the set 𝑈 is the result of
using a characteristic of task-oriented dialogues, i.e., the
interlocutor of type “user,” who looks for help to solve a given
task (Section 1). For the “Retrieve the Topics Addressed,” we
need three more definitions:

Definition 3. A “Tag in Focus” is a tag t of folksonomy 𝔽d,
which has a number of users (u ∈ 𝑈) connected to it.

Definition 4. A “Tag of Context” is a tag t of
folksonomy 𝔽d, which is connected to a given Tag in Focus
through a relationship b ∈ 𝐵.

Definition 5. A “Topic Addressed” is composed of a Tag in
Focus, a Tag of Context, and resources (r ∈ R), with the
following nomenclature: Tag in Focus + Tag in Context +
Resource(s). These resources (i.e., utterances) are resources
that both the Tag in Focus and the Tag of Context have marked
together. The primary goal of the Tag of Context and the
resource(s) is to contextualize the Tag in Focus, thus forming a
Topic Addressed. For example, in the airline domain, suppose
that the Tag in Focus is “seat,” its Tag of Context is
“reservation,” and resources are available to help contextualize
them. According to the definitions, the Topic Addressed would
be “seat + reservation + resources.” This indicates that users
have addressed “seat reservation” in the relevant dialogues.

The Topics Addressed are extracted from a given learned
folksonomy in a list h1 with all the tags (t ∈ 𝑇) that it contains.
The tags of h1 are in descending order according to the number
of users (u ∈ 𝑈) connected to each. In this study, we define
interlocutors of type “user” as unique, i.e., each dialogue
features a distinct user. It is possible to infer that the number
of users connected to some tag is the number of dialogues in
which the tag has appeared, with the tag at the top of h1 being
the most used in distinct dialogues. This is to prepare the
Topics Addressed for ranking, so that the topics at the top are
the most addressed. These tags are named Tags in Focus
(Definition 3).

The next step in extracting a Topic Addressed is to obtain
the Tags of Context of tags in h1. This is because if the topics
were formed only by the Tags in Focus, they would not
accurately describe the Topics Addressed. For example, in the
context of human resources, a subject formed only by the Tag
in Focus “month” may be related to various topics, such as
month of vacation, month of retirement, etc. However, it
would not be possible to know which of these topics it would
be referring to. Thus, given a Tag in Focus of h1, the learned
folksonomy can help verify the tags (t ∈ 𝑇) that have a
relationship (b ∈ 𝐵) with this Tag in Focus. The tag that has
the relationship with the highest weight with this Tag in Focus
will be its Tag of Context. The Tags in Focus and their Tags of
Context are stored in list h2.

Following this, for each element in h2, we retrieve all
resources that a given Tag in Focus and its Tag of Context
have tagged together. The output is a temporary list of Topics
Addressed. The last step in obtaining a Topic Addressed is to
remove its duplicates.

Figure 4. Retrieving Topics Addressed in the trend detection approach.

Once we have obtained the Topics Addressed from each
learned folksonomy, the last part of the trend detection method
involves verifying the Topics Addressed that have trended over
a given time period. Each of the Topics Addressed of a given
folksonomy is compared with the Topics Addressed of other
folksonomies to see if it appears in them. If a Topic Addressed
appears more than once over the given time, it is considered a
trend.

V. RESULTS
In order to test our approach we used a dialogue corpus

obtained from a City Hall in Paraná, Brazil. It is composed by
901 real task-oriented dialogues written in Brazilian
Portuguese from 2006 to 2009. The 901 dialogues consisted of
7,064 utterances involving five interlocutors of type
“attendant” and 901 interlocutors of type “user.” Since the
users are not identified, we suppose that each dialogue
involves a different user. The domain is related to human
resources. The interlocutors dialogued on issues including
retirement, rights of general order, probation, and vacations.
Trend Detection Experiment

In order to test the trend detection method, the corpus was
first split into “time intervals.” The corpus was arbitrarily
chosen to be divided into eight equal parts or eight “time
intervals,” each representing six months of the corpus. Each of
the eight parts was used as an input to the method and
generated a distinct folksonomy. The Topics Addressed in
each folksonomy were then retrieved, as shown in Table II. A
domain expert validated all the Topics Addressed by analyzing
whether they were actual topics from the dialogues. For each
Topic Addressed the domain expert validated if its resources
are related to its Tag in Focus and Tag of Context.

The number of Topics Addressed for each folksonomy
varied because each folksonomy was learned from different
dialogues taking place at different time intervals. In each
period, the attendants that produced the dialogues were
different and, consequently, their manner of uttering sentences
was distinct.

“Folksonomy II” had only one Topic Addressed, likely
because of the manner in which attendants uttered their

487

sentences in that particular time interval. For instance,
comparing “Folksonomy I” with “Folksonomy II,” the former
is composed of 192 tags and 106 resources and the latter of
168 tags and a mere 64 resources. This is because the terms
used by the attendants in the utterances used for the learning
of “Folksonomy II” were not considered important by the IDF
(by the Obtain folksonomies Tags step). The likelihood of
some utterance becoming a resource in a folksonomy is small
when it has few tags and, consequently, the probability of a
relationship (b ∈ B) between two tags is small as well.

Following the retrieval of the Topics Addressed for all
time intervals, we looked for possible trends in these intervals,
i.e., whether a Topic Addressed appeared in different time
intervals.

TABLE II. TOPICS ADDRESSED RETRIEVED FROM FOLKSONOMIES.

Folksonomy # of Topics
Addressed Folksonomy # of Topics

Addressed
I 11 V 39

II 1 VI 67

III 14 VII 49

IV 34 VIII 63

We found that 39 Topics Addressed were repeated over
time. Table III shows a few of the Topics Addressed that
became trends. The Topic Addressed “Registration” +
“Problem” + “resource(s)” appeared in three time intervals
(represented by Folksonomies I, III, and VII). This means that
in dialogues, users reported registration problems in the first six
months of 2006 (dialogues of Folksonomy I), 2007
(Folksonomy III), and 2009 (Folksonomy VII). This Topic
Addressed could be useful to advise someone of the recurring
problem. Another example is the Topic Addressed
“Classification” + “Career” + “resource(s)”, which is about
classification in the process of admission in the enterprise of
the given human resource. This topic appears in the first
semesters of 2007 and 2009, which are probably the periods of
the selection for new employees.

TABLE III. AN EXCERPT OF TOPICS ADDRESSED RETRIEVED FROM
FOLKSONOMIES.

Trend (Topic Addressed) Folksonomies
Containing Trends

“Registration” + “Problem” + “resource(s)” I, III, VII

“Son” + “birth” + “resource(s)” IV, VIII

“Classification” + “Career” + “resource(s)” III, VII

“Test” + “Application” + “resource(s)” VI, VII

VI. CONCLUSION AND FUTURE WORK
In this research we propose a method to perform the

learning of folksonomies, from task-oriented dialogues,
represented by a quadripartite model. Computationally, the
folksonomies generated by the proposed method are
represented by graphs. We also proposed an approach for

trend detection, which can be useful, for instance, to retrieve
the topics addressed by the interlocutors of the dialogues, in
different time intervals.

Through an experiment with a real-world task-oriented
dialogue corpus, we could see that it is possible to retrieve
information and detect trends over time in a dialogue corpus.

In the near future, we intend to deal with some natural
language enhancement, such as abbreviations and correcting
spelling errors. Even if we do not found a different dialogue
corpus to test our approach, we intend to do so. Moreover, in
relation to the trend detection approach, a future work that can
be done is a concept drift [14] study. Given the fact that there
is no guarantee about the behavior of users in the dialogues
and consequently stability in the extracted trends (as they can
change at any moment of time), this may result in
inconsistencies in folksonomies learned with data from
different periods of time. Thus, it may be important to study
the problem and techniques to identify concept drift in order to
avoid such inconsistencies.

REFERENCES
[1] D. R. Traum, E. Hinkelman, “Conversation acts in task-oriented spoken

dialogue.” Computational Intelligence. Special Issue on Non-literal
Language, 8(3), 1992.

[2] J. Carletta, A. Isard, S. Isard, J. C. Kowtko, G. Doherty-Sneddon, and A.
H. Anderson, “The reliability of a dialogue structure coding scheme.”
Computational Lingustics, 23(1), 1997, pp. 13–31.

[3] I. Peters, “Folksonomies: Indexing and retrieval in Web 2.0,” De
Gruyter Saur, ISBN-10: 3598251793, 2009.

[4] C. Körner, D. Benz, A. Hotho, M. Strohmaier, and G. Stumme, “Stop
Thinking, Start Tagging: Tag Semantics Emerge from Collaborative
Verbosity.” In Proc. of the 19th International Conference on World Wide
Web, 2010, pp. 521–530.

[5] M. Gupta, R. Li, Z. Yin, and J. Han. “Survey on social tagging
techniques.” SIGKDD Explor, vol.12, 2010, pp. 58-72.

[6] T. Van der Wal, “Folksonomy Coinage and Definition”. Website:
<http://vanderwal.net/folksonomy.html> Accessed: 10 mar. 2015.

[7] P. Mika, “Ontologies are us: A unified model of social networks and
semantics.” Web Semantics: Science, Services and Agents on the World
Wide Web, 5(1), 2007, pp. 5–15.

[8] C. Schmitz, A. Hotho, R. Jäschke, and G. Stumme, “Mining Association
Rules in Folksonomies.” In Lecture Notes in Computer Science - The
Semantic Web: Research and Applications.Vol. 4011, 2006, pp.411–
426.

[9] S. Chojnacki, and M. Klopotek, “Random graph generative model for
folksonomy network structure approximation”. Procedia Computer
Science, 1(1), 2010, pp. 1683-1688.

[10] G. Belgeman, P. Keller, and F. Smadja, “Automated Tag Clustering:
Improving search and exploration in the tag space.” In Collaborative
Web Tagging Workshop at WWW’06, 2006, pp. 15-33.

[11] D. W. Embley and B. Thalheim, “Handbook of concept modeling:
Theory, practice, and research challenges.” Springer, ISBN: 978-3-642-
15865-0, 2011, p. 226.

[12] L. Spiteri, “The Structure and form of folksonomy tags: The road to the
public library catalogue.” Information Technology and Libraries, 27(3),
2007, pp. 13-25.

[13] G. Salton, and C. Buckley. Term-weighting approaches in automatic text
retrieval. Information Processing and Management 24, 5, 1988, pp. 513–
523.

[14] A. Tsymbal, “The problem of concept drift: definitions and related
work.” Technical Report TCD CS-2004-15, Computer Science
Department, Trinity College, Dublin. 2004.

488

Towards Automatic Requirements Elicitation from Feedback Comments:
Extracting Requirements Topics Using LDA

Hitoshi Takahashi Hiroyuki Nakagawa Tatsuhiro Tsuchiya
Graduate School of Information Science and Technology

Osaka University
1-5 Yamadaoka, Suita, 565-0871 Japan

{t-hitosi, nakagawa, t-tutiya}@ist.osaka-u.ac.jp

Abstract

Feedback comments, such as mailing lists and reviews,
contain beneficial suggestion for software developers. Re-
cently, developers have received more and more feedback
comments; but it is still difficult to extract beneficial com-
ments from a large amount of e-mail message or reviews.
Latent Dirichlet Allocation (LDA) is a promising way of
topic modeling, which classifies documents according to
implicit multiple topics. In this paper, we tried to apply
a requirements elicitation based on LDA to two different
sources, i.e., Apache Commons User List and App Store re-
views, and discuss the feasibility of this approach. An in-
teresting finding was that some usual stop words indicated
requirements description. This suggests that these words
should be removed from the stop word list before applying
LDA.

1 Introduction

Feedback comments are beneficial resources for devel-
opers because these comments contain information about
what they want. Recently, more and more feedback com-
ments have been gathered due to the improvement of user’s
environment. As stated in [5], more than one million of re-
views in Google Play are uploaded per a day.

A lot of feedback comments can be useful as references
for development; however, we usually have to manually
extract beneficial data such as implicit requirements from
these resources. The size of the resources is often too large
to deal with manually.

Automatic extraction of requirements from user’s feed-
back comments that are described in natural languages
would be desirable. Some applications of linguistic engi-
neering technology to manage requirements in mass soft-
ware development have received recent attention. Dag et al.

[7][10] introduced the Baan requirements management pro-
cess, which finds the relationships between feedback com-
ments and business requirements (objectives). Some stud-
ies addressed the extraction of requirements from feedback
review comments of smartphone applications. Fu et al.
[8] introduced a system that analyzes App Store reviews
and identifies problems by topic modeling. The system
also classifies feedback comments into individual functions.
Guzman et al. [9] proposed an approach that introduces
rating of each function from words and emotions associ-
ated with them. The latter two studies use Latent Dirich-
let Allocation (LDA) [6] for topic modeling. These studies
extract topics related to functions of the target application;
however, to the best of our knowledge, there is no existing
work for automatic requirements elicitation from the feed-
back comments.

As the first step of the automatic requirements elicitation
from feedback comments, we introduce a requirements elic-
itation process from the feedback comments based on LDA
topic modeling. We also apply this elicitation process to
Apache Commons User List and App Store reviews, which
are respectively of types e-mail messages and reviews, aim-
ing to elicit topics related to requirements. The experimen-
tal results indicated that our approach still needs further im-
provement; however, the results also provided some finding
about the requirements elicitation from the feedback com-
ments.

This paper is organized as follows: Section 2 describes
the research questions in this work. Section 3 explains our
requirements elicitation process from the feedback com-
ments. Section 4 presents the results of experimental elici-
tation from two different types of feedback comments. Sec-
tion 5 discusses the feasibility of our approach, and Section
6 concludes the paper.

(DOI Reference Number: 10.18293/SEKE2015-103)

489

Table 1. Target resources.
Resource E-mail Review

Language English English
Main subject technicalquestions, evaluation (rating),

announcement bug report
Size relatively large usuallysmall
Frequency of few many
requirements

2 Research Questions

Our goal is to establish automatic requirements elicita-
tion from feedback comments. In particular, we address the
following two research questions.

• RQ1: Can we classify feedback comments into those
that include requirements and those that do not in-
clude?

• RQ2: Does the quality of extracted requirements vary
depending on the types of the feedback comments?

We use LDA for the requirements elicitation from the
feedback comments. LDA constructs topics from the re-
source documents, i.e., feedback comments in this study.
These topics indicate implicit characteristics of the docu-
ments and enable to classify documents. Therefore, RQ1
corresponds to the question whether we can extract topics
related to requirements description.

As for RQ2, feedback comments can be roughly classi-
fied into e-mail messages and reviews. Table 1 shows their
characteristics. In this study, we try to clarify whether the
performance of the LDA classification depends on the re-
source type, i.e., e-mail messages and reviews.

3 Elicitation Process

Figure 1 illustrates our elicitation process. This elicita-
tion consists of four activities,lemmatizing, topic modeling
using LDA, requirements topic elicitation,andrequirements
comments extraction. The following sections explain these
activities.

3.1 Preparation: Lemmatizing

Feedback comments that we deal with in this study are
written in English and contain verb words that are conju-
gated. For example, “wishes” is the third person form of
“wish” and they have same meaning but LDA recognize
them as completely different words. We lemmatize con-
jugated with the WordNet Lemmatizer [11][4], which can
be used to remove affix from the input word.

2. Topic modeling

using LDA

Input feedback comments

1 buena aplicacion para es en

2 w ould w orld pretty transit follow

3 otimo function bay av autopista

4 phone moved astray led country

5 betterrequestnew finger save

Keyw ord representing

requirements

3. Requirements topic

elicitation

1. Lemmatizing

Lemmatized feedback comments

Topics

Comments including requirements

4.

Requirements

comment

extraction

Figure 1. Elicitation process.

3.2 Topic Modeling Using LDA

We use Latent Dirichlet Allocation (LDA) [6][12] for
topic classification. LDA is a topic model and widely used
for unsupervised word classification. In LDA, topic dis-
tribution generates the topic for a word, and the topic for
a word generates the specific word. Figure 2 presents the
graphical model of LDA. The symbols in the figure corre-
spond to the following concepts:

ϕ: word distribution for topic

θ: topic distribution for document

z: topic for word

w: word

α, β: hyper parameter. These parameters are given or
usually estimated by a machine learning tool.

K: the number of topics

490

wz

K

N

M

Figure 2. Graphical model representation of
LDA.

M : the number of documents

N : the number of words inmth document

Hyper parameterα determines the topic distribution for
documentθ, and the topicz is determined according toθ.
Another hyper parameterβ determines the word distribu-
tion for topicϕ, and finally the wordw is determined ac-
cording toz andϕ.

In order to construct the topic model that can classify the
feedback comments, we use LDA in this study according to
the following steps:

Step 0. (Preparation) Give a set of documents (MandN
are determined) and set the number of topicsK.

Step 1. Set the default topic for each word in all comments.

Step 2. Select each wordw from the comments.

Step 3. Change the topicz for the wordw according to the
probabilityP shown in Eq. (1).

Step 4. Repeat 2. and 3. untilN−
t andN−

mt in Eq. (1) are
converged.

Step 5. Outputϕ as the word distribution for topic andθ as
the topic distribution for comment.

P (z = t|Z−,W, α, β) ∝ β +N−
tw

βV +N−
t

(αk +N−
mt) (1)

Z−: set of topics of all words excluding the wordw.

W : set of all words in all documents.

N−
t : the number of words in all documents whose top-

ics aret.

N−
tw: the number of wordw in all documents whose

topic ist.

N−
mt: the number of words in selected documentm

whose topics aret.

αk: thek th (topick’s) parameterα.

V : the number of words in all documents.

We use MALLET [3], a tool package for the topic clas-
sification based on LDA. This tool also has the word to-
kenization and unnecessary word removal functions. We
input feedback comments to MALLET, and MALLET out-
putsϕ, θ, andz by constructing the topic model based on
LDA.

3.3 Requirements Topic Elicitation

After the topic model is constructed by MALLET, we
find the topics related to the requirements by usingϕ. We
identify the words likely to be contained in the requirement
description and find topics that contain many words related
to the requirements description as the topics related to the
requirements.

3.4 Requirements comment extraction

We can extract possible comments that include require-
ments description based on the topics related to the require-
ments acquired in the previous activity. We useθ and find
the comments that has a high relationship to the topic re-
lated to the requirements.

4 Experiment

4.1 Elicitation from Different Resources

We applied our elicitation process to two different
sources, i.e., Apache Commons User List and App Store re-
views. Apache Commons User List [1] is a mailing list for
contacting users and developers, supported by Apache Soft-
ware Foundation. Most of the messages describes technical
questions and answers about software belonging to apache
commons. Other mails are for the announcement of the lat-
est version and questions about software functions; there-
fore, there are few messages related to requirements for new
functions. Figure 3 illustrates an example e-mail message
that contains the requirement for adding new output option
to the CSVPrinter class.

App Store and Google Play are well-known review plat-
forms. In this experiment, we use reviews in App Store [2]
as a resource of reviews. The reviews are composed of five
parts:title, rating, author, date, andbody text.

The review shown in Figure 4 is a review for Google
Maps. This review requests an additional function to re-
name designated places to Google Maps.

491

Subject:[CSV] Wish: format-specific date generation� �
Hi -

It would be useful if printing a Java Date or Calendar
to a CSVFormat. EXCEL CSVPrinter would generate
output that Excel recognises as a date-and-time. For
example the following

PrintWriter outputWriter = new PrintWriter(new File-
OutputStream(”output.csv”));

...

which Excel only treats as a string. (It will recognise
e.g. yyyy/mm/dd as a date but I wouldn’t know where
to look for a definitive set of formats it will consume.)
Ditto probably printing Calendar.getInstance(), or the
new Java 8 LocalDate etc. classes.

One argument against though is then the library per-
haps ought to do the reverse, i.e. spot that it has been
passed a date in and construct a Date class for the value
at parse time which may be expensive and often unnec-
essary.

...� �
Figure 3. An e-mail message containing re-
quirements.

We collected the same number of messages from Apache
Commons User List and Google Maps reviews in App
Store. We applied our elicitation process and extracted top-
ics and comments related to the requirements. We, in par-
ticular, collected 300 messages and reviews from Apache
Commons User List and Google Maps reviews in App
Store, respectively. Among them, 17 messages contain re-
quirements (#Rmax E) and 47 reviews contain requirements
(#Rmax R) .

We constructed topic models under the conditions that
the topic size is 20, 40, and 100, respectively, where the
topic size determines how many topics LDA generates. We
regarded an extracted topic (T) as a topic related to require-
ments if it contained at least two words related to require-
ments. By using the extracted topicsT , we extracted com-
ments whose topic distribution for one of the extracted top-
ics related to requirements are over 0.1 as the comments
related to requirements (C).

We made an optimization that made use of the character-
istics of the words related to requirements. Since we believe
that the stop words of MALLET, which are the most com-
mon words and filtered out before topic model construction,
include some words, e.g.,a, able, about, above, and so on,

Title : Great App !� �
GreatApp ! ⋆ ⋆ ⋆ ⋆ ⋆
by Gold Eagle 007 - Dec 18, 2014

This app is incredible !
But it could be better
if i could rename my places� �
Figure 4. A review containing requirements.� �

able，appropriate，appreciate，asking，ask，awfully，
because，better，best，cannot，can，contains，con-
taining，contain，considering，consider，currently，
could，different，enough，except，help，hopefully，
if，like，need，needs，necessary，new，normally，
please，shall，should，toward，towards，tries，
trying，try，unfortunately，useful，want，wants，
will，why，would� �
Figure 5. The words removed from stop word
list.

related to the requirements, we excluded some words from
the stop word list. Figure 5 represents the words that we
excluded from the stop word list.

4.2 Experimental results

Table 2 lists the results of applying our elicitation pro-
cess, where#Requirement topicsis the number of the ex-
tracted topics related to requirements (#T), #Extracted com-
mentsis the number of comments that are extracted by our
elicitation process (#C), and#Requirement commentsis the
number of the extracted comments that were indeed related
to requirements amongC (#R).

Table 2 demonstrates that the elicitation from reviews
worked more precisely than that from e-mail messages.
This table also indicates that the topic size affects the preci-
sion and recall of the requirements elicitation. In this exper-
iment, 40 topics was the most suitable size for constructing
the topic model. Another finding was that the stop word list
modification made improvements of precision and recall in
many cases.

Figures 6 and 7 illustrate the extracted topics related to
requirements in the cases of Apache Commons User List
and App Store reviews with 40 topics extraction and stop
word list modification, respectively. As shown in both the
figures, we extracted four topics related to requirements, re-
spectively. We regarded some words excluded from the stop
word list as the words related to requirements. For example,

492

Table 2. Requirements elicitation results. Here, Precision = #R / #C, Recall = #R / #Rmax E (for E-mail) or
Recall = #R / #Rmax R (for Reviews), andF-measure = 2· Precision· Recall / (Precision+Recall).

Resource
Topic
size

Stopword
#Requirement

topics(#T)
#Extracted

comments(#C)
#Requirement

comments(#R)
Precision Recall F-measure

E-mail

20
default 1 22 0 0.000 0.000 0.000
modified 3 81 2 0.0247 0.118 0.041

40
default 1 23 1 0.0435 0.059 0.050
modified 4 107 7 0.0654 0.412 0.113

100
default 2 22 0 0.000 0.000 0.000
modified 8 96 3 0.0313 0.176 0.053

Reviews

20
default 0 0 0 0.000 0.000 0.000
modified 5 290 41 0.141 0.976 0.247

40
default 1 23 12 0.522 0.286 0.369
modified 4 111 29 0.261 0.690 0.379

100
default 0 0 0 0.000 0.000 0.000
modified 3 30 7 0.233 0.167 0.194

Topics related to requirements� �
3 {evaluation integrator number problem univariatein-
tegratorcould fitting need wouldmathif should case
integration rule doe class gaussintegrator default}

12{canscxml logif time scripting improvementneed
common method classcould will default implementa-
tion simplecontext agent issue static}

22 {ascert file digester size inumdestinations node div
listnodepathdata xml version rob www setif addneed
coefficient default true}

35 {org commons apache user mail unsubscribe help
additional command wrotecan if doe gmailwould
should issue http pm}� �
Figure 6. Extracted topics from Apache Com-
mons User List (topic size = 40, using the
modified stop word list).

since the word “could” may express the hope, and the word
“if” is used for expressing subjunctive mood, we defined
both words as the words related to requirements.

5 Discussion

We will now answer to the research questions based on
the experimental results, and then discuss the limitations.

As for RQ1: “Can we classify feedback comments into
those that include requirements and those that do not in-

Topics related to requirements� �
10 {needwhy annoying log number phone info stop
ad pop business data travel broke rating chase profit
stay company}

12{ca amazing userwill saved friendlyif running star
review le renamecould point accuratewhy real work-
ing live}

19{car real information live doe wonderful happy nav-
igational available waze constantly thousand supposed
cart travelerwant becausepoint exceptional}

33 {street viewfeature version address close found
exit able badnew streetview switch number interface
ruined wo half level}� �
Figure 7. Extracted topics from App Store re-
views (topic size = 40, using the modified
stop word list).

clude?”, the usefulness of the topic modeling approach de-
pends on whether we can extract highly precise topics re-
lated to requirements. We extracted the topics that seems to
be related to requirements from both e-mail messages and
reviews in some cases in our experiment; however, the ade-
quate topic extraction seemed to require certain constraints.
As the findings from our experiments, the determination
of topic size and the stop word list modification should be
taken into account. The topic size affects the accuracy of
the classification of comments. Small topic size squeezes

493

multiple topics into a topic; large topic size, on the other
hand, constructs exceedingly decomposed topics.

We should also consider the characteristics of the words
related to requirements. Words in the general topics, such as
features and domains, are usually nouns and verbs. These
topics are relatively easy to be extracted by using the topic
modeling techniques including LDA. However, when we
consider the topic related to requirements description, we
have to deal with not only nouns and verbs but also auxil-
iary verbs, such ascan, will, could, and would. Moreover,
we believe that we should extract some of multiple-topic-
concerned nouns and verbs, such as ”need” and ”like”, as
the words in the requirements topic. Most of these words
are included in the stop word list, which is defined for elab-
orating topics to be extracted. Therefore, we believe that
we should exclude words related to requirements from the
stop word list; however, such exclusion may also inject the
ambiguity of topics to be extracted.

As for RQ2: “Does the quality of extracted requirements
vary depending on the types of the feedback comments?”, as
roughly summarized, the elicitation from reviews tends to
score higher recall rate than the extraction from e-mail mes-
sages; however, it also tends to extract excessive quantities
of comments. A possible reason is the contents size. Since
review comments are generally short, the extracted topics
from reviews tend to cover large amount of comments. Fur-
ther precise topic classification should be required for im-
proving the precision rate.

The experiment results demonstrate that eliciting re-
quirements comments from e-mail messages is relatively
difficult for our current process. Comparing Figures 6 and
7, the extracted topics from e-mail include words related to
more decomposed features. A possible reason is the diver-
sity of the contents. Comments in e-mail, such as Apache
Commons User List in our experiment, generally contains
more words than reviews, to explain more detailed situa-
tion, sometimes attaching source code, which includes the
method and class name to the e-mail messages. This situa-
tion may hamper the construction of topics.

6 Conclusions

As the first step of the automatic requirements elicitation
from feedback comments, we defined a requirements elici-
tation process from the feedback comments based on LDA
topic modeling. We applied the elicitation process to two
different sources, i.e., e-mail messages and reviews, and
discussed the feasibility of our approach. The experimental
results suggest that our current elicitation process has some
limitations but also has a possibility of providing an auto-
matic mechanism of requirements elicitation from review
comments. We also found that effective requirements elic-
itation requires the stop word list modification. One of our

primary on-going studies is further improvement of preci-
sion and recall value of our elicitation. We plan to discuss
the algorithms for the adequate topics extraction mecha-
nism. A comment extraction mechanism from the acquired
topics should be refined. We will also conduct case stud-
ies in the large amount of feedback comments to discover
further findings for the elicitation. We believe that auto-
matic processes for dealing with huge feedback such as our
approach help us adapt to recent continuous software deliv-
ery.

References

[1] Apache commons mailing lists.
http://commons.apache.org/mail-lists.html.

[2] App store. https://itunes.apple.com/us/genre/ios/id36?mt=8.
[3] MALLET homepage. http://mallet.cs.umass.

edu/.
[4] WordNet A lexical database for English. hhttp://

wordnet.princeton.edu/ .
[5] AppTornado GmbH. Number of available android ap-

plications. http://www.appbrain.com/stats/
number-of-android-apps/ .

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation.J. Mach. Learn. Res., 3:993–1022, Mar. 2003.

[7] J. N. o. Dag, V. Gervasi, S. Brinkkemper, and B. Regnell. A
linguistic-engineering approach to large-scale requirements
management.IEEE Softw., 22(1):32–39, Jan. 2005.

[8] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh.
Why people hate your app: Making sense of user feedback
in a mobile app store. InProceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’13, pages 1276–1284, New
York, NY, USA, 2013. ACM.

[9] E. Guzman and W. Maalej. How do users like this feature?
a fine grained sentiment analysis of app reviews. In2014
IEEE 22nd International Requirements Engineering Confer-
ence (RE), pages 153–162, Aug 2014.

[10] J. Natt och Dag, V. Gervasi, S. Brinkkemper, and B. Reg-
nell. Speeding up requirements management in a product
software company: linking customer wishes to product re-
quirements through linguistic engineering. InRequirements
Engineering Conference, 2004. Proceedings. 12th IEEE In-
ternational, pages 283–294, Sept 2004.

[11] J. Perkins. Python Text Processing with NLTK 2.0 Cook-
book. Packt Publishing, 2010.

[12] I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth,
and M. Welling. Fast collapsed gibbs sampling for la-
tent dirichlet allocation. InProceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’08, pages 569–577, New York,
NY, USA, 2008. ACM.

[13] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. La-
beled lda: A supervised topic model for credit attribution in
multi-labeled corpora. InProceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language Process-
ing, EMNLP ’09, pages 248–256. ACL, 2009.

494

MAX: A Method for Evaluating the Post-use User
eXperience through Cards and a Board

Emanuelle Cavalcante¹,², Luis Rivero¹ and Tayana Conte¹
¹USES Research Group, Instituto de Computação, Universidade Federal do Amazonas (UFAM)

Manaus, AM – Brazil
²FPF Tech, Manaus, AM - Brazil

emanuelle.cavalcante@fpf.br, {luisrivero,tayana}@icomp.ufam.edu.br

Abstract— User Experience (UX) is one of the most important
attributes for the success and quality of a software product. UX
explores how a person uses an application, and the emotional and
behavioral consequences of such use. Although several UX
evaluation methods allow gathering information on the reasons
for a poor UX, some of them tend to make users feel
uncomfortable, such as asking direct questions to shy users. This
paper presents our proposal for evaluating UX, the Method for
the Assessment of eXperience (MAX), which through cards and a
board intends to motivate users to report their experience. The
MAX method does not require experienced evaluators for
performing the evaluation. Instead, this method is intended at
software engineers willing to obtain data on UX and make users
feel comfortable during the evaluation. To verify the feasibility of
the MAX method from the point of view of users, we conducted a
pilot study. The results showed that the MAX method has proven
useful for evaluating the UX of finished or prototyped software
applications. Also, we have made improvements in the method to
meet users’ needs when reporting their experience, and gathering
data on factors affecting the UX.

Keywords: User eXperience; Evaluation Method; Software
Quality.

I. INTRODUCTION
Usability has been considered one of the main attributes

that represent quality in an instrumental, task-oriented view of
interactive products [1]. However, despite the increasing
attention that usability has received in the development of
software applications [2], a new term, “User eXperience”
(UX), has emerged as an umbrella phrase for new ways of
understanding and studying the quality in use of interactive
products [1].

UX is an important attribute for the success of software
products, searching for new approaches for their design and
evaluation, which accommodates experiential qualities of
technology use rather than product qualities [3]. According to
the ISO 9241 [4], user experience is defined as “a person’s
perceptions and responses that result from the use or
anticipated use of a product, system or service”. Such
definition is complemented by the definitions of other authors.
For instance, Law et al. [5] state that UX explores how users
feel about the use of a product, or in other words, the
emotional and affective aspects. Thus, UX turns essential in
order for a software to be accepted by its users since, besides

being usable and work correctly, the software should be
emotionally appealing [6].

The increasing interest in the improvement of UX has been
the motivation for the creation of new evaluation methods that
allow capturing the users’ emotions and the aspects that affect
the reported emotions [7]. In that context, it is necessary to
highlight the difference between usability evaluation methods
and UX evaluation methods. Usability tests tend to focus on
task performance, while UX focuses on the experience that
was lived by the user and his/her emotions.

As it is subjective, UX deals with the feelings and thoughts
of an individual regarding the use of a software, product or
service. According to Law et al. [5], usability measures such
as execution time or number of errors are not enough to
measure the user experience of a product. Also, it is not
always easy for a user to realize what (s)he is feeling or even
express his/her user experience. Therefore, it is necessary to
employ new approaches that stimulate and guide the user
during the report of his/her experience. The report of the use
by the user allows the evaluator to gain insights on the
experienced problems and also understand positive aspects of
the product use. Furthermore, it is possible to gather data
regarding if the product was accepted by the user or not.

Vermeeren et al. [7] state that there is a high number of
UX evaluation methods being employed by both the industry
and the academy. Nonetheless, according to Miles et al. [8],
some methods can cause discomfort to the users who
participate from the evaluation since it forces them to report
their experience. Users can feel forced to participate in the
evaluation sessions and this can cause bias in the report of
their experience [6]. Consequently, it is necessary to develop
practical methods that are easy to use and do not feel like a
chore, so the users can be confortable when reporting their
experience [7]. Also, these methods must be easy to use from
the point of view of software engineers, so practitioners from
the software industry are able to apply them and gather data to
improve the quality of software applications under
development [7].

In order to propose a UX evaluation method that is easy to
use and motivates users to report their experience, we have
proposed the Method for the Assessment of eXperience
(MAX). MAX introduces a set of cards and a board to guide
the user through the UX evaluation process. That way, the

DOI reference number: 10.18293/SEKE2015-136 495

evaluator can gather information on the user’s emotions, how
easy and useful it was to use the system, and his/her intention
to use the system again if given the chance. The MAX method
can be applied at any stage of the software development
process, after the use of mockups, prototypes, or the final
versions of interactive systems.

This paper presents the initial version of the MAX method,
and its initial evaluation from the point of view of users
through a pilot study. We evaluated MAX through
questionnaires in order to gather information regarding if it
was easy to apply by the users. Based on the results from the
evaluation, we have made improvements in MAX, generating
a second version. As a result of this application of the MAX
method, we were able to evaluate its feasibility for the
evaluation of UX.

This paper is organized as follows. Section 2 presents the
background and related work of this research, where we
provide UX definitions and a brief description of some of the
proposed UX evaluation methods. Next, Section 3 describes
the proposed MAX method, while Section 4 describes the
execution and results from the pilot study and the initial
improvements over MAX. Finally, Section 5 presents our
conclusions and future work regarding this research.

II. BACKGROUND AND RELATED WORK
User eXperience involves all aspects of the user interaction

and aims at guaranteeing that software systems become
satisfying, interesting, useful, motivating, beautiful and
adequate [9]. According to Roto [10], such experience
includes the emotions, preferences, physical and psychological
reactions of the user that can occur: (a) before usage, or in
other words, the expectations of the user regarding the
software product; (b) during usage, which is the momentary
experience of the user; and (c) after usage (post-use), when it
is possible to verify if the users’ expectations were actually
met. Furthermore, UX is a consequence of the internal state of
the user (his/her expectations, needs, motivations, humor, and
others), the features of the system (utility, ease of use,
functionality, and others) and the context and environment in
which the interaction between the user and the system occurs
[11].

UX evaluation plays an important role in the development
of interactive applications, since it assesses their value
regarding how the users will apply, perceive, and learn the
software, as well as how it will evolve and adapt to the users’
changing expectations [12]. In that context, UX evaluation
methods can be employed to gauge the product success in the
real market and attract potential customers [13].

In order to identify which UX evaluation methods were
proposed, Vermeeren et al. [7] carried out a review. Such
review allowed identifying 96 UX evaluation methods that can
be applied in different types of applications (desktop, Web,
mobile, and others) and in different phases of the software
development process (analysis, design, test, coding, and
others). From the set of identified UX methods for evaluating
the after usage of a system, one can name: scales, online
surveys and probes. We will detail these methods and their
(dis)advantages as follows.

Scales such as the Self-Assessment Manikin (SAM) [14]
and the Unified Theory of Acceptance and Use of Technology
(UTAUT) [15] allow evaluating the opinion of the users by
measuring specific attributes related to UX. Through the SAM
scale, it is possible to evaluate three dimensions: (a) Pleasure
(pleasure/displeasure), (b) Dominance (in control of the
situation/controlled by the situation), and (c) Arousal
(calmed/excited). UTAUT, on the other hand, focuses on
aspects related to technology acceptance, measuring effort,
performance and facilitator conditions. Although scales
demand less time to be employed and shy users may feel more
comfortable when applying these methods, the collected data
may not provide insights on the causes for a poor UX.

Online surveys can also be employed to gather information
on UX. An example is the AttrakDiff [16], which allows
several users from different locations and profiles to provide
information on pragmatic and hedonic attributes of a product.
The main issue with collecting data online is that the evaluator
does not have control over the proper filling of the
questionnaire, and cannot return to the users for further
feedback.

 Probes are another alternative for evaluating UX. With
probes, users can be encouraged to report their experience. For
instance, the Emocards [17], which are 16 drawings of faces (8
male and 8 female) illustrate different emotional responses to
an evaluated product. When a user picks one (or more) of the
emocards, (s)he can report his/her experience explaining the
reasons that motivated him/her to choose it. However, the user
may explain what (s)he thinks is important to be explained,
concealing relevant information from the evaluators.

The methods cited above demand low costs in their
application and are easy to use from the point of view of users
or evaluators [7]. However, there are some disadvantages that
can influence the results of the UX evaluation. According to
Tähti and Niemelä [6], users applying methods that employ
the representation of emotions may not be able to relate their
emotions with the drawings for not understanding the
representations. Also, Miles et al. [8] state that the majority of
the UX evaluation methods might be intrusive, and that the
fact of asking direct questions to the users about their
emotions might make them feel uncomfortable. This can have
a negative effect on the results of the UX evaluation, since
users can hide vital information or express different emotions
than the ones they are really feeling in order to please the
evaluators. Finally, as mentioned before, some scales and
forms may not provide information on the causes for choosing
a specific answer, and not being able to request further
information on why the user chose a specific answer may
conceal relevant information for improving the UX.
Considering the disadvantages of the current UX evaluation
methods, it is necessary to provide new methods that meet the
needs of the evaluators, make users feel comfortable, and
make it easier for them to report their emotions. In order to
meet these goals, we proposed MAX.

III. THE METHOD FOR ASSESSING EXPERIENCE (MAX)
The Method for the Assessment of eXperience (MAX) is a

post-use method that aims at evaluating the general experience

496

of a user regarding an interactive application. MAX can be
employed after the use of mockups, prototypes, interactive
systems, or any artifact that allows user interaction.

The evaluation is performed through the use of cards and a
board. The MAX cards allow evaluating the UX in terms of
four categories: (a) Emotion, (b) Ease of Use, (c) Usefulness
and (d) Intention to Use. These categories are similar to the
evaluated aspects in technology acceptance methods, which
consider usefulness, ease of use and intention [15]. As
emotions are inseparable from cognition and are part of a user
judgment about a system [18], we have also considered them
in our method. In that context, the Emotion category focuses
on the importance of the emotional aspects, since the
experience considers the emotions, preferences and
psychological reactions of the user [10]. To create the cards
from the Emotion category, we considered the wheel of
emotions by Plutchik [19]. The other three categories (Ease of
Use, Usefulness and Intention to Use) were considered as they
describe the necessary elements for achieving a positive UX
[1]. In that context, the Ease of Use category aims at
evaluating usability aspects of the application, while the
Usefulness category aims at evaluating the user perception
regarding how much the application contributes to the
execution of his/her tasks. Finally, the Intention of Use
category evaluates if the user would use or recommend the
application.

Each MAX card presents an avatar to portray and express
the possible reactions that a user can express regarding the
evaluated system. Fig. 1 presents the avatar that we developed
for one of the items of the Emotion category. We designed the
avatar as a human cartoon form in order for the user to create
empathy with the cards and be able to express him/herself
more easily. Also, we chose to design cards that would not
appear too formal, so users would not think of the evaluation
as a chore, and would see it as something entertaining and
comfortable to do.

The MAX deck of cards is inspired in a conventional deck
of cards, where each evaluated UX category is represented by
a symbol and color. Also, to allow users to express the
intensity of an emotion, each card has an associated scale.
These scales were developed and added to each of the items
from the MAX categories in order to create the cards. Fig 1
also shows an example of the applied scales to describe the
intensity of two items from the emotion category (a) Happy,
positive and (b) Sad, negative. The cards that evaluate the UX
in a positive way present a green scale, while the cards
evaluating the UX in a negative way present red scales.

Figure 1. Avatar and intensity scales from the MAX method (v1)

Fig. 2 presents the evaluated items for each of the
categories of the first version (v1) of the MAX method. At all,
the MAX v1 provided 92 cards (considering all the items and
their possible intensities): (a) 40 for the Emotion category, (b)
20 for the Intention to Use category, (c) 16 for the Utility
category, and 16 for the Ease of Use category.

Figure 2. Evaluated items from the MAX method (v1)

In order to allow a much more dynamic application of the
cards, we also developed a board. Such board shows which
questions the user must answer when selecting the cards for
reporting his/her experience. Initially, the board presented four
questions, one for each of the evaluated categories within the
MAX method: (a) What did you feel when using it? (Emotion
category), (b) Was it easy to use? (Ease of Use category), (c)
Do you wish to use it? (Intention category), and (d) Was it
useful? (Usefulness category). Fig. 3 shows the MAX board
for the first version of the MAX method.

In order to motivate users to choose at least two cards, we
also added slots for each of the categories within the MAX
method. These slots are spaces in which the user can place the
MAX cards. We added these slots because a single card does
not provide enough information regarding the user experience.

497

Two or more cards, on the other hand, create a sequence
which makes the report clearer for the evaluator.

Figure 3. MAX Board (v1)

The application process of the MAX method is illustrated
in Fig. 4. First the user must experience the software by
carrying out tasks using a mockup, prototype of finished
application (see Fig. 4 stage A). Then, the moderator presents
the MAX method and the user must choose and place the
cards in the board in order to report his/her experience (see
Fig. 4 stage B). In this stage, the user is also allowed to
express his/her opinions orally, explaining why (s)he chose a
specific card. Finally, the evaluator collects and records the
user’s choice of cards and checks the occurrences of the cards
associated with the reason for choosing them. It is important
that the user is encouraged to talk about the choice of card as
this information will help the evaluator to recognize what
affects the user experience (see Fig. 4 stage C). Finally, the
UX evaluator must generate a report listing the selected cards
or if (s)he wishes, a picture of the board can be taken as a
record of the evaluation.

Figure 4. Application process of the MAX method: (a) Experience the

Application; (b) Select cards and place them on the board; and (c) Analyze the
selection.

IV. PILOT STUDY AND INITIAL IMPROVEMENTS ON THE
MAX METHOD

As cited by Isomursu et al. [20], UX evaluation methods
need to be to provide useful information to evaluators and
positive experiences to users applying them. Thus, to evaluate
the feasibility of the MAX method, verifying if it could be
employed in the post-use UX evaluation of a system by users,
we carried out a pilot study. This study aimed at assessing the
opinion of users regarding the use of the method, evaluating if
they felt comfortable when reporting their experience.

We carried out this study with three potential users of a
Web application for a telecommunications company (which is
referred to as ALFA to retain anonymity). The users signed a
consent form before starting the study. The consent form
explained the goals of the study and its activities, the
anonymity of the subjects’ data, and that the study was safe as
users would only have to experience an application and
provide feedback. Users were free to (dis)agree with
participating in the study. The study had three stages: (a)
testing the system, in which the users tried the application; (b)
UX evaluation, in which the users carried the post-use
evaluation using the MAX method; and (c) feedback, in which
the users answered a questionnaire regarding their opinion
towards the MAX method. Before carrying out the study, we
prepared the following materials: (a) a consent form
(explained above),; (b) the MAX cards and a sketch of the
MAX board (see Section 3); (c) a scenario describing the goals
that the user had to accomplish in the evaluated system; and
(d) the feedback questionnaire.

In the execution of the study, we invited the users to
participate in the evaluation of the Web application of the
ALFA company. The users were chosen by convenience and
they tried to carry out the following tasks: access a detailed
bill and print it. Then, the users employed the MAX method.
We highlight that the there was no need for training any
software engineer in using the method. Since we aimed at
evaluating MAX from the point of view of users, it was more
suitable that an experience evaluator (one of the authors of the
method) tested it with the users. Also, the users knew that they
were able to end the evaluation session whenever they wanted.

At the end of the tests we took pictures of the chosen cards.
Fig. 5 shows two different selections from two different types
of users. The first selection of cards (Part A) was positive due
to the experience of the user with the application. This user
stated that (s)he was a client of ALFA and therefore, knew
how to use the application. As (s)he managed to carry out the
tasks, this user had a positive experience, indicating that (s)he
felt satisfied and interested. Also, this user indicated that the
application was intuitive and easy to use, and that (s)he would
to use it again, because (s)he liked it. However, users
experiencing the application for the first time did not have a
positive experience. During the application of the MAX
method, we identified the following problems regarding the
system according to the users’ reports: (a) the users had
difficulty in requesting a password due to the unclear
solicitation process; (b) the system feedback took time; and (c)
the users had difficulties in finding the detailed bill, as they
only found the paying value with no details on their service
consumption. These problems negatively affected the UX of
the subject whose cards selection is shown in Fig. 5 Part B. As
we can see, this user felt satisfied but confused. Also, (s)he
stated that the application was easy to use and intuitive, but
not that much. And most importantly, that although the system
could be useful and helpful, (s)he would not use it, or would
use another system if available.

To assess the opinion of users towards the MAX method,
users were asked to fill out a feedback questionnaire with the
following questions: (a) Does the method feel intuitive and
easy to use? and (b) Is the method and the instruments related

498

to it easy to use, learn and understand?. These questions were
considered, as they have been employed by other authors
evaluating the ease of use of UX evaluation methods from the
point of view of user [20]. Also, we asked the subjects to
indicate if they would use MAX again. Overall, the answers to
the questionnaires were positive. For instance, the users
indicated that the board helped them when selecting the cards
due to its guide questions. Also, the users stated that the MAX
cards were useful since the avatar was clear and they managed
to associate the depicted emotion with the label on the card.

Figure 5. Selection of the MAX cards: (A) Positive and (B) Negative.

When describing their difficulties with the method, the
users reported the high number of cards. Also, another user
indicated that neutral cards were missing. This user stated that
neutral cards were necessary because the first version of the
MAX method only provides positive and negative cards for
evaluating UX. Furthermore, in order to motivate the users to
describe specific missing cards for depicting their opinion
towards the evaluated application, we asked the following
question: “If I gave you a blank card to express any
emotion/feeling you think is missing, would you suggest any?”
As a result, one of the subjects indicated the “impatient” card.

In general, the users indicated that they enjoyed employing
MAX to describe their emotions. However, we still needed to
improve the MAX method, based on the suggestions by the
users. Regarding the cards, through our observations we
noticed that the “empathic” card was not easy to understand
and needed to be removed, as the users did not understand
how they could feel empathy with an application. Also, we
added the “impatient” card in the Emotion category and the “I
gave up the task” in the Ease to Use category due to the users’
suggestions. Furthermore, since all users reported that there
were too many cards, we reduced the scale from four to three
intensity levels ending up with 75 cards (17 less cards than in
the first version). Fig. 6 shows the changes over the second
version (v2) of the MAX cards.

Figure 6. Changes over the MAX method (v2)

Regarding neutral cards, we chose not to add cards such as
“I did not feel anything” or “Indifferent”, as users who choose
these items do not provide information regarding the side to
which they are inclined (either positive or negative UX).

Furthermore, regarding the board, we removed the slots.
Although we intended to encourage users to choose two or
more cards, the slots made users select only two cards.
Therefore, besides providing a larger space for selecting the
cards in each category on the board, we also reduced the size
of the cards, so two or more cards could be selected. The new
size of the cards was also motivated by ergonomic principals
to facilitate its use by both evaluators and users. We also made
design changes in the cards to make them more minimalistic.

V. CONCLUSIONS AND FUTURE WORK
This paper presented MAX, which intends to be an easy to

use method for both evaluators and users. Since the board
guides users through the evaluation process, the evaluators do
not need to be experts, making this method suitable for
software engineers willing to gain insight in terms of UX.
Also, by providing cards and a board that are intuitive and
informal, we aimed at making users feel comfortable so they
would not feel that the evaluation was a chore, but a pleasant
and informal activity to identify their needs.

During the pilot study, the MAX method was perceived as
a useful tool that can easily and quickly capture the overall
opinion of the users regarding the evaluated artifact. As the
EmoCards [17], by providing different cards, the MAX
method allows users to think of different possibilities, while
evaluating further aspects such as ease of use, usefulness and
intention to use. Also, when compared to scales, users can feel
free to complement the reasons that made them choose a
specific card, providing evaluators with information on UX
problems that need to be corrected. Moreover, the MAX
method allows evaluators to interpret the emotion/expression
in the drawings more easily, as it provides labels allowing the
understanding of the cards meanings.

One of the limitations of our study was the small sample
size employed. However, even with the small sample the
results from this pilot study allowed us to test the applicability
of the MAX method with positive results. Also, as the subjects
who participated in the study were real end-users, their
problems when employing the method could affect future
applications of the method. Therefore, even though we could
wait to refine the method after further studies, we decided to
include the changes described in section IV so we can test
their impact in the future applications of the MAX method.

Another limitation is that this initial evaluation was
performed from the point of view of users. Since the evaluator
was one of the authors of the technique, the application
process could have been easier, affecting the overall opinion
of the subjects. Therefore, we still need to carry out another
evaluation from the point of view of software engineers, to
verify what is needed to facilitate the use of the MAX method
and the analysis of the results from the evaluation. Also, we
need to verify if the opinion of users towards MAX remains
the same, when being applied by software engineers.
However, we can argue that an initial evaluation from the
point of view of users is necessary before carrying out
evaluations in industry, which are more expensive.

There could have also been a threat to the validity of our
results in terms of the evaluated system and its

499

representativeness. Although a Web application of a
telecommunications company may not be representative of all
types of applications (i.e. Web, mobile, desktop, others), it is
still a real application which can yield different experiences.
This study showed that MAX managed to capture such
difference, by presenting opposing experiences from different
users. However, we still need to verify the suitability of using
MAX in evaluating other types of artifacts, such as prototypes,
in which only part of the application has been developed.
Finally, one last limitation is the instrument and measures
applied in this study for assessing the users’ opinion towards
the MAX method. However, we believe that applying
questionnaires was more suitable than applying interviews due
to time constrains. Furthermore, evaluating if a UX technique
is easy to use and to apply from the point of view of users is
relevant in order to meet users’ needs and make them feel
comfortable during the evaluation process [7][20].

As future work we intend to carry out further empirical
evaluations with the improved version of the MAX method in
industrial and not controlled scenarios with more
subjects/evaluators. Such evaluations aim at generalizing our
results to further contexts and at evaluating if the current
changes have an impact in the results of the UX evaluation.
We also intend to carry out further comparative studies with
the method described in Section II and other UX evaluation
methods, to identify the situations in which MAX is more
suitable to be applied. Among the improvement opportunities,
we intend to develop other avatars for the MAX cards (i.e.
with different genders and races) and evaluate their impact on
the users’ choice through comparative studies. Furthermore,
while we intended to understand the degree of impact of an
item from the MAX cards by its intensity, we noticed that the
number of cards could have a cognitive overload over the
users. Thus, we will check whether the scale also impacts the
description of the UX through more empirical studies, and if
needed, we will reduce it. Finally, we intend to develop a
ready to use version of MAX, containing the instructions,
cards and board. Such version will be useful for practitioners
aiming at employing MAX at work or in the field.

ACKNOWLEDGMENTS
We thank CNPq for the scholarship granted to the second

author of this paper and for its financial support through
process n° 460627/2014-7. Also, we thank the financial
support granted by FAPEAM through processes nº:
01135/2011; 062.00146/2012; 062.00600/2014;
062.00578/2014; and PAPE 004/2015. Finally, we would like
to acknowledge the support granted by FPF Tech.

REFERENCES
[1] J. Bargas-Avila, K. Hornbæk, “Old wine in new bottles or novel

challenges: a critical analysis of empirical studies of user
experience”, In Procceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 2689-2698, 2011.

[2] A. Fernandez, E. Insfran and S. Abrahao, “Usability evaluation
methods for the Web: A systematic mapping study”, Information
and Software Technology, 53(8), pp. 789-817, 2011.

[3] M. Hassenzahl, S. Diefenbach, A. Göritz, “Needs, affect, and
interactive products–Facets of user experience”, Interacting with
computers, pp. 353-362, 2010.

[4] International Standardization Organization, ISO 9241-210:
Ergonomics of human system interaction, Part 210: Human-
centred design for interactive systems, 2010.

[5] E. Law, V. Roto, M. Hassenzahl, A. Vermeeren, J. Kort,
“Understanding, scoping and defining user experience: a survey
approach”, Proceedings of Human Factors in Computing
Systems conference, CHI’09, pp. 719-728, 2009.

[6] M. Tähti, L. Arhippainen, “A Proposal of collecting Emotions
and Experiences”, In Interactive Experiences in HCI, Volume 2,
pp. 195–198, 2004.

[7] A. Vermeeren, L. Law, V. Roto, M. Obrist, J. Hoonhout, K.
Väänänen-Vainio-Mattila, “User experience evaluation methods:
current state and development needs”, In Proceedings of the 6th
Nordic Conference on HCI, pp. 521-530, 2010.

[8] R. Miles, J. Greensmith, H. Schnadelbach, J. Garibaldi,
“Towards a method of identifying the causes of poor user
experience on websites”, In Computational Intelligence, UKCI,
pp. 258-265, 2013.

[9] J. Preece, Y. Rogers, H. Sharp, “Interaction design: Beyond
Human-Computer Interaction”, Wiley New York, 2002.

[10] V. Roto, “User Experience from Product Creation Perspective.
Towards a UX Manifesto workshop”, In Conjunction with HCI,
pp. 11-15, 2007.

[11] M. Hassenzahl, “User Experience – a Research Agenda”, In:
Behaviour and Information Technology, 25(2), pp. 91-97, 2006.

[12] A. Moreno, A. Seffah, R. Capilla, M. Sanchez-Segura, M, “HCI
Practices for Building Usable Software”, Computer, pp. 100-
102, 2013.

[13] L. Yong, “User experience evaluation methods for mobile
devices”, In Proceedings III International Conference on
Innovative Computing Technology, pp. 281-286, 2013.

[14] P. Lang, “Behavioral Treatment and Bio-behavioral Assessment
Computer Applications”, In Technology in Mental Health Care
Delivery Systems, pp. 119-l37, 1980.

[15] V. Venkatesh, M. Morris, G. Davis, F. Davis, “User acceptance
of information technology: Toward a unified view”, MIS
quarterly, pp. 425-478, 2003.

[16] M. Hassenzahl, M. Burmester, F. Koller, “AttrakDiff: Ein
Fragebogen zur Messung wahrgenommener hedonischer und
pragmatischer Qualität”, In Mensch & Computer 2003, pp. 187-
196, 2003.

[17] P. Desmet, C. Overbeeke, S. Tax, “Designing Products with
Added Emotional Value: Development and Application of an
Approach for Research through Design”, The Design Journal,
pp. 32-47, 2001.

[18] M. Hassenzahl, “The thing and I: understanding the relationship
between user and product”, In Funology, Springer Netherlands,
pp. 31-42, 2005.

[19] R. Plutchik, “The Nature of Emotions Human emotions have
deep evolutionary roots, a fact that may explain their complexity
and provide tools for clinical practice”, American Scientist,
89(4), pp. 344-350, 2001.

[20] M. Isomursu, M. Tähti, S. Väinämö, K. Kuutti, “Experimental
evaluation of five methods for collecting emotions in field
settings with mobile applications”, International Journal of
Human-Computer Studies, 65(4), pp. 404-418, 2007.

500

Designing Personas with Empathy Map

Bruna Ferreira, Williamson Silva, Edson Oliveira, Tayana Conte

USES Research Group, Instituto de Computação - IComp

Universidade Federal do Amazonas (UFAM)

Manaus, AM - Brazil

{bmf, williamson.silva, edson.cesar, tayana}@icomp.ufam.edu.br

Abstract— A software product’s acceptance depends on the user

experience that it provides to its users. The software product

must meet the user needs, and one way to understand those needs

is through creation of Personas. The Personas technique allows

describing the users’ characteristics, goals and skills. The

Empathy Map (EM) method can be used to describe personas.

The EM’s goal is to create a degree of empathy with the user so

the product developing team starts to understand more deeply

the users and become more aware of their real needs. To assess

the EM effects on the creation of personas, we conducted a

feasibility study with 20 subjects. Initially, the subjects learned

how to describe personas in textual form. After that, they applied

the EM to create personas. After using the EM, the subjects

answered a questionnaire about their perceptions regarding the

EM’s ease of use and its usefulness. The results showed that

majority of subjects considered EM useful and easy to create

personas. Furthermore, this majority also said that they would

use the EM for the creation of personas again.

Keywords- Persona; Empathy Map; User Experience; UX.

I. INTRODUCTION

The software development focuses on users‟ needs and
emotions while interacting with the product is critical for the
software product success [1]. According to Sproll et al. [1], as
the field of User Experience (UX) explores these needs and
their fulfillment, it gains in importance against the background
of the wish for human-oriented products and services. In order
to develop usable systems is necessary to understand the users
that will interact with the system [2].

One technique that can be used to better understand the
users‟ needs is the Personas technique. The Personas technique
provides an understanding of the system user in terms of his or
her characteristics, needs and goals to be able to design and
implement a usable system [3]. The user modelling technique
known as personas has obtained excellent results over the last
years [4]. Furthermore, the Personas technique gathers data
about users, gains and understanding of their characteristics,
defines fictitious users (called personas) based on this
understanding and focuses on these personas throughout the
software development process [3]. Through the collected data
using the Personas technique we can obtain greater knowledge
of the user for which we are designing.

However, the creation of personas involves much creativity
[5]. It is also difficult to verify if a persona really reflects user‟s
data [5]. The Persona technique is used in order to aid
designers to create empathy with the users and identify users‟
characteristics [2]. Empathy has been employed as a defining

characteristic of designer-user relationships when design is
concerned with user experience entails [6]. Furthermore, to
guide designers to describe personas, we adopted the Empathy
Map (EM). The EM is a method that helps designing business
models based on the client perspectives [7]. The EM template
has a visual organization. This organization simplifies the
template implementation. Furthermore, the EM has guide
questions [7]. This guide questions aid the designers during
creation of personas, making this process more systematically.

This paper presents the results of a feasibility study where
the EM is employed for the creation of personas. In this study,
we evaluated the perception of the subjects regarding to ease of
use and usefulness of the EM for the creation of personas.
Through the analysis of the results it was possible to obtain the
user‟s perception regarding the use of EM. In addition we
identified improvement suggestions for the Empathy Map. The
remainder of the paper is organized as follows. Section II
presents the User Experience, Personas and Empathy Map
concepts. Section III details the feasibility study, followed by
our results in Section IV. The Section V shows the validity
threats of the feasibility study. Finally, conclusions and
comments on future work are given in Section VI.

II. BACKGROUND

A. User Experience

According to the ISO 9241 [8], User eXperience is defined
as: “a person‟s perceptions and responses that result from the
use and/or anticipated use of a product, system or service”.
The user experience explores how a person feels about using a
product, i.e., the experiential, effective, meaningful and
valuable aspects of product use [9]. The focus on the user‟s
needs and emotions while interacting with a product is a key
factor for the product success [1]. Therefore, user experience
modeling is especially important for understanding, predicting
and reasoning about UX processes, with implications for the
software design [10]. One way to understand the user‟s needs is
through the use of Personas.

B. Personas

Persona is a hypothetical archetype of a real user [12]. It
describes the user‟s goals, skills and interests [12]. In order to
describe personas, it is important to detail their characteristics,
such as: name, image, occupation, family, friends and age [11].
Designers can choose various ways to represent personas, but
they are usually represented in textual form, enriched by a
photo. Among the benefits of using Personas, Cooper [12]
cites: (1) it helps the development team to understand the

DOI reference number: 10.18293/SEKE2015-152

501

characteristics of a group of users; (2) it proposes solutions
related to the main users‟ needs; (3) it provides a human face to
bring potential users closer to the team. The Persona technique
is mainly criticized for being grounded in informal and
unscientific data, for being difficult to implement, for not
describing real people, and for preventing designers from
contacting real users [13]. In summary, the usefulness and ease
of use of the technique are often questioned.

C. Empathy Map

Empathy Map (EM) is a method that assists designing
business models according to customer perspectives. It goes
beyond demographic characteristics and develops a better
understanding of the customer's environment, behavior,
aspirations and concerns [7]. The EM‟s goal is to create a
degree of empathy for a specific person [14]. According to
Bratsberg [15], the EM is a user-centered approach, i.e., the
focus is on understanding the other individual by looking at the
world through his or her eyes. When the stakeholders
understand the user, they are able to understand how small
changes in design can have a big impact on users [15].

In the first version of the EM, Matthews [16], proposed
four different areas that should be covered when making an
Empathy Map of a person (see Fig. 1). After, Bland [16]
improved the EM by including Pain and Gain areas. As a
result, the EM consists of six areas: (a) See – what the user sees
in his/her environment; (b) Say and Do – what the user says
and how s/he behaves in public; (c) Think and Feel– what
happens in the user‟s mind; (d) Hear –how the environment
influences the user; (e) Pain– the frustrations, pitfalls and risks
that the user experiences, and (f) Gain –what the user really
wants and what can be done to achieve his/her goals. The EM
also has a set of questions that guides how to fill the fields.

Figure 1. The Template of the Empathy Map [7].

III. FEASIBILITY STUDY

In order to verify the subject‟s opinion regarding the
acceptance of the EM to create personas, we conducted a
feasibility study with 20 volunteers‟ undergraduate and
graduate students in Computer Science. In this study, the
subjects should construct personas using both textual
description and EM.

The subjects were attending a course on User Experience.
All the 20 students agreed to participate in the feasibility study.
We carried out the study in two days, during class time. In the
first day, the subjects attended a class about the Personas
technique. In order to create the personas, the subjects received

scenarios to extract the personas' characteristics. We employed
two scenarios. These scenarios are related to an application to
assist persons with epilepsy. The application was being
developed and the scenario was created according the
application requirements. The application has two users: (1)
persons with epilepsy and (2) family of persons with epilepsy.
The first scenario described the routine of a person who has
epilepsy. The second scenario described a routine of a family
member of a person who has epilepsy. The first scenario was
used for the creation of Personas through the text description.
The second scenario was used to create Personas using the EM.

On the textual template, the subjects had to describe the
following Persona features: (1) description of who the persona
is (name, age, profession, gender, and others); (2) information
on the persona's housing (where s/he lives, who s/he lives with,
and other housing features); (3) what problems the persona
faces; and (4) the persona‟s expectations, i.e., what the persona
found or needed that could help to solve his/her problems.
Besides describing the features, the subjects had to draw the
created persona.

In the second day, we presented the EM template and
explained how to use it. Then the subjects extracted
information of the second scenario to describe the persona. In
that context, the employed EM template was composed of the
following fields: (1) do; (2) feel; (3) think; (4) pains
(difficulties/ frustrations) and (5) needs.

Such template does not have the same fields that the
original template. To simplify the template, we pulled the
fields: „see’, „say’ and „hear’ because these fields referred to
features related to the environment that the persona lives and
not related to the persona. The fields: „think’ and „feel’, that
are presented together in the original template, were separated
to make the subjects think about the “think” (thoughts and
ideas) and “feel” (emotions) aspects that can influence the user
experience. Besides filling the fields, the subjects had to draw
the persona as in the previous method. Fig. 2 presents the
template used by subjects for creating the personas.

Figure 2. Empathy Map Template used in the study.

To fill the EM template, we provided some questions to
help empathize with the persona; these questions are adapted
from the original issues of EM. Each EM field had some
specifics questions. These questions are described in Table I.

After the personas creation, the subjects answered a
questionnaire giving their opinions regarding the use of the EM

502

for the creation of personas. The subjects answered questions
about the perceived ease of use and usefulness of the EM.
Additionally, they answered questions regarding their intention
of using the EM again and positives and negatives aspects of its
application.

TABLE I. QUESTIONS FOR FILLING THE EMPATHY MAP [7]

Field Guiding Questions

Do

What is common for him / her to say?

How does s/he normally act?

What are his / her hobbies?

What does he like to say?

How is the world in which s/he lives?

What do people around him / her do?

Who are his / her friends?

What is popular in his daily life?

What people and ideas influence him / her?

What do the important people in his / her life say?

What are his / her favorite brands?

Who are his / her idols?

Think
What are some important ideas that s/he thinks and does

not say?

Feel
How does s/he feel about life?

What bothers him / her lately? Why?

Pains

(Difficulties /

Frustrations)

What is s/he afraid of?

What are his / her frustrations?

What has disturbed him?

What would s/he like to change in his / her life?

Needs

What does s/he need to feel better?

What is success? What does s/he want to achieve?

What has s/he done to be happy?

What would end his / her pain?

What are some of his / her dreams?

In this study, we used factors defined within the
Technology Acceptance Model (TAM), such as ease of use and
usefulness [17] to investigate the subject‟s acceptance
regarding the EM applied in the creation of personas. The
TAM model is based on two factors [18]: Perceived
Usefulness and Perceived Ease of use. On the questionnaire we
employed a six points scale with the items: totally agree,
strongly agree, partially agree, partially disagree, strongly
disagree and totally disagree. We did not use an intermediate
level as suggested by Laitenberger and Dreyer [18] since this
neutral level does not provide information regarding the side to
which the subjects are inclined (either positive or negative). In
this questionnaire, the subjects answered a set of questions that
measure the perceived usefulness and ease of use.

Besides the questions to be answered, we added three
questions to the questionnaire to obtain more feedback about
the subjects‟ perception regarding EM. The questions added to
the questionnaire are presented in Table II.

TABLE II. SUBJECTIVE QUESTIONS ADDED IN THE QUESTIONNAIRE

Nº Question

1
If you had to use personas again, would you choose the traditional
way or the Empathy Map? Why?

2
What aspects of the Empathy Map do you consider positive for the

creation of personas?

3
What aspects of the Empathy Map do you consider negative for the
creation of personas?

IV. RESULTS

In this section, we describe the analysis of created personas
generated by both methods. Furthermore, we describe the
results regarding to the obtained answers from the subjects to
the questionnaire.

A. Perception about the Empathy Map's Usefulness

Fig.3 shows the answers to each statement related to the
perceived usefulness of the EM. Table III shows the factors
evaluated in the perceived usefulness of EM.

TABLE III. STATEMENTS OF THE USEFULNESS

ID Statements

U1 Using EM would enable me to create Personas more quickly.

U2 Using EM would improve my performance when creating personas.

U3 Using EM would increase my productivity when creating personas.

U4 Using EM would enhance my effectiveness when creating personas.

U5 Using EM would make it easier to create personas.

U6 Using EM would be useful for creating personas in my projects.

Figure 3. Results Regarding the Perceived Usefulness of EM

Regarding how quickly it was to create Personas using
Empathy Map, only 02 out of 20 subjects disagreed that the
EM helps creating Personas more quickly (U1). Regarding
improved effectiveness on the creation of Personas (U4), i.e., to
better describe the Persona using EM, no subject disagreed.

Regarding the performance in the creation of Personas
(U2), i.e., being able to better characterize the persona using
EM, only one subject disagreed. The subject that disagreed
stated that the guiding questions were difficult to understand.
Perhaps the difficulty in understanding had influenced subject's
performance. All the 20 subjects agreed that the Empathy Map
facilitated the creation of Personas (U5). Moreover, regarding
productivity increase in the creation of Personas (U3), only two
subjects disagreed. Finally, of the 20 subjects, 18 agreed that
EM would be useful for creating Personas in their projects
(U6). The results regarding usefulness showed that most of the
subjects considered the EM useful for creating Personas.

B. Perception about the Empathy Map's Ease of Use

Fig.4 shows the answers regarding the perceived ease of
use of the EM. Table IV shows the factors evaluated in the
perceived ease of use of EM.

503

TABLE IV. STATEMENTS OF THE EASE OF USE

ID Statements

E1 Learning how to works the EM would be easy for me.

E2 I understood what I had to provide in every part of the EM.

E3 It is easy to remember how to create personas using EM.

E4 Using EM it was easy to create the persona that I wanted.

E5 It was easy to become skillful in creating personas using EM.

E6 I find EM easy to use.

Figure 4. Results Regarding the Perceived Ease of Use of EM

Regarding the ease of learning to use the EM (E1), only one
subject disagreed. All the subjects agreed that they were able to
use the EM to create Personas as they wanted (E4). Regarding
the understanding of the EM fields (E2), 4 out of the 20
subjects disagreed.

The difficulties in understanding, as well as other problems
in the EM use will be discussed in the next subsection. All the
subjects agreed that it was easy to gain the ability to use the
EM (E5). From the 20 subjects, only 2 disagreed that is was
easy to remember how to create Personas using EM (E3). All
the subjects agreed that the Empathy Map was easy to use (E6).

C. Qualitative Results

Other way to investigate the point of view of subjects is to
use qualitative methods. The use of qualitative methods allows
the researcher to consider human behavior and thoroughly
understand the studied object [19]. The qualitative analysis
performed in this work is based on procedures from the
Grounded Theory (GT) method. Grounded Theory is based on
the coding idea that is the process of analyzing the data [20].
The Table V presents the results of the qualitative analysis.

TABLE V. RESULTS OF THE QUALITATIVE ANALYSIS

Category Cotations

easiness in the

description of

personas

EM is more flexible than the traditional approach.

‘The Empathy Map (...) facilitates, by providing the
idea of almost being a defined guide, but it is flexible

and you can add whatever you want in order to

complete the description of the persona.’– Subject 16

EM guides inexperienced designers.

‘(...) I think that it (EM) can certainly be an initial

step for anyone who is learning to identify personas.’–
Subject 20

Category Cotations

The EM‟s fields guide the creation of personas.

 ‘The highly detailed description of the persona, the

way s/he acts, thinks, and his / her fears ... I believe

that categories help describe the personas.’ – Subject
12

EM deals with the subjective aspects of a persona.

‘...it captures what the user 'feels' and 'thinks' which I
did not see in the traditional approach.’ – Subject 18

difficulties in

understanding

the EM

Difficult to answer the guiding questions.

‘…it is difficult to answer the questions used as a
guide, creating some uncertainty over where certain

descriptions fit, i.e., which would be the correct

quadrant’– Subject 8

Questions seem to be similar for different fields on the
EM.

‘The questions seem similar in some categories and

can confuse at the moment of filling them.’ – Subject 3

Different fields of the EM appear to have the same

meaning.

‘...the Empathy Map seems to confuse in some parts

that need to be filled. For instance, 'feel' and 'pain'

seem to be redundant’ – Subject 5

Confusion regarding on which field to fill in some
information (which generates duplicated information

in the persona).

 ‘Sections 'needs' and 'pain' are very similar to the

section 'What do you think', which can generate

duplicated content’ – Subject 20

limitations

The scenario influences the completeness of the

persona.

‘The completeness of the persona also depends on the

data available on the lifestyle, habits, among others.’–

Subject 11

The structure of EM only helps if you have questions
guide.

‘Although the aspects of the map are clear (through
the words that define them), they leave each aspect

much broader. Without questions the answers (to fill

in the map) would certainly be very vague.’ -Subject 4

improvement

suggestions for

the EM

Context field missing in the EM.

‘The lack of a context field <background>’ – Subject

19

It should create a relationship between the personas.

 ‘(...) in the case of personas that relate to others,

there could be an identified relationship with the other
personas’ – Subject 13

Guiding questions should be incorporated in the EM.

‘(...) questions like a model could accompany the
process of creating the persona’ – Subject 16

More space for filling the fields in.

‘I believe that the template could be optimized,
providing larger space for some topics.’ – Subject 12

In this subsection, we observed that the qualitative research

helped us identify categories and relationships of factors that

influence the use of the Empathy Map.

504

V. VALIDITY THREATS

Every study possesses threats that can affect the validity of
their results [21]. This subsection presents the threats to
validity considered in this feasibility study. The textual form to
create personas and the EM method had equivalent training.
However, the results obtained through these methods cannot be
directly compared because the scenarios used to create the
personas were different. The scenario used to create the
persona using the textual form was simple and it gave more
details to persona creation. It was a basic scenario, in order to
introduce the concept of personas to the subjects. Differently,
the scenario to create personas using the EM was more
elaborated. Furthermore, the textual form was used before the
EM. This may have caused a learning effect. However, in this
methodological approach, the subjects should understand the
basic way to create personas before using the EM.
Additionally, the level of education and knowledge of the
subjects is also a validity threat.

VI. CONCLUSIONS

This paper presented a feasibility study that aimed at verifying
the subject‟s acceptance of the EM when employed in the
creation of Personas. Based on the study's quantitative results,
we perceived that most subjects think that the EM is easy to use
and useful for the creation of personas. Through the qualitative
analysis, we identified some features that are directly related to
the use of the EM in the creation of personas. One of the results
of the qualitative analysis showed that through the EM it is
easy to describe personas. One of the reasons is that the EM
provides more flexibility than the textual description. It also
guides inexperienced practitioners through the creation process.
We also observed that the guiding questions help subjects to fill
the EM. We also found some limitations in the use of the EM
for the creation of personas. Additionally, through the
qualitative results, we identified some improvement
suggestions for the EM.

According to results obtained from the qualitative and
quantitative analysis, we observed that the EM method had a
good acceptance. This method was considered easy to use and
useful for the most of the subjects. Therefore, the results
indicated that the EM is a good method to help the process of
personas creation. The improvements identified on the
qualitative results served as basis to we improve the EM
template and make the method better to software engineer‟s
use. Furthermore, we will also carry out a study in the industry.
In such study, the EM will be employed by software engineers
to help them design an application.

ACKNOWLEDGMENT

We thank all the students who participated in the feasibility
study. And we would like to acknowledge the financial support
granted by FAPEAM through processes numbers:
062.00146/2012; 062.00600/2014; 062.00578/2014;
01135/2011 and PAPE 004/2015.

REFERENCES

[1] S. Sproll, M. Peissner, C. Sturm, “From product concept to user
experience: exploring UX potentials at early product stages” in 6th
Nordic Conference on Human-Computer Interaction: Extending
Boundaries. ACM, 2010. pp. 473-482, 2010.

[2] S. T. Acuña, J.W. Castro, N. Juristo, “A HCI technique for improving
requirements elicitation,” in Information and Software Technology, v.
54, n. 12, pp. 1357-1375, 2012.

[3] J. W. Castro, S. T. Acuña, N. Juristo, “Enriching requirements analysis
with the personas technique,” Proceedings of the Intl. Workshop on:
Interplay between Usability Evaluation and Software Development (I-
USED 2008). pp. 13-18, 2008.

[4] T. Ribeiro, P. Souza, “A Study on the use of personas as an usability
evaluation method,” in 16th International Conference on Enterprise
Information Systems (ICEIS 2014), pp. 168-175, 2014.

[5] T. Matthews, T. Judge, S. Whittaker, “How do designers and user
experience professionals actually perceive and use personas?,” in Conf.
on Human Factors in Computing Systems, pp. 1219-1228, 2012.

[6] P. Wright, J. Mccarthy, “Empathy and experience in HCI”. in Conf. on
Human Factors in Computing Systems. ACM.. pp. 637-646, 2008.

[7] A. Osterwalder, Y. Pigneur, “Business Model Generation”, Alta Books,
2013.

[8] ISO 9241-210:2010. International Standardization Organization (ISO).
Ergonomics of human system interaction -Part 210: Human-centred
design for interactive systems. Switzerland, 2010.

[9] P. Vermeeren, C. Law, V. Roto, M. Obrist, J. Hoonhout & K. Väänänen-
Vainio-Mattila. “User experience evaluation methods: current state and
development needs,” in 6th Nordic Conference on Human-Computer
Interaction: Extending Boundaries. ACM.. pp. 521-530, 2010.

[10] E. L. C. Law, S. Abrahão, A. P. Vermeeren, E.T. Hvannberg, “Interplay
between user experience evaluation and system development: state of
the art,”. in Int. Workshop on the Interplay between User Experience
(UX) Evaluation and System Development (I-UxSED 2012), pp. 1-3,
2012.

[11] J. Grudin, J. Pruitt, “Personas, participatory design and product
development: An infrastructure for engagement,” in: PDC. 2002. pp.
144-152, 2002

[12] A. Cooper, “The inmates are running the asylum:Why high-tech
products drive us crazy and how to restorethe sanity,” in Sams
Publishers, 1999.

[13] L. Nielsen, K. S. Nielsen, J. Stage, J. Billestrup. „Going global with
personas.‟ International Conference on Human-Computer Interaction,
INTERACT 2013. Springer Berlin Heidelberg, pp. 350-357, 2013

[14] D. Gray, S. Brown, J. Macanufo, “Gamestorming – A playbook for
innovators, rulebreakers and changemakers,” in Sebastopol, CA:
O‟Reilly Media, Inc., 2010.

[15] H. M. Bratsberg, "Empathy Maps of the FourSight Preferences,” in
Creative Studies Graduate Student Master's Project, Buffalo State
College. Paper 176, 2012.

[16] D. Bland, “Agile coaching tip–What is an empathy map?,” Available in
http://www.bigvisible.com/2012/06/ what-is-an-empathy-map/, 2012.

[17] B. Langefors, “Discussion of the Article by Bostrom and Heinen: MIS
Problems and Failures: A Socio-Technical Perspective. Part I: The
Causes [MIS Quarterly, September 1977]. 1978.

[18] O. Laitenberger, H. M. Dreyer, “Evaluating the usefulness and the ease
of use of a web-based section data collection tool,” In 5th International
Symposium on Software Metrics, pp.122-132, 1988.

[19] C. B. Seaman, “Qualitative Methods”. In: Guide to Advanced Empirical
Software Engineering (Shull et al.. (eds.): Springer., pp. 35 – 62, 2008.

[20] A. Strauss, J. Corbin, “Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory,” in Thousand Oaks, CA,
SAGE publications, 2014.

[21] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. essl,
“Experimentation in Software Engineering: An Introduction”, Kluwer
Academic Publishers, 2000.

505

DOI reference number: 10.18293/SEKE2015-141

An approach to identify relevant subjects for

supporting the Learning Scheme creation task

Huander Tironi

Post Graduate Program in informatics

(PPGIa) – Polytechnic School

Pontifícia Universidade Católica do

Paraná - PUCPR

Curitiba, Brasil

huander.tironi@gmail.com

André Menolli

Computer Science Departament

Universidade Estadual do Norte do

Paraná - UENP

Bandeirantes, Brazil

menolli@uenp.edu.br

Sheila Reinehr, Andreia Malucelli
Post Graduate Program in Informatics

(PPGIa) - Polytechnic School

Pontifícia Universidade Católica do

Paraná – PUCPR

Curitiba, Brazil

sheila.reinehr@pucpr.br,

malu@ppgia.com.br

Abstract—The necessity to improve performance of the processes

within organizations, gave rise to many research that apply

concepts from educational area in software development

companies. Many studies are related to Organizational Learning

(OL), an area that helps companies to improve their processes

significantly through the reuse of experiences. In recent works,

some approaches propose to generate courses in organizations

from content produced by employees. The main limitation of these

approaches is the high dependence of an expert, who is responsible

by the courses. Even a qualified expert, can be unfamiliar with the

real need of the team’s learning, and mapping the organizational

needs requires time and effort. This work presents a mechanism

for software development companies, capable of recovery searches

performed by employees on the internet, in order to discover the

real necessity of the team’s learning. From these needs is purposed

a learning schema of a unit of learning (the structure of a course),

so helping the expert in the course creation task. An initial

experiment was conducted and the results indicate that the use of

the approach is viable and may help an expert create units of

learning, assisting to improve the OL in software development

teams.

Keywords- Organizational Learning; Unit of Learning; IMS

Learning Design; Learning Scheme; Recommendation System

I. INTRODUCTION

Nowadays, the impact of knowledge on organizations is so
relevant that it is not treated as a strategic factor in potential,
available to few privileged, but as a common element essential
to the company survival [1]. Knowledge is vital to corporations,
especially for intensive knowledge company. The intensive
knowledge projects refer to those where most work is said to be
of intellectual nature and qualified employees form the bulk of
workforce [2].

On the software development, the technical expertise that
each employee acquires with the business practices and routines
is valuable for the organization. Thus, as time goes by, the
experiences and lessons learned gained make the software
professionals more valued, becoming them in a source of basic
knowledge to the company. However, the high value given to
these employees creates an interest by other companies on these
professionals. Losing an experienced employee to another
company, means losing the acquired knowledge over time [3].

This situation makes organizations look for ways to store and
share the knowledge generated. The field that seeks minimize
those problems is the Organizational Learning (OL), which deals
with the capacity or processes within an organization to maintain
or improve performance based on experience [4].

Some recent researches are applying concepts from
educational area, such as Learning Objects (LO) and Units of
Learning (UOL), to improve OL in software development
companies. A LO is defined as any independent digital or non-
digital entity that may be reused in several teaching contexts [5].
Furthermore, a UOL can be seen as a general name for a course,
a workshop or a lesson that can be instantiated and reused many
times by different people and in different settings in an online
environment [6].

Based on this context, the work of Menolli, Reinehr and
Malucelli [7] proposes a semantic collaborative environment for
software development companies. The environment aims to
organize the content generated using social tools in learning
objects and later, using a learning design defined by an expert,
create units of learning, using semantic technologies. However,
in this approach, the creation of courses depends directly of an
expert, who defines a course structure, using a Learning Scheme
(LS). LS is a structure defined on a meta-language, e.g. XML,
which the tags form a structure that contains elements from a
course such as a process of teaching and learning [8].

This dependency makes indispensable the presence of an
expert, who can assume a high cost position. However, even the
expert taking a high position; he can be unfamiliar with the real
need of the team learning. To map the team needs requires time
and effort and can be a barrier to set a Learning Scheme.

Therefore, having exposed these limitations it is necessary to
advance, regarding learning, and present an approach that assist
to identify relevant subjects and content to the team.

Hence, this paper presents an mechanism for software
development companies, capable of recovery searches
performed on the internet by the employees, and then, using a
clustering algorithm, to group this searches, helping on the
Learning Scheme creation task.

The remaining parts of the paper are organized as follows:
Section II presents background information on the main

506

concepts behind the proposed mechanism, such as Learning
Scheme, Clustering, Text Mining and Recommendation
Systems. Section III shows some related works. Section IV
introduces the proposed mechanism as well as its architecture.
Section V presents an experiment and Section VI presents the
final considerations about the study.

II. BACKGROUND

A. Learning Design

The structure of a UOL is defined using some kind of
Educational Modeling Language (EML), that are models of
semantic information or aggregations, that describe, of a
pedagogic point of view, a content as well as educational
activities [9].

The EML are organized on units of study in order to allow
its reuse and interoperability [10].

One of the main Educational Modeling Language is the IMS
Learning Design (LD) [11], which supports the use of different
approaches of teaching or learning, such as: behaviorists,
cognitive and constructivist. The model describes “Units of
Learning”, as elemental units that come learning events for
learners, satisfying one or more learning objectives.

The IMS Learning Design specification is a meta-language
that describes all the elements of the project of a process of
teaching and learning, elaborated by the work group IMS/GLC
[11]. The IMS LD describes a method comprising by a series of
activities conducted by both the student and the team, in order to
reach the learning objectives [9].

However, the IMS LD is much more complex than only
organizing knowledge in a course form. Menolli, Reinehr and
Malucelli [7], proposed an adaptation of IMS LD to become
viable its use on an organizational learning environment. The
main differences between the learning design proposed on
Menolli, Reinehr and Malucelli [7] and the actual IMS LD, is
that on the proposed environment the components related with
time and execution control on a UOL were not used. As the
purpose of this work is to present an advance on an approach
already proposed, it is been used the same concepts.

In this approach, the UOL contains Resources and is
organized as a Learning Design, which contains definitions such
as Pre Requisites and Learning Objectives. The LD is also bound
to an activity which contains a Description and its Structure.

This information is organized in a XML file called Learning
Scheme. The Learning Schema follows the IMS LD structure,
and contains information about the course, such as objective and
prerequisite, beyond the activities of learning as well its
hierarchy and sequence.

B. Recommendation Systems

There is an extensive class of Web Applications that involve
predicting user responses to option. Such a facility is called a
recommendation system [12].

There is a list of applications of recommendation systems
that goes from Products to News Recommendation, but there is
a few applications aimed to learning. Some [13] proposed a
semantic recommendation system for e-learning domain to help

the learners find subject they need to learn based on learners
knowledge level, learners profile and some learners evaluation.
Also is presented [14] a model to improve proactive context-
aware recommendations in e-Learning systems to be applied in
online e-Learning authoring tools.

There are two basic architectures for a recommendation
system: Content-based systems examine properties of the items
recommended; and Collaborative filtering systems, that
recommend items based on similarity measures between users
and/or items [15].

However, the one which fits better to the proposed
mechanism is called Content-Based. The Content-Based
systems focus on properties of items. Similarity of items is
determined by measuring the similarity in their properties [16].

In a content-based system is necessary to build each item a
profile, which is a record of collection of records representing
important characteristics of that item. In simple cases, the
profile consists of some characteristics of the item that are
easily discovered. But, there are other classes of items where it
is not immediately apparent what the values of features should
be [17]. It is considered to this work one of them: words or
documents collections.

In order to identify these words, we proceed with some
practices of text mining called Filtering, which is a list of words
to discard because they represent low-semantic words
(prepositions, etc), and Stemming words to achieve a canonical
concept representation (e.g. analysis, analyzing, analyser are
collapsed to ANALY).

Once the documents are represented by sets of words, is
necessary to measure the similarity of two or more documents,
and to that there are several natural distance measures can be
used, such as Jaccard similarity coefficient [12] between the
sets of words, or cosine distance between the sets, treated as
vectors.

III. RELATED WORKS

In recent years, organizations have begun to place more
value on the experience and know-how of their employees, i.e.,
their knowledge [18]. Therefore, it has become a challenge to
develop and implement processes that generate, store, organize,
disseminate and apply the knowledge produced and used in a
company in such a way that it can be systematically and reliably
accessed by the organizational community [7].

In recent years, software companies have used tools and
technologies to knowledge management that were not designed
for this specific purpose [19]. The arising of the Web 2.0 (blogs,
wikis, content sharing sites, social networks, etc.) gives access
to a growing need for Recommendation Systems based on social
and information network mining methods [20].

More and more companies are interested towards the
integration of Recommendation Systems in the Intranet in order
to further improve communications [20] and organizational
learning.

In the work of Reichling, Veith and Wulf [21] is proposed an
expertise recommender system for the specific needs of a major
European national industry association. Other studies have been

507

proposing knowledge management systems such as Luo and Cao
[22] that presents an architecture to realize knowledge sharing
and knowledge recommendation based on user model. Also is
presented by Ale et al. [23], an architecture to provide a
technological support for knowledge representation and retrieval
activities.

The growing number of works related to organizational
learning area shows that the search for techniques for improving
learning in teams is recurring and current on software factories.
The environment proposed in this study is an improvement of
the consolidated approach developed by Menolli, Reinehr and
Malucelli [7] and is presented in the section the follows.

IV. ENVIRONMENT

The proposed approach aims to generate the Learning
Scheme using data from the searches performed by the
employees on search engines, such as Google, Yahoo and Bing.
The reason of choosing queries typed into search engines as
source of information is because more and more, software
developers are using search engines to find techniques, coding
solved issues and new technologies [24]. According to
QuantCast, the online programming forum “StackOverflow”,
increased from around one thousand accesses to more than three
million visits per day since 2009. It shows that many
programmers get answers for their needs on the internet,
submitting a question or searching search for answers to a
question that has already been made.

This approach is divided into two components. The first is
called “Themes and Roles Identifier” (TRI) and works as a
collector of queries typed on search engines and user’s
information. This component uses the collected information to
suggest to the expert the themes and roles most searched.

The second component defines a course from all the
information gathered on the TRI and defines the UOL structure.
This component is called the “Course Definer” (CD). As a final
task, based on the Learning Design, the CD will set a Learning
Scheme, which finally can be used to create a Unit of Learning.

A. Themes and Roles Identifier

This component has as main objective to present suggestions
of course’s themes and users that may participate or teach those
courses. To do that, we collect the employee’s queries in search
engines, e.g., “Java Polymorphism Examples”, and the
employee’s information such as IP addresses, date and time of
search. So, it is used text mining practices and a clustering
algorithm to group these data and discover what have been the
most searched queries by the group.

Figure 1. Approach to collect and generate the themes suggestions.

To obtain these topics is necessary to delineate a strategy to

present a way of, by the analysis of a Proxy Server’s Log, to
generate a search engine query report. The approach to collect
both the theme and the employee’s information is presented on
Figure 1.

Thus, with a proxy server mediating the connection between
the user and the search engine is possible to capture the log of
each query. However, an access log usually is not an easy
reading file.

To get useful information from these records is needed to
understand a record line. These records are divided into
columns. First column refers to a Unix date and time, that after
converted, becomes readable, for example:

1413858715.311 = Tue, 21 Oct 2014 02:31:55

The third column refers to the IP address that attempted to
connect. Companies usually have a fixed address to all
employees or computers, which enables pointing the employee
to the connection he attempted. The proposed environment
allows the expert to register the employees’ information such as
name and skills, and then, bind this information to the IP
addresses used by the employees in the company network.

The most important information for the proposed
environment is the query. To collect this information was
necessary to look into each record and learn what splits the typed
query, from the rest of the record. As seen in most records, some
HTTP parameters on a query request differ from the normal
requests. It is crucial to get only queries arising from a search
engine, such as Google, then, to split the query from the record
we look for parameters that mark the beginning and the end of
the queries. After splitting the query, all the gathered
information is record on a database.

After recording data, the result that we have is a list of IP
addresses, dates and queries searched by the employees.
However, even that these queries represent a necessity of an
employee, not all words typed into a search engine influences
the meaning of the query. As the objective is to provide relevant

508

information to help creating a course, the solution to extract the
important words was to use some techniques from text mining
like tokenization, filtering and stemming.

After recording the important queries and its details, the next
step is to cluster these records. The algorithm chosen to cluster
the queries is the Cliques. The reason of using Cliques is because
on the proposed environment, we seek cohesion between the
elements of the same group, and the clustering algorithm
provides it. The final result is a list of searches sorted by the most
queried theme.

B. Course Definer

The aim of the Course Definer (DC) is to use all information
obtained in the previous step, to help an expert to create a course.

The objects that are being treated in this component are texts
and they represent a learning necessity of the group. It is an
expert’s work, to look onto the team’s learning necessity and
understand what the objectives and methods will be used to help
improve the knowledge. Other concepts bound to a course
structure still needs the choice of a professional, therefore, the
proposed environment can facilitate this process and make it
more interactive.

Information such as pre requisites and level of difficulty may
be presented in the environment, using employee’s information,
as well as learners and staff levels. Hierarchy and contents may
be suggested to the expert so that he can complete the course
structure. The final task of the DC is to write the XML learning
scheme file, which could be used by the expert to generate the
course with its contents in an environment like proposed by
Menolli, Reinehr and Malucelli [7].

C. Architecture

This section presents an architecture that gathers and
organizes the components of the proposed environment, to
create the learning schema.

Figure 2 provides a general overview of the proposed
mechanism architecture. The architecture is subdivided into
three tiers: application, middleware, and server log and
database. The last block presented in this architecture, called
Internet Connection, treats of the connections made by the
employees and their searches.

The Application Tier is responsible for the user interaction
and provides subsidy for the content inclusion, such as
employees information, and creation of course structure. This
tier is composed of four main structures that may be feed by the
information collected and treated by the other tiers. The
structures defined by the IMS Learning Design are: themes;
roles; contents; and hierarchy.

The Middleware Tier provides a combination of
Information Recovery, Text Mining and Clustering techniques.
In addition, it makes, as a final task, the Course Structure
Transformation, which takes all the data clustered and applies
other text mining and clustering algorithm, but now, identifying
the kind of course’s structure, e.g., “Examples”, “Concepts”,
“Exercises”, etc. After rendering these data, the Middleware
Tier presents them to the Application Tier, separating the
information collected between the structures of the Learning

Design, such as “Theme”, “Roles”, “Contents” and
“Hierarchy”.

Figure 2. Proposed Architecture.

The Server Log and Database tier is responsible for

interoperate between the user and the Internet Connection Tier,
gathering and storing the connections attempts into a log file,
and also storing the information found, after retrieving this from
the server.

Thus, the objective of this architecture is the generation of
courses structures, through the recovering of information shared
by the team members on the internet search engines.

V. EXPERIMENT

The main objective of this experiment is to analyze if the
suggested themes based on the queries performed by the
development team can be considered relevant. To achieve this
goal were elaborated some specific objectives that must be
performed in this experiment:

 Present the environment to a development team;

 Validate the application of the approach in an
corporative environment from the perspective of
the employees;

 Analyze the suggested themes;

We proposed the use of a development team from a company
of the vehicular tracking branch. In this experiment, four
employees were selected, among which, all are linked to the
development of software with a minimum of two years
experience.

The areas of the software development included were
interface and business layer programming and database
management and analysis.

To manage the information about the employee responsible
for a query, it was designed a screen which allows the expert to
Create, Read, Update and Delete (CRUD) employees, as well as
their specific knowledge, its levels, and the IP address used by

509

this employee on the network. To simulate an organizational
environment, a local network was built. Also, it was created four
employees with specific skills and its levels. The Employees
were named E.1, E.2, E.3 and E.4. Each employee was mapped
with an IP address into the local network, so that the mechanism
could cross the search with the user.

After created the four employees, it was necessary to collect
their searches on a search engine. Each employee was asked to
perform at least fifty queries on the search engine. The criteria
to perform the queries, was that the subject should be related to
both the projects of the company and the developer skills.

Thereafter, the employees’ searches were recovered from the
proxy server log and stored on the database. Then, the Data
Transformation component created from the stored queries, a list
of bag of words. An algorithm of stop words removal was used
to maintain only the words that represent the developer needs.

In order to present those searches grouped as themes, the
Jaccard Similarity Coefficient was calculated to each pair of bag
of words. Jaccard Coefficient uses the ratio of the intersecting
set to the union set as the measure of similarity. Thus it equals
to zero if there are no intersecting elements and equals to one if
all elements intersect.

The average Jaccard Index established in previous
simulations was 0.7, then, to this experiment, with the purpose
of finding the best clusters, the same index was used.

After clustered, queries were presented as themes by the
mechanism along with the amount of times that such searches
were performed by the employees. Despite the tasks given to
each employee were focused on different tasks, some queries
performed by the users had the same theme. The main themes
researches brought by the mechanism were about the interface
framework called knockoutJS. Most of queries pointed to the
specific words “knockout bind context”, “nested foreach
knockout” and “computed function knockout”. Other queries
pointed to themes related to the programming language C#, e.g.
“C# MVC partial view”, “C# trend line calc” and “Json serialize
into object C#”.

In order to validate the themes suggestions and the approach,
a questionnaire was applied to the development team that
participated in this experiment.

The results presented that beyond using the search engines
to look for answers to their development needs, there is an
incentive of the company managers on improving quality by
allowing the use of search engines to that end. Also is shown that
despite this approach of collect the internet log might seem
intrusive, the development team considered important the fact of
the company know the learning necessity of them.

Regarding the suggested themes, the developers were
questioned about the necessity of learning on the topics that the
mechanism presented as the most searched theme. The results
presented as expected that the most searched themes were a
group necessity. Also, the answers pointed that the words inside
the themes were related to each other, showing that the
mechanism didn’t mix different queries in a single theme.

The experiment proceeded to the course definer component.
The expert selected the themes suggested by the mechanism that

were related to the technology “knockoutJS”, then the Course
Definer crossed the results with the IP Addresses in order to map
the employee responsible for each search. The employees
pointed for the themes selected where E.1, E.2 and E.4. None of
the searches performed by E.3 were present on the selected
themes, because this specific developer was not involved on
interface interaction, but only data processing.

With the themes selected, the Course Definer suggested a
course where the main key words were the ones found in all the
selected themes. In this case, the key word suggested was
“knockout”.

In order to suggest contents to the course, the course definer
searched again in the queries to find other themes that may
belong to the main theme. As the word “Knockout” represent a
technology, this word appeared in other themes suggested, but
combined with other words, such as: “css bind”, “observable
array”. Thus, these themes were suggested along with the main
theme, as contents to the course.

On the next step, the expert defined that to this course the
main skill needed was KnockoutJS. To point and suggest the
roles (learner and staff) into the course, the course definer looked
into the employee's skills that were related to the main
technology defined in the course, i.e., “KnockoutJS”. Employee
E.2 was the only having a senior level to the skill needed.
Because of this, E.2 was pointed by the CD as the main tutor to
the course. E.1 and E.4 were pointed as learners because their
skill levels were plenum and junior respectively. The expert stills
had the option of changing the roles of the employees and
include new employees to the course. We choose to include the
E.4 to participate of the course as a learner.

After that, in the Course Structure Transformation
component, the expert was able to determine what kind of
activities the course would have, such as: concepts, examples,
advantages, disadvantages; and when to use the concepts
learned. The activities chosen to the course created were
concepts, examples, exercises and test.

Finally, the expert informed the objectives of the course and
placed the order of the contents. Thus, having the main structures
defined in the Course Definer Component, the mechanism was
able to generate the XML Learning Scheme. Once the XML
Learning Scheme was ready, we uploaded it to the Semantic
Collaborative Environment proposed by Menolli, Reinehr and
Malucelli [7]. A positive result presented is that the Semantic
Collaborative Environment was able to read the generated XML
Learning Scheme and look for learning objects related to the
themes described on the Course Definer.

VI. FINAL CONSIDERATIONS

The work presented focuses on the identification of the
specific needs inside an organization. The identified themes and
roles that are presented to the expert are the basis for the
definition of learning schema.

However, even a trained expert, who has sufficient
knowledge to generate units of learning to assist the employees,
has a complex job when it comes to know that the need for
discovery by company employees, not only for growth of this

510

employee, but that this knowledge sustain it on a daily basis in
the activities assigned to them.

Towards this direction of the problem, we propose a
mechanism supported by concepts of organizational learning in
order to contribute to the expert responsible for generating units
of learning. This semi-automatic mechanism creates the units
from the searches conducted on the Internet by means of search
engines.

We estimated two main contributions to the completion of
the proposed work. The first, is propose an approach to get the
searches performed on search engines, aiming to catalogue these
themes that were popular and along with a guiding company’s
knowledge, suggest topics of courses to be generated to the
organization.

The second is to provide a component integrated into the
semantic collaborative environment presented by Menolli,
Reinehr and Malucelli [7], which is effective to help the expert
generates the Units of Learning, in order to make the learning
more effective.

Lastly, we identified some gaps that may be supplied on next
works. The main gap is to run an experiment on an
organizational environment, so other factors that surround the
environment could be analyzed and evaluated. It would help
identifying unanticipated problems and to adapt the mechanism
to solve them. It is also identified the necessity of run another
experiment with the objective of evaluate the Course Definer
approach from a pedagogical perspective once the definition and
application of a course is also related to the educational area.

REFERENCES

[1] Neves, E. O., 2011. Organizational Learning: Considerations about
methodologies of development promotions. Administration and Economy
University Magazine, 3, 2 – 16.

[2] Alvesson, M., 2000. Social identity and the problem of loyalty in
knowledge-intensive companies. Journal of Management Studies, 37, n.
8, 1101-1123.

[3] Menolli, A., Malucelli. A., Reinehr, S., 2011. Towards a Semantic Social
Collaborative Environment for Organizational Learning in: International
Conference on Information Technology and Applications, 65-70.

[4] Nevis, E. C., Di Bella, A., Gould, J. M., 1995. Understanding
organizations as learning systems. Sloan Management Review, 36, n. 2,
73-85.

[5] Polsani, P. R., 2004. Use and abuse of reusable learning objects. Journal
of Digital Information, 3, n. 4.

[6] Koper, R., O., B., St.B.D., Ab.B. (2004). Representing the Learning
Design of Units of Learning. Educational Technology & Society, 7, 97–
111.

[7] Menolli, A. L., Reinehr, S., Malucelli, A., 2013. Improving
Organizational Learning: Defining Units of Learning from Social Tools.
Informatics in Education. 12, n. 2, 273-290.

[8] IMS Global Learning Consortium, 2003. "IMS Learning Design
Information Model", Final Specification, from
http://www.imsglobal.org/learningdesign/ldv1p0/imsld_infov1p0.html.

[9] Amorim R. R., Lama M., Sánchez E., Riera A., Vila X. A., 2006. "A
Learning Design Ontology based on the IMS Specification: The Need for
a Learning Design Ontology," Educational Technology & Society, 38-57.

[10] Rawlings, A., Van Rosmalen P., Koper R., Rodríguez-Artacho M.,
Lefrere P., 2002. "Survey of Educational Modelling Languages,"
Learning Technologies Workshop, from
http://www.cenorm.be/cenorm/businessdomains/businessdomains/isss
/activity/emlsurveyv1.pdf.

[11] Witten, I.H., Frank, E., 2005. Data Mining: Practical Machine Learning
Tools and Techniques.

[12] Ullman, J., Rajaraman, A., 2011. Mining of Massive Datasets, 2, 307-341.

[13] Shishehchi, S., Banihashem, S. Y., Zin, N. A. M., 2010. A Proposed
Semantic Recommendation System for E-learning, ITSim, 1, 1-5.

[14] Gallego, D., Barra, E., G., A., H., G., 2013. Enhanced recommendation
for e-learning authoring tools based on a proactive context-aware
recommender, Frontiers in Education Conference, 1393-1395.

[15] Leskovec, J., Rajaraman, A., Ullman, J.D., 2014. Mining of Massive
Datasets, 2, 287-319.

[16] Liang, G., Weining, K., Junzhou, L., 2006. Courseware Recommendation
in E-learning System, ICWL 2006, LNCS 4181, 10-24.

[17] Ricci F, Rokach L, Shapira B, Kantor PB., 2011. Recommender Systems
Handbook. Springer.

[18] Davenport, T. H., Prusak, L., 1998. Working Knowledge: How
Organizations Manage What They Know. Boston, MA, USA: Harvard
Business School Press.

[19] Menolli, A. L., Cunha, M. A., Reinehr, S., Malucelli, A., 2015. “Old”
theories, “New” Technologies: Understanding knowledge sharing and
learning in Brazilian software development companies, Information and
Software Technology, 58, 289-303.

[20] Stan, J., Muhlenbach, F., Largeron, C., 2014. Recommender Systems
using Social Network Analysis: Challenges and Future Trends,
Encyclopedia of Social Network Analysis and Mining, 1-22.

[21] Reichling, T., V Veith, M., Wulf, V., 2007. Expert Recommender:
Designing for a Network Organization, Computer Supported Cooperative
Work, 16, 431-465.

[22] Luo, Y., Cao, F., 2009. Web Knowledge Management System Based on
User Model, ICIE ’09, 1, 552-556.

[23] Ale, M. A., Toledo, C. M., Chiotti, O., Galli, M. R., 2014. A conceptual
model and technological support for organizational knowledge
management, Special Issue on Systems Development by Means of
Semantic Technologies, 95, 73-92.

[24] Manning, C. D., Raghavan, P., Schütze, H., 2008. An Introduction to
Information Retrieval, Cambridge University Press, 421-442.

511

Using peak analysis for identifying lagged effects

between software metrics

Josée Tassé

Dept. of Computer Science and Applied Statistics

University of New Brunswick, Saint John campus

Saint John, New Brunswick, Canada

jtasse@unbsj.ca

Abstract— Measures extracted from software repositories tend to

be collected on a regular basis (often daily), forming time series

of data. In this context, it is normal to assume that some of the

measures collected are having an effect on other measures,

potentially with some delay (or “lag”) in the effect. Such delay in

the effect may even vary over time, making the identification of

the effect difficult. In this paper, we present our initial ideas on a

simple analysis method for such situation, in which peaks from

the two time series in question are analyzed, and similar ones are

matched.

Keywords-Peak analysis; time series; lagged effect; software

metrics

I. INTRODUCTION

Measures extracted from software repositories tend to be
collected on a regular basis. For example, one could capture the
number of bugs found and the number of bugs fixed every day
or every week. In statistical terms, such sequence of data
collected regularly over time form a time series.

Data are usually kept in this format (time series) only if
they are simply displayed graphically (showing their evolution
over time) or used in statistical control. For other analyses, data
are typically transformed, losing most of their time-related
information. In particular, one might aggregate such measures
into a single one per version or per time segment (e.g., total
number of bugs found, or total number of lines of code
changed, during the development of one version). Then, only
the differences between two consecutive versions or time
segments are used in the analysis. For example, the expected
number of bugs to be found during the development of a
particular version may be predicted based on the number of
lines of code changed in the previous version (and/or other
variables of interest – those are surveyed in [1]). The problem
here is that by limiting the association to only two consecutive
time segments, it is not possible to detect a longer effect (e.g.,
what if a change in the number of lines of code changed was
having an effect up to three releases later?).

What is needed is a way to analyze the metrics in question
as time series, showing if one metric is causing another one to
change, and if yes, after how much time can such impact be
felt. Let’s illustrate this with the problem of judging the

stability of a system or sub-system. What is really needed here
is to characterize what happened in the past (e.g. amount of
change) that eventually lead to a decrease in the stability
(perhaps measured as bugginess). Being able to analyze the
lagged effect of the amount of change, or other metrics of
interest, on the bugginess (or other indicators of stability),
could help identify appropriate criteria for decisions related to
software stability. If the lag is important enough to allow for a
reaction time, this could lead to early warnings about upcoming
problems with the stability unless something is done to reduce
– or even eliminate – the problem. Depending on the type of
changes done (e.g., corrective vs. perfective maintenance) or
the complexity of the changes being made, it may take more or
less time to feel such impact though. So the identification of the
lagged effect is not a trivial issue.

Current statistical techniques, namely Granger causality [2]
and transfer functions [3], mostly rely on building a regression
model where the independent variables represent the same
metric, but collected at some time in the past. For example,
assuming that we would like to know the effect of time series x
on time series y, with a maximum possible delay of 2 time
periods, the following simple regression model could be built:

 y(t) = a*x(t)+b*x(t-1)+c*x(t-2) 

where y(t) is the value of y at time t; x(t), x(t-1), and x(t-2) are
the values of x at time t (no delay), at time t-1 (delay of 1), and
at time t-2 (delay of 2) respectively; and a, b, and c are the
regression coefficients. Note that more complex models can be
built, including those where past values of y are used as well
(for an autoregressive part).

The limitation with such a model is that it assumes that the
delay in the effect is always constant, which is not always the
case. Also, for a more general delayed effect such as “between
1 and 3 time periods”, one has to guess it and add the
corresponding variable in the model being built. Trying all
possible combinations of such kind of variable can be
computationally expensive.

In this paper, we describe our initial work on a technique
for solving such kind of problem. It relies on the identification
of peaks in the two time series. Similar peaks across time series
are then matched, showing at the same time the delay in the
effect. The next section describes this technique with an (DOI reference number: 10.18293/SEKE2015-042)

512

Figure 1. Plot of the MA5 and MA49 on opened bugs, showing peaks.

Figure 2. Plot of the MA5 and MA49 on closed bugs, showing peaks.

0

2

4

6

30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90

openMA5 openMA49

0

2

4

6

30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90

closeMA5 closeMA49

example, also comparing it with known statistical techniques.
Section III provides information to help choose the right
parameters for this technique. The last section provides other
examples where we used this technique, as well as a discussion
of the future work.

II. PEAK ANALYSIS

In order to build an approach for identifying lagged effect,
an example for which the actual effect could be found in some
other way was needed, to confirm its correctness. The
following metrics were thus chosen for an initial analysis:
number of bugs opened vs. number of bugs closed at each
week during software evolution. There should be a lagged
effect between them, as many of the open bugs eventually get
closed.

We collected such data on JEdit, a Source-Forge project,
over a period of 119 weeks. There were 229 bugs found during
that period. We also extracted information on when each bug
was opened and closed, and the duration between these two
events. The distribution of these durations is clearly
exponential: 50% of the bugs were fixed within the same week,
10% of them were fixed a week later, 10% of them fixed 2 to 4
weeks later, 10% between 5 and 10 weeks later, and the rest
taking more than 10 weeks to be fixed, up to a maximum of 85
weeks.

We first checked our claim that other statistical techniques
were not producing valuable results in our situation, by
applying them to our data. The best model that could be built
was the following (p-value = 0.000):

 close(t) = 0.173 + 0.596 open(t) + 0.331 open(t-10). 

Although the p-value was small, we had indications that the
model was not good for prediction purposes: the R2 value was
only 39% (i.e., only 39% of the variation could be
explained by the model), and the residuals were not
normally distributed. This is not surprising, considering
that only 50% of the bugs have a duration of 0, and less
than 1% have a duration of 10. The reason for the
difficulty in building a model is due to the fact that
development happens in burst, and that the average
duration (or lag) is changing over time. Our proposed
approach is meant to overcome this issue.

The main idea behind our peak analysis technique is
that if there is a lagged effect between two time series,
peaks in one time series should match peaks in the other
time series, with the lag being the time distance between
the corresponding peaks. A peak here is defined as a
time interval for which the value of the metric is
significantly above its average value.

The first step in our proposed technique is to identify
independently the peaks in the two time series. One key
point in the definition of peak is the fact that we have to
compare data with some average. However, one cannot
assume that such average will stay the same over a long
period of time. For example here, since development
typically occurs in bursts, peaks during those bursts are
expected to be higher than the peaks occurring during a

period of low activity. Still, we are interested in all peaks, not
only the ones during bursts. Some kind of local average is thus
needed. In statistics, this is handled through the concept of
“moving average” [3]: a new time series is constructed using
values corresponding to the average of a given number of
consecutive values from the original time series. For example,
assuming that we have a time series x, a new time series z
corresponding to a moving average of 5 (later referred to as
“MA5”) is composed of the following values:

 z(t) = (x(t-2)+x(t-1)+x(t)+x(t+1)+x(t+2))/5 

for all t=3 to n-2 (n being the length of the time series x). For
the values that cannot be calculated (i.e., at times t = 1, 2, n-1,
and n), one can pad with the closest value that can be
calculated (i.e., set z(1) and z(2) to the value of z(3), and set
z(n-1) and z(n) to the value of z(n-2)).

For peak identification, we actually build two new time
series through moving averages: one to smooth the data, to be
able to see a trend, and one to represent the local average. For
our example here, we used an MA5 to smooth the data, and an
MA49 (i.e., moving average where datapoints from t-24 to
t+24 are averaged) for the local average. Padding is used to
ensure that we have the same number of datapoints for the
MA5 and the MA49. Figure 1 shows a plot of these moving
averages for the count of opened bugs every week, and Figure
2 shows the one for the counts of closed bugs. Note that for
space reasons, we show only an excerpt for weeks 30 to 90.
Peaks are clearly appearing, as the intervals when the MA5 line
is clearly above the MA49 line. In a more formal way, an
interval is a peak only if it goes significantly above the MA49
line in at least one of its points. We use the standard deviation
of the MA49 dataset as the threshold for being considered
“significantly above the MA49”.

513

TABLE I. LOCATION AND SIZE OF PEAKS

Opened bugs Closed bugs

ID interval size ID interval size

O1 33--40 12.2 C1 34--38 5.22

O2 43--48 5.98 C2 43--49 11.56

O3 60--75 7.7 C3 54--57 1.88

O4 84--89 5.56 C4 65--77 6.68

 C5 85--89 4.02

Table I lists those peaks, with their time interval and their

size. The size is calculated as the sum of the differences
between the MA5 and the MA49, for all points in the interval.
Note that in the case where two peaks are separated by only
one data point falling slightly below the MA49 (by less than
the standard deviation on the MA49 dataset), those two peaks
are merged into one. The third peak for open bugs is such a
merged peak, covering from time 60 to 75, in spite of a dip at
time 66.

The second step of our approach is to match the identified
peaks in the two time series. The idea is to match peaks of
similar size sequentially, trying to match as many peaks as
possible. The matches have to be valid though: the start time of
the close peak should be no earlier than the start time of the
matched open peak, and same for the end times. In our
example, the best set of matches is as follows: C1 unmatched,
O1 matched to C2, O2 matched with C3, O3 matched to C4,
and O4 matched to C5.

We evaluate how good the set of matches is by calculating
the Pearson correlation between the corresponding sizes. When
a peak is unmatched (e.g., C1 here), we associate it with a peak
of size zero. In the example above, the correlation between the
vectors [0.0, 12.2, 5.98, 7.7, 5.56] and [5.22, 11.56, 1.88, 6.68,
4.02] is 0.65. This is the best possible correlation for the data
above. The algorithm for finding such best set of matches
builds all possible sets using a backtracking approach, where
the following conditions apply: for all peak Oi matched to a
peak Cj, (a) each open peak earlier than Oi is either not
matched or matched to a close peak earlier than Cj, and (b)
each open peak later than Oi is either not matched or matched
to a close peak later than Cj. For each possible set of matches,
the correlations is calculated, and the set corresponding to the
best correlation is kept.

In the best set of matches identified above, one can see that
many of the matched peaks are very close in size (i.e., O1—C2,
O3—C4, and O4—C5). However, the peak C1 is quite large
for an unmatched peak, and the matched peaks O2—C3 are
very different in size. This is why the correlation is quite weak.
Looking at the graphs again (Figures 1 and 2) and the sizes of
the peaks in Table I, one can see that the peak C1 could

actually be somewhat covered by the peak O1, with the
remaining of O1 covered by C2 (C2 is large enough to cover
both O2 and part of O1). In order to spot these possibilities, the
algorithm above can be repeated using half peaks rather than
full peaks, in trying to identify the best matches: each peak is
cut in half, and considered as its own separate peak, cutting in
half the original interval and size. The correlation is still done
using the full open peaks though, adding the corresponding half
peaks when possible. Table II shows the results for the half-
peak analysis. Corresponding peaks are the ones on the same
row in the table. The correlation in this case is really high at
0.969 (between the vectors [0.0, 12.2, 5.98, 0.0, 7.7, 5.56] and
[5.22/2, 5.22/2+11.56/2, 11.56/2, 1.88, 6.68, 4.02]).

We also tried to see if we could detect that one variable
does not have an effect on the other. In the case here, we would
not expect the count of close bugs to lead to a later effect on the
count of open bugs, as very few of the close bugs get re-
opened. So we ran our algorithm again, reversing the two time
series. In this case, the best correlation was only 0.27 (for the
whole 119 weeks of the example, not just the excerpt presented
here). The half-peak analysis could improve this to 0.75, but
this is still too low to be considered a true effect.

The obvious question now is: does this correspond to what
is actually going on with the bugs in those time intervals? The
answer is yes. For all of the peaks O2 to O4, between 70% and
82% of the bugs were closed within the interval of their
matched peak. In the case of the peak O1, 43% of its bugs were
associated to C1, while 23% of them were associated with C2.

We also looked at the average durations of the bugs (i.e.,
number of weeks between the time they are opened and the
time they are closed) within each of the open peaks. These
were 9.07, 10.65, 3.88, and 2.41 for peaks O1 to O4
respectively. This seems in line with our initial findings: peak
O1 has a much higher average duration due to its match to a
peak that is at a distance of 9 to 10 weeks. It still contains a
large percentage of bugs fixed almost immediately (i.e.,
duration of 0 or 1). The peak O3 is matched to a peak that is at
a distance of 2 to 5 weeks, matching its average duration. The
average duration for the peak O4 is slightly larger than its
distance to its matched peak, but this peak does contain a much
larger percentage of bugs fixed immediately than the entire set
of bugs (71% vs. 51%). For the peak O2, its average duration
does not seem to match its distance to its matched peak. This is
due to the fact that it contains a much larger percentage of bugs
that are fixed within a very long time frame, with a large spread
in duration. Actually, we could have seen the problem in the
first place in our analysis, if we had considered the second best
set of matches: if we match O2 to both C2 and C3, the
correlation is still really high at 0.953. And, the distance
between peaks O2 and C3 is approximately 10, which does
correspond to the average duration.

As one can see, such an analysis can show how the
distribution of bug durations changed over time. Using such
information, one could try to identify what exactly happened at
those times to cause such differences (e.g., perhaps the kind of
maintenance – corrective vs. perfective – was different). We
did not have enough knowledge of this particular software
evolution (of JEdit) to perform such investigation.

TABLE II. MATCHED PEAKS AND HALF-PEAKS

Opened bugs Closed bugs

ID interval size ID interval size

 C1 34--38 5.22

O1 33--40 12.2

C2 43--49 11.56

O2 43--48 5.98

 C3 54--57 1.88

O3 60--75 7.7 C4 65--77 6.68

O4 84--89 5.56 C5 85--89 4.02

514

III. CHOICE OF VALUES FOR MOVING AVERAGES

In the technique as presented above, two moving averages
are used (one to smooth the data and one to act as a local
average) for identifying peaks. In the example provided,
moving averages of 5 and 49 were used. Other numbers can be
used as well, depending on what exactly one would like to find
out.

The analysis of changes in the lagged effect over time (as
mostly performed above) does not help identify the general lag
in the overall effect. Increasing the size of the moving average
used can help with this. For example, using the context and
data above but a moving average of 9 rather than 5, we get 3
peaks that are matched to 3 other peaks of roughly the same
size. The apparent lag in this case is between 0 and 3, which
corresponds to the duration of 70% of the bugs. By doing this
tough, we lose the possibility of identifying the times when
such lag was different. On the other hand, if we want to be
even more specific in the lags and the differences at particular
times, a smaller moving average (e.g., MA3) can be used.

By increasing the size of the moving average, the length of
the intervals for the peaks found increases, and the number of
such peaks is reduced. Then, when a match is found, the peaks
tend to be of more similar sizes. However, because of the
longer interval, there could be more bugs that have a much
higher duration than what would be seen when looking at the
distance between the matched peaks. For example, if matched
peaks are located in the interval [30..45] and [31..46], although
the apparent delay is just 1, there could still be many bugs with
a much higher duration (e.g., a bug being opened at time 30 but
closed at time 45).

For the size of the moving average used as the local average
(e.g., the MA49 used in the previous section), our experience
shows that an appropriate number should be 5 to 10 times
larger than the moving average used to smooth the data.

IV. VALIDATION AND DISCUSSIONS

In Section II above, we have shown how our technique
works on a subset of the data we had from the open source
software JEdit. It should be noted that the technique was
successful for the entire 119 weeks of data that we had, which
included an extra matched peak prior to week 30, and an extra
matched peak after week 90 (not displayed above).

We validated our technique on a second open source
system: MinGW (another SourceForge project). We extracted
the same kind of data as described in Section II above, over a
period of 175 weeks. There were 203 bugs found during that
period. Through our technique (using an MA5 vs. an MA49 as
described above), we could identify 11 peaks for opened bugs
and 11 peaks for closed bugs. Those peaks were very diverse,
with interval lengths ranging from 2 to 14 weeks, and with
sizes ranging from 0.2 to 9.5. The duration of the bugs was
somewhat longer than the ones found in JEdit, with the
following distribution: 27% of the bugs were fixed within the
same week, 26% of them were fixed a week later, 13% of them
fixed 2 to 4 weeks later, 14% between 5 and 10 weeks later,
and the rest taking more than 10 weeks to be fixed, up to a
maximum of 123 weeks. We successfully matched the related

peaks with a correlation of 0.84 (0.90 when improving it using
half-peaks). In almost all cases, the majority of the bugs (62%
to 100%) opened within a given peak were closed within the
matching peak. There was one exception, but this was with a
relatively small peak, matched to a much larger peak (i.e., with
very different sizes).

From that system (MinGW), we also analyzed the time lag
between the number of commits per week and the number of
opened bugs per week (i.e., how long does it take in general to
find bugs after modifications are made). We saw that such lag
was approximately 8 to 9 weeks, with one exception where the
lag was only 3 to 5 weeks. That time corresponded with an
increase in new features developed. Such kind of information
can be useful in planning when there will be an increase in
demand for fixing bugs.

We also used our technique to confirm previous results in
another (unrelated) project, where we have shown that making
many highly-dispersed changes in a file was increasing the risk
of finding a bug in that file within three months after the
change [4]. This previous work was looking at individual files
going through a sudden burst of changes, characterizing those
changes and predicting the bugginess of the file based on
similarities with past cases. Here, we looked at the proportion
of the file commits performed every week, for all files rather
than individual files, that were implementing highly-dispersed
changes. We compared this with the number of bugs detected
every week. And indeed, the peaks in these two time series
were matching, with a typical lag between 2 and 7 weeks. This
confirmed our previous results, with even more precise
information about the lag. We repeated the work on other types
of changes (e.g., small local change, massive local change), but
we could not see a match in the peaks. This supported our
previous findings too, that other types of changes were either
not affecting the bugginess of the file, or were affecting it only
when the file was large. Not only did we confirm previous
results here, but such analysis could help building a better bug
predictor.

As future work, further validation is clearly required. At
this point, we tried our approach on bug data for only two
systems: JEdit and MinGW. We need to try it out on more
(various) systems, over a longer period of time, and on other
kinds of metrics that could be analyzed this way. Improvement
to the underlying algorithm is also necessary in order to make it
more efficient, and practical for larger inputs. Finally, we are
interested in applying this kind of technique to areas other than
software engineering.

REFERENCES

[1] M. D’Ambros, M. Lanza, R. Robbes, “An Extensive Comparison of Bug
Prediction Approaches”, Proc. of the 7th IEEE Working Conf. on
Mining Software Repositories, Cape Town, South Africa, May 2010, pp.
31-41.

[2] C.W.J. Granger, “Testing for causality: A personal viewpoint”, Journal
of Economic Dynamics and Control, vol. 2, pp. 329-352, 1980.

[3] D.C. Montgomery, C.L. Jennings, and M. Kulahci, Introduction to Time
Series Analysis and Forecasting, Wiley, 2007.

[4] J. Tassé, “Using code change types in an analogy-based classifier for
short-term defect prediction”, 9th Int. Conf. on Predictive Models in
Software Engineering, Article No. 5, Baltimore, Maryland, Oct. 2013.

515

Integration of Software Measurement Supporting Tools:

A Mapping Study

Vinícius Soares Fonseca Monalessa Perini Barcellos Ricardo de Almeida Falbo

Ontology and Conceptual Modeling Research Group (NEMO)

Computer Science Department, Federal University of Espírito Santo

Vitória, ES, Brazil

{vsfonseca, monalessa, falbo}@inf.ufes.br

Abstract - During software projects, it is necessary to collect, store

and analyze data to support decision making at project and

organizational levels. Software measurement is a key practice to

process quality improvement and project management. Given the

nature of measurement activities, supporting tools are essential.

Different tools can be combined to support the measurement

process and provide the necessary information for decision

making. However, usually these tools are developed by different

developers, at different points in time and without concern for

integration. As a result, organizations have to deal with

integration issues to allow tools communication and properly

support the measurement process. This paper presents a study

investigating in the literature initiatives involving tools

integration to support software measurement. As a result, twelve

proposals were analyzed and their characteristics are presented.

Keywords - Software measurement; software measurement

process; software measurement tools; integration; interoperability;

systematic mapping

I. INTRODUCTION

Organizations use software measurement in several
contexts. For example, in project management, measurement
helps to develop realistic plans, monitor progress, identify
problems and justify decisions [1]. In process improvement,
measurement supports analyzing process behavior, identifying
needs for improvement and predicting if processes will be able
to achieve the established goals [2]. For this, data related to
software processes, such as project management and testing
processes, must be collected and analyzed.

Typically, organizations use different tools to support
different processes, such as supporting tools for project
management, requirements management, testing and bug
tracking. Although, in general, these tools are not conceived
aiming at supporting software measurement, many times they
support collecting and storing useful data related to those
processes (e.g., number of detected defects, time spent on
activities, number of lines of code, etc.).

In order to properly support the software measurement
process, providing consistent data to generate useful
information, tools should be integrated. However, integration is
a complex task. In general, each tool runs independently and
implements its own data and behavioral models, which are not
shared between different tools, leading to several conflicts [3].

(DOI reference number: 10.18293/SEKE2015-058)

Considering this scenario, we investigated the literature
looking for initiatives involving tools integration to support
software measurement. Aiming to reduce bias and ensure the
study repeatability, the investigation was conducted as a
systematic mapping. According to [4], a systematic mapping
makes a broad study in a topic of a specific theme and aims to
identify available evidence about that topic.

This paper is organized as follows: Section II briefly
discusses software measurement and integration; Section III
presents the research protocol used to guide the study; Section
IV describes the obtained results; Section V discusses the
results; and Section VI presents our final considerations.

II. BACKGROUND

A. Software Measurement

Software measurement (SM) is a primary support process
for managing projects. It is also a key discipline in evaluating
the quality of software products and the performance and
capability of software processes. The software measurement
process includes: measurement planning, measurement
execution, and measurement evaluation [5].

For performing software measurement, initially, an
organization must plan it. Based on its goals, the organization
has to define which entities (processes, products and so on) are
to be considered for software measurement and which of their
properties (size, cost, time, etc.) are to be measured. The
organization has also to define which measures are to be used
to quantify those properties. For each measure, an operational
definition should be specified, indicating, among others, how
the measure must be collected and analyzed. Once planned,
measurement can start. Measurement execution involves
collecting data for the defined measures, storing and analyzing
them. The data analysis provides information to decision
making, supporting the identification of appropriate actions.
Finally, the measurement process and its products should be
evaluated in order to identify potential improvements [6].

B. Integration and Interoperability

Integration and interoperability are very related notions.
Integration can be defined as the act of incorporating
components into a complete set, conferring it some expected
properties and creating synergy [3]. Interoperability, in turn,
can be understood as the ability of applications or application
components to exchange data and services [7]. Due to their

516

interrelation, these terms are often used in an indistinct way [8].
In this paper, the term integration is adopted with a wider
sense, covering both integration and interoperability meaning.

Izza [3] synthesizes integration approaches through four

main dimensions: scope, which distinguishes between intra-

and inter-enterprise integration; viewpoint, considering user,

designer, and programmer views; layer, referring to data,

service/message, and process integration; and level, which

considers hardware, platform, syntactical, and semantic

integration. For this paper, the two last dimensions are

particularly relevant. Regarding integration layers, data

integration deals with moving data between multiple data

stores. Integration at this layer assumes bypassing the

application logic and manipulating data directly in the

database, through its native interface. Service/message

integration addresses messages exchange between the

integrated applications. Process integration views enterprises

as a set of interrelated processes and it is responsible for

handling message flows, implementing rules and defining the

overall process execution. With respect to integration levels,

syntactical integration encompasses the way data model and

operation signatures are written down, while semantic

integration encompasses the intended meaning of the concepts

in a data schema or operation signature [3].

Challenges in applications integration arise, among others,
from the fact that heterogeneous applications employ different
data and behavioral models, leading to semantic conflicts.
These conflicts occur whenever applications are built with
different conceptualizations, which can impact the integration
of data, services, and processes [8].

III. THE RESEARCH PROTOCOL

The study was performed following the approach defined in
[4]. According to this approach, a systematic mapping
involves: planning, when the research protocol
 is defined; conducting, when the protocol is executed and data

are extracted, analyzed and recorded; and reporting, when the
results are recorded and made available to potential interested
parties. In this section we present the main parts of the research
protocol used to perform the study.

Research Questions: the goal of this mapping study is to

depict a general view of the current status of the research

regarding tools integration to support software measurement.

Table I presents the research questions that this mapping study

aims to answer, as well as the rationale for considering them.

Search String: the search string was developed considering

three groups of terms that were joined with the operator AND.

The first group includes terms related to integration and

interoperability. The second group includes terms related to

software measurement. The third group includes terms related

to tools and applications. Within the groups, we used the OR

operator to allow synonyms. The following search string was

used: ("integration" OR "integrated "OR "interoperability" OR

"interoperable") AND ("software measurement" OR "software

process measurement" OR "software project measurement"

OR "software engineering measurement" OR "software

product measurement") AND ("tool" OR "application" OR

"system" OR "framework" OR "suite" OR "toolkit").

For establishing this search string, we performed some

tests using different terms, logical connectors, and

combinations among them. More restrictive strings excluded

some important publications identified during the informal

literature review that preceded the systematic mapping. These

publications were used as control publications, meaning that

the search string should be able to retrieve them. We decided

to use a comprehensive string that provided better results in

terms of number and relevance of the selected publications,

even thought it had selected many publications that had to be

eliminated in subsequent steps.

TABLE I. RESEARCH QUESTIONS

ID Question Rationale

RQ1

When and in which type of vehicle

(journal / scientific event) have the

publications been published?

Give an understanding on when and where the selected publications have been published.

RQ2 Which types of research have been done?

Identify the research type according to the classification defined by Wieringa et al. [9]: Evaluation

Research; Proposal of Solution; Validation Research; Philosophical Paper; Opinion Paper; and

Personal Experience Paper.

RQ3
Which types of tools have been

integrated for supporting SM?

Identify the types of the integrated tools (e.g., project management tool, issue tracking tool, etc.)

and verify whether a type is used in more than one proposal.

RQ4
Have the integrated tools been developed

by the same group or organization?

Verify whether or not the initiatives have been integrating tools developed by the same group or
organization. The purpose is to analyze if there is a trend in using tools developed by the same or

by different groups.

RQ5

Which SM process activities

(measurement planning, data collection,

and data analysis) are supported by the
integrated set of tools?

Identify which measurement activities are being supported by the initiatives, in order to evaluate

the coverage of the resulting set of integrated tools. The activities considered are the two first

activities established in [5] (measurement planning and measurement execution). Moreover,

measurement execution was split for allowing us to verify if the tools support both data collection

(which involves data collection itself and data storage) and data analysis, or only one of them.

RQ6
Which categories of measures are

addressed by the proposal?

Identify which categories of measures (e.g., code measures, tests measures, etc.) have been

considered, allowing us to analyze how specific or comprehensive is the measurement scope.

RQ7
In which layers (data, message/service or

process) does the integration occur?

Identify the layers in which the integration is performed, considering the layers defined in [3].

The purpose is to analyze in which layer the integration initiatives have been focused on.

RQ8
In which level (syntactical or semantic)

does the integration occur?

Identify the levels in which the integration is performed, considering the levels defined in [3]. The

purpose is to analyze in which level the integration initiatives have been focused on.

RQ9

Does the proposal support measurement

in the context of maturity models or

standards? If so, which ones?

Identify which proposals support measurement in the context of maturity models (e.g., CMMI) or

standards (e.g., ISO/IEC 9001), allowing us to verify whether supporting maturity models and

standards has been a concern in SM tools integration initiatives.

517

Sources: the following six electronic databases were searched:
IEEE Xplore (http://ieeexplore.ieee.org), ACM Digital Library

(http://dl.acm.org), Springer Link (http://www.springerlink.com),

Scopus (http://www.scopus.com), Science Direct

(http://www.sciencedirect.com), and Engineering Village

(http://www.engineeringvillage.com). They were selected based

on other systematic reviews in the Software Engineering area.

Publication Selection: selection was performed in five steps:

Step 1 (S1) - Preliminary selection and cataloging: the search

string was applied in the search mechanisms of the selected

sources. Publication type was limited to papers from the

Computer Science and Engineering area.

Step 2 (S2) – Duplicates Removal: studies indexed by more

than one digital library were identified and the duplications

were removed.

Step 3 (S3) – Selection of Relevant Publications – First Filter:

selecting publications by applying a search string does not

ensure that all selected publications are relevant, because such

selection is restricted to syntactic aspects. Thus, the title,

abstract and keywords of the selected publications were

analyzed considering the following inclusion (IC) and

exclusion (EC) selection criteria: (IC1) the publication

presents information regarding integration among tools,

applications or systems that support software measurement;

(EC1) the publication does not have an abstract; (EC2) the

publication is published as an abstract; and (EC3) the

publication is not a primary study.

Step 4 (S4) - Selection of Relevant Publications – Second

Filter: the full text of the publications selected in S3 was read

with the purpose of identifying the ones that provide useful

information. Thereby, the inclusion criterion IC1 was

considered and also the following exclusion criteria: (EC4) the

publication is not written in English; (EC5) the publication full

text is not available; and (EC6) the publication is a copy or an

older version of an already considered publication.

Step 5 (S5) - Snowballing: as suggested in [4], the references

of publications selected in the study must be analyzed and, if

some of them seems to present evidence related to the research

topic, it should be assessed by the selection criteria and

included in the study. Thus, in this step, references of the

publications selected in S4 were investigated by applying the

first and second filters.

IV. RESULTS

The systematic mapping considers publications until

December 31
st

2014. As a result of S1, 948 publications were

obtained (357 from IEEE Xplore, 90 from Scopus, 257 from

ACM, 8 from Science Direct, 49 from Engineering Village

and 187 from Springer Link). After S2, 85 duplications were

eliminated, achieving 863 publications. After S3, only 24

studies were selected (a reduction of approximately 97%).

After S4, we achieved 8 studies. Applying snowballing (S5), 4

publications were added, reaching a total of 12 publications.

Table II presents a brief description of each proposal.

Following, we present the main results obtained for each

research question.

Publications source and year (RQ1): as Table II shows, the

first study was published in 1988. Some studies were

published since then, but research in the area has not been

stable and presents two gaps (one between 1989 and 1996, and

another between 2004 and 2009). Since 2010, it seems to be a

more continuous research in the topic, with at least one work

published per year. Most studies were published in scientific

events (7) instead of journals (5).

Research type (RQ2): all the analyzed studies include

proposals of solution. Studies [11], [12], [13], [14], [15], [19],

[20] and [21] are also categorized as evaluation research,

since they have been applied into a production environment in

at least one organization. Studies [10], [16] and [18] are also

considered validation research due to the use of a prototype or

experiment to evaluate the proposal.

Integrated Tools (RQ3, RQ4): Table III presents the types of

the tools being integrated in each proposal. Except [10], in

which it was not possible to identify whether the tools were

developed by the same group or not, all proposals integrated

tools developed by different groups.

Measurement activities and Measures (RQ5, RQ6): only four

proposals ([10], [12], [13] and [20]) address Measurement

Planning. Data Collection and Data Analysis, in turn, are

addressed by all proposals. Table III presents the categories of

the measures addressed by the proposals.

Integration layers (RQ7): seven proposals ([12], [13], [14],

[15], [18], [20] and [21]) address integration only in data

layer; four proposals ([10], [16], [17], and [19]) address

integration only in the message layer; and one proposal ([11])

addresses integration in both data and message layers. None

of the proposals address the process layer.

Semantic aspects (RQ8): only [16] addresses integration in

the semantic level; the others address integration in the

syntactical level. In [16], Ghezzi and Gall use ontologies

implemented in OWL to define and represent the data

consumed and produced by the services of the integrated tools.

Maturity Models/Standards (RQ9): only two studies mention

maturity models/standards and both of them refer to CMMI

[22]. [15] uses CMMI measurement practices to define the

measurement program supported by the proposed framework.

[20] was conducted at a CMMI Level 3 organization.

518

TABLE II. PROPOSALS INVOLVING TOOLS INTEGRATION FOR SUPPORTING SOFTWARE MEASUREMENT

Proposal Year/Vehicle Description

TAME

[10]

1988

Journal

TAME (Tailoring A Measurement Environment) system is an Integrated Software Engineering Environment that is composed

by several components. TAME integrates three measurement tools that capture data from Ada source and generate measures.

Tool support

for SM

[11]

1997

Journal

This approach uses a set of integrated tools in order to support software measurement and quality improvement. A tool that

supports tree-modeling analysis (S-PLUS) is the central analysis tool. Other tools are used for data gathering, analysis, and

result presentation. The tools are connected to S-PLUS, either as an information consumer or as information providers. The

integration is achieved through the adoption of external rules for data contents and formats (to ensure tools interoperability), the

usage of common tools for multiple purposes, and the usage of utility programs that convert data for tools interoperability.

GQM tool

[12]

2000

Journal

GQM tool supports measures definition, data collection, analysis, and feedback. It has interface with a configuration

management system and other measurement tools. The integration with the configuration management system is performed

through a data link between their relational databases. The integration with the other measurement tools is done by developing

an XML translator for each tool, allowing the translation of the native data format to XML format.

MetriFlame

[13]

2001

Symposium

MetriFlame is a measurement automation tool based on GQM that uses existing data recorded during software development

process. It has components for collecting and converting measurement data from various tools, spreadsheets and databases. In

the paper, the components are not detailed and no further information about integration is given.

A Decision

Support

System [14]

2003

Workshop

The Decision Support System was developed at IBM for tracking and using software measures aiming to enable executives to

make better informed decisions in supporting their products. It captures (from different host systems) data regarding customer

support, critical situations and customer satisfaction and integrates these data into a data warehouse.

SM in a CI

Environment

[15]

2010

Conference

It uses a Continuous Integration (CI)1 engine in order to automate measurement data extraction. It follows CMMI Measurement

and Analysis process area practices and GQ(I)M concepts for selecting relevant measures. Data collection is done by several

tools. After extraction, data are consolidated in a XML file that is stored into a relational database until an ETL (Extract,

Transform, and Load) process run and load data into a data warehouse. An OLAP tool is used to analyze data.

SOFAS

[16]

2011

Conference

SOFAS is a platform that offers software analysis services to allow for interoperability among analysis tools. It is made up of

three main constituents: Software Analysis Web Services, which provides a catalogue of services for data analysis; a Software

Analysis Broker, acting as the services manager and the interface between the services and the users; and Software Analysis

Ontologies, which defines and represents the data consumed and produced by the different services.

Dione

[17]

2012

Symposium

Dione is a Java web application whose majors functions are: i) build a measurement repository that contains product and

process measures as well as information about defected software components; ii) analyze trends in measures and issues using

chart and report configurations; and iii) construct and calibrate customized defect prediction models to predict defect proneness

of a software product version or release. It collects data from several tools and uses a smart client to connect with software

development artifacts and automatically extract measures. It also supports integration with other tools through web services.

QualitySpy

[18]

2012

Journal

QualitySpy is a framework for monitoring the software development process. It collects raw data from several integrated tools

as well as from the source code. The collected data and reports are available in a reporting module implemented as light web

client, which communicates with the server using Representational State Transfer (REST).

The 3C
Approach

[19]

2012

Workshop

The 3C Approach is an extension to the CI practice and addresses Continuous Measurement and Continuous Improvement as
subsequent activities to Continuous Integration. Several Java tools and a version control system were integrated into the CI

engine CruiseControl, allowing collection of measures related to source code and test coverage.

ASSIST

[20]

2013

Conference

ASSIST is an integrated tool developed by a CMMI level 3 organization. It adopts GQ(I)M approach and is connected with

commercial software suites for project management, issue tracking and enterprise resource planning. ASSIST uses a low-level

integration strategy based on SQL because all the tools involved depend on a relational database management system. It allows

automatic data collection from the integrated tools, data import from spreadsheets and manual data entry.

DePress

[21]

2014

Journal

DePress is an open source, extensible framework for software measurement and data integration which can be used for

prediction purposes (e.g., defect prediction, effort prediction) and software changes analysis (e.g., release notes, bug statistics).

It supports the integrated use (through KNIME Framework) of the issue tracking systems JIRA and Bugzilla, the software

configuration management systems SVN and GIT, and the measurement tools Judy, JaCoCo, EclipseMetrics, CheckStyle and

PMD.

TABLE III. TYPES OF INTEGRATED TOOLS AND CATEGORIES OF MEASURES ADDRESSED BY THE INTEGRATION INITIATIVES.

Pub. Types of the tools being integrated Measure categories

[10] Code Measurement, Tests code, size, test

[11]
Code Measurement, Tests, Configuration Management, Issue Tracking, Modeling,

Presentation/Reporting, Reverse Engineering

code, size, test, defects, changes, design, transactions

[12] Code Measurement, Configuration Management code, size, defects

[13]
Configuration Management, Project Management, Document Management, Databases,

Spreadsheets

it depends on the data available in the integrated tools,

databases and spreadsheets

[14] Customer Management, OLAP Tool problem, product quality, customer satisfaction

[15] Code Measurement, Tests, Continuous Integration, Build Automation, OLAP Tool code, size, test

[16] Code Measurement, Configuration Management, Issue Tracking code, size

[17] Code Measurement, Configuration Management, Issue Tracking, Presentation/Reporting code, size, defects

[18] Code Measurement, Configuration Management, Issue Tracking, Continuous Integration code

[19]
Code Measurement, Tests, Configuration Management, Continuous Integration, Build

Automation, Presentation/Reporting

code, size, test

[20] Issue tracking, Project management, Enterprise Resource Planning, Spreadsheets
code, size and other measures depending on the data

available in the integrated tools and spreadsheets

[21]
Code Measurement, Configuration Management, Issue Tracking, Presentation/Reporting,

Defect Prediction, Data Mining Tool, Security, Statistics, Spreadsheets

code, defects, time, issue

1
CI is a practice for continuous integration of new source code into the base code, including automated compile, build and running of tests [19].

519

V. DISCUSSION

This section provides some additional discussion about the

results presented in the previous section.

Concerning the measurement activities, we noticed that all

proposals that support Measurement Planning ([10], [12], [13]

and [20]) use GQM (Goal-Question-Metric) paradigm [23] or

one of its variations. GQM is based on the idea that

measurement should be goal-oriented, i.e., data must be

collected based on an explicitly documented rationale [12].

Thus, GQM addresses measurement planning by guiding

measures definition from established goals. Since GQM has

been successfully adopted in software measurement initiatives

for years, its usage by the proposals that address measurement

planning was expected.

All proposals support Data Collection and Data Analysis.

Regarding data collection, data are automatically captured by

the tools or input by using their interface. As for data analysis,

[11] supports the use of collected data to analyze software

reliability; [10], [12], [13], [17] and [19] allow to analyze

whether the established goals have been achieved; [14]

supports the analysis of customer satisfaction; and [17] and

[21] support analysis aiming at defect prediction.

With respect to the integrated tools, although we did not

list in this paper the tools involved in each proposal, they are

diverse. There are proposals integrating commercial tools (e.g.

[11], [13], [20]), open source tools (e.g. [15], [16], [18], [19],

[21]) and in-house developed tools (e.g. [10], [12], [20]). We

also noticed that some proposals focus specifically on

integrating existing tools (e.g. [11], [15], [16], [18], [19]),

while others address the development of a whole integrated

tool (e.g. [10], [20]). Moreover, we noticed that in some

initiatives ([11], [12], [13], [15], [16], [20], [21]) measurement

process support was the main motivation for integrating tools,

while in others ([10], [14], [17], [18], [19]) the measurement

support was achieved as a consequence of the tools

integration. For instance, in [18] tools are integrated to support

software development process monitoring and, as a

consequence of the integration, software measurement was

also supported. The variety of tools that can be used to support

measurement increases the relevance of integration in this

domain, because organizations could choose the tools that are

more suitable for their needs and work on their integration. .

Even though the integrated tools are diverse, it is possible

to notice a predominance of code-related tools. Code

Measurement, Issue Tracking, and Configuration Management

tools are integrated in several proposals (9, 7 and 6 proposals,

respectively). It might be a consequence of these types of tools

being prone to automatic collection of measures. Besides,

some of them depend on others to provide information. For

instance, since source code is usually stored in a Configuration

Management system, the presence of a Code Measurement

tool usually implies the presence of a Configuration

Management tool.

Considering that code-related tools were integrated in most

proposals, it was expected that code measures (e.g., cyclomatic

complexity, number of methods) would be addressed by most

proposals. 10 of the 12 studies address them. Taking the types

of integrated tools and measures into account, except [13] and

[20], which have a more comprehensive scope, the integration

initiatives usually address a specific measurement scope (e.g.

coding, customer support).

Analyzing the integration layers addressed, we noticed that

the proposals deal with data and message layer, while process

layer is not addressed. We believe this is due the fact that

process layer integration (commonly referred to as Business

Process Integration) constitutes the most complex integration

approach [3]. It views an enterprise/organization as a set of

interrelated business processes and not merely islands of

information, dealing with message flows, rules and process

execution. Message layer is addressed, but only by few

proposals. Message layer integration requires tool

communication by means of message exchange between the

tools. If the integrated tools are not able to communicate by

means of messages, integration in this layer demands extra

effort, especially if tools were not developed by the group

performing the integration (this is the case in most proposals).

In this sense, according to [20], a low level of integration is

preferred when integrating with commercial tools, because it

does not involve any code development or modification at the

commercial tools' side. All studies that integrate commercial

tools ([11], [12], [13], [20]) are limited to data integration.

As for semantic integration, only [16] considers semantic

aspects in the integration. Neglecting semantics during an

integration initiative is a serious issue, since many semantic

problems can occur, such as the ones called “false agreement”,

which are described in [28] and include: the use of equivalent

terms with different meaning; the use of equivalent terms with

partially equivalent meaning; the use of different terms with

equivalent meaning; and the use of different terms with a

certain degree of equivalence. For addressing these problems,

ontologies can be used to establish a common

conceptualization about the domain in order to support

communication and tools integration [24].

Since none of the proposals presented the method followed

to perform the integration, we concluded that they have used

ad-hoc approaches for integrating the tools. Not using a

systematic approach for performing the integration, despite the

existence of systematic approaches in the literature (e.g. [24],

[25], [26]), can be seen as a gap regarding methodological

aspects. Systematic approaches can structure the integration

process into different levels of abstractions and define

guidelines on how to perform the various integration activities.

This is essential for establishing an engineering approach for

application integration [27].

VI. FINAL CONSIDERATIONS

This paper presented the main results of a systematic

mapping about initiatives involving tools integration for

supporting software measurement. A total of 952 publications

520

were analyzed and 12 proposals involving tools integration for

supporting software measurement were found.

According to [29], a mapping study gives an idea of

shortcomings in existing evidence, which becomes a basis for

future studies. Therefore, the main objective of this mapping

was to analyze the proposals and provide a general view of the

current status of the research regarding tools integration for

supporting software measurement. Summarizing, the analyzed

proposals address measurement execution (data collection and

analysis), but most of them do not address measurement

planning. Integration in the data layer is most common,

although some proposals deal with integration in the message

layer. They predominantly integrate coding-related tools and

address code measures. Supporting maturity models/standards

have not been a concern. Finally, only one proposal considers

semantic aspects and, apparently, none of the proposals used a

systematic approach to perform integration.

This panorama reveals some gaps in the research regarding

tools integration for supporting software measurement. We can

highlight the following: (i) lack of concern with semantics; (ii)

limited coverage with respect to the measurement process or

the measure categories addressed by the integrated tool suite;

(iii) lack of alignment to quality-related standards and maturity

models; (iv) failure to consider a holist view of the (software)

process, leading to the absence of integration in the process

layer. Taking these gaps into account, we are now working on

an integration of measurement supporting tools following a

systematic approach aiming at overcoming these gaps.

ACKNOWLEDGMENT

This research is funded by the Brazilian Research Funding
Agency CNPq (Processes 485368/2013-7 and 461777/2014-2).

REFERENCES

[1] J. McGarry, D. Card, C. Jones, B. Layman, E. Clark, J. Dean, and F.
Hall, “Practical Software Measurement: Objective information for
decision makers," Addison Wesley, Boston, USA, 2002.

[2] W. A. Florac, A. D. Carleton, “Measuring the software process:
statistical process control for software process improvement,"Addison
Wesley, Boston, USA, 1999.

[3] S. Izza, “Integration of industrial information systems: from syntactic to
semantic integration approaches,” Enterp. Inf. Syst., vol. 3, no. 1, pp. 1–
57, Feb. 2009.

[4] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering," TR EBSE-2007-01, School
of Computer Science and Mathematics, Keele University, 2007.

[5] ISO/IEC 15939, “Systems and Software Engineering – Measurement
Process”, 2007.

[6] M. Barcellos, R. A. Falbo, and A. R. Rocha, “Establishing a well-
founded conceptualization about software measurement in high maturity
levels,” in Proc. of the 7th International Conference on the Quality of
Information and Communications Technology, 2010, pp. 467–472.

[7] P. Wegner, “Interoperability,” in ACM Computing Survey, 28 (1), 1996,
pp. 285–287.

[8] J. C. Nardi, R. A. Falbo, and J. P. A. Almeida, “A panorama of the
semantic EAI initiatives and the adoption of ontologies by these
initiatives,” in Proc. of the IWEI 2013, LNBIP 144, Lecture Notes in
Business Information Processing, 2013, pp. 198–211.

[9] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Requirements
engineering paper classification and evaluation criteria: a proposal and a
discussion,” Requir. Eng., vol. 11, no. 1, pp. 102–107, Nov. 2005.

[10] V. R. Basili and H. D. Rombach, “The TAME project: towards
improvement-oriented software environments,” IEEE Trans. Softw. Eng.,
vol. 14, no. 6, pp. 758–773, Jun. 1988.

[11] J. Tian, J. Troster, and J. Palma, “Tool support for software
measurement, analysis and improvement,” J. Syst. Softw., vol. 39, no. 2,
pp. 165–178, Nov. 1997.

[12] L. Lavazza, “Providing automated support for the GQM measurement
process,” IEEE Softw., vol. 17, no. 3, pp. 56–62, 2000.

[13] S. Komi-Sirvio, P. Parviainen, and J. Ronkainen, “Measurement
automation: methodological background and practical solutions a
multiple case study,” in Proc. of the 7th International Software Metrics
Symposium, 2001, pp. 306–316.

[14] S. Chulani, B. Ray, P. Santhanam, and R. Leszkowicz, “Metrics for
managing customer view of software quality,” in Proc. of the 5th
International Workshop on Enterprise Networking and Computing in
Healthcare Industry (IEEE Cat. No.03EX717), 2003, pp. 189–198.

[15] G. de S. P. Moreira, R. P. Mellado, D. A. Montini, L. A. V. Dias, and A.
M. da Cunha, “Software product measurement and analysis in a
continuous integration environment,” in Proc. of the 7th International
Conference on Information Technology: New Generations, 2010, pp.
1177–1182.

[16] G. Ghezzi, H. C. Gall, “SOFAS: A Lightweight Architecture for
Software Analysis as a Service,” in Proc. of the Ninth Working
IEEE/IFIP Conference on Software Architecture, 2011, pp. 93–102.

[17] B. Caglayan, A. T. Misirli, G. Calikli, A. Bener, T. Aytac, and B.
Turhan, “Dione: an integrated measurement and defect prediction
solution,” in Proc. of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering - FSE ’12, 2012, pp. 1–4.

[18] M. Jureczko, J. Magott, “QualitySpy: a framework for monitoring
software development processes,” in Journal of Theoretical and Applied
Computer Science, v. 6, n. 1, 2012, pp. 35–45.

[19] A. Janus, R. Dumke, A. Schmietendorf, and J. Jager, “The 3C approach
for agile quality assurance,” in Proc. of the 3rd International Workshop
on Emerging Trends in Software Metrics (WETSoM), 2012, pp. 9–13.

[20] B. Keser, T. Iyidogan, and B. Ozkan, “ASSIST: an integrated
measurement tool,” in Proc. of the Joint Conference of the 23rd
International Workshop on Software Measurement and the 8th
International Conference on Software Process and Product Measurement,
2013, pp. 237–242.

[21] L. Madeyski, and M. Majchrzak,“Software measurement and defect
prediction with DePress extensible framework”. Foundations of
Computing and Decision Sciences, v. 39, n. 4, 2014, p. 249–270.

[22] CMMI-DEV, “Improving processes for better products and services,” in
CMMI for Development, Version 1.3, CMU/SEI-2010-TR33, SEI,
Carnegie Mellon University, Pittsburgh, 2010.

[23] V. R. Basili, H. D. Rombach, and G. Caldiera, “Goal Question Metric
paradigm”, Encyclopedia of Software Engineering, 2 Volume Set, John
Wiley & Sons, Inc., 2004.

[24] R. F. Calhau and R. A. Falbo, “An ontology-based approach for
semantic integration,” in Proc. of the 14th IEEE International Enterprise
Distributed Object Computing Conference, 2010, pp. 111–120.

[25] C. Liu, J. Wang, Y. Wen, and Y. Han, “A unified data and service
integration approach for dynamic business collaboration,” in IEEE 1st
International Conference on Services Economics, 2012, pp. 54–61.

[26] W. J. Yan, P. S. Tan, and E. W. Lee, “A web services-enabled B2B
integration approach for SMEs,” in Proc. of the 6th IEEE International
Conference on Industrial Informatics, 2008, no. Indin, pp. 774–779.

[27] J. C. Nardi, R. A. Falbo, and J. P. A. Almeida, “Foundational ontologies
for semantic integration in EAI: a systematic literature review,” in I3E
2013, IFIP Advances in Information and Communication Technology,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 238-249.

[28] S. V.Pokraev, “Model-driven Semantic Integration of Service-Oriented
Applications,” PhD thesis, University of Twente, 2009.

[29] B. A. Kitchenham, D. Budgen, and O. P. Brereton, “Using mapping
studies as the basis for further research: a participant-observer case
study,” Journal of Information and Software Technology, 53, 2011, pp.
638-651.

521

Toward using Business Process Intelligence to

Support Incident Management Metrics Selection and

Service Improvement

Bianca Trinkenreich, Valdemar T. F. Confort, Gleison Santos, Flávia Maria Santoro

Department of Computing

Universidade Federal do Estado do Rio de Janeiro (UNIRIO)

Rio de Janeiro, RJ, Brazil

{bianca.trinkenreich, valdemar.confort, gleison.santos, flavia.santoro}@uniriotec.br

Abstract— Background: Businesses are increasingly dependent

on IT services, and providers need to deliver fast, with high

quality and low cost. An incident is an event that can lead to loss

or disruption of services. Incident management reinstates normal

service operation as quickly as possible and mitigates negative

impact to business, ensuring agreed levels of service quality. So,

reduce resolution time is usually the most important goal for

incidents. Aims We aim to obtain knowledge about process and

identify adequate metrics for Incident Management to help

reduction of resolution time. Our research questions are: (i)

Which Incident Management sub-process is causing more impact

to resolution time? (ii) Which metrics can be used to measure this

sub-process? (iii) What actions can be taken to improve Incident

Management process in order to reduce impact of this sub-

process in resolution time? Method: We present a case study in a

global large company that considers reduction of incidents

resolution time as a goal. Results: By applying BPM, BPI and

Process Mining we were able to discover the underlined process

and a bottleneck for resolution time. Moreover, we proposed

metrics to improve process and service quality by applying

GQM+Strategies.

Keywords: Measurement, Metric, Incident Management, BPI,

Process Mining

I. INTRODUCTION

Service is about delivering value to customers by
facilitating results they want to achieve without taking costs
and risk ownership. Many organizations started to outsource IT
in order to build services capabilities to its products, being able
to provide faster and more accurate service to customers [22].

IT service management is a set of specialized
organizational capabilities for providing value to customers
through services. Its practice has been growing by adopting an
IT management service-oriented approach to support
applications, infrastructure and processes [10]. In software
engineering approach, while software development delivers a
product, software maintenance provides service to customers,
as it modifies a software system or component after delivery to
correct faults, improves performance or other attributes, or

adapts to a changed environment. Accepting software
maintenance as a service perspective, it should follow IT
service management and be developed and improved as a
service either [23].

Guidance on how to develop and improve IT service
maturity practices is a key factor to improve service
performance and customer satisfaction [8]. CMMI-SVC
(Forrester et al., 2010) model was created to attend this need
and it is based on traditional models like ITIL [10] and
international standards as ISO/IEC 20000 [11]. This model
requires the identification of appropriate metrics in order to
monitor the various processes executed for service delivering to
customers. Business Process Management (BPM) [1] is also
used to support processes improvement and governance
initiatives. BPM recognizes Information Technology (IT) as
one of its pillars [1] and has broad application in business
areas. We perceive convergence between both areas. However,
references of BPM techniques supporting CMMI-SVC are not
common. Having an adequate metrics selection is one of key
success for measurement initiatives. In BPM, Business Process
Intelligence (BPI) and Process Mining [4] provide solutions on
how to support knowledge management of a business process.
Furthermore, we can evaluate a process, verify which sub-
process is causing more impact to process results and also to
support selection of metrics associated to this sub-process,
using BPI techniques.

We had selected Incident Management process inspired by
Business Process Intelligence Challenge 2013 and 2014 [7],
recognizing that it produces a large amount of log data that can
drive knowing users’ needs and issues, being a process that is
also used for corrective software maintenance support, a
process that is mostly considered by service providers for
measurement initiatives [20], and the one that, when properly
used as a strategic asset [15], can help to provide answers about
the service quality [8]. Like that, we are also converging two
major fields: Quality of Service and IT Service Maturity
Models, and BPM and Process Mining.

This paper presents an approach to support Measurement
and Maturity Models on selection of Incident Management
metrics to attend organization goals by using BPM, BPI and (DOI reference number: 10.18293/SEKE2015-110)

522

Process Mining. Besides this introduction, in Section 2 we
present a theoretical framework, in Section 3 we present related
works, in Section 4 we present the case study and finally our
final considerations in Section 5.

II. 2 THEORETICAL FRAMEWORK

A. IT Service Quality, Maturity Models and Measurement

A service is an intangible and non-storable deliver customer
value way, making it easier to get results without needing to be
responsible for risks and costs associated with the work [8] [9].
Guidance on how to develop and improve service maturity is a
key factor for service provider performance and customer
satisfaction. In order to be able to offer quality, the supplier
must continually assess the way service is being provided and
what the customer expects. A customer will be unsatisfied with
IT service providers who occasionally exceed expectations but
at other times disappoint. Providing consistent quality is
important, but is also one of the most difficult aspects of
software and service industry [11].

Maturity models focus on improving organizations
processes due to the assumption that product or system quality
is highly influenced by the quality of process used to develop
and keep it. Through essential elements of effective processes
and an evolutionary path for improvement, maturity models
provide guidelines on how to design processes, as an
application of principles to meet the endless cycle of process
improvement [8].

CMMI-SVC [8] is a service maturity model based on
CMMI concepts and practices and other standards and service
models, such as ITIL [10], COBIT [12], ISO/IEC 20000 [11],
and ITSCMM [13]. CMMI-SVC is composed of 24 process
areas and 5 maturity levels (from 2 to 5), and includes required
activities to create, deliver and manage services [8]. Maturity
levels are used as the obtained classification in assessments,
and also as a recommended evolutionary path for organizations
intending to improve their processes in order to provide better
services. Although CMMI-SVC is not intended to be used only
by IT firms, those organizations certainly can benefit of it.
Measurement is included since CMMI initial levels. Due to the
financial difficult to measure and control all existing processes,
selected measures must be aligned to organizational business
goals in order to provide effective information for decision
making. This choice is not trivial [9]. GQM paradigm (Goal
Question Metric) is generally used to select metrics to provide
expected visibility of the organization's strategic objectives.
Some criteria for selecting metrics are: relationships with
strategic objectives, coverage of lifelong service, availability
and objectivity frequency that data can be collected, changing
sensitivity, performance visibility and representation [8].

GQM+Strategies approach [21] is an extension of the
GQM, and takes strategies and KPIs as input for a model from
the business level down to project and operational levels and
back up. GQM+Strategies focuses on filling organizations
vertical gaps and help creation of objectives and strategies and
deriving metrics that are aligned with high-level business goals
and also providing a mechanism to monitor success and failure
of goals and strategies through measurement.

This approach has two core components: a process and a
model, and introduces the idea of having multi-level goals,
strategies, context, assumptions, and a broader interpretation
model. The process includes generating a grid that represents
the hierarchy of operational, strategies, measures and
interpretations models, planning, executing and evaluating
those strategies with recommendations for future
improvements. The model is called “grid”, which is a
comprehensive model with a notation to support organizations
on developing their operational and measureable business
goals, selecting strategies to implement them, providing
communication about those goals and strategies to stakeholders
of organization, and then deriving those goals into aligned sets
of other lower-level goals and strategies. Through the grid, all
parts of the organization can recognize their role on reaching
top level goals, how it can be measured and how results are
interpreted [21].

GQM+Strategies approach basic concepts are about
Organization goals (what organization wants to achieve to
reach its objectives), Strategies (how to achieve those goals),
Context Factors (external and internal environments),
Assumptions (unknown estimations) and GQM graphs (how to
measure if goal was reached and strategy was successful or
failed) [21].

B. Incident Management

According to ITIL [10], an incident is defined as an
unplanned interruption or quality reduction while providing IT
services. For example, a failure or hardware configuration that
has not yet impacted software or services is also considered
incident. Incident Management deals with all types of
incidents, including failures or questions made by users or
automatically detected by monitoring tools.

Incidents are events that, if not addressed, can eventually
cause the supplier to fail in meeting its service level agreement
(SLA) [8]. SLA is an agreement between service provider and
customer, describing the service that will be provided,
documenting service levels goals, and each involved part
responsibilities. A SLA failure can cause contractual penalties
to be applied [4]. Service Desk is the first support level, the
team that receives users requests and process according defined
flow, providing solution using knowledge articles information,
or when is not possible to solve the issue or attend the request,
assigning incident ticket for next levels support.

In CMMI-SVC [8], Incident Resolution and Prevention
(IRP) is the level 3 process area that handles incidents solution
and prevention through problems analyzing and treatment. IRP
activities include: identify, analyze, assign, monitor status and
progress, escalate if needed, and implement workarounds to
restore service, communicate progress, validate resolution with
stakeholders and analyze root cause of incidents.

Avoiding overflow within the SLA incident response is
usually one of the strategic goals of service providers who pay
penalty for noncompliance. Knowing the behavior patterns of
Incident Management process allows the identification of
which sub-processes are not performing well and needs to be
controlled and improved.

523

C. Process Intelligence

Business Process Intelligence (BPI) refers to the application
of Business Intelligence techniques (BI) to business processes
[2] [3]. Typically, data sources come from Business Process
Management Systems (BPMS) and Process-Aware of
Information Systems (PAIS). Recording business events that
occur during the execution of processes are called Event Logs.

Event log reveals important insights on how a process
actually works. Here we look at more specific BPI role,
identifying three major scenarios for application event log
usage: automatic process discovery, performance analysis and
verification of conformity [1]. The first is about the way
process is implemented in practice; the second provides a
discussion about operation cost and time and the third is to
verify if a set of rules is being followed. Process mining is an
enabling technology for CPM (Corporate Performance
Management), BPI (Business Process Intelligence), TQM
(Total Quality Management), Six Sigma and others [4].
However, mining processes from an event log is not a trivial
task. A processes mining project can be developed in five
stages [4]. Figure 1 reproduces this cycle.

In stage 0, project is justified and planned. In stage 1, event
data, models, objectives and questions are extracted. At this
point, a domain expert presence is important to define issues
and assist in data understanding. Stage 2 takes as input the
output of previous stage and focuses on producing an event log
and a control flow model connected to this event log. In this
phase, process discovery techniques can be applied. With a
relatively structured process, other perspectives (date, time,
resource) can be evaluated during stage 3. As a result of step 3,
a process model will be discovered and an event log will be
used to provide operational support. In stage 4, knowledge
extracted from previous stage is combined with running cases,
providing chance for interventions, predictions and
recommendations. We stand out that stages 3 and 4 can only be
achieved if the process is sufficiently stable and structured [4].

 Figure 1 - Life cycle showing a mining process project stages [4].

III. RELATED WORKS

The scope of this paper is applying BPI techniques to a real
incidents activities log in order to discover the Incident
Management process and select its sub-processes that are more
influencing results. This differs importantly from the field of
root cause analysis because we are not investigating why
incidents are occurring, but how long they take to be solved
and which activity is causing more impact and could further be
analyzed in order to improve incidents solving time.
Nevertheless, much of our related work comes from incidents
analysis and repairing. Following paragraphs show how our
investigation and exploratory study had been inspired by
methods and results from this area, even though no previous
work precisely shares our scope.

Franke et al. [16] use incidents logs from 1.800 incidents in
a large Nordic bank to find statistical distribution of IT service
time to recovery. Authors show that log-normal distribution
can help to understand what the best fit of IT service time to
recovery, predicting downtime and costs to be used by
organizations would be. This article does not use activities log
to find what sub-process is taking more time to happen and
impacting total process results and does not use Business
process intelligence (BPI) for analysis neither.

Both 2013 and 2014 International Business Process
Intelligence Challenges were about analyzing logs activities
through process mining [7]. 2013 edition was about Incidents
and Problems and 2014 edition was about finding correlation
between Changes and Incidents.

Ferreira and Rabuge [17] had presented a methodology to
apply business process analysis in a hospital emergency service
to identify regular behavior, process variants, and exceptional
medical cases. Ferreira and Silva [27] had presented another
case study to determine how far the current incident
management process is from the best practices described by
ITIL in order to draw requirements for the new system.
Although they also use process mining to extract the behavior
of the existing process, they do not use it to discover sub-
processes and which part is impacting the most the results in
order to support measures selections for IT services maturity
model. Also, they had used ProM tool [5], we had used Disco
tool [14].

We could also notice a growing body of knowledge about
case studies in different application domains regarding to
describe reverse engineering with process mining from event
logs. Mieke et al. [18] had analyzed procurement process to
understand about internal fraud risk reduction.

IV. CASE STUDY

A case study method is an exploratory research technique
used to highlight and explore aspects, which may guide
providing directions for the question. This method is relevant
for information system when researcher can study it in a real
environment, and allows answering ‘‘how’’ and ‘‘why’’
questions. Although this paper scope is measurement, which is
a quantitatively approach, a case study is commonly used as a
qualitative method for researching information systems [19].
The research process we had used is explained as follows.

524

A. Case Study Planning

In order to execute the case study, we followed a set of
stages depicted in Figure 2. Research questions that we aim to
answer are: (i) Which Incident Management sub-process is
causing more impact to resolution time? (ii) Which metrics can
be used to measure and control this sub-process? (iii) What
actions can be taken to improve Incident Management process
in order to reduce impact of this sub-process in resolution time?

Figure 2 - Case study stages

B. Case Study Execution

In first stage, we identified an organization to perform the
case study: Organization A is a large global organization
headquartered in Brazil. It operates in over 30 countries and
has offices, operations, exploration and joint ventures across
five continents. The case study was performed on its IT
services infrastructure department. One of the researchers that
conducted the case study works there on improving quality of
services and other researcher is a BPM and BPI specialist.

The IT Services Department provide IT services for all
other departments of the organization following ITIL library
practices [10], but it is not certified by any software or services
maturity model. Incident Manager was interviewed and
informed that he spends lots of effort to perform, analyze,
report and plan new metrics in order to attend organizational
goal of reducing incidents resolution time. Also, he had
mentioned that Organization A uses only three Incident
Management metrics, that indirectly should support attending
resolution time: “Incidents resolved within target” (number of
closed incident requests that were in accordance to service
level agreement time), “Service desk resolutions” (number of
incidents that were both registered and resolved by first level
support without the assistance from another team) and
“Incidents backlog” (number of not solved incidents).
However, he pointed out that only these metrics are not
effective and enough to provide results of reducing resolution
time.

We had initiated the second stage by extracting and
validating data availability through Organization A Incident
Management tool (HP Service Manager 9 – SM9). Our main
challenge was to understand SM9 format of event log data. Our
effort was reduced by having help from Incident Manager. We
had performed a preliminary evaluation to check if extracted
data was compatible with defined process mining tools selected
to use. Two tools were considered eligible as able to transform
activity history on default event log XES [6]: ProM [5] and

Disco [14]. We started using both tools in order to select the
most appropriated for considered scenario. We decided to use
data for one month (April 2014), due to the huge amount of
data, and one application (Intranet), because Incident Manager
reported that it is the application that concentrates larger
amount of incidents being opened by users.

Because there was no preconceived design process, we
conducted a first execution to discover Incident Management
process itself and answer some basic questions about it: how
many incidents were opened in a determined month, what are
the minimum, maximum and mean time closing an incident
and which possible flows an incident resolution can have.

ProM tool [5] could not recognize control flow with some
instances and this was the first issue found about it. Disco tool
[14] could discover control flow without removals or
adjustments to original data. Also, Disco tool abstracts its
algorithm for process detection, and it resulted in lower effort.
Because of those two difficulties about ProM tool, we had
chosen to continue with Disco tool.

In third stage we had filtered incidents selected period and
application, and started to prepare data. One incident has many
activities and events, representing incident lifecycle. Original
log file had 14.815 events. From those, there were 120 different
activities. After extraction, we had to perform some cleanup of
wrong entries that were not representing real activity names,
for example concatenating an activity name with an incident
number in same field. Possibly it was because some kind of
bug in SM9 extraction tool, but as they represented only 1% of
total, we removed and not considered entire incident registry
for those. So, we had excluded 1% of incidents from data
because of what we had considered bad data. After removing
them by using Disco tool [14] functionality to filter undesired
activities, we could get a process with 27 activities. Through
analysis of process variants, we found 507 different paths, from
993 total identified process instances. Although it answers one
of basic questions (which flows can an incident resolution
has?), at this point this high number of activities and transitions
did not allowed us to answer research question (i).

The control flow model identified by Disco tool [14] at this
point had a lot of activities and transitions. At this stage, we
used a Disco tool native functionality to aggregate some
activities and transitions. For example, there are flow cases that
go from activity A to activity B and then activity C. There are
also cases where activity A flows directly to activity C. Disco
tool does easily abstract these two types of cases making a
control flow that considers only transition from A to C.
Therefore, we can choose where to drill-down from a general
and major flow to a detailed one.

For this research, we considered the most regular flow
(with 5 steps) and used Disco statistics and performance
features to analyze amount of elapsed time of each transition,
in order to help us answering research question (i).

In fourth stage, we had used global statistics feature to
identify the amount of total events (11,203 events) and answer
basic questions: How many incidents were opened and what
are the minimum, maximum and mean time closing an
incident. Total of 993 incidents had been opened, with 5.5 days

525

of mean and 4.7 days of median to be solved. Minimum time to
close an incident was 22 minutes and maximum had lasted 36
days. Even though, as we have shown that most cases had been
solved with only 5 activities (Figure 3), this was considered a
standard for analysis. Based on this, we had simplified
incidents flow to a 5-steps process: Open, Assignment, Start
Work in Progress, Resolved and Closed.

Figure 3 - Graph from Disco tool [14]

Table 1 provides time performance analysis for each
transition of the considered 5-steps process. We can notice that
it is taking more for someone to take responsibility to solve the
incident (Open to Assessment) than to properly solve it (Work
in Progress to Resolved), answering research question (i)
“Which Incident Management sub-process is causing more
impact to resolution time?”

TABLE I. DURATION ANALYSIS FOR EACH TRANSITION

Transition Total

Duration

Max

Duration

Mean

Duration

Median

Duration

Open  Assignment 68,6 days 26,3 hours 109,3
minutes

51,5
minutes

Assignment  Work

in Progress

11,6 days 5,9 days 24,6

minutes

68,5

seconds

Work in Progress 
Resolved

13,5 days 22,4 hours 49,2
minutes

11,4
minutes

Resolved  Closed 111 months 4 days 3,8 days 4 days

In fifth stage we used GQM+Strategies [21] to align goals,
strategies, questions and metrics (Figure 4) in order to suggest
a measurement improvement for Organization A, and answer
research question (ii) “Which metrics can be used to measure
and control this sub-process?”. We have used root cause
analysis, found that Assignment is taking much time because
service desk commit assignment errors, taking longer to define
correct team to send incident, which happens because lack of
available, correct and updated information. Considered context
factor for GQM+Strategies was cost reduction scenario that
Organization A is facing. Considered assumptions for
GQM+Strategies was there is already human resources
available and with enough expertise to generate information
and update knowledge articles. New metrics suggested were:
“Time to Own” (number of minutes that an incident is taking to
be assigned to correct team), “Incident Assignment
Correctness" (percentage of incidents that were assigned to
correct team) and “Articles not updated” (number of times that
service desk cannot find required information to solve an
incident or assign to correct team).

In sixth stage we proposed process improvements for

“Open to Assignment” part of Incident Management process.
Knowledge articles used by first level support represent the
way that service desk team is able to solve incidents by itself
and also assign to proper higher support teams when cannot be
solved in first level. So, improve these artifacts is a way to
make first level capable of solving more incidents and also
reduce time and errors in Assignment phase, which is the
bottleneck for incident resolution time (and reducing is the
organization goal). Knowledge articles should contain direct,
simple and proper questions for a first level support analyst to
do when a user calls reporting an error or requesting a service.
Search mechanisms should provide easy finding of articles by
many key words.

Figure 4 - GQM+Strategies diagram proposed for Organization A

C. Results and discussion

We could recognize that Incident Management is a business
process as any other. Therefore, BPM lifecycle is able to assist
in its improvement, since the process identification and its
variations (according to criticality, for example) to its
monitoring & control and redesign.

First result was discovery of actual Incident Management
process by extracted data. From 5-steps process (Open,
Assignment, Work in Progress, Resolved and Closed) we had
taken statistics to measure time performance for each
transition, and answered research question (i). Transition
“Open to Assignment” was the bottleneck, the one causing
more impact to resolution time. After mining incident event
logs, we found that Organization A is taking, in average, more
than double time to assign proper support team than to actually
solve an incident. This shows also that stakeholder could
discard transition “Resolved to Closed”, that is, this transition
not critical as the majority of this transition was handled
automatically.

Incident Manager for Organization A had explained us that
first level support uses knowledge articles to understand what
is being requested by user and for what team should be
assigned to solve it. He had also informed that many times
there is no information, or information in not updated about
support teams for each service, and because of that, first level
support can commit assignment errors. Then we built a

526

GQM+Strategies grid to organize and propose strategies and
derive in questions, goals and metrics to be used by
Organizational A in order to have a better control of Incident
Management process and take proper actions to reach
organization goal (Figure 4).

Selection of most appropriate metrics to be used is not a
trivial task and is the success key for effective control and
adherence to quality and process performance goals. This
approach can support metrics selection activity required for
Measurement and Analysis (CMMI-SVC level 3). By only
using incident activities logs and interviewing Incident
manager, we were able to (i) discover all possible process
flows, (ii) find the process flow that is more commonly
followed, (iii) find transition time between steps that is taking
longer, and (iv) derive organization goal in strategies and
metrics to improve quality of service.

V. CONCLUSION AND FUTURE WORK

In this paper we aimed to use BPM, BPI and Process
Mining to discover Incident Management process by event logs
and find bottleneck for incident resolution time, in order to
support selection of metrics to attend organization goals and
quality of services improvement. We identified areas that allow
us to collaborate and contribute on a mutual basis Business
Process Management and Quality of Services. Our objective
was to link the theory and practical approach to generate
knowledge and enable decision-making in one of these areas
using Business Process Intelligence and IT Services Maturity
Levels. The result would be the recommendations for the
appropriate service and capacity model to support mining in IT
operations. Through this collaboration, we expect to improve
resources to support this initiative. We had obtained evidences
that Business Process Management (BPM) and Business
Process Intelligence (BPI) can be combined to support services
maturity models. Also, we point there is little discussion about
this aspect and that proposed approach can be conveniently and
efficiently applied.

This case study can be modeled as a new method to be
reproduced in order to select metrics by process bottleneck
discovery and support root cause analysis for problems. Also,
it shows we can generate knowledge about the process to
support quality of services.

We can separate future work in two phases. First phase
involves investigating methodological aspects: what, how and
where to apply BPM and BPI techniques in service processes
areas. Second phase involves researches that can help to
quantify and to qualify the application of first phase in real
situations. This will encompass analysis of case studies and
interviews with experts. Dynamics within two phases could
identify trends to improve IT solutions application within
organizations and reduce required time for an organization to
achieve a measurement process of IT services maturity models
as well as the cost to maintain this level.

This is the first step we have taken in a path we argue is
important to be followed. We hope to debate and envision new
opportunities for action and believe the two areas converge
from an academic and industrial point of view. The result will
be the ability of increasing technological information efficiency

to provide better solutions to organizations and society.

ACKNOWLEDGMENT

Authors would like to thank the financial support granted
by FAPERJ (project E-26/110.438/2014).

REFERENCES

[1] Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A. Fundamentals of
Business Process Management, Springer, Berlin, Germany (2013)

[2] Castellanos, M., K.A.d. Medeiros, J. Mendling, B. Weber, and A.J.M.M.
Weitjers, Business Process Intelligence, in Handbook of Research on
Business Process Modeling, J. J. Cardoso and W.M.P. van der Aalst,
Editors. 2009, Idea Group Inc. p. 456-480 (2009)

[3] Grigori, D., Casati, F., Catellanos, M, Dayal, U., Sayal, M., & Shan, M.
Business Process Intelligence. Computer in Industry, 53(3),321-
343.(2004)

[4] Aalst, W.M.P., van der, et al.: Process Mining Manifesto. Technical
Report, IEEE Task Force, (2011)

[5] Process Mining Framework, http://www.processmining.org/prom/start
(2014)

[6] Extensible Events Stream, http://www.xes-standard.org/ (2012)

[7] Ceurs Workshop Proceedings, Business Process Intelligence Challenge
2013, http://ceur-ws.org/Vol-1052/ (2013)

[8] CMMI INSTITUTE. “CMMI-SVC – Capability Maturity Model
Integration for Services”. http://cmmiinstitute.com/resource/cmmi-for-
services-version-1-3/ (2010)

[9] Florac, W. A., Carleton, A. D., Measuring the Software Process:
Statistical Process Control for Software Process Improvement, Addison
Wesley (1999)

[10] ITIL Version 3 Service Design. Office of Government Commerce
(OGC) (2007)

[11] ISO - International Standard Organization “ISO/IEC 20.000-2:
Information Technology – Service Management – Part 2: Code of
practice” - Switzerland. (2012)

[12] Information Systems Audit, et al. COBIT Five: A Business Framework
for the Governance and Management of Enterprise IT. ISACA (2012)

[13] Niessink, F., Clerc, V., Tijdink, T., Vliet, H. The IT Service Capability
Maturity Model - IT Service CMM, version 1.0RC1. (2005)

[14] Process Mining and Automated Process Discovery Software for
Professionals - Fluxicon Disco, http://fluxicon.com/disco/ (2014)

[15] Solingen, R., Berghout, E. “The Goal Question Metric Method: A
Practical Guide for Quality Improvement of Software Development”
McGraw-Hill (1999)

[16] Franke, U., Holm, H., Konig, J., The Distribution of Time to Recovery
of Enterprise IT Services - IEEE Transactions on Reliability (2014)

[17] Ferreira, D., Silva, M. Using Process Mining for ITIL Assessment: A
Case Study with Incident Management. Proceedings of 13th Annual
UKAIS Conference (2008)

[18] Mieke, J.; Lybaert, N.; Vanhoof, K.: Business Process Mining for
Internal Fraud Risk Reduction: Results of a Case Study. Induction of
Process Models (2008)

[19] Recker, J. “Scientific Research in Information Systems A Beginner’s
Guide”. Springer ISBN 978-3-642-30048-6 (2013)

[20] Trinkenreich, B., Santos, G., Barcellos, M.. “Metrics to Support IT
Service Maturity Models – A Systematic Mapping Study”, 17th
International Conference on Enterprise Information Systems (ICEIS),
Barcelona, Spain (2015)

[21] Basili, V., Trendowicz, A., Kowalczyk, M., Heidrich, J., Seaman, C.,
Münch, J., Rombach D., “Aligning Organizations Through Measurement
- The GQM+Strategies Approach”. Springer (2005)

[22] Davenport, T. “Process Innovation: Reengineering Work Through
Information Technology”. Harvard Business Press (2013)

[23] Niessink, F., Vliet, H., “Software Maintenance from a Service
Perspective”. Journal of Software Maintenance. v12 p.103-120 (2000)

527

Study on the Accident-causing Model Based on Safety

Region and Applications in China Railway

Transportation System

Qin yong Ma hui Jia limin

State Key Lab of Rail Traffic Control & Safety

Beijing Jiaotong University

Beijing, China

 yqin@bjtu.edu.cn

Ma hui Du Miao

School of Traffic and Transportation

Beijing Jiaotong University

Beijing, China

Du miao

Tianjin metro operation company

Tianjin metro operation company

Tianjin, China

Abstract—In order to quantitatively and systematically explain

the accident occur process and assess the risk for the complex

system, this paper proposes a new accident-causing analysis

model, i.e. perturbation-safety region (P-SR) model. In this model,

the safety region definition is introduced for the quantitative

description of the system safe status; also the change process of

the system risk is analyzed. The four relative parts included in

this model are described in details, such as the risk resource part,

the perturbation part, the alarm and system change part, and the

accident part. Finally, the proposed model is applied to railway

transportation system, and the Wenzhou train collision is

systematically analyzed, also the specified control measure for the

train emergency dispatch is demonstrated.

Keywords-accident-causing analysis ;complex system;

perturbation; safety region; railway transportaion system;

I. INTRODUCTION

Accident-causing theory mainly studies why accident
happens and the mechanism of its process [1]. In order to
prevent future accidents, the relationship of the causation found
out in each part of procedure is established by disclosing the
interaction of the components in the system. Traditional
accident-causing theory, like Domino theory proposed by
Heinrich in the 1940s [2], takes single element such as human,
equipment or other causes separately into consideration as a
chain or sequence of events [3], which explains well accidents
caused by physical components and relatively simple systems
[4]. Whilst systems we build today are increasingly complex
that linear model is no longer adequate to capture the
interactions and coupling within the system; thus it requires us
to analyze the accident causation systematically as a whole. To
catch up with the complexity, the accident theories developed
via previous linear causation theories to present-day systematic
theories, such as: system theory, perturbation accident-causing
theory, energy transfer theory and information theory [5].

The systems approach addresses the notion that safety is an
emergent property, which arises from non-linear interactions
between multiple components across complex system and the
relationship of behaviors implicated in operation [6]. In
systemic safety models, the accident process is described as a
complex and interconnected network of events to model the
dynamics of complex systems [7]. Rasmussen’s hierarchical
sociotechnical framework [8] and Leveson’s system theoretic
accident modeling and processes [4] are two notable
approaches. Even though these accident models considered the
joint effect of multi-factors in an accident with their dynamic
interactions, the descriptions of them (human, equipment,
environment and etc.) are mainly qualitative, and the outcome
of those interactions of system components are described
respectively without an uniform expression. On the one hand,
these models are sufficient to help us learn from accidents that
have already happened, and thereby preventing hazards from
the similar kind. On the other, as they hardly reveal the course
of the outcome of system change, they are inadequate to guide
real-time emergency response to prevent accident when the
system is disturbed and prone to accident. This is mainly
because the consideration of system state as a whole is lacked
of in these models. And the challenges we meet today to
achieve safety is going beyond accident analysis to the extent
of resilience engineering [9]. Hereby, the accident analysis
should also be able to implement in the real-time field work to
prevent accident not only after but during its process, by
enhancing its resilience against disturbance.

To achieve this goal, the conception of safety region, which
depict the safe state affected by different factors in a unified
way, is introduced with the combination of perturbation
accident-causing theory to establish the perturbation-safety
region (P-SR) accident-causing theory. In this theory, in
addition to analysis causality systemically, the safe state of the
system after perturbation is described quantitatively with the
changing course of it in P-SR model. And then by exploiting

This study is supported by 863 Program of China’s Ministry of Science
and Technology, and Specialized Research Fund for the Doctoral Program of

National Ministry of Education.

DOI reference number: 10.18293/SEKE2015-160

528

X2

X1

0

P1

Safety
Boundary

Safe Margin

1

Safety Region E1

Safety Region E0*

* P2

X3

Accident Space E1

Accident Space E0

*

*

Characteristic

variable X2
0

Safety Region E

P1

P2

Safety
Boundary

Safe Margin

Accident SpaceE

Characteristic

variable X1

the safe state as risk assessment, the monitoring and evaluation
of system safe state as well as the corresponding control
measures are brought into the model to enable its practicability
in safety management of production activities.

In this paper, the P-SR accident theory is illustrated in

section Ⅱ ,with detailed description of safety region and

accident causing process. And then the application of the model

is presented in section Ⅲ: (1) the whole accident course and

the crucial safety factors of railway system is extracted by the
reconstruction of Wenzhou train collision; and (2) a specific
emergency railway safe state restoration method-train
rescheduling- follows to illustrate the process of how the safety
control measure works in real operation.

II. THE ACCIDENT-CAUSING MODEL OF P-SR

Inevitable as perturbation is in production activities,
Amalberti [10] argued that these ‘noises’ (e.g. equipment
malfunction or human errors) jeopardize operation safety;
conceptually they should be symmetrically assessed and then
calculate the associated risks. With new safety methods and
perspectives that keep up with the continuously increasing
complexity of industry, accident models aiming at explaining
events and guide risk assessment need to match this complexity
[11]. Specific to the complex system, the P-SR model promotes
a quantitative description of the safe state and risk boundary of
the system, which will better instruct safety monitoring and
relative control measures. The concept, perspectives and
processes are defined and described in this section.

A. The Definition of Safety Region

Safety region analysis have been applied to monitor the
safety and stability of power system [12].The concept of region
quantitatively describes the safety boundary of a system so that
it could dynamically and consecutively monitor the system
state with its changing process, and evaluate the safe state to
provide warning information.

On the basis of the object studied in accident models, the
safety region is defined as a changing space to describe the
multifactor. Let

1 2{ , , , }nX x x x be the set of characteristic

variables representing the characteristic state of the system, in
which n is the number of the critical subsystem. The

characteristic variables, derived from multifactor of human,
equipment, environment, management or other factors, contain
both discrete variables and continuous variables. Define space
E as safety region: within the boundary of E is safe space;
otherwise is accident space E . The boundary is determined by
the threshold of system safe state, i.e. the accepted risk level
that can ensure system safety.

 The safety region is determined as a n dimension space by

the number of the characteristic variables n , in which the

lower dimension spatial scope may vary with high dimension
variables. Fig.1 gives an example of a 3-dimension safety
region composed of

1 2 3{ , , }X x x x , in which
3x is a discrete

variable, representing two types of system state at this
dimension: when

3 0x  , the safety region is
0E ; when

3 1x  ,

it changes to
1E .

Figure 1. The change of system safety region

The boundary of the safety region is only determined
specifically to a certain system. Usually, the state of the system
located in safety region is called the balanced state. If the
character point falls in the safe space, then the system is
confirmed to be safe, with the distance between the point and
boundary, called safe margin, to assess the safety level of the
system. Otherwise, the point falls in the accident space when it
breaks through the safety boundary, indicating that the safe
state reaches an unacceptable level and then causes the accident.

In production activities, the system state continually
deviates from safe space under the influence of perturbation.
As it reaches a certain extent that beyond the safety boundary,
the system enters the accident space. Fig. 2 show a safety
region consists of 2 dimension variables

1 2{ , }x x , in which
1P

and
2P represent respectively system running safely and

accident taking place. Obviously, the crucial task to use safety
region to denote system safety is to obtain the safety boundary-
a decision function returning a safe threshold that differentiate
the state of safety and accident [13].

Figure 2. A schematic diagram of two-dimension safety region

B. The Analysis of Accident-causing Model Based on

Perturbation-Safety Region

The P-SR accident-causing model (Fig.3) consists of four
critical parts: the risk resource part, the perturbation part, the
alarm and system change part, and the accident part.

To study the nature of accidents, in the first part, the risk
resource is prominently analyzed in the perspective of energy
carrier, followed by the analysis of the direct cause of
perturbation. The moving device, electrified equipment, and
containers loaded of hazardous chemicals constitute the energy
carrier in the system, which is the material basis of an accident.
And the severity of the accident is related to the types, quantity,
property, status, and energy storage method of the energy
carrier. Normally, the system maintains safety by effectively
taking control of the energy. Only when the unsafe multifactor

529

Y

Energy

Carrier

Unsafe

Behavior

Unsafe Status

Perturbation V(t)

System State Monitor

and Warning Module

Is

Balanced

?

E
q
u
ip

m
e
n
t

H
a
z
a
rd

o
u
s

C
h
e
m

ic
a
l C

o
n
ta

in
e
r

M
o
v
in

g
 V

e
h
ic

le

E
q
u
ip

m
e
n
t

D
e
sig

n
 F

la
w

E
n
v
iro

n
m

e
n
t

C
h
a
n
g
e

The Spatial Composition of Xn

The boundary value of Xn

Analysis of the Safe Margin of Xn
and assessment of control measures

The Risk Resource

The Alarm and System Change

The Accident

The Perturbation

Energy Transfer

at the Safety

Boundary

Shielding

Method
Loss Accident

C
a
su

a
ltie

s

P
ro

p
e
rty

 L
o

ss

E
n
v
iro

n
m

e
n
t

D
a
m

a
g
e

S
o

c
ia

l In
flu

e
n

c
e

T
h

e
 iso

la
tio

n
 o

f

P
e
o

p
le

T
h

e
 Iso

la
tio

n
 o

f

S
y

ste
m

 In
te

rn
a
l

E
n

v
iro

n
m

e
n

t

H
it b

y
 a

n
 O

b
je

c
t

V
e
h
ic

le
 In

ju
rie

s

M
e
c
h
a
n
ic

a
l

W
o
u
n
d
in

g

F
i
r
e

E
x
p
lo

sio
n

P
e
o
p
le

M
a
c
h
in

e

E
n
v
iro

n
m

e
n
t

N

S
tu

ff Q
u
a
lity

M
a
n
a
g
e
m

e
n
t

Safety Control

Measure U(t)

E
q
u
ip

m
e
n
t

R
e
sto

ra
tio

n

F
ie

ld

O
p
e
ra

tio
n
s

Figure 3. The Perturbation-Safety Region accident-causing model

disturbs the system will it result in failure of energy control-
mainly because of the unsafe status and unsafe behavior:

 Unsafe status includes environment change and the
defect of the equipment itself. First, natural disasters
and extreme weather, e.g. lightning, earthquake,
typhoon, debris flow and blizzard, are uncontrollable
stochastic factors, which will influence the equipment
and energy transmission in the system by causing the
perturbation to the balanced state and further the
accidental release of energy. Second, the equipment
has problems of wear, deformation, and metal fatigue
due to the long time use, thereby increasing the
probability of mechanical fault. And the device itself
may also have design flaws. Meanwhile, with the
increasing complexity of the system, the dynamic
interaction of each part is more complicated that the
fault of single equipment may affect the whole system.
Thus, the system is vulnerable to the unsafe state.

 Unsafe behavior mainly refers to the unsafe operation
and management of human. The role people play in the

system mainly includes: design personnel, operation
staff, maintenance staff and management personnel.
They together determine the reliability, stability and
safety of a system. Yet each person is an individual
with different quality, characteristic, education and etc.
In the process of production, man's operation ability,
management level and experience are closely related to
system safety. Unsafe behaviors such as sneaking off
in work, illegal operation, the decision-making
mistakes, and loose management are the possible
causes of an accident.

The effect of the unsafe state and behavior engenders the
perturbation ()V t , shown in the perturbation part of the model

in Fig.3, which is the direct cause that deviate the safe state
from balanced state. The perturbation should be further
analyzed in term of the specific system and situations.

As the controllers or decision makers are highly dependent
on feedbacks to take action after perturbation, the necessary
information about the actual state of the process is crucial to
avoid accidents [4]. The question then arises about how we
express and present the actual safe state. In the next stage, the
alarm and system change part, the concept of safety region we
introduced is the solution to this problem. At the beginning, the

initial balanced state is expressed as
1 2() { (), (), , () }nX t x t x t x t x E  .

After the perturbation, it changes to (+1) () (),X t AX t V t x E   , in

which A is the system parameter. In order to ensure the system
to still be in balanced after the disturbance, the changes of state
in safety region need to be monitored so that the safe margin
can be calculated. Then, according to the safe margin,
corresponding prevention and control measures should be taken
to rebalance the system. If the adopted measures are inadequate,
the system will break the safety boundary and into the accident
space. Herein, a system state monitor and warning module
based on safety region is included in this part. As (1)X t 

moves to the safety boundary, the safe margin decreases; then
the warning system generates alarm information; based on the
alarm information, safety control measure ()U t should be

applied on the system, which is expressed as

(+1) () () (),X t AX t BU t V t x E    (B is the safety control parameter).

If the system restores balance, it continues to monitor the
change of safe margin and assess the control measures, so that
the safety control measures module responds appropriately; if
the system state broke the balanced state, it means undesired
energy transfer has occurred and resulted in an accident.

Fig. 4 depicts the rebalance or accident procedure after
perturbation under the action of system state monitor and early
warning module (the arrows are the state locus, and the blue
lines show the safe margin at each time).

The system is in balanced state before
1t . At

1t the safe state

begins to move toward the safety boundary under the effect of
perturbation ()V t .Then the warning module detects the

reduction of the safe margin and raises alarm. Afterwards, the
countermeasure ()U t is applied at

2t to slow down the decrease

of safe margin. Later, the safe margin decreases slower at
3t ,

indicating that the system tends to restore the balanced state.
Still, appropriate safety measures continue to be implemented

530

*

*

*
*

Characteristic

variableX1

Safety Region E

Safety

Boundary

Safety Margin

Accident Space E

t1

t2
t3

t4
*
t3’

* ’t4

Characteristic

variable X2

at
3t . Finally the safe margin begins to move toward the

internal safe space at
4t , which means the system state has been

effectively controlled, thereby avoiding the accident.

Figure 4. The trace of system state retrieving equilibrium state or heading to

accident after perpurbation

Another trace in Fig.4 shows an opposite situation where
the safety measure ()U t fails to work. The difference is that the

countermeasure taken at
2t is far enough to slow down the

decreasing speed of the safe margin. Thus, at '

3
t , the system

state is already close to the safety boundary and keeps
approaching it. Ultimately, the system state breaks through the
boundary, with the energy (chemical energy, mechanical
energy, kinetic energy, or electric energy) transferring to
people, equipment, and environment.

According to the previous analysis, the safety control
measure based on the monitor and warning module is critical to
restore system safety after perturbation, as it decides the trend
as well as the speed of the system state change. Therefore, in
the accident prevention and control procedure, we should
establish corresponding emergency plans specific to the object;
and strengthen its disturbance control measures to reduce the
probability of accidents, eventually avoiding the accidents.

Nevertheless, when the accident happens, there’s still
shielding method-the isolation of people, environment and
energy carrier -we can take to control the damage degree of the
energy release. If the shielding measure fails or not timely, the
accident may cause severe direct loss like casualties and
property loss, as well as the indirect loss such as damage of the
environment, the social influence and the production stagnation,
which is described in the accident part in Fig.3.

To sum up, the key of P-SR model is to extract the
characteristic state variables of safety critical subsystem to
build the safety region; and then determine the safety threshold
to establish the safety boundary. That’s when the system state
can be quantitatively calculated as safe margin.

III. THE APPLICATION OF P-SR MODEL ON RAILWAY

TRANSPORTATION SYSTEM

As China’s railway transportation system thrives, the train
speed is increasingly faster, train numbers are much denser,
power supply capacity is bigger, and the multi-factors coupling
is higher. With a lot of risk sources, the railway system is both
an ultra-safe system and a typical complex system, confronted
with enormous challenges of accident prevention and control.
The P-SR model herein provides a solution to solve these

problems as the following one accident analysis example and
one emergency control example confirm.

A. The Wenzhou Train collision Accident Analysis

According to the accident investigation report established
by State Council of China [14], the P-SR model is employed to
analyze and reconstruct the Wenzhou train collision process so
as to provide decision support for future accident prevention
and the improvement of safety measures.

On 23 July 2011, high speed train D301 from Beijing to
FuZhou collided with the high speed train D3115 from
Hangzhou to FuZhou on Yongwen railway line, Wenzhou,
Zhejiang province, China. The analysis of the accident based

on P-SR model is established in Table Ⅰ.

As the relative speed and positon of a train with adjacent
trains is the essence to control safety, this system safety-critical
state space is defined as three-dimensional: train running
control mode, train speed and train interval. So the safety
region is also three-dimension, in which the train running
control mode is discrete variable with the value of automatic
block control or manual control; the train speed is continuous
variable ranging from 0~350 km/h; the train interval is discrete
variable indicating the number of blocks between two trains
running on the same rail at same direction. To facilitate the
graphical display of the safety region, the traffic control mode
is set as a third dimension, thus we can describe the changing
of the system's safe state in two-dimensional space.

Previously we introduced that the special extent of the safety
region in dimensionality reduction space is possible to vary
with the value of high-dimension variables. In this example,
along with the change of train running control mode, the
boundary of the two-dimensional safety region made up by the
train speed and train interval changes as well (see Fig.5). In
automatic block control mode, also the normal operation mode,
the safety space is in a large range as shown in area

0E ; while in

manual control mode, the spatial extent of safety region
reduces to

1E , as Automatic Train Protection (ATP) requires the

speed to be lower than 20 km/h and the train interval is
required to be as the distance between adjacent stations.

The system safety region composes of the velocity v (km/h)
of the first train running onto the section and the interval of the
subsequent train n (the number of the blocks between two
successive trains). In automatic train control mode, the safety
boundary is made up by the safety threshold of the train
running speed of 250 km/h and the minimum safe interval of 2
blocks, as

0(,) { 250, 2}E v n v n   . In the manual mode, the safety

threshold of the speed changes to 20 km/h and the minimum
safety interval increases to 3 blocks, as

1(,) { 20, 3}E v n v n   , for

sufficiently stopping the train before any collision.

The safety region is
0E at

1t , when D3115 set off from

Yongjia station at a normal speed onto the section under
automatic train control mode. However, the control mode
changed into manual mode at

2t , with the safety region

narrowed down to
1E . Soon after, D3115 was stopped by the

ATP when running onto the track 5829AG with faulted track
circuit. At the time of

3t , D301 entered the same section

531

Items Content

Energy Carrier Moving motor train unit

T
rig

g
er F

a
cto

rs

U
n

sa
fe S

ta
tu

s

1. The lightning activity was unusually intensive alone the Wenzhou-Yongjia and Wenzhou-Ouhai railway line；
2. The host in the train control center only transfer the fault message received the from track circuit to the monitor and maintenance

terminal, while continuing outputting the signal control message according to the occupancy of track at the last moment before
malfunction (the track was free so the control center authorized green signal).

3. The integrated wireless communication devices in D3115 lost its signal, so the driver couldn’t connect to train dispatcher in time.

U
n

sa
fe B

eh
a

vio
r

M
an

ag
em

en
t

1. The equipment design company had severe defects in the design process and quality control of control center equipment
2. The project director ministry had a series of management failures on equipment bidding, technical examination and inspection for
service for newly developed signaling equipment
3. The field work company had loopholes and deficiencies in safety management and failed to adequately respond to equipment
malfunction caused by lightning.

O
p

eratio
n

1. The field stuff didn’t perform joint interaction control of train running and track ocuppancy under manual mode.

2. The D315 was authorized onto the section at automatic control mode without confirmation that the D3115 had arrived at the next
station or the equipment had restored to work normally.

T
h

e p
ertu

rb
a
tio

n

1. The lightning struck a trackside signal assembly, burning out its fuses F2, while the transmitter in track circuit 5829AG lost connection with the

control center.

2. The control center gave an incorrect indication, based on the state before the fault when the track was free, that the track section containing train
D3115 was unoccupied, thereby allowing the signal instruction staying green.

3. Due to the communication error between 5829AG track circuit and control center, 5829AG track circuit began to send messy code, causing the

computer interlocking system in Wenzhou south station displayed red bond on the corresponding section.
4. As D3115 run onto the malfunctioned track 5829AG, the messy code transmitted to the train triggered automatic braking of ATP, so that D3115

came to a halt with 3 times failure to override the system into visual driving mode.

T
h

e m
o

n
ito

r

a
n

d
 w

a
rn

in
g

1. The computer interlocking system in Wenzhou south station appeared ‘red band’.
2. The frequency shift track circuit terminal at mechanical room in Wenzhou south station displayed red alarm light

3. The last two communication boards in the track circuit interface unit in Wenzhou south station indicated red warning light.

4. The computer interlocking system in Wenzhou south station appeared ‘red band’, while the Centralized Traffic Control System (CTC) in
dispatching station didn’t.

S
a

fety

m
ea

su
res

1. The track maintenance workers walked alone the Wenzhou-Ouhai and Yongjia-Wenzhou railway line to check the occupancy of track.

2. The railway electricity workers attempted to restore the faulted equipment.

3. The train control mode was change from automatic control into manual control mode in Yongjia station, Wenzhou south station and Ouhai station.
4. The dispatcher instructed the driver of D3115 driving under visual mode at a speed lower than 20 km/h, when encountering red light in the section.

Accident Space

Energy Transfer Train D301 ran at 99 km/h crashed into the rear-end of the D3115 run at 16 km/h.

Accident The 15th and 16th coaches at the rear of D3115 and the front five coaches of D301 were derailed.

Shielding The driver of D301 pulled on emergency brake at the sight of D3115.

Loss

40 people were killed and 172 injured；

7 motor train set vehicles was scrapped, 2 broken heavily, 5 broken at medium, 15 broken slightly;
the network of Overhead Contact System in accident section collapsed;

the railway line at accident section shut down for 32 hours and 35 minutes.

Time
The monitor and warning of

equilibrium state
Safety measures

Safety

Region
Safety Margin

Evaluation of safety

measures

1t None None 0E equilibrium state —

2t

The inconformity of the display

in CTC and train control center

The train control mode was change to manual control

mode in Yongjia station, Wenzhou south station . 1E Increasing Effective

Track circuit sent messy code
D3115 was stopped by the Automatic Train

Protection (ATP) 1E Increasing Effective

None
The driver of train D3115 overrode the ATP and

drove at visual mode. 1E Decreasing Failed

3t None

The following train D301 approached onto the

section of track where D3115 had been stopped at
automatic mode

1E
Decreasing

dramatically
Dangerous

4t None Emergency brake of D301 1E Enter accident space Slight

TABLE I. THE ACCIDENT-CAUSING ANALYSIS OF WENZHOU TRAIN COLLISION

TABLE II. THE MONITOR AND WARNING INFORMATION IN WENZHOU COLLISION AND CORRESPONDING EVALUATION

532

Velocity(km/h)

Interval of

Successive

Trains(Blocks)

0

Safety

Boundary of

E0

20 250

1

2

3

t1

t2 t3

t4

Safe Margin

Safety Region

E0

Safety
Region

E1
Safety

Boundary of E1*

*

*

*

Accident Space E1

Accident Space E0

Figure 5. The evolution of system state in Wenzhou train collision based on

safety region

occupied by D3115 as a way of the automatic mode, which it
shouldn’t. Two minutes later, D3115 finally overrode the ATP
to start the visual driving mode. Nonetheless, the interval
between these two trains decreased sharply at this time. As
there was no effective warning, no imperative safety measure
was taken. Thus the safe margin diminished dramatically.
Eventually, D301 collided with D3115 at

4t that the system

state broke through the safety boundary, with energy transfer,
causing the accident. The course of the accident is shown in
Fig.5 as red arrow lines. The warning and monitor information
with relative safety measures at each time is evaluated

according to safe margin in Table Ⅱ.

According to the analysis of the P-SR accident-causing
model, it is the joint efforts and the interaction between
multiple factors that put the system at risk of accident.
However, it is the control measures that finally decide whether
an accident will happen or not. In Wenzhou train collision
accident, the safety measures adopted according to the early
warning has somewhat maintained system safe margin. But
when the system neither obtained the early warning
information in the field, nor did any imperative human or
equipment safety control measures are taken, the system safe
margin began to drop dramatically until the accident happened.

B. Specified Application of the Safety Control Measures

This section focuses on the system safety control measures
to restore the order of the system. Specific to the railway
system, train dispatching and rescheduling is the imperative
method to ensure both the operation safety and transportation
capability of the whole system, as essentially they avoid the
time and space conflicts between different trains, which is the
decisive factor to the range of safety region. Therefore, a train
rescheduling method is specially proposed in this part.

1) The principle and strategy of train rescheduling

When the railway system is in unbalanced state, strategies
to restore the system need to follow certain principles.

a) Principles of train rescheduling

 Schedule the train in the original path and avoid detour
and outage to the greatest extent;

 When detour is necessary, check the train and the line
conform or not and choose the shortest one;

 Higher grade Trains can’t be overtaken by lower ones;

 Passenger trains can’t be overtaken by freight trains;

 The punctual trains have a higher priority.

 Passenger trains can arrival in advance but can’t
departure in advance.

b) Strategies for train rescheduling

 Detour, outage, reconnection and turn-back can be
adopted when necessary;

 Change the section running time;

 Change the dwelling time in station;

 Change the overtaking station or time.

2) Rescheduling method
The process of train operation is discretized, so the

rescheduling can be got one section by one section.

Paper [15] summarizes 3 rules for the events dispatching. A

first-to-start dispatcher selects the next train to be moved

based on the earliest start time. A first-to-finish dispatcher

selects the next train to be moved based on the earliest finish

time on its next segment. Other possible dispatchers can be

created by setting the dispatch decision time for train i as

(1)i i it u v    , where
iu is the start time for train i and iv is its

expected finish time on its next immediate segment and [0,1]  .

While the trains’ grades are not considered in the
dispatching rules mentioned before. As the grades are different
between the neighbouring trains, there will be 3 situations: the
neighbouring trains have the same grades (Fig.6(a)), higher
grades train run after the lower grade train (Fig.6(b)), and
lower grade train run after the higher grade train (Fig.6(c)).

Figure 6. Different tracking form of different train degree

When the actual start time of trains (AST) in each section is

obtained, the timetable is got too. So the calculation of AST is

the key of the problem. In this paper, AST is calculated by the

formulas in Table III.

TABLE III. FORMULAS FOR THE ACTUAL START TIME

(a)
If

''

1i is s I   then
''

1 1i is s  ,
i is s

If
''

1i is s I   Then
1i is s I   ,

i is s

(b)
If

''

1i is s I   Then
''

1 1i is s  ,
i is s

If
''

1i is s I   Then
1i is s I   ,

i is s

(c)
If

''

1 1i i i is s I t t     Then
''

1 1i is s  ,
i is s

If
''

1 1i i i is s I t t     Then
''

1 1i is s  ,
1i is s I 

i i+1
A

B

i i+1
A

B

A

B

i i+1

(a) (b)

(c)

533

app:ds:to
app:ds:the
app:ds:greatest
app:ds:extent
app:ds:neighbouring
app:ds:neighbouring

In Tab. III, is stands for AST, while
''

is stands for the

earliest start time (EST). The two concepts can be
distinguished that AST is EST considering constrains between
trains. EST can be got by two factors, a) the reckoning time
according to AST and section running time in last section and
the operation time in last station, b) the start time in the
original timetable. We choose the bigger one as the result. It
can be seen in (1).

 '' *

1 1max(,s)k k k j ks s t t     

Where,
''

ks stands for EST in section k,
1ks 
 stands for AST

in section k-1,
1kt 
 stands for the running time in section k-1,

and
jt stands for the operation time in station j.

On account of factors such as weather, track condition,

equipment condition and etc., the velocity of trains is not

constant. So we consider the pure running time as a variable

number. The section running is depicted in (2).


1 1p p q p t pt t          

Where,  is a 0-1variable representing whether train stops

in station or not,
q and

t stand for the addition time of start

and stop,
pt stands for the pure running time,  is a stochastic

number.

The variation of section running time enriches the problem

space, and we can find a better solution. The value of  is

vital to the quality of the result. R. Albrecht [16] made many
experiment to obtain a more proper value in his doctoral
dissertation, finding that when distributed normally (that is

T()N  0， and T = 2m [15], the result could be better. m

stands for the section running time. The conclusion is still
applied in this paper.

The algorithm is depicted in the following.

Step1: Choose all the events in section I,

Step2: Calculate the earliest start time of section i according

to formula (1),

Step3: Calculate the actual start time of the section event

according to table III,

Step4: Do i=i+1 until the last section,

Step5: Repeat step 1 to step 5 N times (N is determined by

decision maker, it can be 100 or another), thus we have N

feasible schemes, and find the best solution according to

the object function among the N feasible schemes,

Step6: Draw the adjusted train diagram.

3) An experimental example of the method
The results of using the method before are discussed here

for a representative example on Jin-qin passenger railway
(approximately 260km with 9 stations), China. The case is
based on real data and a scene with disorder is assumed.

The assumed scene: the section Junliangcheng north station
to Binhai station suffered heavy rainfall during the period

13:00 to 17:00. And the allowed speed of the trains passed by
then is 100 km/h. Because of the bad weather, 11 trains are late.
So a quick adjustment of train timetable is needed.

We take the minimum deviation between the original
timetable and the adjusted timetable as objective, then carry out
the algorithm before with related data and the output objective
distribution is shown in Fig.7. The results are normal
distributed. The result with minimum deviation time is an ideal
scheme and the rescheduled timetable is shown in Fig.8.

Figure 7. Objective distribution with variable running time

We can see that in Fig.9, D6795 is a train with lower grade
compared to others and in order to cause larger deviation it is
overtaken by train G1253 in Binhai station only. In this case
the objective number is 109.3672 and the result can be got in
an acceptable time. The method has also been applied with
success to a range of test problems with various network sizes,
number of trains and works well.

Figure 8. Train timetable with variable running time

IV. THE CORRESPONDING PREVENTION MEASURES

Besides the control measures, on the basis of the theory and
analytical method of the P-SR accident model, we can further
conclude the following preventive measures against accidents:

(1) Strengthen the implement of technical engineering in
the system changes and control measures parts. As the external
disturbance is almost inevitable, to maintain system balanced
state is the critical process to prevent an accident.

(2) Strengthen the monitoring of the system running state
and quantitative analysis of safety region, so as to timely reflect
the safe state of the system. And then offer the safe state
analysis and early warning information to provide basis for
adopting corresponding control measures;

(3) Take comprehensive and effective safety control
measures based on safe state and early warning information,

12:00

Tianjin

Junliangcheng

North

Binhai

North

Binhai

Tangshan

Luanhe

Beidaihe

Qinhuangdao

13:00 14:00 15:00 16:00 17:00 18:00 19:00

G1248/5 D6793 G1232/29 G1224/1

G1258/5

G1274/1 G1278/5

G6789

G1214/1

G1236/3

D6795 G1252/3/2 G1228/5

G1204/1

534

app:ds:normal

and at the same time constantly monitor the system state to
assess the effectiveness of safety measures to adjust
inappropriate control measures in time.

(4) Strengthen the construction of emergency management
and human emergency response. As human bears huge
psychological pressure when the system works out of order
after disturbance, they are likely to make inappropriate
decisions or take unsuitable actions that may aggravate the
reduction of system safety margin.

V. CONCLUSION

This paper presents a new accident model, perturbation-
safety region accident-causing theory model, to analyze
complex system, based on perturbation occurs theory and
system theory. The model we proposed focuses particular
attention on how to measure safe state of the system as a
feedback to control measures and how the relative control
measures are taken according to that feedback. Instead of
analyzing safety in the context of preventing component failure,
it addresses the continuous monitor and control task after
perturbation. Accidents are seen as resulting from inadequate
or inappropriate control measure during system design, daily
operation and emergency response. The process of an accident
is captured from (1) intrinsic nature of the dangerous resource
in the system, and then (2) the perturbation brought up by the
unsafe state and behavior that deviates system from safe space,
to (3) the alarm and monitor part that uses safe margin to guide
corresponding control measure with assessment of it.
Ultimately, the accident can be understood in terms of why the
control measure enforced in a disturbed system fails to stop the
progress of it. Specifically in the model, the system safe state
depict by safety region visualizes the course of an accident by
safe margin, which evaluates how close the system is near to
accident space. This allows controllers or decision makers to
have the crucial feedback to adopt appropriate measures.

Hence, the P-SR model also overcomes the limitation that
most accident models do not apply in real-time work. The
results of the analysis not only contains static charts or figures,
but also a dynamic system state diagram that monitors the
system continuously, which could be implemented in real work
to maintain safety. Through learning the progress of an
accident, the notion of the model changes from the passive
analysis after accident to the initiative safety restoration before
accident. The necessity of this change lies in that the potential
interactions between components in a system is rather complex
that they are hard to understand and anticipate. So the common
accident models, chain events or dynamic networks, focusing
on how to prevent accident by exposing flaws in physic parts
and behaviors with their interrelations, is not enough to keep up
with the safety management needed in different kinds of
system and perturbation. And yet the model we present builds
a unified mathematical expression frame to describe the change
brought up by multiple factors, which elevates the quantitative
analysis ability for complex systems.

The validity of the model has been proved as the analysis
and reconstruction of a typical railway accident in China case
shows. To further illustrate the role that control measures take
in a disturbed system, a railway emergency command method

is proposed in this paper to back up the safety restoration with
respect to the perturbation in daily operation.

The concept of P-SR model is suitable to improve
performance in safety management. But there are still problems
to be solved before the application, like (1) the safety region of
each different system should be specified; (2) the characteristic
state variables are crucial to the whole analysis that omitted
variable may also increase the risk of accidents; (3) massive
amounts of data are needed to be collected and analyzed.

ACKNOWLEDGMENT

This study is sponsored by the 863 Program
(2012AA112001) of China’s Ministry of Science and
Technology, and Specialized Research Fund for the Doctoral
Program (20120009110035) of National Ministry of Education.
The support of State Key Lab of Rail Traffic Control & Safety
of Beijing Jiaotong University is also gratefully acknowledged.

REFERENCES

[1] A. Kuhlmann, An Introduction to Safety Science,Germany, 1981.

[2] Heinrich, H.W., Petersen, D., Roos, N., Industrial accident prevention: a
safety management approach, fifth ed, The U.S.:Mcgraw-Hill,1980.

[3] H. Xueqiu, Safety Engineering, China: China University of Mining and
Technology,2000.

[4] Nancy Leveson, “A New Accident Model for Engineering Safer
Systems,” Safety sciecnce, vol.42, No.4,pp.237-270, April,2004

[5] China higher education committee in Safety Engineering Guidancs,
Security System Engineering, China:China Coal Industry, 2002.

[6] Paul M. Salmon, Natassia Goode,Frank Archer, Caroline
Spencer,Dudley McArdle, Roderick J. McClure,“A System approach to
examining disaster response: Using Accimap to describe the factors
influencing bushfire response,” Safety sciecnce, vol.70, ,pp.114-122,
December,2014.

[7] YunXiao Fan, Zhi Li, JingJing Pei, Hongyu Li, Jiang Sun, “Applying
system thinking approach to accident analysis in China: Case study of
“7.23” Yong-Tia-Wen High-speed train accident,” Safety Science, vol.
76, pp. 190-201, July 2015.

[8] Rasmussen, J., “Risk management in a dynamic society: a modelling
problem,” Safety Science. Vol. 27, pp. 183–213 1997.

[9] Hollnagel, E.,Investigation as an impediment to learning. In: Hollnagel,
E.,Nemeth, C., Dekker, S. (Eds.), Remaining Sensitive to the Possibility
of Failure,Resilience Engineering Series. The U.K.: Ashgate,
Aldershot,2008 .

[10] R Amalberti, “The paradoxes of almost totally safe transportation
systems,” Safety Science, vol. 37, pp. 109-126, March 2001.

[11] Rogier Woltjer, Ella Pinska-Chauvin, Tom Laursen, Billy Josefsson,
“Towards understanding work-as-done in air traffic management safety
assessment and design,” Reliability Engineering & System Safety,
March 2015.[Online]. Available: Elsevier, http://www.sciencedirect.com.

[12] X. Ancheng, Wu, F., F., L. Qiang, M. Shengwei,“Power system dynamic
security region and its approximations,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol.53, pp.2849-2859, December 2006.

[13] Q. Yong,S. Jingxuan,Z. Yuan,Z. Shengzhi,J.Limin, “Online Security
Assessment of Rail Vehicles in Service Status based on Safety Region
Estimation,” Journal of Central South University(Science and
Technology), vol.44, pp .195-200,July 2013.

[14] The State Council of China, Yongwen Railway Line Major Traffic
Accident Investigation Report ,China, December 2011.

[15] Albrecht A R, Panton D M, Lee D H., “Rescheduling rail networks with
maintenance disruptions using Problem Space Search,” Computers &
Operations Research, vol. 40, pp. 703-712, September 2013.

[16] Amie R. Albrecht, “Integrating railway track maintenance and train
timetables”,University of South Australia,2009.

535

Statically-Guided Fork-based Symbolic Execution for

Vulnerability Detection

Yue Wang, Hao Sun, Qingkai Zeng

State Key Lab for Novel Software Technology, Nanjing University

Department of Computer Science and Technology, Nanjing University

Nanjing 210023, China

wxywang89@163.com, shqking@gmail.com, zqk@nju.edu.cn

Abstract—Fork-based symbolic execution would waste large

amounts of computing time and resource on invulnerable paths

when applied to vulnerability detection. In this paper, we propose a

statically-guided fork-based symbolic execution technique for

vulnerability detection to mitigate this problem. In static analysis,

we collect all valid jumps along vulnerable paths, and define the

priority for each program branch based on the ratio of vulnerable

paths over total paths in its subsequent program. In fork-based

symbolic execution, path exploration can be restricted to

vulnerable paths, and code segments with higher proportion of

vulnerable paths can be analyzed in advance by utilizing the result

of static analysis. We implement a prototype named SAF-SE and

evaluate it with ten benchmarks from GNU Coreutils version 6.11.

Experimental results show that SAF-SE outperforms KLEE in the

efficiency and accuracy of vulnerability detection.

Keywords-fork-based symbolic execution; static analysis;

vulnerability detection; program analysis

I. INTRODUCTION

Symbolic execution was first proposed by James C. King [1]
in 1976. Fork-based symbolic execution uses symbolic values as
inputs to execute target programs and replaces concrete program
operations with ones that manipulate symbolic values during the
execution. When program execution branches based on
symbolic values, it follows each valid branch and collects the
branch condition as the constraint of the corresponding path.
When one path terminates or hits a bug, a test case will be
generated by solving the collected constraints. Symbolic
execution has two advantages: 1) having high code coverage and
2) producing no false positives.

Recently, fork-based symbolic execution has been applied to
the field of vulnerability detection. The key challenge lies in that
the goal of vulnerability detection is to expose vulnerable code
as soon as possible and vulnerable paths, i.e. paths involving
vulnerable code, only occupy a small proportion in programs,
while fork-based symbolic execution selects branch blindly,
leading to a considerable waste of computing time and resource
on exploring invulnerable paths. Besides, the vulnerability
detection accuracy would also be affected, i.e. generating false
negatives, if computing time and resource is limited in real-
world scenarios. Furthermore, path explosion would worsen
both the efficiency and accuracy of vulnerability detection if
target programs are in large scale.

To address this issue, we propose and implement a statically-
guided fork-based symbolic execution technique for
vulnerability detection, named SAF-SE. Static analysis process
marks vulnerable paths and collects all valid jumps along them.
These valid jumps would restrict symbolic execution to
vulnerable paths only, and generate test cases which can violate
the security constraints of sensitive operations. Furthermore, we
define the priority for each program branch based on the ratio of
vulnerable paths over total paths in its subsequent program.
These branch scores are used by execution state selector to
determine the priority of each execution state. Therefore,
program segments with higher proportion of vulnerable paths
will be explored first and more vulnerable code will be detected
in the circumstance of limited computing time or resource.
Hence, SAF-SE can not only accelerate fork-based symbolic
execution process but also improve the accuracy of vulnerability
detection.

This paper makes three contributions. First, we propose a
statically-guided fork-based symbolic execution technique for
vulnerability detection, in which we restrict fork-based symbolic
execution on vulnerable paths. Second, we score program
branches based on the ratio of vulnerable paths in subsequent
program. Hence, code segments with higher proportion of
vulnerable paths would be analyzed earlier. Third, we
implement a prototype name SAF-SE and evaluate it with 10
benchmarks from GNU Coreutils 6.11. Experimental results
show SAF-SE can improve vulnerability detection efficiency,
and reduce false negatives when time and resource is limited.

II. DESIGN OF SAF-SE

Figure 1 illustrates the architecture of SAF-SE. It consists of
three components: graph generation module, static analysis
module and fork-based symbolic execution module. Note that
users can define sensitive operations and corresponding security
constraints in user-defined configuration file.

A. Graph Generation Module

Graph generation module reads LLVM bytecode file as
input and generates the call graph and control flow graphs
(CFGs). The call graph and CFG generation process in LLVM
Utils doesn’t consider dynamic link library functions. Therefore,
we utilize a light-weight symbolic executor to obtain a relatively
complete program. In it, we simulate the link process by
executing the target program symbolically with the simplest

This work has been partly supported by National NSF of China under Grant
No. 61170070, 61431008, 61321491; National Key Technology R&D

Program of China under Grant No. 2012BAK26B01.

(DOI reference number: 10.18293/SEKE2015-094)
536

Figure 1. Architecture of SAF-SE

symbolic strategy, i.e. one symbolic input sized of one character
in order to get dynamic library functions in records. Considering
the small time consumption, i.e. less than 10 seconds, we call it
light-weight symbolic executor.

B. Static Analysis Module

Static analysis module at first locates sensitive operations in
target programs and divides functions into three categories.
Then valid jumps analysis collects all valid jumps by marking
the conditional values of each branch instruction that can lead
to sensitive operations. At last, branch score analysis calculates
the score of program branch according to the ratio of vulnerable
paths over total paths in its subsequent program.

1) Function Classification
We define two attributes for each function, i.e. vul-related

and vul-lead.

Definition 1. Function f is vul-related, if there are sensitive
operations in f, or f calls another vul-related function.

Definition 2. If function h invokes function f at call site loc,
and there are sensitive operations or vul-related function calls
on the paths from loc to the exits of function h, then function f
is vul-lead.

To calculate vul-related attribute, initially, we mark
functions with sensitive operations inside as vul-related. Then,
callers of vul-related functions are also marked as vul-related.
To calculate vul-related attributes, first we locate the positions
of sensitive operations and vul-related function call sites as locs
in each function. Then, we initialize all the functions called
between the function entry and locs as vul-lead. At last, all
callees of vul-lead functions are also marked as vul-lead.

According to the attributes, functions in target programs can
be divided into three categories, i.e. T1~T3, and different
execution strategies would be applied to different categories.

a) T1: vul-lead = true: sensitive operations would be

invoked after T1 functions. Since operations within T1 function

might affect the sensitive operations afterward, all paths inside

would be executed symbolically to gain conservative results.

b) T2: vul-related = true and vul-lead = false: T2

functions have sensitive operations inside and have no sensitive

operation after the execution of them. Hence, invulnerable paths

inside can be pruned in symbolic execution.

c) T3: vul-related = false and vul-lead = false: T3

functions neither involve sensitive operations, nor have

sensitive operations afterward. Hence, symbolic executor

would terminate the execution process for T3 function calls.

2) Valid Jumps Analysis
Valid jumps analysis aims to collect the valid jumps of each

branch instruction in T2 functions. Valid jump is the conditional
value of branch instruction which can lead execution to
sensitive operations. Algorithm 1 illustrates this process for
function fn. Vtarget-op refers to the set of sensitive operations and
vul-related function calls. Tuple < f, inst, choice> is used to
denote one valid jump, i.e. the instruction inst in function f
would lead to sensitive operations under the conditional value
choice. Setvalid-jmp stores all the collected valid jumps.

Our valid jumps analysis is at basic block granularity.
Initially, basic blocks involving Vtarget-op are marked as sensitive
(line 1). Then, for each sensitive basic block bb, we fetch each
of its preceding basic block pbb (line 3) and set the branch from
pbb to bb as a valid jump (lines 5 to 7). At last, pbb is also
marked as sensitive (line 8). This process will continue until all
sensitive basic blocks have been analyzed.

3) Branch Score Analysis
In branch score analysis, for each program branch, first we

count the number of total paths and vulnerable paths, then score
the branch based on the ratio of vulnerable paths over total paths
in its subsequent program. These scores would be further used
by execution state selector to explore the branch with higher
proportion of vulnerable paths in advance. Note that we count
the loop as one path when calculating the number of paths due
to the lack of actual execution times of the loop structure in
static analysis.

C. Fork-based Symbolic Execution Module

Fork-based symbolic execution module explores vulnerable
paths following the branch scores and generates test cases
which can violate security constraints for sensitive operations.

Algorithm 1

input: CFGfn, Vtarget-op

output: Setvalid-jmp

procedure calValidJmps (CFGfn, Vtarget-ops)

1 Vsen-BBs = collectSensitiveBBs (CFGfn, Vtarget-op);

2 for each BasicBlock bb ∈Vsen-BBs do

3 Vparent-BBs = collectParentBBs (CFGfn, bb);

4 for each BasicBlock pbb in Vparent-BBs do

5 Instruction inst = last branch instruction in pbb;

6 validChoice = getValidCondition (pbb, bb);

7 Setvalid-jmp.insert(<fn, inst, validChoice>);

8 Vsen-BBs.insert(pbb);

9 return Setvalid-jmp;

537

Generally speaking, it consists of three main parts: instruction
executor, execution state selector and constraint solver.

1) Instruction Executor
We modify the instruction executor to analyze vulnerable

paths with the results of function classification and valid jumps
analysis. When we deal with sensitive operations, a verify
process check() will be used to check if current constraints
violate security constraints. If so, a test case would be generated
by the constraint solver and reported to users.

When executing Call instructions, we check whether the
callee is T3 function. If so, we would terminate current
execution process and remove the execution state from the
execution state pool based on the analysis in Section II-B-1).

As for Branch instructions and Switch instructions, we at
first check whether current function belongs to T1 function. If
so, we follow the original fork-based symbolic execution
process. If current function is T2 function, execution flow can
only be transferred to the valid succeeding basic blocks
according to the result of valid jumps analysis. For each valid
branch, we construct a new execution state by copying the
current execution state, changing instruction pointer pc to the
valid destination instruction, and adding condition expression
into constraint set. At last, we insert the new execution states
into the execution state pool.

2) Execution State Selector
Execution state selector aims to select an execution state

from the execution state pool. Since existing selection strategies,
e.g. depth-first search (DFS), breadth-first search (BFS), and
covering new focus on program coverage, they cannot
accelerate the process of vulnerability detection. Hence, we
design a new selection strategy for vulnerability detection.
Leveraging the results of branch score analysis, we select the
execution state in the order of scores. In this way, code
segments with high proportion of vulnerable paths would get
analyzed in advance, accelerating vulnerable paths exploration
and explore as many vulnerable paths as possible with limited
computing time and resource.

III. IMPLEMENTATION AND EVALUATION

A. Implementation Details

We have implemented a prototype named SAF-SE. In it, we
use a fork-based symbolic executor with one symbolic
argument, whose size is one character, as the light-weight
symbolic executor, and LLVM-3.1 utils to generate call graph
and CFGs. As for the static analysis part, we implement a
LLVM optimization pass written in about 1,600 lines of C++
on call graph and CFGs. In fork-based symbolic execution
module, we adopt KLEE [2] and modify its instruction executor
and the execution state selector based on previous discussion.

B. Experimental Setup

To evaluate the effectiveness of SAF-SE, we applied it on
ten programs from GNU Coreutils version 6.11, and compared
the results with KLEE [2]. In our experiments, we set seven
library function calls as sensitive operations, including alloc,
malloc, realloc, calloc, memcpy, memccpy and memset. All
experiments were run on a machine with 3.20GHz Intel(R)

Core(TM) i5-3470 processor and 4G of memory, running 64-
bit Linux 3.2.0.

C. Results of Static Analysis

Table 1 shows the experimental results of static analysis on
the ten benchmarks. The time cost (Column 2) in static analysis
is negligible, averaging about 0.389s. Columns 3 to 5 show the
distributions of three types of functions. We can observe that
T2 functions, in which invulnerable paths can be pruned,
account for the largest proportion, about 48.4% on average.
Column 6 indicates the number of the basic blocks that can be
pruned by static analysis, including all the basic blocks in T3
functions and those along invulnerable paths in T2 functions.
On average, 21.8% of all basic blocks are free of symbolic
execution.

D. Results of SAF-SE

To assess the effectiveness of SAF-SE, we look into the
following two aspects: 1) we applied SAF-SE and KLEE on five
benchmarks with the same arguments, respectively. For each
benchmark, both SAF-SE and KLEE completed the whole
symbolic execution process, and we assessed the reduction in
execution time and executed instructions of SAF-SE over KLEE;
2) we applied SAF-SE and KLEE on the other five benchmarks
with the same arguments, and we limited the execution time to
60 minutes, so as to assess the sensitive operation coverage
promotion of SAF-SE over KLEE.

Table II shows the experimental results of the first aspect.
Columns 2 to 4 show the results of KLEE, including the
execution time, the number of analyzed instructions and the
number of analyzed sensitive operations, and Columns 5 to 7
show those of SAF-SE. On average, SAF-SE achieved about
23.52% execution time reduction and about 23.17% analyzed
instruction reduction over KLEE. In a word, SAF-SE can spend
less execution time and execute fewer instructions than KLEE in
completing the symbolic execution process without missing any
sensitive operations.

Table III describes the experimental results of the second
aspect. The meanings of the columns are similar to those in
Table II. Each benchmark was run for 60 minutes with the same
symbolic arguments: --sym-args 1 5 10 --sym-files 2 100, which
means the number of symbolic arguments are from 1 to 5, and
the length of each symbolic arguments is up to 10 characters.
Meanwhile, we use two symbolic files which are not longer than
100 characters. From the results we can see that, SAF-SE
executed 1.70x of instructions that KLEE executed, and
discovered 1.37x of sensitive operations that KLEE covered in
the same execution time. It is worth noting that the effectiveness
in sensitive operation coverage promotion is highly dependent
on the structure of each program and on the distribution of
sensitive operations. We can conclude that SAF-SE can explore
more vulnerable paths under limited execution time than KLEE.

The Experimental result proves SAF-SE can improve
vulnerability detection efficiency of fork-based symbolic
execution by pruning invulnerable paths in advance. Moreover,
SAF-SE can reduce false negatives in the circumstance of
limited computing time and resource with the help of branch
scores from static analysis.

538

TABLE I. RESULTS OF STATIC ANALYSIS

program time(s) T1 (num/rate) T2 (num/rate) T3 (num/rate) Prune BBs (num/rate)

mkdir 0.410 167/0.498 154/0.460 14/0.042 750/0.209

mkfifo 0.391 143/0.451 160/0.505 14/0.044 796/0.236

mknod 0.379 148/0.460 160/0.497 14/0.043 845/0.242

paste 0.363 146/0.458 159/0.498 14/0.044 777/0.226

ptx 0.685 196/0.513 167/0.437 19/0.050 886/0.158

seq 0.437 148/0.454 163/0.500 15/0.046 810/0.234

chmod 0.354 210/0.532 161/0.409 23/0.058 851/0.198

echo 0.281 132/0.423 165/0.529 15/0.048 841/0.251

basename 0.287 142/0.444 163/0.509 15/0.047 790/0.237

cat 0.300 148/0.460 159/0.494 15/0.046 816/0.234

AVG 0.389 158.0/0.470 161.1/0.484 15.8/0.046 816.2/0.218

TABLE II. RESULTS OF BENCHMARKS COMPLETED SYMBOLIC EXECUTION

program
KLEE SAF-SE

time(s) instruction sensitive op time(s) instruction sensitive op

echo 1548.01 40878183 20409 1045.72(-32.45%) 29702739(-27.34%) 20409

chmod 315.48 63130620 28425 243.52(-22.81%) 48300940(-23.49%) 28425

mkfifo 323.71 61459653 26275 228.82(-29.31%) 48493576(-21.10%) 26275

mknod 320.3 54853060 21937 259.67(-18.93%) 41718084(-23.95%) 21937

basename 25.45 5264958 2337 21.85(-14.16%) 4213381(-19.97%) 2337

TABLE III. RESULTS OF BENCMARKS RUN FOR 60 MINUTES

program
KLEE SAF-SE

time(s) instruction sensitive op time(s) instruction sensitive op

paste 3832.64 47913926 29752 3644.73 163029964(+240.26%) 61813(+107.76)

ptx 3706.1 99826914 40368 3718.47 102729476(+2.91%) 41703(+3.31%)

cat 4169.63 11818118 16565 4179.68 11868664(+0.43%) 16921(+2.15%)

seq 3669.66 81698491 35033 3668.82 103876566(+27.15%) 40830(+16.55%)

mkdir 3699.58 315383144 50299 3697.19 574760703(+82.24%) 76906(+52.90%)

IV. RELATED WORK

KLEE [2] is a widely used fork-based symbolic execution
tool evolves from EXE [3]. Vitaly Chipounov et al. [4]
proposed selective symbolic execution and implemented S2E
by adopting KLEE as symbolic executor and using QEMU [5]
to simulate execution environment. Combining symbolic
execution with concrete execution, Patrice Godefroid et al.
proposed the first concolic symbolic execution tool SAGE [6]
for binary code. Symbolic execution has been widely used in
vulnerability detection. SmartFuzz [7] leverages concolic
symbolic execution to find integer bugs in x86 binary
programs. Crashmaker [8] optimized the generational search
algorithm in SAGE. However, these techniques still have to
traversal the whole program even when detecting specific
sensitive operations, while SAF-SE can improve the
efficiency and accuracy of vulnerability detection by
restricting path exploration on vulnerable paths.

V. CONCLUSION

In this paper, we propose a statically-guided fork-based
symbolic execution technique for vulnerability detection and
developed a prototype SAF-SE to restrict path exploration on
vulnerable paths and to explore code segments with higher
proportion of vulnerable paths earlier by utilizing the results
of static analysis. We evaluated SAF-SE with ten benchmarks
from GNU Coreutils version 6.11, and compared it with
KLEE. The experimental results show that, SAF-SE improves
the efficiency of vulnerability detection a lot, and reduces

generating false negatives in the circumstances of limited
computing time and resource.

REFERENCES

[1] J.C..King, "Symbolic execution and program testing", ;inproceedings
of Communications of the ACM, 1976, pp.385-394

[2] C.Cadar, D.Dunbar, and D.Engler, "KLEE: unassisted and automatic
generation of high-coverage tests for complex systems
programs", ;inproceedings of OSDI'08 Proceedings of the 8th USENIX
conference on Operating systems design and implementation, 2008,
pp.209-224

[3] C.Cadar, V.Ganesh, P.M..Pawlowski, D.L..Dill, and D.R..Engler,
"EXE: automatically generating inputs of death", ;conference of
Computer and Communications Security, 2006, pp.322-335

[4] V.Chipounov, V.Kuznetsov, and G.Candea, "S2E: a platform for in-
vivo multi-path analysis of software systems", ;inproceedings of
Proceedings of the sixteenth international conference on Architectural
support for programming languages and operating systems, 2011,
pp.265-278

[5] F.Bellard, "QEMU, a fast and portable dynamic
translator", ;inproceedings of ATEC '05 Proceedings of the annual
conference on USENIX Annual Technical Conference, 2005, pp.41-41

[6] P.Godefroid, M.Y..Levin, and D.A..Molnar, "Automated Whitebox
Fuzz Testing", ;conference of Network and Distributed System
Security Symposium, 2008, pp.-1—1

[7] D.Molnar, X.Cong.Li, and D.A..Wagner, "Dynamic test generation to
find integer bugs in x86 binary linux programs", ;inproceedings of
SSYM'09 Proceedings of the 18th conference on USENIX security
symposium, 2009, pp.67-82

[8] Bing Chen, Qingkai Zeng, and Weiguang Wang. "Crashmaker: an
improved binary concolic testing tool for vulnerability detection."
inproceedings of the 29th Annual ACM Symposium on Applied
Computing. ACM, 2014, pp.1257-1263

539

How Does Defect Removal Activity of Developer
Vary with Development Experience?

Reou Ando, Seiji Sato, Chihiro Uchida,
Hironori Washizaki, and Yoshiaki Fukazawa

Department of Computer Science and
Engineering

Waseda University
Tokyo, Japan

Email: waseda-reou@suou.waseda.jp,
r0d8h8i0h@asagi.waseda.jp,

c.u.0224@ruri.waseda.jp, {washizaki,
fukazawa}@waseda.jp  

Sakae Inoue, Hiroyuki Ono, Yoshiiku Hanai,
Masanobu Kanazawa, Kazutaka Sone,

Katsushi Namba, and Mikihiko Yamamoto
Fujitsu Limited

Kanagawa, Japan
Email: {inoue.sakae, ono.hiro, hanai.yoshiiku,

kanazawa.masano, sone.kazutaka, nanba,
yamamoto.mikihi}@jp.fujitsu.com

Abstract—Because developers significantly impact software
development projects, many researchers have studied
developers as a means to improve the quality of software.
However, most works have examined developers in a single
project, and research involving multiple projects has yet to
be published. Herein we propose an analysis method which
investigates whether an evaluation of developers based on
individual experience is feasible when targeting more than
one project by the same organization transversely. Our
method deals with the logs of the version control system and
the bug tracking system. To support this method, we also
propose two models to evaluate developer, the defect
removal overhead rate (DROR) and developer’s experience
point (EXP). The results reveal the following. 1) DROR
cannot be used to compare different projects in the same
organization. 2) There is certainly a difference in DROR’s
between experienced and inexperienced developers. 3) EXP
should be a useful model to evaluate developers as the
number of projects increases. The data obtained from our
method should propose the personnel distribution measures
within the development framework for future developments,
which might lead to improve the quality of software.

I. INTRODUCTION

In software development projects, developers and
organizations are said to significantly impact software
[1-15, 17]. A 1968 study on the organization when
analyzing software quality resulted in Conway’s law [2],
which states that “organizations that design systems are
constrained to produce systems which are copies of the
communication structures of these organizations.”
Recently, researchers have examined defect prediction in
software using metrics based on hypotheses formed by the
structure of an organization [12], and have investigated
the effects of software in a project involving multiple
organizations due to mergers and acquisitions [14], etc.
Such studies have found that organizational structures
greatly influence software quality [2, 3, 12, 14]．

On the other hand, research on developers has
proposed techniques to improve the prediction of potential
defects in software by utilizing the quality of the
developer. The quality of the developer is defined as how
much his commits lead to defects in a project [17]. Defect
prediction using metrics, such as the number of commits
and LOC for each developer [6], assesses the impact of

developers on the quality and reliability of software [1,
4-9, 11, 13, 15, 17].

Most studies focus on the organizational structure and
the quality of the developers with respect to a single
project or a group project involving different organizations.
However, the results across multiple projects by the same
organization have yet to be published. With regard to the
experience of developers who belong to the same
organization，it is easy to imagine that the development
experience in past projects affects later software
development. In fact, although the target of their research
was a single project, A. Mockus et al. [11] found that
developer’s experience significantly affects the possibility
of defects; more experienced developers tend to have
fewer defects.

If the results about developers based on past
development experience are obtained by traversing
multiple projects, it may be possible to improve a new
project by structuring it so that is similar to developers’
previous experiences. Moreover, assuming a developer
with little development experience introduces more
defects, the development system should be arranged so
that inexperienced developers work with experienced
developers. This should improve the quality of software
while simultaneously educating inexperienced developers.
Therefore, we propose a technique to evaluate developers
by analyzing their previous experiences from logs stored
in the version control system and the bug tracking system
in multiple projects. To determine how the defect removal
activity of developers varies with development experience,
we divided the issue into evaluable components. Hence,
we formulated our study in the form of three research
questions:

・ RQ1: As an organization gains project experience,
does the defect removal overhead rate (DROR) of
developers tend to decrease?

・ RQ2: Is there difference in DROR based on
development experience?

・ RQ3: Is there difference in DROR between
developers based on experience in a similar project?

In order to respond to these research questions, we
carried out evaluation experiments using our method. The

(DOI reference number: 10.18293/SEKE2015-221)

540

subjects of our study are developers in a real company
involved in three projects, which do not overlap in the
development periods.

The contributions of this study are:

・ A method to evaluate developers based on past
development experience using logs stored in the
version control system and the bug tracking system.

・ Understanding the trend of DROR based on
developer experience.

・ Obtaining resources to help improve measures of
personnel distribution within the development
framework for future developments.

The rest of the paper is organized as follows. Section 2
presents the background of our study through related
work. Section 3 introduces our analysis method to address
the problem described in Section 2. Then two analysis
models to support our method are proposed in Section 4.
In Section 5, we conduct experiments to evaluate our
method and investigate the proposed research questions.
Next Section 6 explains summary of findings and the
practical application of our method. Finally we describe
the conclusion in Section 7.

II. BACKGROUND AND RELATED WORK

A. Prior works focusing on developers

In software quality analysis, several works propose
methods to predict defects in software based on the
characteristic of developers [1, 4-9, 11, 13, 15, 17]. For
example, Kamei et al. [6] observed the histories of
developers commits. They proposed change measures,
which extract the number of modified files recorded for
each commit, lines of code added, and whether or not the
change is a defect fix, etc. They found that by predicting
software defects through change measures, high-risk fixes
and the cost of high-quality software could be reduced.

Matsumoto et al. [9] extracted metrics such as the
number of commits and LOC for each developer from the
logs of the version control system. They supposed that
these are useful for fault-prone analysis, which specifies
the module containing defects. Besides, Y. Wu et al. [16]
defined the quality for each developer from the proportion
of commits that introduce defects into a project. They
found that using their proposed eight metrics as
parameters as lead to better fault-prone analysis compared
to traditional process metrics.

B. One of the problems in related works

Developer experience varies by the individual.
Numerous works deal with it [5-8, 11, 15], but the
research focuses on evaluating a single project or a group
of different organizations. Research on multiple projects
in the same organization has yet to be published. Most
prior works probably evaluate a single project, even
though they considered developer experience.

If developers with experience are compared to those
without experience, it is conceivable that there will be
differences. In addition, it is possible that the type of
experience leads to differences among experienced
developers. Therefore, the research aims to evaluate

developers based on their development experience in
multiple projects within the same organization in a
cross-sectional way.

III. ANALYSIS METHOD

The participants in our study are developers involved
in large-scale projects in an organization that uses a
version control system and a bug tracking system.

Our analysis involves the following steps:

(i) Extract logs from the version control system and the
bug tracking system used in completed projects.

(ii) Collect the names of developers, the number of files
they changed, the names of the absolute path that they
changed files, and the number of changes in them
from the log of version control system. In addition,
identify files recorded as defect fixes after detecting
the defect; that is, files related with a defect
(hereinafter referred to as defect files), from the logs of
the version control system and the bug tracking system.
Then collect the name of developer who changed
defect files and the number of changed defect files.

(iii) Gather the number of changed files, the changed
absolute path’s name and its number, and the number
of changed defect files by developer name.

(iv) Calculate each developer’s defect removal overhead
rate (DROR), which is detailed in Section 4, from the
number of changed files for each developer.

(v) Repeat steps (i) to (iv) for each completed project.
(vi) If a developer’s name exists in different projects,

consider the developer to be experienced in later
projects. Then calculate the developer’s experience
point (EXP) in the project, which is detailed in Section
4.

Finally, analyze each developer based on the gathered
data. Incidentally, we assumed that a function should be
implemented not by single file, but by all files included in
the absolute path, which is why we use the number of
changed absolute paths and not the number of changed
files. In this method, the number of changed files includes
the number of changing defect files.

IV. ANALYSIS MODEL

It seems important to prepare an indicator to link
developers with the number of defect to evaluate
developers individually. In this paper, we present a metric
called defect removal overhead rate (DROR) for each
developer. Moreover, in order to examine precisely what
area and how much ability a developer has acquired, we
also suggest a measure named developer’s experience
point (EXP) for each experienced developer.

A. Defect removal overhead rate (DROR)

In a large-scale development, it is important that
people who are not engaged in implementation are
involved in detecting defects. For this reason, it is
probable that developers differ from testers. A developer
who modifies certain defect files should have changed it
because he induced the defects that testers requested to be
fixed.

541

Table 1. Example each ’s DROR calculation

Hence, we assume that the person who injected defects
into a file is the person who changed it. This assumption
is used to define defect removal overhead rate (hereinafter
referred to as DROR) of a developer.

DROR of a developer is calculated as the proportion
of fixing defect files compared to the total number of files
that he changed. When developer involved in project
 , ’s DROR is defined as

 The project which evaluates developer
 Developer who involved in

: The total number of changing file in

 The number of fixing defect file in

Equation (1) can also be understood as the probability that
the developer fixes a defect file when changing a file. The
higher DROR, the more the developer is evaluated badly.
It is because developers who write low-quality code
should change more files related with a defect than
developers who write high-quality program. Table 1 gives
an example of each ’s DROR calculation. When
developer x changed files f1, f2 and f3 on 2015/1/10,
DROR of x is calculated as

 because he didn’t fix defect

files. Besides, developer y changed file f3, in which he
might have induced a defect at that time, on 2015/1/11.
And he fixed defect files f1, f2 and f3 on 2015/1/15. Then,
DROR of y is measured as

. In addition, developer z

changed file f4, in which he might have introduced a
defect, on 2015/1/12. If he fixed file f4 on 2015/1/16,
DROR of z is figured out as

. If comparing these

developers, developer y is evaluated the worst.

B. Developer’s experience point (EXP)

Developer’s experience point (hereinafter referred to
as EXP) is measurement that considers his development
experience. When there is developer who has
experienced past projects and is involved in the project
 , ’s EXP in is defined as

 Past projects
 The project which evaluates developer
 Developer who experienced and
 The number of appearing absolute path

which changed in

Equation (2) means that if absolute path in which
 changed files in also exists in , the number of
changing files in in , defined , is weighted
by that in , which defined . The higher EXP, the
more experience the developer has. The thought of (2) is
developed by referring to A. Mockus et al. [11] and Y.
Kamei et al. [6]. Figure 1 gives an example calculation of
EXP when changed the contents of path1 6 times,
path2 10 times, and path3 30 times in P1. Moreover, he
also edited path1 5 times, path2 2 times, and path4 100
times in P2. Then, his EXP in P2 is calculated as 50 (i.e.
(6×5) + (10×2) + (0×100)). Note that path3 in P1 is not
used in this example because he did not change it in P2.
Figure 3 gives another example of EXP calculation. When
 changed the contents of files shown in Fig. 2,
his EXP in P3 is figured out as 777 (i.e. ((9+0)×3) +
((50+20)×5) + ((0+40)×10))).

There are two purposes to define EXP using Eq. (2).
First developers can be separated according to
development experience. Although many developers have
some experience, the amount likely varies by developer. If
they are treated equally, the evaluation of developers can
be mistaken. The other purpose is to consider developers
with some experience but not in the type of project. As a
result of taking these purposes into account, we adopted
the system that is weighted by . Scale
type of EXP is ratio scale; EXP takes value from 0
indicating that the corresponding developer has no
experience.

Date

x y z f1 f2 f3 f4

2015/1/10 ✓ ○ ○ ○

2015/1/11 ✓ ◎

2015/1/12 ✓ ◎

2015/1/15 ✓ ● ● ◉

2015/1/16 ✓ ◉

○: Changed file
◎: Changed file (defect occurred)
●: Defect-fixed file
◉: Defect-fixed file (defect removed)

Figure 1. Example ’s EXP calculation

Figure 2. Example ’s EXP calculation

542

V. EMPIRICAL EVALUATION

To evaluate the proposed method in this paper, we
analyzed hundreds of developers who were involved in
three different completed projects of embedded system
development in a real company. In these three projects,
developers released software that is enhanced seasonally.
Thus, it is reasonable that the order of time is about the
same for each project and it is unlikely that the projects
were carried out simultaneously. In the following, three
projects by this company are named project A, B, and C
in order of time. Incidentally, the scale of this company’s
project ranges from 200,000 LOC to 300,000 LOC per
project. There were hundreds or a few thousands of
defects and thousands of commits per project1.

A. Experiment

We obtained the logs of the version control system
(Perforce2) and the bug tracking system (Prismy3) used in
projects A，B, and C. Then, we gathered data for
developers in each project according to procedure
described in Section 3. Next, we set up evaluation
experiments to correspond to each research question
presented in Section 1. Finally, we divided the developers
into several groups (Fig. 3).

・ Evaluation experiment 1 corresponding to RQ1
divides the developers into three groups depending
on whether they are involved in project A, B, or C.

・ Evaluation experiment 2 corresponding to RQ2
divides the developers into two groups according to
whether they have experience in previous projects.

・ Evaluation experiment 3 corresponding to RQ3
divides developers into two groups with median of
EXP as a boundary on those who have experience in
projects B and C.

With respect to the results, we created boxplots and
graphs of the empirical cumulative distribution function,
that is to say ECDF, for DROR of a developer for each
evaluation experiment. Reading the vertical axis of an
ECDF graph when the horizontal axis is fixed allows the
proportion of developers who have DROR up to a value
that the horizontal axis indicates to be determined. On the
other hand, if the graph is read through the horizontal axis
with the vertical axis fixed, the maximum DROR can be
grasped in proportion of developers.

1 Due to a confidentiality agreement, we do not show precise numbers.
2 http://www.perforce.com
3 http://www.tjsys.co.jp/page.jsp?id=742

B. Results and discussion

RQ1: As an organization gains project experience,
does the DROR of developers tend to decrease?

Figure 4 shows a boxplot and an ECDF of DROR in
evaluation experiment 1. Many developers in project A
have a higher DROR than those in project B and C.
Considering this and the fact that projects B and C are
derived from project A, DROR seems to depend on
organization experience. However, comparing ECDF of
project B with that of project C shows that the proportion
of developer in project B with a 0.2 or less DRORs is
more than that in project C. Furthermore, comparing the
boxplot of project B and that of project C indicates that
the DROR of project C is more scattered than that of
project B, suggesting that the DROR of developers varies
with factors other than their development experience. It
might be because some of developers are already at their
peak and did not improve significantly.

These findings show that we cannot affirm that DROR
tends to decrease as an organization experiences
projects.

RQ2: Is there difference in DROR based on
development experience?

Figure 5 shows the boxplots of the DROR in
evaluation experiment 2. There is a gap in the DROR’s
for both project B and C according to developer
experience. In addition, the width of boxplots for DROR
of inexperienced developers in project B differs from that
in project C, but the width of the boxplots of experienced
developers in project B is in good agreement with that in
project C. These results suggest that experienced
developers are free not influenced by changes in the
development system or software design in between
projects B and C.

A B C

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

D
R

P
R

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

DRPR

E
C

D
F

 o
f
D

R
P

R

A

B

C

D
R
O
R D
R
O
R

DROR

(a) Subject of evaluation experiment 1

Figure 4. Boxplot and graph of ECDF of DROR in experiment 1

(b) Subject of evaluation experiment 2 (c) Subject of evaluation experiment 3

Figure 3. Subject of each evaluation experiment

543

Figure 6 represents the ECDF graphs of DROR in
evaluation experiment 2. The proportion of developers
with experience and a DROR of 0.1 or less is higher than
that in project B. On the other hand, the relation is
opposite if the proportion is more than 0.1. In project C,
regardless of reading the vertical axis with any position of
a horizontal axis fixed, Fig. 6 indicates that DROR’s of
developers with experience is lower than those without
experience. Moreover, judging from ECDF of
inexperienced developers in both of project B and C, their
DROR differs by project.

The above results show that the DROR of experienced
developers is lower than that of inexperienced
developers. The difference between the groups depends
on the inexperienced developers and varies by project.

RQ3: Is there difference in DROR between developers
based on experience in a similar project?

Figure 7 shows a graph of ECDF of EXP in evaluation
experiment 3. EXP depends greatly on the number of
changing files in a project due to its definition. Thus,
ECDF of EXP differs by project, indicating that EXP
cannot be used to compare traversing projects of
developers.

Figure 8 shows the boxplots of the DROR in
evaluation experiment 3, while Fig. 9 graphs ECDF of the
DROR. With regard to project B, the width of the boxplot
of developers with a high EXP is wider than those with a
low EXP (Fig. 8). In addition, more than 60 percent of
developers with high EXP in project B have greater than 0
DRORs (Fig. 9). These results suggest that other factors,
which cannot be measured in terms of EXP, lead to
defects. On the other hand, there is a gap between
developers with high EXP and those with low EXP. This

result suggests that when a developer involved in one
project decides to engage in a similar one, his DROR
should be reduced.

It remains to be seen if there is the difference of
DROR’s between developers with different experience
levels. However, as the number of projects increases,
our analysis method and EXP should be a useful metric
to evaluate developers.

C. Threats to validity．

Internal validity:
This research focused on projects B and C, which

were derived from the development of project A. Except
for the notation variability of the absolute path among
projects, if the absolute paths of a file in current
development corresponded to that in past development,
they were regarded as the same development function.
Otherwise, they were viewed as quite different functions.
This is a threat to internal validity. In the future, the
influences of this assumption on this analysis method
must be confirmed by comparing the similarity between

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Project B

DRPR

E
C

D
F

 o
f
D

R
P

R

Low EXP

High EXP

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Project C

DRPR

E
C

D
F

 o
f
D

R
P

R

Low EXP

High EXP

D
R
O
R

D
R
O
R

DROR DROR

High EXP Low EXP

0
.0

0
0
.0

4
0
.0

8
0
.1

2

Project B

D
R

P
R

High EXP Low EXP

0
.0

0
0
.1

0
0

.2
0

0
.3

0

Project C

D
R

P
R

D
R
O
R

D
R
O
R

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Project B

DRPR

E
C

D
F

 o
f
D

R
P

R

Inexperienced

With experience

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Project C

DRPR

E
C

D
F

 o
f
D

R
P

R

Inexperienced

With experience

D
R
O
R

D
R
O
R

DROR DROR

With experience Inexperienced

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0
0

.1
2

Project B

D
R

P
R

With experience Inexperienced
0
.0

0
0

.0
5

0
.1

0
0
.1

5
0

.2
0

Project C

D
R

P
R

D
R
O
R

D
R
O
R

Figure 5. Boxplots of DROR in experiment 2

Figure 8. Boxplots of DROR in experiment 3

Figure 7. Graph of ECDF of EXP in experiment 3

Figure 6. Graphs of ECDF of DROR in experiment 2

0 5000 10000 15000 20000 25000 30000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

EXP

E
C

D
F

 o
f

E
X

P

B

C

Figure 9. Graphs of ECDF of DROR in experiment 3

544

path names or function names inferred from path name,
not the coincidence between absolute paths.

In addition, we determined the DROR based on the
hypothesis that the developer who changed a file related
to defect also induced the defect. As a result, some
developers had a DROR of 1.0; in other words, some
developers always caused defects. Although they worked
as debuggers in actual development, this may affect the
experimental results. This is also a threat to internal
validity. In the future, who induced a defect must be more
accurately identified by applying the SZZ algorithm
proposed by J. Sliwerski et al. [12]. This algorithm infers
commits, which brought about defects from diff and
annotate commands of the version control system. By the
additional investigation, we will clarify the correctness
and limitation of the above-mentioned hypothesis in
detail.

External validity:

In this experiment, we used Perforce as the version
control system and Prismy as the bug tracking system.
This is a threat to external validity. However, the analysis
method of this paper is not designed for this experiment.
So it may be effective in the same way for the domain that
uses both a version control system and a bug tracking
system. In the future, the efficiency of other domains and
companies that handle version control systems and bug
tracking systems must be verified.

VI. SUMMARY OF FINDINGS AND USAGE

Summary of findings are: 1) DROR cannot be used to
compare different projects in the same organization. 2)
There is certainly a difference in DROR’s between
experienced and inexperienced developers. 3) EXP should
be a useful model to evaluate developers as the number of
projects increases.

If the next development project is similar to past
projects, our method provides useful information to
improve personnel assignments. It can arrange the system
so that experienced developers guide inexperience ones as
they work on development together. This should improve
the quality of the software developed in the next project.

VII. CONCLUSION AND FUTURE WORK

To examine the tendency of DROR of developers
based on development experience, we propose an analysis
method and two models, which evaluate developers
across multiple projects using their records in the same
organization. The research found that despite being the
same domain, comparing projects directly is not useful
and that DROR of the developers with experience is lower
than those without experience. Although it is unclear
where there is a difference in the defect flow rates
between developers with much and some experience, our
proposed analysis model, EXP, should help evaluate
developers for future projects.

As a future work, we will investigate files or absolute
paths changed by developers who had high DROR despite
having a lot of experience. If this is understood, it might
be possible to evaluate the difficulty of functions to be
developed, which may improve the precision of EXP.
Moreover, we would like to try to discuss relations among
defect removal overhead, defect inflow (how many

defects a developer introduced in files he changed) and
defect removal efficiency (how many fixes a developer
processed in all defects) to improve the precision when
evaluating developer.

ACKNOWLEDGMENT

Our thanks go to anonymous reviewers who gave us a
lot of valuable comments to improve this paper.

REFERENCES
[1] C. Bird, N. Nagappan, B. Murphy et al., “Don’t Touch My

Code!  Examining the Effects of Ownership on Software Quality,”

ESEC/FSE '11 Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software
engineering, pp.4-14, 2011.

[2] M. Conway, “How Do Committees Invent?”, Datamation, vol.14,
no.4, pp.28-31, 1968.

[3] P. Donzelli, R. “Handling the knowledge acquired during the
requirements engineering process - a case study -,” SEKE '02
Proceedings of the 14th international conference on Software
engineering and knowledge engineering, pp. 673-679, 2002.

[4] J. Eyolfson, L. Tan, P. Lam, “Do Time of Day and Developer
Experience Affect Commit Bugginess?”, MSR '11 Proceedings of
the 8th Working Conference on Mining Software Repositories, pp.
153-162, 2011.

[5] F. Fagerholm, M. Ikonen, P.Kettunenet al., “How do Software
Developers Experience Team Performance in Lean and Agile
Environments?”, EASE '14 Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering,
No.7, 2014.

[6] Y. Kamei, E. Shihab, B. Adams et al., “A Large-scale Empirical
Study of Just-in-Time Quality Assurance,” IEEE Transactions on
Software Engineering, vol.39, no.6, pp. 757-773, 2013.

[7] E. Kocaguneli, A. T. Misirli, B. Caglayan et al., “Experiences on

Developer Participation and Effort Estimation,” SEAA 2011 37th
EUROMICRO Conference on Software Engineering and Advanced
Applications, pp.419-422, 2011.

[8] R. Latorre, “Effects of Developer Experience on Learning and
Applying Unit Test-Driven Development,” IEEE Transactions on
Software Engineering, vol.40, No.4, pp. 381-195, 2014.

[9] S. Matsumoto, Y. Kamei, A. Monden et al., “An Analysis of
Developer Metrics for Fault Prediction,” PROMISE '10
Proceedings of the 6th International Conference on Predictive
Models in Software Engineering, No.18, 2010.

[10] A. Mockus, “Organizational Volatility and its Effects on Software
Defects,” FSE '10 Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software engineering,
pp.117-126, 2010

[11] A. Mockus, D. M.weiss, “Predicting Risk of Software Changes,”
Bell Labs Technical Journal, Vol.5, No.2, pp.169-180, 2000.

[12] N. Nagappan, B. Murphy, and V. Basili, “The Influence of

Organizational Structure on Software Quality: An Empirical Case
Study,” ICSE ’08 Proceedings of the 30th international conference

on Software engineering, pp.521–530, 2008.
[13] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Programmer-based

Fault Prediction,” PROMISE '10 Proceedings of the 6th
International Conference on Predictive Models in Software
Engineering, No.19, 2010.

[14] S. Sato, H. Washizaki, Y. Fukazawa, S. Inoue, H. Ono, Y. Hanai
and M. Yamamoto, et al., “Effects of Organizational Changes on

Product Metrics and Defects,” APSEC 2013 20th Asia-Pacific
Software Engineering Conference, vol.1, pp.132-139, 2013.

[15] E. Shihab, A. E. Hassan, B. Adams et al., “An Industrial Study on
the Risk of Software Changes,” FSE '12 Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, No.62, 2012.

[16] J. Sliwerski, T. Zimmermann, and A. Zeller, “When Do Changes
Induce Fixes?” MSR '05 Proceedings of the 2005 international
workshop on Mining software repositories, pp.1-5, 2005.

[17] Y .Wu, Y. Yang, Y.Zhao et al., “The influence of developer quality
metrics for fault prediction,” SERE 2014 Eighth International
Conference on Software Security and Reliability, pp.11-19, 2014.

545

Model Comparison: a Systematic Mapping Study

Lucian José Gonçales, Kleinner Farias, Murillo
Scholl, Maurício Veronez

PIPCA, University of Vale do Rio dos Sinos (Unisinos)
São Leopoldo, RS, Brazil

lucianjosegoncales@gmail.com,
kleinnerfarias@gmail.com, murillosholl@hotmail.com,

veronez@unisinos.br

Toacy Oliveira
PESC/COPPE, Federal University of Rio de Janeiro

(UFRJ)
Rio de Janeiro, RJ, Brazil

toacy@cos.ufrj.br

Abstract— Context: Model comparison plays a central role in
many software engineering activities. However, a comprehensive
understanding about the state-of-art is still required. Goal: This
paper, therefore, aims at classifying, identifying publication fora,
and performing thematic analysis of the current literature in
model comparison for creating an extensive and detailed
understanding about this area, thereby determining gaps by
graphing and pinpointing in which research areas and for which
study types a shortage of publications still exits. Method: We
have conducted a systematic mapping study to scrutinize those
contributions produced over time, which research topics have
most investigated, and which research methods that have been
applied. For this, we have followed well-established empirical
guidelines to define and apply a systematic mapping study.
Results: The results are: (1) majority of studies (14 out of 40)
provide generic model comparison techniques, rather than
comparison techniques for UML diagrams; (2) a categorization
and quantification of the current studies in a variety of
dimensions; and (3) an overview of current research topics and
trends.

Keywords-component; model comparison, model matching,
mapping study, model similarity.

I. INTRODUCTION
Model Driven-Engineering (MDE) is a model-centric

approach where developers focus on elaborating, maintaining,
and evolving design models in different levels [1][2]. In this
context, model comparison plays a central role in many MDE
activities as software models are in constant changes i.e.,
deletions, additions, and updates, are frequently occurring in
such artifacts [2][3]. The goal behind managing models is to
abstract software development process, i.e., guided by ideas
and stakeholders goals instead typing a thousand of line codes.
Academia has provided comparison techniques; at the same
time, industry has provided robust tools. However, the
resolution of model comparison did not reach an ideal scenario.
Robust tools like IBM RSA [4], Epsilon [5] and MATA [6],
still suffer from model comparison problems.

This is due their functionalities are far from providing a
precise and large-scale computation in synchronizing and
matching models. In [7][8], comparison problem is usually
associated to graph isomorphism, well-know to be hard to
resolve. Then, we can conjecture that current tools and
comparison techniques do not solve the entire comparison
problem yet, and then we still stand on the craftsmanship era.

We understand that a comprehensive understanding about the
state-of-the-art is crucial for evolving the current comparison
techniques.

This paper, therefore, aims at classifying, identifying
publication fora, and performing thematic analysis of the
current literature in model comparison for creating an extensive
and detailed understanding of the state-of-the-art in this area.
Moreover, we seek to determine gaps by graphing and
pinpointing in which research areas and for which study types a
shortage of publications still exits.

In this sense, we have conducted a systematic mapping
study [9][10] to (1) scrutinize those contributions produced
over time, and (2) characterize previously published model
comparison approaches, i.e., which research topics have been
most investigated, and which research methods that have been
applied. For this, we have followed well-established empirical
guidelines for defining and applying systematic mapping study
(e.g., [10][11][12][13][14][15]). This method focuses on
collecting statistical data related to a set of research questions,
and provides a body of knowledge to future researches.

Our results show that approximately 34% of all studies (14
out of 40) provide generic model comparison techniques, rather
than comparison techniques for UML diagrams [16].
Moreover, we categorize and quantify the current studies in a
variety of dimensions, and give an overview of current research
topics and trends. Finally, we have observed that existing
literature has focused on providing repeated solutions for
similar problems rather than on innovative approaches.

The remainder of this paper is organized as follows. Section
II discusses the related work. Section III presents the SMS
planning, i.e., the main steps for guiding the Systematic
Mapping Study (SMS). Section IV presents the study results.
Section V discusses the results by presenting a study map.
Section VI presents some complementary results. Section VII
shows the threats to validity. Finally, Section VIII presents
some conclusions.

II. RELATED WORK
This section reports a series of studies, including surveys,

mapping studies, and systematic reviews, which have
previously reviewed the state-of-the-art in model comparison.
To the best of our knowledge, this paper is the first to
investigate the main research question proposed in Table 1.

(DOI reference number: 10.18293/SEKE2015-116) 546

There is a lack in the academia and industry for systematic
and mapping studies that summarize model matching
approaches. That is, there is no study showing a widespread
view about model composition techniques or even providing a
body of knowledge to future researches. In [17], authors
present an analysis about model comparison techniques
showing its differences and trade-offs according the matching
scenario, and in [18], authors present a survey about the state-
of-the-art comparison approaches where they categorize
approaches by type of models. Therefore, both studies do not
focus in present a summary of studies through mapping study
protocols.

Usually, current surveys indirectly address model
comparison in the context of clone detection and model
versioning, rather than systematically deal with comparison
issues in the field of UML model composition, for example. In
[19] the authors present a survey about tools that executes
three-way merge inside the versioning control system. Still,
they hightligth that comparison task is essential to update
models in repository. Alanen and Porres [20] present a
description of three model-independent differentiation
algorithms in the field of model versioning.

Given that model comparison is widely used, many
approaches have been proposed, including UML and non-UML
based ones. In [21], Salami and Ahmed describe the state-of-
the-art works considering reuse of UML artifacts. Nevertheless,
they cover only UML approaches. Selonen [22] presents a
survey on model comparison approaches focused on UML
models. Unfortunately, none of them provides a careful report
classifying, identifying publication fora, and performing
thematic analysis of the current literature in model comparison,
hampering the creation of an extensive and detailed
understanding about this area.

To sum up, there has been very limited empirical research
reporting and characterizing the state-of-the-art of model
comparison. More specifically, we have identified five key
gaps in the current literature: (1) a lack of understanding about
how model comparison has been investigated in the last years,
and on which perspectives it has been done; (2) a gap to draw a
“big picture” view of model comparison beyond UML, such as
the degree of abstraction of comparison mechanisms; (3) there
is no understanding as to what extent the comparison
techniques are accurate, and which research methods have been
used to investigate such techniques; (4) limited knowledge
about which diagrams are supported by the comparison
techniques, and which improvement points are more urged;
and, finally, (5) an overview about how automated the model
comparison techniques are.

III. SMS PLAN STUDY
This section describes the scope and essential steps for

executing the systematic mapping study (SMS). Section III.A
summarizes the researcher questions. Section III.B defines the
strategy for the searching studies. Section III.C lists the
inclusion and exclusion criteria for studies selection. Finally,
Section III.D specifies the data extracted from selected studies.

A. Research Questions
Table I shows the research questions addressed in this study

and their motivations. We seek to understand which diagrams
the current model composition techniques are able to work
with. To date, little is known about to what extent the existing
techniques support to matching, or even computing the
similarity between specific-types of design models. To explore
these questions, we have found 2581 papers and realized a
comprehensive and thorough analysis in 401.To carry out this
in-depth investigation, we first had to define some search
strategies for finding the papers.

TABLE I. RESEARCH QUESTIONS

Research Question Motivation

RQ1: What are the types
of diagrams addressed by
comparison techniques?

Find out the types of diagrams that
comparision techniques support,
thereby revealing the diagrams that
have been considered important as
well as identify improvement points.

RQ2: What are the data
structures commonly used
in the comparison
algorithms?

Pinpoint which data structures are
used in the comparison algorithms.

RQ3: What are the types
or categories used for
evaluating diagrams in
similarity approaches?

Understand the different aspects in
required to evaluate diagrams.

RQ4: How fine-grained
are the comparison
techniques?

Grasp how accurate and detailed are
the comparison techniques.

RQ5: What are the
comparison types?

Explore if techniques are able to
compare using different comparison
strategies, thereby allowing to
improve the precision of the
similarity.

RQ6: Which empirical
strategies are used to
evaluate the comparison
techniques?

Check the empirical strategies used
to evaluate the comparison
techniques.

RQ7: Is the approach
automatic, semi-automatic
or manual?

Investigate the level of automation
used to compare models, thereby
revealing the degree of human
intervention required to compute the
similarity score between two models.

B. Search Strategy
To search for the studies, we have defined terms to form

Search Strings for performing searches in the main digital
libraries. These strings were formulated following well-known
empirical guidelines, (e.g., [10][11][12][15]), and followed a

TABLE II. SEARCH STRING (SS)

Major Terms Synonym Terms

Diagrams design OR model OR design OR structure

Comparison match OR matching OR differencing OR similarity

five-step process to define the search terms as follows: (1)
define the major keys; (2) identify alternative words,

1

http://www.kleinnerfarias.com/publications/conference/seke2015

547

synonyms or related terms to major keywords; (3) verify if the
major keywords are contained in articles of the research
category; (4) associate synonyms, alternative words or terms
related to the main keywords with the Boolean “OR”; and (5)
relate the major terms with Boolean “AND”.

The major keywords are “Diagram” and “Comparison”.
Table II shows the synonyms and related words to major terms.
We developed various combinations of Search Strings.
However, we presented the substring that returned the most
accurate results in search engines:

((Diagram OR Design OR Model OR Structure) AND (comparison OR
matching OR differencing OR match)))

The search string above was used in the major search
engines for academic studies of the Internet: IEEE Digital
Library, Science Direct, Digital ACM Library, Scopus, Google
Scholar and Springer Link.

C. Selection: inclusion and exclusion criteria
We have used the following criteria to include the primary

studies. First, search was limited to studies published in
electronic digital libraries from newspapers or journals,
educational institutions, international conferences, Master and
PhD thesis. Secondly, we only considered approaches written
in English. Thirdly, there has been no restriction on the
publication year of studies until November 2014. Finally,
papers witch proposes model comparison.

For approach exclusion, we have applied the following
criteria: (1) papers and studies witch not focus on model
comparison; (2) duplicated studies returned by different search
engines; and (3) papers and works that focus in low-level
comparison (XML, source code and text).

D. Extracted Data
The following text describes the collected data we have

extracted from articles to a spreadsheet and used it for
summarizing the state-of-the-art model comparison techniques:
(1) implicit data of inclusion and exclusion criteria: publication
date, publication fora, and search engine; and (2) basic
attributes of studies: main author and title; and finally (3)
information related to research questions:

Diagrams (RQ1). The set of diagrams elicited from
collected studies. They are accounted according these types of
diagrams, including Component-and-Connector (CC), Generic
(GD), Meta-Models (MM), Business Process Models (BPM),
Use Case Diagram (UC), Class Diagram (CD), Sequence
Diagram (SD), Activity Diagram (AD), Statechart Diagram
(SCD), UML Profile (UP), and Any UML Diagram (AUD).
Some diagrams are based in UML notation, but none of them
was associated to a specific UML version.

Data Structures (RQ2). Basic data structures used by
approaches and technologies.

Comparison aspects (RQ3). There is not a defined set of
comparison aspects for model evaluation in the current
literature. We have identified the following six comparison
criteria in the works investigated: (1) structure, compare
diagrams considering the modules and their relationships; (2)
syntactic, compare taking into account the syntaxes of

diagrams; (3) semantic, compare diagrams considering the
meanings of the differences; (4) layout, the comparison
approaches aim at view issues; (5) lexical, implement a name-
based model comparison; and (6) multi-strategy, the
approaches combine at least two comparison strategies to
improve the comparison results.

Granularity levels (RQ4). Granularity refers to the unit of
conflicts, e.g., attributes of the input models, and depends on
the diagram used and criteria evaluated (item 3) e.g., layout
aspects on UML class diagram own it is specific attributes.
Users can set the level of granularity according the desired
scalability and user's convenience [23]. We categorized the
model comparison in tree levels of granularity: (1) coarse-
grained, only one attribute is analyzed to compute the elements
differentiation, e.g., the element names only; (2) partial, a set
of attributes that is analyzed, i.e., more than one element; and
(3) fine-grained, use all the possible attributes for execute the
diagrams differentiation;

Comparison Type (RQ5). Comparison techniques can find
the commonalities and differences between models using
different strategies. We have identified two types of model
comparison: (1) similarity, the mechanism's goal is to identify
the similarity retuning values indicating how similar the
elements between each other are; and (2) matching, the
mechanisms return a set of matched elements.

Research method categories (RQ6). This is a question that
provides a general view about the direction of the current
studies, i.e., the kind of studies that academia have been
producing. Given that there is a vast amount of works to be
classified, we have used the categories proposed in [12] for
classifying the selected papers: (1) evaluation research uses
empirical strategies to evaluate proposed works; (2) solution
proposal proposes a solution based on new or previous
approaches; (3) validation research used for evaluating
techniques, which have not been widely adopted in industry;
(4) philosophical papers proposes new and revolutionary
research to address some aspects of model comparison; and (5)
opinion papers, studies that remain the discussion about the
author’s point of approaches arguing to resolve the tackled
problem based in previously personal experiences.

Autonomous level (RQ7). In order to know the kind of
automation support that algorithms provide to users, we have
investigated the current works from tree perspectives: (1)
automatic, it does not require any human interaction; and (2)
semi-automatic, it requires users specifying configuration
parameters before differentiation execution. Those approaches
need user intervention for handling evaluation procedure, and
(3) manual, a list with strategy steps or good practices for
conducing the diagram comparison.

Technique description (RQ8). We have also observed how
authors represent the comparison algorithms one. We
generalized the following studies according the selected studies
content: (1) pseudo-code, the approach shows the algorithm in
a generic formalism, i.e. language-independent; (2) textual:
authors to explain how the approach works by plain text; and
(3) other, language-dependent and formalism representations
(programming languages, modeling representations, etc.).

548

IV. EXECUTION
We have adopted the following four steps to select studies.

The list below describes the sub-phases used to find studies,
and Table III shows the results obtained in each sub-phase.

• Step 1. First results (SP1): find electronic papers using
the substring, according Section III.B.

• Step 2. Duplicates Removed (SP2): remove repeated
studies.

• Step 3. Pre Selection (SP3): remove papers that do not
match in established requirements and research
questions.

• Step 4. Selected Studies (SP4): we analyzed all selected
studies in the previous step and applied the exclusion
criteria aforemenioned.

TABLE III. STUDIES OBTAINED IN EACH STEP

V. STUDY RESULTS
This section presents the results for each research question

as follows.

A. Diagrams Category (RQ1)
The majority of the works (14 approaches) focused on

generic diagrams, i.e, those diagrams that are more abstract and
consider similar attributes to compare the diagrams. Model
comparison plays an important role inside MDE, where the
capability in comparing many kinds of models are required. In
addition, a recent study concluded most developers and large
companies think UML complex leading the use of more
abstract and alternative models [24]. This is the explanation
more accepted about the high quantity of approaches focusing
on resolving generic diagram comparison. On the other hand,
the class diagram is the most common UML diagram
investigated (12 approaches); similar to previous studies
[25][26] in the field of software modeling highlighting UML
class diagram as one of UML most used in practice. Although
UML is considered de fact standard modeling language [26],
we have observed the number of non-UML-based comparison
techniques (48%) outnumbers the UML-based ones (53%).

B. Data Structures Used (RQ2)
Majority of the approaches (58%) use graphs for model

comparison. The tree data structure is the second most used
(14%) by authors. The minority (3%) implemented semantic
similarities, and other authors (25%) utilize other simpler data
structures.

C. Comparison Aspects (RQ3)
The results about comparison aspects revealed 21

approaches focusing in structural comparison aspects. After, 11
papers focused on Multi-Strategy comparison, i.e., comparison
mechanisms using more than one strategy. Moreover, three

papers evaluated the semantic aspects, and other 3 studies
focused in lexical comparison, i.e., only evaluating the
differences between words and one algorithm evaluated the
layout characteristic, and one article focusing in syntactic
aspect. The greater part of approaches evaluates one aspect,
i.e., 29 approaches, and the remaining studies evaluated more
than one aspect.

D. Granularity (RQ4)
Most approaches (29) proposed coarse-grained approach,

i.e., they evaluate only one level of abstraction. Section V.A
pointed that most approaches focused on generic diagrams.
This leads model comparison algorithms considering main
attributes for evaluating models. Other only three approaches
executed a fine-grained evaluation, i.e., a detailed attributes
coverage.

E. Comparison Type (RQ5)
We have classified the comparison mechanisms in two

categories: (1) similarity, focusing on math similarity; and (2)
matching, approaches performing a mapping of model
elements. This definition is located in the Section III.D. The
matching approach (28 of 40 studies) is the most used,
followed by similarity approach (12 of 40 studies).

F. Research Method (RQ6)
The majority of appraches (77,5%, 31 of 40 papers) are

Proposal of Solution. Evaluation Research and Philosophical
Papers has the same quantity (10%, 4 of 40 papers) and, the
resting approaches (2,5%, 1 of 40 papers) rely on practical
experience to develop a comparison approach. There are two
main aspects to consider in this research question: (1) there are
new emerging approaches for model comparison; and (2) the
approaches do not complement each other. The results show
that the literature has recurrently proposed and discussed new
comparison techniques. During the whole selection steps, we
did not find any opinion paper about model comparison.

G. Autonomously Level (RQ7)
Most algorithms conduct the model comparison process

autonomously (67,5%, 27 of 40 papers), followed by semi-
automatic process (30%, 12 of 40 papers) where users must set
some adjustments during the comparison and, only one
approach (2,5%, 1 of 40 studies) discusses how persons
manually match UML diagrams. From the results is possible to
perceive a strong tendency for producing automatic
approaches. We understand the focus in the process of diagram
comparison is to avoid users wasting time with specific
configurations.

VI. COMPLEMENTARY RESULTS
Table IV shows a list that contains a rank of those

publication fora that contains more papers focusing on
comparison of diagrams. Table represents 27.5% of all papers
analyzed (11 of 40 articles). Conferences/Journals with one
article did not appeared in this Table. Figure 1 presents that the
frequency of publications was higher in 2008 and 2011. This
period was responsible for producing 19 studies, i.e., a higher
quantity production than other periods from 2003 to 2007, and
from 2012 until 2014.

Steps IEEE	
 Scopus	
 Springer
Link

Google
Schoolar ACM Science

Direct Total

SP1 270	
 461 891 427 49 483 2581
SP2 268	
 321 787 392 45 476 2289
SP3 41	
 49 87 93 20 9 299
SP4 7	
 2 2 23 6 0 40

549

TABLE IV. QUANTITY OF PAPERS PER EVENT/JOURNAL

Publication Place Quantity of
approaches Percentage

IEEE/ACM International
Conference on Automated
Software Engineering (ASE)

4 10%

IEEE Transactions on software
Engineering 3 8%

European Software Engineering
Conference and the ACM
SIGSOFT Symposium on The
Foundations of Software
Engineering (ESEC/FSE)

2 5%

International Conference on
Software Maintenance (ICSM) 2 5%

 The production was the most unproductive in 2009 (just 1

article produced). In a general overview over the chart is
possible to perceive a frequent times of rise and falls in
publication numbers. Moreover, the average of produced
studies is low (by about 3,33 studies per year).

Figure 1. Publications by year

Table V shows a rank of all authors according their
productivity in relation to matching and similarity approaches
publications. The number of papers was accounted taking in
consideration the author's first name in studies. Zhenchang
Xing is the author that most produced comparison techniques
(8%, 3 from 40 studies). After six authors produced two papers,
and others authors produced each one approach.

TABLE V. AUTHORS PUBLICATION QUANTITY RANKING

Author Quantity of
Approaches Percentage

Zhenchang Xing 3 8%
Christian Gerth 2 5%
Hamza Onoruoiza Salami 2 5%
Kleinner Oliveira 2 5%
Mark van den Brand 2 5%
Segla Kpodjedo 2 5%
Shiva Nejati 2 5%

The following discussion describe the analysis of the results
(Figure 2) for the combined research questions illustrated in a
bubble plots. This method gives a map and provides a general
overview of what academia published. Combining the results
of RQ1, RQ6, and year, we obtained the mapping of the

evolution through years of the number of type diagrams and the
research methods used. The results show that the proposal of
solution is the research type that have been more adopted by
academia to present comparison approaches over the last 11
years. In 2008, all 6 papers were proposal of solution, where 3
focused the comparison approach on class diagrams and
respectively one approach for generic, meta-model and UML
profiles. Generic diagram received more attention by three
years in academia. Firstly, in 2007, two proposals were
published concerning generic comparison of diagrams. This
happened after by about six years from the Model-Driven
Architecture (MDA) has been formally proposed, and
according our results, after four years, the beginning of the
model comparison studies in the academia. Second, in 2010, all
four proposals of solutions were concerned in generic diagram
comparison; a year before (2009) only one study was published
with focus on class diagrams, i.e., the most unproductive year.
Finally, in 2011, generic digram was the center of attention by
the second year consecutive.

VII. THREATS TO VALIDITY
We follow the systematic mapping study methodology for

the execution of this research. This method provides protocols
to extract data in order to guarantee detailed results of the state
of the art. For this we defined the search strings and research
questions. However, some factors may threat the validity of the
study: (1) difficulty to relate all works to the topic due the
constant changes in publications; and (2) the conduction of data
extraction of the papers, such as (1) the search string we used
has the main terms such as “model” and “matching”. However,
“matching” and its synonyms (comparison, similarity, etc.) are
generic and this string retrieved broad results; (2) the inclusion
of thesis and dissertations published on-line that are not peer
revied and, (3) the limitation to the main six search engines
defined in the SMS planning.

VIII. CONCLUSION
This paper identified and classified publication fora, and

performed thematic analysis of the existing literature in model
comparison, thereby providing an in-depth understanding about
the model comparison area. In addition, it addressed this gap by
describing and pinpointing in which field and for which
research topics a shortage of publications still exits.

We have observed that the most studies have concentrated
more effort on producing generic comparison techniques,
rather than on providing specific ones, e.g., techniques for
comparing UML models. This can be explained by three
reasons. First, there is not a widely-adopted modeling language
in industry. Second, given the wide variations of modelling
notations and diagrams types, it would be challenging to
provide an approach that can have a broad adoption. Third,
model comparison is not a trivial task to deal with. Rather, it
may be still characterized a time-consuming and error-prone
task. Finally, we also hope that this work represents a first step
in a more ambitious agenda on providing a better support
researchers and practitioners to compare models. In addition,
we hope that the issues outlined throughout the paper may
encourage other researchers to extend our study.

550

 ACKNOWLEDGMENT
This work was funded by Universal project – CNPq (grant

number 480468/2013-3).

REFERENCES
[1] S. Kent, “Model-driven engineering,” In: 3rd Int. Conf. on Integrated

Formal Methods (IFM '02), pages 286-298, 2002.
[2] A. Sarma, D. Redmiles, A. Van der Hoek, “Palantir: early detection of

development conflicts arising from parallel code changes,” Software
Engineering, IEEE Transactions on , vol.38, no.4, pp.889,908, July-Aug.
2012.

[3] Wieland et al. “Turning conflicts into collaboration,” Computer
Supported Cooperative Work, pages 181-240, 2013.

[4] IBM, IBM Rational Software Architecture.
http://www.ibm.com/developerworks/downloads/r/architect/index.html,
accessed in 2015.

[5] Epsilon, https://www.eclipse.org/epsilon/, accessed in 2015.
[6] J. Whittle, P. Jayaraman, Synthesizing hierarchical state machines from

expressive scenario descriptions, ACM Trans. Softw. Eng. Methodol,
vol. 19, no. 8, February 2010.

[7] K. Voigt, “Structural graph-based metamodel matching,” PhD thesis,
University of Desden, 2011.

[8] S. Abbas, H. Seba, “A module-based approach for structural matching of
process models,” 5th Int. Conf. on Service-Oriented Computing and
Applications, pages 17-19, 2012.

[9] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, “Systematic mapping
studies in software engineering,” 12th Int. Conf. on Evaluation and
Assessment in Software Engineering, UK, pp. 68-77, 2008.

[10] D. Budgen et al., “Using mapping studies in software engineering,”
Proceedings of PPIG, vol. 8, pp. 195-204, 2008.

[11] B. Kitchenham, P. Brereton, D. Budgen, “The educational value of
mapping studies of software engineering literature,” 32nd Int. Conf. on
Software Engineering, vol. 1, New York, NY, USA, pp. 589-598, 2010.

[12] B. Kitchenham, D. Budgen, O. Brereton, “Using mapping studies as the
basis for further research - A participant-observer case study,” Inf.
Softw. Technology, pp. 638-651, 2011.

[13] D. Torre, Y. Labiche, M. Genero, “UML consistency rules: a systematic
mapping study,” 18th Int. Conf. on Evaluation and Assessment in
Software Engineering, 2014.

[14] N. Asoudeh, Y. Labiche, “Requirement-based software testing with the
UML: a systematic mapping study,” 7th Int. Conf. on Software
Engineering Advances, 2012.

[15] Wohlin et. al., “Experimentation in Software Engineering”, Springer,
Heidelberg, Berling, Germany, 2012.

[16] OMG, UML metamodel: superstructure specification,
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF, 2015.

[17] D. Kolovos, D. Ruscio, A. Pierantonio, R. Paige, “Different models for
model matching: an analysis of approaches to support model
differencing”, Workshop on Comparison and Versioning of Software
Models(CVSM '09), pages 1-6, 2007.

[18] M. Stephan, J. Cordy, “A survey of model comparison approaches and
applications,” in International Conference on Model-Driven Engineering
and Software Development (MODELSWARD), pp.265-277, 2013.

[19] K. Altmanninger, S. Martina, M. Wimmer, “A survey on model
versioning approaches,” Int. Journal of Web Information Systems, pages
271-304, 2009.

[20] M. Alanen, I. Porres, “Difference and union of models,” UML
conference, pages 2-17, 2003.

[21] H. Salami, M. Ahmed, “UML artifacts reuse: state of the art,” 2014.
[22] P. Selonen, “A review of UML model comparison approaches," Nordic

Workshop on Model Driven Engineering, 2007.
[23] B. Bruegge, A. de Lucia, F. Fasano, G. Tortora, “Supporting distributed

software development with fine-grained artefact management,” 6th Int.
Conf. on Global Software Engineering, pages 213-222, 2006.

[24] M. Petre, “UML in practice,” International Conference on Software
Engineering, Piscataway, NJ, USA, pages 722-731, 2013.

[25] A. Nugroho, M. Chaudron. “A survey into the rigor of UML use and its
perceived impact on quality and productivity,” In Proceedings of the
Second ACM-IEEE international symposium on Empirical software
engineering and measurement (ESEM '08). ACM, New York, pp. 90-99,
2008.

[26] M. Chaudron, W. Heijstek, and A. Nugroho. “How effective is UML
modeling ?” Software System Modeling. Vol. 11, no. 4 , pp. 571-580,
2012.

	

Figure 2. Publications by year

	

	

	

	

	

551

Exploring SOA Pattern Performance using Coupled

Transformations and Performance Models

Nariman Mani, Dorina C. Petriu, Murray Woodside

Department of Systems and Computer Engineering, Carleton University

Ottawa, Ontario, Canada

{nmani | petriu | cmw}@sce.carleton.ca

Abstract—Service Oriented Architecture (SOA) patterns can

be applied to improve different qualities of SOA designs. The

performance impact of a pattern (improvement or degra-

dation) may affect its use, so we assess its impact by

automatically generated performance models for the original

design and for each candidate pattern and pattern variation.

This paper proposes a technique to incrementally propagate

the changes from the software to the performance model. The

technique formally records the refactoring of the design model

when applying a pattern, and uses this record to generate a

coupled transformation of the performance model. The SOA

design is modeled in UML extended with two profiles, SoaML

and MARTE; the patterns are specified using Role Based

Modeling and the performance model is expressed in Layered

Queuing Networks. Application of the process, and pattern

performance exploration, is demonstrated on a case study.

Keywords- Software performance model, service oriented

systems, SOA pattern, coupled transformation, LQN

I. INTRODUCTION

In designing SOA (Service Oriented Architecture) systems,

SOA patterns [1] are proposed as generic solutions to

problems in the architecture, design and implementation.

The patterns may have a substantial impact on performance,

and we wish to evaluate this with a performance model

(PModel) generated automatically from a software design

model (SModel) and the pattern description. The baseline

PModel may be created by an automated transformation as

in PUMA (Performance from Unified Model Analysis) [2].

The automated refactoring of the PModel to reflect

application of a pattern, using coupled transformations of

the SModel and the PModel, is the subject of this work.

Automating the refactoring makes it easier to consider the

performance issues, and to rapidly consider a (possibly

large) set of variations on a pattern. It also reveals the causal

connections between the design changes and the

performance issues, which may be of value to the designer.

Manually refactoring the SModel and then regenerating the

PModel using PUMA is a viable alternative but may suffer

from inconsistency in the refactoring. In [3] we studied the

impact of SModel changes to PModel due to application of

SOA design patterns.

This research describes a coupled transformation technique

to incrementally propagate design changes to the PModel

by: (A) definition of the pattern using a role-based modeling

technique; (B) formal recording the SOA design refactoring;

(C) automatic derivation of the corresponding performance

model changes; (D) application of the changes to the

PModel. This paper describes (A) – (C) but does not address

the implementation of the transformation in step (D). The

SOA SModel is captured in UML with the OMG profiles

SoaML (Service Oriented Architecture Modeling Language)

[4] and MARTE (Modeling and Analysis of Real-Time and

Embedded Systems) [5] for performance information. The

Role Based Modeling Language (RBML) [6] is used to

formally define each SOA design pattern in terms of first,

the set of SModel elements that represent the problem

addressed by the pattern and second, those that constitute

the solution. The novel contributions of this work are the

coupled transformation in Section VI, and the process

(systematic and automatic) that supports its use, including

the formal recording of the changes for SModel refactoring.

The paper is organized as follows: Section II presents

related work, Section III surveys the approach; Section IV

describes the models; Section V describes the SModel

transformation rules; Section VI presents the coupled

transformation; Section VII describes a case study. Finally

Section VIII concludes the paper.

II. RELATED WORK

The relationship of PModels to SModels, and the

derivation of one from the other, is the subject of

considerable work, including diverse target PModel types

such as Queuing Networks, Layered Queuing Networks

(LQNs) [7] and Stochastic Petri nets [8]. The general

approach of PUMA integrates diverse types of PModel and

SModel [2]. This work uses it with UML SModels (for the

SOA designs) annotated with MARTE, and LQN PModels.

The SModel-to-PModel mapping of [9] is extended here to

support the coupling of the refactoring transformations.

The impact of design patterns on software performance

has been studied only indirectly, through the concept of

performance anti-patterns, introduced in [10]. Anti-patterns

are defined as common design errors that cause undesirable

results. An approach based on anti-patterns for identifying

performance problems and removing them is described in

[11]. An OCL query is created to identify each anti-pattern

and applied to the design model. The anti-pattern removal is

special for each anti-pattern and is not automated.

Xu [12] described a rule-based system which discovered

performance problems and automatically improved the

DOI reference number: 10.18293/SEKE2015-140
552

design as represented by the PModel. However the rules are

slightly different from patterns or anti-patterns and the

changes were not propagated automatically to the SModel.

III. PROCESS OVERVIEW

The overall process is shown in Figure 1. This paper

describes stages B and C, shown in grey. The inputs include

a SOA SModel (top left), and a library of pattern definitions

with formal roles (bottom left). The designer steps are given

on the left and the automated steps on the right side.

RBML Pattern
Specification –

Solution

RBML Pattern
Specification -

Problem

System Designer

SModel
(SoaML)

PUMA
 Transformation

Selecting the
Candidate SOA
Design Pattern

PModel
(LQN)

Solving
the PModel

Mapping Table

(Trace Links)

Refactoring PModel
(Transformation)

Identifying Problem
Area

in SModel

Refactoring SModel
(Transformation)

Automated Coupled
Transformation Technique(A) Preliminaries

(D) Coupled Transformation

PModel*

(B) SModel Transformation Rules

Creating SModel
Transformation

Rules

SModel*

(2) (3)

(4)

(5) (6)

(7)

(1)

(C) Deriving PModel Transformation Rules

Deriving PModel
Transformation Rules

PModel
Transformation

Rules

SModel
Transformation

Rules

Updating Mapping Table

(7)

(7.1)

Library of SOA
pattern

definitions

System Input

System Input

Annotating SModel
(Transformation)

Annotating PModel
(Transformation)(8) (8)

(9) (9)

Figure 1: Proposed Approach Overview

The designer steps are supported by tools that have been

implemented in this work. There are four stages:

 A) Preliminaries: This stage uses the SModel to create the

base PModel using PUMA, and creates the SModel/PModel

mapping table. Pattern application begins at step (4), where

the designer selects a candidate pattern for its own reasons

(e.g. maintainability).

 B) Model Transformation Rules: The selected pattern is

specified using RBML. The designer indicates where the

pattern is applied by binding pattern roles to entities in the

SModel (step (5)) and then specifies SModel transformation

rules that will satisfy the solution specification (step (6)).

C) Deriving the PModel Transformation Rules: Using

the mapping table from (A) and the SModel transformation

rules from (B), the PModel transformation rules are derived

automatically.

D) Coupled Transformations: Both sets of transformation

rules are executed via coupled transformations to refactor

the SModel and PModel into SModel* and PModel*,

respectively. The PModel* results can be used to select the

pattern to be applied. Therefore, Stages B, C and D may be

repeated until the designer gets the desired results.

IV. MODELS

A. SOA Models

From the range of diagrams used to model SOA systems,

we use the Business Processes Model (BPM) for behavior

and the Service Architecture Model (SEAM) for structure

and contracts, together with a UML deployment diagram.

Figure 2 shows examples.

The BPM is specified as a UML activity diagram (Figure

2.B). Service invocations are modeled as operation calls,

using three types of UML actions: a CallOperationAction

transmits a request to the target and waits for the reply via

its input/output pins; an AcceptCallAction is an accept event

action waiting for the arrival of a request; and a ReplyAction

returns the reply values to the caller. The called operation

appears in parentheses after the action name as “(class-

name::operation-name)”. We assume all BPM edges

between ActivityPartitions are between these three Action

types and represent calling interactions.

Performance information by MARTE annotations are

given in shaded notes. They describe the behavior as a

sequence of steps «PaStep» with a workload attached to the

first step («GaWorloadEvent»). «PaStep» has attributes

hostDemand (the required CPU time), rep (the mean

repetitions) and prob (its probability if it is an optional step).

The workload «GaWorloadEvent» defines a population of

Nusers users, each with a thinking time ThinkTime defined

by MARTE variables. Concurrent runtime instances

«PaRunTInstance» are identified with swimlane roles.

The SEAM is specified as a UML collaboration diagram

(Figure 2.A) with service participants and contracts

(stereotyped «Participant» and «ServiceContract»

respectively; these are not from MARTE but are specific to

this process). Each participant plays a role of Provider or

Consumer with respect to a contract. Participants correspond

to pools, participants and swimlanes in the BPM.

Deployment is also defined, as in Figure 2.C. Processing

nodes are stereotyped «GaExecHost» and communication

network nodes are stereotped «GaCommHost», with

attributes for processing capacity, message latency and

communication overheads.

B. Performance Models

PModels are expressed in an extended queueing notation

called Layered Queuing Networks (LQNs) [2], selected

because of its close coupling to the high-level software

architecture. An LQN estimates waiting for service due to

contention for host processors and software servers, and

provides response time and capacity measures.

Figure 2.D shows the LQN model for the example. For

each service there is a task, shown as a bold rectangle, and

for each of its operations (contracts) there is an entry, shown

as an attached rectangle. The task has a parameter for its

multiplicity or thread pool size (e.g. {‘1’}). Each entry has a

parameter for its host CPU demand, equal to the total

hostDemand of the set of «PaSteps» for the same operation

in the SModel. Calls from one entry to another are indicated

by arrows between entries (a solid arrowhead indicates a

synchronous call for which the reply is implicit, while an

open arrowhead indicates an asynchronous call). The arrow

is annotated by the number of calls per invocation of the

sender. For deployment, an LQN host node is indicated by a

round node associated to each task.

553

C. SModel to PModel Mapping Table

When the PModel is derived from the SModel using the

PUMA [2] process, the mapping between the corresponding

elements of the two models is recorded as described in [9],

extended to identify a set of Actions initiated by a Call (an

ActivitySet), and pairs of Call and Reply Actions. There are

three mapping sub-tables, for StructuralElements, Calls, and

Attributes. Each row in a table represents a link between an

SModel element or set and a corresponding PModel element

(because the PModel is more abstract, one element may

correspond to a set of SMEs). Table 1 shows a few of the

traceability links for the example in Figure 2.

D. Role-Based Models for SOA Patterns

To formalize the definition of SOA design patterns

without resorting to a new language, we use Role-Based

Modeling RBML [6], where the pattern is expressed with

generic roles acting as formal parameters which must be

bound to actual parameters from the application context to

which the pattern is applied.

Table 1: Partial Mapping Table between SModel and PModel

for Shopping and Browsing

Sub-table (A) StructuralElements Trace Links

Link Set of SModel Elements PModel Element

DTL3 Deployment Node: Order LQN Host: Order

DTL2 Deployment Artifact: Browsing LQN Task: Browsing

BTL1 ActivitySet: Checkout = {AcceptCall,

BasketCheckout, CalculateShipping, CreateInvoice,

CallOperation(OrderProcessing::PayCredit),

CallOperation(OrderProcessing::PayDebit}, Reply}

LQN Entry: Checkout

Sub-table (B) Calls Trace Links

Link Set of SModel Calls PModel Call

BCTL1 Call

fromCallOperationAction(Shopping::Checkout)

to AcceptCallAction (Shopping::Checkout) and

the corresponding reply from

ReplyAction(Shopping::Checkout) back to

CallOperationAction(Shopping::Checkout)

LQN synchronous

Call from Entry:User

to Entry: Checkout

«ServiceArchitecture»

Shopping and

Browsing Services

«ServiceContract»

CheckOut

«Consumer»

«Consumer»

«ServiceContract»

PlaceOrder

«ServiceContract»

Process Payment

«Provider»

«Provider»

«Provider»

«Consumer»

«ServiceContract»

Browse

«Provider»

«Participant»
:Browsing

«ServiceContract»

Product Service
«Participant»

:DB

«Provider»

«Consumer»

«Participant»

:Shopping

CheckOut()

«Participant»

:Order Processor

PayCredit()

PayDebit()

«Participant»

:Payment Processor

PaymentService()

«Participant»

:Customer

«Consumer»

<<GaCommHost>>
Lan

{blockT=(0,ms)}

<<GaExecHost>>
Shopping Host

<<GaExecHost>>
Order Host

<<GaExecHost>>
Product Catalogue

Host

<<GaExecHost>>
Payment Host <<GaExecHost>>

DB Host

<<artifact>>
Order Service

<<artifact>>
ProductCatalogue

Service

<<artifact>>
P

aym
en

t
Service <<artifact>>

d
b

Shopping Service
Order Service ProductCatalogue

Service

P
aym

en
t

Service

d
b

<<Manifest>> <<Manifest>> <<Manifest>>

<<Manifest>>
<<Manifest>>

<<artifact>>
Shopping Service

<<GaCommHost>>
Internet

{blockT=(1,ms)}

<<Deploy>> <<Deploy>>

<<Deploy>>

<<Deploy>>

<<Deploy>>

<<GaExecHost>>
Browsing Host

<<
ar

ti
fa

ct
>>

B
ro

w
si

n
g

Se
rv

ic
e

B
ro

w
si

n
g

Se
rv

ic
e

<<Manifest>><<Deploy>>

(A) Service Architecture Model (SEAM) for online shop (C) UML Deployment Diagram for online shop

«GaWorkloadEvent»{closed
(population=$Nusers,
extDelay=$ThinkTime}

«PaRunTInstance»

User

PrepareCheckout
Request

AcceptCallAction
(Shopping::Checkout)

«PaRunTInstance»

Shopping

BasketCheckout

ReplyCallAction
(Shopping::Checkout)

DisplayConfirmatio
n

CallAction
(Shopping::Checkout)

CalculateShippin
g

CreateInvoice

CallAction
(OrderProcessing:

:
PayCredit) CallAction

(OrderProcessing:
:

PayDebit)

« PaStep»
{hostDemand=(0,ms),

extOpDemand=“network
”,

extOpCount=$R}

«PaRunTInstance»

OrderProcessing« PaStep»
{hostDemand=(1,

ms), prob=0.5}

« PaStep»v
{hostDemand=(5,ms)}

AcceptCallAction
(OrderProcessing::

PayCredit)

Validate
CreditCardInfo

ChargeCredit

CallAction
(PaymentService::

ProcessCredit)

ReplyCallAction
(OrderProcessing::

PayCredit)

« PaStep»
{hostDemand=(10,ms)}

« PaStep»
{hostDemand=(10,ms)}

AcceptCallAction
(OrderProcessing::

PayDebit)

Validate
DebitCardInfo

ChargeDebit

CallAction
(PaymentService::

ProcessDebit)

ReplyCallAction
(OrderProcessing::

PayDebit)

« GaPerformanceContext»{contextParams = $Nusers, $ThinkTime, $R}

AcceptCallAction
(PaymentService::

ProcessDebit)

DebitPayment

ReplyCallAction
(PaymentService::

ProcessDebit)

«PaRunTInstance»

PaymentService

AcceptCallAction
(PaymentService::

ProcessCredit)

CreditPayment

ReplyCallAction
(PaymentService::

ProcessCredit)

« PaStep»
{hostDemand=(0.1,ms)}

« PaStep»
{hostDemand=(0.1,ms)}

« PaStep»
{hostDemand=(0.2,ms)}

«PaStep»{hostDemand=
(0.1,ms), rep=1.5}

« PaStep»
{hostDemand=(0.2ms)}

« PaStep»
{hostDemand=(0.1,ms)}

« PaStep»
{hostDemand=(0.1,ms)}

«PaStep»{hostDemand=
(0.1,ms), rep=0.5}

«PaStep»{hostDemand
=(0.04,ms)}

« PaStep»
{hostDemand=(0.1,ms),

prob=0.5}

« PaStep»
{hostDemand=(0.1,ms),

prob=0.5}

« PaStep»
{hostDemand=(3.8,ms)}

User
[z=1000ms]

users

users

Browse
[s=30ms]

Checkout
[s=30ms]

PayCredit
[s=1ms]

PayDebit
[s=1ms]

Order Processing
{1}

OrderProcessCredit
[s=1ms]

ProcessDebit
[s=1ms]

Payment

Payment
Processing

{1}

Product
[s=5ms]

Product
Catalogue

{1}

Product
Catalogue

DCT
[s=5ms]

DB
{1}

DB

0.5
0.5

3 1.5

1.5

2

1.5

Browsing

0.5

Shopping

Shopping
Browsing

(B) Checkout Business Process Model for the Online Shop (D) LQN (PModel) corresponding to (A) (B) and (C)

Figure 2 : SModel views (A, B, and C) and PModel (D)

554

Three UML views are used for each pattern: BPS

(Behavioral Pattern Specification) for behavior,

corresponding to the BPM; SPS (Structural Pattern

Specification) for structure, corresponding to the SEAM;

and DPS (Deployment Pattern Specification), not described

here due to space limitations. Each view has two

specifications: Pattern Problem (the view before pattern

application) and Pattern Solution (after application). Figure

3 shows the role-based specification for the Service Façade

pattern (which is described in Section VII), with the

problem on the left and the solution on the right. As in [6]

the names of generic roles start with the character ‘|’.

(A) Structural Pattern Specification: Problem

«ServiceArchitecture»

ServiceFaçadeProblem

«ServiceContract»

|CoreService
Contract

«Participant»
|Customer

«Participant»
|CoreService

|CoreOp()

«ServiceArchitecture»

ServiceFaçadeSolution

«Participant»
|Customer

« Consumer »

« Provider » «Participant»
|Façade

« ServiceContract»
|CoreService

Contract

« Provider »

«Participant»
|CoreService

|CoreOp()
|Convert()

(B) Structural Pattern Specification: Solution

«PaRunTInstance»

|Customer

| PrepareRequest |AcceptCall

(|CoreService::|CoreOp)

«PaRunTInstance»

|CoreService

|CoreServiceLogic

|Reply
(|CoreService::|CoreOp)| ProcessReply

|CallOperation
(|CoreService::|CoreOp)

(C) Behavioural Pattern Specification: Problem (D) Behavioural Pattern Specification: Solution

«PaRunTInstance»

|Customer
«PaRunTInstance»

|Façade
«PaRunTInstance»

|CoreService

|PrepareRequest

ConvertRequest

|Reply
(|Façade::|Convert)

|ProcessReply

|CallOperation
(|Façade::|Convert)

|AcceptCall
(|Façade::|Convert)

|CallOperation
(|CoreService::|CoreOp)

|AcceptCall
(|CoreService::|CoreOp)

|CoreServiceLogic

|Reply
(|CoreService::|CoreOp)

ConvertReply

« Provider »

« Consumer »

Figure 3: Service Façade pattern specification

V. SMODEL TRANSFORMATION RULES

The first step in applying a pattern is to identify the

model elements to which it can be applied, based on the

pattern problem. From these, particular elements are chosen

as the area of application by binding them to roles in the

RBM definition. It is not our goal to automate this process

of selection and binding and then applying the pattern

solution, but to make it systematic and to support it with a

construction tool (as shown below in Figure 4).

A. Problem Identification and Role Binding

The designer chooses a pattern to apply and, using its

RBM definition from a pattern library, binds the elements of

its problem specification (SPS, BPS and DPS) to the

elements of the SModel. An element can be bound if:

1. Its type matches the RBM element type.

2. It has all the attributes and operations defined by the

RBM element.

3. Any constraints defined for the two matching elements

are compatible (that is, the pattern does not impose

additional constraints when applied to the SModel).

4. For the SModel behavioral view (BPM), the execution

flow and the ActivityPartitions (swimlanes) must match.

Not every pattern specification element is defined as a role.

Those which are not (e.g. Calls, Replies, Attributes) are also

bound, governed by the role bindings. These “derived

bindings” may be determined by the binding of a single

element (e.g. its Attributes) or from the bindings of multiple

elements (e.g. a Connector between two elements). Some

bindings for the BPM of the example (involving the pattern

specification in Figure 3 and the SModel BPM in Figure

2.B) are given by the following pairs including a derived

binding found between the RBM Call and SModel Call,

which is implied by the binding of the core operation:

RBM Element SModel Element

|CallOperation(|CoreService::|CoreOp) CallOperationAction(Shopping::Checkout)

|AcceptCall(|CoreService::|CoreOp) AcceptCallAction(Shopping::Checkout)

|CoreServiceLogic Sequence of all Actions in Shopping

swimlane

(Derived Binding) Call from

|CallOperation(|CoreService::|CoreOp)

to |AcceptCall(|CoreService::|CoreOp)

Call from CallOperationAction

(Shopping::Checkout) to |

AcceptCallAction (Shopping::Checkout)

B. Creating the SModel Transformation Rules

The designer creates the SModel transformation,

(governed by the RBM bindings and the pattern problem

and solution specifications) as a set of operations to add,

delete, and modify model elements. An operation is defined

for each element type (eg. addAssoc/deleteAssoc for

adding/deleting associations). Depending on the element

type it applies to, an operation is applied to the services and

interactions of the SEAM and to the ActivityPartitions,

Activities, Actions and ActivityEdges of the BPM.

Transformation operations indicated by the designer are

recorded using the tool shown in Figure 4 as follows:

 Remove elements that are present in the problem but not

in the solution, by applying delete actions (such as

deleteParticipant or deleteAssoc) to them

 Create new elements that are defined in the solution but

are not present in the problem, by add actions (such as

addParticipant or addActivityPartition),

 Modify elements present in both problem and solution,

by modify actions (such as modifyActionCall).

SModel elements which are not in any of the above groups

remained untouched. Figure 4 shows a screen shot of the tool

support for the technique in this section with a set of

operations recorded for the application of Service Façade

pattern to the example in Figure 2, with the role bindings

shown above.

VI. COUPLED TRANSFORMATION

A. Coupled PModel Refactoring Rules

This section describes the automated translation of the

SModel transformation rules into PModel transformation

rules, based on the mapping table described in Section IV.C.

Each SModel transformation rule has an operation name and

some arguments, which are processed as follows:

1. The operation name is translated into one or more

PModel transformation operations. The action part of the

name (add/delete/modify) is retained, and the operand-

type part (e.g. Participant) is mapped according to the

type correspondences of the Mapping Table. A partial

list of these is:

555

SModel Type PModel Type

 Participant Task

 ActivitySet Entry

 Call/Reply pair of Actions Call (sync)

 Call (no Reply) Call (async)

 ExecHost Host

Thus the SModel operation addParticipant is translated

to addTask, and deleteActivitySet to deleteEntry.

2. The arguments of the PModel operation (e.g. the entity

or entities to be added, deleted, or modified) are

translated from the arguments of the SModel operation

using the correspondences in the Mapping Table. For

“add” operations the name of the new PModel element is

taken as the name of the corresponding SModel element.

For example, the SModel “addParticipant” operation is

mapped to “addTask” in the PModel, and the

“addParticipant” argument becomes the new task name.

Modifications to calls require special consideration in

the translation. The SModel “modifyActionCall” operation

changes a service invocation from a CallOperationAction to

an AcceptCallAction. As this might apply to more than one

call to the same AcceptCallAction, the mapping table is

searched (by the MappingTableSearchByKey command) to

identify all the PModel activities making the call. Then the

operation is mapped to one or more “modifyActivity”

operations in the PModel domain, to change all the calls.

Some of the PModel transformation rules derived for the

Façade pattern (shown in Figure 4) are presented in Figure

5 as part of the screenshot from the implemented tool

supporting coupled transformations.

B. Application of the PModel Rules

Briefly, the PModel transformation rules derived in

Section VI.A are applied to the PModel in two steps. First

the PModel is annotated with transformation directives

indicating the changes, then the changes are applied by a

transformation engine implemented using QVT [13] (Query,

View, and Transformation, a OMG standard model

transformation language) which processes the directives.

The implementation of these two steps is not presented here.

VII. CASE STUDY

We suppose that a designer is assigned the task of re-

designing the Shopping and Browsing SOA described

earlier to support three different user access channels

(mobile phone, desktop, kiosk, etc.) through a single multi-

channel endpoint. Initially, the designer uses the SOA

design pattern “Concurrent Contracts” [1] in which the

multi-channel capability is implemented by providing

separate shopping and browsing operations for each

channel. Separate set of actions are created inside the

shopping swimlane (see Figure 2.B) and also the browsing

swimlane (not shown Figure 2.B). However, the designer

realizes that those three separate operations introduce code

duplication in the functional design.

To eliminate this duplication the designer considers

using the SOA design pattern “Service Façade” [1]. In the

service façade design pattern, the problem is that the tight

coupling of the core service logic to its contracts can

obstruct its evolution and negatively impact service

consumers. As the solution, Façade logic is inserted into the

service architecture to establish a layer of abstraction that

can adapt to future changes to the service contract.

SModel Diagrams (BPM, SEAM,
Deployment) are loaded from UML

Design Tools such as Papyrus

SModel Transformation Rules
 are coded by the System

Designer

Figure 4 : Tool for Recording SModel Transformation Rules

Mapping Table loaded from a
XML file into the Tool

Derived PModel
Transformation Rules

Figure 5 : Tool for automatic derivation of PModel Rules

Concerned that the façade overhead might impair the

system performance, the designer applies the present

technique. The designer first binds the pattern roles and

records the necessary SModel changes (as in Section V, and

the screenshot of Figure 4), using the base SOA design

loaded from a standard UML modeling tool (e.g. Papyrus).

The recorded rules and the Mapping Table are used by the

556

coupled transformation tool (as in Section VI and the

screenshot of Figure 5) to derive the PModel transformation

rules. The PModel transformation rules are applied to the

LQN model shown in Figure 2.D, giving a performance

model which is partly shown in Figure 6 below.

To illustrate how performance issues can be revealed,

the performance was estimated for a range of user

populations. For each N users in group “users1”, there were

2N in “users2”, and N/2 in “users3”. N ranged from 2 to

220, so the total users ranged from 7 to 770. Figure 7 shows

the response times for the three groups of users and for both

patterns. It shows that the groups have the same response

time, and under heavy loads (which are also the conditions

in which the system resources are efficiently utilized) the

Façade pattern imposes about 30% additional delay in

response time. This penalty is the price for the benefits it

provides to the system architecture by preparing it for future

changes to the service. An alternative view of the penalty is

that it reduces the user population that a deployed system

can serve with a given target response time.

User
[z=9s]

users 2

net
[pure delay

80ms]

Network
2 Network

1

users
1

Browse
[s=30ms]

Checkout
[s=30ms]

PayCredit
[s=1ms]

PayDebit
[s=1ms]

Order
Processing

{1}

OrderProcessCredit
[s=1ms]

ProcessDebit
[s=1ms]

Payment

Payment
Processing

{1}

Product
[s=5ms]

Product
Catalogue

{1}

Product
Catalogue

DCT
[s=5ms]

DB
{1}

DB

0.5 0.5

3 1.5

1.5

2

1.5

Browsing
{i}

0.5

1

Convert1
[s=5ms]

Service
Façade

{i}

1

Shopping
{i}

Shopping Browsing

User
[z=10s]

users 1

net
[pure delay

100 ms]

Network
1 Network

1

users
11

1

User
[z=8s]

users 3

net
[pure delay

50 ms]

Network
3 Network

1

users
11

1

Convert2
[s=10ms]

Convert3
[s=20ms]

Figure 6: Partial Refactored PModel (Façade applied)

VIII. CONCLUSION

This paper describes a process and tools for interpreting

a software pattern in terms of the corresponding change in a

performance model of the software, to support an immediate

analysis of the performance effects of using a pattern. It

helps the system designer to choose a pattern that has

acceptable performance impact, and to choose between

alternatives. It provides the system designer with a

systematic approach and tool for formally recording those

changes for the SOA design and from these it automatically

derives the performance model changes. Coupling the

transformations ensures that the performance analysis

remains in sync with the software changes, and relates the

resource and performance changes back to the pattern.

The use of the process and tools was illustrated by an

extensive example which applied the Facade pattern to a

Browsing and Shopping system design, and by an analysis

which compared its impact to that of the Concurrent

Contracts pattern. The performance cost of the Facade

pattern is a significant increase in response time under load,

which could influence the development of the design.

0

0.5

1

1.5

2

2.5

3

3.5

7 70 140 210 280 350 420 490 560 630 700 770

System Respose Time Comparison - Concurrent Contracts VS Façade

User Group 1 - A

User Group 2 - A

User Group 3 - A

User Group 1 - B

User Group 2 - B

User Group 3 - B

Delay

Users

A = Concurrent Contracts (lower curve)
B = Facade (upper curve)

Figure 7: System Response Time (ms) for (A) Concurrent

Contracts and (B) Façade patterns

ACKNOWLEDGMENT

This work was supported by the Ontario Centers of

Excellence and by the Natural Sciences and Engineering

Research Council of Canada (NSERC) through its

Discovery Grant program.

REFERENCES

[1] T. Erl, SOA Design Patterns Boston, MA: Prentice Hall PTR, 2009.

[2] M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T. Israr, and J.
Merseguer, "Performance by Unified Model Analysis (PUMA),"

WOSP '05 Proceedings of the 5th international workshop on Software

and performance, Palma de Mallorca, Illes Balears, Spain, 2005, pp. 1
- 12

[3] N. Mani, D. Petriu, and M. Woodside, "Propagation of Incremental

Changes to Performance Model due to SOA Design Pattern
Application," Proceedings of the 4th ACM/SPEC International

Conference on Performance Engineering (ICPE'13) , Research

Papers Track Prague, Czech Republic, 2013, pp. 89-100.
[4] B. Elvesæter, C. Carrez, P. Mohagheghi, A. Berre, S. G. Johnsen, and

A. Solberg, "Model-driven Service Engineering with SoaML," in

Service Engineering, S. Dustdar and F.Li, Eds., Springer, 2011, pp.

25-54.

[5] Object Management Group, "A UML Profile for MARTE (Modeling

and Analysis of Real-Time and Embedded systems)," Version 1.1,
formal/2011-06-02.

[6] R. B. France, D.-K. Kim, S. Ghosh, and E. Song, "A UML-Based

Pattern Specification Technique," IEEE Trans. Software Eng., vol.
30, pp. 193-206, 2004.

[7] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi,

"Enhanced Modeling and Solution of Layered Queueing Networks,"
IEEE Trans. on Software Eng., vol. 35, pp. 148-161, 2009.

[8] P. Haas, Stochastic Petri Nets: Modelling, Stability, Simulation
Springer-Verlag, New York, 2002.

[9] M. Alhaj and D. Petriu, "Traceability Links in Model

Transformations between Software and Performance Models," in SDL
2013: Model-Driven Dependability Engineering. vol. 7916, F.

Khendek, M. Toeroe, A. Gherbi, and R. Reed, Eds., Springer, 2013,

pp. 203-221.
[10] C. U. Smith and L. G.Williams, Performance Solutions : A Practical

Guide to Creating. Responsive, Scalable Software. Boston, MA:

Addison Wesley, 2002.
[11] V. Cortellessa, A. D. Marco, R. Eramo, A. Pierantonio, and C.

Trubiani, "Digging into UML models to remove performance

antipatterns," Proceeding of ICSE Workshop on Quantitative
Stochastic Models in the Verification and Design of Software

Systems, Cape Town, 2010, pp. 9-16

[12] J. Xu, "Rule-based automatic software performance diagnosis and
improvement," Proceeding of 7th Intl Workshop on Software and

Performance, Princeton, NJ, USA, 2008, pp. 1-12.

[13] Object Management Group, "Query/View/Transformation (QVT) "
Version 1.2 ,formal/2015-02-01.

557

(DOI reference number:10.18293/SEKE2015-053)

On the Specification of Model Transformations

through a Platform Independent Approach

Magalhães, A.P.

Exact and Earth Science Department

State University of Bahia

Salvador, Brazil

anapatriciamagalhaes@gmail.com

Andrade, A.; Maciel, R.S.P.

Science Computer Department

Federal University of Bahia

Salvador, Brazil

{aline,ritasuzana}@dcc.ufba.br

Abstract— Transformations are key artifacts in the MDD (Model

Driven Development) approach: a software development project

can be defined through a transformation chain converting source

models into target models until code, enabling development

process automation. Transformations can be complex and

demand software processes, languages and techniques to improve

their development in order to increase reuse, portability,

correctness, and so on. In this context we propose a framework to

develop model transformations using MDD. This paper presents

a Model Transformation Profile (MTP) defined as the domain

specific language of the framework.

Keywords-Transformation profile, transformation specification,

transformation metamodel.

I. INTRODUCTION

Model Driven Development (MDD) [7] is a paradigm that
makes intensive use of models to represent systems at different
level of abstraction (specification, design and code). A key
element of the MDD approach is the transformation chain
which is responsible for the conversion of source into target
models until code generation. Transformations play an
important role in MDD because they enable the automation of
the model generation process, encapsulating knowledge and
strategies used in the development of the software.

Despite the importance of models for the MDD approach,
transformations are usually specified in an ad-hoc way using
natural language and are implemented directly in code [4]. This
practice leads to poor documentation which hampers the
evolution of the transformation and makes it difficult to use
software engineering good practices such as design patterns
and reuse. In order to change this scenario some works have
been proposed [2][3][4] to cover specific aspects of
transformation development (e.g. transformation design).

In this context, we propose a MDD framework for model
transformation development that comprises: (i) a MDD
transformation development process, which guides developers
through activities to produce transformation software; (ii) a
profile, named Model Transformation Profile (MTP), to
support the modeling process activities; and (iii) a tool to
partially automate the modeling and transformations tasks of
the process. In this paper we present the MTP profile whose
first ideas were outlined in [6]. The MTP profile presented here
has been improved from that incorporating another abstraction
level, MTPLowDesign, for the specification of transformation

behavior. New concepts and attributes have also been added in
the other levels and we have developed a validation using
experimental software engineering techniques to measure the
quality of the profile.

MTP provides concepts to specify model transformations
from requirements to design independent of platform. The
produced transformation models can be transformed in a
specific platform and then in code in different transformation
languages (e.g. QTV [9], ATL [1]), increasing productivity and
portability. MTP raises the abstraction level of the
transformation development from code to model in a platform-
independent way, abstracting some implementation details of
specific transformation languages.

The rest of this paper is organized as follows: section 2
discusses the current development approaches to model
transformation; section 3 briefly introduces our MDD
framework; section 4 describes the MTP profile giving some
examples; section 5 presents some results from a MTP
validation; and finally Section 6 presents our conclusions.

II. RELATED WORKS

Our framework uses a visual UML profile as a modeling
language, so we focus on comparing our proposal with existing
visual approaches. Furthermore, we attempt to analyze the
coverage of these works concerning the phases of a
transformation development life cycle.

In MOF Query/View/Transformation (QVT) [9] a model
transformation can be represented diagrammatically in two
ways: using the UML class diagram or using a transformation
diagram. The complexity of the QVT metamodels makes the
diagram verbose and difficult to understand and the
transformation diagram brings new notation with no portability
to UML tools.

There are some works that focus on specific aspects of the
transformation development. In [3] the authors propose a
visual, formal, declarative specification language (graph based)
focusing on transformation correctness, but it does not deal
with implementation as we do. The work [14] focuses on
internal composition of transformations. It generalizes
composition mechanisms for rule-based transformation
languages in order to provide executable semantic to them. Our
proposal, on the other hand, works with external composition.
In [15] generic programming is used to define reusable model

558

transformations. We follow another direction through a UML
profile to support the development of model transformation
models independent of platform such that models are reused in
transformations in different languages.

The works [4][2] are more closely related to the one
presented in this paper. TransML [4] proposes a family of
languages with diagrams for the entire development life cycle
providing support for specification, analysis, design and code.
However, the proposed diagrams use a UML heavy extension
and new notations that make it difficult to integrate with the
existing UML tools which are usually adopted. MeTaGen [2]
proposes metamodels for transformation design and tools
generate code automatically or semi automatically. The main
difference between this work and ours is that it focuses on
design, not considering the requirement specification level and
it uses textual language for transformation specification
whereas we use a profile that is a visual language.

In summary, although existing works agree that
transformation development requires a software life cycle, they
usually focus on an individual phase of development lacking an
entire process to transform the transformation model in code.
We propose an integrated framework with a visual modeling
language specialized from the UML standard that covers
transformation development from requirements to code.

III. MDD TRANSFORMATION FRAMEWORK

The main goal of MDD Framework is to provide a process
to develop model transformations suitable for a transformation
domain, covering the entire software development life cycle
integrated into a standard modeling language. Fig. 1 shows its
main elements: (i) the MDD Transformation Development
Process; (ii) the Model Transformation Profile (MTP); and (iii)
a tool to (partially) automate the process.

Figure 1. MDD Transformation Framework overview

The MDD Transformation Development Process aims to
guide developers step by step on the development of model
transformations. The process is specified according to SPEM
[8] metamodel and comprises tasks that lead from requirements
specification until code. Specification starts modeling the TRM
(Transformation Requirements Model) which comprises
requirements and analysis tasks. From requirements a semi-
automatic transformation generates the first release of the TDM
(Transformation Design Model) which aims to model the

design and architecture of the transformation software. Tasks
include the definition of what might be transformed in what
(high design), transformation structure (architecture) and how
transformation should be performed (low design). This
specification is then transformed into TSM (Transformation
Specific Model) which refers to specific languages to then
generate code. We provide generation for TSM in ATL
language, due to its wide use in MDD projects to develop
transformations, or QVT language, the OMG standard to
design model transformations. The MTP Profile is defined to
support the modeling tasks of the proposed process. It is
detailed in the following sections.

IV. MODEL TRANSFORMATION PROFILE (MTP)

The MTP Profile is a modeling language that extends UML
for the model transformation domain. Its main goal is to
provide a platform-independent visual language, suitable for a
model transformation domain which can be used to develop
model transformations at a high abstraction level (TRM and
TDM models). The profile covers the definition of model-to-
model unidirectional transformation using a visual language.

In order to specify the MTP we define: an abstract syntax,
represented by metamodels, with the concepts of the
transformation domain; a static semantic, described with a set
of OCL constraints which determine the well-formed criteria of
the instantiated models; and a set of stereotypes and their UML
specialized metaclasses. MTP is divided into three parts,
MTPSpec, MTPHighDesign and MTPLowDesign.

The main goal of the MTPSpec is to provide definitions for
the specification and analysis of transformation requirements.
Its abstract syntax is shown in Fig. 2.

Figure 2. MTPSpec Metamodel

At specification level a TransformationSpecification has a
name, a description and is composed of a Requirement.
Requirement may be refined in other requirements (refinedReq
association) and may also be composed of other requirements
(comprisedReq association). Constraint can be specified for
requirements in natural language. A Requirement has a name, a
description and a type that identifies if it is functional or non-
functional. TransformationSpecification is also composed of
source (sourceMM) and target (targetMM) metamodels.
Models, metamodels and metametamodels are represented by
the concept Model and have a level. This level indicates the

559

OMG model layer in which they are defined (e.g. M3).
Properties of specific domains can be specified in Property.

The concrete syntax of the MTP consists on a package of
stereotypes associated to UML metaclasses. For example, the
TransformationSpecification MTP concept is specialized as an
actor in UML. Due to lack of space only part of the concrete
syntax of MTPspec is shown in Tab.1.

MTPSpec supports the Transformation Process enabling
requirements elicitation and analysis in Use Case and Classes
diagrams.

TABLE I. PART OF MTPSPEC STEREOTYPE AND METACLASSES

Stereotype Metaclass

<< Transformation Specification>> Actor, class

<<Requirement>> Use case, class

<<Model>> Class, attribute, package

MTP also comprises a set of OCL constraints with
additional well-formed criteria used on model instantiation.
Due to lack of space they are not presented here.

MTPDesign provides the necessary definitions for the design
and architecture specification of the transformation. The profile
was organized in two packages, named MTPHighDesign and
MTPLowDesign.

MTPHighDesign defines what will be transformed in what. Its
abstract syntax is presented in Fig. 3.

Figure 3. MTPhighdesign metamodel

A Transformation may be composed of other
transformations, enabling reuse. Transformation is specialized
in M2M Transformation, to represent model-to-model
transformations and M2T Transformation, to represent model-
to-text transformations (not detailed in this work). M2M
Transformation defines a Domain and it is composed of
Relation. A Domain specifies which Element of the
source/target metamodel will be considered by the

transformation. It will be used to verify transformation
completeness (section 4A). A Relation has a name, a
description to document it and might be concrete or abstract
(attribute isAbstract) allowing Relation inheritance. The
attribute isRequired indicates if it is automatically processed
when transformation is executed or if it is explicitly invoked by
another Relation. A Relation may also have a set of Property
(e.g. OCL constraints). The main purpose of a Relation is the
definition of relationships between elements from source to
target metamodels (SourceElement and TargetElement). It is
possible to define many kinds of relationships: zero-to-one;
zero-to-many; one-to-one; one-to-many; many-to-many; one-
to-zero and many-to-zero as shown by the multiplicity of the
sourceElem and targetElem association.

MTPHighDesign supports the TDM (Transformation Design
Model) specification through the use of classes and component
diagrams. Class diagrams are used for the specification of
Relation between elements from source to target metamodels in
order to hierarchically organize the rules of a transformation,
providing transformation inheritance. Component diagrams are
used to model transformation chains: each transformation in a
chain is represented by a component whose interfaces specify
the source and target models and metamodels.

The MTPLowDesign defines how Relation converts elements
from the source model into elements of the target model. Fig. 4
shows the MTPLowDesign metamodel. The Relation concept (from
MTPHighDesign) is now detailed by the Rule concept which is
composed of SourceElementRule and TargetElementRule. For
each SourceElement of Relation a SourceElementRule is
modeled for the corresponding Rule and a reference (ref
attribute) must be defined. This reference will be later used in
expression definitions. A SourceElementRule may be
associated to Condition (defined in the exp attribute) that must
be satisfied for the rule to be executed. TargetElementRule
comprises a set of Configuration that defines how the
Attributes of the TargetElementRule will be initialized when
generated. The Configuration is specified through the
definition of an expression (exp attribute) that will be assigned
to attributes of the associated TargetElementRule. Expressions
are defined using a textual language. MTPLowDesign supports
transformation process through the use of class diagrams.

Figure 4. MTPLowDesign metamodel

560

A. MTP and Transformation Properties

There are some properties that assure transformation
quality, such as syntactic and semantic correctness and
completeness [10][11].

The syntax correctness defines the conformity between
models and metamodels and the semantic correctness consists
of property preservation from source to target models. We
define some OCL constraints in order to guarantee
conformance of model transformation models which are
instances of MTP. Our framework foresees the specification of
semantic properties through the Property concept (Fig.2).
Therefore it is possible to specify a set of properties in the early
stages of the transformation definition and this set can be
extended with other properties at the application level.

A transformation is complete if and only if for each element
of the source metamodel there is a corresponding element in
the target metamodel mapped by the transformation. In order to
address completeness, MTP provides the Domain concept
(Fig.3) which identifies the set of elements of source/target
metamodels that are mapped by the transformation. Based on
the Domain definition and on OCL constraints, completeness
can be verified after the instantiation of the model
transformation model.

V. MTP VALIDATION

The validation consists in the assessment of the
expressiveness of MTP profile constructors. To assist
validation we followed the guidelines for software engineering
experimentation presented in [13] and use GQM [12] to
summarize our goal (Fig.5). The questions underlying the
validation are: Q1: Are the MTP constructors sufficient to
specify transformations written in ATL/QVT? Q2: Is it
necessary to add new constructors in MTP to enable the
transformations specification written in ATL/QVT? Q3: Are
the selected UML diagrams sufficient to specify
transformations?

Analyze the MTP profile constructors
For the purpose of evaluating expressiveness
With respect to coverage of the profile constructors and specification
completeness
From the perspective of transformation developers
In the context of existing transformations developed in ATL/QVT languages

Figure 5. Experiment goal according to QGM template

We use several measures as dependent variables such as the
amount of used constructors, the need of new constructors, the
amount of changes on existing constructors, the level of
specification detail and the used UML diagrams.

The validation process lasted five months and was divided
into two stages: an initial test and the main validation. These
two stages were performed by our research group in laboratory
and consisted of using MTP to specify transformations already
developed in ATL / QVT languages.

According to validation, related to questions Q1 and Q2, we
concluded that MTP constructors are sufficient to specify
transformations without the necessity to add new constructors.
Related to question Q3 we observed that, after including
component diagram in the initial test, the selected UML

diagrams were sufficient to specify the transformations.
Therefore, we considered that the MTP was stable enough to be
used on the framework case study.

VI. CONCLUSIONS AND FUTURE WORKS

The Model Transformation Profile presented in this paper is
a modeling language that is part of a framework to develop
model transformation using MDD.

MTP represents transformations concepts at different
abstraction levels, covering many phases of transformation
development such as requirements, analyses and design
enabling transformation modeling independent of platform. In
this sense it postpones specific platform definitions to later
phases of development. As a UML profile MTP takes
advantage of the wide use of UML in both industry and
academy benefiting from tools already used by the
development community. The validation of the profile
demonstrated that MTP concepts cover most transformation
specification needs and that UML diagrams were suitable for
transformation specifications. Therefore, we consider MTP to
be stable for use in real projects.

We are currently specifying a MTP behavioral semantics in
order to enable simulation of transformation specification.

REFERENCES

[1] ATL Project - http://www.eclipse.org/m2m/atl/

[2] Bollati, V., Vara, J., Jiménez, A., Marcos, E. “Applying MDE to the
(semi-)automatic development of model transformations.” Information
and Software Technology, pp.699-718, Elsevier, 2013.

[3] Guerra, E.; Lara, J.; Kolovos, D.; Paige, R. “A Visual Specification
Language for Model-to-Model Transformations.” IEEE Symposium on
Visual Languages and Human-Centric Computing, DOI
10.119/VLHCC.2010.25, 2010.

[4] Guerra, E.; Lara, J.; Kolovos, D.; Paige, R.; Santos O. “TransML: A
Family of Languages to Model Model Transformations.” Models, 2010,
DOI 10.1007/s10270-011-0211-2, Springer Verlag, . 2010.

[5] Iacob, M., Steen, M., Heerink, L.: “Reusable Model Transformation “
Pattern. In 3M4EC´08, pages 1-10, 2008.

[6] Magalhães, A. P., Andrade, A. ; Maciel, R.S.P.. “MTP: Model
Transformation Profile.” In: SBCARS, 2013, Brasilia. p. 109-118 2013.

[7] Mellor,S.; Clark, A.; Futagami, T. “Model Driven Development” IEEE
Software,2003

[8] OMG. Software Process Engineering Metamodel Specification, Version
2.0, (formal/08-04-01).2008.

[9] QVT specification - http://www.omg.org/spec/QVT/1.0/PDF/

[10] Lano, K.; Clark, D. “Model Transformation Specification and
Verification.” The 18th International Conference on Quality Software,
IEEE, 2008.

[11] Mens, T.; Gorp, P.V. “A Taxonomy of Model Transformation.” Elsevier
Eletronic Notes in Theiretical Computer Science 152 pp. 125-142 2006.

[12] Solingen, R. Basili, V.;Caldiera,G.; Rombach, H.D. Goal Question
Metric (GQM) Approach. John Wiley & Sons. Inc., 2002.

[13] Wohlin, C. Aurum, A. Towards a decision-making structure for
selecting a research design in empirical software Engineering. Empir
Software Eng DOI 10.1007/s 10664-014-9319-7. Springer, 2014.

[14] Wagelaar, D.; Tisi, M.; Cabot, J.; Jouault, F. Towards a General
Composition Semantics for Rule-Based Model Transformation.
MODELS, 2011.

[15] Cuadrado, J.; Guerra, E.; Lara, J. Generic Model Transformations: Write
Once, Reuse Everywhere. ICMT, 2011.

561

http://www.eclipse.org/m2m/atl/
http://www.omg.org/spec/QVT/1.0/PDF/

Improved Metrics for Non-Classic Test Prioritization Problems

Ziyuan Wang1,2 Lin Chen2

1 School of Computer, Nanjing University of Posts and Telecommunications, Nanjing, 210003
2 State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023

Email: wangziyuan@njupt.edu.cn

Abstract—The average percent of faults detected (APFD)
and its variant versions are widely used to evaluate prioritized
test suite’s efficiency. However, APFD is only available for
classic test case prioritization, where all prioritized test suites
under comparison contain the same number of test cases. If
people overlook this phenomenon, they may obtain incorrect
results in some non-classic scenarios, where prioritized test suites
have different sizes. In addition, it can’t precisely illustrate
the process of fault detection. Besides the APFD, most of its
variants have similar problems. This paper points out these
limitations in detail, by analyzing the physical explanation of
APFD series metrics. To avoid limitations, a series of metrics
including RAPFD, RAPFDC , RAPFDW and RAPFDCW are
proposed for different types of scenarios. All proposed metrics
refer to both the speed of fault detection and the constraint of
testing resource. There is an example in this paper showing that
proposed metrics provide much more precise illustrations of fault
detection process and fault detection efficiency of test suite.

Keywords—software testing, test case prioritization, fault detec-
tion efficiency, metric

I. INTRODUCTION

There is usually a contradiction in test case evolution. For
the purpose of rapid version release, we usually need a speedup
regression testing to save test resource (e.g. consumed time).
However, for the purpose of higher-quality, we want to run
test cases as many as possible. The contradiction between them
tells people it is necessary to apply some test case optimization
techniques to increase the effectiveness and efficiency of
regression testing. As one of test case optimization techniques,
the test case prioritization technique has been widely used to
improve the efficiency of software testing.

The test case prioritization technique aims to schedule test
cases in an order, to form a prioritized test suites. The classic
test case prioritization problem is defined as follows. Giving
an initial test suite Tinit, the test case prioritization technique
aims to find a prioritized test suite σ ∈ PT such that:

(∀σ′)(σ′ ∈ PT)(σ 6= σ′)[f(σ) > f(σ′)] (1)

Where PT is the set of all permutations of Tinit (PT collects
all possible prioritized test suites that contain all test cases in
Tinit). And f is an objective function from PT to real number
as the award value of prioritized test suite [1].

There could be many possible objective functions for test
case prioritization problem. People usually restrict attention to
the speed of detecting faults. Therefore, an objective function
called average percent of faults detected (APFD) is proposed
as a metric to evaluate the speed of detecting faults [1]. It helps

people to compare which prioritized test suite σ ∈ PT detects
faults more rapidly. There are also some variants of APFD,
including the normalized average percent of faults detected
(NAPFD) [2], the cost-cognizant weighted average percent
of faults detected (APFDC) [3], and etc. In this paper, we
use the term APFD series metrics to jointly call them.

APFD series metrics are designed for the classic test
case prioritization problem that defined in Equation 1, which
implies an assumption that all prioritized test suites in PT
must contain all test cases in the initial test suite (for each
σ ∈ PT , |σ| = |Tinit|). However, besides the classic problem,
there may be some other non-classic test case prioritization
problems, where above assumption does not hold:

(1) Time-aware test case prioritization selects and prior-
itizes test cases under the time constraint [6]. Differ-
ent selection algorithms may produce prioritized test
suites with different sizes.

(2) Test goal prioritization schedules test goals and gen-
erates test cases for important test goals earlier [7]. It
may leads to different prioritized test suites because
of the different orders of test goals.

(3) Test case re-generation prioritization strategy incor-
porates test prioritization into test generation (e.g. in
combinatorial testing [5]). Different algorithms may
generate prioritized test suites with different sizes.

(4) Test case reduction [8] and test case prioritization are
often incorporated in test case optimization. Different
test case reduction algorithms may output test suites
with different sizes.

In these novel scenarios, heterogeneous candidate priori-
tized test suites may contain only partial test cases in initial
test suite (e.g. time-aware test case prioritization and test case
reduction), or sometimes be not concerned with any initial test
suite at all (e.g. test case re-generation prioritization and test
goal prioritization). APFD and existing variants can hardly
work to evaluate and compare these candidate prioritized test
suites, since the number of test cases that contained in each
candidate prioritized test suites may be varying.

And besides the limitation about test suites’ sizes, there is
another limitation of existing APFD series metrics. That is
they cannot precisely illustrate the process of fault detection
in real world.

Therefore, we need some improved metrics for non-classic
test case prioritization. In this paper, we propose an improved
metric Relative-APFD (RAPFD for short), which relates
to a given testing resource constraint (determine how many test
cases could be run), to replace APFD and NAPFD. And

DOI reference number: 10.18293/SEKE2015-230 562

furthermore, we discuss the test costs and fault severities, and
propose the metric Relative-APFDCW (RAPFDCW for
short) to replace APFDC . Examples show us that proposed
metrics could provide much more precise illustrations of fault
detection process and fault detection efficiency of test suite.

II. EXISTING APFD SERIES METRICS

Using notations that introduced in the ref. [6], we briefly
introduce existing APFD series metrics in this section.

1) APFD: Let σ be a prioritized test suite under evalua-
tion, Φ the set of fault contained in the software, and TF (φ, σ)
the index of the first test case in σ that exposes fault φ ∈ Φ.
The APFD of σ is [1]:

APFD(σ) = 1−
∑
φ∈Φ TF (φ, σ)

|σ||Φ|
+

1

2|σ|
(2)

2) NAPFD: Sometimes, there may be non-detected fault
that can’t be detected by any test cases in σ. For each non-
detected fault φ ∈ Φ, Walcott et al. set TF (φ, σ) = |σ| + 1
as a penalty that may make APFD value to become negative
[6]. To avoid the problem of negative award value, Cohen et
al. set TF (φ, σ) = 0 and define an improved NAPFD [2]:

NAPFD(σ) = p−
∑
φ∈Φ TF (φ, σ)

|σ||Φ|
+

p

2|σ|
(3)

Where p is the rate of faults detected by σ:

p =
|{φ ∈ Φ|TF (φ, σ) 6= 0}|

|Φ|

3) APFDC: Another improvement for APFD is to take
the test costs and the fault severities into consideration. Let Ci
be the cost of the i-th test case in σ (i = 1, 2, ..., |σ|), Sφ the
severity of the fault φ ∈ Φ. For the scenario where there is
not any non-detected faults, the APFDC is [3]:

APFDC(σ) =

∑
φ∈Φ(Sφ × (

∑|σ|
i=TF (φ,σ) Ci −

1
2CTF (φ,σ)))∑|σ|

i=1 Ci ×
∑
φ∈Φ Sφ

(4)

There is special case of APFDC , called APFDTA, for the
scenario where fault severities are uniform [4].

4) NAPFDC: Similar to the APFD, the original version
of APFDC can not handle non-detected faults, since there is
not any definition of TF (φ, σ) for non-detected faults.

Here we propose the normalized cost-cognizant weighted
average percent of faults detected (NAPFDC), by defining
TF (φ, σ) = 0 for each non-detected fault φ ∈ Φ and setting
C0 = 0 for the dummy test case with index 0:

NAPFDC(σ) = pc −
∑
φ∈Φ(Sφ ×

∑TF (φ,σ)
i=1 Ci)∑|σ|

i=1 Ci ×
∑
φ∈Φ Sφ

+∑
TF (φ,σ)6=0(Sφ × CTF (φ,σ))

2×
∑|σ|
i=1 Ci ×

∑
φ∈Φ Sφ

(5)

Where pc is the rate of total severities of faults detected by σ:

pc =

∑
TF (φ,σ)6=0 Sφ∑

φ∈Φ Sφ

It is evident that NAPFDC will be equivalent to APFDC

in the scenarios where there is not any non-detected fault. And
NAPFDC will be equivalent to NAPFD in the scenarios
where both test costs and fault severities are uniform.

III. PHYSICAL EXPLANATIONS OF EXISTING METRICS

For a test suite with |σ| test cases, we can use |σ| + 1
discrete points to illustrate the relationship between the percent
of faults detected (y-axis) and the percent of test cases run (x-
axis). If we connect all these points by a curve, APFD and
NAPFD show the area under the curve. E.g., we select 5 test
cases from Table 1 to form a prioritized test suite σ1 : T3 −
T5−T2−T4−T1. It detects 3 faults using 1 test case, 5 faults
using 2 test cases, 7 faults using 4 test cases, and all 8 faults
using all 5 test cases. So APFD(σ1) = NAPFD(σ1) = 0.6
by drawing the curve that connects 6 discrete points (0, 0),
(1

5 ,
3
8), (2

5 ,
5
8), (3

5 ,
5
8), (4

5 ,
7
8), and (1, 1) (see Fig. 1).

Table 1. Faults Detected by Test Cases

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

T1 x x
T2 x
T3 x x x
T4 x x
T5 x x x
T6 x x x

1
/
4

1
/
2

3
/
4

1

1
/
5
 2
/
5
 3
/
5

p

e

r
c

e

n

t
a

g

e

o

f

f
a

u

l
t

s

d

e

t
e

c

t
e

d

p
e
r
c
e
n
t
a
g
e

o
f

t
e
s
t

c
a
s
e
s

r
u
n

O
r
d
e
r
:
T
3

-
T
5

-
T
2

-
 T
4

-
T
1

4
/
5
 1

1
/
4

1
/
2

3
/
4

1

1
/
3
 2
/
3
 1

p

e

r
c

e

n

t
a

g

e

o

f

f
a

u

l
t

s

d

e

t
e

c

t
e

d

p
e
r
c
e
n
t
a
g
e

o
f

t
e
s
t

c
a
s
e
s

r
u
n

1
/
5
 2
/
5
 3
/
5
 4
/
5

O
r
d
e
r
2
:
T
3

-
T
5

-
T
6

O
r
d
e
r
1
:
T
3

-
T
5

-
T
2

-
T
4

-
T
1

Fig. 1. APFD(σ1) Fig. 2. Compare σ1 and σ2

The APFDC and NAPFDC have the similar physical
explanations, if we replace the number of detected faults with
the total severities of detected faults, and replace the number
of test cases run with the costs that consumed by test cases.

Besides the above physical explanations, APFD series
metrics can help people to control the risk of exceptional
termination in testing process under the constraint of testing re-
source. As well known, during the software evolution, resource
(including time) that distributed to software testing are often
limited since the delay of develop, the deadline of release, and
etc. So there is usually not enough time to run all test cases.

Theorem 1. Let Ci be the consumed time of the i-th test
case Ti ∈ σ (i = 1, 2, ..., |σ|), and Sφ the severity of fault
φ ∈ Φ. Suppose the variable t ∈ [0,

∑|σ|
i=1 Ci] be the time

563

of the moment testing process terminates exceptionally. The
NAPFDC(σ) is the mathematical expectation (or expected
value) of the percent of total severities of faults detected before
the termination, if following two assumptions hold:

1) t ∼ U[0,
∑|σ|
i=1 Ci]: That is t follows the continuous

uniform distribution with parameters (0,
∑|σ|
i=1 Ci).

2) During the running of the i-th test case Ti ∈ σ,
the total severities of its newly detected faults grow
linearly with its consumed time.

Proof is omitted since the length constraint.

According to this theorem, testers can use NAPFDC to
select the prioritized test suite that make more contributions
under the constraint of testing resource. As we claimed pre-
viously, APFDC , NAPFD and APFD are all the special
cases of NAPFDC , so they have the similar properties in
scenarios where (1) pc = 1, (2) costs / severities are uniform,
(3) p = 1 and costs / severities are uniform, respectively.

IV. LIMITATIONS OF EXISTING METRICS

There are some limitations of APFD series metrics though
they have practical explanations.

A. Test Suites’ Sizes or Total Costs

APFD series metrics are designed for the classic test case
prioritization problem that defined in Equation 1, where all
prioritized test suites under evaluation contain the same num-
ber of test cases. However, there may be some other types of
scenarios in software evolution and testing evolution, including
time-aware test case prioritization, test goal prioritization, test
case re-generation prioritization, test case reduction, and etc,
where people need to compare prioritized test suites in which
the numbers of contained test cases are different. So there is a
question: can APFD series metrics work in these scenarios?

There is a condition in Theorem 1 that t ∼ U(0,
∑|σ|
i=1 Ci).

Considering two prioritized test suites σ1 and σ2 where∑|σ1|
i=1 Ci 6=

∑|σ2|
i=1 Ci, there are tσ1

∼ U(0,
∑|σ1|
i=1 Ci) and

tσ2
∼ U(0,

∑|σ2|
i=1 Ci) respectively. Though both tσ1

and tσ2

follow continuous uniform distribution, their parameters are
different: the former follows the distribution with parameters
(0,
∑|σ1|
i=1 Ci) while the latter follows the distributions with

parameters (0,
∑|σ2|
i=1 Ci). It is unfair, and even meaningless, to

compare mathematical expectation by using NAPFDC , when
probability density functions are different. Therefore, APFD
series metric are not suitable to be used to compare prioritized
test suites with different sizes (for APFD and NAPFD) or
different total costs (for APFDC and NAPFDC).

Here we can take the test cases and faults in Table 1 as
examples to show some incorrect results when use APFD and
NAPFD. The incorrect results could be extended to illustrate
the limitations of APFDC and NAPFDC , since APFD and
NAPFD are special cases of them respectively.

1) For situation that all faults are detected by prioritized
test suites, construct two prioritized test suite σ1 :
T3 − T5 − T2 − T4 − T1 and σ2 : T3 − T5 − T6.
Note that both σ1 and σ2 detect all faults. Then we
compere their APFD values (also see Fig. 2):

APFD(σ1) = APFDC(σ1) = 3
5

APFD(σ2) = APFDC(σ2) = 1
2

But, it is incorrect to say σ1 is more efficient than σ2.
After run 1 (or 2) test case(s), both σ1 and σ2 detect
3 (or 5) faults; after run 3 test cases, σ2 detects all 8
faults while σ1 detects only 5; and finally σ1 need 2
more test cases to detect all 8 faults. It is clear that
σ2 detects faults more rapidly than σ1.

2) For situation that there are non-detected faults, con-
struct two prioritized test suite σ3 : T3−T2−T5 and
σ4 : T3−T5. Note that both σ3 and σ4 detect 5 faults.
Then we get:

NAPFD(σ3) = 17
48

NAPFD(σ4) = 11
32

But, it is incorrect to say σ3 is more efficient than
σ4. After run 1 test case, both σ3 and σ4 detect 3
faults; after run 2 test cases, σ4 detects 5 faults while
σ3 detects 3 faults; and finally σ3 need one more test
case to detect 5 faults. It is clear that σ4 detects faults
more rapidly than σ3.

This phenomenon is often overlooked. There may be some
incorrect and confused experimental results in the applications
of APFD series metrics in some previous papers. E.g. in ref.
[6] and [2], authors used APFD and NAPFD respectively
to compare prioritized test suites, in which the numbers of
contained test cases are different, without any pretreatment.

B. Process of Fault Detection

APFD series metrics can’t precisely illustrate the process
of fault detection in real world.

Note that the second condition of Theorem 1 is that the
total severities of detected faults grow linearly with consumed
time. In detail, during the running of one given test case, the
number of newly detected faults (for APFD and NAPFD)
or the total severities of newly detected faults (for APFDC

and NAPFDC) grow linearly. Taking the prioritized test suite
σ1 : T3 − T5 − T2 − T4 − T1 as an example, in the scenario
where both test costs and fault severities are ignored, there is
a continue function, which from the number of test cases run
to the percent of faults detected, reflecting the process that σ1

detects faults (see the curve in Fig. 1).

But factually, if a test case is still running, it cannot detect
any faults, since it is impossible to check whether this test
case is passed or failed before the end of running. It means
that the function, which from the number of test cases run (or
consumed time) to the percent of faults detected (or percent
of total severities of detected faults), should be a step function
in order to reflect the process of detecting faults. Also taking
σ1 : T3−T5−T2−T4−T1 as an example, the corresponding
step function is shown in Fig. 3. And the difference between
continue function and step function is shown in Fig. 4.

So in computing mathematical expectation that explained
in Theorem 1 for a prioritized test suite, there will be a margin
of error. The margin of error may be very severe especially
when the number of test cases is small. And if there are
numerous test cases in prioritized test suite, we may accept
such a approximation since the windage is minor.

564

1
/
4

1
/
2

3
/
4

1

1
/
5
 2
/
5
 3
/
5

p

e
r

c

e
n

t
a

g

e

o

f

f
a

u

l
t

s

d

e

t
e

c

t
e

d

p
e
r
c
e
n
t
a
g
e

o
f

t
e
s
t

c
a
s
e
s

r
u
n

O
r
d
e
r
:
T
3

-
T
5

-
T
2

-
T
4

-
 T
1

4
/
5
 1

1
/
4

1
/
2

3
/
4

1

1
/
5
 2
/
5
 3
/
5

p

e

r
c

e

n

t
a

g

e

o

f

f
a

u

l
t

s

d

e

t
e

c

t
e

d

p
e
r
c
e
n
t
a
g
e

o
f

t
e
s
t

c
a
s
e
s

r
u
n

O
r
d
e
r
:
T
3

-
T
5

-
T
2

-
 T
4

-
T
1

4
/
5
 1

Fig. 3. Step Function of σ1 Fig. 4. Difference between
Continue and Step Function

V. IMPROVED METRICS

To avoid above limitations, we propose a series of improved
metrics especially for non-classic test prioritization problems.

A. Relative-APFD

For two or more prioritized test suites that contain different
number of test cases, if we want to evaluate and compare how
rapidly they detect faults in the scenario where both test costs
and fault severities are ignored, a fair testing resource should
be provided firstly. Here the testing resource, which could be
described as a positive integer m, is considered as a constraint:

1) m < |σ| : at most m test cases in σ will run.
2) m ≥ |σ| : all the |σ| test cases in σ will run.

By using the testing resource constraint, we propose an
improved metric called relative average percent of faults
detected (Relative-APFD or RAPFD for short). The value
of RAPFD dose not only depend on the test suites under eval-
uation, but also relate to the given testing resource constraint.
And further, this metric could handle non-detected faults.

Formally, let σ be a prioritized test suite under evaluation,
Φ the set of fault contained in the software, and TF (φ, σ) the
position of the first test case in σ that exposes fault φ ∈ Φ
(TF (φ, σ) = 0 for non-detected fault). For a given testing
resource constraint m, the RAPFD of σ is defined as:

RAPFD(σ,m) = pm −
∑
φ∈ΦRTF (φ, σ,m)

m× |Φ|
(6)

Where

RTF (φ, σ,m) =

{
TF (φ, σ) : m ≥ TF (φ, σ)

0 : m < TF (φ, σ)

And pm is the ratio of the number of faults detected by first
m test cases in σ to the number of faults in Φ:

pm =
|{φ ∈ Φ|RTF (φ, σ,m) 6= 0}|

|Φ|

Taking the prioritized test suite σ1 : T3 − T5 − T2 − T4 −
T1 as an example, for a given testing resource constraint m,
RAPFD(σ1,m) shows the area surrounded by the x-axis, y-
axis, the line with x = m, and the curve that reflects the step
function of fault detection process of σ1. (See Fig. 5).

1
/
4

1
/
2

3
/
4

1

m
=
1
 m
=
2
 m
=
3

p

e
r

c

e
n

t
a

g

e

o

f

f
a

u

l
t

s

d

e

t
e

c

t
e

d

n
u
m
b
e
r

o
f

t
e
s
t

c
a
s
e
s

r
u
n

O
r
d
e
r
:
T
3

-
T
5

-
T
2

-
T
4

-
 T
1

m
=
4
 m
=
5

1
/
4

1
/
2

3
/
4

1

m
=
1
 m
=
2
 m
=
3

p

e
r

c

e
n

t
a

g

e

o

f

f
a

u

l
t

s

d

e

t
e

c

t
e

d

n
u
m
b
e
r

o
f

t
e
s
t

c
a
s
e
s

r
u
n

O
r
d
e
r
:
T
3

-
T
5

-
T
6

m
=
4
 m
=
5

Fig. 5. RAPFD(σ1,m) Fig. 6. RAPFD(σ2,m)

B. Relative-APFDCW

Considering the scenarios that test costs and fault severities
are varying, the given uniform testing resource constraint
should be scaled by a positive real number mc, which in-
dicates that the consumed testing resource should be less or
equal to mc. Then we can propose the metric called relative
cost-cognizant weighted average percent of faults detected
(Relative-APFDCW or RAPFDCW for short).

Formally, let σ be a prioritized test suite under evaluation,
Φ the set of fault contained in the software, and TF (φ, σ) the
position of the first test case in σ that exposes fault φ ∈ Φ
(TF (φ, σ) = 0 for non-detected fault). And let Ci be the cost
of the i-th test case (i = 1, 2, ..., |σ|), Sφ the severity of the
fault φ ∈ Φ. For a given testing resource constraint mc, the
RAPFDC of σ is defined as:

RAPFDCW (σ,mc) = pmcw−
∑
φ∈Φ(Sφ ×

∑RTFC(φ,σ,mc)
i=1 Ci)

mc ×
∑
φ∈Φ Sφ

(7)

Where

RTFC(φ, σ,mc) =

{
TF (φ, σ) : mc ≥

∑TF (φ,σ)
i=1 Ci

0 : mc <
∑TF (φ,σ)
i=1 Ci

And pmc is the ratio of the total severities of faults detected by
σ within the testing resource constraint, to the total severities
of all faults in Φ:

pmcw =

∑
RTFC(φ,σ,mc)6=0 Sφ∑

φ∈Φ Sφ

It is clear that RAPFDCW is equivalent to RAPFD
when both test costs and fault severities are uniform.

And further, for the scenario where only test costs / only
fault severities are taken into consideration, we can utilize

RAPFDC(σ,mc) = pmc −
∑
φ∈Φ

∑RTFC(φ,σ,mc)
i=1 Ci

mc × |Φ|
(8)

And

RAPFDW (σ,m) = pmw −
∑
φ∈Φ(Sφ ×RTF (φ, σ,m))

m×
∑
φ∈Φ Sφ

(9)

565

respectively. Where

pmc =
|{φ ∈ Φ|RTFC(φ, σ,mc) 6= 0}|

|Φ|

pmw =

∑
RTF (φ,σ,m)6=0 Sφ∑

φ∈Φ Sφ

They are both special cases of RAPFDCW

C. Physical Explanation

We take the RAPFDCW as example to analyze the phys-
ical meaning of improved metrics. RAPFD, RAPFDC and
RAPFDW will be omitted, since they could be considered as
a special case of RAPFDCW .

Theorem 2. Let Ci be the consumed time of the i-th
test case Ti ∈ σ (i = 1, 2, ..., |σ|), Sφ the severity of
fault φ ∈ Φ. Suppose the variable t ∈ [0,mc] be the time
of the moment testing process terminates exceptionally. The
RAPFDCW (σ,mc) is equal to the mathematical expectation
(or expected value) of the percent of total severities of faults
detected before the termination, if following two assumptions
hold:

1) t ∼ U[0,mc]. It means that t follows the continuous
uniform distribution with parameters (0,mc).

2) During the running of the i-th test case Ti ∈ σ, the
total severities of its newly detected faults keep still,
until the execution of Ti is finished.

Proof is omitted since the length constraint.

The theorem means that proposed RAPFD, RAPFDC ,
RAPFDW , and RAPFDCW could help people to control
the risk of testing process too.

VI. EXAMPLES

We still take the test cases and faults that shown in Table 1
as examples to illustrate the advantage of proposed RAPFD.
Considering σ1 : T3 − T5 − T2 − T4 − T1 and σ2 : T3 −
T5 − T6. For testing resource constraint m =1, 2, 3, 4, and
5 respectively, we compute RAPFD for σ1 and σ2 (also see
the area under the step functions in Fig. 5 and Fig. 6):

1) RAPFD(σ1, 1) = RAPFD(σ2, 1) = 0
2) RAPFD(σ1, 2) = RAPFD(σ2, 2) = 3

16
3) RAPFD(σ1, 3) = RAPFD(σ2, 3) = 1

3
4) RAPFD(σ1, 4) = 13

32 < RAPFD(σ2, 4) = 1
2

5) RAPFD(σ1, 5) = 1
2 < RAPFD(σ2, 5) = 3

5

The overall results show us that: if testing resource con-
straint is greater than 3 (more than test cases could run), σ2

detects faults more rapidly than σ1; if testing resource con-
straint is less than 3 (less than 3 test cases could run), σ1 and
σ2 have the same efficiency. And if testing resource constraint
is 3 (just 3 test cases could run), though RAPFD(σ1, 3) =
RAPFD(σ2, 3), σ2 is more efficient than σ1 since the former
detects more faults using first 3 test cases.

And for other two prioritized test suites σ3 : T3 − T2 − T5

and σ4 : T3 − T5, their RAPFD values for testing resource
constraint m =1, 2, 3 are:

1) RAPFD(σ3, 1) = RAPFD(σ4, 1) = 0
2) RAPFD(σ3, 2) = RAPFD(σ4, 2) = 3

10
3) RAPFD(σ3, 3) = 6

15 < RAPFD(σ4, 3) = 8
15

The overall results show us that: if testing resource con-
straint is greater than 2, σ4 detects faults more rapidly than σ3;
if testing resource constraint is less than 2, σ3 and σ4 have the
same efficiency. And if testing resource constraint is 2, though
RAPFD(σ3, 2) = RAPFD(σ4, 2), σ4 is more efficient than
σ3 since the former detects more faults using first 2 test cases.

RAPFDC , RAPFDW , and RAPFDCW have the sim-
ilar advantage, which is omitted here.

VII. CONCLUSION

We make a brief revisit of widely used existing APFD
series metrics, discuss the their physical explanations, and
point out some limitations that may lead incorrect results
especially in non-classic test case prioritization problems. To
avoid limitations, a series of improved metrics are proposed
in this paper. They could illustrate the process of faults de-
tection in software testing more precisely and practically, and
provide physical meaningful results to evaluate and compare
the efficiency of prioritized test suites.

Besides the theoretical analysis and simple examples, more
applications and case studies should be investigated in future
works to examine the proposed metrics.

ACKNOWLEDGMENT

Supported by the National Natural Science Foundation
of China (61300054), Natural Science Foundation of Jiangsu
Province (BK20130879), Natural Science Foundation for Col-
leges & Universities of Jiangsu Province (13KJB520018).

REFERENCES

[1] G. Rothermel, R. H. Untch, C. Y. Chu, M. J. Harrold. Prioritizing
Test Cases for Regression Testing. IEEE Transactions on Software
Engineering, 2001, 27(10): 929-948.

[2] X. Qu, M. B. Cohen, K. M. Woolf. Combinatorial Interaction Regres-
sion Testing: A Study of Test Case Generation and Prioritization. In
Proceedings of IEEE International Conference on Software Maintenance
(ICSM2007): 255-264.

[3] S. Elbaum, A. G. Malishevsky, G. Rothermel. Incorporating Varying Test
Costs and Fault Severities into Test Case Prioritization. In Proceedings
of the International Conference on Software Engineering (ICSE2001):
329-338.

[4] Dongjiang You, Zhenyu Chen, Baowen Xu, Bin Luo, Chen Zhang.
An Empirical Study on the Effectiveness of Time-Aware Test Case
Prioritization Techniques. In Proceedings of the 26th ACM Symposium
on Applied Computing (SAC2011): 1451-1456.

[5] R. C. Bryce, C. J. Colbourn. Prioritized Interaction Testing for Pair-
wise Coverage with Seeding and Constraints. Information and Software
Technology, 2006, 48(10): 960-970.

[6] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, R. S. Roos. Time-aware
test suite prioritization. In Proceedings of International Symposium on
Software Testing and Analysis (ISSTA2006), July 17-20, 2006 : 1-11.

[7] S. WeiBleder. Towards Impact Analysis of Test Goal Prioritization on
the Efficient Execution of Automatically Generated Test Suites Based
on State Machines. In Proceedings of the 11th International Conference
On Quality Software (QSIC2011), Madrid, Spain, July 13-14, 2011 :150-
155.

[8] M. J. Harrold, R. Gupta, and M. L. Soffa. A Methodology for Controlling
the Size of A Test Suite. ACM Transactions on Software Engineering
and Methodology, 1993, 2(3): 270-285.

566

An Average Case Time Complexity Estimator for Black-box Functions

Duncan Yung, Bill Laboon, Shikuo Chang

Department of Computer Science, University of Pittsburgh
duncanyung@cs.pitt.edu,bill.laboon@pitt.edu,chang@cs.pitt.edu

Abstract— Average case time complexity is widely used to
evaluate the efficiency of an algorithm [2]. Given a black-
box function, if a tester wants to know the average case time
complexity, he/she has to analyze the source code and make
input assumption so as to know the average case of the function.
Although that is feasible, it is time consuming and that makes the
testing process no longer automatic. In this paper, we propose
an approach for estimating the average case time complexity
of a given black-box function without analyzing source codes.
Experimental results show that our approach can accurately
estimate the average case time complexity without reading the
source code.

I. INTRODUCTION

The worst case time complexity is always used to evaluate
the efficiency of an algorithm. The worst case time complexity
of an algorithm is based on an extreme input which maximize
the execution time of the algorithm. However, such extreme
input may not always appear. Hence, average case time
complexity can be a better representation of efficiency of an
algorithm [2].

Given a black-box function, if a tester wants to know
the average case time complexity, he/she has to analyze the
source code and make input assumption so as to know the
average case of the function. Although that is feasible, it is
time consuming and that makes the testing process no longer
automatic. Furthermore, manual source code analysis is not
always reliable as it is not rare that human error occurs (That
is one of the reason to have software testing.).

In this paper, we propose an approach for estimating the
average case time complexity of a given black-box function
without analyzing source codes. It is a useful tool for testers
and programmers to analyze their source codes. The challenges
of building such tools lie in two-fold:

1) Without reading the source code, we cannot get any hint
from the implementation. The only easy thing that we
can do is to measure execution time of the black-box
function.

2) It is too time consuming to measure the execution
time of all possible inputs so as to obtain the average
execution time of the function and estimate the average
case time complexity.

Related work study is in Section II. In Section III-A,
we propose the baseline approach. Based on the baseline
approach, we develop an advanced approach in Section III-C.

The accuracy and efficiency of different approaches are
evaluated in Section IV.

II. RELATED WORK

The related work of time complexity analysis mainly
fall into two areas-static time complexity analysis and
measurement-based time complexity analysis. However, they
all focus on worst-case time complexity. In this paper, we
focus on average case time complexity.

A. Static Time Complexity Analysis

Static time complexity analysis approaches[9], [7] derive
bounds for the execution time of a program without actually
executing the program. Usually, the program is not treated as
a black-box function and analysis of source codes is needed.
In this paper, we propose a approach that can estimate the
time complexity of black-box functions.

B. Measurement-based Time Complexity Analysis

Measurement-based approaches measures execution time
of programs. As the number of possible inputs increase with
the complexity of the program, exhaustive measurements
becomes impossible. There exists solutions (e.g. [6] and [8])
that partition a program into parts for measuring execution
time of worst case. These approaches try to bring the system
into a worst-case state before taking measurements, e.g. by
clearing the cache. However, this assumption may not hold
for complex processor architectures that can exhibit timing
anomalies. Kirner et al [8] proposed to generate inputs so
that all paths of the program are taken. However, Kirner
et al’s approach is not a purely measurement-based time
complexity analysis approach. Bernat et al [4], [3] proposed
to determine the probability distribution of execution time.
Their approach does not derive a bound for the execution time.

III. METHODOLOGY

In this paper, we propose to use execution time of the
black-box function (Section III-A.1) and regression to
estimate the average case time complexity (Section III-A.2)
of a black-box function.

1567

duncan
Typewritten Text
(DOI reference number: 10.18293/SEKE2015-213)

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

A. Baseline Approach

In this paper, we assume that the average case time
complexity of a function is analyzed based on the uniform
input assumption (Definition 1). That is the probability of
the appearance of an input is always uniformly distributed
over all possible inputs. For example, if the input is a size
3 integer array and only 1, 2, and 3 (domain size=3) are
valid values for each element of the array, the probabilities
that {1,1,1},{1,1,2},{1,1,3},...,{3,3,3} (there are 27 possible
inputs) will be the input are the same and sum of the
probabilities is 1.

Definition 1: [Uniform Input] Let x be an input. x
satisfies: ∀x ∈ {0, 1}∗, prob(input = x) = 1

|{0,1}∗| , where
{0, 1}∗ is all possible bit patterns and |{0,1}∗| is the size of
the set {0, 1}∗.

1) Data Collection Phase: Based on the uniform input
assumption, we estimate the average execution time of an
input size by measuring the average execution time of all
possible inputs. Theoretically, we can generate all possible
inputs and estimate the average execution time for n=1,...,∞.
By doing that, we can obtain data point of the average
execution time of all input sizes.

2) Prediction Phase: Non-linear regression can be used to
fit different curves to the data points. The best fit curve is the
one with the least means square error. We adopt the best fit
curve to be the average case time complexity of the function.
For example, we use non-linear regression to fit the data points
to functions a+ bn, a+ blog2n, a+ bnlog2n, a+ bn2, a+ bn3,
and a + bn4, where n is the input size, and a and b are
coefficients. For each function, we can obtain the mean
square error. The function with the least mean square error is
chosen to be the average case time complexity estimation of
the black-box function.

B. Bottleneck in Data Collection Phase

The number of all possible inputs increases exponentially
with with input size. For example, the number of all possible
inputs of a size 10 integer array is 1010, given that the
value of each element of the array can only be 1,2,...,10.
Therefore, it is impossible to measure the execution time
when input size is large. Although it is still possible to
measure execution time of a function when input size is small
(e.g. 5), the estimation of the average case time complexity
is not accurate. (Figure 1, 2, and 3, Sol3).

C. Sampling Approach with Majority Voting

In this paper, we propose to use uniform sampling of input
to represent all possible inputs so as to improve efficiency of
the model and majority voting technique to reduce variance
of the estimation result.

1) Efficient Sampling: For each input size n, we draw
samples uniformly from all possible inputs. The samples
can be used as an estimation of all possible inputs as the
probability of each input being drawn is the same.

2) Majority Vote: For each run, we run the model for k
times, where k is a user-defined parameter. Then, we pick the
majority prediction result as the result of that run. Suppose k
is 10. There 6 times the prediction result is a+ bnlog2n and
4 times the prediction result is a+ bn2. Then, the prediction
result of that run is a+ bnlog2n.

In this setting, the majority voting is the same as bagging
in machine learning field. It is well-known that bagging can
successfully improve stability of models [5].

IV. EXPERIMENT

In this section, we evaluate the accuracy and efficiency
of seven different approaches using 14 algorithms (black-
box functions) which have integer array as inputs. We
assume that the domain size of each integer is 1 to
maximum integer in Java. Algorithm 1 to 10 are well-
known algorithms. The definitions of algorithm 11 to
14 can be found in [1]. Experiments are implemented
in Java and run in an Intel Core i5 2.5GHz laptop with
4G memory. All source codes can be found in https :
//github.com/duncanyung/cs1699Fall14 deliverable4.git.
We compare accuracies and execution time of different
approaches.

A. Comparison of Different Approaches

The settings of each approach are as below:

1) Sampling Approach with Majority Voting (Sol1)
• input size n=1,2,5,10,50,100
• sample size for each n=5000 (sample size for algo-

rithm 5 is 1000)
• majority voting of 50 predictions
• 50 runs

2) Sampling Approach without Majority Voting (Sola2)
• input size n=1,2,5,10,50,100
• sample size for each n=5000
• 50 runs

3) Sampling Approach without Majority Voting (Solb2)
• input size n=1,2,5,10,50,100
• sample size for each n=20000
• 50 runs

4) Sampling Approach without Majority Voting (Solc2)
• input size n=1,2,5,10,50,100
• sample size for each n=80000

2568

 0

 20

 40

 60

 80

 100

1.M
erge Sort

2.Q
uick Sort

3.Bubble Sort

4.Single for-loop

5.n 3
 function

A
c
c
u
ra

c
y
 %

sol1
sol2

a

sol2
b

sol2
c

sol3
a

sol3
b

sol3
c

 0.01

 0.1

 1

 10

 100

 1000

 10000

1.M
erge Sort

2.Q
uick Sort

3.Bubble Sort

4.Single for-loop

5.n 3
 function

T
im

e
 (

S
e
c
o
n
d
s
)

sol1
sol2

a

sol2
b

sol2
c

sol3
a

sol3
b

sol3
c

Fig. 1. Algorithm 1 - 5

• 50 runs

5) Baseline Approach with Majority Voting (Sola3)
• input size n=1,2,3,4,5,6,7
• majority voting of 50 predictions
• 50 runs

6) Baseline Approach without Majority Voting (Solb3)
• input size n=1,2,3,4,5,6,7,10
• majority voting of 50 predictions
• 50 runs

7) Baseline Approach with Majority Voting (Solc3)
• input size n=1,2,3,4,5,6,7,10
• majority voting of 50 predictions
• 50 runs

For each approach, the model tries to classify the average
case time complexity of the black-box function as one of
these time complexities- O(n), O(log2n), O(nlog2n), O(n2),
O(n3), O(n4), and O(n5).

 0

 20

 40

 60

 80

 100

6.Lienar Search

7.Binary Serach

8.Arrays.toString

9.Arrays.C
opyO

f

10.R
em

ove D
uplicates

A
c
c
u
ra

c
y
 %

sol1
sol2

a

sol2
b

sol2
c

sol3
a

sol3
b

sol3
c

 0.01

 0.1

 1

 10

 100

6.Lienar Search

7.Binary Serach

8.Arrays.toString

9.Arrays.C
opyO

f

10.R
em

ove D
uplicates

T
im

e
 (

S
e
c
o
n
d
s
)

sol1
sol2

a

sol2
b

sol2
c

sol3
a

sol3
b

sol3
c

Fig. 2. Algorithm 6 - 10

Figure 1, 2, and 3 shows the experiment results of all
solutions for algorithm 1-5, 6-10, and 11-14 respectively.

The accuracy of Sol1 is higher than Sola2 . Hence, we can
see that the majority voting technique can actually improve
the accuracy. The accuracy of Sola3 is the worst. Hence, we
can see that using a small input size (from 1 to 7) cannot help
to estimate the complexity. However, increasing input size
will make the execution time increase exponentially which is
not a feasible solution. Although the execution time of Sol1
is the highest, the execution time of Sola1 is less than 200
seconds (except algorithm 5).

Solb2 and Solc2 tries to improve the accuracy by increasing
the sample size for each input size to 20000 and 80000
respectively. In general, the accuracy of Solb2 is better than
Sola2 , but with higher execution time. Although the accuracy
of Solb2 is better than Sola2 , it is still worse than Sol1.
Then, we further increase the sample size for each input size
from 20000 to 80000. Hopefully, the accuracies would be
improved. Unfortunately, the accuracy gets worse. Hence, we
believe that using large sample size without majority vote
cannot help improving accuracy.

3569

 0

 20

 40

 60

 80

 100

11.Search In R
oatated

 Sorted Array

12.3Sum

13.Plus O
ne

14.C
andy

A
c
c
u
ra

c
y
 %

sol1
sol2

a

sol2
b

sol2
c

sol3
a

sol3
b

sol3
c

 0.01

 0.1

 1

 10

 100

11.Search In R
oatated

 Sorted Array

12.3Sum

13.Plus O
ne

14.C
andy

T
im

e
 (

S
e
c
o
n
d
s
)

sol1
sol2

a

sol2
b

sol2
c

sol3
a

sol3
b

sol3
c

Fig. 3. Algorithm 11 - 14

Solb3 tries to improve the accuracy by changing the input
size to [1,2,3,4,5,6,7,10] while not using majority vote. Solc3
tries to improve the accuracy by changing the input size to
[1,2,3,4,5,6,7,10] while using majority vote. The accuracy
of Solb3 and Solc3 are similar to Sola3 . However, there is a
non-linear increase in average execution time. This shows
that slightly increasing the input size (from [1,2,3,4,5,6,7] to
[1,2,3,4,5,6,7,10]) cannot help improving accuracy. However,
largely increasing the input size (e.g. using [1,2,5,10,50])
would result in an unacceptably high execution time.

V. DISCUSSION

A. Execution Time Issue

The execution time of high complexity algorithms increase
non-linearly (e.g. algorithm 5). Under such situation, the
model may have to automatically reduce the input and sample
size so as to have a quick response. Therefore, the model can
estimate the execution time of the algorithm before deciding
the input and sample size.

B. Input-Execution Time Relationship

In this paper, we assume that the execution time is related
to the input size. However, that is not always true for an
arbitrary black-box function. We need another approach
for estimating the average case time complexity of those
black-box functions. One of the direction to solve this issue
is that the system can draw uniform input size sample
instead of setting the input size to a specific sequence (e.g.
n=1,2,5,10,50,100).

C. Input Type

In the experiment section, we assume that the input is an
array of integer. However, the input of a black-box function
can be any type. Therefore, generating uniform input for
black-box functions with integer array as input is different
from generating uniform input for black-box functions with
other input types. Given a uniform input generator is the pre-
condition of using our avergae case time complexity estimator.

VI. CONCLUSION

In this paper, we propose an approach to estimate the
average case time complexity of a black-box function. We
propose to use sampling to improve the efficiency and
majority voting to improve the stability of the approach.
Experimental result shows our proposed approach (Sol1)
can estimate the average case time complexity of different
black-box functions accurately and efficiently.

REFERENCES

[1] www.leetCode.com.
[2] S. Ben-david, B. Chor, O. Goldreich, and M. Luby. On the theory of

average case complexity. Journal of Computer and System Sciences,
44:193–219, 1997.

[3] G. Bernat, A. Colin, and S. Petters. pwcet: A tool for probabilistic worst-
case execution time analysis of real-time systems. Technical report, 2003.

[4] G. Bernat, A. Colin, and S. M. Petters. Wcet analysis of probabilistic
hard real-time system. In RTSS, pages 279–288. IEEE Computer Society,
2002.

[5] L. Breiman. Bagging Predictors. Mach. Learn., 24(2):123–140, Aug.
1996.

[6] J.-F. Deverge and I. Puaut. Safe measurement-based WCET estimation. In
R. Wilhelm, editor, 5th International Workshop on Worst-Case Execution
Time Analysis (WCET’05), volume 1 of OpenAccess Series in Informatics
(OASIcs), Dagstuhl, Germany, 2007. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[7] S. Gulwani. Speed: Symbolic complexity bound analysis. In A. Bouajjani
and O. Maler, editors, CAV, volume 5643 of Lecture Notes in Computer
Science, pages 51–62. Springer, 2009.

[8] R. Kirner, P. Puschner, and I. Wenzel. Measurement-based worst-case
execution time analysis using automatic test-data generation. In IN PROC.
IEEE WORKSHOP ON SOFTWARE TECH. FOR FUTURE EMBEDDED
AND UBIQUITOUS SYSTS. (SEUS05, pages 7–10, 2004.

[9] R. Wilhelm. Determining bounds on execution times.

4570

Automatic Detection of Parameter Shielding for Test Case Generation∗

Jingjian Lin1,2, Jun Yan1, and Jifeng Xuan3,4

1Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences, China
2University of Chinese Academy of Sciences, China

3State Key Laboratory of Software Engineering, Wuhan University, China
4INRIA Lille - Nord Europe, France

Email: {linjingjian12,yanjun}@otcaix.iscas.ac.cn, jifeng.xuan@inria.fr

Abstract

Parameter shielding refers to the situation that one test
parameter disables others in test execution. The quality of
test case generation techniques is limited by the wide exis-
tence of parameter shielding. It is challenging to automat-
ically find out conditions that cause the parameter shield-
ing. This paper presents a novel approach for exploring the
shielding conditions of test parameters. Our approach exe-
cutes test inputs and collects runtime information of execu-
tion as features of test inputs. Then, a clustering algorithm
is used to group test inputs with similar runtime informa-
tion while a decision tree algorithm is built to extract the
conditions in the groups. Finally, our approach identifies
the shielding conditions based on the decision tree. Experi-
ments on seven programs show that our approach can effec-
tively detect the parameter shielding and the related condi-
tions.

Keywords: black-box testing, parameter shielding, clus-
tering, decision tree

1. Introduction

Software companies employ testing techniques as one
indispensable step for quality assurance. A Software Un-
der Test (SUT) has multiple input parameters and each pa-
rameter may lead to a large input space. In practice, it is
expensive to verify the correctness of SUT using exhaustive
testing [1], [2]. A variety of test case generation techniques
have been proposed to reduce the scale of test cases, such
as equivalence partitioning, boundary-value analysis, and
category-partition methods [3].

∗Corresponding author: Jifeng Xuan. This work is supported by Na-
tional Natural Science Foundation of China (under grant No. 91118007)
and INRIA Postdoctoral Research Fellowship.
DOI reference number: 10.18293/SEKE2105-039

In test case generation for a SUT with more than one
parameter, one parameter may be shielded by others. Pa-
rameter shielding refers to the situation that one parameter
disables other parameters in the SUT [4]. For example, if
an application opens a modal child window, all operations
to the parent window will be shielded; for many command-
line tools in Linux system, the parameter --help shields
all the other parameters. Parameter shielding results in the
redundancy and low quality for test cases generation. For
example, in combinatorial testing with Mixed Covering Ar-
ray (MCA), parameter shielding will make test case gen-
eration fail in exposing potential errors, which should be
detected if no parameter shielding exists [4]. Existing work
by Chen et al. [4] focuses on how to generate combinatorial
test cases under the scenario of shielding conditions. How-
ever, to the best of our knowledge, how to automatically
detect the parameter shielding has been unexplored yet.

We propose an approach to automatic parameter shield-
ing detection in this paper. This approach generates test
inputs and extracts function call information via dynamic
analysis tools. Cluster analysis groups inputs that show the
similar function calls while a decision tree algorithm iden-
tifies constraints of parameters in clusters. By analyzing the
result of the decision tree, we find out whether there exists
parameter shielding and extract the condition that causes the
parameter shielding. Experiments show that our approach
can effectively detect the parameter shielding and the relat-
ed conditions.

2. Background

2.1. Parameter shielding

Parameter shielding widely occurs in the case that sev-
eral parameters control the same or relevant program logics
[4]. However, in automatic testing, it is hard to be aware of

(DOI Reference Number: 10.18293/SEKE2015-039)

571

Table 1: 2-way test cases of the
example

test index a b c
t1 1 1 1
t2 1 2 2
t3 2 1 2
t4 2 2 1

Table 2: 2-way test cases under
parameter shielding

test index a b c
t1 1 1 1
t2 1 2 2
t3 2 1 #
t4 2 2 #

parameter shielding before test case generation. This may
fail to satisfy the requirements of a specific test case gen-
eration technique. Consider the following scenario of com-
binatorial testing, a SUT has three parameters a, b, and c
with valid values of {1,2}. Table 1 shows the test cases gen-
erated by 2-way testing. The technique, t-way testing, aims
to cover every possible combination value of no more than
t parameters [4], [1].

Assume that parameter c is shielded by a: when a==2,
c is disabled. Then test cases in Table 1 can be transformed
into cases in Table 2 (‘#’ means the parameter is disabled).
We find that test cases in Table 2 have not covered the fol-
lowing value pairs of b and c: 〈2, 1〉 and 〈1, 2〉, which are
originally covered in Table 1. In other words, when param-
eter a shields c, test cases cannot meet the requirements
of 2-way testing. Therefore, it is important to find out the
potential parameter shielding before test case generation.

2.2. Data mining

Data mining, aims to extract implicit, previously un-
known, and potentially useful information from databases
[5]. It is actually the process of finding the hidden data pat-
tern of the databases.

In this paper, we leverage clustering and classification
techniques to analyze runtime logs. The goal of clustering is
to discover similarities and differences among data patterns
in order to derive useful conclusions about similar clusters
[6]. According to a specific similarity measure, a data set is
divided into clusters; such division ensures that data inside
one cluster have a higher similarity than those in different
clusters [7].

The goal of classification is to predict categorical label-
s, such as “safe” or “risky” for the loan application data,
“yes” or “no” for marketing data [7]. Decision trees are a
typical family of classifiers on a target class in the form of
a tree structure. One main advantage of decision trees is to
produce a set of rules, which represents the branches and
nodes of the tree; such rules can be easily interpreted into
condition combinations, comparing with other basic classi-
fication techniques [8].

Input generation

Runtime
information

recording

Feature extraction

Clustering Classification

Decision
tree

Shielding analysis

loop

Cluster

SUT

Figure 1: Process of parameter shielding detection

3. Approach

We propose an approach to automatically detecting pa-
rameter shielding. Figure 1 shows the process of our ap-
proach, which consists of six steps.

3.1 Input generation

In general, parameter shielding occurs when a parameter
value dominates a module or several parameters are sensi-
tive to the parameter orders. In our work, to detect parame-
ter shielding, we extract parameters in the same module and
generate test inputs for further test execution.

First, we generate test inputs, i.e., input vectors of actual
values for parameters, for every single parameter. We can
generate all values in the input space for parameters with s-
mall input space. For parameters with large input space, we
choose parameter values that generate different runtime be-
haviors, such that these values can be divided into different
clusters by clustering analysis. Values can be selected by e-
quivalence partitioning, boundary-value analysis etc. Based
on these selected values, we calculate all combination and
permutations of parameters. So the number of generated

test inputs is n! ×
n∏

i=1

vi, where n denotes the number of

parameters and vi denotes the number of values for the ith
parameter.

3.2. Runtime recording and feature extraction

We execute all generated inputs and extract their runtime
information. Using dynamic analysis tools such as Valgrind
[9],1 we are able to collect running information of SUT-
s, including the orders of function calls and the number of
function calls. Then, function call information is stored in
logs for feature extraction.

1http://valgrind.org/

572

We describe the two kinds of features in our experiments
as follows. The order of function calls refers to the index of
a function such as bar in the call chain of another function
such as foo during the test execution. For example, if foo
calls 10 functions in one execution and bar is the second
function called by foo, then the order of bar called by
foo is 2. Similarly, the number of function calls refers to
the count of a function such as bar called by foo during
execution. For example, if foo calls bar nine times, then
number of function calls of bar called by foo is 9.

1 def gen_func_call_pair(logs):
2 call_dict = dict()
3 for func in calling functions:
4 for subfunc in functions called by func:
5 if not call_dict[func]:
6 call_dict[func] = set()
7 call_dict[func].add(subfunc)
8 return call_dict
9 def gen_numeric(call_dict, log):

10 features = []
11 for func in call_dict:
12 for subfunc in call_dict[func]:
13 if subfunc is called by func in log:
14 feature func:subfunc = its calling order
15 else:
16 feature func:subfunc = -1
17 features.append(func:subfunc)
18 return features
19 def gen_featMat(logs):
20 call_dict = gen_func_call_pair(logs)
21 for log in logs:
22 features = gen_numeric(call_dict, log)
23 print features to file

Listing 1: Feature extraction of the orders of function calls

The order of function calls can be converted to numeric
features by the python-like pseudo code in Listing 1. Func-
tion gen func call pair scans logs that are record by
dynamic analysis tools and finds out the collection of func-
tions which called by the same function. Then we can ob-
tain all function call pairs. For example, funcA:funcB
means the order of funcB in the collection of function-
s which are called by funcA. Function gen numeric is
used for generating the number value of specific features.
It scans logs that record calling information of a specif-
ic input and calculates the feature values. Note that some
call pairs only occurs in some specific inputs. Thus, we
assign a specific value such as -1 to values of call pairs
which are not occurred. Function gen featMat calls
gen func call pair and gen numeric to generate
all values of features and write them to file. The feature
extraction for the number of function calls is similar to the
feature extraction for the order of function calls.

3.3. Clustering and decision tree algorithms

Based on the extracted features, we apply clustering al-
gorithms based on numeric distances to detect similar test
inputs [7]. Clustering, such as k-means and EM algorithm-
s [6], is used in our approach for grouping inputs which

generate similar program behaviors together in a cluster. In
our work, the k-means algorithm is used for clustering in
the implementation. Since we select values that conduc-
t different program behaviors, the inputs will be grouped
into different clusters. Recall the example in Table 1, as-
sume that all parameter values lead to different program be-
haviors. Then case 〈2, 1, 1〉 and 〈2, 1, 2〉 will be grouped
into different cluster. If c is disabled when a==2, then
case 〈2, 1, 1〉 and 〈2, 1, 2〉 will be grouped in the same clus-
ter, called cluster1. This cluster (cluster1) is deter-
mined by value of a and b only, meanwhile other clusters
are determined by values of all parameters. We can find out
the shielding condition by analyzing the clustering result.

To further “understand” clusters, we employ a deci-
sion tree algorithm to find out the conditions for parame-
ter shielding. Given clusters as well as their test inputs, we
treat a cluster, which a test input belongs to, as the label of
the test input. Then we have a data set of labeled test in-
puts. Based on this data set, we train a decision tree model
to build the relationship between features and their labels
(clusters). Decision trees are a typical kind of classification
algorithms, for example, ID3, C4.5, and CART [10]. C4.5
is used in our implementation.

3.4. Shielding analysis

When a parameter is shielded by others, the parameter
value will not affect the program behavior. In other words,
when a parameter is disabled, runtime behaviors of the SUT
are only determined by other parameters.

We can find the shielded parameter from decision tree
by the following steps: first, in a decision tree, we merge
paths (conditions) that come from the same cluster; second,
we find out parameters that do not exist in the conditions
of clusters. These parameters are the shielded parameters
while the identified conditions could be the shielding con-
ditions.

4. Experiments

Experiments are conducted on programs of different
types and scales. Table 3 lists seven programs in our experi-
ments. The experiments are implemented with open-source
data mining platforms, Weka.2

4.1 Program with enumeration inputs

Taking program ln as an example, three parameters -s,
-P, and -L are considered in the experiment. Parameter
-s is used for making symbolic links instead of hard links;
parameter -P is used for changing hard links directly into
symbolic links; and parameter -L is for changing hard links
into symbolic link references.

2http://www.cs.waikato.ac.nz/ml/weka/

573

Table 3: Seven SUTs in experiments

Name #Parameter #Feature #Input Kloc Description
1 ls 3 366 12 5.0 print a list of the current directory
2 cp 3 318 4 1.2 copy files or directories
3 ln 3 56 12 0.6 establish link to a file or directory
4 head 2 82 800 1.0 display the first few lines of a file
5 tail 2 108 800 2.3 display the last few lines of a file
6 bzip2 2 182 4 7.3 a compression program
7 ffmpeg 2 6358 200 892.5 solution to audio and video processing

Table 4 shows the classification result of ln. We can
find out that test inputs of -L and -PL belong to the same
cluster (cluster1), while inputs of -P and -LP belongs
to another cluster (cluster2). We can infer that when -P
is in front of -L, program behaviors are almost the same
as input -L. Thus, we conclude that -P is shielded if -P
is listed in front of -L. Similarly, -L is shielded when -L
is in front of -P. Meanwhile, all inputs that contain the pa-
rameter -s belong to the same cluster (cluster0), so we
can conclude that -P and -L are shielded when -s exists in
the inputs. We confirm the above conclusions by manually
verification.

4.2 Program with integer inputs

We discuss shielding of integer inputs in this subsection.
Figure 2 shows the decision tree of parameter -vframes
〈number〉 and -r 〈fps〉 of ffmpeg. Parameter -r
set the number of video frames to output and parameter
-vframes set frame rate of the input video. Since the
path of cluster0 is not divided by vframes, we can
conclude that when r ≤ 0, vframes is shielded. By man-
ually executing the program, we confirm that the conclusion
is correct.

Table 4: Classification result of ln with parameters -L, -P, and -s

cluster0 cluster1 cluster2
-s,-Ls,-sL,-Ps,-sP -L -P
-LPs,-LsP,-PLs -PL -LP
-PsL,-sPL,-sLP

Figure 2: Classification result of ffmpeg

Table 5: Classification results of cp, head, and bzip2

Name Parameter Cluster Condition

ls -g,-A cluster0 : −g,−gA,−Ag
-g shields -A

cluster1 : −A

cp -s,-L cluster0 : −s,−sL,−Ls
-s shields -L

cluster1 : −L

head/tail

-n〈lines〉 -c〈bytes〉
cluster0 : c ≤ 0

-c shields -ncluster1 : 0 < c ≤ 20
cluster2 : c > 20

-c 〈bytes〉 -n〈lines〉
cluster0 : n ≤ 0

-n shields -ccluster1 : 0 < n ≤ 9
cluster2 : n > 9

bzip2 -t,-d cluster0 : −t,−dt
later parameter shields the former

cluster1 : −d,−td

4.3 Results for other programs

Table 5 shows other results of SUTs in Table 3. For all
these programs, we find that the shielding conditions are
correctly detected.

5. Conclusion

This paper proposes a novel approach to automatic de-
tection of parameter shielding for test case generation.Test
parameters shielded by others are found by clustering the
runtime information of the SUT. Experiments show that our
approach can effectively detect the parameter shielding for
various types of parameters. Meanwhile, shielding condi-
tions between parameters can also be detected in our ap-
proach. Our shielding detection approach can be used for
enhancing the quality of test cases and for reducing the test-
ing cost.

References
[1] J. Zhang, Z. Zhang, and F. Ma, Automatic Generation of Combinatorial Test

Data. Springer, 2014.

[2] J. Xuan and M. Monperrus, “Test case purification for improving fault localiza-
tion,” in Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 52–63, ACM, 2014.

[3] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM Computing
Surveys (CSUR), vol. 43, no. 2, p. 11, 2011.

[4] B. Chen, J. Yan, and J. Zhang, “Combinatorial testing with shielding parame-
ters,” in Software Engineering Conference (APSEC), pp. 280–289, 2010.

[5] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to knowl-
edge discovery in databases,” AI magazine, vol. 17, no. 3, p. 37, 1996.

[6] T. J. Oyana, “A new-fangled fes-k-means clustering algorithm for disease dis-
covery and visual analytics,” EURASIP Journal on Bioinformatics and Systems
Biology, vol. 2010, no. 1, p. 746021, 2010.

[7] M. Kantardzic, Data mining: concepts, models, methods, and algorithms. John
Wiley & Sons, 2011.

[8] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Recommender systems hand-
book, vol. 1. Springer, 2011.

[9] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” in ACM Sigplan Notices, vol. 42, pp. 89–100, ACM,
2007.

[10] S. Ruggieri, “Efficient c4. 5 [classification algorithm],” Knowledge and Data
Engineering, IEEE Transactions on, vol. 14, no. 2, pp. 438–444, 2002.

574

1

PIPE+Verifier - A Tool for Analyzing High Level
Petri Nets

Su Liu and Xudong He
School of Computing and Information Sciences

Florida International University
Miami, Florida 33199, USA
{sliu002, hex}cis.fiu.edu

Abstract—High level Petri nets (HLPNs) have been widely
used to model complex systems; however, their high expressive
power costs their analyzability. Model checking techniques have
been exploited in analyzing high level Petri nets, but have limited
success due to either undecidability problem or state explosion
problem. Bounded model checking (BMC) is a promising
analysis method that explores state space within a predefined
bound. BMC sacrifices the completeness of traditional model
checking but becomes more practical and often effective to
analyze large models. In our prior work, we have developed a
method based on BMC and a supporting tool PIPE+Verifier to
analyze high level Petri nets using a state of the art satisfiability
modulo theories (SMT) solver Z3 as the backend engine. Our
experiment results have been very encouraging. In this paper, we
present the design, implementation, and use of PIPE+Verifier,
as well as show additional improvements to make PIPE+Verifier
more efficient.

Keywords- Petri Net, Model Checking, Bounded Model Checking.

I. INTRODUCTION

High level Petri nets (HLPNs) [2] have been widely used to
model the data, functionality, structure, and dynamic behaviors
of complex systems. However the powerful expressiveness of
HLPNs costs their analyzability. Simulations are the primarily
analysis technique for HLPNs. Many HLPNs modeling tools
such as CPN tools [10], [1], ALPiNA [9] and PIPE+ [12]
support the simulation of different forms of HLPNs. While
simulation is practical and cost effective, it cannot assure
a safety property to be satisfied in all possible executions.
Exhaustive analysis methods such as model checking [11]
search all possible execution paths of a model but suffer from
the state explosion problem, and are often limited to finite
state systems. Since HLPNs can be used to model complex
systems, where the state space can be not only huge but also
infinite.

Bounded model checking (BMC) with satisfiability solving
[6], [3] was proposed as an alternative approach to address
the state explosion problem, which is particularly suited to
analyze safety properties. BMC tries to find a counterexample
violating a safety property by exploring only a finite state
space defined by all execution paths up to a pre-defined bound
k. A counterexample is found if the negated safety property is
held in a reachable state; otherwise, the safety property holds

DOI reference number: 10.18293/SEKE2015-060

Figure 1: An Overview of PIPE+Verifier’s Workflow

up to k. k can be iteractively increased to an acceptable value
proportional to the size of a model’s state space. Since the
true upper bound cannot be determined in general, BMC is
not a complete analysis method, yet is practical and effective
in many real-world applications.

In SAT-based BMC [5], a model is converted into a propo-
sitional formula whose satisfiability is determined by a SAT
solver. In recent years, satisfiability modulo theories (SMT)
solvers [7] have made great progresses to efficiently check
the satisfiability of a subset of first-order logic formulas with
a variety of underlying theories including linear arithmetic,
difference arithmetic, arrays and so on. These theories are rich
enough to represent the data and algebraic expressions in most
HLPN models.

In [13], we have developed a method based on BMC and
a supporting tool PIPE+Verifier to analyze high level Petri
nets using a state of the art satisfiability modulo theories
(SMT) solver Z3 [8] as the backend engine. We have applied
PIPE+Verifier to a variety of models from the existing litera-
ture and obtained very encouraging experimental results. An
overview of PIPE+Verifier’s workflow is shown in Figure 1.

PIPE+Verifier has the following features:
• being compatible with HLPN models and first-order

linear time logic (FOLTL) representing properties built
by modeling tool PIPE+ [12];

• encoding HLPN models and safety properties in FOLTL
into an SMT formula;

• exporting the SMT formula into a file in C language
(written in Z3’s C API) recognizable by Z3;

• invoking Z3 to check the satisfiability of the SMT formula
and returning an analysis report with the checking result,
counterexample, consumed time and memory to check;
and

• allowing incremental checking by increasing the k upper575

2

Figure 2: Five Dining Philosopher Problem in HLPN

bound value.
In this paper, we present the design, implementation, and use
of PIPE+Verifier, as well as show additional improvements
to make PIPE+Verifier more efficient with some experimental
results.

II. BACKGROUND

A. High Level Petri Nets

A HLPN [2] has a net structure consisting of a finite set
of places (drawn as circles), a finite set of transitions (drawn
as bars), and a finite set of directed arcs between places and
transitions (drawn as arrows); and a net inscription supporting
the definitions of place types, place markings, arc annotations,
and transition conditions. A place type can be a power set to
capture a set of tokens. All the tokens in a power set are
of the same type built from primitive data types including
integer type and string type. A place marking is a collection of
tokens (data items) associated with the place. Arc annotations
are inscribed with expressions that may comprise constants,
variables, and function images. Transition conditions are logic
expressions.

Figure 2 illustrates a dining philosopher problem mod-
eled in a HLPN. The net consists of three places
PPhil Thinking , PChopsticks, PPhil Eating and two transitions
TPickup and TRelease. All the places’ token type is hinti.
PPhil Thinking and PChopsticks both have five tokens ini-
tially {h0i, h1i, h2i, h3i, h4i}. TPickup’s transition condition is
p = c1^(p+1)%5 = c2^e = p. TRelease’s transition condition
is p = r ^ c1 = r ^ c2 = (r + 1)%5.

B. Bounded Model Checking

Different from traditional model checking, BMC is incom-
plete and only performs an exhaustive search up to an upper
bound. In many real world applications, a property can be
effectively checked by examing only the limited prefixes of
all executions, thus BMC becomes a practical and useful anal-
ysis technique, which partially alleviates the state explosion
problem. Given a finite transition system M , a linear time
temporal logic (LTL) formula f , and an integer k; BMC tries
to determine whether there exists a computation path in M of
length k or less (denoted as Mk) that satisfies f .

In BMC, a logic formula �k is constructed from a given Mk,
including the initial state I and unrolled transition relation T ,

and some properties f . Since transition T in �k is unrolled k

times, the length of �k is dependent on k. The logic formula
�k is represented in equation 1:

�k
.

= I(s0) ^
k�1̂

i=0

T (si, si+1) ^
k_

i=0

¬f(si) (1)

where I (s0) is the characteristic function of the initial state,
T (si, si+1) is the characteristic function of the transition re-
lation, and f(si) represents the property formula f associated
with unrolled state si (0  i  k). Currently our tool supports
the analysis of safety properties, thus f represents some safety
property. If �k is satisfiable, there is a firing sequence or a
state transition path from the initial state I(s0) to a state si

that satisfies the negation of fi, thus violates f ; otherwise,
property f holds in all execution sequences up to k transition
steps in M .

Satisfiability modulo theories (SMT) [7] solvers are effi-
cient modern theorem provers that support a combination of
underlying theories such as bit-vectors, rational and integer
linear arithmetic, arrays, and uninterpreted functions. SMT
solvers are the extensions of satisfiability (SAT) solvers and
directly applicable to the decision problems expressed in first
order logic formulas with respect to the multiple background
theories. For example, an SMT solver can decide whether a
formula in the theory of linear arithmetic is satisfiable:

(x+ y  0) ^ (qb _ a ^ (y = 0)) ^ (x  0)

where x, y are integer variables and a, b are Boolean variables.
If the formula is satisfiable, the SMT solver returns a variable
assignment satisfying the formula.

Both SAT solvers and SMT solvers have been successfully
used in BMC. Z3 [8], developed in Microsoft Research
Institution, is an efficient and widely used SMT solver that
supports many background theories, such as rational and
integer arithmetic, bit-vectors, array theory, and set theory. Z3
ranks highly in annual SMT competitions [4]. Therefore, Z3
is chosen as PIPE+Verifier’s backend engine.

III. TRANSLATING HLPN MODELS TO SMT FORMULAS

A. General Translation Rules HLPNs to a SMT Formulas

In BMC [6], a model and a property are encoded into
a formula �k, which is solved by a SAT or SMT solver.
Encoding a HLPN model and a property formula into �k

involves the following steps.
1) Representing HLPN Markings as Symbolic States: In a

HLPN model, a marking Mi is defined by a distribution of
tokens in all places. Thus we need to define a symbolic state
in SMT covering all places and their types in the HLPN. A
mapping from HLPN model’s elements to SMT sorts is shown
in Table I.

A marking is defined by a SMT tuple with each tuple
element denoting a place in the HLPN. Since a place can
contain multple tokens, it is defined as a set in SMT. Structured
token types defined in the HLPN are mapped to tuples in
SMT, and primitive token types such as integer and strings
are encoded as Integer in SMT.576

3

Table I: HLPN Elements to SMT Sorts

HLPN Elements SMT Sorts
Marking Tuple
Places Set

Structured Token Type Tuple
Primitive Token Type Integer

Since an execution sequence having k transition firing steps
M0 ! M1 ! · · · ! Mk contains k + 1 markings, which
correspond to k+1 symbolic states in �k, k+1 sets of unique
variables {V0, V1, · · · , Vk} in SMT are needed.

2) Encoding Initial State : In a HLPN model, the initial
state is defined by the initial marking. In �k, an initial sym-
bolic state is defined by assigning values to the first symbolic
state through clauses. The clauses are mainly expressed in
equations. Thus a formula representing the initial marking in
the HLPN is first constructed and then added as a conjunct to
�k.

3) Formulating Transitions: In a HLPN model, each tran-
sition tj captures a local state change and its firing subtracts
tokens from tj’s input places and adds tokens into tj’s
output places, which contributes to the overall marking change
Mi ! Mi+1. The effect of firing each transition is encoded
as a logic formula tj (Si, Si+1). More specifically, let P be
the set of places in HLPN model and ptj be the set of places
connected to tj , the relation is encoded as Equation 2.

tj (Si, Si+1) =

(
Si+1 (ptj) = ti (Si (ptj))

Si+1 (P \ ptj) = Si (P \ ptj)
(2)

Concurrent transition firings in the HLPN model need to
be linearized, which does not affect the safety properties to
be analyzed. Thus only interleaved executions are considered.
Due to the non-determinism of transition firings, each firing
(transition) step is encoded as a formula Ti (Si, Si+1) =Wn

j=0 tj(Si, Si+1) representing the disjunction of the for-
mulas capturing the effects of firing individual transitions
tj (0  j  n). An execution consisting of k transition firings
is formulated as a conjunction of k successive state transition
formulas as follows, which is added as a conjunct to �k:

k�1̂

i=0

(
n_

j=0

tj(Si, Si+1)) (3)

4) Defining Property : In a HLPN model, properties are
defined in FOLTL formula f . Since BMC is most effective
in checking the violation of safety properties, a formula
f (Si) representing the safety property formula f without
temporal operators in state Si needs to be checked. FormulaWk

i=0¬f(Si) expressing the violation of the safety property in
the first k transition step in an execution sequence is added as
a conjunct to �k.

B. Specific Translation Code from HLPNs to Z3

PIPE+Verifier processes an HLPN model and translates it
into C API code provided by Z3 solver so that Z3 solver can
compile and execute the code.

The generated C API code contains five parts:

Table II: SMT Declaration Z3 Code

SMT Sort Code Example Relation to HLPN
StateTUPLE Z3 mk tuple sort() Marking

PlaceSetSORT Z3 mk set sort() Place
TokenSORT Z3 mk tuple sort() Structured token type
IntegerSORT Z3 mk int sort() Primitive token type

1) Declaration: declares a list of required types (called
SORT in SMT), shown in Table II.

2) Defining symbolic states: the state builder de-
fines k + 1 states in C code, each state has a
type STATETUPLE. The C code uses Z3 ast Si =
Z3 mk const(STATE TUPLE), where Si is the identi-
fier of state i.

3) Building initial state: since symbolic states are defined,
a formula capturing the initial marking asserts that an
empty place set equals to S0. A code snippet is shown
in Code 1:

Code 1: Initial State in Z3
1 Z3_ast ini_token_clauses[m];
2 Z3_ast ini_place = Z3_mk_empty_set(TokenSORT);
3 Z3_ast ini_token = Z3_mk_const(TokenSORT);
4 Z3_mk_set_add(ini_place, ini_token);
5 ...
6 Z3_ast ini_token_clauses[0] =
7 Z3_mk_eq(mk_unary_app(proj_decls[0], S0), ini_place);
8 ...
9 Z3_assert_cnstr(ctx, Z3_mk_and(m, ini_token_clauses[0]));

4) Formulating transitions: the formula is defined in
terms of a conjunction of k successive state transi-
tions T (Si, Si+1), where each state transition is de-
fined by a disjunction of local transitions t (Si, Si+1).
t (Si, Si+1) is defined by an if � then� else structure
if c0 then c1 else c2 , which is a concise representation
of (c0 =) ct) ^ (¬c0 =) cf). A code snippet is
shown in Code 2:

Code 2: Transition Formulation in Z3
1 Z3_ast transitions_state[k];
2 Z3_ast transitions_local_or[l];
3 Z3_ast var_in = Z3_mk_const(Z3_mk_set_sort(TokenSORT)

);
4 ...
5 Z3_ast cond_in = Z3_mk_set_member([input arc variable

], [input place]);
6 Z3_ast cond_trans = [transition formula];
7 Z3_ast cond_out = Z3_mk_set_member([output arc

variable], [output place]);
8 Z3_ast cond = Z3_mk_and(o, cond_and);
9 Z3_ast trans_true_and[m];

10 ...
11 Z3_ast trans_true = Z3_mk_and(m, trans_true_and);
12 Z3_ast trans_false_and[n];
13 ...
14 Z3_ast trans_false = Z3_mk_and(n, trans_false_and);
15 Z3_ast transitions_local[0] = Z3_mk_ite(cond,

trans_true, trans_false);
16 ...
17 Z3_ast trans_dump = Z3_mk_eq(S0, S1);
18 Z3_ast transitions_local_dump = Z3_mk_implies(

Z3_mk_true(), trans_dump);
19 ...
20 Z3_ast transitions_state[0] = Z3_mk_or(l,

transitions_local_or);
21 ...
22 Z3_assert_cnstr(ctx, Z3_mk_and(k, transitions_state));

5) Defining properties: each safety property f is defined
by a disjunction of negated formulas in successive577

4

Figure 3: The Design View of PIPE+Verifier

states ¬f (si). Thus a bad state indicated by a spe-
cific token reaching a particular place is checked using
Z3 mk set member(). A code snippet is shown in Code
3:

Code 3: Property Definition in Z3
1 Z3_ast properties[k];
2 Z3_ast token = Z3_mk_const(TokenSORT);
3 ...
4 property[0] = Z3_mk_set_member(token, mk_unary_app(place,

S0));
5 ...
6 Z3_assert_cnstr(Z3_mk_or(k, properties));

IV. PIPE+VERIFIER

PIPE+Verifier is developed as an additional analysis com-
ponent of PIPE+ [12]. PIPE+ is a graphical HLPN editor and
simulator. A user builds a HLPN model in PIPE+ by dragging
and dropping graphical elements as well as editing specifica-
tions inside the graphical elements. PIPE+Verifier leverages
this editor as an input source of HLPN models and launches
PIPE+Verifier to conduct BMC on the models. Similar to
PIPE+, PIPE+Verifier is implemented in Java, thus is able to
run on any platform that can run Java Virtual Machine and Z3
solver. A detailed design view of PIPE+Verifier is shown in
Figure 3:

1) User Interface: User interface in PIPE+Verifier is built
as a dashboard (in Java Swing) that can take in user’s input
for properties in FOLTL and command to start the checking
process. Furthermore, it displays the analysis results as well
as error messages that may encounter during the checking
process.

Properties are built in a standard format in order to conform
to the safety property that BMC can check effectively. The
format eases the transformation of FOLTL formula into SMT
formula. In order to restrict the user’s input format and specify
the targeted bad state, a user is provided with a list of
places fetched from the HLPN model and tokens need to be
constructed according to the selected place types. A user needs
to provide an upper bound k value required by BMC.

If a safety property holds for all states searched from the
initial state to a depth up to predefined k, the displayer will
show a message “SAT” and a resources consumed summary
including time and memory usage; otherwise, a message

“UNSAT” is shown and a counterexample leading to the bad
state is printed.

2) Model and Property Handler: Model and property han-
dlers are used to prepare for the next model to formula
converting process. Because PIPE+Verifier uses HLPN model
built from PIPE+ model editor, the model connector is built to
refine the HLPN model from PIPE+ and check the consistency
of the model to avoid conversion error. The property handler,
on the other hand, takes the user input property from the
interface and prepares its conversion to an SMT formula.

3) Model To Formula Converter: Model To Formula Con-
verter is the component to conduct this conversion process.
The converter consists of several components including State
Builder, Place Type Recognizer, Transition Parser and Inter-
preter, Property Converter and Formula Template Writer.

• State builder: The state builder defines a STATETUPLE
(shown in the SMT context above) according to the
structure of the HLPN model. The tuple is a structure
that consists of a list of place sorts, each place sort is
also a tuple. The complete state list for the SMT formula
in Equation 1 contains k + 1 states.

• Place type recognizer: the recognizer traverses all the
places in the HLPN model and stores all the distinct place
types in order to construct distinct sorts in SMT context;

• Transition Parser and Interpreter: in the HLPN model,
transition formula is a first-order logic formula that
guards the token flow in the model. The formula needs
to be parsed and interpreted into an abstract syntax tree
in order to allow this tool to understand the first-order
logic formula and build a corresponding SMT formula;

• Property Converter: in BMC, SMT solver’s responsibility
is to search for bad state, which is satisfiable solution
to the negated properties. The safety properties prepared
by property handler is converted into a negated SMT
formula by Property Converter. The converting process
is straightforward.

• Formula Template Writer: The template writer leverages
a predefined template file in C language that contains
necessary utility functions for checking the SMT formula
in Z3 solver, and fills in model and property information
in order to build the input file that conforms to Z3
solver’s input format. Formula Template Writer writes the
converted SMT formula’s declarations, states, transitions,
and properties into the file that can be compiled and
checked by Z3 solver.

4) SMT Solver Connector: The SMT Solver Connector
handles the process of delivering the SMT formula to Z3 solver
as well as receiving the checking result from Z3 solver. The
connector consists of four components:

• Solver Invoker: the invoker links to the tool to the
backend engine Z3, which contains some scripts to auto-
matically launch Z3 with proper parameters. The scripts
are shell scripts for Windows and Unix in order to allow
the tool to run on different platforms.

• Intermediate file manipulator: As the analysis process
includes conversions and checkings, intermediate tempo-
rary files are created such as a file to represent formula,578

5

a compiled Z3 checker, a file to record Z3’s checking
result, and a file to store final result. Intermediate file
manipulator is in charge of the creating and deleting
temporary files.

• Runtime error handler: Since PIPE+Verifier involves an
external tool and file system interactions, unexpected
errors can happen, an error handler can prevent the tool
get into failure and can better managing errors.

• Output refiner: the raw result generated by Z3 solver is
not readable as it only checks the satisfiability of the
intermediate SMT formula instead of the original model
and property. Thus, it is necessary to rebuild the model
and property’s checking result based on Z3 generated
result. Output refiner can process the Z3 result file by
removing redundant information and reorganize structure,
and present readable results to the user.

V. AN IMPROVED TRANSITION FORMULATION

The naive transition formulation given in the previous
sections results in a �k capturing all the possible interleavings
of transition firings in the given HLPN within depth k without
considering the dependencies among them. The computation
complexity of the naive method is thus exponential and is not
computable with a large k value.

The firing of a transition depends on the existence of tokens
from its input places P , thus depends on the other transitions
producing tokens for P . If in a state s, a transition t’s input
places are empty or do not have enough tokens to enable t,
t cannot fire at state s. If in a state s, a transition t

0s output
places are not relevant to a given property, a transition firing
sequence �k has a t as the last transition has no impact on
the satisfiability of the property. With these observations and
analysis, it is possible to build a more concise formula to avoid
redundant checking by an SMT solver and thus improve the
efficiency of BMC.

For example, in Figure 4, the initial marking is P0 {tok0},
P1 {}, P2 {}, if we want to check whether it can reach a
marking where P2 {tok0}. The model formula produced by
equation 1 with k = 2 is:

�k = I(s0) ^ (ti (s0, s1) _ to (s0, s1))^
(ti (s1, s2) _ to (s1, s2)) ^ (¬f(s0) _ ¬f(s1) _ ¬f(s2)) (4)

This formula �k covers all possible transition firing orders
including ti ! ti, ti ! to, to ! ti and to ! to. There
are infeasible firing sequences in this net model. Firing ti

twice cannot reach a marking in P2 because P2 is not directly
updated by ti. Firing to before ti is impossible because P1

is empty initially that cannot enable to if ti has not yet fired.
The only feasible firing sequence is ti ! to. We can build a
reduced formula �

0:

�

0 = I(s0) ^ (ti (s0, stemp) ^ to (stemp, s2))

^ (¬f(s0) _ ¬f(s1)) (5)

where stemp is an intermediate state for a consecutive firings
of ti and to, and does not need to be checked.

Figure 4: A Simple Model

Figure 5: A Structural Pattern

A. A New Structural Pattern

The above observations show that exploring transition de-
pendencies can field much concise formulas that can be solved
more efficiently. It is well known that many simple structural
reductions such as removing self-loop can be done to a given
Petri net to obtain a behavioral equivalent yet simpler Petri
nets. However simple net structural transformation rules need
to be applied carefully with regard to high level Petri nets since
the removed net elements may contain critical information
such type information in places, arc label expressions, and
constraints associated with transitions, as a result the reduced
net may not be behavioral equivalent to the original net. We
have developed the following general structural and conceptual
(only used during formula translation) reduction rule, and
proved its correctness - behavioral preservation.

Figure 5 shows a place Pp that is connected by a set of
transitions Tp = {ti0, ti1, . . . , tiu, to0, to1, . . . , tov}. Pp’s input
transition set is Tpi = {ti0, ti1, . . . , tiu}and output transition
set is Tpo = {to0, to1, . . . , tov}.

Under the following conditions:
1) All the arc label connected to Pp are simple variables;
2) Pp is neither an initial marking place nor a property

identified place;
3) Pp is the only output place of all Tpi and the only input

place of all Tpo.
Let s0 be a successor state of s and s

00 be a successor state of
s

0. A new and much more concise subformula (equation 6) of
�k is obtained:

Tp(s, s
00) = (ti0 (s, s

0) _ ti1 (s, s
0) _ ... _ tiu (s, s

0))^
(to0 (s

0
, s

00) _ to1 (s
0
, s

00) _ ... _ tov (s
0
, s

00)) (6)

B. Experiment Results For Refined Transition Formula Con-
struction

Figure 6 shows a share memory model in HLPN.
In this model, the pattern can be applied to place
POwnMemAcc’s input transition TBegin Own Acc and out-
put transition TEnd Own Acc, thus the pattern is defined as579

6

Figure 6: Shared Memory Model in PIPE+Verifier

Table III: Performances of Checking Shared Memory Model
using Old and Refined Methods

Procs
Number

Bound
Step

Time
Old

Time
Refined

Heap
Old

Heap
Refined

5 5 0.07s 0.05s 0.86mb 0.78mb
5 10 0.30s 0.23s 1.54mb 1.34mb
5 15 1.49s 1.20s 2.53mb 2.42mb

10 5 0.12s 0.10s 1.02mb 1.00mb
10 10 0.98s 0.84s 2.08mb 1.97mb
10 15 15.50s 8.37s 4.73mb 4.60mb

TBegin Own Acc^TEnd Own Acc. Table III presents a compar-
ison of time and memory consumption of the naive transition
construction method and the refined construction method.
Despite the pattern is applied once in this model, some
performance improvements are clear as shown in Equation 7:

⇤¬(marking (Ext Mem Acc) = h3, 0i
^marking (Ext Mem Acc) = h2, 4i) (7)

VI. CONCLUSION

In this paper, we presented a tool called PIPE+Verifier
that supports BMC safety properties of HLPN models, which
has been successfully applied to analyze a variety of HLPN
net models [13]. The tool automatically converts a HLPN
model into a SMT formula, leverages a SMT solver Z3 to
solve the formula, and then displays the checking results.
We provided both functional and design views of this tool,
which facilitate advanced users to extend this open source tool
(https://github.com/liusu1011/PIPE-Verifier.git) easily. We dis-
cussed additional improvements that can make PIPE+Verifier
more efficient. We are working on several other potential
extensions to make PIPE+Verifier more efficient and powerful.
Currently, the transitions are formulated in a breadth first
approach based on the original BMC idea [5], thus a SMT
solver explores all possible transition sequences of one step,
two steps, and up to ksteps. Many of these transition sequences
may not be relevant to the property being checked. An alterna-
tive depth first formulation chaining k transition firings utiliz-
ing structural transition dependencies as well as the checked
property may be solved much more efficiently. PIPE+Verifier

currently only supports BMC of safety properties. Integrating
a SMT solver with induction techniques [14] can become a
full fledged analysis methodology to check safety properties
completely.

Acknowledgments We thank three anonymous reviewers
for their helpful comments. This work was partially supported
by the NSF under grant HRD-0833093 and by the AFRL under
agreement number FA8750-15-2-0106. The U.S. Government
is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright notation
thereon.

REFERENCES

[1] Cpn tools. http://cpntools.org.
[2] High-level Petri Nets - Concepts, Definitions and Graphical Notation,

2000.
[3] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania.

Bounded model checking of software using smt solvers instead of sat
solvers. Int. J. Softw. Tools Technol. Transf., 11(1):69–83, January 2009.

[4] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2010.

[5] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan
Zhu. Symbolic model checking without bdds. In Proceedings of the
5th International Conference on Tools and Algorithms for Construction
and Analysis of Systems, TACAS ’99, pages 193–207, London, UK, UK,
1999. Springer-Verlag.

[6] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded model checking using satisfiability solving. In Formal Methods
in System Design, page 2001. Kluwer Academic Publishers, 2001.

[7] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories:
introduction and applications. Commun. ACM, 54(9):69–77, September
2011.

[8] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient
smt solver. In TACAS, pages 337–340, 2008.

[9] Steve Hostettler, Alexis Marechal, Alban Linard, Matteo Risoldi, and
Didier Buchs. High-level petri net model checking with alpina. Funda-
menta Informaticae, 113(3-4):229–264, August 2011.

[10] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri
nets and cpn tools for modelling and validation of concurrent systems.
Int. J. Softw. Tools Technol. Transf., 9(3):213–254, May 2007.

[11] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, 1999.

[12] Su Liu, Reng Zeng, and Xudong He. PIPE+ - A modeling tool for high
level petri nets. In Proceedings of the 23rd International Conference on
Software Engineering & Knowledge Engineering (SEKE’2011), Eden
Roc Renaissance, Miami Beach, USA, July 7-9, 2011, pages 115–121,
2011.

[13] Su Liu, Reng Zeng, Zhuo Sun, and Xudong He. Bounded model
checking high level petri nets in pipe+verifier. In Formal Methods and
Software Engineering - 16th International Conference on Formal Engi-
neering Methods, ICFEM 2014, Luxembourg, Luxembourg, November
3-5, 2014. Proceedings, pages 348–363, 2014.

[14] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety
properties using induction and a sat-solver. In Proceedings of the
Third International Conference on Formal Methods in Computer-Aided
Design, FMCAD ’00, pages 108–125, London, UK, UK, 2000. Springer-
Verlag.

580

SANGE – Stochastic Automata Networks Generator
A tool to efficiently predict events through structured Markovian models

Joaquim Assunção ∗†, Paulo Fernandes ∗, Lucelene Lopes ∗, Angelika Studeny †, Jean-Marc Vincent †

∗PUCRS University – Computer Science Department – Porto Alegre, Brazil
† Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France

{joaquim.assuncao, angelika.studeny, jean-marc.vincent}@inria.fr
{joaquim.assuncao, paulo.fernandes, lucelene.lopes}@pucrs.br

Abstract
The use of stochastic formalisms, such as Stochastic Automata
Networks (SAN), can be very useful for statistical prediction and
behavior analysis. Once well fitted, such formalisms can generate
probabilities about a target reality. These probabilities can be
seen as a statistical approach of knowledge discovery. However,
the building process of models for real world problems is time
consuming even for experienced modelers. Furthermore, it is often
necessary to be a domain specialist to create a model. This work
illustrates a new method to automatically learn simple SAN models
directly from a data source. This method is encapsulated in a tool
called SAN GEnerator (SANGE). This new model fitting method
is powerful and relatively easy to use; therefore this can grant
access to a much broader community to such powerful modeling
formalisms.

1 Introduction

Stochastic Automata Networks (SAN) is a powerful for-
malism to describe systems as stochastic models. Through
these models we can derive probabilities concerning some
event or set of events of a system. Our research group has
a record of successful development of stochastic models for
behavior prediction from several domains, e.g., geological
events [2], production lines [6] and distributed software de-
velopment teams [7]. In all these examples, the model con-
struction required domain specialists and a large amount of
stochastic modeling knowledge. The resulting models are
very accurate in predicting the behavior of the realities as
could be verified by comparison with records of each reality
behavior.

Typically, SAN model construction is a top-down driven
approach, i.e., first the target reality is analyzed, then its
behavior is translated into a stochastic model. Once we have
a complete SAN model, it is possible to use a collection of
specialized algorithms that can solve it [4]. The problem of
this approach is that it is specific to a given system. In other
words, each new system must be carefully analyzed before
the creation of the model. This analysis usually is performed

DOI reference number: 10.18293/SEKE2015-087

via handmade steps such as data analysis and data selection.
In a previous work [1], we proposed a bottom-up pro-

cess to forecast events using time series and stochastic mod-
els (Figure 1). This modeling approach also speeds up
the time to develop a representative model from input data.
However, we did not have a technique to automatically gen-
erate SAN code, but only plain Markov chains (MC). The
extension of this previous work to generate SAN models in-
creases our potential to handle more complex (multidimen-
sional) data.

Figure 1: A Dimensionality Reduction Process to Forecast
Events Through Stochastic Models [1] enhanced by the
generation of SAN models (SANGE).

A bottom-up, MC-based, approach gives a solution for
any generic model. However a plain (unstructured) MC is
usually a limited, memory expensive model. Limited in
the sense that you have a bulk representation for a system,
regardless of how complex it may be. Memory expensive
because a system with S states is represented by a transition
probability matrix of S2. In the best case, the number of non-
zero entries will be in the order of 2S.

SAN formalism is modular and its model representation
is composed by a collection of sub-systems, which are usu-
ally much more compact benefiting from tensor representa-
tions. Thus, in this paper we show a new approach to fit SAN
models directly to data, reducing the model size. This ap-
proach has been implemented in a tool called SANGE (SAN

581

GEnerator) that automatically generates SAN models from a
dataset.

The excessive human effort to construct models can
be avoided with a tool that handles the formal tasks to
convert data into state transitions. Consequently, the user
can focus on more interesting tasks, such as interpreting
the results and applying the gain knowledge. Additionally,
SANGE performs dimensionality reduction using time series
representation methods [9]. Thus, SANGE is also capable
of automatically fitting the model to input data, possibly
achieving better models than those made by humans.

Our algorithm was inspired by a well known and broadly
used formalism, Hidden Markovian Models (HMM), and its
fitting algorithm (Baum-Welch, BW) [3]. Thus, the HMM
user only needs to understand the modeling basics and how
to interpret the generated HMM model.

The BW algorithm is a special case of the Expectation-
Maximization algorithm, using forward-backward probabil-
ities to estimate the model parameters. Our approach can be
seen as an adaptation of this algorithm implementing only
the forward procedures. However, our solution works with a
structured formalism, which naturally can provide higher ac-
curacy and can be more flexible and user-friendly to describe
a system.

2 Computational Kernel
SANGE’s main objective is to reduce the time spent on
generating SAN models, thus, opening the use of SAN
models to non-specialists. However, our solution needs
records of a system behavior in the form of time series that
will be assigned to the variables of interest for the system.

SANGE’s basic operation consists in the composition
of a set of time series describing how system variables
behave [8]. Considering a system with n interest variables
(v(i) with i = 1, . . . ,n,) we need a behavior sample of the
system in the form of n time series with the successive values
of the variables through time. With these time series, the first
step is to identify the points of interest in time as the time
ticks where at least one of the variables changes its value.
Once the time ticks of interest are identified, the second step
is to determine the possible values for the variables in order
to define the stochastic model. This process is summarized
in an example with three time series in Figure 2 and Figure 3
showing the identification of 11 time ticks (a) and the three
succession of values for variables v(1), v(2) and v(3).

The examples of Figure 2 and Figure 3 results in three
automata where local states are given by the observed val-
ues for each variable. Transitions events refer to the possi-
ble changes in states. These can happen locally within one
automaton or simultaneously for several automata (synchro-
nizing events). Figure 4 presents the SAN model for this
example.

To compute the rates of local events we must count how

time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

v

v

v

(1)

(2)

(3)

Figure 2: Example of SANGE basic process to three time
series - identifying time ticks of interest.

time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

v4

v1

v2
v3

v4

v5

v1

v2

v3

v4

v1

v2

v3

v

v

v

(1)

(2)

(3)

Figure 3: Example of SANGE basic process to three time
series - identifying transitions between variable states.

many transitions take place starting in each local state. For
example, consider the transition from state v(1)3 to state v(1)5 .

Observing all time ticks, we see state v(1)3 at the end of ticks
t1, t2 and t3. In t1 and t2 automaton V (1) does not change
state, before going to v(1)5 in t3. Therefore, one in three times

the event v(1)3 → v(1)5 occurs, and the rate of this event is 1/3.
For synchronizing events the computation is similar,

but since more than one automaton is concerned, we now
have to count the number of times that a certain number
of combination of states occurs. For example, we look at
automata V (1) and V (2) and the combination of states v(1)4

and v(2)3 . This combination occurs at the end of time ticks t9
and t10, and the synchronizing event happens at one of these
two time points (after t10), hence, its rate is 1/2.

582

v
(1)
3

V
(1)

v
(1)
5

v
(1)
1v

(1)
4

v
(1)
2

v
(2)
1 v

(2)
2

v
(2)
3v

(2)
4

V
(3)

V
(2)

v
(3)
4 v

(3)
3

v
(3)
2 v

(3)
1

s1

e7

e5

e4

e6

e3

e2

e1

s1

s3

s2

s2

s3

s2

s4

s4

s4

Figure 4: Equivalent SAN model for the three time series example of Figure 3.

From a practical point of view the current version of
SANGE can generate either a SAN model or a Markov
chain output (which is basically a SAN model with a single
automaton and only local events). The output is in the format
of a .san file, that can be directly fed into a SAN solver, such
as PEPS [4] that performs state of art Kronecker solutions
[5].

The presented example consists of quite short time
series, which limits the validity of the generated model.
In real cases, much longer time series, where events are
represented by a large number of state successions, must be
considered in order to see statistically relevant patterns. 1

3 Example: Weather in Gothan city
To facilitate the understanding, we use a classical example
for Markov models, i.e., forecasting weather events [10].
The most basic example is a Markov chain with 3 states,
representing Raining, Sunny and Cloudy (Figure 5). Proba-
bilities are assigned to the transitions between states as well
as staying in the same state.

Figure 5: Classical example Markov chain model.

By solving this model we can achieve the transient and
stationary probabilities of being in one of the three states. As
the only representation of such a model is by a probability
matrix, It can be computationally hard to handle for real
world applications with many states. Furthermore, the best
known formalisms, Markov chains and HMMs, can not
integrate models with multiple automata in a unique system,

1Here we limited the amount of data for the sake of clarity, yet an
extended version of this work is available in https://hal.inria.fr/

hal-01149604

i.e. they do not have a structure for this. By using SAN with
SANGE it is possible to generate a structured version, which
allows us to assemble more elements to our model and solve
those as one.

SANGE encapsulates the techniques described in the
Section 2; thus, it provides an interface for this basic and
more advanced statistical tools. As pointed out before, the
algorithm merges the SAN and TS characteristics.

The following example does consider nor real data
neither the adequacy of the model; Our goal here, is to
illustrate how SANGE works with multiple variables and
how easy is to create a model with it. Although SANGE is
a prototype, the basic functions are implemented and some
basic models can be generated.

WC WF

Figure 6: Generic SAN model for weather conditions and
wind force. “ce" means climate event and “we" wind event.

For ease of understanding, Figure 6 shows a generic
model with 2 automata, WC for weather conditions and
WF for wind force. The states’s labels WC are Raining,
Sunny and Cloudy. In WF, the states correspond to the wind
velocity, Fast, Medium, Slow and None.

Assuming that this model is accurate to predict the wind
and the climate of a city called Gothan, we want to know the
probability of Gothan facing rain and fast wind at the same
time. We do not have many records, so we need to learn this
probability by a small sample which is formatted as Table 1.

In this case, the probability to have rain and fast wind is

583

Table 1: Sample for input data
Raw data Symbolic data

weather wind speed weather wind speed
cloudy 48 b d
raining 16 c b
sunny 26 a c

...
sunny 9 a a

Figure 7: Line plot after the symbolic representation. Each
letter is assigned to a value, a = 1, b = 2, c = 3, d = 4.

4.5%. In this example a basic combination of two automata
was used with a maximum number of 80 states. However, the
number of automata and states could be much larger. This is
a very compact representation and through SANGE; it scales
better and demands less effort than the equivalent Markov
model, allowing an easier derivation of probabilities in large
models.

4 Final Remarks
As the core technique to data mining, statistics are important
to knowledge discovery. It allows us to infer probabilities
through samples instead of considering the complete behav-
ior data. Stochastic formalisms are heavily based on proba-
bilistic techniques. The use of stochastic modeling tools is
promising to forecast the behavior of systems which can be
described as sets of time series.

Our main achievement was to introduce SAN formalism
to the process (illustrated in Figure 1) in an automated way,
allowing non-specialist users to take advantage of SAN’s
structure and solutions. Through the automatic fitting, we
create a bottom-up approach that can be broadly used, once
that the learning process avoids the human effort to manually
create such models. Compared to the traditional modeling
approach, our implemented solution, SANGE, represents
an interesting option that simplifies the effort to construct
SAN models. As SANGE is a first attempt to automatically

generate SAN models that can be useful to real world
datasets, we have introduced a new method for knowledge
discovery through stochastic modeling.

For future work, we will improve our algorithm by
adapting the forward-backward procedures from BW algo-
rithm, improving SANGE capacity to handle more complex
SAN models for real datasets.

5 Acknowledgments
“This work was conducted during a scholarship supported by
the International Cooperation Program CAPES/COFECUB
at the University Joseph Fourier. Financed by CAPES -
Brazilian Federal Agency for Support and Evaluation of
Graduate Education within the Ministry of Education of
Brazil."

References

[1] J. ASSUNÇÃO, P. FERNANDES, L. LOPES, AND

S. NORMEY, A dimensionality reduction process to forecast
events through stochastic models, in SEKE 2014, Jul 2014,
pp. 534–539. ISBN-13: 978-1-891706-35-7.

[2] J. ASSUNÇÃO, L. ESPINDOLA, P. FERNANDES, M. PIVEL,
AND A. SALES, A structured stochastic model for prediction
of geological stratal stacking patterns, Electronic Notes in
Theoretical Computer Science, 296 (2013), pp. 27 – 42.

[3] L. E. BAUM, T. PETRIE, G. SOULES, AND N. WEISS, A
maximization technique occurring in the statistical analysis
of probabilistic functions of markov chains, The Annals of
Mathematical Statistics, 41 (1970), pp. 164–171.

[4] L. BRENNER, P. FERNANDES, B. PLATEAU, AND I. SBE-
ITY, PEPS2007 - Stochastic Automata Networks Software
Tool, in Proceedings QEST, 2007, pp. 163–164.

[5] R. M. CZEKSTER, P. FERNANDES, AND T. WEBBER,
Efficient vector-descriptor product exploiting time-memory
trade-offs, ACM SIGMETRICS Performance Evaluation Re-
view, 39 (2011), pp. 2–9. doi: 10.1145/2160803.2160805.

[6] P. FERNANDES, M. O’KELLY, C. PAPADOPOULOS, AND

A. SALES, Analysis of exponential reliable production lines
using kronecker descriptors, Int. Journal of Production Re-
search, 51 (2013), pp. 2511–2528.

[7] P. FERNANDES, A. SALES, A. R. SANTOS, AND T. WEB-
BER, Performance evaluation of software development teams:
a practical case study, Electronic Notes in Theoretical Com-
puter Science, 275 (2011), pp. 73 – 92.

[8] J. LIN, E. KEOGH, S. LONARDI, AND B. CHIU, A symbolic
representation of time series, with implications for stream-
ing algorithms, in Proceedings of the 8th ACM SIGMOD,
DMKD ’03, New York, NY, USA, 2003, ACM, pp. 2–11.

[9] J. LIN, E. KEOGH, L. WEI, AND S. LONARDI, Experiencing
sax: a novel symbolic representation of time series, Data
Mining and Knowledge Discovery, 15 (2007), pp. 107–144.

[10] W. J. STEWART, Probability, Markov Chains, Queues, and
Simulation, Princeton University Press, USA, 2009.

584

Modeling and Analyzing Adaptive Energy
Consumption for Service Composition

Guisheng Fan1,2, Huiqun Yu1, Liqiong Chen3
1Department of Computer Science and Engineering

East China University of Science and Technology, Shanghai 200237, China
2Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai 201112, China

3 Department of Computer Science and Information Engineering
Shanghai Institute of Technology, Shanghai 200235, China

Corresponding author:lqchen@sit.edu.cn

Abstract—In this paper, Petri nets are used to model the
different components of service composition, and form the
energy consumption model of service composition based on the
relationship between components, Agent is also introduced in
the energy consumption management process. Then, an adaptive
energy consumption strategy are proposed to dynamically ensure
that service composition can get the lowest energy consumption.
The operational semantics and related theories of Petri nets help
establish the correctness of our proposed method. We have also
performed two simulations to evaluate our proposed approach.
Results show that it can help reveal the structural and behavioral
characteristics of energy consumption in service composition.

Index Terms—Service composition, Agent, Petri nets, energy
consumption

I. INTRODUCTION

Service composition provides a mechanism for distributed
software integration, which primarily concerns the requests
of users that cannot be satisfied by any available service[1].
This increased usage of service composition, together with the
increasing energy costs[2]. The energy management is highly
complex. First, energy consumption is inherently complicated
due to the scale, heterogeneity, and concurrent user services
that share a common set of service. Second, the operating
environment of service composition is dynamic, it is difficult
to plan energy consumption schema at design time. When
service composition starts to execute, composition can not
achieve the goal because of wrong design of composition or
can not meet the required energy consumption. The failure will
result in a waste of computing resources and increase energy
consumption. Therefore, it requires that energy consumption
management of service composition must have a certain adap-
tive ability, which means that service composition can dynam-
ically select the service, in order to complete its execution
successfully and meet the required energy consumption.

Contributions. This paper investigates how to model and
analyze the energy consumption of service composition based
on user requirements. Below summarizes our main contribu-
tions: (1) Petri nets[3] are used to model different components
of service composition. Agent[4] is introduced in the energy
consumption management process. (2) We evaluate the energy
consumption of service composition from the operational
level(in addition to service, component, connector and Agent).
Based on the model, we propose an adaptive energy consump-
tion strategy to dynamically ensure that service composition
can get the lowest energy consumption. (3) The operational

semantics and related theories of Petri nets help establish the
effectiveness of our proposed method.

The rest of this paper is organized as follows. Section II
presents our energy consumption evaluation, and Section III
describes how we model the different components of service
composition. Next, we show how to analyze the constructed
model(Section IV), and then evaluate the proposed method via
simulation in Section V. Finally, Section VI surveys related
work, and Section VII concludes.

II. ENERGY CONSUMPTION EVALUATION OF SERVICE
COMPOSITION

A. Requirements of service composition
As the function of service composition is composed of a

number of independent tasks according to a certain composi-
tion rules. Each task has a number of available services. The
energy consumption of service under each state can be got by
testing and simulation. The interaction between components,
services, Agents, and subsystems is defined as the connector,
and the connector is viewed as the basic element of service
composition, so the connector can be seen as service. The
energy consumption of connector is considered.

Definition 1: The energy consumption requirement of ser-
vice composition is a 7-tuple: Ξ =(WS, AG, AL, RE, TW ,
RA, OP):

(1)The set of service WS = {WS1, WS2, . . ., WSn}, WS
= (type, op, ra, ep, ei), type, op are the type and operations
of service, ep(op) = (etp, enp) is the execution time and per
unit of energy consumption of the operation. ei = (ty, func)
is the set of service interface.

(2) The connector AL ={al1, al2, . . ., agn}, al= (data, oa,
nl,li), data is the transmission content, oa is the associated
service or Agent, nl is the energy consumption, li is used to
describe the input and output interface.

(3) The set of Agent AG = {ag1, ag2, . . ., agn}, ag = (eg,
lg, om, op, gi), eg ⊆ WS, g ⊆ AL is the set of service and
connector of ag; om : AG×RA→ {Start, Sleep, reV, raV }
is the possible operations that Agent can do for service, op is
the set of operation of Agent, gi is the set of interface of ag,
ag may have several input and output interfaces.

(4) The set of component C = {C1, C2, . . ., Cn}, C = (et,
tp, rl), et : C → WS∗ is the set of available service of Ci,
tp : C → op∗ is the set of operations that need be realized,
rl is a relation function between the components, the main

(DOI reference number: 10.18293/SEKE2015-236)
585

relationship is sequence(>), choice(+), parallel relationship
(∥). VW (WSi, Cj) = {Ck|WSi ∈ et(Ck) ∪ Ck ∈ Cj} is
the set of operation of WSi for component Cj .

In service composition, the service will realize its function
by executing a series of operations. Because the operation
of service may be different, which will make the energy
consumption of service be different too. Therefore, the energy
consumption analysis based on service level may cause large
errors. This paper will describe the energy consumption of
service composition based on the operation level.

B. Energy consumption evaluation
Because the component in service composition may invoke

different services to realize its function, which will make the
reachable states of energy consumption model be different. Let
Ci invoke OP (WSj , Ci) of WSj to realize its function, we
will evaluate the energy consumption in the following.

(1)Energy consumption of component Ci

The energy consumption of the operation opf ∈ OP (WSj ,
Ci) of component Ci is en(opf) = etp(opf)× etp(opf).

The energy consumption of component Ci is:

EN(Ci) =
∑

opf∈op(aej ,tki)

en(opf) (1)

(2)Energy consumption of service
The energy consumption of service is:

EN(WSj) =
∑

Ci∈C(aej)

EN(Ci) (2)

The average energy consumption that service using to
realize the function of component is:

avg EN(WSj) =
EN(WSj)

|C(WSj)|
(3)

(3)Energy consumption of Agent and service composition
The energy consumption of Agent is composed by service

and connector, so the energy consumption of Agent is:

EN(agj) =
∑

WSj∈WSac∩WS(agi)

EN(aej) +
∑

laj∈AEac∩lg(agi)

en(laj)

(4)
The energy consumption of service composition is:

EN =
∑

agi∈AG

nl(agi) =
∑

aej∈AEac

EN(aej) +
∑

laj∈AEac

en(lai)

(5)
We can quantitatively evaluate the energy consumption of

service composition by using the above formula.

III. MODELING SERVICE COMPOSITION

A. Modeling service composition
In this section, we will use Petri nets to model different

components of service composition, then construct the ener-
gy consumption model of service composition based on its
execution process. In addition, we mark the service, Agent,
connector in the front of place and transition.

a) Modeling service: The model of service is modeled
as following, pIi , pIie, pOo , pOdt are used to describe the startup,
suspending, running and overtime interface, ti, te and tie are
used to describe the startup, finished and suspending operation.
The execution of opi in service is: ta,i is used to describe the
execution of the operation, ct(pa,i) = etp(opi) is the execution
time of operation, en(ta,i) = enp(opi). If the service is in the
overtime or suspended state, then invoke the transition tp to
make the operation be in the interrupted position pp,i. If the
transition can re-execute (pr,i), then invoke transition tr,i to
make the operation be in the available position (pw,i).

b) Modeling component: The model of component is
shown in Fig.1: First, we introduce pw to store the set of
available service, ∀WSj ∈WS, there is dwj ∈M0(pw). If Ci

gets the input parameter ps,i, then invoke the transition tpp,i
to allocate the appropriate service for Ci, and the component
will be in the waiting for execution(P i

wa). If Ci gets the
input parameter ps,i, then no available service can realize the
function of component Ci and tfa,i is used to output the fault.

pw

tfa,i pf,iM(pw)

tpp,ips,i

pw,i

M(pw,i)

M(pw,i)

x

M(pw,i)

Piwa

Tci
trr,i

x pws,i

Pio

pe,i

x

Fig. 1. The model of component

c) Modeling connector: The model of connector is
shown in Fig.2, let two basic elements of connector be A
and B. Then the system will introduce two interfaces to send
and receive the info from A, B.

ppo

pIi1
tre1 pre1

dpi

tse1 pOe1

pIi2
tre2 pre2 tse2 pOe2

Fig. 2. The model of connector

d) Modeling Agent: The model contains the execution
of component and connector in Agent, that is, the execution
environment of Agent. Agent will get the information from
the environment and compute the startup service based on the
adaptive energy consumption strategy. tst is used to start the
service, while tns is used to make the remaining service be
in the suspended state. te represents the termination of Agent.

2586

The service will do the related adjustment when it receives
the instruction of Agent.

The steps for constructing energy consumption model are.
Constructing the model of services based on their attributes.
Introducing tst and pst to describe the beginning operation
and position. ten and pen are used to describe the termination
operation and position of whole application. Computing the
set of startup service by using the adaptive strategy, and
initializing the place in the model. Setting initial marking
M0(ps) = φ, while setting the priority of transition tdt and
transitions in the system level be 4. In this paper, we divide
the priority of transition into 5 level, which can be adjusted
according to the actual requirements.

IV. ADAPTIVE ENERGY CONSUMPTION STRATEGY AND
ANALYSIS

In this section, we will propose an adaptive energy con-
sumption strategy for service composition based on Agent.
Then dynamically compute the set of startup service based on
the state and attributes of the current service.

A. Adaptive energy consumption strategy
A series of operations that service ws is used to realize

the function of Ci are called the path of ws. Let the path
that WSi uses to realize the function of component Cj be
Lat(WSi, Cj)={Lat1, Lat2, . . ., Latn}, LaC={opk,1, opk,2,
. . ., opk,f}. The energy consumption of path Lati is:

En(Lac) =
∑

apk,l∈Latk

enp(opk,l)× etp(opk,l) (6)

The average energy consumption that service WSi uses to
realize the function of component Cj is:

Avg en(wsi,Cj) =

∑
Latk∈Lat(aei,TKj

en(Latk)

|Lat(aei, TKj |
(7)

B. Analysis technique
In this section, we will verify the correctness of proposed

method based on the reachable states of energy consumption
model and the operation semantics of Petri nets.

Theorem 1. Let R(Ω) be the reachable state of energy
consumption model Ω, ∀S ∈ R(Ω),∀WSi ∈ WS, the set
of startup service is WSac, then:

(1) If WSi ∈ WSac, ∃S ∈ R(Ω), which makes
|M(WSi•pe)| = 1.

(2) If WSi ̸∈ WSac, ∃S ∈ R(Ω), which makes
|M(WSi•pp)| = 1.

Proof: If WSi ∈ WSac, we may set WSi ∈ eg(agj),
that is, WSi belongs to the corresponding Agent. We can
set agj•P

i
i ∈ agj•t

•
st in the modeling process of agj ,

therefore, S1 ∈ R(S0), which makes M1(agj•p
I
i) ̸= ∅

and M1(agj•p
I
ie) = ∅, because M0(agj•pst)=(daj ,1) and

agj•p
I•
st =agj•tst, therefore, M1(agj•pst)=(daj ,1). Form the

modeling process of service, we can get that transition WSj•ti
can be fired, while WSj•tie isn’t enable. Therefore, ∃S ∈
R(Ω), which makes |M(WSi•pe)| = 1. Similarly, we can

prove (2) establishes from the modeling process that Agent
does the suspended operation for service.

Theorem 1 explains that the energy consumption model
can correctly describe the interaction between the Agent and
service, such as, the system get the info of service, Agent
startups and suspends the service.

Theorem 2. Let R(Ω) be the reachable state of energy
consumption model Ω, ∀S ∈ R(Ω), ∀WSi ∈WS, then:

(1) If |M(WSi•pp)| = 1, ∃S′ ∈ R(Ω), which makes
|M ′(WSi•pe)| = 1.

(2) If |M(WSi•pp,j)| = 1, ∃S′ ∈ R(Ω), which makes
|M ′(WSi•pg,j)| = 1.

Proof: ∀WSi ∈ WS, because |M(WSi•pp)|= 1, there-
fore, ws is in the suspended state under S. Let WSi restart
after a period of time, We will prove the suspend of WSi

will not affect the restart of it, we can prove it from two two
aspects: First, we will prove WSi can be in the running posi-
tion again. Because WSi•p

I•
i = {WSi•ti, WSi•tr}, •WSi•tr

= {WSi•p
I
i , WSi•pp}, so WSi•tr has the right to fire and

the priority of WSi•tr is 0. Therefore, the firing of WSi•tr
under S is effective, we may set that S1 will reach S2 by firing
WSi•tr, then there is |M2(WSi•pw)| = |M1(WSi•p

I
i)| = 1,

because •WSi•ti = {WSi•p
I
i , WSi•pw}, therefore, the firing

of WSi•ti under S2 is effective. Second, we can prove that
all operations can be executed properly, ∀opf ∈ op(WSi)
may be in pa,f or pe,f when WSi is suspended. Therefore,
∃S′ ∈ R(S) which makes|M ′(WSi•pe)| = 1.

We can prove the sub-proposition(2) in the similar way.
Theorem 2 illustrates that the service and its operations can

execut properly when Agent needs to restart the suspended
service, thus realizing its function.

V. EXAMPLES

In order to evaluate the effectiveness of proposed method,
we will use experimental platform Windows 7, C# language
to implement a prototype for analyzing the constructed model.
First, we will generate available services as service resource.
Each service at least has the basic information such as energy
consumption, the function and the set of operation, etc.
Experiment 1. The goal of this experiment is to analyze the
effectiveness of adaptive strategy, the specific steps are:

(1) Taking 400 services, 50 components, 10 Agents and
dividing them into 10 groups, each group corresponds to a
Ligo system, then do Step (2)-(3) to each Ligo system.

(2) Selecting 10 groups of service, then compute the energy
consumption of each Ligo system[5] based on each set of
available service;

(3) Using adaptive strategy to compute the set of startup
service of service composition, then compute the whole energy
consumption of each system based on the set of startup service.

The results of Experiment 1 are shown in Fig.3, we can get:
(1) the energy composition of the set of service will change
when the attributes of service has changed. (2) the overall
energy consumption of service composition can be reduced
by using the adaptive strategy, the highest reduction is 34.5%
, and the lowest reduction is 3 %.
Experiment 2. Experiment 2 analyzes the relationship be-
tween the state space and available service, the steps are:

3587

Fig. 3. Experimental results of Experiment 1

(1) Taking 20 services, 5 components, 1 Agent to construct
the resource of Ligo system;

(2) Adding the service to system by 10 each time, that is,
30, 40, 50, 60, 70, 80, 90, then compute the set of startup
service and the number of reachable states of model.

From the results of Experiment 2, we can get that: the
state space of energy consumption model is 32 in all cases,
that is, the increase of available service will not effect the
state space of energy consumption model.The state of model
will not increase with the available service increasing. The
proposed method can be used to model and analyze the energy
consumption of large scale service composition.

VI. RELATED WORKS

There is a vast amount of research available on adaptive
designs for different areas. The work in [6] presents a system
architecture to monitor, interpret and analyze system events
in order to implement self-healing and self-adaptive systems.
The architecture presented in [7] is focused on service level a-
greement management in a Service Oriented Architecture. The
approaches defined in the above don’t consider the different
components of service composition.

Agent system design has emerged as a powerful approach
to perform tasks or solve problems in a decentralized en-
vironment. A framework for building an adaptive Learning
Management System has been proposed in [8]. Reference
[9] introduces an Agent-oriented Model-Driven Architecture.
Agents use hierarchical business knowledge models with busi-
ness process rules at the top, business rules to control policy
and logic in the middle and a base layer defining business
concepts. Later, the authors design a flexible method that
supports a range of coordinator components[10]. However, the
approaches defined in the above don’t consider the operation
of service, and they don’t involve in how to filter the service.

Many research efforts for service oriented computing have
adopted formal methods techniques to leverage its mathemati-
cally precise foundation for providing theoretically sound and
correct formalisms. A novel method for runtime monitoring of
composite services is proposed by [11], they employ process
algebra as the primary formalism to express specifications. A
similar approach is given by [12], the authors present a CSP-
based workflow framework for intelligently navigating service
composition. We have proposed an approach to constructing

the reliable service composition[13]. Almost all of the afore-
mentioned formalisms cover basic and structured activities of
service composition, but they are unable to ensure that the
constructed model can meet the users’ specific requirements,
such as energy consumption. Meanwhile, the approaches de-
fined in the above can not solve the problem of dynamically
selecting available service.

VII. CONCLUSION

In this paper, we proposed new solutions for optimizing
energy consumption for service compositions. The special
features of the proposed model include: (1) Petri nets are
used to describe different components of service composition.
Agent is introduce to the energy consumption management
process of service composition. (2) The adaptive energy s-
trategy is proposed, which is used to dynamically select the
available service that meets the requirement for component,
thus reducing the energy consumption of service composition.
(3) The operational semantics and related theories of Petri
nets help prove the correctness of proposed method. Finally,
we conduct several experiments to evaluate the effectiveness
of the proposed method.

ACKNOWLEDGMENT

The work is partially supported by the NSF of China under
grants No. 61173048 and 61300041. Research Fund for the
Doctoral Program of Higher Education of China under Grants
No. 20130074110015. The Fundamental Research Funds for
the Central Universities under Grant No.WH1314038.

REFERENCES

[1] S. Marstona, Z. Lia, S. Bandyopadhyaya, et al. Cloud computing-the
business perspective. Decision Support Systems. 2011, 51(1): 176-189.

[2] C. Wang, M. de Groot, P. Marendy. A Service-Oriented system for
optimizing residential energy use. IEEE International Conference on Web
Services(ICWS 2009), IEEE Computer Society, Washington, DC, USA,
2009:735-742.

[3] M. TADAO. Petri nets: properties, analysis and application. Proceedings
of the IEEE. 1989, 77(4):540-581.

[4] C. Antonio, C. Massimo, G. Salvatore, V. Seidita. Agent-Oriented soft-
ware patterns for rapid and affordable robot programming. Journal of
Systems and Software, 2010,83(4):557-573.

[5] G. Juve, A. Chervenak, E. Deelman, et al. Characterizing and profiling
scientific workflows. Future Generation Computer Systems, 2013, 29(3):
682-692.

[6] I. Al-oqily, B. Subaih, S. Bani-Mohammad, et al. A survey for self-healing
architectures and algorithms. Processings of the 9th International Multi-
Conference on Systems, Signals and Devices (SSD), IEEE Computer
Society, Washington, DC, USA, 2012: 1-5.

[7] R. R. Aschoff, A. Zisman. Proactive adaptation of service composition.
In: processing of the 2012 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), IEEE Computer Society,
Washington, DC, USA, 2012: 1-10.

[8] Y. Mahkameh, B. Ardeshir. A context-aware adaptive learning system
using agents. Expert Systems with Applications, 2011,38(4): 3280-3286.

[9] X. Liang, G. Des. Agent model: software adaptivity using an agent-
oriented model-driven architecture. Information and Software Technology,
2009,51(1):109-137.

[10] J. Lian, S. Shatz, X. He. Flexible coordinator design for modeling
resource sharing in multi-agent systems. Journal of Systems and Software,
2009,82(10):1709-1729.

[11] K. Mohsen, J. Saeed. WSCMon: Runtime monitoring of web service
orchestration based on refinement checking. Service Oriented Computing
and Applications. 2012,6(1):33-49.

[12] X. Song, W. Dou, J. Chen. A workflow framework for intelligent service
composition. Future Generation Computer Systems. 2011, 27(5): 627-
636.

[13] G. Fan, H.Yu, L.Chen, D.Liu. Petri net based techniques for constructing
reliable service composition. Journal of Systems and Software, 2013,
86(4): 1089-1106.

4588

Modeling and Analyzing Publish-Subscribe
Architecture using Petri Nets

Junhua Ding1, 2

1) Dept. of Computer Science
East Carolina University

Greenville, NC 27587
dingj@ecu.edu

Dongmei Zhang2

2) School of Computer Sciences
China University of Geosciences

Wuhan, Hubei, China
jjielee@163.com

Abstract — Software architecture is the foundation for the
development of software systems. Its correctness is important to
the quality of the software systems that have been developed
based on it. Formally modeling and analyzing software
architecture is an effective way to ensure the correctness of
software architecture. However, how to effectively verify
software architecture and use the results from formal modeling
and analysis is important to the application of the approach. In
this paper, software architecture is modelled using high level
Petri nets, and the model is then checked with a model based
testing tool called MISTA, and bounded model checking tool
Alloy to ensure the correctness of the model. The approach is
designed as a two-phase process consisting of model-based testing
and bounded model checking to ensure it is both practical and
rigorous for analyzing software architecture. We illustrated the
idea and procedure via modeling and analyzing the Publish-
Subscribe architecture. The result has shown that combining
bounded model checking with model based testing is an effective
extension to ensure the development quality.

Keywords- software architecture; Petri net; model checking; model
based software testing; publish-subscribe architecture

I. INTRODUCTION
Software architecture is an overall structure of a software

system, which consists of a group of components and the
connections among components in addition to the constraints
applying to the connections. It is the foundation of product
lines and many software systems were developed based on it.
Therefore, correctness of software architecture is important to
the quality of software systems that have been built on it.
Formal modeling and analysis of software architecture offers a
rigorous way to ensure the correctness of software architecture,
which has been discussed in many articles [5]. However,
results of formal modeling and analysis are difficult to be
directly used for analyzing software implementation that was
built based on the formal models due to the specification gap
between models and their implementations. For example, if a
model is specified using Petri nets, and the implementation
language is Java, then the model checking results (e.g., counter
examples) of the Petri nets model cannot be directly used for
testing the Java program. But model checking a complex Java
application is infeasible and testing is still the practical way for
program verification. Model-based software testing is an
approach to bridge the gap between testing of a software model
and its implementation, where models are used for guiding the
test generation. In some cases, model level tests are first
generated, and then they are transformed into program level
tests. MISTA [17] is a model based software testing tool,

which models a software system in high level Petri nets, and
then the Petri net model is analyzed with simulation and model
checking. Model level tests can be automatically generated
according to selected test coverage criteria, and then these tests
are automatically transformed into program level tests with
help from mapping files. The program level tests can be
directly used for testing the implementation. However, due to
the grand challenge of modeling of a high level Petri net, model
checking capability in MISTA is limited. In this paper, we
extended MISTA with bounded model checking for analyzing
Petri nets. Alloy analyzer is a bounded model checker for
analyzing models specifying in Alloy language, which is a
formal specification language based on first order relational
logic [3][10]. Alloy analyzer is a constraint solver for
automatically checking an Alloy model that specifies the
structural constraints and behaviors of a software system [3].
Alloy finds all model instances for satisfying a checked
property within the bounded scope, and it provides a
visualization tool to illustrate all instances. Comparing the
graphic instance to the corresponding Petri net model will be
useful to better understand the Petri net model and create a
better model. In addition, the instances are also useful for
creating tests for testing interesting properties in the Petri net.

Publish-Subscribe (pub-sub) architecture is a well adopted
event-based software architecture. The pub-sub architecture
includes one or more components that publish events, and one
or more components that subscribe them. The loose coupling of
publish and subscribe components offers the flexibility of
updating components and events in a system, but it also brings
the complexity of analysis due to the large number of
possibility of combination of event transferring scenarios [6].
Several analysis approaches such as model checking [6][8]
have been attempted for analyzing pub-sub models. In this
paper, we introduce Alloy into MISTA for analyzing Petri nets.
First, a Petri net model is modeled and simulated, and then
simple properties are verified using MISTA. After that, the
Petri net model is converted into an Alloy model, which will be
analyzed using Alloy analyzer. The analysis results can be used
for improving the Petri net model and guiding generating tests
for interesting properties. The analysis process is illustrated
through modeling a general model of the pub-sub architecture
in Petri nets. The general model can be easily extended for
different versions of the pub-sub architecture. Based on the
Petri net model, the pub-sub architecture was modelled in
Alloy, and analyzed for interesting properties using Alloy
analyzer. A Petri net model can be automatically transformed
into an Alloy model.

DOI reference number: 10.18293/SKE2015-232

589

The main contribution of this paper is due to a two-phase
rigorous and practically useful approach for analyzing software
architecture. Since software architecture is the foundation for
the implementation of many software systems, it is important
to provide an easy-to-use technique such as simulation and
testing for analyzing software architecture when they are still in
the early development phase. But simulation and testing is not
enough to ensure the correctness of important properties in
software architecture. Rigorously checking the architectural
model is necessary for ensuring the quality of the architecture
especially in the later modeling phase. In our approach, the
model-based testing assists ones to understand the modeling of
software architecture, to check simple assertions and to test
special scenarios for building a correct software architecture. In
addition, model checking ensures the correctness of important
properties modeled in the architectural model. The bounded
model checker Alloy was smoothly extended to model based
testing tool MISTA for enhancing the features in MISTA.
Modeling and analyzing the pub-sub architecture is used to
explain the idea and process, and to show the effectiveness of
the proposed approach.

The rest of this paper is organized as follows: Section 2
presents a brief introduction to Alloy, PrT nets, model-based
software testing and its tool MISTA. Section 3 introduces the
proposed model based testing of the pub-sub architecture in
Petri nets using MISTA. Section 4 discusses how to extend
Alloy into MISTA, model and analyze the pub-sub architecture
using Alloy, and how to convert a Petri net into an Alloy
model. Section 5 reviews the related work, and section 6
concludes this paper.

II. BACKGROUND

A. Alloy
Each Alloy model is specified in Alloy language to define

how to check the occurrence of a state change [3]. Each model
represents a set of model instances, and Alloy analyzer is used
to search for instances or counterexamples of a model. Alloy
analyzer is a bounded model checker for analyzing a model
within a finite scope a user specifies [3]. The analysis is sound
and complete within the scope so that it never misses a
counterexample within the scope. Alloy analyzer either finds a
solution that satisfies a predicate defined in the model, or a
counterexample that violates a given assertion [11]. An Alloy
model includes a number of signatures and facts. A signature
defines a set and a group of atoms associating with the set, and
a fact defining a constraint that is assumed always to hold in
the model. Analysis of a model is conducted for checking a
predicate or an assertion of the model. The details of Alloy
analyzer and language can be found in the project website [3]
and the book [10]. Fig. 1 is an Alloy model (modified based
on the original model described in the tutorial of Alloy [3]) for
defining a simple file system, which includes files, directories
and root. sig FSObj defines objects in a file system, sig File,
sig Dir and sig Root define files and directories, which are also
objects. The three facts define the global constraints that are:
each directory is the parent of its contents, each object is either
a file or directory, and a root does not have a parent. The
assert declares that a path is acyclic, and check it for scope of
5 [3].

module fileSys
 abstract sig FSObj { parent: lone Dir}
 sig Dir extends FSObj { contents: set FSObj}
 sig File extends FSObj { }
 one sig Root extends Dir { } { no parent }
 fact {all d: Dir, o: d.contents | o.parent = d}
 fact { File + Dir = FSObj}
 fact { FSObj in Root.*contents}
 assert acyclic {no d: Dir | d in d.^contents}
check acyclic for 5

Figure 1. A sample Alloy model

B. PrT Nets
Predicate/Transition (PrT) nets are a high level Petri net for

specifying concurrent systems. The definition of PrT nets used
in this paper is same as the one defined in [18].

Definition 1 (PrT net) A PrT net is a tuple (P, T, F, 6, L,
M, M0), where: P is a finite set of predicates (first order places),
T is a finite set of transitions and F is a flow relation. (P, T, F)
forms a directed net. 6 is a structure consisting of sorts of
individuals (constants) together with operations and relations. L
is a labeling function on arcs. M is a mapping from a set of
inscription formulae to transitions, and M0 is the initial or
current marking.

Fig. 2 shows a simplified PrT net model for 5 dining
philosophers’ problem. The model includes transitions Pickup,
and Putdown represent the action for picking up chopsticks and
putting down chopsticks, respectively. The distribution of
tokens in places Phi, Chop and Down represents the three states
of each philosopher: thinking, full and eating, respectively.
Places Phi and Chop include tokens that are nature numbers
representing philosophers or chopsticks, and each token in
place Down represents a philosopher and his/her two
chopsticks. Transition Pickup has two input places Phi and
Chop, and one output place Down. The guard condition in
transition Pickup is defined based on the relation between the
tokens in place Phi and Chop: x=c&&d=(x+1)%5,
representing that a philosopher must get both of his or her left
and right chopstick before he or she can eat (pickup) The guard
condition in transition Putdown is defined based on the relation
between the tokens in place Phi and Chop: x=c, representing a
philosopher puts down chopsticks at both left side and right
side.

C. Model-based Testing and MISTA
MISTA [14][17] is a model-based testing tool for

automated generation and execution of tests. It generates tests
in model level first and then program level tests are produced
through transforming the one at model level. It specifies
models in function nets, which is a type of PrT nets extended

Figure 2. A PrT nets model for dining philosophers

590

with inhibitor arcs and reset arcs [18]. It also provides a
language for mapping the elements in function nets to
implementation constructs so that it is possible to transform the
model level tests into program level tests that can be executed
against the system under test. In addition to test generation,
MISTA includes simulation and limited model checking
functions. It supports the step by step execution and random
execution of a function net, and the execution sequences and
token changing in each place are visualized for inspection. The
test generator generates adequate model level tests (i.e., firing
sequences of a function net) according to a selected coverage
criterion such as reachability coverage, transition coverage,
state coverage, depth coverage, and goal coverage. Test code
generator generates test code in a target program language like
Java or C++ from a given transition tree [17].

III. MODELING AND TESTING SOFTWARE ARCHITECTURE
USING PRT NETS

In this section, we are going to discuss an approach for
analyzing a PrT net model using model-based software testing
technique. In order to illustrate the basic idea and the process of
the two-phase analysis approach, we model and analyze a pub-
sub model using MISTA in this section and Alloy in next
section.

A. Modeling the Pub-Sub Architecture
The pub-sub architecture is an event-based architecture,

which includes one or more publishers that publish contents,
and one or more subscribers that consume the contents. The
publisher sends its contents as event messages through an event
bus, and a subscriber subscribes its contents through an event
message classification mechanism that classifies contents as
channels [1].

In the PrT net model shown in Fig. 3, a publisher publishes
its content as a message msg through transition pub, and the
published content is notified to subscribers via transition notify,
which models the event bus, and messages are classified as
channels and stored in place channel by transition classify. A
subscriber subscribes a channel message via transition sub, and
the subscribed channel message is sent to the subscriber by
transition classify when the message is available.

Figure 3. A PrT net model for the pub-sub architecture

B. Testing the Pub-Sub Architecture
As soon as a PrT net model is created and successfully

compiled in MISTA, run it with random inputs to help
developers to understand the model and detect easily found
problems. If the simulation result is acceptable, verification of
the goal reachability, assertions and deadlock states is
conducted. After that, a set of tests can be generated based on
selected coverage criteria, and these tests will be converted into
program level tests for testing the corresponding
implementation.

First, execute the PrT net model for the pub-sub with valid
initial markings to simulate normal running scenarios of the
model. For example, check a normal scenario that a publisher
publishes a message, which is the type of messages that a
subscriber has subscribed. It is important to check that the
message is successfully classified and stored in the channel and
the subscriber is notified, and finally the message is delivered
to the subscriber. An example of the initial marking for
checking above scenario in the PrT net in Fig. 3 is:
INIT Event(1,"1"), Publisher(1,"2"), Publisher(1,"1"), Subscriber(11, "0"),
Subscriber(11, "s")

Second, verify the reachability of goal states and transitions,
assertions and deadlock states in the PrT net for the pub-sub
using the model checking capability in MISTA. When the
reachability of all transitions of the PrT net in Fig. 3 was
checked, transition RecMsg was unreachable was found since
no any message with ID=5 was ever sent from any publisher.
If a token such as (“5, “2”) for place Publisher is added to the
initial marking, all transitions will be reachable. Given a goal
state such as GOAL Subscriber(5, “2”), then MISTA will find
that the state is reachable. The PrT net model has termination
states because published messages are delivered to subscribers
and removed from their channels and it is possible that any
channel has a message. The model has to be updated if a
subscriber only receive copies of its subscribed messages and
all messages will stay in the channel for a period of time.

Third, generate adequate tests for selected test coverage
criteria using MISTA. For the PrT net model defined in Fig. 3,
generate model level tests covering all states, all executable
paths, goal states, and others. Since complex scenarios are not
feasible to be checked with simulation or the limited model
checking in MISTA, these complex scenarios shall be
rigorously tested with model level tests thanks to the
executable capacity of PrT nets. The model level tests are also
used for generating program level tests via mapping the model
to its corresponding programs. The program level tests will be
used for testing the implementation of the model.

Although the PrT net model was checked with simulation of
execution scenarios, verification of important properties, and
testing with adequate tests for selected coverage criteria, the
model is not guaranteed to be correct. Formal verification of a
PrT net model is very difficult, but the analysis process of
bounded model checking is fully automatic and it can
guarantee the correctness of the checked properties within
specified scope. Therefore, bounded model checker Alloy was
chosen as an addition to MISTA to further analyze a PrT net
model.

591

IV. ANALYZING SOFTWARE ARCHITECTURE USING ALLOY
In this section, first we discuss how to model and analyze

the pub-sub architecture in Alloy, and then we introduce a
procedure for transferring a PrT net into an Alloy model.

A. Analysis of the Pub-Sub Architecture
The architecture defined in this section is specified

following Acme style [1], which defines software architecture
as a group of components and the connection for connecting
the components via interfaces in addition to the constraints
applying to the connection. The Alloy model of the pub-sub is
defined in a hierarchical structure. The basic elements of the
general software architecture are defined in an Alloy model
serving as the foundation for modeling specific software
architecture, and then a model of event based architecture is
defined. The foundation model and the model of event based
architecture were created based on those models introduced in
[11]. The model for the pub-sub architecture was developed
through extending above two models. In the foundation model,
common software architecture elements such as components,
connectors, ports and roles are defined as signatures, and basic
constraints of software architecture are defined as facts. The
model also defines a group of built-in functions and predicates
for checking specific properties or looking for
counterexamples. The pub-sub architecture is an event-based
architecture that consists of loosely-coupled components that
produce and consume events through the ports. In the model
of event-based architecture, the signatures include two
components: AnnounceComponent, and ReceiveComponent,
for modeling an announce component and a receive
component, respectively. Each component includes a set of
ports as interfaces; one connector EventConnector, models the
connector for connecting between roles and ports. Each
connector includes two sets of roles as interfaces, two types of
roles AnnoucerRole and ReceiverRole, and two types of ports
AnnoucePort and ReceivePort. The connection between
components is implemented through connecting ports to the
corresponding roles. The pub-sub architecture is an extension
of the event-based architecture with the subscriber selects
messages through a message classification mechanism called
channel. The following Alloy code is partial of the Alloy
model for the pub-sub architecture, and the model was
developed based on the Alloy models described in [11].
Channel is defined as a component, and a channel connector is
defined for connecting a channel and its subscribers.

sig PubPort extends AnnouncePort {}
sig SubPort extends ReceivePort {}
sig PubRole extends AnnouncerRole {}
sig SubRole extends ReceiverRole {}
sig PubComp extends Component{pubPort: PubPort}
sig SubComp extends Component {subPort: SubPort}
sig Channel extends Component {channelPort1:

SubPort, channelPort2: SubPort}
sig EventBusConn extends EventConn {pubRole:

PubRole, subRole: SubRole}
sig ChannelConn extends Connector {subRole:

SubRole, channelRole: ReceiverRole}

One fact described as follows is defined to ensure that each
component or connector has appropriate number of roles or
ports.

fact{
 (PubComp<:pubPort) in ports
 (SubComp<:subscribePort) in ports
 (Channel<:channelPort1) in ports
 (ChannelConn<:channelRole+ChannelConn<:subRole)in roles
 (EventBusConn<:pubRole+EventBusConn<:subRole)in roles
}

Based on above model, one can check interesting properties of
the model, such as an architectural configuration or a set of
constraints. The following predicate defines a set of
constraints that define the mapping between ports and roles,
and the essential elements in the pub-sub architecture. In the
code, self is a term defined in Acme as a signature for
extending System, and all and some represent universal and
existential quantification, respectively.

abstract sig System {components: set Component,
connectors: set Connector}
one sig self extends System {}

pred pubsub_constraints(){
 some c:self.components|declaresType[c,PubComp]
 some k:self.components|declaresType[k,SubComp]
 some m:self.components|declaresType[m,Channel]
 some n:self.connectors|declaresType[n,EventBusConn]
 some f:self.connectors|declaresType[f,ChannelConn]
 all self:PubPort|
 (all r: self.~attachment|declaresType[r, PubRole])
 all self: SubPort|
 (all r:self.~attachment|declaresType[r, SubRole])
 all self:PubRole |
 (#(self.attachment)=1)&&
 (all p: self.attachment|declaresType[p, PubPort])
 all self:SubRole |
 (#(self.attachment)=1)&&(all p: self.attachment|
declaresType[p, SubPort])
 all self:EventBusConn |
 (some e:self.pubRole|declaresType[e, PubRole] &&

some f:self.subRole|declaresType[f, SubRole])
 all self:ChannelConn|
 (some e:self.channelRole|declaresType[e, ReceiverRole]
&& some f:self.subRole|declaresType[f, SubRole])
}

Figure 4. A snapshot of an instance for pub-sub architecture

Checking the predicate with a specified scope such as 5 using
Alloy analyzer shall find instances that satisfy the predicate in
the pub-sub model. The instances are helpful to understand the
architecture and create better PrT net model. Fig. 4 shows a
snapshot of an instance. One also can check whether a
particular instance of pub-sub can be found or not in the model
such as the following configuration of a pub-sub can be found
with scope of 4. The configuration defines a simple pub-sub
instance which consists of one subscriber, one publisher, one
channel, one event bus connection, and one channel
connection.

592

 pred Config_0(s:SubComp,e:EventBusConn,c:Channel,
 cc:ChannelConn, p:PubComp){
 attached[s.subscribePort, cc.subscriberRole]
 attached[cc.channelRole, c.channelPort2]
 attached[c.channelPort1, e.subscriberRole]
 attached[e.publisherRole, p.publishPort]
}

B. Translating a PrT Net into an Alloy Model
The Alloy model discussed in previous section was built

directly according to the pub-sub architecture defined in Acme
[1] for explaining the analysis process in a better way. In this
section, we discuss how to translate a PrT net into an Alloy
model to ensure the consistency between a PrT net and its
corresponding Alloy model. Since Alloy models are
declarative for defining how to recognize something has
happened, and PrT net models are operational for defining
how something can be accomplished [3]. It is fairly challenge
to automate the transformation between a PrT net model and
an Alloy model. In this section, we introduce a basic structure
of the transformation using the dinning philosopher problem
defined in Fig. 2 as an example. The idea of the transformation
was developed based on the one for translating a regular place
transition Petri nets into an Alloy model discussed in [16],
which was extended for high-level Petri nets (i.e. PrT nets).

First, translate the basic elements (i.e. places, transitions,
arcs and tokens) and basic constraints in a PrT net into
signatures in Alloy.

abstract sig Node{flow: set Node}
abstract sig Token{}
abstract sig Place extends Node{tokens:set

Token}{#tokens >= 0}
abstract sig Transition extends Node{inp:set

Place, outp:set Place}
abstract sig Arc{place:Place,tran:Transition}

Define common constraints as facts, such as a net consists

of places and transitions, and a flow relation is only applied to
a place to a transition or a transition to a place:

fact {Node = Place + Transition}
fact {all p: Place | p.flow & Place = none}
fact {all t: Transition|t.flow&Transition=none}

Since each place has its own type of tokens, it is necessary

to define a type of tokens for each place and define each place
with its tokens. For example, we defined three types of tokens
for the dinning philosopher problem.

 sig Eating extends Token{phi:set Int,left:set
Int,right:set Int}
 sig Chop extends Token{left:set Int,right:set Int}
 sig Ph extends Token{phi: set Int}

And then each place in the PrT net is defined as a signature
with its tokens and each transition in the PrT net is also
defined as a signature. The constraints are defined by the
number of outward flows of each place or transition in the PrT
net:

 sig phP extends Place{token: Ph}{#flow = 1}
 sig chopP extends Place{token:Chop}{#flow=1}
 sig eatP extends Place{token:Eating}{#flow= 1}
 sig Pick extends Transition {}{#flow = 1}

 sig Down extends Transition {}{#flow = 2}

Now, the structure of the net is defined as facts in Alloy

based on the flow relations in the PrT net. The following Alloy
code defines the connections between places and transitions of
the PrT net in Fig. 2.

fact {all p: phP|one t: Pick|t in p.flow}
fact {all t: Pick|one p: phP|p in t.~(flow}
fact {all p: phP|one t: Down|t in p.flow}
fact {all t: Down|one p: phP|p in t.~(flow}
fact {all p: chopP|one t: Pick|t in p.flow}
fact {all t: Pick|one p: chopP|p in t.~(flow}
fact {all p: chopP|one t: Down|t in p.flow}
fact {all t: Down|one p: chopP|p in t.~(flow)}
……
fact {all t: Pick|one p:chopP|p in t.flow}
fact {all p: chopP|one t:Pick|t in p.~(flow)}
fact {all t: Pick|one p:phP|p in t.flow }
fact {all p: phP|one t: Pick|t in p.~(flow)}
fact {all t: Pick|one p: eatP|p in t.flow }
fact {all p: eatP|one t: Pick|t in p.~(flow)}
……

Finally, translate the fire conditions of all transitions as a

predicate. The constraints for each transition include a pre-
condition that is defined based the flow relation of the
transition and the guard conditions of the transition, support
functions, and a post-condition to define the effect of the
firing.

-- pre-condition of transition Pick

pick in c.flow and pick in p.flow
and #(pick.~(flow)) = 2
and e in pick.flow and #pick.flow = 1
and #p.token.phi>0 and #c.token.right > 0
and #c.token.left > 0
and #(p.token.phi&c.token.right)>0
and some x:Int in c.token.right and some y:Int

in c.token.left and x = mod(y,5)
 ……

-- post-condition of transition Pick
some x: Int in c.token.right and some y:Int in

c.token.left
and p.token.phi = p.token.phi - x
and c.token.left = c.token.left - y
and c.token.right = c.token.right - x
and e.token.phi = e.token.phi + x
and e.token.left = e.token.left + y

 and e.token.right = e.token.right + x

-- pre and post-condition of transition Down
……

Important properties such as safe or reachability can be

defined as assertions to be analyzed by Alloy analyzer. Check
the predicate fire with specified scope such as 6, Alloy
analyzer will find instances for the model, which can be used
for checking the original PrT net.

V. RELATED WORK
Software architecture has become an essential part in almost

every phase of software development lifecycle [5]. Therefore,
many researchers have proposed approaches and built tools for
modeling and analyzing software architecture. In order to
improve rigorousness of the analysis of software architecture
and confidence of the quality of the architectural model, a

593

variety of formal modeling and analysis approaches and tools
have been introduced during past two decades. Garlan [5] has
summarized the representative results of formal modeling and
analysis of software architecture. Allen and Garlan [2]
described a formal basis for an architectural connection, which
has become the one of the most important work on formal
modeling of software architecture. Model checking has been
reported for formally analyzing software architecture. In [7],
He and et. al. reported approaches for formally analyzing Petri
nets using model checking and formal proof techniques. Ding
and He proposed an approach for modeling checking a type of
high level Petri nets in [4]. Several other researchers defined an
executable semantics for software architectural modeling and
analysis through simulation and/or formal verification [13]. For
example, formal specification language Rapide [12] supports
simulation, Chemical Abstract Machine [9] and Wright [1]
support limited formal verification. However, few work on
testing of software architecture have been reported [15] due to
its nature of informal and non-executable of architecture
models in general. Zhu and He [19] proposed a methodology
for testing design and architectural models in high level Petri
nets. Model based testing uses results from testing architectural
models for testing their corresponding implementations. For
example, model level tests for testing an architecture are
transformed into program level tests for testing its
implementation [17][19]. The approach discussed in this paper
is used for analyzing software architecture in Petri nets via
naturally combing informal analysis techniques like software
testing and formal analysis techniques like bounded model
checking in two-phase analysis. The integration of bounded
model checking with model based testing improves the
rigorousness of model-based testing so that to improve the
confidence of the correctness of important properties holding in
the architecture. Although the pub-sub architecture has been
widely implemented in many software systems, formal
modeling and analyzing of its architecture is difficult. Garlan,
Khersonsky and Kim [6] introduced a reusable generic
framework for modeling and checking the model using model
checker SMV. Kim and Garlan [11] also investigated how to
analyze software architecture using Alloy. The approaches
introduced in the two papers are similar to the approach of
bounded model checking of architectural models discussed in
this paper. The technique was also extended for model-based
testing to improve the analysis performance and effectiveness.

VI. SUMMARY AND FUTURE WORK
In this paper, we presented an approach for modeling and

analyzing software architecture through studying the pub-sub
architecture. The approach is designed as a two-phase process
to ensure it is both practical and rigorous for analyzing
software architectures in PrT nets. In the first phase, a PrT net
model is analyzed using model-based testing techniques
including simulation, model checking and testing with tool
MISTA. The bounded model checking is conducted by
converting a PrT net into an Alloy model inputting to model
analyzer Alloy. Then model-based test cases are generated
from the checked model for selected test coverage criteria and
finally they are converted into the program level tests for
testing the corresponding implementation. Model-based
software testing with MISTA has been introduced in other

publications [14][17], but the focus of this paper is on how to
integrate bounded model checking into the process. The
process of modeling and analysis of software architecture was
illustrated by modeling and analyzing the pub-sub architecture.
The approach is useful for analyzing software architecture in
general, and also provides a framework for modeling and
analyzing variety versions of pub-sub architecture. We plan to
develop a tool to automate the transformation from a PrT net to
an Alloy model.

ACKNOWLEDGMENTS
This research is supported in part by award #CNS-1262933

from the National Science Foundation. Junhua Ding’s research
was also partially supported by the guest professorship grant
from school of computer sciences at China University of
Geosciences.

REFERENCES
[1] Acme, http://www.cs.cmu.edu/~acme/, last accessed on March 10, 2015.
[2] R. Allen, D. Garlan. “A formal basis for architectural connection.” ACM

TOSEM 6 (3), pp. 213–249, 1997.
[3] Alloy: http://alloy.mit.edu, last accessed on March 10, 2015.
[4] J. Ding, X. He. “Formal Specification and Analysis of an Agent-Based

Medical Image Processing System.” Intl. Journal of SEKE, Vol. 20, No.
3, pp. 1 – 35, 2010.

[5] D. Garlan, “Formal Modeling and Analysis of Software Architecture:
Components, Connectors, and Events”, in Formal Methods for Software
Architectures, LNCS, Vol. 2804, pp. 1 -24, 2003.

[6] D. Garlan, S. Khersonsky, and J.S. Kim, “Model Checking Publish-
Subscribe Systems”, Proc. of SPIN 03, Portland, Oregon, 2003.

[7] X. He, H. Yu, T. Shi, J. Ding, and Y. Deng, “Formally Specifying and
Analyzing Software Architectural Specifications Using SAM”, Journal
of Systems and Software, vol.71, no.1-2, pp.11-29, 2004, 1994.

[8] P. Hens, M. Snoeck, G. Poels, D. B. Manu, “A petri net formalization of
a publish-subscribe process system”, FBE Research Report KBI_1114,
K.U.Leuven - Faculty of Business and Economics, June 2011.

[9] P. Inverardi, A. Wolf. “Formal specification and analysis of software
architectures using the chemical abstract machine model.” IEEE TSE, 21
(4), 373–386, 1995.

[10] D. Jackson, “Software Abstractions: Logic, Language and Analysis”, the
MIT Press, 2012.

[11] J. S. Kim, and D. Garlan, “Analyzing architectual styles”, Journal of
Systems and Software, 83(2010), pp. 1216-1235, 2010.

[12] D. C. Luckham, J. Kenney, et al. “Specification and analysis of system
architecture using rapide.” IEEE TSE 21 (4), 336–355, 1995.

[13] N. Medvidovic, R. Taylor, 2000. “A classification and comparison
framework for software architecture description languages”. IEEE TSE
26 (1), 70–93, 2000.

[14] MISTA, http://cs.boisestate.edu/~dxu/research/MBT.html, last accesed
on March 12, 2015.

[15] D. Richardson, A. Wolf. “Software testing at the architectural level.” In:
Proc. of the 2nd Intl. Soft. Architecture Workshop. pp. 68–71, 1996.

[16] J. A. Robles, G.A. Solano, "Modeling Petri nets using Alloy," TENCON
2012 - 2012 IEEE Region 10 Conference , vol., no., pp.1,6, 19-22 Nov.
2012.

[17] D. Xu, “A Tool for Automated Test Code Generation from High-Level
Petri Nets”. 32nd Int. Conf. on Apps. and Theory of Petri Nets ,
Newcastle, UK, June 20-24, 2011.

[18] D. Xu, D., K. E. Nygard, “Threat-Driven Modeling and Verification of
Secure Software Using Aspect-Oriented Petri Nets”. IEEE TSE. 32(4),
265–278, 2006.

[19] H. Zhu, and X. He, “A methodology of testing high-level petri nets”.
Journal of Information and Software Technology. v44, pp. 473-489,
2002.

594

Flexible and Extensible Runtime Verification for Java

Chengcheng Xiang1, Zhengwei Qi1, and Walter Binder2

1Shanghai Jiao Tong University, Shanghai, China
Email:{xiangchengcheng,qizhwei}@sjtu.edu.cn

2Università della Svizzera italiana (USI), Switzerland
Email:{walter.binder}@usi.ch

Abstract—Runtime verification validates the correctness of
a program’s execution trace. Much work has been done on
improving the expressiveness and efficiency of runtime verifi-
cation. However, current approaches require static deployment
of the verification logic and are often restricted to a limited
set of events that can be captured and analyzed, hindering the
adoption of runtime verification in production systems. A popular
system for runtime verification in Java, JavaMOP (Monitor-
Oriented Programming in Java), suffers from the aforementioned
limitations due to its dependence on AspectJ, which supports
neither dynamic weaving nor an extensible join-point model. In
this paper, we extend the JavaMOP framework with a dynamic
deployment API and a new MOP specification translator, which
targets the domain-specific aspect language DiSL instead of
AspectJ; DiSL offers an open join-point model that allows for
extensions. A case study on lambda expressions in Java8 demon-
strates the extensibility of our approach. Moreover, in comparison
with JavaMOP using load-time weaving, our implementation
reduces runtime overhead by 21%, and heap memory usage by
16%, on average.

Keywords—Runtime verification; Monitor-Oriented Program-
ming (MOP); dynamic program analysis; dynamic deployment

I. INTRODUCTION

Runtime verification [1], [2] is a method that dynamically
checks specific properties of an executing system both in
testing and production environments. Compared with tradi-
tional verification approaches, such as model checking [3] and
automated theorem proving [4], runtime verification reduces
the state space by concentrating on the actual execution trace
and eliminates the fallibility of formally modeling a system.
In recent years, a lot of research has aimed at making runtime
verification a practical way to improve program reliability [1],
[5], [6].

A lot of techniques and tools have been developed for run-
time verification of Java programs. Early research, including
Java-MaC [7] and Hawk/Eagle [5], is focused on developing
expressive logics for property description. Recently, Java-
MOP [6] effectively reduces the runtime overhead thanks to
an efficient management of monitors. Moreover, static program
analysis techniques are used to reduce the amount of inserted
instrumentation code [8].

However, a lack of flexibility and extensibility has pre-
vented these techniques from becoming widely used in prac-
tice. Flexibility is important for two reasons. On the one hand,
runtime verification systems may introduce a significant over-
head of more than 100% when monitoring multiple properties

DOI reference number: 10.18293/SEKE2015-117

simultaneously [9]. In some cases, such overhead may be in-
evitable, because checking multiple properties simultaneously
may need to monitor a large number of events. Hence, it is
necessary to verify properties sequentially, implying that code
for event capture needs to be deployed and undeployed dynam-
ically. On the other hand, as dynamic code evolution has been
a timesaving way for development, property checkers should
also be able to get updated dynamically. Moreover, since most
runtime verification tools for Java, such as Tracematches [10]
and JavaMOP [6], use AspectJ [11] as their instrumentation
back-end, the categories of events are restricted to the AspectJ
pointcuts, which can only be extended by modifying the
AspectJ compiler. As shown e.g. in cite[12], the AspectJ join-
point model is not well suited for dynamic program analysis.

In this paper, we present a flexible and extensible runtime
verification framework for Java, MOP-DiSL. Our approach is
based on JavaMOP [6], a framework for Monitoring-Oriented
Programming for Java, and on DiSL [12], a domain-specific
language for dynamic program analysis based on bytecode
instrumentation. Our framework translates the MOP specifi-
cation into DiSL code, and a new deployment API allows for
flexible (un)deployment of instrumentation code at runtime.
Extensibility of event categories is achieved through DiSL’s
open join-point model, which we demonstrate with a case
study on Java8 lambda expressions.

This paper makes the following contributions:

• We present MOP-DiSL, a novel runtime verifica-
tion framework for Java that offers flexible dynamic
(un)deployment and extensibility in terms of event
types that can be captured.

• We conduct a case study on lambda expression-related
properties in Java8 programs, and we add several new
pointcuts to show the extensibility of MOP-DiSL.

• We evaluate MOP-DiSL by verifying four proper-
ties with the DaCapo benchmarks [13], showing that
MOP-DiSL introduces significantly less runtime over-
head and consumes less heap memory than JavaMOP
with load-time weaving.

This paper is structured as follows. Section II provides
background information on JavaMOP, AspectJ, and DiSL.
Section III gives a motivating example. Section IV presents
the design and some implementation details of our framework.
Section VI evaluates our framework in comparison with Java-
MOP. Finally, Section VII concludes.

595

List<Integer> l1 = new ArrayList<>();
List<Integer> l2 = new ArrayList<>();
...
Iterator<Integer> itr = l1.iterator();
while (itr.hasNext()){

l2.add(itr.next()*2);
}

Listing 1: Iterator example

l1.parallelStream()
.map(e -> e*2)
.forEach(e -> l2.add(e));

Listing 2: Stream example

II. BACKGROUND

A. JavaMOP

JavaMOP is an implementation of Monitor-Oriented Pro-
gramming (MOP) that enables runtime verification on the Java
platform. The implementation consists of two parts: a translator
and a set of runtime libraries. The translator parses specifica-
tions of properties in the form of finite state machines (FSM),
context-free grammars (CFG), extended regular expressions
(ERE), and other logical formalism, and generates AspectJ
code to monitor events. Using AspectJ to weave code restricts
the flexibility of JavaMOP and the categories of events it can
get. However, adding new event types to MOP specifications
requires both extensions to the JavaMOP translator and to the
AspectJ compiler.

Many optimization techniques have been proposed to im-
prove the efficiency of the runtime libraries of JavaMOP. [6]
adopts centralized and decentralized indexing algorithms to
optimize the lookup process of monitors. In order to efficiently
reclaim monitor instances that are bound to parameter objects,
[14] proposes a lazy garbage-collection (GC) strategy. Other
than the aforementioned generic techniques, optimizations are
also performed for specific property patterns [15]. According
to [16], the verification code only causes an average runtime
overhead of 15% on the DaCapo benchmark. However, the
overhead for simultaneously monitoring multiple properties
remains prohibitive in practice [9], indicating that there is need
for a more flexible approach to runtime verification.

B. AspectJ

Used by JavaMOP for event definition and instrumenta-
tion, AspectJ [11] is an aspect-oriented programming (AOP)
extension to the Java programming language. AspectJ adopts
pointcuts to select join points, which are execution points in a
program flow, and advice to define the actions to be executed
before, after, or around each join point. Common AspectJ
implementations weave advice in two ways: pre-load weaving
and load-time weaving. Dynamic AOP, supported by tools such
as AspectWerkz [17], Prose [18], and HotWave [19], [20], also
enables runtime weaving and runtime adaption of the aspect
code. Such techniques may endow runtime verification with
more flexibility; however, there are still restrictions on the
extensibility of event categories.

JVM

DiSL

Application

JVMTI

MOP
Code

Deployment Controller

Translator MOP
Spec

RV
Monitor

Figure 1: Framework Overview.

C. DiSL

As a tool for Java bytecode instrumentation, DiSL [12]
is distinguished with several features. First, unlike AspectJ,
DiSL supports an open join-point model, which means that
any code region can be marked as a join point to trigger an
event. Second, DiSL offers comprehensive bytecode coverage
when weaving, including the Java core class library and dy-
namically generated code. Moreover, DiSL has been enhanced
with the ability of dynamically deploying and undeploying
analysis code [21]. Although DiSL possesses the necessary
flexibility and extensibility for runtime verification, it lacks
expressiveness to describe properties and efficient management
of monitor instances.

III. MOTIVATING EXAMPLE

In this section, we present an example to show the ne-
cessity for flexibility and extensibility in runtime verification
frameworks.

Listing 1 and Listing 2 demonstrate two code segments
with the same function: doubling the integers in l1 and append-
ing the outcome to l2. The difference resides in the way they
realize it. In Listing 1, an iterator is used to traverse l1, while
the code in Listing 2 utilizes a parallel stream (introduced in
Java8) to eventually accelerate the process.

When runtime verification is applied to these two code
segments, different properties are of concern. For Listing 1, as
an iterator is created, we may be concerned about the HasNext
property, which means hasNext() should always be called
before the execution of next() on an iterator. For Listing 2, it is
pointless to check the HasNext property, because the parallel
stream internally traverses the list. Instead, since the state-
ments in the lambda expressions are executed concurrently,
it becomes necessary to verify whether they are thread-safe.
In this example, the method call l2.add() is not safe.

Given a dynamic software update substituting Listing 1
with Listing 2 in a running system that should not be restarted,
the properties for runtime verification should also be replaced
dynamically. The lambda expressions pose an additional chal-
lenge, because there is no pointcut in current AspectJ to

596

event updatesource after(Collection c) :
(call(* Collection+.remove*(..))
|| call(* Collection+.add*(..))) &&

target(c) {}

Listing 3: Event example

@After(marker = CollectionRemoveMarker.class)
public void Updatesource0 (DynamicContext dc,

ArgumentProcessorContext apc) {
Collection c =

(Collection)apc.getReceiver();
RuntimeMonitor.updatesourceEvent(c);

}

@After(marker = CollectionAddMarker.class)
public void Updatesource1 (DynamicContext dc,

ArgumentProcessorContext apc) {
Collection c =

(Collection)apc.getReceiver();
RuntimeMonitor.updatesourceEvent(c);

}

Listing 4: DiSL example

capture the event that a lambda expression is called in a stream
stage. More details about lambda expressions are discussed
in Section V. These challenges demonstrate the need for
flexibility and extensibility of runtime verification systems.

IV. FRAMEWORK DESIGN AND IMPLEMENTATION

In this section, we first give an overview of the framework
architecture, and then present the design and implementation
details of each part.

A. Overview

Figure 1 depicts an overview of MOP-DiSL. In the be-
ginning, the translator generates MOP code in Java, with
inputs of MOP specifications. Then the deployment controller
deploys the MOP code dynamically (i.e., instruments an ap-
plication with the MOP code). The MOP code will capture
sensitive events and generate corresponding monitors, which
are managed by RV-Monitor, a runtime library from JavaMOP.
The whole framework is based on DiSL, which relies on the
JVMTI, a standard tool interface for the JVM. Hence, a high
degree of portability of MOP-DiSL is achieved.

Flexibility and extensibility are achieved through the de-
ployment controller and the translator separately. On the one
hand, the deployment controller instruments, updates, and
removes bytecode for event capture without pausing or restart-
ing the target application. On the other hand, the translator
generates DiSL code as instrumentation back-end, gaining
extensibility from DiSL’s open join-point model.

B. Translator

The translator extends the original JavaMOP translator to
generate DiSL code for instrumentation (instead of AspectJ).
The JavaMOP translator parses event descriptions with the
definition syntax of AspectJ advice, as shown in Listing 3, and
the advice definitions are copied to the final aspect for event
capture. Our translator takes the same input, but generates

Table I: Deployment Controller API

Interface Description
deploy(property, scope) Deploy MOP code of a property in a specific scope
undeploy(property, scope) Undeploy MOP code of a property from a specific

scope
redeploy(property, scope) Update MOP code of a property in a specific scope

DiSL code for instrumentation. Listing 4 demonstrates DiSL
code generated from the event definition in Listing 3, with an
annotation to define the event, and a method to express the
reactions to the event.

The main challenge for translating advice to DiSL lies in
the composition of pointcuts. AspectJ offers a set of primitive
pointcuts, which can be combined by “&&” and “||” to
describe complex events. DiSL also offer a group of basic
markers to mark code regions as join points. However, there
is no easy way to combine these markers, except extend-
ing the marker class. Our translator combines basic markers
by generating new markers, e.g., CollectionRemoveMarker
and CollectionAddMarker, which inherit from a basic MOP
marker. To shorten the generated code, the base MOP marker
is modeled as a pipeline of filters, each for one basic pointcut.
An extended marker overrides several filters to express “&&”
of these filters, while “||” will be translated into different
markers. In order to generate markers for “||”, the translator
first transforms the pointcut composition into a disjunctive
normal form, and each clause will be converted to a marker.

New pointcuts can be easily added to define events by
extending the translator and the base marker class. Since
the marker class manipulates bytecode through ASM1, a
lightweight framework, it is very convenient to expand it with
more filters, corresponding to more primitive pointcuts. We
have added two pointcuts, .i.e., lambdaDef and thisLambda,
to capture events about lambda expressions. More details are
presented in Section V.

C. Deployment Controller

The deployment controller provides several interfaces to at-
tain flexibility, which are listed in Table I. The three interfaces
are declared with identical parameters, two string variables:
property refers to a property name, such as hasNext, and scope
refers to its deploying scope. The scope can be either a package
name or a class name with wildcards support.

These interfaces are implemented based on the work
in [21], which implemented dynamic bytecode instrumentation
through the retransformClasses interface in JVMTI. In our
current implementation, the controller interfaces are exposed
through a network client, with which programmers can deploy
or undeploy property monitors to a running system. However,
these interfaces can also be called by optimized monitor pro-
grams which only enable property monitors when necessary.

V. CASE STUDY

In this section, we present a case study on checking
whether unsynchronized collections are modified in a parallel

1http://asm.ow2.org/

597

UnsafeForEach(Object capVar0, Consumer c){
event create after(Object capVar0)

returning(Consumer c) :
lambdaDef()&& args(capVar0)){}

event forEach before(Consumer c):
call(* ParallelStream.forEach(..))
&& args(c) {}

event update after(Consumer c, Object
capVar0):
(call(*

(!SynchronizedCollection+).remove*(..))
|| call(*

(!SynchronizedCollection+).add*(..)))
&& target(capVar0) && thisLambda(c){}

ere : create forEach update
@match {

...
}

}

Listing 5: UnsafeForEach

stream, of which a violation instance is shown in Listing 2 as
the motivation example.

Listing 5 demonstrates the property definition in the form
of MOP specification. The property is named as UnsafeForE-
ach with two parameters defined in the event definitions,
i.e., capVar0 and c. Three types of events are captured by
the verification process, and ERE is adopted to express the
targeting event trace. When a matching trace is detected, an
error message is printed.

The first event is about creating a lambda expression,
defined with a new pointcut, i.e. lambdaDef. In Oracle’s Java8
implementation, lambda expressions are translated using the
bytecode instruction invokedynamic. This instruction causes
the lambda metafactory to be invoked and generates a lambda
object implementing the Consumer functional interface. The
lambdaDef pointcut selects all invokedynamic instructions,
checks whether they call the lambda metafactory, exposes cap-
tured variables and the return value through the corresponding
pointcuts args and returning. In this case, there is only one
captured variable, i.e., the collection object. However, more
objects can be exposed by args(), if more variables are captured
by the lambda expression.

The second event is calling the forEach method of a parallel
stream instance. The forEach method takes a Consumer object
as its parameter, and registers the object to the stream. The
new ParallelStream pointcut is added for that a parallel stream
is also an instance of Stream, which means it is impossible to
pick out a parallel stream only with current type check.

The last event happens when an unsynchronized collection
is updated in a lambda expression. The new pointcut this-
Lambda ensures that the updating executes in a lambda con-
text, and exposes the lambda object c. It is worth noting that the
lambda object cannot be exposed by AspectJ with the pointcut
execution(“*lambda*”)&&this(c), since the lambda body is
implemented as a static method and this() will return null.
Another way is by the pointcut call(“*lambda*”)&&target(c),
which also selects nothing because the lambda expression is
called by the parallel stream, a class in the Java core library
that cannot be woven by AspectJ. MOP-DiSL takes advantage

public class LambdaDefMarker extends
MOPBaseMarker {
public List<MarkedRegion> mainFilterPipe(

AbstractInsnNode insn){
List<MarkedRegion>

regions=super.mainFilterPip(insn);
filterLambda(regions, insn);
return regions;

}
void filterLambda(regions,

AbstractInsnNode insn){
if (insn instanceof

InvokeDynamicInsnNode){
if (matchIndy(indy))

regions.add(new
MarkedRegion(insn, insn));

}
}
//This will be overridden by the generated

code
boolean matchIndy(AbstractInsnNode insn){

return false;
}

}

Listing 6: LambdaDefMarker

of DiSL’s ability to instrument the Java core library to capture
the call event and expose the target object.

Adding these pointcuts consists of two steps: implementing
new markers and extending the translator. Listing 6 shows the
marker code for implementing lambdaDef pointcut. The new
marker is introduced as a subclass of the base marker, adding a
new filter process, i.e. filterLambda, to the main filter pipeline.
What filterLambda does is simply checking the type of current
instruction and calling matchIndy() to decide whether the
instruction should be marked for weaving. The translator needs
to be extended to generate a subclass of LambdaDefMarker
with a proper overriding of the method matchIndy according
the pointcut definition, which is much simpler than modifying
the AspectJ weaver.

VI. EVALUATION

In this section, we evaluate the runtime overhead and heap
memory consumption of MOP-DiSL, and compare it with
JavaMOP.

A. Experimental Settings

We set up the experimental environment on a Dell Optiplex
980 machine with 8GB memory and an Intel 3.20GHz i5
CPU. We use JDK 1.8 and AspectJ 1.8 for compilation on
a 64 bits Debian 7 system. For AspectJ, load-time weaving is
adopted, since DiSL uses dynamic weaving. DaCapo 9.12 [13],
a popular benchmark suite for Java, is utilized to evaluate the
runtime overhead and heap memory usage. The benchmark is
run for 10 iterations and the result of the first iteration is also
counted, as the code weaving only happens in the first iteration
when classes are first loaded. Four well-known properties are
verified in the evaluation:

1) HasNext: method hasNext() should be called before
calling next() for an iterator;

598

Table II: Execution time and overhead percentage for JavaMOP and MOP-DiSL with different properties

Benchmark
HasNext UnsafeIter UnsafeMapIter UnsafeFileWriter

origin JavaMOP-LW MOP-DiSL JavaMOP-LW MOP-DiSL JavaMOP-LW MOP-DiSL JavaMOP-LW MOP-DiSL
sec. sec. ovh.(%) sec. ovh.(%) sec. ovh.(%) sec. ovh.(%) sec. ovh.(%) sec. ovh.(%) sec. ovh.(%) sec. ovh.(%)

avrora 4.26 6.14 44.27 5.74 34.92 21.96 416.02 17.60 313.54 8.27 94.43 8.51 99.88 5.88 38.18 5.70 33.98
batik 2.25 2.75 22.19 2.59 15.08 2.96 31.64 3.35 48.82 2.87 27.46 2.92 29.78 3.90 73.36 3.50 55.80
fop 1.17 2.08 76.95 2.02 71.97 2.34 99.44 2.06 75.70 2.50 112.97 3.09 163.44 2.32 97.75 1.83 55.67
h2 6.94 7.84 13.01 7.45 7.38 7.86 13.33 7.10 2.38 8.53 22.91 10.13 46.00 8.80 26.89 8.62 24.29

jython 5.77 6.74 16.88 6.24 8.22 7.41 28.41 6.39 10.71 7.92 37.24 7.23 25.30 9.58 65.95 8.61 49.26
luindex 1.27 1.41 11.36 1.41 11.09 1.45 14.07 1.40 10.28 1.50 18.15 1.41 11.03 1.94 52.87 1.80 41.84
lusearch 2.35 2.62 11.27 2.65 12.49 3.04 29.16 2.82 19.79 2.60 10.39 2.79 18.49 3.41 44.94 3.14 33.52

pmd 4.11 5.95 44.83 5.66 37.81 8.64 110.28 7.79 89.67 10.27 149.89 8.25 100.87 6.12 48.94 5.48 33.27
sunflow 6.17 6.38 3.43 6.27 1.71 6.25 1.39 6.04 1.02 6.27 1.65 6.27 1.68 8.35 35.47 7.65 24.05
tomcat 3.83 5.27 37.63 4.17 8.93 5.48 43.20 4.89 27.65 5.66 47.77 4.79 25.02 6.41 67.52 4.81 25.77

tradebeans 6.84 18.53 171.18 17.77 160.06 14.83 117.02 13.55 98.28 21.13 209.12 20.22 195.83 9.51 39.10 9.14 33.67
tradesoap 12.31 18.19 47.81 17.99 46.17 24.25 97.00 23.59 91.62 25.32 105.69 26.35 114.07 14.88 20.87 14.98 21.71

xalan 2.91 3.12 7.15 3.06 5.17 3.59 23.47 3.55 21.97 3.18 9.42 3.40 16.81 3.55 22.25 3.94 35.56
geo.mean 23.63 16.55 38.11 26.38 34.95 36.21 44.20 34.41

 0

 200

 400

 600

 800

 1000

avrora

batik
fop

h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

tradebeans

tradesoap

xalan

P
ea

k
H

ea
p

M
em

or
y

U
sa

ge
 (

M
B

) Orgin
JavaMOP

MOP-DiSL(Server)
MOP-DiSL(App)

(a) HasNext

 0

 200

 400

 600

 800

 1000

avrora

batik
fop

h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

tradebeans

tradesoap

xalan

P
ea

k
H

ea
p

M
em

or
y

U
sa

ge
 (

M
B

) Orgin
JavaMOP

MOP-DiSL(Server)
MOP-DiSL(App)

(b) UnsafeIter

 0

 200

 400

 600

 800

 1000

 1200

avrora

batik
fop

h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

tradebeans

tradesoap

xalan

P
ea

k
H

ea
p

M
em

or
y

U
sa

ge
 (

M
B

) Orgin
JavaMOP

MOP-DiSL(Server)
MOP-DiSL(App)

(c) UnsafeMapIter

 0

 200

 400

 600

 800

 1000

avrora

batik
fop

h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

tradebeans

tradesoap

xalan

P
ea

k
H

ea
p

M
em

or
y

U
sa

ge
 (

M
B

) Orgin
JavaMOP

MOP-DiSL(Server)
MOP-DiSL(App)

(d) UnsafeFileWriter

Figure 2: Peak heap memory usage. MOP-DiSL (Server) refers to the memory consumption in the DiSL instrumentation server, which runs in
another Java process. The actual runtime memory for application + analysis is noted as MOP-DiSL (App).

2) UnsafeIter: a Collection should not be updated when
its iterator is accessed;

3) UnsafeMapIter: a Map should not be updated when
its iterator is accessed;

4) UnsafeFileWriters: no writing is allowed after a file
is closed.

The results are presented with JavaMOP-LW referring to
JavaMOP using AspectJ load-time weaver. The results of
eclipse benchmark in DaCapo are not presented because there

is a bug when it is run on Java82. We do not evaluate the
performance of the lambda property for there is currently no
standard benchmark with much use of the Java8 stream API.

B. Runtime Overhead

Table II displays the execution time and percent over-
head of JavaMOP-LW and MOP-DiSL. On average (geomet-
ric mean), MOP-DiSL incurs less overhead than JavaMOP-

2http://mail.openjdk.java.net/pipermail/aarch64-port-dev/2014-
February/000844.html

599

LW for property HasNext, UnsafeIter, and UnsafeFileWriter.
MOP-DiSL achieves more overhead reduction for applications
with higher overhead, which have more instrumented code
executed, and the reason is that code instrumented by DiSL
is more efficient than AspectJ. However, weaving code in an
isolated instrumentation server, DiSL spends more time on
communicating with the server so that more time on weaving.
For UnsafeMapIter, there are more event types, which means
more code needs to be instrumented, resulting that more com-
munication with the sever is needed for DiSL. Consequently,
MOP-DiSL causes similar overhead with JavaMOP-LW and
more overhead for some benchmarks, i.e., avrora, batik, fop,
h2, lusearch, tradesoap, and xalan. Overall, MOP-DiSL causes
21% less runtime overhead than JavaMOP-LW.

C. Memory Consumption

Figure 2 illustrates the peak Java heap usage when the
four properties are verified. The memory consumption of
MOP-DiSL consists of the server part and the application part.
The instrumentation server, which does code weaving, is run
in a separated process and in theory can be run in another
physical machine. We accumulate the memory usage mainly to
show that even combining both application and instrumentation
server, our approach still outperforms JavaMOP by 16% in
terms of heap consumption (evaluated by geometric mean).
The application part of MOP-DiSL consumes 54% lower Java
heap than JavaMOP on average. This feature benefits the
application process with less GC time. For some benchmarks,
such as lusearch, JavaMOP and MOP-DiSL even cause lower
peak heap consumption than the original application. This
is mainly due to different GC behavior—with more memory
usage in the runtime analysis, GC may be triggered more often
and hence keep the memory consumption at a lower level.

VII. CONCLUSION

In this paper, we present a novel framework, MOP-DiSL, to
achieve flexibility and extensibility in runtime verification for
Java. A deployment API is designed for flexibility and a new
MOP translator is devised with extensibility. We demonstrate a
case study on adding event types to check properties associated
with lambda expressions in Java8, which requires extensibil-
ity. Evaluation results show that our framework causes less
runtime overhead and lower peak heap usage than JavaMOP
with AspectJ load-time weaving. As a result, our framework
achieves flexibility and extensibility with no more runtime and
memory overhead, making runtime verification more practical
in real-world settings.

ACKNOWLEDGMENT

This work is supported by NSFC (No. 61272101), National
R&D Infrastructure and Facility Development Program (No.
2013FY111900), NRF Singapore CREATE Program E2S2,
Sino-Swiss Science and Technology Cooperation (SSSTC),
and Shanghai Key Laboratory of Scalable Computing and
Systems.

REFERENCES

[1] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
The Journal of Logic and Algebraic Programming, vol. 78, no. 5,
pp. 293–303, 2009.

[2] C. Kloukinas, G. Spanoudakis, and K. Mahbub, “Estimating event
lifetimes for distributed runtime verification,” in SEKE, pp. 117–122,
2008.

[3] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT press,
1999.

[4] M. Fitting, First-order logic and automated theorem proving. Springer
Science & Business Media, 1996.

[5] M. d’Amorim and K. Havelund, “Event-based runtime verification of
Java programs,” in ACM SIGSOFT Software Engineering Notes, vol. 30,
pp. 1–7, ACM, 2005.

[6] F. Chen and G. Roşu, “Mop: an efficient and generic runtime verification
framework,” in ACM SIGPLAN Notices, vol. 42, pp. 569–588, ACM,
2007.

[7] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan, “Java-
MaC: a run-time assurance tool for Java programs,” Electronic Notes
in Theoretical Computer Science, vol. 55, no. 2, pp. 218–235, 2001.

[8] E. Bodden, P. Lam, and L. Hendren, “Clara: A framework for partially
evaluating finite-state runtime monitors ahead of time,” in Runtime
Verification, pp. 183–197, Springer, 2010.

[9] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. Serbanuta,
and G. Rosu, “RV-Monitor: Efficient parametric runtime verification
with simultaneous properties,” in Proceedings of the 14th International
Conference on Runtime Verification (RV’14), LNCS, September 2014.

[10] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
O. Lhoták, O. De Moor, D. Sereni, G. Sittampalam, and J. Tibble,
“Adding trace matching with free variables to AspectJ,” in ACM
SIGPLAN Notices, vol. 40, pp. 345–364, ACM, 2005.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of AspectJ,” in ECOOP 2001, pp. 327–354,
Springer, 2001.

[12] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi,
“DiSL: a domain-specific language for bytecode instrumentation,” in
Proceedings of the 11th annual international conference on Aspect-
oriented Software Development, pp. 239–250, ACM, 2012.

[13] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
et al., “The DaCapo benchmarks: Java benchmarking development and
analysis,” in ACM Sigplan Notices, vol. 41, pp. 169–190, ACM, 2006.

[14] D. Jin, P. O. Meredith, D. Griffith, and G. Rosu, “Garbage collection for
monitoring parametric properties,” in ACM SIGPLAN Notices, vol. 46,
pp. 415–424, ACM, 2011.

[15] P. Meredith and G. Rosu, “Efficient parametric runtime verification
with deterministic string rewriting,” in Proceedings of 28th IEEE/ACM
International Conference. Automated Software Engineering (ASE’13),
p. NA, IEEE/ACM, May 2013.

[16] D. Jin, P. O. Meredith, C. Lee, and G. Roşu, “JavaMOP: Efficient para-
metric runtime monitoring framework,” in Proceeding of the 34th In-
ternational Conference on Software Engineering (ICSE’12), pp. 1427–
1430, IEEE, 2012.

[17] J. Bonér, “Aspectwerkz: Dynamic AOP for Java,” in Invited talk at
3rd International Conference on Aspect-Oriented Software Development
(AOSD), Citeseer, 2004.

[18] A. Nicoară and G. Alonso, “Dynamic AOP with Prose,” in 1st
International Workshop on Adaptive and Self-Managing Enterprise
Applications, pp. 125–138, 2005.

[19] A. Villazón, W. Binder, D. Ansaloni, and P. Moret, “Advanced runtime
adaptation for Java,” in Proceedings of the Eighth International Confer-
ence on Generative Programming and Component Engineering, GPCE
’09, pp. 85–94, ACM, Oct. 2009.

[20] A. Villazón, W. Binder, D. Ansaloni, and P. Moret, “HotWave: creating
adaptive tools with dynamic aspect-oriented programming in Java,” in
ACM Sigplan Notices, vol. 45, pp. 95–98, ACM, 2009.

[21] Y. Zheng, L. Bulej, C. Zhang, S. Kell, D. Ansaloni, and W. Binder,
“Dynamic optimization of bytecode instrumentation,” in Proceedings of
the 7th ACM workshop on Virtual machines and intermediate languages,
pp. 21–30, ACM, 2013.

600

Improving the Accuracy of Integer Signedness Error
Detection Using Data Flow Analysis

Hao Sun, Chao Su, Yue Wang, Qingkai Zeng
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Department of Computer Science and Technology, Nanjing University, Nanjing 210023, China
Email: {shqking, suchao1991}@gmail.com, wxywang89@163.com, zqk@nju.edu.cn

Abstract—Integer signedness error can be exploited by at-
tackers to cause severe damages to computer systems. Despite
of the significant advances in automating the detection of inte-
ger signedness errors, accurately differentiating exploitable and
harmful signedness errors from unharmful ones still remains
an open problem. In this paper, we present the design and
implementation of SignFlow, an instrumentation-based integer
signedness error detector to reduce the reports for unharmful
signedness errors without sacrificing the completeness (i.e. no
false negatives). SignFlow utilizes static data flow analysis to
identify unharmful integer signedness conversions from the view
of where the operands originate and whether the data after
conversions can propagate to security-related operations, and
then inserts security checks for the remaining conversions so
as to accomplish runtime protection. We evaluated SignFlow
on 7 real-world harmful integer signedness bugs, SPECint 2006
benchmarks together with 5 real-world applications. Experimen-
tal results show that SignFlow successfully detected all harmful
integer signedness bugs and achieved a reduction of 41% in
false positives over IntFlow, the state-of-the-art signedness error
detector.

Keywords—integer signedness error, data flow analysis, instru-
mentation, sanitization

I. INTRODUCTION

The C/C++ programming language implements the signed-
ness of integer types, including signed and unsigned. An
integer signedness error occurs when a signed integer is
interpreted as unsigned, or vice-versa. In two-complement
representation, such conversions cause the sign bit to be
interpreted as the most significant bit (MSB) or conversely,
hence −1 and 232 − 1 are misinterpreted to each other on
32-bit machines. Because such misinterpretation cannot over-
write memory directly, adversaries usually leverage security-
related operations (e.g., bound checks, memory allocations
and loops) to exploit integer signedness errors indirectly. For
instance, Listing 1 shows a typical signedness error in Mumble
[1]. Lines 4 to 5 are the patch for this bug. In the original
buggy code, variable decodedSamples is used to denote
the amount of decoded samples, and it would be assigned
with small negative values when opus_decode_float()
encounters an error. Note that such small negative integers
indicate the error condition. Then decodedSamples is con-
verted to unsigned integer, i.e. inlen, which becomes close
to UINT MAX. Later inlen is used as the buffer length in
speex_resample_process_float() and buffer over-
flow occurs due to such inadvertently large buffer length.

(DOI reference number: 10.18293/SEKE2015-123)

Listing 1. Patched code for CVE-2014-0045 in Mumble
1 int decodedSamples = opus_decode_float(opusState

,NULL, ...);
2 ...
3 spx_uint32_t inlen = decodedSamples;

4+ if(inlen > 0x7fffffff)
5+ return error;

6 if (srs && bLastAlive)
7 speex_resampler_process_float(srs, 0,

fResamplerBuffer, &inlen, ...);

During the past years, researchers have developed various
techniques to address this problem. A classic approach is to
insert security checks around integer signedness conversions to
catch signedness errors at runtime. Instrumented programs can
react to a signedness error by logging the event or terminating
the execution. Many existing techniques, such as RICH [2],
IOC [3], AIR [4] and RA [5], consider all integer signedness
conversions in a subject program as potential signedness error
sites and instrument all of them. The instrument-all techniques
guarantee to detect all the runtime signedness errors; however,
this safety has a price: they might report unharmful signedness
errors as critical ones in real-world scenarios, i.e. producing
false positives.

IntFlow [6] aims to eliminate the instrumentation for some
integer signedness conversions if they originate from trusted
source. The intuition is that such trusted integer signedness
conversion cannot be controlled by attackers even if signedness
error occurs. Hence, IntFlow could reduce a number of false
positives produced by instrument-all techniques. However,
IntFlow only considers where a signedness error originates, but
doesn’t track how it would be used afterward. IntFlow would
produce false positives inevitably in the following cases: 1) the
integer data after conversion is unused afterward, or propagates
to uncritical program locations; 2) experienced developers of-
ten anticipate the possibility of signedness errors such that they
add sanitization routines after these sites; 3) programmers use
signedness errors intentionally for performance optimization
or code compactness in many situations.

To further improve the accuracy of integer signedness
error detection, we develop a novel runtime signedness error
detector, named SignFlow, which features the capacities of
detecting all harmful signedness errors (complete) and by-
passing as many unharmful ones as possible (precise) with

601

acceptable performance loss (practical). In SignFlow, we not
only consider where integer signedness conversions originate
(as IntFlow does), but further track how they would be used
afterward. The main intuition behind our approach is that
integer signedness errors become unharmful if they are unused
afterward, or used at uncritical program locations such as
printf(), or get sanitized before flowing into security-related
operations. As such, SignFlow could avoid the reports for more
unharmful signedness errors, compared to IntFlow.

Our contributions are highlighted as follows.

• We define unharmful integer signedness errors from
the perspective of where they originate and how they
are used afterward;

• We propose and implement a novel instrumentation-
based integer signedness error detector, SignFlow, as
an extension of the GCC compiler [7], aiming to
improve the accuracy of integer signedness error de-
tection. SignFlow first exploits static data flow analysis
to identify unharmful integer signedness conversions
and then inserts security checks for the remaining
potentially harmful sites;

• To demonstrate the effectiveness, we applied SignFlow
to 7 harmful signedness bugs, SPECint 2006 bench-
marks and 5 real-world applications. Experimental re-
sults show that SignFlow detected all 7 harmful errors
and bypassed about 41% (46 out of 111) unharmful
ones that the state-of-the-art integer signedness error
detector, i.e. IntFlow, produced. Besides, as about
7.73% more integer signedness conversions were iden-
tified as unharmful at static analysis phase, SignFlow
reduced the runtime overhead by 49.62% over IntFlow.

II. APPROACH

One key consensus in existing techniques is that an integer
signedness error becomes harmful (or critical) if it satisfies
both the following two conditions: T1: the right-hand operand
in signedness conversion originates from un-trusted source, i.e.
controlled by users; T2: the misinterpreted data may propagate
to security-related operations, i.e. sinks.

T1 allows attackers to control this signedness error and
determine the misinterpretation according to their own in-
tentions, and T2 provides attackers an interface to exploit
this signedness error so as to conduct malicious operations.
Conversely speaking, we argue that an integer signedness error
can be treated as unharmful if it violates either T1 or T2. In
the following, we first present data flow patterns of unharmful
signedness errors from the perspective of violating T1 or T2,
and then introduce our approach briefly.

A. Unharmful Integer Signedess Errors

Definition 1: An integer signedness error is unharmful if
it satisfies one of the following three conditions:

1. the right-hand operand in signedness conversion is
constant or originates from constant values;

2. the integer data after conversion is unused afterward,
or propagates to uncritical program locations;

TABLE I. POST-CONDITION TEST FOR SIGNEDNESS CONVERSIONS

Signedness Conversion Post-condition Test
int x; unsigned int y; x = (int) y; x < 0
unsigned int x; int y; x = (unsigned int) y; x > 0x7fffffff

TABLE II. SANITIZATION OPERATOR FOR SIGNEDNESS ERRORS

Op Type Basic Form Influence
bitwise-and res = a & b, and b < 0x80000000 Erased

modulo res = a % b, and b < 0x80000000 Erased
left-shift res = a ≪ b Replaced

right-shift res = a ≫ b Replaced
bitwise-xor res = a ⊕ b Erased
bitwise-not res = ∼ a Erased

3. the integer data after conversion gets sanitized before
it propagates to security-related operations.

1) Trusted Source: The integer signedness error under con-
dition 1.1 means that, the concrete value of source operand can
be determined at compile-time. Hence, attackers cannot control
this signedness error via providing crafted inputs. In other
words, attackers have no chance to exploit such signedness
errors. We call this data flow pattern of unharmful signedness
errors as Pcst for short.

As shown below we adopt the code snippet from [6] to
present an example, in which developers intentionally rely on
signedness error mainly for performance reasons. It casts −1
into unsigned type to obtain the largest number that unsigned
type can represent. Since the source operand is constant,
satisfying Pcst, this signedness error is unharmful.

UINT_MAX = (unsigned int) -1;

2) Uncritical Program Location: The integer signedness
error under condition 1.2 denotes that, the integer data after
conversion is relatively not as critical as other integers. This
shuts off the interface for attackers to jeopardize the whole
program even if attackers can control this misinterpreted data.
We call this data flow pattern of unharmful signedness errors
as Puncrit for short. Note that library function calls such as
printf() and fprintf(), are typical uncritical locations.

3) Sanitization: According to our Definition 1, the paths of
misinterpreted data to sinks can be cut off or stopped if there
exist so-called sanitizations. Here, we give the following two
kinds of sanitizations.

Experienced developers often anticipate the possibility of
integer signedness errors such that they add sanitization rou-
tines after potential signedness error sites to prevent misin-
terpreted data from affecting further program execution. As
shown in Table I, post-condition test [3][8] is the widely used
sanitization routines for signedness errors. The patch for CVE-
2014-0045, i.e. lines 4 to 5 in Listing 1, gives an example.
Once signedness error occurs at line 3, the security check at
line 4 would catch this misinterpretation, cutting off the flow to
sink (i.e. line 7). As post-condition test is of fixed patterns, they
can be identified statically. Furthermore, post-condition test is
sound enough to catch signedness errors. Hence, we adopt
post-condition test as one kind of sanitizations for signedness
errors, and we call such data flow pattern as Ppost for short.

Besides, many operators can remove or clean up the sign
bit for signed type or the MSB for unsigned type. In these

602

C/C++

Constant Type

Propagaton Analysis

Reachability

Analysis

Complie,

Link

SignFlow

Binary

GCC-IR

gimple

Instrumentation

Post-condition Test

Identification

Fig. 1. Overall architecture of SignFlow

cases, the misinterpreted data gets sanitized since the bit, that
signedness error matters, is replaced by another benign bit or
erased after such operators. We call these operators SantzOp
for short. Table II shows a serial of SantzOp, including the
type, the basic form and the influence on the sign bit/MSB.
Note that a denotes the misinterpreted integer. Here, we argue
that after going through SantzOp, misinterpreted data is less
likely to be used in exploitation attempts by attackers, as the
crucial bit, i.e. the sign bit/MSB, is replaced with another
benign bit or erased by SantzOp. We call such data flow pattern
as Pop for short.

Take the following code snippet as an example. It is from
pp.c, 400.perlbench in SPECint 2006. Implicit signedness con-
version occurs at line 2332; however, the bitwise-and operators
at line 2335 can erase the sign bit. Hence, such signedness
error is unharmful. In fact the SantzOp at line 2335 is used
here to achieve the effect of selecting specific bits of flags.

struct STRUCT_SV{
void * sv_any;
U32 sv_refcnt;
U32 sv_flags;

}
#define SVf_IOK 0x00100000
#define SVp_IOK 0x01000000
#define SVp_NOK 0x02000000

2332 int flags = sv->sv_flags;
2333 ...
2335 if((flags & SVf_IOK) ||

((flags & (SVp_IOK | SVp_NOK)) == SVp_IOK)){
2336 ...

B. Approach Overview

Based on the discussions above, we propose a novel ap-
proach to improve the integer signedness error detection using
static data flow analysis. We at first identify unharmful integer
signedness conversions based on the data flow characteristics,
and then exclude them from further instrumentations. Specif-
ically, we first assume that all integer signedness conversions
in program are un-trusted and each of them should be instru-
mented with security check to guarantee the runtime safety.
Then we conduct static data flow analysis to mark unharmful
integer conversions in three aspects. 1) One taint-like analysis
is employed to propagate the tag of ‘constant’ starting from
constant values and safe library function calls (e.g., uname(),
gettimeofday()). An integer conversion is marked as unharmful
if the source operand is tagged with ‘constant’; 2) An integer
signedness conversion is also marked as unharmful if it is
protected by post-condition test; 3) Another data flow tracking

is deployed to compute an integer signedness conversion’s
reachability to security-related operations. Note that this pro-
cess is accomplished through determining whether it will
encounter uncritical program locations or SantzOp before sinks
on each path of this signedness conversion. If so, we mark
this conversion as unharmful. At last, security checks are
inserted around the integer signedness conversions, which are
not identified as unharmful, so as to gain runtime protection,
as existing instrumentation-based detectors [2][3][8][6] do.

III. DESIGN AND IMPLEMENTATION

Figure 1 illustrates the overall architecture of SignFlow.
It performs static data flow analysis on the GCC interme-
diate representation—gimple—to identify unharmful integer
signedness conversions, and then instruments security checks
for the remainder. At last, the inputs get further compilation
and linking into binary. Specifically, SignFlow consists of four
main components: 1) constant type propagation analysis is
similar to taint-like analysis, aiming to identify all the integer
signedness conversions under Pcst; 2) post-condition test iden-
tification checks whether an integer signedness conversion is
followed by post-condition test; 3) reachability analysis aims
to compute the reachability of an integer signedness conversion
to security-related operations by determining whether there
exists uncritical program location or SantOp along each path;
4) instrumentation part inserts security checks for integer
signedness conversions except those, which have been iden-
tified as unharmful by previous analyses.

Similar to IntFlow [6], our constant type propagation
analysis is implemented via a taint-like analysis, i.e. setting
the trusted source as ‘constant’, propagating this tag along
the data flows, and marking the integer signedness conversion
as unharmful if the source operand is ‘constant’. Moreover,
the process of post-condition test identification can also be
easily implemented since the post-condition test particularly
for signedness errors is of fixed patterns, as shown in Table I.
Hence, in the following we will discuss more about reachabil-
ity analysis and instrumentation.

A. Reachability Analysis

In this section, we analyze the data flows out from an in-
teger signedness conversion to decide whether this conversion
satisfies condition 1.2 or condition 1.3 (in Definition 1). If so,
this integer signedness conversion is treated as unharmful.

Whether an integer signedness conversion would be used at
specific locations can be induced as a reachability problem. We

603

Algorithm 1 Reachability Analysis.
Input: Signedness conversion SC.
Output: Sink, Unharm;
1: Sink, Unharm are initialized with 0;
2: if SC is unused afterward then
3: set Unharm;
4: return ;
5: end if
6:
7: for each path of SC do
8: for each node of path do
9: if node is uncritical site or SantzOp then

10: set Unharm;
11: else if node is security-related operations then
12: set Sink; break;
13: else if node is assignment, unary and binary op then
14: continue;
15: else
16: set Sink; break;
17: end if
18: end for
19: if Sink then
20: clear Unharm; break;
21: end if
22: end for

compute the reachability of an integer signedness conversion
to uncritical program locations and SantzOp to decide whether
it satisfies condition 1.2, condition 1.3 or both. As shown in
Algorithm 1, an integer signedness conversion can be treated
as unharmful if 1) it is unused afterward (lines 2 to 5), 2) it
ends up with uncritical program locations, or 3) it encounters
SantzOp before security-related operations for each path. Note
that security-related operations include if -statement, while-
statement, array indexing and sensitive library routines such as
malloc() and memcpy(). Lines 15 to 16 mean that our analysis
is conservative for harmful signedness errors, i.e. an integer
signedness conversion cannot be marked as unharmful if we
are not certain of whether there will be sinks along some path.

B. Instrumentation

Through constant type propagation analysis, post-condition
test identification and reachability analysis, a number of integer
signedness conversions have been identified as unharmful. As
the last step of SignFlow, security checks are inserted at the
remaining signedness conversions for further runtime protec-
tion. We leverage pre-condition test [3][8], with the feature of
testing whether misinterpretation will occur without actually
performing the conversion. For instance, casting signed integer
to unsigned type, i.e. unsigned int a; signed b; a
= (unsigned) b, will cause signedness error if and only
if the following expression is true: (b < 0).

C. Implementation Details

We have implemented SignFlow for C/C++ programs based
on GCC-4.5.0 [7]. Specifically, SignFlow is an optimization
pass written in ∼ 4, 000 lines of C on gimple. gimple provides
many interfaces for users to analyze the abstract syntax tree
(AST), control flow graph (CFG) and call graph. Our constant

TABLE III. 7 HARMFUL INTEGER SIGNEDNESS BUGS IN REAL WORLD

CVE Programs Version Sign Conv. Sink
2008-1803 Rdesktop 1.5.0 u→s bound check
2009-3743 GhostScript 8.70 s→u memmove
2011-1471 PHP 5.3.6* s→u bound check
2012-3368 Dtach 0.8 s→u bound check
2013-4927 Wireshark 1.10.0 u→s loop
2013-6489 Pidgin 2.10.11* s→u malloc
2014-0045 Mumble 1.2.4 s→u malloc

type propagation analysis is accomplished by binding one
tag ‘constant’ with each variable node and updating this tag
with the traversal of each statement in AST. Our reachability
analysis utilizes the propagation analysis engine in GCC,
which is widely used by optimizations such as the copy
propagation analysis and value range propagation analysis, to
traverse each potential path of an integer signedness conver-
sion. At last, security checks are inserted for those integer
signedness conversions which are not marked as unharmful.
The runtime handler is linked into the compilers’ output and
takes actions when signedness errors are caught. It is worth
noting that SignFlow works at gimple mainly because all
implicit signedness castings are presented explicitly at this
stage.

IV. EVALUATION

In this section, we present the results of our experimental
evaluation using our prototype implementation of SignFlow,
and compare the results with instrument-all techniques and
IntFlow. All experiments were performed on an Intel Dual
Core 2.4 GHz machine with 4GB memory. The OS is Linux-
3.5.0. GCC was ran under -O0 optimization level.

A. Detecting Harmful Integer Signedness Bugs

In order to evaluate the effectiveness of SignFlow in detect-
ing and preventing harmful integer signedness bugs, we select
7 real-world signedness bugs published by CVE [9] as our
test subjects, as shown in Table III1. Columns 1 to 3 describe
the CVE number, vulnerable software and version. Column 4
refers to signedness error site. That is the specific conversion,
where signedness error occurs. u→s denotes casting unsigned
integer to signed integer and s→u denotes casting signed
integer to unsigned. Column 5 describes the security-related
operation where the misinterpreted data is exploited.

The evaluation result is that SignFlow successfully instru-
mented all the signedness error sites, i.e. SignFlow didn’t
mark them as unharmful at the static data flow analysis
phase. To evaluate the runtime protection of SignFlow, we
face the challenge that the corresponding signedness-error-
inducing inputs are not available. We turn to extract the
vulnerable conversion sites and their propagation paths from
subject programs, and then execute the extracts with the
self-designed signedness-error-inducing inputs. The result is
SignFlow reported warnings for all harmful signedness bugs.

1Detailed information about these 7 bugs can be referred at CVE website
[9] via the corresponding CVE number. For CVE-2011-1471, the vulnerable
version should be 5.3.5 and below. However, these versions of PHP cannot
be compiled successfully under our experimental environment due to certain
reason. Therefore, we choose 5.3.6 version instead and remove the patch
manually. So it is with CVE-2013-6489.

604

TABLE IV. INTEGER SIGNEDNESS ERRORS REPORTED BY ALL,
SIGNFLOWcst AND SIGNFLOW

#A #Sc #S data flow pattern for each excluded error
Pcst Puncrit Ppost Pop

400.perlbench 48 48 24 18 6
401.bzip2 15 14 7 1 4 4
445.gobmk 17 15 12 2 1 2
458.sjeng 3 3 0 3
462.libquantum 4 4 3 1
464.h264ref 10 8 7 2 1
483.xalancbmk 9 7 6 2 1
Gzip 1 1 0 1
Dillo 5 5 4 1
SWFTools 6 6 2 1 3
Total 118 111 65 7 1 25 21

Hence we gain confidence that SignFlow is suitable as a
detection tool for real-world applications.

B. Reduction of False Positives

Reducing the number of false positives is the major goal
of SignFlow, and this section quantifies how good SignFlow
is in omitting unharmful signedness errors from the reported
results by instrument-all techniques and IntFlow respectively.
Here we implemented a prototype, named ALL, for instrument-
all techniques by disabling our static data flow analysis, and a
prototype, named SignFlowcst, for IntFlow by only validating
the constant type propagation analysis (i.e. disabling the post-
condition test identification and reachability analysis).

We use SPECint 2006 benchmarks and 5 real-world appli-
cations as our testbed. We ran SPECint 2006 with the ‘ref ’
input set. For SWFTools-0.9.1, we used the pdf2swf utility
with the call-for-paper of SEKE’2015 as input; for Dillo-
3.0.4.1, we visited its homepage and downloaded the source
code; for Pidgin-2.10.11, we registered a new account, logged
in and out; for Gzip-1.4, we compressed the archive gcc-
4.5.0.tar; and for wget-1.6, we downloaded a 70MB file from
a remote server. As each program is run with benign inputs,
the reported integer signedness errors are all unharmful, i.e.
false positives. We applied ALL, SignFlowcst and SignFlow
respectively on the testbed and calculated the reduction of
false positives by SignFlow over ALL and SignFlowcst. In
addition, for each unharmful signedness error that SignFlow
bypassed, we manually examined our static analysis results
to find out which data flow pattern (as discussed in Section
II) this signedness error belongs to. We report our findings in
Table IV. For brevity, we only displayed the result of programs
which have signedness errors.

Columns 2 to 4 show the number of integer signedness
errors reported by ALL, SignFlowcst and SignFlow respec-
tively. Overall, SignFlow was able to suppress about 45% (53
out of 118) integer signedness errors reported by ALL, and
this reduction is about 41% (46 out of 111) over SignFlowcst.
These were achieved due to the data flow characteristics of
unharmful signedness errors used by SignFlow.

Columns 5 to 8 show the distributions of different data
flow patterns, to which each excluded unharmful signedness
errors belong. From the result we can observe that 7 out
of 53 unharmful signedness errors identified by SignFlow
are under Pcst while the other 47 are under Puncrit, Ppost

or Pop. Hence as SignFlow considers whether the data after
conversions could propagate to security-related operations or

TABLE V. CHECK DENSITY OF SIGNFLOW

#SC #U data flow pattern for each conv. in #U
Pcst Puncrit Ppost Pop

400.perlbench 5955 2173 287 20 199 1684
401.bzip2 1105 110 67 4 4 35
429.mcf 72 8 8 0 0 0
445.gobmk 2374 706 639 9 1 57
456.hmmer 5589 2991 2927 8 1 53
458.esjeng 332 116 94 5 0 19
462.libquantum 312 185 148 7 0 29
464.h264ref 8274 2907 2808 0 5 84
471.omnetpp 1715 1151 1144 2 1 2
473.astar 372 16 16 0 0 0
483.xalancbmk 6163 681 387 1 28 236
Total 32263 10998 8525 56 239 2199

not, it can identify more unharmful signedness errors than
SignFlowcst, i.e. SignFlow improved the accuracy of detecting
integer signedness errors a lot over IntFlow. Besides, the
distributions of data flow patterns vary over different programs.
This is mainly because the effectiveness in the reduction of
reporting unharmful signedness errors is highly dependent on
the nature of each program as well as on the level of the
execution’s source coverage.

C. Performance

Check density refers to the ratio of the number of instru-
mented integer signedness conversions over all. Table V shows
the experimental results of applying SignFlow to SPECint
2006 benchmarks. Column 2 shows the number of integer
signedness conversions in gimple, and Column 3 indicates
the number of integer signedness conversions identified as
unharmful by SignFlow. In total, about 34% (10, 998 out
of 32, 263) integer signedness conversions are marked as
unharmful and excluded from instrumentation by SignFlow.
In another word, the rest 66% signedness conversions are
instrumented for runtime protection, i.e. the check density of
SignFlow.

Columns 4 to 7 present the distributions of different data
flow patterns, to which each unharmful integer signedness
conversion belongs. Note that as some signedness conversion
can be under several different data flow patterns, the value
of Column 3 might be less than the sum of Columns 4
to 7. Form the result, we can see Pcst is the main type
of unharmful integer signedness conversions. About 26.42%
(8, 528 out of 32, 263) belongs to this pattern. It also denotes
the number of signedness conversions excluded by IntFlow.
Since SignFlow considers Puncrit, Ppost and Pop in addition,
2, 494 more signedness conversions are identified as unharmful
and excluded from instrumentation, compared to IntFlow.

Then We executed the instrumented program with the ‘ref ’
input sets to test the overhead imposed by SignFlow. We
ran each program 5 times and took the average value as the
execution time. Note that the runtime handler is set as nop
instruction when an integer signedness error is caught. We also
have tested ALL and SignFlowcst in the same way so as to
illustrate the reduction of performance overhead that SignFlow
gained. Compared to original benchmarks, the runtime over-
head of ALL, SignFlowcst and SignFlow are 6.19%, 5.35%
and 2.70% respectively, which indicates that the performance
loss of instrumentation-based techniques is quite low. On
the other hand, SignFlow reduced the runtime overhead by

605

56.41% over ALL and 49.62% over SignFlowcst respectively.
Such reduction is achieved by our static data flow analysis,
especially for that about 26.42% all signedness conversions are
excluded from instrumentation as they originate from trusted
source (i.e. under Pcst), and another 7.73% are excluded in
the view of how they are used afterward (i.e. under Puncrit,
Ppost or Pop).

D. Limitations

We propose to improve the accuracy of integer signedness
error detection using the data flow characteristics. As an initial
step along this direction, SignFlow has a number of limitations.
First, SignFlow in current implementation identifies bitwise-
and and modulo operation as SantzOp by only checking
whether b is a constant less than 0x80000000. Precise inte-
ger range analysis is in need to identify more SantzOp. Second,
SignFlow might fail to identify some data flow patterns due
to the common challenges, such as pointer analysis and field-
sensitiveness problem, faced by the static data flow analysis.
Third, the scope of our static data flow analysis is limited to
one single object file, as it is implemented as a compile-time
optimization pass and not as a link-time optimization pass.
This would also affect the detection accuracy of SignFlow.
We are working on addressing these problems.

V. RELATED WORK

During the past years, great focus was placed upon dealing
with integer signedness errors. Safe library functions are used
to wrap integer signedness conversions by adding check code,
such as IntegerLib [10] and Ranged Integer [11]. SmartFuzz
[12] utilizes symbolic execution to generate test cases to invoke
integer errors. The key challenges are to construct test cases
of high code coverage and to deal with the path explosion
problem when applied to large scale software.

Instrument-all techniques, such as RICH [2], IOC [3],
RA [5] and AIR [4] inserts security checks for all integer
signedness conversions for runtime protection. RICH provides
formal specifications for integer semantics in C, and applies
sub-type theory from type safe languages into C language. IOC
has been integrated into LLVM compiler. The main drawback
of instrument-all techniques is that they produce many false
positives as they instrument security checks blindly. As shown
in Section IV-B, SignFlow reduced about 45% false positives
produced by ALL, a prototype of instrument-all technique.

IntFlow [6] aims to improve the accuracy of integer arith-
metic errors. The difference from SignFlow lies in: 1) IntFlow
focuses on excluding the false positives for developer-intended
undefined behavior, including not only signedness errors, but
also signed integer overflows, oversized shift and division by
zero error; 2) IntFlow identifies unharmful undefined behaviors
by checking whether they originate from trusted source, i.e.
IntFlow only consider Pcst. In total, IntFlow achieves a reduc-
tion of 89% in false positives for all these undefined behavior;
however it doesnt provide detailed statistics on its effectiveness
particularly for integer signedness error. Therefore in order to
compare IntFlow and SignFlow, we implemented SignFlowcst

as a prototype of IntFlow, and conducted a set of experiments
on it. As SignFlow further considers how misinterpreted data
is used afterward, i.e. the other three types of data flow

patterns for unharmful signedness errors, not limited to Pcst,
it describes richer features of unharmful signedness error than
IntFlow. Experimental results showed that SignFlow excluded
7.73% more integer signedness conversions from instrumen-
tation than IntFlow (Section IV-C) and reduced 41% false
positives that IntFlow produced (Section IV-B).

VI. CONCLUSION

To improve the accuracy of integer signedness error detec-
tion, in this paper we first defined the data flow patterns for un-
harmful signedness error from the view of where they originate
and whether they can propagate to security-related operations,
and further proposed and designed an instrumentation-based
runtime integer signedness error detector, which could improve
the precision a lot without sacrificing the completeness. A
prototype, SignFlow is implemented as an extension of GCC.
Experiments demonstrated that our tool can detect all harmful
signedness bugs from our testbed while reducing 41% reports
for unharmful ones. In our future work, we will study more fea-
tures of unharmful signedness errors so as to further improve
the detection accuracy. In addition, we will extend SignFlow
to handle other types of vulnerabilities.

ACKNOWLEDGMENT

This work has been partly supported by National NSF
of China under Grant No. 61170070, 61431008, 61321491;
National Key Technology R&D Program of China under Grant
No. 2012BAK26B01; the Program B for Outstanding PhD
candidate of Nanjing University.

REFERENCES

[1] National Vulnerability Database, “Mumble Opus
Voice Packet Handling Remote Buffer Overflow,”
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0045.

[2] D. Brumley, D. X. Song, T. cker Chiueh, R. Johnson, and H. Lin,
“Rich: Automatically protecting against integer-based vulnerabilities,”
in NDSS’07, 2007.

[3] W. Dietz, P. Li, J. Regehr, and V. S. Adve, “Understanding integer
overflow in c/c++,” in ICSE’12, 2012, pp. 760–770.

[4] R. B. Dannenberg, W. Dormann, D. Keaton, R. C. Seacord, D. Svoboda,
A. Volkovitsky, T. Wilson, and T. Plum, “As-if infinitely ranged integer
model,” in ISSRE’10, 2010, pp. 91–100.

[5] R. E. Rodrigues, V. H. S. Campos, and F. M. Q. Pereira, “A fast and
low-overhead technique to secure programs against integer overflows,”
in CGO’13, 2013, pp. 1–11.

[6] M. Pomonis, T. Petsios, K. Jee, M. Polychronakis, and A. D. Keromytis,
“Intflow: improving the accuracy of arithmetic error detection using
information flow tracking,” in Proceedings of the 30th Annual Computer
Security Applications Conference. ACM, 2014, pp. 416–425.

[7] “GCC, the GNU Compiler Collection,” https://gcc.gnu.org/.
[8] H. Sun, X. Zhang, C. Su, and Q. Zeng, “Efficient dynamic tracking

technique for detecting integer-overflow-to-buffer-overflow vulnerabili-
ty,” in AsiaCCS’2015, 2015.

[9] MITRE Corporation, “Common vulnerabilities and exposures,”
http://cve.mitre.org/.

[10] CERT, “Integerlib, a secure integer library,” 2006,
http://www.cert.org/secure-coding/IntegerLib.zip.

[11] J. Gennari, S. Hedrick, F. Long, J. Pincar, and R. C. Seacord, “Ranged
integers for the c programming language,” Carnegie Mellon University,
Technical Note CMU/SEI-2007-TN-027, 2007.

[12] D. Molnar, X. C. Li, and D. Wagner, “Dynamic test generation to
find integer bugs in x86 binary linux programs,” in USENIX Security
Symposium’09, 2009, pp. 67–82.

606

(DOI reference number: 10.18293/SEKE2015-212)

Extracting More Object Usage Scenarios for

API Protocol Mining

Deng Chen1, a, Yanduo Zhang2, b, Rongcun Wang3, c, Binbin Qu4, d, Jianping Ju5, e, Wei Wei1, f
1 Industrial Robot Engineering Center, Wuhan Institute of Technology, Wuhan, P.R. China

2 Hubei Provincial Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, P.R. China
3 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, P.R. China

4 School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
5 School of Electronic Information, Wuhan University, Wuhan, P.R. China

a chendeng8899@hust.edu.cn
b zhangyanduo@hotmail.com

c rcwang@hust.edu.cn
d bbqu@hust.edu.cn

e gjdxjjp@whu.edu.cn
f weiwei@huawei-elec.com

Abstract—Automatic protocol mining is a promising approach

to infer precise and complete API protocols. However, the

effect of the approach largely depends upon the quality of

input object usage scenarios, in terms of noise and diversity.

This paper aims to extract as many object usage scenarios as

possible from object-oriented programs for automatic protocol

mining. A large corpus of object usage scenarios can help with

eliminating noise accurately and is likely to be diverse.

Therefore, precise and complete protocols may be achieved.

Given an object-oriented program p, generally, object usage

scenarios that can be collected from a run of p is not more than

the number of instances used in p. Relying on the inheritance

relationship among classes, our technique can extract a

maximum of n times more object usage scenarios from p,

where n is the average inheritance depth of all object usage

scenarios in p. In order to investigate the effect of our

technique on mining protocols, we implement it in our

previous prototype tool ISpecMiner and use the tool to mine

protocols from several real-world applications. The

experimental results show that our technique is promising to

achieve complete and precise API protocols. In addition,

protocols of classes that have not been used in programs can be

also achieved, which is helpful for program documentation and

understanding.

Keywords-object usage scenario; mining API protocol; object-

oriented program; program verification

I. INTRODUCTION

Many application programming interfaces (APIs)
impose protocols, that is, temporal constraints regarding the

order of calls of API methods. For example, calling peek()

on java.util.Stack without a preceding push() gives an

EmptyStackException, and calling next() on

java.util.Iterator without checking whether there is a next

element with hasNext() can result in a

NoSuchElementException. API clients that violate such

protocols do not obtain the desired behaviors and may even
crash the program [1].

Automatic protocol mining [2]-[3] is a promising
approach to infer precise and complete API protocols.
These approaches first extract object usage scenarios from
program applications statically or dynamically. Then, they
take object usage scenarios as input and synthesize
protocols based on sequential data mining techniques.
However, the effect of these approaches largely depends
upon the quality of input object usage scenarios: (1) noisy
object usage scenarios will incur imprecision to mined
protocols; and (2) in order to mine complete protocols, a set
of diverse object usage scenarios is required.

Instead of improving the quality of input object usage
scenarios directly, our work aims to extract as many object
usage scenarios as possible from object-oriented programs
for automatic protocol mining. Since a large corpus of
object usage scenarios can compensate the inaccuracy
caused by noise and is likely to be diverse [4], precise and
complete protocols may be achieved. Generally, the number
of object usage scenarios that can be collected from a run of
an object-oriented program is less than or equal to the
number of instances used in the program. Therefore, if a
class is seldom used in a program, we will achieve
insufficient object usage scenarios. Although feeding
protocol miners more programs can mitigate the problem to
some extent, much time overhead will be incurred.

Our technique is based on the following heuristic for
object-oriented programs. Let c1 and c2 be two classes. If c2
inherits from c1, c2 will inherit the set of public methods
(we omit other kinds of methods, e.g. protected methods
and private methods, because API protocols always
consider public methods of classes) M of c1 as well as the
temporal constraints regarding the order of calls of methods

607

mailto:%7D@hust.edu.cn
mailto:zhangyanduo@hotmail.com
mailto:gjdxjjp@whu.edu.cn

in M. Or in other words, c2 should not violate the temporal
constraints regarding the order of calls of methods in M
imposed by c1 even if it overrides the inherited methods.
Consequently, given an object usage scenario u of class c2,
u should comply with the API protocols of c2 as well as that
of c1. Based on the above analysis, we derive an extra
object usage scenario 'u from u, which consists of methods

inherited from c1. The extra object usage scenario is used to
synthesize protocols of class c1. Theoretically, given an
object-oriented program p, our technique can maximally
extract n times more object usage scenarios from p than
general approaches, where n is the average inheritance
depth of all object usage scenarios in p. To investigate our
technique’s feasibility and effectiveness, we implemented it
in our previous dynamic program specification mining tool
ISpecMiner and used the tool to conduct experiments.
Results of the experiments show that our technique is
promising to achieve complete and precise protocols.

The contributions of this paper are:

 A technique that can extract more object usage
scenarios from object-oriented programs than
existing approaches.

 A formal discussion about how many more object
usage scenarios can be collected by our technique.

 Investigation of the effect of our technique on
mining API protocols.

II. PRELIMINARY

In this section, we present some preliminaries that our
work is based on.

DEFINITION 1 (Object Usage Scenario). Let c be a class. An
Object Usage Scenario (OUS) of c is a method call
sequence, all methods in the sequence are called on a same
instance of c. Assume that s is an instance of class c. We
use ous(s) to denote an object usage scenario of c, each
method of which is called on s. Furthermore, we use OUS(c)
to denote the set of object usage scenarios of class c, each
element of which is an object usage scenario of an instance
of c.

Consider the Java program illustrated in Figure 1, which

makes use of classes FileInputStream and

FileOutputStream. Let’s assume that the loop iterates only

once. We will achieve the following OUSs regarding

instance fis and fos respectively:

 ous(fis): <FileInputStream(), read(), close()>

 ous(fos): <FileOutputStream(), write(), close()>

As we can see, an OUS u of class c represents a use case
about how client programs should use methods of c.
Therefore, through extracting common patterns from a set
of OUSs of c, we can infer protocols of class c.
Additionally, given an object-oriented program p, OUSs
that can be collected from a run of p is less than or equal to
the number of instances used in p. In Section 3, we will
show that our technique can extract multiple times more
OUSs than general approaches.

III. OUR TECHNIQUE

In object-oriented programs, classes have inheritance
relationships among them. Consider the Java programs

illustrated in Figure 2, the four classes A0, A1, A2 and A3

have the following inheritance relationships: class A1

inherits from A0, class A2 inherits from A1 and class A3

inherits from A2. Since a subclass will inherit public

methods of its superclasses, the above classes have the
public methods listed in Table I. Our approach is based on
the following heuristic.

HEURISTIC 1. Let r be a class. M is the set of public

methods of r. We use
M

r
 to denote the API protocol

regarding methods in M imposed by class r. Assume that c
is a subclass of r, which should inherit all methods in M

from r. We have
M M

c r
 ° , where ° represents that

1) FileInputStream fis = new FileInputStream("filepath");

2) FileOutputStream fos = new FileOutputStream("filepath");

3) byte[] buffer = new byte[1024];

4) int count = 0;

5) while ((count = fis.read(buffer)) != -1)

6) {

7) fos.write(buffer, 0, count);

8) }

9) fis.close();

10) fos.close();

Figure 1. Java program example.

public class A0{

public A0(){}

public void m01(){}

public void m02(){}

public void m03(){}

}

(a)

public class A1 extends A0{

public A1(){}

public void m11(){}

public void m12(){}

public void m13(){}

}

(b)

public class A2 extends A1{

public A2(){}

public void m21(){}

public void m22(){}

public void m23(){}

}

(c)

public class A3 extends A2{

public A3(){}

public void m31(){}

public void m32(){}

public void m33(){}

}

(d)

Figure 2. Program examples of inheritance relationship.

TABLE I. PUBLIC METHODS OF CLASSES WITH INHERITANCE RELATIONSHIPS.
METHODS INHERITED FROM SUPERCLASSES ARE IN ITALIC.

Class Public methods

A0 m01, m02, m03

A1 m01, m02, m03, m11, m12, m13

A2 m01, m02, m03, m11, m12, m13, m21, m22, m23

A3
m01, m02, m03, m11, m12, m13, m21, m22, m23,

m31, m32, m33

608

protocol
M

c
 is equivalent to or stricter than

M

r
 . Or in

other words, the implementation of a subclass should not
violate API protocol imposed by its superclasses.

We make the heuristic based on the following literature:
From the perspective of data abstraction and hierarchy [5],
a subtype is one whose objects provide all the behavior of
objects of another type (the supertype) plus something extra.
Furthermore, we have the following substitution property: If
for each object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T, the
behavior of P is unchanged when o1 is substituted for o2,
then S is a subtype of T [6]. The above data abstraction and
hierarchy principles are supported by linguistic mechanisms
in many object-oriented programming languages, such as
Simula 67, CLU, Smalltalk and Java. A typical case in Java
language is the exception handling mechanism: In Java
programs, a method can incur exceptions through the throw
statement. What is interesting is that, when a method is
reimplemented in a subclass, the exceptions thrown in
superclasses should be inherited. For example, assume that

E is the set of exceptions thrown by method m01 defined in

class A0 (shown in Figure 2). When we overwrite method

m01 in class A1, all exceptions in E should also be thrown,

that is, a subclass should not violate restrictions on
exceptions imposed by its superclasses. Our case is similar
to the exception handling mechanism in Java language.
What is different is that, we consider constraints regarding
order of calls of methods rather than exceptions. Whatever,
according to the data abstraction and hierarchy principle,
we have the following conclusion: a subtype should not
violate the API protocol imposed by its supertype regarding
inherited methods, otherwise the substitution property
cannot be satisfied. What may occur is that the subtype has
a stricter restriction than supertypes on the order of calls of
inherited methods.

According to Heuristic 1, given an OUS u of class c, if
u can be accepted by the API protocol of c, u should also
comply with the protocol of the superclasses of c regarding
inherited methods, because the protocol imposed by c is
equivalent to or stricter than that imposed by superclasses.
Consequently, we can derive an extra OUS from u, which
consists of calls of inherited methods. We call the derived
OUS inherited sub-OUS, which can be used to mine
protocols of the superclasses of c. Formally, we give the
following definitions.

DEFINITION 2 (Sub-OUS). Given an OUS u, OUS 'u is a

sub-OUS of u, if it satisfies the following requirements.

 Each method call in 'u is included in u.

 Let m1 and m2 be two method calls in 'u , the

temporal relationship between m1 and m2 should be
consistent in 'u and u, that is, if m1 precedes m2 in

'u , m1 should also precede m2 in u.

DEFINITION 3 (Inherited Sub-OUS). Given an OUS u of
class c which consists of calls of inherited methods and
those defined in c itself, 'u is a sub-OUS of u, each

element of which is a call of method inherited from a
superclass 'c of c, we call 'u an inherited sub-OUS of u

from 'c and denote it by (, ')isub OUS u c .

For example, given an OUS u: <m01, m11, m03, m02,

m12, m31, m32, m20, m23, m33> of class A3, according

to Definition 3, we can derive the following inherited sub-
OUSs.

 isub-OUS(u, A0): <m01, m03, m02>

 isub-OUS(u, A1): <m01, m11, m03, m02, m12>

 isub-OUS(u, A2): <m01, m11, m03, m02, m12,

m20, m23>

As we can see, the above inherited sub-OUSs are sub-
OUS of u. In addition, they consist of methods inherited

from superclass A0, A1 and A2 respectively. Based on

Heuristic 1, the inherited sub-OUSs should satisfy the API

protocols of class A0, A1 and A2 respectively.

Consequently, aside from OUS u which can be used to mine

protocol of class A3, we will achieve three additional OUSs.

In addition, given an OUS u of class c, the number of
inherited sub-OUSs of u is less than or equal to the
inheritance depth of c. On the other hand, each instance in
an object-oriented program will generate an OUS.
Therefore, given an object-oriented program, the extra OUS
(inherited sub-OUS) collected by our technique is
maximally n times the number of instances defined in the
program, where n is the average inheritance depth of all
OUSs (excluding inherited sub-OUSs) in the program.

IV. FORMAL ANALYSIS OF THE EFFECT OF OUR

TECHNIQUE

In this subsection, we analyze the effect of our
technique formally.

Let’s assume that p is a Java program. It subsumes the
following OUSs u1, u2, …, um, which have an inheritance
depth of d1, d2, …, dm, respectively. Given an OUS u of
class c, we call inheritance depth of c the inheritance depth
of u. It must be noted that the number of inherited sub-
OUSs of u is less than or equal to its inheritance depth.
Therefore, the maximum total number of additional OUSs
(inherited sub-OUSs) that can be collected by our technique

from p is d1 + d2 + … + dm. Let d be the average

inheritance depth of all OUSs (excluding inherited sub-

OUSs) included in p. We have
1 2 m

d d d m d     .

Based on the above analysis, we reach the conclusion that
our technique can extract maximally n times more OUSs
from an object-oriented program, where n is the average
inheritance depth of OUSs (excluding inherited sub-OUSs)
in the program.

609

V. EXPERIMENTS

To evaluate our technique, we implemented it in our

previous prototype tool ISpecMiner and used the tool to

conduct experiments. In this section, we first introduce

ISpecMiner. Then, we present subjects that are used in our

evaluation. Finally, we compared API protocols achieved
under our technique and general approaches.

A. Prototype Tool ISpecMiner

ISpecMiner [7] is a dynamic program specification

mining tool developed based on Java 1.6. It leverages Java

agent [8] technique as well as Javassist [9], [10] to extract

OUSs from Java application programs dynamically, and
then infers class temporal specifications (API protocols).

The most distinguishing characteristic of ISpecMiner is that

it describes program specifications using a probabilistic
model extended from Markov chain. Probabilistic models
have an inherent ability to tolerate noises. Furthermore,

since ISpecMiner learns program specifications in an online

mode, mined specifications can be evolved persistently. As
a result, more universal program specifications can be
achieved.

The number of OUSs that ISpecMiner extracts from a

Java program is near the number of instances of classes

used in the program. In this work, to prepare ISpecMiner
for our experiments, we implemented our technique in it. In
the remainder of this section, we denote original

ISpecMiner and ISpecMiner with our technique by

ISpecMiner-Ⅰ and ISpecMiner-Ⅱ respectively. The latest

version of ISpecMiner can be obtained at the URL

http://www.ispecminer.com.

B. Subjects

The subjects used in our experiment are shown in Table
II, which are real-world Java programs. These programs are
selected based on the following criteria:

 Open source software. Though ISpecMiner is a

dynamic specification mining tool and source code
is not necessary, it is helpful for us to figure out
problems encountered in experiments and validate
results.

 Large-scaled software. Large-scaled software
contains a large number of OUSs, which is helpful
for our comparison test.

 Applications coming from various domains.
Applications from various areas may avoid the
biases introduced in our experiments.

C. Investigation of API protocols

In order to investigate the effect of our method, we used

ISpecMiner-Ⅰ and ISpecMiner-Ⅱ to mine API protocols

from several real-world Java programs respectively, and
then compared the achieved protocols. The subject
programs are shown in Table II, each of which was run with

manual input data. We configured ISpecMiner-Ⅰ and

ISpecMiner-Ⅱ to instrument classes illustrated in Table III

and their superclasses. The reasons we selected these
classes are as follows: (1) they are commonly used in
various kinds of Java programs; and (2) they have an
inheritance depth greater than zero. Thus, an OUS of these
classes will derive at least one inherited sub-OUS. It is
worth noting that we exclude the common superclass

java.lang.Object of all classes in Java when counting

inheritance depth. Take for example, class

java.io.FileInputStream, which has two superclasses

java.io.InputStream and java.lang.Object. According

to our counting method, it has an inheritance depth of one.

Experimental results are illustrated in Figure 3. We

present the API protocols of class InputStreamReader,

InputStreamWriter and FilterInputStream sequentially

from the first row to the last row. At each row, the left

protocol is mined by ISpecMiner-Ⅰ and the right one is

mined by ISpecMiner-Ⅱ. The protocols are described

using an extended Markov model MCF, where states and
transitions represent methods and temporal relationships
between methods respectively. Details about MCF please
refer to [7]. From Figure 3, we can see that protocols in the
right column have more states or transitions than those in
the left column. For example, the API protocol of class

InputStreamReader mined by ISpecMiner-Ⅱ has one

more state and four more transitions than that mined by

TABLE II. SUBJECT PROGRAMS. KLOC: THOUSANDS OF LINES OF CODE.

Subject Version Description KLoC

FreeMind 0.9 Mind-mapping software 22

RapidMiner 5.3
Environment for machine

learning and data mining
513

SQuirreL

SQL Client
3.4 Java SQL client 253

OpenProj 1.4 Project management software 120

TABLE III. INSTRUMENTED CLASSES

 Instrumented Class Inheritance Depth

1 java.io.PushbackInputStream 2

2 java.io.FileInputStream 1

3 java.io.FileOutputStream 1

4 java.io.BufferedReader 1

5 java.io.BufferedWriter 1

6 java.io.DataInputStream 2

7 java.io.DataOutputStream 2

8 java.io.FileReader 2

9 java.io.FileWriter 2

10 java.io.BufferedInputStream 2

11 java.io.PrintWriter 1

610

http://www.ispecminer.com/

ISpecMiner-Ⅰ. As to the protocols of class

OutputStreamWriter shown in the second row, although

they have the same number of states, the right one has many
more transitions than the left one. By manual inspection, we
found that the additional states and transitions are consistent
with JDK documentations. Since the number of states and
transitions reflects the comprehensiveness of protocols to
some extent, we have the conclusion that our technique is
helpful for mining comprehensive protocols.

On the other hand, our approach can impact the
probabilities attached with states and transitions:
probabilities of normal behaviors will be enhanced and that
of abnormal behaviors will be suppressed. For example, the

final probability (FinalPro) of state close() in protocol of

class InputStreamReader shown in the first row is

increased from 0.6154 to 0.8043 and that of state

read(char[],int,int) is decreased from 0.2308 to 0.1957.

Since the difference between normal and abnormal
behaviors is enlarged, noisy states and transitions can be
eliminated accurately when transforming probabilistic
models to deterministic models using a probability
threshold.

Additionally, our technique can achieve protocols that
cannot be mined by general approaches. Take for example,

the superclass FilterInputStream of DataInputStream

and BufferedInputStream. Since the class has not been

covered during the run of subject programs, a protocol
shown in Figure 3 (e) with only constructor method was

achieved by ISpecMiner-Ⅰ (the constructor method of

class FilterInputStream may be called by constructor

method of its subclasses). In contrast, ISpecMiner-Ⅱ

generated a more complete protocol illustrated in Figure 3
(f), because our method can derive inherited sub-OUSs. It

seems that protocols as FilterInputStream are useless for

program validation, because they are seldom used in
application programs. However, there still exist many
superclasses which are frequently used in programs, such as

InputStreamReader and OutputStreamWriter. Since

they have been used in subject programs, we can achieve
relative complete protocols based on general approaches as
shown in Figure 3 (a) and (c). Even if some classes will be
never used in programs (such as abstract classes), their
protocols may be useful in program documentation and
understanding. For example, we can validate the design of
an abstract class based on mined protocols.

D. Related Work

Many researchers have paid significant efforts in mining

API protocols. For instance, Wasylkowski et al. [11]

proposed to mine object usage models from Java bytecode

(a)

(b)

(c)

(d)

(e)

(f)

 Figure 3. Part of API protocols mined in our experiment.

611

and a tool JADET was developed. Lorenzoli et al. [15]

modeled API protocols using EFSM which extends from

FSM. Alur et al. [16] synthesized FSA model of API

protocols using L* learning algorithms combined with
model checking and abstract interpretation techniques.
Since FSA is a kind of deterministic model with inability to
tolerate noise, many researchers proposed to mine API
protocols based on probabilistic models. For example,

Ammons et al. [17] proposed to mine protocols among

application programming interfaces (API) or abstract data
types (ADT) based on probabilistic finite state automaton

(PFSA). Chen et al. [7] proposed to mine class temporal

specifications based on an extended Markov model.
Whatever techniques, the quality of input OUSs is
important for mining precise and complete protocols.
However, little attention has been paid in this area. In this
paper, we proposed an approach to collect as many OUSs
as possible for automatic protocol mining. A large
repository of OUSs can complement the inaccuracy caused
by noises and is likely to be diverse. Currently, a common
approach to collect more OUSs is feeding protocol miners
more application programs, which will incur significant
time overhead. Different from that, our technique can
extract more OUSs from a single application program.

VI. CONCLUSIONS

Automatic protocol mining is a promising approach to
infer precise and complete API protocols. Many researchers
have paid significant efforts in this area. However, little
attention has been paid on collecting high quality OUSs. In
this paper, we proposed an approach to collect more OUSs
for API protocol mining. Our technique is based on the
inheritance relationship among classes. Given an object-
oriented program p, theoretically, n times more OUSs can
be extracted by our technique from p than general
approaches, where n is the average inheritance depth of all
OUSs in p. In the Experimental Section, we investigated the
effect of our approach on mined API protocols and found
that our technique is promising to achieve complete and
precise protocols. Additionally, our technique can mine
protocols even if the corresponding classes have not been
covered during the run of application programs. Although
these protocols may be useless for program validation, they
can be used for program documentation and understanding.

ACKNOWLEDGMENT

Supported by Natural Science Foundation of Hubei Province
(No. 2014CFB1006).

REFERENCES

[1] Pradel, M. and Gross, T. R. Leveraging test generation and
specification mining for automated bug detection without false
positives. In ICSE’12: Proceedings of the 34th International
Conference on Software Engineering. Zurich, Switzerland, 2012,
288-298.

[2] Ramanathan, M. K., Grama, A., et al. Static specification inference
using predicate mining. SIGPLAN Not. 2007, 42(6), 123-134.

[3] Shoham, S., Eran, Y., et al. Static specification mining using
automata-based abstractions. In Proceedings of the 2007
International Symposium on Software Testing and Analysis. United
Kingdom: ACM, London, 2007.

[4] Engler, D., Chen, D., et al. Bugs as deviant behavior: a general
approach to inferring errors in systems code. SIGOPS Oper. Syst.
Rev. 2001, 35(5), 57-72.

[5] Liskov, B. Data abstraction and hierarchy. SIGPLAN Not. 1987,
23(5), 17-34.

[6] Bruce, K.B. and Wegner, P. An algebraic model of sybtypes in
object-oriented languages. SIGPLAN Not. 1986, 21(10), 163-172.

[7] Chen, D., Huang, R., et al. Ming class temporal specification
dynamically based on extended Markov model. International
Journal of Software Engineering and Knowledge Engineering. 2013,
in press.

[8] Caserta, P. and Zendra, O. JBInsTrace: a tracer of Java and JRE
classes at basic-block granularity by dynamically instrumenting
bytecode. Science of Computer Programming, 2014, 79 (SI), 116-
125.

[9] Tatsubori, M., Sasaki, T., et al. A bytecode translator for distributed
execution of “legacy” Java software. In Proceedings of the 15th
European Conference on Object-Oriented Programming. Springer-
Verlag, 2001.

[10] Javassist, 2013. http://en.wikipedia.org/wiki/Javassist.

[11] Wasylkowski, A. Mining object usage models. In Companion to the
Proceedings of the 29th International Conference on Software
Engineering. IEEE Computer Society, 2007.

[12] Wasylkowski, A., Zeller, A., et al. Detecting object usage anomalies.
In Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering. Croatia: ACM, Dubrovnik,
2007.

[13] JADET, 2014. http://www.st.cs.uni-saarland.de/models/jadet/.

[14] Dallmeier, V., Lindig, C., et al. Mining object behavior with
ADABU. In Proceedings of the 2006 International Workshop on
Dynamic Systems Analysis. China: ACM, Shanghai, 2006.

[15] Lorenzoli, D., Mariani, L., et al. Automatic generation of software
behavioral models. In ICSE ’08: Proceedings of the 30th
International Conference on Software Engineering. Germany: ACM,
Leipzig, 2008.

[16] Alur, R., Cˇerny, P., et al. Synthesis of interface specifications for
Java classes. SIGPLAN Not. 2005, 40 (1), 98-109.

[17] Ammons, G. and Bodik, R., et al. Mining specifications. SIGPLAN
Not. 2002, 37 (1), 4-16.

612

http://en.wikipedia.org/wiki/Javassist
http://www.st.cs.uni-saarland.de/models/jadet/

NeoIDL: A Domain-Specific Language for
Specifying REST Services

Rodrigo Bonifácio∗, Thiago Mael de Castro†, Ricardo Fernandes†, Alisson Palmeira†, and Uirá Kulesza‡
∗ Departamento de Ciência da Computação, Universidade de Brası́lia, Brazil
†Centro de Desenvolvimento de Sistemas, Exército Brasileiro, Brazil

‡Departamento de Informática e Matemática Aplicada
Universidade Federal do Rio Grande do Norte, Brazil

Abstract—Service-oriented computing has emerged as an
effective approach for integrating business (and systems) that
might spread throughout different organizations. A service is a
unit of logic modularization that hides implementation details
using well-defined contracts. However, existing languages for
contract specification in this domain present several limitations.
For instance, both WSDL and Swagger use language-independent
data formats (XML and JSON) that are not suitable for specifying
contracts and often lead to heavyweight specifications. Interface
description languages, such as CORBA IDL and Apache Thrift,
solve this issue by providing specific languages for contract speci-
fications. Nevertheless, these languages do not target to the REST
architectural style and lack support for language extensibility. In
this paper we present the design and implementation of NeoIDL,
an extensible domain specific language and program generator
for writing REST based contracts that are further translated
into service’s implementations. We also describe an evaluation
that suggests the rapid return on investment with respect to the
design and development of NeoIDL1.

I. INTRODUCTION

Service-oriented computing (SOC) [6] is a consolidated
approach that enables the development of low coupling sys-
tems, which are able to communicate to each other even
across different domains. Thanks to the use of open standards
and protocols (such as HTTP and HTTPS) in SOC, service
orchestration enables the automation of business processes
among different corporations. A service is defined as a unit of
logic modularization [6] that hides implementation details and
adheres to a contract, usually described using a specification
language (for example WSDL [3], WADL [8], Swagger [18],
Apache Thrift [17] or CORBA [13]).

There is a recent trend to shift the implementation of ser-
vices using the set of W3C specifications for service-oriented
computing (such as SOAP and WSDL) to a lightweight ap-
proach based on the REpresentational State Transfer (REST).
REST is a stateless, client-server architectural style that is
being used for service-oriented computing [7]. Although REST
still lacks an agreement about a language for specifying
contracts, Erl et al. [5] suggest that a REST contract should
at least comprise a resource identification, a protocol method,
and a media type. Currently, the existing approaches for
specifying contracts in REST present some limitations. For
instance, Swagger specifications [18] are written in JSON (Java
Script Object Notation), a general purpose notation for data
representation that often leads to lengthy contracts. Swagger

1DOI reference number: 10.18293/SEKE2015-218

also does not provide any language construct for services
and data type reuse. Apache Thrift provides a specification
language more clear and concise, though its language is also
limited with respect to both modularity and reuse, since it is not
possible to specialize user defined data types (as it is possible
using CORBA IDLs [13]). Furthermore, the Apache Thrift
language does not present any means to extend the language
used for specifying contracts.

In this paper we describe a new language— NeoIDL–
for specifying REST services with their respective contracts
and an extensible program generator that translates NeoIDL
specifications into source code. Besides describing REST
contracts in terms of resources, methods, and media types,
NeoIDL specifications also include the definition of the data
types used in the visible interface of a service. We considered
the following requirements when designing NeoIDL. First, the
language should be concise and easy to learn and understand.
Second, the language should present a well-defined type sys-
tem and support single inheritance of user defined data types.
In addition, developers using NeoIDL should be able to specify
concepts related to the REST architectural style for service-
oriented computing [7], in order to simplify the translation
of a NeoIDL specification into basic components tailored to
that architectural style. Finally, both NeoIDL and the program
generator should be extensible. For that reason, we designed
NeoIDL to support extensibility through annotations; whereas
the extensibility of the program generator relies on a pluggable
architecture that uses high-order functions and some facilities
present on the Glasgow Haskell Compiler (GHC) [12]. In
summary, the contributions of this paper are twofold.

• We present the design and development of NeoIDL,
a novel specification language for service-oriented
computing that conforms to the aforementioned re-
quirements (Section II).

• We present the implementation details of an extensible
program generator written in Haskell (Section III).
This contribution addresses the issue of building ex-
tensible architectures in a pure, statically typed func-
tional language— a challenging that has not been
completely discussed in the literature.

In Section IV we discuss the extensibility mechanisms
and the return on investment of NeoIDL. Section V relates
our contributions with existing research work available in the
literature. Finally, Section VI presents final remarks and future
directions of NeoIDL.

613

NeoIDL Core

Plugins

NeoIDL
Parser

NeoIDL
Syntax

Plugin
Loader

Plugin
Def

Swagger Java Python

NeoIDL
Specification

Service
- swagger
- neuron
- entities
- services

Program Generator

Fig. 1. Architecture of NeoIDL program generator

II. NEOIDL DESIGN

In this section we first present an overview of our approach
(Section II-A), which consists of a specification language and
a program generator. Then, in Section II-B, we detail the
principal constructs of NeoIDL and illustrate some examples
of service specifications.

A. Approach Overview

NeoIDL has been developed to enable the specification
of REST services and to allow the code generation of the
implementation of those services for specific platforms. It
aims to simplify the development of services, by generating
code from a service specification. Figure 1 illustrates the main
components of our approach, which consists of: (i) a domain-
specific language (NeoIDL) for specifying REST services with
their respective contracts; and (ii) a program generator that
enables the code generation of REST services in different
platforms. The NeoIDL generator is structured as a set of
core modules, which are responsible for the parsing, syntax
definition, and processing of NeoIDL specification; as well as
modules for the definition and management of NeoIDL plu-
gins. Each NeoIDL plugin defines specific extensions for the
code generator that enables the generation of REST services
for different platforms or programming languages.

The current implementation of NeoIDL has been already
used to enable the generation of services for the NeoCortex
platform, a proprietary framework used by the Brazilian Army.
NeoCortex is a service oriented framework based on REST
that has been developed using NodeJS— a cross-platform
runtime environment for server-side and networking appli-
cations. NeoCortex is a polyglot framework that supports
the deployment of services written in different languages
(such as Python and Java) and addresses high responsiveness
requirements using reactive and asynchronous programming
techniques. Each NeoCortex service must provide a contract
and a front-controller— which delegates a service request to
the corresponding implementation. Even simple NeoCortex
services require different components that implement business
logic and other concerns, such as concurrency and persistence.
In summary, a typical NeoCortex service comprises several
components, such as:

• The synapse component exposes the service API
using a Swagger based JSON specification, which
provides an useful interface for testing a service.

• The neuron component implements the necessary
behavior for initializing and stopping a service, as well
it is responsible for mapping a requested URL pattern
into a specific resource class.

• User defined data types are represented as domain
classes, either in Python or Java. In the cases where
it is necessary to persist a data type on a database, a
database mapping is also necessary within a service.

In the context of NeoCortex, we translate NeoIDL
specifications into Swagger specifications and other software
components for different programming languages— to fulfill
the polyglot requirement of NeoCortex. This requirement
motivated us to implement the program generator of NeoIDL
as a pluggable architecture (see Figure 1)— so that we are
able to evolve the code generation support in a modular way.
For instance, implementing a C++ program generator from
NeoIDL specifications does not require any change in the
existing code of the program generator. It is only necessary
to implement a new NeoIDL plugin.

B. NeoIDL Language

NeoIDL simplifies service specifications by means of (a)
mechanisms for modularizing and inheriting user defined data
types, and (b) a concise syntax that is quite similar to the
interface description languages of Apache Thrift and CORBA.
A NeoIDL specification might be split into modules, where
each module contains several definitions. In essence, a NeoIDL
definition might be either a data type (using the entity
construct) or a service describing operations that might be
reached by a given pair (URI, HTTP method). Figures 2
and 3 present two NeoIDL modules: (i) the data-oriented
MessageData module; and the service-oriented Message
module.2

The MessageData module (Figure 2) declares an enu-
meration (MessageType), which states the two valid types
of messages (a message must be either a message sent or a
message received); and a data type (Message), which details
the expected structure of a message. We use a convention
over configuration approach, assuming that all attributes of a
user defined data type are mandatory, though it is possible to
specify an attribute as being optional using the syntax <Type>
<Ident> = 0;, as exemplified by the subject field of the
Message data type.

2The NeoIDL grammar could be found at http://goo.gl/p8eZky

614

1 module MessageData {
2 enum MessageType { Received , Sen t } ;
3
4 e n t i t y Message {
5 s t r i n g i d ;
6 s t r i n g from ;
7 s t r i n g t o ;
8 s t r i n g s u b j e c t = 0 ;
9 s t r i n g c o n t e n t ;

10 MessageType t y p e ;
11 } ;
12 }

Fig. 2. Message data type specified in NeoIDL

The Message module of Figure 3 specifies one service
resource (sentbox). As explained, we send requests for the
methods of a given resource using a specific path. In the
example, the sentbox resource’s methods are available from
the relative path /messages/sent. This resource declares
two operations: one POST method that might be used for
sending messages and one GET method that might be used
for listing all messages sent from a given sequential number.

Also according to our convention over configuration ap-
proach, we assume that the arguments of POST and PUT
operations are sent in the request body, whereas arguments of
GET operations are either sent enclosed with the request URL
or enclosed with the URL path (in a similar way as DELETE
operations). We are able to change these conventions by using
specific annotations attached to an operation parameter. In
these examples, conventions are used to reduce the size of
services’ specifications.

1 module Message {
2 import MessageData ;
3
4 r e s o u r c e s e n t b o x {
5 path = ” / messages / s e n t ” ;
6 @post vo id sendMessage (Message message) ;
7 @get [Message] l i s t M e s s a g e s (s t r i n g seq) ;
8 } ;
9 } ;

Fig. 3. Sent message service specification in NeoIDL

To support language extensibility, NeoIDL specifications
can be augmented through annotations. The main reason for
introducing annotations in NeoIDL was the possibility to
extend the semantics of a specification without the need to
change the concrete syntax of NeoIDL. For instance, suppose
that we want to express security policies for a service resource.
A developer could change the concrete syntax of NeoIDL for
this purpose, defining new language constructs for specifying
the authentication method (based on tokens or user passwords),
the cryptographic algorithm used in the resource request and
response, and the role-based permissions to the resource ca-
pabilities. However, changing the concrete syntax to allow the
specification of unanticipated properties of a resource often
breaks the code of the program generator.

Instead, using annotations, developers might extend the
language within NeoIDL specifications. Therefore, apart from

1 module Agente {
2
3 e n t i t y Agent {
4 . . .
5 } ;
6
7 a n n o t a t i o n S e c u r i t y P o l i c y f o r r e s o u r c e {
8 s t r i n g method ;
9 s t r i n g a l g o r i t h m ;

10 s t r i n g r o l e ;
11 } ;
12
13 @ S e c u r i t y P o l i c y (method = ” b a s i c ” ,
14 a l g o r i t h m =”AES” ,
15 r o l e = ” admin ”) ;
16 r e s o u r c e a g e n t {
17 path = ” / a g e n t ” ;
18 @post vo id p e r s i s t A g e n t (Agent a g e n t) ;
19 } ;
20 } ;

Fig. 4. NeoIDL specification using annotations

the NeoIDL definitions discussed before, it is also possible to
define new annotations that might be attached to the funda-
mental constructs of NeoIDL (i.e. module, enum, entity,
and resource). Each annotation consists of a name, a target
element that indicates the NeoIDL constructs the annotation
might be attached to, and a list of properties. When trans-
forming a specification, the list of annotations attached to a
NeoIDL element is available to the plugins, which could con-
sider the additional semantics during the program generation.
Figure 4 presents a NeoIDL example that attaches an user
defined annotation (SecurityPolicy) to specify security
policies on the agent resource. In the example, using the
SecurityPolicy annotation we specify that the operations
of the agent resource (i) must use a basic authentication
mechanism, (ii) the arguments and return values must be
encoded using the AES algorithm, and (iii) only authenticated
users having the admin role are authorized to request the
resources.

We end this section highlighting that the design of NeoIDL
comprises a domain specific language (DSL) for specifying
services APIs in a REST based environment and an extensible
program generator that might evolve to generate code to
different platforms and programming languages. Next sec-
tion presents some details about the NeoIDL implementation,
which uses Haskell as programming language— a well known
language for building (embedded) DSLs [9].

III. NEOIDL IMPLEMENTATION

As shown in Figure 1, the implementation of NeoIDL
consists of a core (split into several Haskell modules) and
several plugins, one for each target language (such as Swagger,
Python, or Java). The core module includes a tiny applica-
tion that loads plugins definition and processes the program
arguments, which specify the input NeoIDL file, the output
directory, and the languages that should be generated code
from the input file. Moreover, the core module contains a
parser3 and a type checker for NeoIDL specifications.

3We have developed the parser for NeoIDL using BNFConverter [16]

615

In the remaining of this section we present details
about the implementation of two NeoIDL Haskell modules:
PluginDef and PluginLoader. The first states the orga-
nization of a NeoIDL plugin and the second is responsible for
loading all available plugins. The details here are particularly
useful for those who want to develop extensible architectures
using Haskell.

A. PluginDef component

NeoIDL plugins must comply with a few design rules
that PluginDef states. PluginDef is a Haskell mod-
ule that basically declares two data types (Plugin and
GeneratedFile) and a type signature (Transform =
Module -> [GeneratedFile]) defining a family of
functions that map a NeoIDL module into a list of files whose
contents are the results of the transformation process.

According to these design rules, each NeoIDL plugin must
declare an instance of the Plugin data type and implement
functions according to the Transform type signature. More-
over, the Plugin instance must be named as plugin, so
that the PluginLoader component will be able to obtain
the necessary data for executing a given plugin. Indeed, the
execution of a plugin consists of applying the respective
transformation function for a NeoIDL module, produc-
ing as result a list of files that consists of a name and a Doc
as file content.4

As an alternative, we could have implemented a Haskell
type class [10] exposing operations for obtaining the necessary
data for a given plugin. Although this approach might seem
more natural for specifying design rules for a pluggable archi-
tecture in Haskell, in the end it would lead to a cumbersome
approach to our problem. The main reason for discarding this
alternative approach was the need to (a) implement a data type,
(b) make this data type an instance of the mentioned type class,
and (c) create an instance of that data type. All those steps
would be necessary for each plugin. Using our approach, the
obligation of a plugin developer is just to provide an instance of
the Plugin datatype, taking into account the name convention
we mentioned above. The language attribute of the Plugin
datatype is used for UI purpose only, so that the users will be
able to obtain the list of available plugins and select which
plugins will be used during a program generation.

B. PluginLoader component

Based on the design rules discussed in the previous section,
the PluginLoader component is able to dynamically load
the available NeoIDL plugins. This is a Haskell module (see
Figure 5) that exposes the loadPlugins function, which
returns a list with all available plugins. This list is obtained
by compiling the Haskell plugin modules during the program
execution and dynamically evaluating an expression that yields
a list of Plugin datatype instances.

We assume that all Haskell modules within the top level
Plugins directory must have a plugin definition, accord-
ing to the design rules of Section III-A In Figure 5, the
loadPlugins function lists all files within the Plugins
directory, filters the Haskell files (files with the ‘‘.hs’’

4The Doc data type comes from the John Hughes Pretty Printer library.

module PluginLoader (loadPlugins) where

type HSFile = String

dir :: String
dir = "Plugins"

loadPlugins :: IO [Plugin]
loadPlugins =

let
pattern = isSuffixOf "hs"
path file = dir < / > file

in (list dir)>>= (compile ◦map path ◦ filter pattern)

dfm = defaultFatalMessager
flushOut = defaultFlushOut

compile :: [HSFile]→ IO [Plugin]
compile modules =

defaultErrorHandler dfm flushOut $ do
result ← runGhc (Just libdir) $ do

let hsModules = map haskellModule modules
-- five lines of (boilerplate) code are necessary to
-- dynamically compile Haskell code using GHC

let exp = buildExpresson hsModules
plugins ← compileExpr (exp ++ "::[Plugin]")
return unsafeCoerce plugins :: [Plugin]

return result

buildExpression :: [HSModule]→ String
buildExpression hsms = "["++ plugins ++ "]"
where

plugins = concatMap (λx → x ++ ".plugin") hsms
concat = join ","

Fig. 5. PluginLoader component

extension), creates a qualified name to these files, and applies
the compile function to the resulting list of qualified names.
In the next step, the compile function uses the GHC API [12]
for compiling the Haskell modules with plugin definitions and
to evaluate an expression that produces a list with the available
plugins.

Our dynamic approach for loading plugins relies on the
GHC API, using a specific idiom to compile Haskell modules
and execute expressions. Figure 5 shows that idiom in the
definition of the compile function, although we omit some
boilerplate code that is necessary to compile Haskell modules
using the GHC API. The last four lines of compile are
specific to the program generator of NeoIDL. First, we build
a string representation of a Haskell list comprising all
instances of the Plugin datatype, obtained from the different
NeoIDL plugins. Then, we evaluate this string representation
of a plugin list using the meta-programming ability of the
compileExpr function, which is available in the GHC
API. Thus, compileExpr dynamically evaluates a string
representation of an expression, which leads to a value that
could be used by other functions of a program. The call to
compileExpr also checks the design rule that requires (a)
a plugin definition within all NeoIDL plugins; and (b) that
definition must be an instance of the Plugin data type. In the
cases where a plugin (exposed as a Haskell module on the top-
level Plugins directory) does not comply with this design rule,
a runtime error occurs. Accordingly, we use the default error
handler of GHC API to report problems when loading a plugin.
This is a new approach of using the GHC API to dynamically
check Haskell modules in pluggable architectures.

616

IV. EVALUATION

In this section we describe an evaluation of the NeoIDL
approach through the development and generation of services
in the context of a Brazilian Army project. In summary, this
evaluation aims at (a) understanding the NeoIDL benefits under
the ROI perspective and (b) reasoning about the modular
mechanisms of NeoIDL design.

A. The use of NeoIDL in a real context

We have developed nine services that implement operations
related to the domain of Command and Control (C2) [1].
These services comprehend almost 50 resources and 3000
lines of Python code. Therefore, all these services have been
implemented in Python, though other projects have been
implemented in Java as well.

Approximately, the number of lines of Python code related
to our service repository increases according to the function
sloc = 330 × numberOfServices— since, in average, each
service requires about 330 lines of Python code (with a
standard deviation of 119). It is important to note that services
are often implemented as a thin layer on top of existing
components that implement reusable tasks or business logic.
Accordingly, to understand the impact of NeoIDL accurately,
here we do not consider lines of code related to (a) existing
tasks and business logic implementations and (b) libraries that
might be reused through different services.

Based on the development of these services, we estimate
that it is possible to generate about 30% to 50% of a service
code using NeoIDL. Indeed, in the cases that a service is data-
oriented, involving basic operations for creating, updating,
querying and deleting data, we achieve a higher degree of code
generation. Differently, in the cases that a service encapsulates
low level behavior (such as the implementation of a chat-based
message protocol), we achieve a low degree of code generation
using NeoIDL, mainly because the current version of NeoIDL
does not provide any behavioral construct.

B. Return on Investment of NeoIDL

It is important to reason about the instant in which the
design and development of a DSL pays off, since the related
effort could not justify the benefits. Accordingly, here we
discuss about this issue relating effort to source lines of code
(SLOC) [15].

NeoIDL comprises almost 2500 lines of code, considering
the AST code generated by BNFConverter. Note that nearly
67% of the Haskell code results from the BNFConverter
parser generator. Therefore, excluding the generated code from
our analysis, as well as unit testing code and make files,
NeoIDL consists of 740 lines of Haskell code and 50 lines
of code that (a) specifies the concrete syntax of NeoIDL and
(b) serves as input to the BNFConverter. According to the
COCOMO model [2], it is possible to compute effort from
SLOC using equations (1) and (2). This leads to an effort
estimation of 3.17 months, which is quite close to the real
effort to implement NeoIDL, even considering that a significant
effort on the design of NeoIDL was related to the successive
refinements on the concrete syntax of the language.

personMonths = 2.4×KSLOC1.05 (1)
= 2.4× 0.791.05

= 1.87

months = 2.5× personMonths0.38 (2)
= 2.5× 1.870.38

= 3.17

For generating the Python services to the C2 do-
main, the following NeoIDL modules are necessary: bnf,
loader, pluginDef, main, swaggerPlugin, and
pythonPlugin. These modules totalize 640 of Haskell and
BNF code. Considering the discussion present in the previous
section, we estimate the break-even of NeoIDL according to
equations (3), (4), and (5). The third equation computes the
lines of code necessary for n services without using NeoIDL;
whereas the fourth and fifth equations compute the lines of
code for n services, considering that NeoIDL generates 30%
and 50% of the code, respectively. Therefore, the break-even
of NeoIDL must be achieved after developing a number of
services between 4 and 7. As a consequence, we believe that
the design and development of NeoIDL improve software
quality and productivity— by reducing the need to write
boilerplate code, at no significant additional costs.

sloc = 330× numberOfServices (3)
sloc = 0.7× 330× numberOfServices+ 640 (4)
sloc = 0.5× 330× numberOfServices+ 640 (5)

C. Modularity analysis

NeoIDL includes facilities to develop plugins and to evolve
NeoIDL specifications through annotations. As explained in
Section III we expose plugins according to some design rules,
which allow us to develop and test plugins with a slight
dependency on the existing code of the program generator. This
encourages contributions to NeoIDL, by enabling developers
to design and implement new plugins. In addition, it is possible
to unit test a NeoIDL plugin in an isolated manner. Here we
relate modularity to extensibility (it is easy to contribute to
NeoIDL without a deep knowledge of the core components
of NeoIDL) and testability (it is possible to test each NeoIDL
plugin in isolation).

Actually, to develop a plugin, it is only necessary to
understand the design rules discussed in Section III and an
external library (the John Hughes and Simon Peyton Jones
Pretty Printer library). For instance, Figure 6 shows the full
implementation of a NeoIDL plugin, which reports basic
metrics of size from a NeoIDL specification. To keep things
simple, that plugin generates a file (named metrics.data)
whose content consists of the name of a NeoIDL module
followed by three lines stating the number of enums, entities,
and resources within that module.

617

module Plugins.Metrics (plugin) where

import NeoIDL.Lang .AbsNeoIDL
import PluginDef

import Text .PrettyPrint .HughesPJ

plugin :: Plugin
plugin = Plugin {

language = "Metrics",
transformation = generateMetrics
}
print :: String → [a]→ Doc
print str lst = text str < + > (text ◦ show ◦ length) lst

generateMetrics :: Transformation
generateMetrics = λ(Module (Ident s) ens ess rss)→
let

outputFile = GeneratedFile name content
name = "metrics.data"
content = vcat [text "Module"< + > text s
, print "-enums:" ens
, print "-entities:" ess
, print "-resources:" rss]

in [outputFile]

Fig. 6. A simple plugin for exporting metrics of a NeoIDL specification

V. RELATED WORK

Many approaches for distributed systems consider the use
of an IDL, as discussed in Section I. However, similarly to
CORBA [13], WSDL [3], Apache Thrift [17], and Swag-
ger [18], the current version of NeoIDL does not support any
construct for specifying formal constraints. Nevertheless, we
envision that introducing the semantics of behavioral spec-
ification languages (such as Java Modeling Language [11])
into NeoIDL would (a) increase the effectiveness of program
generation and (b) enable test case generation from NeoIDL
specifications. It is also important to note that two shortcom-
ings of WSDL and Swagger (lack of modularity mechanisms
and low expressiveness) motivated the design of NeoIDL,
which considered the syntax of other languages (CORBA,
Apache Thrift) as inspiration.

Czarnecki and Eisenecker present many approaches for
Generative Programming [4], including Aspect-Oriented Pro-
gramming, C++ Template Metaprogramming, and Domain
Specific Languages. NeoIDL comprises a domain specific
language for services’ description and a pluggable architec-
ture with an extension point that allows code generation for
different target languages. Although several works describe the
use of Haskell to implement (embedded) domain specific lan-
guages [9], the use of Haskell to build pluggable architectures
has not been extensively discussed in the literature. Similar
to the hs-plugins framework [14], NeoIDL architecture
uses the infrastructure of the Glasgow Haskell Compiler to
dynamically load and compile Haskell modules that implement
NeoIDL plugins.

VI. FINAL REMARKS AND FUTURE WORK

This paper introduced NeoIDL, a domain specific lan-
guage for service specifications. We discussed the design and
implementation of NeoIDL, which comprises a specification
language and a pluggable architecture for generating code for

different languages. We further discussed the main contribu-
tions of NeoIDL with respect to existing interface description
languages (such as CORBA IDL and WSDL)— NeoIDL
provides means for language extensibility and specification
modularity. As a future work, we aim at writing NeoIDL
plugins to generate code to other web frameworks, such as
Play and Yesod Frameworks. We also intend to investigate the
use of behavioral specification constructs in NeoIDL, so that
we could generate test cases from NeoIDL specifications.

ACKNOWLEDGMENT

This work was partially supported by a research collab-
oration project between the Brazilian Army and the Uni-
versity of Brası́lia (project name: GEPRO EXERCITO TDC
EVOLUCAO CORTEX 2012).

REFERENCES

[1] Alberts, D.S., Hayes, R.E.: Understanding Command and Control. DoD
Command and Control Research Program, 1st edn. (2006)

[2] Boehm, B.W., Clark, Horowitz, Brown, Reifer, Chulani, Madachy, R.,
Steece, B.: Software Cost Estimation with Cocomo II. Prentice Hall
PTR, 1st edn. (2000)

[3] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web
services description language (wsdl) 1.1. W3C recommendation, W3C
(Feb 2001), http://www.w3.org/TR/wsdl

[4] Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods,
Tools, and Applications. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA (2000)

[5] Erl, T., Balasubramanian, R., Carlyle, B., Pautasso, C.: SOA with REST:
Principles, Patterns & Constraints for Building Enterprise Solutions with
REST. Prentice Hall (2012)

[6] Erl, T.: Service-Oriented Architecture: Concepts, Technology, and De-
sign. Prentice Hall PTR, Upper Saddle River, NJ, USA (2005)

[7] Fielding, R.T., Taylor, R.N.: Principled design of the modern web
architecture. ACM Trans. Internet Technol. 2(2), 115–150 (May 2002)

[8] Hadley, M.: Web application description language (wadl). W3C recom-
mendation, W3C (Aug 2009), http://www.w3.org/Submission/wadl/

[9] Hudak, P.: Building domain-specific embedded languages. ACM Com-
puting Surveys (CSUR) 28(4es), 196 (1996)

[10] Jones, M.P.: Functional programming with overloading and higher-order
polymorphism. In: Jeuring, J., Meijer, E. (eds.) Advanced Functional
Programming, Lecture Notes in Computer Science, vol. 925, pp. 97–
136. Springer (1995)

[11] Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of jml: A
behavioral interface specification language for java. Softw. Eng. Notes
31(3), 1–38 (May 2006)

[12] Marlow, S., Peyton-Jones, S.: The Glasgow Haskell Compiler. In:
Brown, A., Wilson, G. (eds.) The Architecture of Open Source Ap-
plications, vol. 2. lulu.com (2012)

[13] (OMG), O.M.G.: Interface definition language 3.5. Tech. rep., Object
Management Group (2014), http://www.omg.org/spec/IDL35/3.5/PDF/

[14] Pang, A., Stewart, D., Seefried, S., Chakravarty, M.M.T.: Plugging
haskell in. In: Proceedings of the 2004 ACM SIGPLAN Workshop on
Haskell. pp. 10–21. Haskell ’04, ACM, New York, NY, USA (2004)

[15] Park, R.: Software size measurement: A framework for counting source
statements. Tech. Rep. CMU/SEI-92-TR-020 (1992)

[16] Ranta, A.: Implementing Programming Languages. An Introduction to
Compilers and Interpreters. Texts in computing, College Publications
(2012)

[17] Slee, M., Agarwal, A., Kwiatkowski, M.: Thrift: Scalable cross-
language services implementation. Tech. rep., Facebook (2012),
http://thrift.apache.org/static/files/thrift-20070401.pdf

[18] Team, S.: Swagger restful api documentation specification 1.2.
Tech. rep., Wordnik (2014), https://github.com/wordnik/swagger-
spec/blob/master/versions/1.2.md

618

A Unified MapReduce Domain-Specific Language
for Distributed and Shared Memory Architectures

Daniel Adornes, Dalvan Griebler, Cleverson Ledur, Luiz Gustavo Fernandes
Pontifical Catholic University of Rio Grande do Sul (PUCRS),

Faculty of Informatics (FACIN), Computer Science Graduate Program (PPGCC),
Parallel Application Modeling Group (GMAP).

Av. Ipiranga, 6681 - Building 32 - Porto Alegre - Brazil
{daniel.adornes,dalvan.griebler,cleverson.ledur}@acad.pucrs.br, luiz.fernandes@pucrs.br

Abstract—MapReduce is a suitable and efficient parallel pro-
gramming pattern for processing big data analysis. In recent
years, many frameworks/languages have implemented this pat-
tern to achieve high performance in data mining applications,
particularly for distributed memory architectures (e.g., clusters).
Nevertheless, the industry of processors is now able to offer
powerful processing on single machines (e.g., multi-core). Thus,
these applications may address the parallelism in another archi-
tectural level. The target problems of this paper are code reuse
and programming effort reduction since current solutions do not
provide a single interface to deal with these two architectural
levels. Therefore, we propose a unified domain-specific language
in conjunction with transformation rules for code generation
for Hadoop and Phoenix++. We selected these frameworks as
state-of-the-art MapReduce implementations for distributed and
shared memory architectures, respectively. Our solution achieves
a programming effort reduction from 41.84% and up to 95.43%
without significant performance losses (below the threshold of
3%) compared to Hadoop and Phoenix++.

Keywords: MapReduce, Domain-Specific Language, Paral-
lel Programming, Effort Evaluation, Performance Evaluation.

I. Introduction

An exponential volume of data is generated by a variety
of fields worldwide, for example, social networks, govern-
ments, health care, stock market, among others. The so-
called Big Data is addressed by data analysis applications,
which may imply high computational costs. Consequently,
high-performance computing is needed to process all data
in time. Google initially proposed a solution for improving
the performance of these application’s domain, by combining
Map and Reduce operations as a single parallel pattern named
MapReduce [5]. Since then, the MapReduce has originated
many implementations by both industry and academic re-
search. Some of them have achieved great importance, such
as Hadoop1, which is suited for programming in large clusters
architectures, and Phoenix++ [13] for programming in multi-
core architectures.

MapReduce is a high-level pattern concept for expressing
parallelism and taking advantage of different parallel archi-
tectures [5]. However, current state-of-the-art implementations

1http://hadoop.apache.org
DOI reference number: 10.18293/SEKE2015-204

impose additional complexities beyond this pattern, requir-
ing developers to deal with low-level programming aspects,
such as memory management and network communication.
Moreover, there are host language prescriptions imposed by
the programming interface of library-based approaches. These
aspects motivate a particular language syntax for MapReduce
implementation.

This paper proposes a unified domain-specific language
to reduce the programming effort and improve code reuse
between distributed and shared memory architectures. Code
transformation rules are also proposed together with a trans-
formation process aimed at being fully compliant with the key
features of original MapReduce solutions.

The contributions are the following:
• A unified MapReduce domain-specific language for par-

allel and distributed architectures.
• A programming interface approach that significantly re-

duces the development effort.
• An efficient set of code transformation rules for Hadoop

and Phoenix++ without significant performance loss.
The paper is organized as follows. Section II discusses the

most important related work. Section III details the proposed
domain-specific language. Section IV describes the method-
ology approached for the evaluation. Section V performs the
experiments and evaluates the performance and programming
effort results. Finally, Section VI presents the conclusions and
future works.

II. RelatedWork
We aim at providing a unified programming interface to

reduce programming effort and allow code reuse between dis-
tributed and shared memory architectures. A Domain-Specific
Language (DSL) approach allows programmers to focus on
specific domains [6]. In this paper, we propose an external
DSL consisting of an entirely new language. Related work, in
turn, are embedded DSLs, which restricts their programming
interface’s flexibility and abstraction.

Hadoop was the first widely used MapReduce implemen-
tation, aimed at processing large data sets in distributed
systems. It provides a Java API for defining Map and Reduce
logic, which are run by distributed computation components
over distributed storage components. The distributed storage

619

Hone

Appuswamy et al.
Azwraith

Phoenix++

Hadoop

Ab
st

ra
ct

io
n

Performance on shared-memory

Unified
Interface

Phoenix Phoenix 2 Tiled-MapReduce

Fig. 1: The relationship graph between abstraction and perfor-
mance on the programming interface design goals.

components rely on Hadoop Distributed File System (HDFS),
which provides the vision of a single file system for large data
sets stored on all nodes in the cluster.

Ranger et al. [11] proposed the first version of Phoenix as an
optimized implementation of MapReduce for shared-memory
architectures, with a C-based programming interface. Yoo et
al. [16] evolved the Phoenix project with new optimizations
for multi-core architectures with non-uniform memory access.
Chen et al. [12], [4] proposed a new implementation of
Phoenix, based on a tiled (iterative) approach, named Tiled-
MapReduce. Finally, Talbot et al. [13] proposed Phoenix++,
consisting of a completely rewritten version of Phoenix, im-
plemented in C++ and taking advantage of the language’s
capabilities for modularity and code reuse in order to allow a
more adaptive programming interface.

Phoenix++ was mainly motivated by the recurrent need of
customizations reported by many of its users while working
with different applications. Talbot et al. realized that object-
oriented capabilities of C++ could be exploited for creating
specialized containers for storage of intermediate data and
stateful combiners for storing the cumulative value of asso-
ciative reduction operations (e.g., sum, product).

Concerning to high-performance, Phoenix++ outperforms
all its predecessors, previously mentioned. Also, compared to
Hadoop, Phoenix++ achieves a 28.5x speedup while executing
on a single machine (not distributed). It motivated us to use
Hadoop for distributed memory and Phoenix++ for shared-
memory multi-core architectures.

Recently, some researches [15], [2], [10] worked on improv-
ing Hadoop’s performance on the single-node level, mainly
by avoiding some internal mechanisms not needed for non-
distributed environments (e.g., message passing and repli-
cation) and harnessing the computational power of multi-
core. These researches also kept the Hadoop’s programming
interface, thus not adding a new abstraction layer. Their
evaluations, though, show that Phoenix++ still outperforms
in the single-node level.

Some important implementations addressing heterogeneous
architectures, with CPU and GPU, were also analyzed but are

still not covered by our transformation process. From these,
Grex [3] is the state-of-the-art, providing a specific API for
controlling the MapReduce phases and the way data structures
are stored in the different memory levels of GPUs.

Through a relationship graph, Figure 1 demonstrates our
understanding of the related work achievements concerning
abstraction and performance. It is possible to visualize that
most programming interfaces designed for distributed architec-
tures provide higher abstraction compared to those for multi-
core. Such difference is related to programming aspects and
their goals. In shared memory, programmers are required to
deal with low-level mechanisms such as pointers and memory
allocation in order to maximize the usage of very restricted
resources. By other hand, resources are much less restricted
in distributed architectures, allowing Hadoop’s interface to be
favored by using Java as host language.

Moreover, Figure 1 also justifies our choices for generating
MapReduce code. Hadoop and Phoenix++ are the best alter-
natives for our design principles in terms of abstraction and
performance. The following section discusses these and other
design aspects for the proposed solution.

III. The Proposed Domain-Specific Language
A unified MapReduce programming interface is proposed

in conjunction with code transformation rules for Phoenix++

and Hadoop MapReduce.
The proposed interface is inspired on the building block

syntax proposed by Griebler et al. [8], [7], since it demon-
strated significant effort reduction for the Master/Slave parallel
pattern. Our interface however is not built over a third-part
language as C or C++, being based on an own language
instead. The different programming languages (Java and C++)
and the very specific syntaxes for Phoenix++ and Hadoop code
led us to decide for an own language in order to maximize
abstraction. A C++ programming interface provided by the
Hadoop project, called Hadoop Pipes2, was initially considered
but later discarded due to absence of documentation and for
looking as a discontinued project.

The interface’s structure consists of an outer @MapReduce
block and two inner @Map and @Reduce blocks, as detailed
on listing 1 and grammar 1.

1 @MapReduce<NAME, K_IN , V_IN , K_OUT, V_OUT, K_DIST>{
2 @Map (key , v a l u e) {
3 / / Map code l o g i c
4 }
5 @Reduce (key , v a l u e s) {
6 / / Reduce code l o g i c
7 }
8 }

Listing 1: Interface’s structure.

The @MapReduce block always requires six parameters,
namely NAME, K_IN, V_IN, K_OUT, V_OUT and K_DIST.

The NAME parameter is any user-defined name, which
is used for identifying the MapReduce process and further
transforming the code for Java and C++ classes.

2http://wiki.apache.org/hadoop/C++WordCount

620

〈Map〉 ::= ‘@Map’ ‘(’ 〈key〉 , 〈value〉 ‘)’ ‘{’ { 〈cmd〉* 〈EmitCall〉 〈cmd〉* }
‘}’

〈Reduce〉 ::= ‘@Reduce’ ‘(’ 〈key〉 , 〈values〉 ‘)’ ‘{’ { 〈cmd〉* 〈EmitCall〉
〈cmd〉* } ‘}’ | ‘@SumReducer’ | ‘@IdentityReducer’

〈MapReduce〉 ::= ‘@MapReduce’ ‘<’ 〈mapreduce-params〉 ‘>’ ‘{’ 〈Map〉
〈Reduce〉 ‘}’

Grammar 1: Structure’s grammar

The K_IN, V_IN, K_OUT and V_OUT parameters are used
to define the <key/value> input and output types, respectively.
In other words, these parameters define which type of raw data
is initially read by the MapReduce process and which type of
reduced data is produced by it at the end.

The K_DIST parameter, in turn, is used for defining the keys
distribution, whether *:*, *:k or 1:1. It is used by Phoenix++

[13] for employing memory-optimized data structure for inter-
mediate <key/value> pairs, taking advantage of applications in
which the number of keys to be emitted is known in advance.

The inner blocks, @Map and @Reduce, must be pro-
grammed by the user in order to define the core logic of the
given MapReduce application. The @Map block receives a
<key/value> input pair from which to compute the <key/value>

intermediate pairs. Finally, the @Reduce block receives all
mapped values for each key, this is a <key/values> pair, and
computes the final reduced <key/value> pair by key. Both
blocks are provided with an emit function (grammar 2), which
for @Map block represents the function to emit intermediate
<key/value> pairs and for @Reduce block represents the
function to emit the final reduced value for a given key.

〈EmitCall〉 ::= ‘emit’ ‘(’ 〈key〉 , 〈value〉 ‘)’

Grammar 2: The emit function’s grammar

One additional characteristic of the @Reduce block is that
it can be replaced by a single @SumReducer directive with
no block code (grammar 1), which indicates that a simple
sum operation must be performed over all values of each
key. Another option is the @IdentityReducer directive, which
indicates that no reduction needs to be performed. Both default
options are also provided by Hadoop and Phoenix++, since
these are common reduce logics for MapReduce applications.
Nevertheless, whenever the provided default reducers do not
fit the need, a customized reducer can be implemented, as
demonstrated in listing 2 for a sample multiplicand reducer.

1 @Reduce (key , v a l u e s) {
2 double p r o d u c t = 1
3 for (int i =0; i < l e n g t h (v a l u e s) ; i ++)
4 p r o d u c t *= v a l u e s [i]
5 emit (key , p r o d u c t)
6 }

Listing 2: Multiplicand reducer with proposed interface.

Finally, listing 3 demonstrates the code of a Histogram
application with the proposed interface. This sample im-
plementation uses the @Type directive to define a variable

type pixel that stores the RGB values for each pixel in the
processed image. Then, the @MapReduce directive defines
the name Histogram and the four variable types for <key,
value> input and output pairs. The *:768 indicates that it is
known in advance that a maximum of 768 distinct keys will
be emitted by the Map phase. This information optimizes the
data structure used by the generated Phoenix++ code to hold
the intermediate <key, value> pairs. Finally, a @Map block
defines that map phase will emit value 1 for each occurrence
of a given color in the RGB of the pixel being processed, and
the @SumReducer defines that reduction will be performed
as a simple sum operation over all emitted values for each
distinct key.

1 @Type p i x e l (r : u s h o r t , g : u s h o r t , b : u s h o r t)
2 @MapReduce<Histogram , long , p i x e l , int , u long long ,
3 " * :768 " >{
4 @Map (key , p) {
5 emit (p . b , 1)
6 emit (p . g +256 , 1)
7 emit (p . r +512 , 1)
8 }
9 @SumReducer

10 }

Listing 3: Histogram with proposed interface.

A. Interface components and transformation rules

For developing the @Map and @Reduce logics the pro-
grammer is provided with a set of proposed interface’s com-
ponents, which comprehends variable types, built-in functions
and flow control structures. Each of these components has an
associated transformation rule, through which its equivalent
component in Hadoop and Phoenix++ can be later generated.

Variable types can also be custom types defined by the
programmer with the @Type keyword, which are translated
to C++ structs for Phoenix++ and Java classes implementing
the WritableComparable interface for Hadoop. The resulting
Java classes, particularly, include getters and setters methods,
besides some other methods whose implementation is required
by WritableComparable interface.

Moreover, whenever a custom type is defined for input data
(V_IN) in Hadoop, a complete implementation of a subclass
of FileInputFormat and another subclass of RecordReader is
required. It is particularly needed in order to instruct Hadoop
on how to split and distribute the input data among Map tasks.
Nonetheless, it causes applications developed with Hadoop to
reach a considerable amount of code. The generated subclass
of RecordReader considers each line of an input file to
represent a single instance of the given custom type.

Also, whenever a custom type is used for output values
(V_OUT), Phoenix++ requires the implementation of a custom
associative_combiner, which in turn is most likely to perform
a simple sum for internal attributes of the custom type. By
assuming this, the unified interface still allows @SumReducer
directive even if output values are of a custom type. In this
case, the code transformation is defined for the correspondent
associative_combiner and Reducer class of Phoenix++ and
Hadoop respectively.

621

Finally, Phoenix++ requires specific types (structs) and a
complex split logic for text processing applications. In the
proposed interface, whenever the type Text is chosen as input
value (V_IN), the transformation rules automatically include
such components in the C++ generated code.

B. Transformation Process

Transformation rules are applied through a transformation
process, whose stages are described as follows:
• First stage - The process starts by generating imports (for

Hadoop Java code) and includes (for Phoenix++ C++

code) always required by any application. It consists of
base libraries of these frameworks.

• Second stage - The process then continues by transform-
ing the @MapReduce block and its @Map and @Reduce
inner blocks. At this same stage, custom types @Type
may have been provided by the programmer being then
also transformed. Ultimately, global variables, external to
the @MapReduce block, may have also been defined by
the programmer and are also transformed in this second
stage.

• Third stage - This stage addresses transformations de-
rived from the input and output keys and values, inter-
preted in the second stage (e.g., text processing compo-
nents previously mentioned).

• Fourth stage - This stage transforms the variable types
defined in the blocks’ signature and also internally to
these blocks.

• Fifth stage - Ultimately, the fifth stage transforms the
functions defined externally to the MapReduce blocks or
internally to custom types.

The proposed process is based on Aho et al. [1], thus
consisting of language recognition, analysis and code gen-
eration. Language recognition phase comprehends the inter-
pretation through lexical, syntactic and semantic analysis.
Lexical analysis validates the compliance with the proposed
components then producing tokens. The syntactic analysis
uses the identified tokens to check the grammar language and
report syntax errors. The semantic analysis in turn checks
how components are disposed throughout the whole code.
An overview of the transformation flow is shown in figure
2. Effective transformations and code generation are proposed
as future work (section VI).

Fig. 2: Domain-Specific Language Flow.

Along the language recognition phase, an AST (Abstract
Syntax Tree) is created. An AST is a tree representation
of the abstract syntactic structure of source code written
in a programming language. Each node of the tree denotes
a construction present in the source code. AST creation is

bottom-up because the nodes addition starts from the smaller
tokens and patterns. Finally, AST stores the identified tokens
for later use in the code generation phase, which then traverses
the tokens in the AST in order to generate new code in the
target language.

IV. Methodology

We evaluated our DSL using two approaches. First we
evaluated its interface using SLOCCount3 to measure pro-
gramming effort. The second approach consisted of perfor-
mance results. Five different applications with specific pecu-
liarities, namely Word Count, Word Length, Histogram, K-
means and Linear Regression, were implemented with the
proposed interface and generated through the transformation
rules for Phoenix++ and Hadoop. This applications were also
implemented purely in Phoenix++ and Hadoop.

The main peculiarity we looked for while choosing the
sample applications was the key distribution. Word Count
demonstrates the *:* distribution, whereas Word Length, His-
togram, K-means and Linear Regression demonstrate the *:k
distribution. Additionally, other peculiarities are also covered
by the selected sample applications, such as custom types and
custom combiners.

The Matrix Multiplication and PCA (Principal Component
Analysis applications) would fit the 1:1 distribution, however
would also require more programming controls for Phoenix++

generated code beyond the abstraction aimed by the proposed
interface and with no equivalent functionality in Hadoop.

A. Effort Evaluation

For programming effort measurement it was used the SLOC-
Count suite, also used by Griebler et al. [7] for the evaluation
of DSL-POPP and by a set of other researches (e.g., [9], [14]).
SLOCCount3 is a software measurement tool, which counts the
physical source lines of code (SLOC), ignoring empty lines
and comments. It also estimates development time, cost and
effort based on the original Basic COCOMO4 model.

The suite supports a wide range of both old and modern pro-
gramming languages (e.g., C++ and Java), which are naturally
inferred by SLOCCount and thus used for measurement. For
our unified interface, we selected C++ because it has similar
syntax.

B. Performance Evaluation

For evaluating performance, the workload for Word Count
and Word Length was a 2Gb text file, for Histogram, a 1.41
Gb image with 468,750,000 pixels and for Linear Regression
the workload was a 500Mb file. For Kmeans, no input file
is required, since number of points, means, clusters and di-
mensions are parametrized through command line or assumed
to the default values of 100,000, 100, 3 and 1,000, respec-
tively, which were considered for our tests. All workloads are
available at the Phoenix++ project’s on-line repository5.

3http://www.dwheeler.com/sloccount/sloccount.html
4http://www.dwheeler.com/sloccount/sloccount.html#cocomo
5https://github.com/kozyraki/phoenix

622

For performance evaluation of generated Phoenix++, we
used a multi-core system with a 2.3 GHz Intel Core i7
processor, four cores with Hyper-Threading and 16Gb of
DRAM, whereas for performance evaluation of generated
Hadoop, we used 8 nodes of a cluster, where each node is
equipped with a 2.4 GHz Intel Xeon Six-Core E5645 processor
and 24Gb of DRAM. The cluster sums 192 cores, where the
nodes are interconnected by 2 Gigabit-Ethernet networks and
2 InfiniBand networks.

In order to obtain the arithmetic means, 30 execution times
were collected for each sample application such as described
in Tables II and I, and Figures 4 and 3. For running Hadoop
applications, we used a synthetic script 6 and copied to HDFS
all data so that all cluster nodes had access.

V. Results

As described in section IV, we evaluated the proposed DSL
using two approaches for measuring programming effort and
performance. Tables I and II show the mean execution time
for each sample application for the code transformed from our
proposed unified interface and for the code developed directly
from Phoenix++ and Hadoop, respectively. Figures 3 and 4
graphically demonstrate these same measurements.

TABLE I: Original and generated Phoenix++.

WC WL Histogram Kmeans LR
Original 5.38 4.02 2.83 5.98 0.62
Generated 5.37 3.99 2.87 6.09 0.63
Difference -0.27% -0.9% 1.4% 1.7% 0.3%

TABLE II: Original and generated Hadoop.

WC WL Histogram Kmeans LR
Original 36.24 26.36 21.87 51.36 5.97
Generated 37.22 26.48 22.42 50.59 6.01
Difference 2.63% 0.45% 2.45% -1.52% 0.76%

0

2

4

6

Histogram Kmeans Linear Regression Word Count Word Length
Application

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Version
Generated
Original

Fig. 3: Original and generated Phoenix++.

0

10

20

30

40

50

Histogram Kmeans Linear Regression Word Count Word Length
Application

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Version
Generated
Original

Fig. 4: Original and generated Hadoop.

6https://github.com/mvneves/hadoop-deploy

Through tables I and II and figures 3 and 4 it is possible to
visualize the negligible difference (less than 3%) between the
execution time of the generated and original versions for the
two frameworks. Performance losses are considerably avoided
as a direct result of the effective coverage of performance
components by the transformation rules.

Tables III and IV and figures 5 and 6 show the SLOC and
cost measurements. It is possible to observe that the difference
between the measurements of SLOC and Cost is negligible,
which confirms the approach used by COCOMO model.

A significant SLOC reduction can be observed for Word
Count and Word Length applications compared to Phoenix++

code, which take advantage of the specific components for
text processing applications. For such applications, Phoenix++

requires a wide set of mechanisms whose need is then
identified in advance by the proposed transformation rules,
being it transparent while developing with the proposed unified
interface.

TABLE III: SLOC count reduction

Application Phoenix++ Hadoop Unified
Interface

Reduction
compared

to
Phoenix++

Reduction
compared

to Hadoop

WordCount 89 27 8 91.01% 70.37%

WordLength 95 33 14 85.26% 57.58%

Histogram 22 170 9 59.09% 94.71%
K-means 98 244 57 41.84% 76.64%

Linear
Regression 31 171 18 41.94% 89.47%

67 129 21.2 63.83% 77.75%

TABLE IV: Cost estimate reduction

Application Phoenix++ Hadoop Unified
Interface

Reduction
compared

to
Phoenix++

Reduction
compared

to Hadoop

WordCount $2,131.00 $609.00 $170.00 92.02% 72.09%

WordLength $2,282.00 $752.00 $306.00 86.59% 59.31%

Histogram $491 $4,204.00 $192.00 60.90% 95.43%
K-means $2,357.00 $6,143.00 $1,334.00 43.40% 78.28%

Linear
Regression $704.00 $4,229.00 $398.00 43.47% 90.59%

$ 1,593.00 $ 3,187.20 $ 480.00 65.28% 79.14%

41.84%
41.94%
57.58%
59.09%
70.37%
76.64%
85.26%
89.47%
91.01%
94.71%

Histogram K−means Lin. Regression Word Count Word Length
Application

R
ed

uc
ed

 S
LO

C

Framework
Hadoop
Phoenix++

Fig. 5: SLOC count reduction

Compared to Hadoop, the Histogram, K-means and Lin-
ear Regression applications achieved greater SLOC reduction
mainly for the amount of code required to treat custom types
(subclasses of WritableComparable) in Hadoop.

623

43.40%
43.47%
59.31%
60.90%
72.09%
78.28%
86.59%
90.59%
92.02%
95.43%

Histogram K−means Lin. Regression Word Count Word Length
Application

R
ed

uc
ed

 C
os

t

Framework
Hadoop
Phoenix++

Fig. 6: Cost estimate reduction

K-means also takes advantage over Phoenix++ by com-
pletely avoiding code for custom combiner, however many
functions are required by the sample implementation, which
causes little SLOC reduction with the unified interface.

VI. Conclusions

From selecting Phoenix++ and Hadoop as the state-of-the-
art solutions for shared-memory and distributed architectures,
respectively, this work proposes a solution for abstracting
MapReduce programming without losing the performance
optimizations of these selected implementations. Such objec-
tive is achieved through a unified MapReduce programming
interface, proposed in conjunction with a comprehensive set
of transformation rules for Phoenix++ and Hadoop.

Except for a specific data locality configuration for NUMA
systems provided by Phoenix++, the transformation rules are
effective in covering from custom types to custom functions,
custom combiners, default reducers, different key distributions
and text processing components, covering thus all compo-
nents needed from the selected sample applications. Moreover,
performance losses are successfully avoided (difference of
less than 3%) and SLOC and cost reduction indicates that
programmers’ productivity can be considerably increased.

Some advantages and main contributions are the reuse of
code between different architectures and the possibility of
expanding the coverage of the transformation rules to other
MapReduce solutions and architectural levels.

A limitation is that programmers are still required to im-
plement the code to call the MapReduce process, thus being
required to know C++ and/or Java. However, some on-line ser-
vices, such as Amazon’s Elastic MapReduce7 (EMR), require
only the Hadoop MapReduce implementation, abstracting the
invocation code from developers. Nonetheless, we conclude
that the SLOC and cost reduction achieved by the proposed
interface compensate such limitation.

As future work we plan to expand the transformation rules
in order to cover MapReduce solutions such as Grex [3] for
heterogeneous parallel architectures. Finally, we also visualize
an expansion of the DSL’s programming interface, particularly
by adding more built-in functions and variable types.

VII. Acknowledgments

This work was supported by FAPERGS (Fundação de
Amparo à Pesquisa do Estado do Rio Grande do Sul), CAPES

7http://aws.amazon.com/elasticmapreduce

(Coordenação de Aperfeiçoamento Pessoal de Nível Superior),
FACIN (Faculdade de Informática) and PPGCC (Programa de
Pós-Graduação em Ciência da Computação).

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986.

[2] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and A. Row-
stron. Scale-up vs Scale-out for Hadoop: Time to Rethink? In
Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC
’13, pages 20:1–20:13, Santa Clara, CA, October 2013. ACM.

[3] C. Basaran and K.-D. Kang. Grex: An efficient MapReduce Framework
for Graphics Processing Units. J. Parallel Distrib. Comput., 73(4):522–
533, May 2013.

[4] R. Chen and H. Chen. Tiled-MapReduce: Efficient and Flexible
MapReduce Processing on Multicore with Tiling. ACM Trans. Archit.
Code Optim., 10(1):3:1–3:30, April 2013.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In OSDI, pages 137–150, Berkeley, CA, USA, December
2004. USENIX Association.

[6] M. Fowler. Domain-Specific Languages. Addison-Wesley, Boston, USA,
2010.

[7] D. Griebler, D. Adornes, and L. G. Fernandes. Performance and Us-
ability Evaluation of a Pattern-Oriented Parallel Programming Interface
for Multi-Core Architectures. In The 26th International Conference
on Software Engineering & Knowledge Engineering, pages 25–30,
Vancouver, Canada, July 2014. Knowledge Systems Institute Graduate
School.

[8] D. Griebler and L. G. Fernandes. Towards a Domain-Specific Language
for Patterns-Oriented Parallel Programming. In Programming Languages
- 17th Brazilian Symposium - SBLP, volume 8129 of Lecture Notes
in Computer Science, pages 105–119, Brasilia, Brazil, October 2013.
Springer Berlin Heidelberg.

[9] M. Hertz, Y. Feng, and E. D. Berger. Garbage Collection Without
Paging. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’05, pages
143–153, New York, NY, USA, 2005. ACM.

[10] K. A. Kumar, J. Gluck, A. Deshpande, and J. Lin. Optimization
Techniques for "Scaling Down" Hadoop on Multi-Core, Shared-Memory
Systems. In Proceedings of the 17th International Conference on
Extending Database Technology, EDBT ’14, pages 13–24, Athens,
Greece, 2014. Open Proceedings.

[11] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
Evaluating MapReduce for Multi-core and Multiprocessor Systems.
In Proceedings of the 2007 IEEE 13th International Symposium on
High Performance Computer Architecture, HPCA ’07, pages 13–24,
Washington, DC, USA, 2007. IEEE Computer Society.

[12] H. C. Rong Chen and B. Zang. Tiled-MapReduce: Optimizing Resource
Usages of Data-Parallel Applications on Multicore with Tiling. In Proc.
of the 19th Int’l Conference on Parallel Architectures and Compilation
Techniques, page 523–534, Vienna, Austria, September 2010.

[13] J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: Modular MapRe-
duce for Shared-Memory Systems. In Proceedings of the second
international workshop on MapReduce and its applications, MapReduce
’11, pages 9–16, San Jose, California, USA, May 2011. ACM.

[14] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones.
Refinement Types for Haskell. In Proceedings of the 19th ACM
SIGPLAN International Conference on Functional Programming, ICFP
’14, pages 269–282, New York, NY, USA, August 2014. ACM.

[15] Z. Xiao, H. Chen, and B. Zang. A Hierarchical Approach to Maximizing
MapReduce Efficiency. In Proceedings of the 2011 International Confer-
ence on Parallel Architectures and Compilation Techniques, PACT ’11,
pages 167–168, Washington, DC, USA, October 2011. IEEE Computer
Society.

[16] R. M. Yoo, A. Romano, and C. Kozyrakis. Phoenix Rebirth: Scalable
MapReduce on a Large-Scale Shared-Memory System. In Proceedings
of the 2009 IEEE International Symposium on Workload Characteri-
zation (IISWC), IISWC ’09, pages 198–207, Washington, DC, USA,
October 2009. IEEE Computer Society.

624

(DOI reference number:10.18293/SEKE2015-054)

Towards a Metamodel Design Methodology
Experiences from a model transformation metamodel design

Magalhaães, A.P.; Maciel, R.S.P.; Andrade, A.

Science Computer Department

Federal University of Bahia

Salvador, Brazil

anapatriciamgalhaes@gmail.com

{ritasuzana, aline}@dcc.ufba.br

Abstract— Software engineering makes extensive use of models to

provide a better understanding of artifacts produced during

system development. Models are specified in modeling languages

such as UML or using Domain Specific Languages. In this

paradigm of development, metamodeling is essential because it is

usually used to specify the abstract syntax of these languages.

However, the design of metamodels is not a trivial task, it

requires expertise in specific domains, language definition and

abstraction capabilities. This paper provides a guide for

metamodel design towards a metamodel development

methodology based on some lessons learned from metamodel

design experiences.

Keywords- metamodel guide; metamodeling design; metamodel

methodology

I. INTRODUCTION

In software engineering models have been extensively used
to provide a better understanding of the artifacts used in system
development. A model can be seen as a set of elements that
describes a system in a specific purpose [1]. Models are
specified conform to modeling languages such as UML or
Domain Specific Languages (DSL) [17] and usually the
abstract syntax of modeling languages are specified as
metamodels. The design of a metamodel requires expertise in
metamodeling techniques and knowledge in the domain of the
language under construction as well as a good capacity of
abstraction [3].

Our research group had been working on many projects that
require the definition of metamodels [5][6][7]. In all of these
projects we have felt the need for a method to guide us in some
issues such as: how to define a metamodel concepts, how to
guarantee that a metamodel covers all the desired concepts of
the target domain; how to structurally organize the concepts;
and how to validate a metamodel.

Some work has been done in Domain Specific Language
creation [14][18], about strategies to specify structural aspects
of a metamodel [4], and metamodels pattern identification
[3][20]. However, most of them do not focus on aspects such as
concepts identification and metamodel validation. These
aspects are important to guarantee the coverage level of the
metamodel when instantiating models. Furthermore, the
existing works do not guide developers through the entire
development of the metamodel.

This paper presents a proposal to guide developers in
metamodel design based on our experiences in developing
metamodels. This guide puts together the tasks that our group
performed during the development of some metamodels (e.g.
how we selected metamodels concepts) and the lessons learned.
As these tasks started to be performed in a systemically manner
we organized them, step by step, towards a design metamodel
methodology. We aim to systematize the tasks involved in
metamodel development leveraging the quality of the produced
metamodels in terms of coverage of the concept definition,
metamodel detailing (e.g. definitions of concept attributes) and
organization of these concepts (e.g. use of specializations).

As we have recently designed a metamodel for
transformation domain [7], called MMT (MetaModel for
Transformation), we used this to explain the proposed guide.

The rest of this paper is organized as follows: section 2
presents the related works; section 3 presents the proposed
guide using the design of a transformation metamodel as an
example; section 4 presents the validation of the proposed
guide; and section 5 presents our conclusions.

II. RELATED WORKS

Nowadays, there are several approaches to help in
metamodel design. These approaches can be divided into
structural approaches and validation approaches.

In [4] the author gives guidelines for designing metamodels
focusing on structural modeling aspects. These guidelines
comprise rules to better organize the domain concepts (e.g.
how to specialize concepts with similar attributes and
associations). In the same vein [3] [20] propose design patterns
for metamodels. The authors analyze many different
metamodels and identify recurrent problems in the metamodel
structures, for example different concepts with the same
attributes or relationships. Patterns are suggested to solve these
problems e.g. the use of concept generalizations or
specializations. When developing a metamodel, developers
may use patterns to structure the domain concepts.

In [15] the authors propose a methodology for developing
metamodels focusing on simulation based on mathematical
statistics techniques. Therefore, this work has a different field
of study than ours whose principal objective is the definition of
metamodel constructors.

625

mailto:anapatriciamgalhaes@gmail.com

The work proposed in [26] uses Test-Driven Development
(TDD) to define and validate metamodels. It represents the
requirements of a metamodel as models and uses these models
as test cases to perform validations. From the outcome of these
validations it incrementally defines the metamodel. Differently,
we capture metamodel concepts through examples of models in
the referred domain and from comparison of metamodel
concepts to existing theories (e.g. taxonomy). Our validation
assesses metamodel expressiveness through instantiation of
models.

In [27] the authors use elements of generic programming to
give solutions for the specification of metamodels concerned to
reuse and modularization (e.g. it uses templates to define
patterns and libraries). In a different direction, our work
focuses on the definition of a guide do develop metamodels
based on traditional software development life cycle.

There are works focusing on the creation of Domain
Specific Language. The book [14] lists many definitions of
language, grammar, syntax and semantics, how to implement a
parser, what a semantic model is and other aspects related to
language creation. Similarly, [18] proposes guidelines for
DSLs creation related to concrete syntax (e.g. language
representation using textual or graphic notation, redundancies
control, and so on). In [16] the authors criticize the use of
languages such as MOF on metamodel creation due to the time
consumed on development and propose a DSL to design
metamodels; and [19] proposes the systematic use of examples
to increase quality in domain knowledge definition.

Therefore, these works usually focus on specific aspects of
metamodel design and do not provide an integrated solution
that covers the definition of metamodel concepts, structural
design and validation. Besides this, none of these works
provide a guide for developers on metamodel design tasks. Our
work aims to cover the development of metamodels from
concepts definition to validation. Furthermore, some of these
works can be integrated to our proposal as part of some tasks
(e.g. we used the guidelines proposed by [4] to better organize
the metamodel structural aspects).

III. METAMODEL DESIGN GUIDE

In the absence of a methodology that focuses on metamodel
design we began to define metamodels in our laboratory in an
ad hoc way generating releases incrementally. However, after
some development iterations we observed that the tasks
performed during the metamodel definition were almost the
same. As a result, we started executing them systematically.
We organized these tasks as a guide (specified using SPEM 2.0
metamodel) to help in metamodel development. An overview
of this guide is shown in Fig. 1, it comprises three phases: (i)
Conceptual Modeling; (ii) Design; and (iii) Validation. Each
phase can be executed in many cycles of iteration performing a
set of tasks.

Fig. 2 shows a work flow with the tasks of the Conceptual
Modeling phase: initially the Domain Knowledge and Concepts
Identification tasks are executed to select the relevant concepts
in order to initiate the metamodel definition (Create Metamodel
task). Then, this metamodel can be compared to an existing
theory (Theory Comparison task) and might be reviewed many

times (Metamodel Review task) until the definition of its first
release. When necessary it is also possible to return to Domain
Knowledge task to get some more examples.

Figure 1. Phases and tasks of the Metamodel development guide.

According to SPEM, a task can be performed in a set of
steps and may consume / produce work products. Besides this,
roles are responsible for the tasks. For each task of the guide
we specified all of its elements (steps, input and output work
products and roles). For example, the Domain Knowledge task
comprises two steps that are performed by the Domain
Specialist. This task generates a list of sources of knowledge
(e.g. languages and examples of diagrams from the application
domain) as output that will be used in the next task.

Figure 2. Conceptual Modeling workflow

This guide may be used in several domains. As our
laboratory works with Model Driven Development [2] and
model transformations, we used the design of a metamodel for
the transformation domain as an example to guide explanation.
In section 3(A) we briefly introduce the transformation domain
and then in the following subsections we detail each one of the
guide phases and tasks.

A. Designing a Metamodel for Transformations Domain

Model Driven Development (MDD) is a software
development approach that makes intensive use of models
instead of code. In MDD models are developed at a high
abstraction level and transformed through a transformation
chain until code. At the core of MDD is the transformation
chain which encapsulates the mapping strategies to transform
input into output models. The transformation chain comprises a

626

set of transformations responsible for automating/semi
automating the MDD software development process [2].

Transformations receive models as input and generate
models or texts as output [8]. Input and output models should
conform to metamodels. The design of a transformation
requires the definition of the relationships among elements of
the source metamodel to elements of the target metamodel. A
transformation itself may be specified as a model, called a
model transformation model [21], which also should conform
to a metamodel. In this scenario metamodels are necessary to:
model the input and output models; develop the transformation
chain (the relationships between source and target metamodel
elements); and to design the model transformation metamodel.

In this paper we show the design of the Metamodel for
Model Transformation (MMT) to illustrate our guide tasks.
MMT is defined to support the development of model
transformations at a high abstraction level. It comprises the
necessary concepts for transformation specification and design
independent of platform through a MDD approach to develop
model transformations. So transformations code can be
generated from the specification of transformation models.

B. Conceptual Modeling Phase

The main goal of the first phase of the guide, Conceptual
Modeling, is to identify the relevant concepts of the domain.
The result of this phase is the preliminary release of the
metamodel. It consists of five tasks: Domain Knowledge;
Concepts Identification; Create Metamodel; Theory
Comparison; and Metamodel Review.

The first task (Domain Knowledge) consists of learning
about the domain. Similar to the strategy used in [3] to identify
metamodeling candidates for patterns, the most popular
languages or some examples of applications designed in the
domain should be selected.

Considering our example, the design of the transformation
metamodel MMT, the languages initially selected were QVT
(query / view / transformation) [10], because this is the OMG
standard to design model transformations and ATL (Atlas
Transformation Language) [11] due to its wide use in MDD
projects to develop transformations.

 In the second task, Concepts Identification, we should
analyze the selected languages / application examples to
identify the commonalities and specificities of the domain. The
common concepts are then selected to be used in the
construction of the metamodel. In the design of the MMT
metamodel we had analyzed the constructors of the ATL and
QVT (Relation) languages to find their commonalities and
specificities. For example, in ATL a transformation is a Module
comprised of Rules. There is one kind of rule, named Matched
Rule, which is automatically executed when a source element
matches a target element. Similarly, in QVT a Transformation
comprises Rules that are specialized in Relational Rules for
declarative definitions. The Relational Rule can be defined as a
Top Relation to indicate that it must hold in order to be
executed. Comparing the concept of transformation in these
two languages, in MMT we defined both the Transformation
and the Relation concepts and for the Relation we added an

attribute (isRequired) that indicates when the Relation must
hold in a transformation execution.

In the third task, Create Metamodel, the previously selected
concepts were organized as classes and their associations,
generating the initial release of the metamodel. Attributes are
also identified for the concepts.

The following task, Theory Comparison, consists of
analyzing transformation theoretical concepts and comparing
them to the concepts used in the initial release of the
metamodel. Different theoretical approaches can be used in
comparison, such as taxonomies and ontologies.

In the design of MMT we used the taxonomy presented in
[9] as a reference to perform the comparison. This taxonomy
classifies the concepts of transformation domain and its
purpose is to address the essential characteristics of model
transformations and existing languages and tools. Table 1
illustrates part of the comparison done.

TABLE I. PART OF THE TAXONOMY COMPARISON

Taxonomy [9] Representation in MMT

Transformation type

(Model transformation

or Program

transformation)

Transformation was specialized in:

M2M Transformation for the model

transformation type;

M2T Transformation for the program

transformation type

Endogenous x

Exogenous

transformation

Endogenous transformation: use the same

metamodel on SourceModel and

TargetModel associations;

Exogenous transformation: SourceModel

and TargetModel are different metamodels

Reuse (generic reuse,

HOT, grouping,

composition,

decomposition)

Transformations are composed of other

transformations (auto association on M2M

transformation). It is possible to reuse

existing transformation (combining them)

to build new ones. It also allows the use of

high order transformation (HOT)

The first column lists the taxonomy concepts and the
second lists how MMT interprets these concepts. Cells in gray
emphasize the concepts of MMT that were modified in order to
suit the taxonomy. For example, in MMT the Transformation
concept was specialized as M2M Transformation and M2T
Transformation to support the two kinds of transformation
modeling present in the taxonomy.

After the comparison, the Metamodel Review task was
performed and some modifications were done in the
metamodel. In our example, MMT, an association was added to
the Transformation concept allowing transformation
composition and reuse and the Transformation concept was
specialized in M2M Transformation and M2T Transformation
as partially shown in Fig. 3.

C. Metamodel Design Phase

The main goal of this phase is to organize the concepts
defined for the initial structure of the metamodel. This phase
comprises four tasks: Structural Design; Constraint Definition;
Functional Test; and metamodel Review. A detailed release of
the metamodel should be generated at the end of this phase.

627

Figure 3. Part of MMT after conceptual modeling phase

The first task consists of the structural organization of the
metamodel. Many kinds of strategies can be applied in order to
structure the metamodel concepts, such as the use of packages
to aggregate reusable concepts, the definition of general
concepts to represent common attributes, etc. We recommend
the adoption of the strategies proposed by [4]. These strategies
guide metamodel developers in terms of: definition of packages
to enable reuse of concepts; specification of association, e.g.
how to define association member end features; specification of
common attributes; how to create generalizations; definition of
default values; when to use enumeration; and so on.

For the MMT metamodel many strategies from [4] were
used. For example, we first used the strategy Adding
Abstraction Package to group the constructors into two
packages separating them in abstraction levels MMTSpec and
MMTDesign. Then we used the strategies Abstracting Common
Attributes, Abstracting Common Associations and Generalizing
Common Attributes to identify constructors with the same
attributes and/or associations and create a generalization for
these common definitions (e.g. the Model concept was created
to generalize sourceModel and targetModel), we defined the
association end names and defined enumerations (Fig.4).

Figure 4. Part of MMT metamodel after Metamodel Design Phase

With the metamodel concepts defined and well-structured
the next task, Constraints Definition, consists of the
specification of the metamodel constraints using OCL (object
Constraint Language). For the MMT we defined constraints to
specify model / metamodel conformance.

Although we had defined the concepts based on the
available theory and have organized these concepts applying
structural techniques, we had never used MMT to model a
transformation yet. So, the last task of this phase, named
Functional Test, consist in specify an instance of the
metamodel and evaluate the effective use of the defined
concepts and relationships in the instanced metamodel.

For the MMT Functional Test we instantiated the
OO2RDBMS transformation which receives a class model as
input and generates a logical data base model as output.
Besides this we use UML diagrams stereotyped by MMT to
visually model the transformation. The adoption of UML was a
decision based on some premises: UML diagrams are well
known by system developers; UML has a large number of tools
to support the development tasks. The complete specification
can be seen in [7].

After the functional test we observed that MMT concepts
were almost sufficient to model the transformation. However,
we observed a deficiency in the low level design of this
transformation because we specified which elements of the
source metamodel were transformed into elements of the target
metamodel but we did not specify how this transformation
should be done. As a result the metamodel was modified again
to introduce the necessary elements for the lower level
specification (Metamodel Review task).

D. Metamodel Validation Phase

The main goal of this phase is to evaluate the metamodel
expressiveness in terms of coverage of the defined concepts. It
comprises four tasks: Validation Definition; Validation
Execution; Validation Analysis and Metamodel Review. The
first task of this phase, Validation Definition, starts with the
goal and the definition of the research questions. Any guideline
related to software engineering experimentation can be used in
this task, such as the guidelines presented in [23]. In the second
task, the validation is performed (Validation Execution task)
and according to the results (Validation Analysis) the
metamodel can be modified (Metamodel Review task).

Regarding the design of the MMT metamodel we used a
GQM template [22] (Fig. 5) to summarize goal definition and
defined the following questions: (Q1) Do the MMT
constructors sufficiently specify transformations written in
ATL/QVT? (Q2) Is it necessary to add new constructors in
MMT to enable the transformation specification written in
ATL/QVT?

Analyze the MMT constructors
For the purpose of evaluating the metamodel expressiveness
With respect to coverage level
From the perspective of transformation developers
In the context of existing transformation developed in ATL/QVT
languages

Figure 5. Experimental goal according to GQM template

628

The validation of MMT was executed over five months.
During this period seven transformations that had already been
developed in ATL / QVT language were specified using MMT.
The transformations were selected from web repositories such
as [24]. We performed the experiment in two stages (an initial
test and the main experiment) where some dependent variables
were measured, such as specification completeness and the
amount of used / new constructors. After the validation we
were able to conclude that MMT concepts covered most of the
transformation specification, although some points for
improvement were identified. For example, we observed that
MMT could implement the concept of transformation design
pattern proposed by [13] in order to simplify the specification.

Considering the results obtained, we performed the third
task of the Validation phase, Metamodel Review and modified
the metamodel (e.g, we added the Pattern concept in the
MMTLowDesign).

During Validation phase, developers might observe the
necessity of new attributes, associations or even new concepts
that should be added to the metamodel. Therefore, the
Validation phase can be done iteratively, instantiating the
metamodel in different models, until developers observe that
the amount of modifications decreases considerably. At this
point the metamodel is considered stable enough for use.

IV. METAMODEL DESIGN GUIDE VALIDATION

Methods and processes for validation which involve
humans are very challenging and they should be carried out in
phases. Each phase should be an evolution from the previous
one. So we first decided to evaluate the feasibility of the guide
in driving developers in metamodels design. We followed the
guidelines for software engineering experimentation presented
in [23] and used GQM template [22] to define the goal of the
experiment (Fig. 6).

Analyze feasibility of using the design metamodel guide
For the purpose of improving metamodel development
With respect to metamodel coverage and completeness
From the perspective of metamodel developers
In the context of model driven development

Figure 6. Goal definition according to GQM template

To reach our goal the following questions were defined:
Q1: Does the guide help developers in metamodel definition?
Q2: Does the guide improve the quality of the produced
metamodel? In relation to the quality, we checked the
coverage level of the defined concepts and the metamodel
completeness. Accordingly, the following null/alternative
hypotheses were formulated.

H10/H1: The use of the guide [does not
impact]0/[decreases] the participants difficulty in producing
metamodels.

H20/H2: The use of the guide [does not
impact]0/[improves] the coverage of the concepts of the
metamodels created by developers.

H30/H3: The use of the guide [does not
impact]0/[improves] the completeness of the class diagram
created to represent the metamodel.

To evaluate the proposed guide we performed a controlled
experiment to verify whether the guide improves metamodel
development in building metamodels. Therefore we defined
one independent variable, the modeling method, used to create
the metamodel which varies across two groups: the control
group, which developed metamodel in ad hoc way; and the
guide group, which developed metamodel using our guide. The
dependent variables are the metamodel coverage, the
metamodel completeness and the perceived difficulty in
metamodel development.

The experiment was performed over the period of 4 months
divided in two phases: Initially a pilot study was performed and
then the main experiment. The participants were undergraduate
students (four students in the pilot study) and master degree
students (twelve students in the main experiment). All of them
had knowledge in MDD and process specification using
languages such as SPEM. None of them had knowledge in
metamodel design. Students were arranged in two groups
according to the design method: the control group and the
guide group. The data presented in the rest of this section
relates to the main experiment.

As we had already developed a metamodel for the
definition of MDD processes in our laboratory [12] we used
this work as the problem domain in this experiment. To
perform the experiment students received some examples of
MDD processes and the SPEM specification. For the guide
group we also gave the proposed guide and asked them to
follow it. The experiment comprises three activities (related to
our guide phases): define metamodel concepts, specify
metamodel structure, validate metamodel. Students spent three
days (one day for each activity) to design the metamodel, and
each activity started for all students at the same time. We gave
a maximum of two hours a day to perform each activity and
measure how much time each student spent completing each
task. At the end of the third day the students were supposed to
have a metamodel representing MDD Process domain and an
instantiated model conformed to this metamodel. Finally,
participants answered a questionnaire that collected their
perceptions about the difficulty of performing the tasks.

The produced metamodels were analyzed by our research
group and compared to the reference metamodel, the
metamodel that we had already developed for this domain. This
comparison was based on a previously defined template and
aims to evaluate metamodel coverage and completeness. The
metamodel coverage was defined considering the amount of
concepts identified by developers for the domain and attributes
of each concept. The metamodel completeness was defined
considering the amount of structural aspects specified in
metamodels. We analyze the use of specializations,
associations between concepts, the use of patterns to name
variables, the use of enumerations and so on.

For the first activity, define metamodel concepts, we
observed that the control group (who designed the metamodel
in an ad hoc way) identified 66% of the concepts and the guide
group (who used our guide) identified 87%. Nevertheless, the
second group did it in greater detail (e.g. they also defined the
attributes of each concept) so that the coverage rate was higher
for the group that used our guide. For the second activity,

629

specify metamodel structure, we observed a big difference
between the metamodels produced by the two groups. In the
first group we noticed the absence of specializations,
enumerations and associations end role definitions which make
these metamodels more verbose and difficult to understand. As
a result the completeness rate for the control group was 45%
while for the guide group it was 81%. The third activity,
validate metamodel, was not so helpful for our evaluation
because all the participants could instantiate a model conforms
to their metamodel (it differs on the level of detail of each
instance according to the coverage/completeness of the
metamodel). Analyzing the perceiving difficulty reported by
the participants we noticed that metamodel design is still a
challenge due to the high level of abstraction needed in
definitions. We did not observed any big difference between
the two groups related to the time spent by each participant on
performing the three tasks in the experiment. However we
observed that the metamodel guide led to metamodels with a
high level of coverage and completeness.

To decrease any threat to validity some strategies were
adopted. With regard to participant knowledge we checked that
they were familiar with the MDD approach (and
metamodeling) as they were students doing an MDD course or
they had already participated in MDD projects. We used
randomization to assign participants to each group and
prevented communication between them. As far as the tasks
were concerned we gave all the participants the same amount
of time to perform them. Besides this the domain might be
another threat so we tried to choose a domain familiar to
software engineers.

Empirical assessment usually takes into account the amount
of data collected from the subjects. However, in the case of a
guide validation it is difficult to involve a great number of
people in case studies. A case study rather than a rigorous
experiment was the most suitable choice. We know that the
study results are limited and do not provide statistical evidence
to support general conclusions. However, we believe that it can
be considered an initial step in future case studies to be
performed in order to observe other aspects.

V. CONCLUSION

This paper reported our experience in metamodel design
through the definition of the MMT metamodel. From this
experience and some expertise in the domain of MDD and
software engineering we defined a guide for metamodel
developers that we believe can be used as a base for a
metamodel development methodology.

Two main difficulties were encountered in this work: the
metamodel conceptual modeling and the validation. To address
the first one we used a taxonomy and specific languages (e.g.
ATL) to identify the relevant concepts of the transformation
domain. Validating a metamodel is quite different from
validating a piece of software. Metamodel validation requires
instantiation examples. As a result alternatives were used in
validation (e.g. reverse engineering techniques) until we
considered the metamodel was stable enough.

We believe that the guide to develop metamodels generated
by our experience can be adapted and evolved to be used in the

design of other kinds of metamodels other than transformation
domains. We are now working on this generalization and on
case study scenarios to achieve this goal.

REFERENCES

[1] S. Mellor, A. Clark, T. Futagami “Model Driven Development” IEEE
Software,2003

[2] T. Stahl, M. Volter, J. Bettin, A. Haase, S. Helsen foreword by K.
Czarnecki “Model-Driven Software Development” Wiley, 2006.

[3] H. Cho, J. Gray “Design Patterns for Metamodels” SPLASH´11
workshops, Portland, Oregon, USA, october, 2011.

[4] A. Vieira, F. Ramalho “Identifying Guidelines for Constructing
Metamodels” In: III Brazilian Workshop on Model-Driven Software
Development, Natal, 2012.

[5] R.S.P. Maciel, R.A. Gomes, A.P. Magalhaes, B. Silva “Supporting
model-driven development using a process-centered software
engineering environment.” ASE, v1, p1, 2013.

[6] A.P. Magalhaes, J. David, R.S.P. Maciel “Modden: an integrated
approach for Model Driven Development and Software Product Line
Processes” in 5th SBCAR, São Paulo, 2011.

[7] A.P. Magalhaes, A. Andrade, R.S.P Maciel “MTP : Model
Transformation Profile” In : 7th SBCARS, Brasilia, 2013.

[8] M. Brambilla, J. Cabot, M. Wimmer “Model-Driven Software
Engineering in Practice” Morgan & Claypool Publishers, 2012.

[9] T. Mens, K. Czarnecki, P. Van Gorp “A Taxonomy of Model
Transformation” Dagstuhl Seminar Proceedings 04101, 2005.

[10] QVT specification - http://www.omg.org/spec/QVT/1.0/PDF/

[11] ATL Project - http://www.eclipse.org/m2m/atl/

[12] Maciel, R. S. P. ; Magalhães, A. P. ; “An Integrated Approach for Model
Driven Process Modeling and Enactment.” In: SBES , Fortaleza, Brazil
2009

[13] Iacob, M.; Steen, M.;Heerink, L. “Reusable Model Transformation
Pattern.” In 3M4EC´08, pages 1-10, 2008.

[14] Fowler, M. “Domain Specific Languages.” Addisson Wesley, 2011.

[15] Kleijnen, J.; Sargent,R. “A methodology for fitting and validating
metamodels in simulation.”European Journal of Operational Research,
pp. 14-29, 2000.

[16] Cuadrado, J.;Molina, J. ”Building Domain-Specific Languages for
Model-Driven Development”, Software IEEE 24.5, pp.48-55, 2007.

[17] Luoma, J.;Kelly, S.;Tolvanen, J. “Defining Domain-specific modeling
languages: collect experiences.” 4th Workshop on DSM, 2004.

[18] Karsai, G.Krahn, H.; Pinkernell, C.; Rumpe, B.;Shindler, M.; Volkel, S.
“Design Guidelines for Domain Specific Languages.”In proceedings of
Domain-Specific Modeling, 2009

[19] Bak, K.; Zayan, D.;Czarnecki, K.; Wasowski, A.; Rayside, D.
“Example-Driven Modeling. Model=Abstraction+Example.” ICSE,
2013, San Francisco, USA.

[20] Mernik, M.Sloane, A. “When and how to develop Domain Specific
Languages.” ACM Computing Surveys, Vol 37, Nr.4, pp.316-344, 2005.

[21] Bézivin, Jean et al. “Model Transformations? Transformation Models?”
Springer-Verlag Berlin Heidelberg, 2006

[22] Solingen, R. Basili, V.;Caldiera,G.; Rombach, H.D. Goal Question
Metric (GQM) Approach. John Wiley & Sons. Inc., 2002.

[23] Wohlin, C. Aurum, A. Towards a decision-making structure for
selecting a research design in empirical software Engineering. Empir
Software Eng DOI 10.1007/s 10664-014-9319-7. Springer, 2014

[24] SimpleGT, available in “http://soft.vub.ac.be/viewvc/SimpleGT/

[25] Mellor,S.; Clark, A.; Futagami, T. “Model Driven Development” IEEE
Software,2003

[26] Cicchetti A.; Ruscio, D.;Kolovos, D.S.; Pierantonio, A. A Test-driven
approach for metamodel development. Chapter of the book Emerging
Technologies for Evolution and Maintenance of Software Models, p.
319-342, IGI Global, 2012.

[27] Lara, J.; Guerra, E. Generic meta-modelling concepts, templates and
mixin layers. Models, 2010.

630

http://www.omg.org/spec/QVT/1.0/PDF/
http://www.eclipse.org/m2m/atl/
http://lattes.cnpq.br/9035802389892301

(DOI reference number: 10.18293/SEKE2015-059)

Finding and Emulating Keyboard, Mouse, and Touch
Interactions and Gestures while Crawling RIA’s

Frederik H. Nakstad, Hironori Washizaki, Yoshiaki Fukazawa
Department of Fundamental Science and Engineering

Waseda University
Tokyo, Japan

frederik@fuji.waseda.jp

Abstract—Crawling JavaScript heavy Rich Internet Applications
has been a hot topic in recent years, giving us automated tools for
indexing content, test generation, and security- and accessibility
evaluation to mention a few examples. However, existing
crawling techniques tend to ignore user interactions beyond
mouse clicking, and therefore often fail to consider potential
mouse, keyboard and touch interactions. We propose a new
technique for finding and exercising mouse, keyboard, and touch
interactions when crawling highly interactive JavaScript-based
websites by analyzing and exercising event handlers registered in
the DOM. A basic form of gesture emulation is employed to find
states accessible via swiping and tapping. Testing the tool against
6 well-known gesture libraries and 5 actual RIA’s, we find that
the technique discovers many states and transitions resulting
from such interactions. Our findings indicate the technique could
be useful for automatic test generation, error discovery, and
accessibility evaluation, especially for mobile web applications
with advanced interaction options.

Keywords-crawling; gesture emulation; event handler analysis;
RIA

I. INTRODUCTION
Web applications have become more and more advanced

over the past few years with the maturation and increased
adoption of HTML5 and its related API’s. As a result of this,
the amount and complexity of JavaScript code on the client-
side has grown, giving us a different breed of web application
capable of much more advanced functionality and richer user
interaction models than before. Compounding this is the advent
of the smartphone, which has popularized touch screens and
made various gesture interactions part of most people’s
technical vocabulary. A recent report finds that users in the US
now spend more time consuming media using their mobile and
tablet devices than desktop computers [8].

This rise in client-side complexity coupled with the
dynamic nature of JavaScript has introduced many challenges
in how to reliably crawl such web applications. While
traditional websites rely on anchor tags and buttons for
navigation and are static in terms of content on the client-side,
new JavaScript-reliant RIA’s can change dynamically and
drastically as the result of JavaScript manipulating the DOM of
the page without the need of a round-trip to the server for new
HTML. In papers such as [1, 7] methods for automatic
crawling of JavaScript reliant RIA’s have been introduced.

These methods have spawned a variety of applications to
automate beneficial tasks such as indexing for search engines
[1], accessibility and usability evaluation [6, 16], automatic test
generation [3, 11, 12, 13], regression testing [4], and security
testing [5] to mention some.

One aspect oft neglected is the fact that this new breed of
web applications are capable of very advanced interactions.
Existing research focuses heavily on simple interactions
initiated by mouse clicks, usually ignoring other keyboard,
mouse, and touch events, not to mention gestures. Another
common assumption is that most state transitions can be
reached by interactions with <a>, <button>, and <input>
elements when choosing candidate interactions as often done
by empirical studies such as [10]. This might be okay for web
sites containing simple interaction models on this small subset
of elements, but we believe many states and transitions could
be missed for RIA’s with more advanced UI and mobile web
applications.

In this paper we propose a set of extensions to Crawljax
with functionality enabling it to detect the event handlers
available in each state. These detected event handlers are then
used as a basis for identifying new candidate interactions,. The
candidate interactions are exercised using programmatic event
construction and gesture emulation, leading to an increase in
discovered states and transitions.

The following research questions are addressed:

• RQ1. How comprehensively and efficiently can our
technique capture and perform gesture interactions?

• RQ2. How often do various keyboard, mouse, and
touch events lead to new states in modern RIA’s, and
which event types are more likely to induce new
states?

• RQ3. What DOM elements are more likely to be
targets for interactions leading to new state transitions?

The following contributions are offered:

• A technique for discovering all event handlers of a
state when crawling websites.

• A set of extensions to Crawljax enabling it to identify
candidate transitions based on event handler analysis
and emulate simple event dispatches as well as tap and

631

swipe gestures. Henceforth this modified version of
Crawljax is referred to as mobCrawler1.

• Evaluation of mobCrawler’s ability in emulating
common gestures and interactions by testing against 6
of the most popular gesture libraries for JavaScript
available.

• A case study against 5 modern RIA’s with advanced
interaction models evaluating the efficiency and
usefulness of event handler analysis when crawling
advanced RIA's.

II. BACKGROUND

A. Crawling RIA’s and Crawljax
Crawling websites used to be relatively less complex than it

is today. For traditional websites the content of each page is
static after it has been loaded in the browser, and other static
pages were loaded by following anchor or button elements. In
modern rich Internet applications using JavaScript things are
more complex. Changes to the DOM can come as the result of
asynchronous HTTP requests loading new content, or event
handlers and timeout events firing custom code. Additionally,
the dynamic nature of the JavaScript language itself can
provide flexibility as well as unintended states and side effects
[2].

Crawling such applications is usually done by loading a
starting page, its DOM recorded as the initial state, and then
automatically exploring the various interactions possible on the
page to elicit changes in the DOM. Each interaction causing a
change is recorded as a transition, and each modified DOM is
recorded as a new state.

One of the most prominent tools fulfilling this purpose is
Crawljax. Crawljax is a highly customizable crawler aimed at
JavaScript-heavy web sites. It performs a depth-first search of
the target web site using the Selenium Web Driver to control
the browser, and has many customization options for things
such as setting crawl depth, state abstraction comparators, and
crawl rules for ignoring certain links. It performs a depth-first
search trying to detect as many states and transitions as
possible within the constraints specified by the user. Due to this
open and customizable nature we implement our technique as a
set of modifications and extensions to Crawljax.

B. Event Handler Registration
When adding event handlers to a web page, there are three

options available through the browser API:

1. Programmatically use a target elements
addEventListener() function

2. Programmatically use a target elements on[eventType]
attribute, [eventType] indicating the type of event
handler

1 1 https://github.com/fnakstad/mobcrawler

3. Declare a on[eventType] attribute on the target
elements HTML tag, [eventType] indicating type of
event handler

There are countless libraries offering other API's to attach
event handlers, but they all eventually resolve to one of these
standardized, “native” API calls offered by the browser. Using
any of these options, developers are able to attach custom code
to be fired when one of a multitude of event types is performed
on the given element. The code in these event handlers may
manipulate the DOM, potentially eliciting a new state. Gestures
are usually developed as a sequence of related event handlers
on event types such as touchstart, touchmove, and touchend,
analyzing each event sequence’s properties to determine what
gesture was performed.

Though a common pattern is to attach event handlers once
the DOMContentLoaded event of the browser has fired as part
of the page’s lifecycle, developers can technically add events as
soon as JavaScript is being evaluated by the browser. New
event handlers can also be attached at any point after page load,
as part of other event handlers being exercised.

C. Mobile Devices
According to [9] web browsing on mobile and tablet

devices has increased rapidly the last few years, and together
constitutes 37.48% of all usage. As mobile navigation of the
web increases, developers may also want to adapt their website
to take advantage if touch screen input and gestures. This could
mean that many states and transitions not reachable by simple
mouse clicks anymore. Previous techniques may miss
important states relying on touch, mouse, and keyboard
interactions, especially for mobile web applications relying on
gestures. We believe actually exercising such interactions will
help in finding new states and transitions whether it is for
indexing content, automatically evaluating accessibility, or
employing automated testing approaches for the target web
application.

There has been a huge increase in use of the web from
smartphones [9], and as a result of this many web applications
also offer an especially tailored mobile version. These mobile
versions often take advantage of the devices touch screen, and
may implement certain navigational interactions using touch
and gestures. It therefore seems likely to us that such web
applications may contain states and transitions only reachable
through touch and gesture interaction.

Figure 1. Gesture Handler Registration

<div id=“gallery">

 <label class=“caption">Mt. Fuji</label>
</div>

$(‘#gallery’).swipeLeft(function() {
 // Load new image and caption via AJAX
 ...
});

632

Figure 2. Gallery with swipe interactions

D. Motivating Example
For our motivating example we consider a photo gallery

component embedded on a web site containing an image and
some descriptive text as pictured in Figure 1 and 2. In order to
load the next picture and text caption in the gallery you have to
swipe left or right. These swipe interactions would likely be
implemented by attaching the desired gesture type to a target
DOM element as seen in the code sample. Since existing crawl
techniques don’t attempt to execute such advanced interaction
events, the states loaded by performing these swipe gestures
would not be found, leaving a good chunk of application
functionality and content unexplored. This kind of interaction
pattern has become quite common and can often be seen in
photo galleries, carousels for news stories, especially featured
sales products, and so on.

III. EVENT HANDLER ANALYSIS AND GESTURE EMULATION

A. Detecting Registered Event Handlers for a State
In order to find out what event handlers have been

registered in any given state it is necessary to instrument the
native addEventListener() function implementation to keep
track of all event registrations performed by the target web
site’s JavaScript code. It is important that our instrumentation
code is performed before any other client-side code in order to
catch all events programmatically added to the page. This
means we need to inject this instrumentation module at the very
top of the documents <head> tag before the page is loaded in
the browser. This approach ensures that any event handlers
attached during page load as well as dynamically when
crawling to another state from initial page load will be detected
by our tool.

Figure 3. Event Handler Registration Detection

There may also be event handlers attached directly via
on[eventType] attributes on the DOM elements. These event
registrations are not processed through addEventListener(), so
we need to handle them separately. After the page is loaded we
walk the entire DOM tree, polling each element for any such
event handler registrations.

As seen in the code snippet in Figure 3, The
addEventHandler() function will check whether the event type
is of a type we are interested in, which can be configured in the
script, and if so add it to a list. Once the DOM is loaded, the
script will call the walkSubtree() function on the document
object, which will recursively traverse the entire DOM tree
looking for event handlers attached via the on[eventType]
attribute, and add them via addEventHandler(). This means we
can effectively monitor any and all event handler registrations
performed on the page.

B. Injecting Script via a MITM Proxy
Figure 4 shows the structure of mobCrawler. Neither the

browser itself nor the Selenium WebDriver used by
mobCrawler to control the browser offers a way to manipulate
the HTML before it is evaluated. Therefore we inject the
instrumentation script using a faux man-in-the-middle attack
via a proxy server.

This proxy server is implemented using the well-known
mitmproxy [14] program, and run with a custom script. The
proxy server sniffs for any relayed HTML content, intercepts it,
and modifies the <head> tag to inject our JavaScript module.
The injected JavaScript module then attaches one non-intrusive
JavaScript object on the window object, which can be
configured to listen for event handler registrations of any
specified event types. mobCrawler can communicate with this
module via JavaScript operations executed in the browser to
fetch the current event handlers for a state as well as exercise
various interactions on the web page. Using a man-in-the-
middle proxy server poses some problems with regards to the
browser denying 3rd party SSL certificates for certain sites or
forbidding functionality which might be restricted due to
CORS security policies. A preferable option would be to use
the WebDriver or web browser itself to inject this script into
the document before evaluating it, however this is not
supported as of today. We configure mobCrawler to use this
proxy server when crawling.

var original =
 EventTarget.prototype.addEventListener;
EventTarget.prototype.addEventListener =
function() {
 var type = arguments[0];
 addEventHandler({
 type: type,
 xpath: getElementXPath(this),
 });
 original.apply(this, arguments);
};

window.addEventListener('load', function(){
 walkSubtree(document);
},false);

633

Figure 4. Structure of mobCrawler

TABLE I. GESTURE EMULATION

Interaction Description Fire On
Event
dispatch

Create and dispatch an event to the target
element

click, dblclick,
mouseover,
mouseout,
keydown,
keyup,
keypress

Mouse
swipe

Emulates a mouse swipe in a given direction
(left, right, up or down), by creating and
dispatching a series of mousedown,
mousemove, and mouseup events.

mousedown

Touch
swipe

Emulates a touch swipe in a given direction
(left, right, up or down), by creating and
dispatching a series of touchstart,
touchmove, and touchend events.

touchstart

Tap Emulates a tap by dispatching touchstart and
touchend events with a small timeout.

touchstart

Double tap Two tap events in quick succession. touchstart
Tap hold Same as a tap but with a longer timeout

between the touchstart and touchend events.
touchstart

C. Emulating Browser Interactions
mobCrawler can now fetch all registered event handlers

registered in a state by calling our injected JavaScript module.
This list of event handler registrations will in turn form the
basis for what candidate elements and interactions we choose
to perform. Though we can possibly detect and emulate all
possible browser event types, we choose to focus on mouse,
keyboard, and touch events. For some of these events, such as
mousehover, mouseout or keydown it is sufficient to create and
dispatch a corresponding event object to the target element.
These events are created via the JavaScript module injected
into the page, and will programmatically construct events of the
desired type mirroring the W3 specifications in [17]. The
parameters set will be based on the target element in question
and what the desired interaction specified is, then finally
dispatched to the target element in question.

For keyboard events there is a big span of keys that can be
set to be activated. In our simulations we use the somewhat
naïve approach of always setting the key being pressed to the

character ‘e’. It seems like many more states can be elicited
with a more advanced strategy of when to use what characters.
Many websites include various keyboard shortcuts which could
increase the number of found transitions and states if exercised.
However we do not consider that beyond our rather simple
approach in this paper.

Additionally, we emulate certain common gestures using
mouse and touch events as specified in Table I. Variations of
tap gestures are only considered for touch, while swipe gestures
are also implemented for mouse. In this paper we only consider
single-touch gestures, ignoring more advanced gestures
involving more fingers. We do this since we find it less likely
they will induce meaningful states and to reduce the number of
candidate interactions performed.

Swipe gestures can be emulated in 4 different directions,
and are calculated by starting at the center of the target
element, then rapidly being moved 400 pixels in the given
direction. Candidate interactions are created based on the event
handler registrations detected in the current state. This means
that if a touchstart event handler is found on an element, a total
of 7 candidate interactions will be attempted: swipe up, swipe
down, swipe left, swipe right, tap, double tap and tap hold. This
can lead to a rapid increase in candidate interactions, but can be
customized to add only a subset of these candidate interactions.
For example, we could instruct mobCrawler to only try swipe
right and single tap interactions for elements containing
touchstart event handler registrations if that is desired.

Using this approach we can see how the problem posed in
the motivating example can be solved. The JavaScript module
injected into the browser via the MITM proxy will detect a
touchstart event registered on the gallery element, and record it
in a list of event handler registrations. Once the page has
loaded mobCrawler will fetch this list of event handler
registrations, and process them in turn. When it reaches the
touchstart event registered on the gallery element, it will
attempt various swipe and tap gestures as described in Table I
to see if the action changes the state of the DOM. Once it tries
swiping left and swiping right the content inside the gallery
should change, and mobCrawler will register these new
transitions and states in the state graph.

634

TABLE II. GESTURE SUPPORT

Library Tap Double
tap

Tap
hold

Swipe
Left Right Up Down

Hammer.js ✓ ✓ ✓ ✓ ✓ ✓ ✓
Quo.js ✓ × × × × × ×
dojox.gesture ✓ ✓ ✓ ✓ ✓ ✓ ✓
touchSwipe ✓ ✓ ✓ ✓ ✓ ✓ ✓
Touchy × × × × × × ×
jGestures ✓ N/A N/A ✓ ✓ ✓ ✓
D. Mobile Websites

It has become increasingly common for websites to offer a
separate mobile version, which can be very different from the
plain “desktop” version. In many cases the mobile version is a
completely separate implementation from the desktop version
to create a user experience entirely tailor made for mobile and
tablet devices. The most common technique used by websites
to differentiate between mobile and desktop users is user agent
sniffing, which will parse the user-agent string in the initial
HTTP request, and then serve back either the mobile or desktop
version of the website depending on the device reported in the
user agent string.

We add functionality to mobCrawler which enables the user
to imitate a mobile device by overriding the user-agent string
sent in HTTP requests to the webserver of the site we are
crawling. If the user wants to imitate a mobile device, this
string can be set to the user agent string reported by a browser
built for the iOS or Android platforms. Some gesture libraries
and websites will also offer different functionality based on
whether the browser reports the user’s device as being touch
enabled or not. For such cases, we inject a polyfill spoofing
that we support touch even if we are crawling using a non-
touch device.

IV. EVALUATION

A. Gesture Dection and Emulation (for RQ1)
To evaluate the effectiveness of emulating gestures, we set

up an experiment where we task mobCrawler with finding
gestures as implemented by various popular JavaScript gesture
libraries. Though it is possible to create gestures from scratch
just by using the native touch and mouse events, it seems likely
to assume that the majority of developers will rely on a gesture
library to make their jobs easier. This also gives us the
opportunity to investigate many different implementation
approaches, and seeing if our tool can handle them.

We create a basic website for each library with a <div>
element on which we register gesture interactions using the
various libraries. Though many of the libraries offers a big set
of gestures we focus only on simple single-point gestures as
described in Table I.

As can be seen in Table II, the approach was able to handle
the gesture interactions of most libraries flawlessly with two
exceptions. Both Quo.js and Touchy create and register custom
event types, which they use when registering their gestures.
Since our code instrumenting addEventListener() registrations

was configured to only look for a predefined set of standard
event types it didn’t pick up on these non-standard event type
registrations. However, mobCrawler can be configured to also
look for these custom events, and fire corresponding gesture
interactions on them to expand library support.

The majority of gesture libraries seem to use the native
touchstart and mousedown events, and in these cases our tool
was able to exercise all the transitions and find all the given
states. Note that jGestures did not have API’s for registering
doubletap and tap hold gestures, and so those gestures are not
considered. Hammer.js adds both mouse and touch handlers for
gestures, while Quo.js and dojox.gesture actually checks mosue
and touch capabilities of the device before registering the
appropriate event handlers.

A drawback of the approach is the large number of
candidate interactions which have to be exercised in order to
find valid states. Since we can’t make any assumptions about
what gesture interaction is required to elicit a new state, we
resort to exercising all of them. For example, upon finding an
element with a touchstart event handler attached, we create
candidate elements for all 3 tap gestures as well as swipes in 4
different directions. This might lead to a high recall of new
states, but precision is lacking and can lead to a lot of failed
candidate interactions. Reducing the candidate gesture
interactions to attempt could help reduce this number
drastically, e.g. by just focusing on right swipes and single taps.

RQ1. How comprehensively and efficiently can our
technique capture and perform gesture interactions?

To answer RQ1 we conclude that our approach can
successfully handle the majority of ways to implement gestures
in the browser, though it might be necessary with some extra
configuration to support specific libraries using custom event
types. Additionally, to increase precision of state and transition
discovery developers may want to minimize what gesture
interactions are attempted when crawling a site.

B. Case Study (for RQ2 and RQ3)
We proceeded to test out this tool on 6 actual websites to

evaluate the remaining two research questions. The target
websites were chosen due to having advanced GUI’s, being
tailored for mobile, and being crawlable through the MITM
proxy. C1 is an interactive application for manipulating
animations, while C2 implements a MS Paint clone in the web
browser. C3 is a web application for displaying presentations.
C4 and C5 are informational sites customized for smartphone
devices. We kept the level of state abstraction low, trying to
consider all changes introduced to the DOM. However, in order
to weed out false positives we do instruct mobCrawler to
ignore ads and automatically created hash values on a site-by-
site basis. Maximum crawl times are set to 2 hours, with a
crawl depth of 2. We also instruct the browser to not accept any
cookies.

635

TABLE III. CASE STUDY TARGET SITES

Case URL Mobile UA
C1 bomomo.com No
C2 muro.deviantart.com No
C3 slides.com/andreylisin/omaha-server#/6/1 Yes
C4 m.weather.com/weather/today/JAXX0085:1:JA Yes
C5 touch.toyota.com/index.html Yes

TABLE IV. CRAWL RESULTS

 C1 C2 C3 C4 C5
States, “click” 22 60 18 60 50
States, other 42 124 61 7 38

Transitions, “click” 22 60 23 61 100
Transitions, other 42 124 198 7 108

Transitions, <a> + <button> 4 16 0 29 49
Transitions, other elements 60 175 221 39 159

Figure 5. Event Type Distibution for State Transitions

Figure 6. Element Type Distribution for State Transitions

As can be seen in Table IV, all the target sites have a large
number of states and transitions being reached by exercising
interactions other than “click”. In C1 a lot of the menu buttons’
CSS styling are changed as part of mouseover and mouseout
events. C2 mirrors C1 in that most of the non-“click” induced
states are often differentiated by changes in styling or visibility
of elements. There are also a number of keyboard shortcuts to
quickly select given menu options.

C3 depends on swipe gestures to switch between various
slides. The high number of transitions can be explained by the
fact that a lot of states can be reached by multiple interactions.
For example, moving to the next slide in the deck can be
accomplished by swiping right or using a button in the control
panel. C4 and C5 are examples of more standard mobile web
applications, and we can see that most states can be found
using the “click” interaction. However, both sites contain
image galleries or sections which can be swiped to change the
contained content, similar to our motivating example. C5 has a
huge number of transitions due to multiple interactions
reaching the same state, as was also observed in C3.

Looking at Figure 5, we can see that “click” events still,
unsurprisingly, still make up the major amount of transitions
when crawling, though a considerable amount of transitions use
other event types. In C3-C5 there are considerably many touch
transitions, though many lead to the same state. Swiping
horizontally seems to be more fruitful than vertically. Both the
desktop sites, C1 and C2, have a fair amount of mouse and
keyboard events. Though not inducing a state change we
observed the swipes were also able to change what was drawn
on the <canvas> element.

RQ2. How often do various keyboard, mouse, and touch
events lead to new state transitions in modern RIA’s, and
which event types are more likely to induce new states?

To answer RQ2, we conclude that swipe gesture transitions
are very common for mobile web applications and can induce
new and meaningful states. The huge number of transitions
leading to the same state might be unwanted if crawling with
the aim of discovering content, but may be desirable if trying to
generate a comprehensive test suite or detecting errors in a web
application. For desktop sites, both keyboard and mouse events
are found to be common for advanced web applications with
advanced GUI’s.

Considering the amount of non-“click” transitions in C2,
C3, and C5, it seems they are too numerous to ignore. Though
not all applications rely heavily on these kinds of transitions,
such as C4, the number can be too high to simply ignore. As
evidenced by the image galleries in C5 and slides in C3,
content crawlers may be able to increase the amount of data
found if they attempt to emulate swipe gestures on mobile
websites. When it comes to automatically generating test suites
for web applications, the developers may get a higher test
coverage by instructing the crawler to attempt gesture types
they know are present in the application.

Figure 6 depicts what elements were interacted with to find
state transitions. As can be seen, this varies depending on the
specific website, with C1 relying heavily on elements
which it uses for its menu buttons. C2, C3 and C5 have large

636

numbers of event handlers attached to the <html> or <body>
element. Many of these transitions are gestures which can be
performed anywhere in the visible document. <a> and <div>
elements are in consistent use in all the web sites. However
<a> and <button> elements are not nearly as prominent as the
<div> element in terms of inducing transitions.

RQ3. What DOM elements are more likely to be targets for
interactions leading to new state transitions?

To answer RQ3 we can conclude that element types
employed as interaction targets can differ widely depending on
the website. <a> and <div> elements seem to be the most
common interaction targets to use for transitioning between
states. Web applications using gesture actions applied to the
entire documents surface area will likely have interaction
targets on the <html> or <body> element. The results indicate
that event handler analysis is a more comprehensive and
precise way of finding possible transitions in a state than
exhaustively trying out a predetermined list of element types in
each state.

The most obvious takeaway is that the types of elements
used for inducing transitions are too varied from site to site, to
rely on a small subset when targeting a large variety of web
applications. This could be useful when performing empirical
studies on a large host of web applications by way of crawling.
By combining event handler analysis along with a somewhat
selective set of gesture interactions to try out, the resulting state
graphs could be richer and more representative of their
respective web applications.

V. USAGE
Our findings indicate our technique can help augment

existing tools that are automatically exploring web applications
by increasing the number of found transitions. If our case study
is a good indicator of a more general trend in web applications,
there are many web sites containing advanced interactions
which can be modeled better than with current crawling
techniques. A fitting example would be content crawling
mobile web applications relying on swiping to load new
content. If a crawler can’t emulate a user swiping on the given
GUI element, the content loaded as a result may be left
unexplored and unindexed.

Another area in which our technique seemingly can help is
increasing code coverage in automatically created test suites for
web applications relying on advanced interactions. This is well
illustrated by C3 in our case study, which is a web application
for browsing slide presentations in a mobile browser. When
creating an automatic test suite for this application, it is
reasonable to assume the developer also wants to generate test
cases for the various gestures involved in manipulating the
slides. By emulating these gestures we could trigger event
handlers not triggered by traditional crawling techniques and
thus increase the total code coverage of the web application.
Possibly this could also lead to finding a number of unexpected
errors and event sequences, and should generally increase the
quality of the test suite.

For many of the same reasons stated in the previous two
examples, we believe our approach would be beneficial for

various automatic evaluation techniques of rich web
applications. Several approaches to accessibility and security
evaluation rely on automatically exercising the GUI to find
states and transitions as evidenced in [6] and [5] respectively. It
seems reasonable to assume these approaches would benefit
from our technique as they would be able to explore a larger
number of transitions initiated by non-“click” interactions.
Once again it seems like mobile web applications especially
would benefit from this.

VI. RELATED WORK
Though Crawljax[1] can be configured to initiate simple

click events on any kind of element, it relies on exhaustively
exercising all such elements on a page rather than finding only
the elements with “click” event handlers attached on them. The
support for exercising different kinds of event types is minimal
and focuses on simple mouse clicks. Our extensions allow it to
find all desired events registered on a page via event handler
analysis, and exercise simple even dispatches as well as single-
point gestures.

There has been performed some previous research utilizing
event handlers as evidenced by tools such as ARTEMIS from
[3] and FEEDEX from [12]. These tools seem to analyze event
handler registrations by using a modified version of the Rhino
JavaScript interpreter. They use the event handlers as input in
prioritizing what crawl action to take next. [18] introduces a
symbolic execution framework for finding security
vulnerabilities in web applications. It utilizes event handler
analysis and can perform simple event dispatches, but does not
attempt to emulate gestures. [15] introduces a static analysis
approach to creating finite state machines from source code by
analyzing event handlers. In contrast to out tool, none of these
approaches try to find and emulate more complex gestures, and
most of them, except [18], also seem to ignore simple event
dispatches.

A static approach to analyzing interactions in JavaScript
applications can be found in [23] which models web
applications as finite state machines. However, it focuses on
verifying interaction invariants by way of model checking as
well as mutation analysis, while we are following a dynamic
approach of modeling web applications as state diagrams for
purposes such as test suite generation and content indexing.
Related papers [22, 24] use the same approach, and target
mutation analysis and testing AJAX and RIA’s.

There has also been performed related research in the native
mobile application space. [19] targets Android applications,
and introduces a technique in which they first analyze event
handlers, and then generate and exercise different sequences of
events to reach hard-to-find states and transitions. [20] and [21]
automatically analyzes event handlers in order to create and
exercise events to find GUI bugs or create test suites for
Android applications. While all these researches focus on apps
on the Android platform, our research is focused on RIA’s on
the web.

637

VII. CONCLUSION
We have introduced a new technique for finding and

exercising mouse, keyboard, and touch candidate interactions
when crawling web applications, as well as a case study
investigating its performance in modern RIA’s. The technique
we proposed seems like a good fit for automatic crawling of
web applications with advanced interaction models, especially
mobile. Automatic test generation and error detection, as well
as automatic solutions for evaluating accessibility and usability
seem like good use cases.

In the future we would like to replace the script injection
mechanism with something less intrusive than a MITM proxy,
as well as add a default configuration supporting the custom
event types of all major gesture libraries. In addition, we
believe it would be fruitful to do a bigger case study involving
a number of the most popular mobile web applications to
further investigate the applicability of the approach. This would
give us a better idea of the robustness of the approach and
whether the patterns observed in our limited case study holds
on a larger scale.

REFERENCES
[1] A. Mesbah, E. Bozdag, and A. van Deursen. “Crawling Ajax by

inferring user interface state changes,” Eighth International Conference
on Web Engineering, 2008, pp. 122-134. IEEE.

[2] G. Richards, S. Lebresne, B. Burg, and J. Vitek. “An analysis of the
dynamic behavior of JavaScript programs,” Proceedings of the 2010
ACM SIGPLAN conference on Programming language design and
implementation, 2010, pp. 1-12. ACM.

[3] S. Artzi, J. Dolby, S. H. Jensen, A. Moller, and F. Tip. “A framework for
automated testing of javascript web applications,” 33rd International
Conference on Software Engineering, 2011, pp. 571-580. IEEE.

[4] D. Roest, A. Mesbah, and A. van Deursen. “Regression testing ajax
applications: Coping with dynamism,” Third International Conference
on Software Testing, Verifiation and Validation, 2010, pp. 127-136.
IEEE.

[5] C. P. Bezemer, A. Mesbah, and A. van Deursen. “Automated security
testing of web widget interactions,” Proceedings of the the 7th joint
meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering,
2009, pp. 81-90. ACM.

[6] F. Ferrucci, F. Sarro, D. Ronca, and S. Abrahao. “A Crawljax Based
Approach to Exploit Traditional Accessibility Evaluation Tools for
AJAX Applications,” Information Technology and Innovation Trends in
Organizations, 2011, pp. 255-262. Springer.

[7] C. Duda, G. Frey, D. Kossmann, and C. Zhou. “Ajaxsearch: crawling,
indexing and searching web 2.0 applications,” Proceedings of the VLDB
Endowment 1.2, 2008, pp. 1440-1443. ACM.

[8] comScore. “The U.S. Mobile App Report,” comScore Whitepaper.

[9] StatCounter Web Usage Stats, Jan 2012 – Jan 2015.
http://gs.statcounter.com/#all-comparison-ww-monthly-201201-201501.
12 May 2015.

[10] A. Nederlof, A. Mesbah, and A. van Deursen. “Software engineering for
the web: the state of the practice,” Companion Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 4-13.
ACM.

[11] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra.
“Guided test generation for web applications,” 35th International
Conference on Software Engineering, 2013, pp. 162-171. IEEE.

[12] A. M. Fard, and A. Mesbah. “Feedback-directed exploration of web
applications to derive test models,” ISSRE, 2013, pp. 278-287.

[13] A. Marchetto, P. Tonella, and F. Ricca. “State-based testing of ajax web
applications,” 1st International Conference on Software Testing,
Verification, and Validation, 2008, pp. 121-130. IEEE.

[14] Mitmproxy. https://mitmproxy.org/. 12 May 2015.
[15] Y. Maezawa, H. Washizaki, and S. Honiden. “Extracting interaction-

based stateful behavior in rich internet applications,” 16th European
Conference on Software Maintenance and Reengineering, 2012, pp. 423-
428. IEEE.

[16] H. Takagi, S. Saito, K. Fukuda, and C. Asakawa. “Analysis of
navigability of Web applications for improving blind usability.” ACM
Transactions on Computer-Human Interaction v. 14, no. 3, 2007, article
number 13. ACM.

[17] W3 JavaScript APIs. http://www.w3.org/TR/#tr_Javascript_APIs/. 12
May 2015.

[18] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song.
“A symbolic execution framework for javascript,” IEEE Symposium on
Security and Privacy, 2010, pp. 513-528. IEEE.

[19] C. S. Jensen, M. R. Prasad, and A. Møller. “Automated testing with
targeted event sequence generation,” Proceedings of the 2013
International Symposium on Software Testing and Analysis, 2013, pp.
67-77. ACM.

[20] C. Hu, and I. Neamtiu. “Automating GUI testing for Android
applications,” Proceedings of the 6th International Workshop on
Automation of Software Test, 2011, pp. 77-83. ACM.

[21] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. de Carmine, and A. M.
Memon. "Using GUI ripping for automated testing of Android
applications," Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, 2012, pp. 258-261.
ACM.

[22] K. Nishiura, Y. Maezawa, H. Washizaki, S. Honiden, “Mutation
Analysis for JavaScript Web Applications Testing,” Proceedings of the
24th International Conference on Software Engineering and Knowledge
Engineering, 2013, pp.159-165.

[23] Y. Maezawa, H. Washizaki, Y. Tanabe and S. Honiden, "Automated
Verification of Pattern-based Interaction Invariants in Ajax
Applications," IEEE/ACM 28th International Conference on Automated
Software Engineering, 2013, pp. 158-168. IEEE.

[24] Y. Maezawa, K. Nishiura, H. Washizaki, S. Honiden, "Validating Ajax
Applications Using a Delay-Based Mutation Technique," Proceedings of
the 29th ACM/IEEE international conference on Automated software
engineering, 2014, pp. 491-502. ACM.

638

An Oracle based on Image Comparison for
Regression Testing of Web Applications

Akihiro Hori∗, Shingo Takada∗, Haruto Tanno† and Morihide Oinuma†
∗Dept. of Information and Computer Science, Keio University, Yokohama, Japan

{hori, michigan}@doi.ics.keio.ac.jp
†Software Innovation Center, NTT Corporation, Tokyo, Japan

{tanno.haruto, oinuma.m}@lab.ntt.co.jp

Abstract—Much work has been done on automating regression
testing for Web applications, but most of them focus on test
data generation or test execution. Little work has been done
on automatically determining if a test passed or failed; testers
would need to visually confirm the result which can be a tedious
task. The difficulty is compounded by the fact that parts of a
Web page (such as advertisements) may change each time the
Web application is executed even though it has no bearing on the
Web application function itself. We thus propose a test oracle for
automatically determining the result of regression testing a Web
application. The key point of our approach is the identification
of parts that may change, which we call variable region. We
first generate the expected result, by executing the original (pre-
modification) Web application multiple times so that variable
regions can be identified. Then, after the Web application is
modified, regression testing is conducted by comparing the output
of the modified Web application against the expected output. An
evaluation confirmed the usefulness of our approach.
Keywords- web application testing; regression test; image compar-
ison

I. INTRODUCTION

The Web application is a popular form of application due
to the user basically only needing a Web browser to access
it. They, however, tend to be modified frequently for various
reasons, including bug fix, enhancements, and security attacks
[1][2].

As with any software, each time a Web application is
modified, it must go under regression testing, which checks
that functions that performed correctly before modification
still do. Although much work has been done on automatic
regression testing [1][3][4][5][6][7][8], most focus on the
automation of test data generation, selection, prioritization, or
its execution.

An important part of regression testing is to check the
result of test data execution against the expected result. This
may be done automatically through means such as DOM
tree comparison [8] and XML/HTML output [4]. However,
in many cases, this is done manually [9][10], especially for
testing that relies on visually checking the screen display
(i.e., browser output) [11]. Such manual checking is time
consuming as human testers must check each Web page one
by one; this is compounded by the fact that checking each
Web page needs to take place each time the application has
been modified [10].

We thus focus on the automation of checking if the screen
display has changed or not. Specifically, we target the devel-
opment of a test oracle for Web applications.

A test oracle can be defined as having two essential parts
[12]:

1) oracle information that represents expected output
2) an oracle procedure that compares the oracle information

with the actual output

In our approach, we automatically generate the expected
output for each test case by executing the test case multiple
times and saving the resulting screen display as an image.
After the Web application is modified, its screenshot is also
saved and compared with the expected output. If the images
are the same, the test case is said to have passed, otherwise it
has failed.

Although the basic steps are simple, there is one impor-
tant difference between the output of Web applications and
conventional GUI applications. There may be regions within
the output of Web applications that may change each time
that Web page appears regardless of the actual results of the
Web application execution. We call such a region as variable
region. For example, many Web applications have pages that
contain advertisements, which may change each time that
page is shown. Such regions must be accounted for; otherwise
even if the Web application result is correct, a change in the
advertisement being shown will cause the image comparison to
fail. Thus an important part of our approach is the elimination
of these variable regions.

This paper thus proposes an oracle for the regression testing
of Web applications. The main contributions are as follows:

• Automatic identification of variable regions by executing
the Web application multiple times before modification.

• Automatic generation of an expected result (baseline
image) for a given test case based on the identification
of variable regions.

• Automatic “PASS/FAIL” judgement of test case execution
by comparing screenshots taking into account variable
regions.

The rest of this paper first starts with a discussion of
related work. Section 3 then describes our approach. Section 4
evaluates our approach. Section 5 makes concluding remarks.

DOI 10.18293/SEKE2015-017 639

II. RELATED WORK

Web application testing focusing on the visual aspect of the
output includes [11][13][14][15][16].

Stocco, et al. proposed an approach to migrate test suites
based on DOM (Document Object Model) [17] to test suites
based on images [11]. Although the goal of their work is
different from ours, there are aspects similar to our work;
specifically, the mapping of DOM elements with visual el-
ements of the Web page.

Choudhary, et al. proposed an approach to detect cross-
browser incompatibilities in Web applications [13]. Although
the goal of their work is different from ours, they also target
eliminating variable regions. However, their approach gener-
ates the expected output by executing the pre-modification
Web application twice. If the variable regions always change,
this would be sufficient, but this is not the case. Our approach
solves this issue.

Selay, et al. [10] proposed an approach that compares
images for regression test. Their approach was able to ef-
ficiently detect layout faults while neglecting insignificant
variations. However, their “insignificant variation” does not
include our variable region. Our approach thus differs from
this perspective.

Applitools [15] is a tool that automatically tests Web
applications in a variety of environments (e.g., OS, browsers),
and saves screenshots. After the tests are executed, the saved
images are shown one by one, and testers need to determine
“PASS/FAIL” one by one. Our approach goes a step further
as the “PASS/FAIL” determination is done automatically.

PhantomCSS [14] is a tool that automatically executes
regression testing of Web applications by comparing screen-
shots of modified Web applications with screenshots of pre-
modification Web applications. The goal of their tool is the
same as ours, but variable regions can only be eliminated
manually. Our approach solves this issue by automatically
removing variable regions.

Screenster [16] is a tool that automatically determines
“PASS/FAIL” of tests. Developers first record the initial result
of executing a Web application. After making changes to the
Web application, it is executed and the execution result is
compared with the initial result. If the images are the same,
the test is determined as pass. Otherwise, differences in the
two results are highlighted. Testers then manually check if
the differences can be ignored (in which case the test passes)
or not (in which case the test fails). Although Screenster can
automatically determine “PASS/FAIL”, it cannot handle the
dynamic parts (variable region), while our approach can.

In sum, although much work has been done on visual testing
of Web applications, the determination of “PASS/FAIL” is
still done manually. PhantomCSS and Screenster can make
an initial determination of “PASS/FAIL”, but they cannot
automatically handle variable regions. Our proposed approach
addresses this issue.

Fig. 1. Overview of proposed approach

III. IMAGE COMPARISON BASED TEST ORACLE

A. Overview of our approach

Fig. 1 shows the overview of our proposed approach. The
basic steps are as follows:

1) Execute a test case multiple times before the program
is modified, and produce n screenshots of the resulting
Web page. We call this pre-modification test execution.
The number of times (n times) is set by the tester.

2) Extract the common parts of n screenshots (subsection
III-B). This eliminates the variable regions, and the
resulting image serves as the expected result for the
regression test.

3) Execute the test with the modified program, and produce
a screenshot of the resulting Web page.

4) Remove the variable region from the resulting Web page
(subsection III-C).

5) Compare the baseline image with the post-modification
image (subsection III-D). If the two images match, then
the regression test result is PASS. Otherwise, it is a
FAIL.

B. Common Part Extraction

The common part extraction first divides each screenshot
into several regions based on the DOM tree (Fig. 2). The
DOM tree is traversed from its root until an element reaches
a specified size, at which point all children of that element is
deleted (Fig. 3). Each leaf in the remaining tree is considered
as a “region”. Note that all n screenshots will have the same
DOM tree structure, and thus the same resulting regions.

The element size is set by the tester. If the threshold takes
too large a value, a region that contains both variable parts
and non-variable parts will be designated as being a variable
region. On the other hand, too small a value will lead to many
regions which will cause unnecessary computation.

The common part extraction continues by comparing the
regions one by one based on the position within the DOM tree.
The set of regions that are the same with all n screenshots are

640

Fig. 2. Separation into region images

Fig. 3. The search and delete of elements in the DOM tree (Values express
the size of the element)

stored in a log file (which we call pre-modification common
part log file). Each log in this file is a pair of the image of
the region and its DOM tree absolute path. This set of regions
forms the baseline image, i.e., the expected output. Regions
that differ at least once are considered as variable regions.

The comparison between each region, i.e., the comparison
between two images, is done by calculating the distance
between the two regions, and then checking if the distance
is less than a specified threshold. If the distance is less than
the threshold, the two regions (i.e., images) are considered to
be the same. If it is greater than or equal to the threshold, they
are considered to be different.

We adopted the χ2 histogram distance for the region
comparison, which is often used in image processing. It has
been found to be accurate and computationally fast [13]. χ2

histogram distance is computed as follows:

χ2 (H1,H2) =
∑
i

(H1 (i)−H2 (i))
2

H1 (i) +H2 (i)
(1)

H1 and H2 are the histograms of the images. These his-
tograms are the distribution of the luminance, i.e., i indicates
the luminance value and H (i) indicates the number of pixels
that has luminance value i.

C. Variable Region Removal

The variable region removal process starts by first dividing
the screenshot image of the post-modification Web page into
regions in the same way as the common part extraction. The
DOM tree is then used to remove the regions corresponding
to the variable regions. Specifically, the DOM tree absolute
path for each region is checked to see if it exists in the
pre-modification common part log file. If it exists, then the
image of that region will be compared with the corresponding
baseline image in the next step. Otherwise, that region is
considered as a variable region and ignored in the next step.

D. Comparison

This module compares the corresponding regions based
on the DOM tree between the baseline image and the post-
modification image with the variable regions removed. The
algorithm used to compare each region is the same as the one
used during the common part extraction (section III-B). If all
regions are the same, the regression test has passed. Otherwise,
it has failed.

E. Tool Implementation

We implemented our proposed approach on top of a testing
tool that we had previously developed [18] [19]. In our previ-
ous tool, users first define what we call a base scenario, which
corresponds to a set of steps that end-users take when they use
a given Web page “normally”. Test cases are then generated
by using the steps in the base scenario, and searching a
knowledge-base to find similar steps. Found steps will include
information such as constraints on user input and previously
used test data that are used for the generated test cases.

641

The generated test cases are then executed using Selenium
Web Driver [20], and the screen display is saved. Our previous
work was able to automate many steps that are required
for testing Web applications, but it could not automatically
judge if a test case execution passed or failed. Our proposed
approach makes this possible.

We list below values that the tester can specify:
• REPEAT indicates the value of n, i.e., the number of

times the test is executed pre-modification. The default
value is 3.

• SIZE is the threshold specifying the minimum size of
elements in the DOM tree (Fig. 3). The default value is
100,000 pixels.

• DISTANCE is the threshold for determining if two re-
gions are considered to be the same or not. The default
value is 10.

• INTERVAL is the wait time between pre-modification
tests. This is to account for cases where variable regions
may change only after a certain amount of time has
passed. The default value is 0.

The default values were specified based on preliminary
experiments that we conducted.

IV. EVALUATION

We conducted a case study to evaluate our approach, focus-
ing on the following three research questions:

• RQ1: Does our tool judge as correctly as humans?
• RQ2: Does our tool judge more quickly than humans?
• RQ3: Does our tool remove more variable regions when

the number of times of the pre-modification test is bigger?
RQ1 checks how accurate our tool is compared to manual

human comparison. RQ2 checks the time taken to compare
images. Since automation is supposed to help humans, our tool
needs to be as accurate (or nearly as accurate) as humans, and
it also needs to be faster. RQ3 checks whether the repeated
execution of pre-modification test is meaningful.

A. Target Applications

We targeted three demo Web applications: Zen Cart [21],
Takai [22], and Welcart [23]. Zen Cart is a shopping cart
software. Welcart is also a shopping cart software, but it is
a WordPress plugin. Takai is a free Joomla template, that can
be used to build Web sites. We chose these Web applications
because they are open source, have variable regions, and have
sample data available.

We used the provided programs as the original (pre-
modification) applications. The modifications were done by
changing the programs using the concept of mutation analysis
[24]. which basically changes or mutates a part of the code. We
employed 26 basic mutation operators each of which changes
one operator, such as changing < to >. Although mutating
the program basically means that we are injecting a bug into
the program, the goal of this case study is to check if our tool
can accurately judge if there has been a change in the output
Web page, and not to evaluate the test suite. In a true testing

TABLE I
ACCURACY RATE (%)

Tool Human
Zen Cart 99.4 99.8

Takai 98.0 90.7
Welcart 100 100

Total 99.4 98.8

environment, there will be additional test cases that check for
changes that were made to the program. Thus, some mutated
code will result in the output Web page being different from
the original output, while others will be the same. Adding new
test cases to account for changes made to the program is out
of scope of this paper.

Test cases were generated using our previously developed
tool [18][19]. Twenty-eight test cases were generated for Zen
Cart, five test cases for Takai, and twelve test cases for Welcart.

The case study was conducted using FireFox and specified
the following values:

• REPEAT: 6 for RQ1 and RQ2; 1 to 6 for RQ3
• SIZE: 100,000
• DISTANCE: 15
• INTERVAL: 0

B. Manual Judgement

We asked five students to compare pairs of Web page
images, and judge if each pair is the same or not. For each
pair, one Web page image was the result of executing the
original program, while the other was randomly chosen from
the mutated results. The variable region was specified for each
pair by highlighting the appropriate part of the Web page. In
other words, each student subject needed to check the non-
variable regions, and did not need to consider the variable
region(s) when judging if a pair was the same or not. This is
because in an actual testing environment, the tester will know
in advance which part(s) of the Web page will change each
time it is loaded.

C. Results

1) RQ1: Accuracy: We carefully analyzed both the results
of our tool and the results of the humans manually, and
checked if the judgement was correct or not.

Table I shows the results. The accuracy rate of our tool was
nearly as high as the human result.

Tables II - V show the breakdown of the results. “Tool”
denotes the result from our tool, while “Solution” denotes
the correct result, which was obtained from careful manual
analysis by the authors. “P” means pass, and “F” means fail.
The numbers indicate the number of test data. So, for example,
in Table II, our tool correctly identified 607 passes and 228
fails, while incorrectly identifying 5 fails as passes. The only
cases of a pass incorrectly being identified as a fail occurred
in the Takai Web application.

642

TABLE II
ZEN CART

Solution
P F

Tool P 607 5
F 0 228

TABLE III
TAKAI

Solution
P F

Tool P 106 0
F 3 41

TABLE IV
WELCART

Solution
P F

Tool P 111 0
F 0 249

TABLE V
TOTAL

Solution
P F

Tool P 824 5
F 3 518

TABLE VI
EXECUTION TIME (SECONDS)

Tool Human
Zen Cart 4.2 48.1

Takai 3.7 64.2
Welcart 2.4 27.7

Total 3.7 44.4

2) RQ2: Execution Time: We measured the execution time
for our tool. Specifically, we measured the time taken for
variable region removal and comparison (Fig. 1) We did not
include the time taken for common part extraction because, if
necessary, this can be executed when time is available such as
at night.

The time for the five human subjects were also taken. Since
they could judge failed comparisons more quickly than passed
comparisons, we took the percentage of passes and fails into
consideration and calculated a weighted average.

Table VI shows the results. This is the average time to
compare one regression test execution. Our tool took less than
one-tenth the time of the human subjects.

3) RQ3: Repeat Count: We executed our tool while chang-
ing the value of n from 1 to 6. Table VII shows the results. The
value indicates the percentage of variable regions that our tool
correctly identified. As expected, when the pre-modification
test is executed more (i.e., the value of n is greater), the
percentage of correct identfication becomes higher.

D. Discussion

1) RQ1: Accuracy: Our approach had an accuracy of over
99%, which is comparable to human beings. The issues our
approach had were as follows:

• Warning dialogs
Five out of the eight incorrect judgements were due to

TABLE VII
PERCENTAGE OF CORRECT IDENTIFICATION OF VARIABLE REGIONS

n
1 2 3 4 5 6

Zen Cart 0 50.0 90.0 90.0 100 100
Takai 0 96.7 100 100 100 100

Welcart 0 76.7 96.7 100 100 100

not being able to capture the image of a warning dialog.
For example, in Zen Cart, when there is an issue with
registering user information, a warning dialog pops up.
Our tool uses Selenium to capture images, but these pop
up dialogs cannot be captured by Selenium. Thus our
current implementation takes an ad hoc approach of using
the “Print Screen” function of Windows. Unfortunately,
when we were conducting pre-modification test, this
method of capturing the dialog failed once. This led to
the warning image to be handled as a variable region.
In other words, it was not considered as a region image
to be checked, and thus led that to be PASS instead of
FAIL.

• Change in image size
Two out of the eight incorrect judgements were due to
the image size becoming smaller by two pixels. Whenever
there is a difference in image size, our tool first trims the
larger image so that the images are of the same size. But
our tool did not correctly trim an image.

• Timing of capturing a screenshot
The final incorrect judgement was due to the timing of
capturing a screenshot by Selenium. Our tool currently
waits three seconds after the Web page is loaded. The
image of the Web page is then captured. This would
handle cases where after the Web page is loaded, a widget
is briefly shown, and then disappears. Unfortunately, in
one case, a widget did not disappear after three seconds,
and thus was captured.

Note that none of the above issues were due to our usage
of χ2 histogram distance for the region comparison. Since this
approach only considers the distribution of the colors that are
used in the Web page, technically there is a possibility that
two completely different looking Web pages will have a χ2

histogram distance of zero, i.e., those two pages are computed
to be the same. This did not occur in our evaluation. Of course,
more experiments are necessary to correctly conclude that χ2

histogram distance is sufficient for our approach.
Furthermore, note that for Takai, the accuracy for manual

judgement was much lower than the other two applications.
This was due to a very small change in the Web page that the
subjects were not able to detect. Specifically, in one case, the
color of some text in a very small region changed from gray
to black. Our tool was able to detect such cases, as the χ2

histogram distance focuses on color.
2) RQ2: Execution time: As expected, our tool was faster

than manual checking. For Zen Cart and Welcart, our tool was
11.5 times faster, while it was 17.4 times faster for Takai. The
reason that our tool especially performed better for Takai was
probably because Takai’s Web page was more complex than
the other two, and thus it took subjects more time.

3) RQ3: Repeat count: The result of RQ3 found that the
percentage of variable regions that are correctly identified is
higher when the value of n (the number of times the pre-
modification test is executed) is higher. We consider this from
a probabilistic perspective.

Suppose that there are m variable regions in a Web applica-

643

Fig. 4. Repeat time and Accuracy Rate

tion under test and that the pre-modification test was conducted
n times. The probability P (n) where the tool can correctly
identify all m variable regions can be calculated as shown in
equation (2).

P (n) =
m∏

k=1

{
1 − (

1

ak
)
n−1}

(2)

In equation (2), ak means that the kth variable region has ak
contents that can be shown. In other words, for a given instance
of a Web page, one of ak possible contents is shown for the
kth variable region. When pre-modification test is executed
n times, the probability that the kth variable region is not
removed (i.e., correctly identified) is the same as the same
content being displayed consecutively n times. Assuming that
the probability of one of the ak contents being shown is the
same, a content being displayed consecutively n times can

be computed as
(

1
ak

)n−1

. Thus the probability of the kth
variable region being correctly identified is a complementary

event and can be computed as 1−
(

1
ak

)n−1

. Since the number
of variable regions is m, we take the product of each variable
region resulting in equation (2).

We consider the result of Zen Cart (Table VII), which had 6
variable regions. Of the 6 regions, 3 regions had an extremely
high number of contents (i.e., the number of ak was very
large), and thus they can be ignored in terms of equation (2).
As for the other 3 regions, the number of contents were 3, 3,
and 4. Thus, if we assign m = 3, a1 = 3, a2 = 3, a3 =
4 to equation (2), we obtain the curve in Fig. 4. This figure
also contains the plots from Table VII.

E. Threats to Validity

The first threat to validity would be the use of students
as the human subjects. Since the task was to compare Web
page images, which anyone can do, we do not believe that
this is a threat in terms of students vs professional. However,
there is always the possibility that some humans are better at
comparing than others, and we cannot discount this possibility
as a threat.

The second threat to validity is the three Web applications
we used. We chose the three because they were open source,
have variable regions, and have sample data. Evaluation with

other Web applications should be conducted to strengthen our
findings.

The third threat to validity are the test cases that were used.
Test cases were generated using a tool that we had previously
developed. We cannot completely deny this as a threat, since
other test cases may result in Web pages that are difficult to
compare. However, we have manually inspected the possible
Web pages, and at least for the three Web applications, we do
not believe that the generated test cases would be a threat.

The fourth threat to validity is the values we specified for
the parameters REPEAT, SIZE, DISTANCE, and INTERVAL.
Table VII showed that specifying the value of REPEAT as
6 had no effect on the result as the correct identification
was 100% in all three Web applications. If anything, the
value of REPEAT could have been set lower. The value for
INTERVAL also had no effect as the three Web applications
did not have any variable regions based on the amount of
time needing to pass. The values for the other two parameters
SIZE and DISTANCE were determined based on preliminary
investigation, and these two may pose as threats. In fact,
DISTANCE especially seems to be important. This is because
if we used the default DISTANCE value of 10 (rather than
the 15 we used in the evaluation), differences of 1 pixel
would occur when dividing screenshots into regions. Although
this seems to be a very small difference, this would lead
to incorrectly identifying same images as different. In other
words, regions that should be considered as the same would
be considered as variable regions. Further evaluation should
be done to investigate this.

V. CONCLUSION

We proposed an oracle for regression testing of Web appli-
cations. The oracle consisted of two parts: the expected result
and the comparator. The key part of our oracle is accounting
for variable regions, i.e., regions within the output Web page
that may change each time it appears. The expected result is
generated by executing the test multiple times so that variable
regions can be identified and removed. The comparator checks
the post-modification test execution result against the expected
result.

An evaluation of our approach showed that our tool can
identify the variable regions as accurately as, but quicker than,
human subjects. We also showed that by repetitive execution
of the pre-modification Web application improves the accuracy
of the comparison.

As for future work, first we need to consider the optimiza-
tion of thresholds. Our tool uses two thresholds: the minimum
size of elements in the DOM tree to specify the region in
each screenshot, and the χ2 histogram distance threshold to
determine if two regions should be considered as the same or
not. The current (default) values are based on experience from
applying our approach to several Web pages. But this may not
always be optimal for other Web applications.

Second, although our approach had a very high accuracy,
it was still not 100%. One very important issue that we need

644

to handle to raise the accuracy is to be able to handle dialogs
that pop up as the result of executing a test case.

Finally, shortening the execution time further is another
important part of future work.

REFERENCES

[1] A. Marback, H. Do, and N. Ehresmann, “An effective regression testing
approach for PHP Web applications,” in Proc. IEEE 5th International
Conference on Software Testing, Verification, and Validation (ICST
2012), 2012, pp. 221–230.

[2] S. N. A. Kamalzaman, S. M. Syed-Mohamad, S. Sulaiman, and
K. Zamli, “Supporting maintenance of web applications using user-
centered technique,” in Proc. 19th Asia-Pacific Software Engineering
Conference, 2012, pp. 43–49.

[3] L. Xu, B. Xu, Z. Chen, J. Jiang, and H. Chen, “Regression testing for
web applications based on slicing,” in Proc. 27th Annual International
Computer Software and Applications Conference (COMPSAC 2003),
2003, pp. 652–656.

[4] K. Dobolyi and W. Weimer, “Harnessing web-based application simi-
larities to aid in regression testing,” in Proc. IEEE 20th International
Symposium on Software Reliability Engineering (ISSRE2009), 2009, pp.
71–80.

[5] M. Hirzel, “Selective regression testing for web applications created
with Google Web Toolkit,” in Proc. 2014 International Conference on
Principles and Practices of Programming on the Java platform: Virtual
machines, Languages, and Tools (PPPJ ’14), 2014, pp. 110–121.

[6] D. Garg, A. Datta, and T. French, “A two-level prioritization approach
for regression testing of web applications,” in Proc. 19th Asia-Pacific
Software Engineering Conference (APSEC 2012), 2012, pp. 150–153.

[7] S. Mirshokraie and A. Mesbah, “JSART: JavaScript assertion-based
regression testing,” in Proc. 12th International Conference on Web
Engineering (ICWE 2012), 2012, pp. 238–252.

[8] S. Raina and A. P. Agarwal, “An automated tool for regression testing in
web applications,” ACM SIGSOFT Software Engineering Notes, vol. 38,
no. 4, pp. 1–4, 2013.

[9] V. Dallmeier, M. Burger, T. Orth, and A. Zeller, “WebMate: A tool for
testing web 2.0 applications,” in Proc. Workshop on JavaScript Tools
(JSTools 12), 2012, pp. 11–15.

[10] E. Selay, Z. Q. Zhou, and J. Zou, “Adaptive random testing for image
comparison in regression web testing,” in Proc. 2014 International
Conference on Digital lmage Computing: Techniques and Applications
(DlCTA), 2014, pp. 1–7.

[11] A. Stocco, M. Leotta, F. Ricca, and P. Tonella, “PESTO: A tool for
migrating DOM-based to visual web tests,” in Proc. 14th IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM 2014), 2014, pp. 65–70.

[12] A. Memon, I. Banerjee, and A. Nagarajan, “What test oracle should I use
for effective GUI testing,” in Proc. 18th IEEE International Conference
on Automated Software Engineering (ASE 2003), 2003, pp. 1–10.

[13] S. Choudhary, H. Versee, and A. Orso, “A cross-browser web application
testing tool,” in Proc. 26th IEEE International Conference on Software
Maintenance (ICSM 2010), 2010, pp. 1–6.

[14] “PhantomCSS,” 2013. [Online].
Available: https://github.com/Huddle/PhantomCSS

[15] “Applitools.” [Online]. Available: https://applitools.com/
[16] “Screenster.” [Online].

Available: http://www.creamtec.com/products/screenster/
[17] “W3C Document Object Model.” [Online].

Available: http://www.w3.org/DOM
[18] R. Lacanienta, S. Takada, H. Tanno, and M. Oinuma, “A knowledge-

based approach for generating test scenarios for web applications,”
in Proc. 25th International Conference on Software Engineering and
Knowledge Engineering (SEKE 2013), 2013, pp. 166–171.

[19] H. Saito, S. Takada, H. Tanno, and M. Oinuma, “Test data generation for
web applications: A constraint and knowledge-based approach,” in Proc.
26th International Conference on Software Engineering and Knowledge
Engineering (SEKE 2014), 2014, pp. 110–114.

[20] “Selenium.” [Online]. Available: http://www.seleniumhq.org/
[21] Zen Ventures, LLC, “Zen Cart.” [Online].

Available: http://www.zen-cart.com/
[22] JoomlaWorks Ltd., “Takai.” [Online]. Available:

http://www.joomlaworks.net/joomla-templates/free-templates/takai
[23] Collne Inc., “Welcart.” [Online]. Available: http://www.welcart.com/
[24] Y. Jia and M. Harman, “An analysis and survey of the development of

mutation testing,” IEEE Trans. on Software Engineering, vol. 37, no. 5,
pp. 649–678, 2011.

645

Towards the Anonymisation of RDF Data
Filip Radulovic

Ontology Engineering Group
ETSI Informáticos

Universidad Politécnica de Madrid
Madrid, Spain

fradulovic@fi.upm.es

Raúl García-Castro
Ontology Engineering Group

ETSI Informáticos
Universidad Politécnica de Madrid

Madrid, Spain
rgarcia@fi.upm.es

Asunción Gómez-Pérez
Ontology Engineering Group

ETSI Informáticos
Universidad Politécnica de Madrid

Madrid, Spain
asun@fi.upm.es

Abstract—Privacy protection in published data sets is of crucial
importance, and anonymisation is one well-known technique for
privacy protection that has been successfully used in practice.
However, existing anonymisation frameworks have in mind spe-
cific data structures (i.e., tabular data) and, because of this, these
frameworks are difficult to apply in the case of RDF data. This
paper presents an RDF anonymisation framework that has been
developed to address the particularities of the RDF specification.
Such framework includes an anonymisation model for RDF data,
a set of anonymisation operations for the implementation of such
model, and a metric for measuring precision and distortion of
anonymised RDF data. Furthermore, this paper presents a use
case of the proposed RDF anonymisation framework.

I. INTRODUCTION

Large quantitiesof data are gathered and published every
day by public and private companies and institutions. One key
aspect of data publishing is the protection of the privacy of
entities of interest (e.g., individuals), and failure to ensure the
privacy can not only harm the reputation of a publisher, but can
also compromise the privacy of entities of interest by making
their private information available to third parties.

Ensuring the privacy of data while preserving data usefulness
is not a simple task. Usually, removal of the data that explicitly
identify the entity of interest, such as social security numbers
or telephone numbers, does not alone ensure privacy since the
remaining data can often be linked to other published data and
used for identification purposes [1]. For example, Sweeney
showed in an experiment that 87% of the U.S. population is
likely to be uniquely identified based only on a combination
of a ZIP code, gender, and date of birth [2].

Anonymisation is one technique for privacy protection that
has been successfully applied in practice, and a number of
anonymisation frameworks have been developed to this date.
However, these frameworks are developed having in mind
specific data structures, such as tabular data, and they are
difficult to apply for the anonymisation of data that have
different structures and formats. This is the case of RDF
(Resource Description Framework) [3] data.

With the increasing amount of RDF data being published in
the Web (usually as Linked Data), privacy issues are expected
to emerge. Furthermore, privacy concerns hinder the publication
of Linked Data in different sectors (e.g., healthcare, energy)

DOI reference number: 10.18293/SEKE2015-167

where the re-identification of individuals or other entities of
interest can lead to social or legal issues.

This paper presents a framework for the anonymisation of
RDF data. Such framework describes an anonymisation model
for RDF data called k-RDFanonymity, as well as anonymisation
operations for the implementation of the mentioned model and a
metric for measuring the precision and distortion of anonymised
RDF data. Furthermore, this paper also presents a use case of
the presented RDF anonymisation framework.

The reminder of this paper is organised as follows. Section II
describes related work, while Section III presents the framework
for the anonymisation of RDF data. Section IV presents a use
case of such framework and, finally, Section V draws some
conclusions and includes ideas for future work.

II. RELATED WORK AND BACKGROUND

This section gives a brief description of related work. First,
we describe the foundations of data anonymisation frameworks.
Afterwards, we describe RDF and its particularities that are of
interest for data anonymisation.

A. Data Anonymisation Frameworks

Anonymisation is a widely accepted and used framework
for privacy-preserving data publishing that aims to ensure the
privacy of data and balance data analysis and utility [4].

In privacy-preserving data publishing, there are several data
attributes of the entity of interest that are taken into account:
• Explicit identifiers are attributes that explicitly identify

the entity of interest (e.g., identifier of a person, property
number of a building).

• Quasi identifiers (QIDs) are sets of attributes that can
potentially identify the entity of interest. Usually, those
are the attributes whose values can be found in other data
sets and that can be then used for identification purposes (it
is important to note that each attribute in a quasi identifier
does not alone identify an entity of interest).

• Sensitive attributes are those attributes that describe some
sensitive information about the entity of interest (e.g.,
salary, disease).

• Non-sensitive attributes are all attributes which do not
belong to any of the previous categories.

Explicit identifiers, QIDs, and sensitive attributes can be
considered to be private attributes of the entity of interest.

646

Non-sensitive attributes are not considered to be a privacy
issue.

To illustrate these attributes, we present an example of a
medical records with data about patients and their diseases
(Table I). There are no definitive guidelines on how to properly
classify attributes, so the classification can be a difficult
task. The attributes present in our example data set can be
classified as follows: Id is an explicit identifier since it can
explicitly identify the patient that a record belongs to; a set
of attributes {Job, Age} is a quasi identifier (QID) since it can
be expected that the same set of attributes can appear in some
other data set that can also contain additional data (but not
diseases) that are sufficient for patient identification (e.g., name
and surename); Disease is a sensitive attribute since it gives
sensitive information about patients.

TABLE I: Example of patients’ medical records data.

Id Job Age Disease
1872 Teacher 24 HIV
1352 Lawyer 28 Flu
1453 Musician 32 Flu
1389 Writer 35 HIV
1463 Writer 36 HIV
1305 Lawyer 22 Flu
1435 Teacher 25 HIV
1058 Musician 38 Flu

Data anonymisation implies that explicit identifiers must
be removed from the data set [4] and that the original
QIDs are anonymised. Different anonymisation models have
been developed having in mind tabular data structures (e.g.,
k-anonymity [5], l-diversity [6]), and these anonymisation
models can be implemented by applying various anonymisation
operations [4]:
• Suppression is a technique in which one or more values

in a data set are removed or replaced with some special
value, while removed or replaced values are not disclosed.

• Generalisation is a technique that transforms values into
more general values, i,e., into new values that are less
precise but still consistent with the original ones.

• Anatomisation implies that the relationship between the
quasi identifiers and the sensitive values is removed, while
the data is not modified. This is achieved by separating the
data related to quasi identifiers from the data containing
sensitive values and by providing the relationship between
the two data sets by introducing an identifier.

• Perturbation is a technique in which the original data
are replaced with noise or synthetic data in such a way
that statistical analyses based on the perturbed data do
not significantly differ from the statistical analysis of the
original data [4]. Unlike previous techniques, perturbation
does not preserve the truthfulness of the data and the
perturbed data do not correspond to real world entities.

Anonymisation models and anonymisation operations are
integral parts of a data anonymisation framework. By applying
anonymisation operations, an anonymisation model is imple-

mented and thus, the privacy of entities of interest in a data
set is ensured. Furthermore, a data anonymisation framework
specifies various metrics for measuring the distortion and
usefulness of anonymised data (e.g., precision and minimal
distortion [7], [8]).

B. Anonymisation in Resource Description Framework

RDF is a specification for describing resources on the Web,
where resources can be anything including documents, objects,
people, or abstract concepts [3]. Unlike in tabular data formats
(e.g., databases), where existing anonymisation frameworks
have been successfully applied to this date, data in RDF are
structured in a different manner as a graph.

The key concept in RDF is an RDF statement (s,p,o), also
called an RDF triple, which consists of a subject, a predicate,
and an object, and which encodes a claim about the world.
Each RDF triple implies the existence of a relationship that
holds between two resources denoted by a subject and an
object. Relationships in RDF triples are denoted by a predicate,
also called a property, and are directed from subject to object.

While in tabular data formats attribute values of entities
of interest are stored in columns, attribute values of entities
of interest described in RDF appear as resources, either as
IRIs or as literals, that describe these entities of interest. In
an RDF graph, literals appear only as objects, while IRIs
can appear in several places: as subjects, as predicates, or as
objects. Therefore, attribute values of entities of interest can
have different forms and can appear in different places in the
RDF descriptions of these entities of interest.

In an RDF graph, resources can be classified according
to categories specified by classes that belong to a specific
vocabulary. Vocabularies are used in combination with RDF
for providing semantic information about resources, and are
defined using a specific language (e.g., RDF Schema or OWL).
Relationships between an RDF resource and its class are defined
through an rdf:type property. These relationships also describe
resources in RDF.

The particularities of the RDF model imply difficulties in the
direct application of existing anonymisation frameworks, which
were developed having in mind different data structures and
formats. Therefore, in order to successfully anonymise RDF
data, anonymisation frameworks that address the particularities
of RDF are needed. Although some effort in this direction
exists [9], it addresses only generalisation and suppression, and
it does not include any anonymisation metrics.

III. A FRAMEWORK FOR THE ANONYMISATION OF RDF
DATA

This section describes a framework for the anonymisation
of RDF data. Such framework is based on existing anonymi-
sation frameworks and has been specifically defined to take
into account the particularities of the RDF specification. It
consists of an anonymisation model, of a set of anonymisation
operations, and of an anonymisation metric adapted to fit the
RDF specification.

647

A. Privacy-related Entity Attributes in RDF

One characteristic of RDF, which is of relevance for the
problem of anonymisation, is that entity attribute values can
appear in different places and forms in the description of
resources that represent entities of interest. Because of this,
privacy-related attributes in RDF are more difficult to identify
and addressing the privacy of RDF data can be a complex task.

In the RDF description of entities of interest, values of
privacy-related entity attributes (explicit identifiers, quasi
identifiers, and sensitive attributes) can appear in:
• Resource IRI. Values for all three types of attributes can

appear in the IRI of a resource, exposing them to humans.
• Datatype property value. Values for all three types of

attributes can appear as literals in datatype property values
in a resource description (object in a statement).

• Object property value. Values for all three types of
attributes can appear as IRIs in object property values in
a resource description (object in a statement).

• Property IRI. Values for attributes that belong to quasi
identifiers and for sensitive attributes can appear in the IRI
of a property in a resource description. Having explicit
identifiers appear as property IRIs is not expected.

• Related resource. Values for all three types of attributes
can also appear in more complex scenarios in the de-
scription of resources that are related to resources that
represent entities of interest through RDF properties. In
this case, values can appear in all scenarios presented
above: in resource IRI, datatype property value, object
property value, property IRI, or another related resource.

Next, we present an example of the previous scenarios1 (Listing
1) in which the first record from Table I is described in RDF
using the Turtle syntax. In this example, the identifier appears
in the resource IRI, the age appears as a datatype property
value, the job appears as an object property value, and the
disease appears as a property IRI.

1 <http://example.com/resource/Person/1872> a foaf:Person;
2 foaf:age "24"; ex:hasJob ex:Teacher; ex:hasHIV "true".

Listing 1: Example of a patient’s medical record in RDF.

B. RDF Anonymisation Model

This section presents an anonymisation model for RDF,
called k-RDFanonymity. This model is inspired by the k-
anonymity model [1], [5] developed by Samarati and Sweeney
for the anonymisation of tabular data.

Definition 1. A subgraph Gr of an RDF graph G (Gr ∈ G)
describes an entity of interest represented by a resource r if Gr

is the union of all the subgraphs of G that include information
about attributes that describe the entity of interest represented
by r, regardless of whether r is the subject or the object of
statements in these subgraphs.

Definition 2 (Equivalence). Graphs Gr1 and Gr2 are equiv-
alent (Gr1 ≡ Gr2) ⇔ ∀(s6=r1,p,o6=r1) ∈ Gr1 ∃(s6=r2,p,o6=r2)

1In the sake of simplicity, we omit prefix and datatype declarations in all
the examples.

∈ Gr2 ∧ ∀(r1,p,o) ∈ Gr1 ∃(r2,p,o) ∈ Gr2 ∧ ∀(s,p,r1) ∈ Gr1

∃(s,p,r2) ∈ Gr2 .
Definition 3. In an RDF graph G, with QID(G) we denote

a set of QID attributes that describe any entity of interest
represented by a resource in G.

Definition 4. A subgraph Gr of an RDF graph G describes
an entity of interest represented by a resource r with respect
to QID(G), written Gr(QID(G)), if Gr includes information
about all QID attributes.

Definition 5 (k-RDFanonymity). Let I be a set of resources
that represent entities of interest described in an RDF graph
G, and let QID(G) be a set of QID attributes that describe
these entities of interest. kRDF-anonymity in G is satisfied
⇔ ∀Gr(QID(G)) ∈ G, r ∈ I, ∃rs ∈ I, s ∈ [1,k-1] ⇒
∀Grs(QID(G)) ∈ G, Grs ≡ Gr. An RDF graph that satisfies
this premised is called k-RDFanonymous.

In a k-RDFanonymous graph, each resource r that represents
an entity of interest cannot be distinguished from k-1 other
resources that represent entities of interest in a graph with
respect to QID(G). Therefore, the probability of identifying a
specific resource based on resource descriptions with respect
to QID(G) is 1/k.

C. RDF Anonymisation Operations

This section presents different anonymisation operations that
can be used for implementing the k-RDFanonymity model.
These operations are based on the anonymisation operations
presented in Section II-A and address private attributes, i.e.,
explicit identifiers, quasi identifiers, and sensitive attributes.

1) Generalisation and Suppression: In the context of RDF,
suppression denotes that a resource (i.e., an IRI or literal) is
completely removed or replaced with some specific resource
while the original replaced resource is not disclosed in any way.
Generalisation denotes that the original resource is replaced
with other resource that describes a more general concept.

The starting point of generalisation and suppression is a
domain generalisation hierarchy of a an attribute, in which the
elements of the hierarchy are resources that represent attribute
values (i.e., that include information about that attribute). Figure
1 shows generalisation hierarchies for the Age attribute (literals),
the Job attribute (IRIs representing a class from a specific
vocabulary), and the Disease attribute (properties).

While generalisation implies the use of more general
resources from a hierarchy (e.g., ex:Job instead of ex:Musician),
suppression implies the complete removal of a resource or the
use of the resource at the top of the hierarchy (e.g., owl:Thing
instead of ex:Musician).

Since resources that include information about explicit
identifiers unequivocally identify entities of interest, these
resources have to be suppressed, while resources that include
information about QID and sensitive attributes can be gener-
alised or suppressed, depending on the concrete scenario. Next,
we describe generalisation and suppression through different
scenarios depending on the position in which resources that
include information about explicit identifiers, QID and sensitive

648

“28”	

“2x”	

“xx”	

“35”	

“3x”	

ex:Teacher	
 ex:Lawyer	

ex:Professional	

ex:Job	

ex:Musician	
 ex:Writer	

ex:ArAst	

	
 owl:Thing	

“24”	
 “32”	

owl:topDataProperty	

ex:hasHIV	

ex:hasDisease	

rdfs:subClassOf	

rdfs:subClassOf	

rdfs:subClassOf	

rdfs:subPropertyOf	

rdfs:subPropertyOf	

Fig. 1: Generalisation hierarchies for Age (left), Job (center) and Disease (right).

attributes appear in the description of a resource that represents
an entity of interest (Section III-A):

• Resource IRI. If a resource that includes information about
an explicit identifier appears in the IRI of the resource
that represents an entity of interest, it cannot be simply
removed from the graph because it would result in the
loss of connections between nodes. Therefore, it has to be
suppressed by replacing the original IRI with another one.
This can be achieved through: i) simple replacement of the
IRI with some arbitrary IRI. In this case, the uniqueness
of each IRI has to be ensured; ii) encoding of the IRI by
using encryption or hashing. In this case, the encryption
or hashing function should ensure that the original IRI
cannot be easily recovered, and that new IRI is unique;
or iii) replacing the IRI node with a blank node. In this
case, the original resource that includes information about
the explicit identifier is suppressed and the original IRI
is not disclosed.
Resources that include information about QID and sen-
sitive attributes that appear in the IRIs of resources
that represent entities of interest can be addressed by
generalising or suppressing the original IRIs, using the
previously defined domain generalisation hierarchies.
It is important to note that generalisation and suppression
of IRIs breaks the uniqueness of the IRIs in a graph. This
can be solved by introducing additional unique identifier
values as part of the IRI of each resource.

• Property values. Resources that include information about
explicit identifiers that appear either as datatype or
as object property values are addressed by complete
suppression, i.e., by removing property values from the
graph. Resources that include information about QID and
sensitive attributes that appear either as datatype or as
object property values can be addressed by generalising or
suppressing the original resources that appear as property
values. In some cases, this operation has to be supported
by the vocabulary design.

• Property IRI. Resources that include information about
QID and sensitive attributes that appear as property IRIs
can be addressed by generalisation through the use of
super-properties.

Listing 2 presents an example of applying generalisation
and suppression on the RDF data presented in Listing 1. The
resource that includes information about the explicit identifier is

addressed by suppressing the original IRI with another one. Age
(which is described as a datatype property value and includes
information about a QID attribute), job (which is described as
an object property value and also includes information about a
QID attribute), and disease (which is described as a property
IRI and includes information about a sensitive attribute) are
addressed by generalising by one level in the generalisation
hierarchy.

1 <http://example.com/resource/Person/Per01> a foaf:Person;
2 foaf:age "2x"; ex:hasJob ex:Professional;
3 ex:hasDisease "true".

Listing 2: Example of generalisation and suppression in RDF.

Since generalisation reduces the semantic precision of
information and since for an RDF graph G there can be multiple
generalisations, different generalisations of an RDF graph G are
characterised by different semantic precisions of information.

Definition 7 (Graph generalisation). An RDF graph Gg is
a generalisation of an RDF graph G with respect to QID(G),
written Gg(QID(G)) ≥ G(QID(G)), if some or all resources
that include information about QID attributes in a graph G are
generalised.

Definition 8 (kRDF-minimal generalisation). Let an
RDF graph Gg be a generalisation of an RDF graph G
with respect to QID(G). Gg(QID(G)) is said to be the k-
RDFminimal generalisation of an RDF graph G with respect
to QID(G) ⇔ Gg(QID(G)) is a k-RDFanonymous graph ∧
∀Gi(QID(G)): Gi(QID(G)) ≥ G(QID(G)), Gg(QID(G)) ≥
Gi(QID(G)), Gi(QID(G)) is a k-RDFanonymous graph ⇒
Gg(QID(G)) ≡ Gi(QID(G)).

2) Anatomisation: In the context of RDF, anatomisation
implies that resources that include information about sensitive
attributes are not directly connected to resources ri that
represent entities of interest. Instead, resources that include
information about sensitive attributes are grouped into several
groups which describe how many resources ri belong to each
group. All resources ri are then connected to these groups.
This way, for each resource ri it is known to which group
it belongs to and, hence, it is only known with how many
other resources that represent entities of interest ri shares the
sensitive information from a particular group.

Listing 3 shows an example of applying anatomisation on
the RDF data presented in Listing 1.

From the previously described graph, for any disease group
there is only information about how many patients have each

649

disease. Therefore, for any resource (patient) it is not explicitly
known which disease is associated with it.

1 <http://example.com/resource/Person/Per01> a foaf:Person;
2 foaf:age "24"; ex:hasJob ex:Teacher;
3 ex:inGroup <http://example.com/resource/Group/01>.
4 <http://example.com/resource/Group/01> a ex:DiseaseGroup;
5 ex:hasDisease <http://example.com/resource/Disease/X>;
6 ex:hasDisease <http://example.com/resource/Disease/Y>.
7 <http://example.com/resource/Disease/X> a ex:Disease;
8 ex:name "HIV"; ex:cardinality "4".
9 <http://example.com/resource/Disease/Y> a ex:Disease;

10 ex:name "Flu"; ex:cardinality "4".

Listing 3: Example of anatomisation in RDF.

3) Perturbation: In the context of RDF, perturbation is an
operation which replaces original resources in such a way
that the semantics of resources affected is also changed, while
preserving the statistical information of the original RDF graph.
This can be achieved by: i) adding noise to the RDF data in
such a way that the semantics of data is changed; ii) swapping
resources by assigning to a resource that represents an entity of
interest the description of some other resource that represents
another entity of interest; or iii) generating synthetic resources.

Listing 4 presents an example of applying perturbation on
the RDF data presented in Listing 1. In this example, noise has
been introduced to the resource describing age, while resources
describing job and disease have been swapped.

1 <http://example.com/resource/Person/Per01> a foaf:Person;
2 foaf:age "22"; ex:hasJob ex:Musician; ex:hasFlu "true".

Listing 4: Example of perturbation in RDF.

D. RDF Information Metrics

In the situation where for a given RDF graph there exist
multiple k-RDFanonymous graphs, the decision on which k-
RDFanonymous graph is the best to use for privacy protection
can be a difficult task. In order to provide information that
can help in making this decision, we have defined RDFprec,
a precision metric of a k-RDFanonymous graph. This metric
is based on the precision metric for tabular data developed
by Sweeney [8] and can be used for defining the minimal
distortion of an RDF graph.

Definition 9. With DGHai
we denote a domain generalisa-

tion hierarchy of an attribute ai which describes an entity of
interest represented by a resource. With |DGHai | we denote
the number of levels in DGHai , where the lowest level in
a hierarchy is level 0. With vij we denote a resource which
includes information about the value of an attribute ai, and
which describes an entity of interest represented by a resource
rj . With h(vij) we denote a height of a resource vij in DGHai

,
where a resource vij at the lowest level in the hierarchy has
height 0. With |r| we denote the number of resources r that
represent entities of interest in a graph G, i.e., those resources
that have to be anonymised.

An example of a domain generalisation hierarchy is shown on
Figure 1. In this example, in the case of a resource that describes
age there are 2 levels, while in the case of a resource that

describes jobs there are 3 levels in the domain generalisation
hierarchy. Resource “2x” is on the first level in the hierarchy.

Definition 10 (RDFprec). Let G be an RDF graph, Gg be
a generalisation of G, vij be a generalised resource from Gg

which includes information about the value of an attribute
ai and which describes an entity of interest represented by a
resource rj , DGHai

be the domain generalisation hierarchy
of an attribute ai, na be the number of generalised attributes,
and mi be the number of entities of interest represented by
resources rj in which a resource that includes information
about an attribute ai is generalised. The precision of Gg , written
RDFprec(Gg) is defined with the following formula:

RDFprec(Gg) = 1−

∑na

i=1

∑mi

j=1
h(vij)
|DGHai

|

|r| ∗ na

If all resources in an RDF graph Gg are generalised to
the highest level in a domain generalisation hierarchy, each
h(vij) = |DGHai

| and RDFprec(Gg) = 0. Contrary, if there
are no resources that are generalised, each h(vij) = 0 and the
RDFprec(Gg) = 1.

As an example, precision of the example RDF graph G
presented in Listing 2, which consists of only one resource
that represents an entity of interest, with respect to the domain
generalisation hierarchy on Figure 1 is

RDFprec(G) = 1− 1/2 + 1/3 + 1/2

1 ∗ 3
=

5

9
Definition 11 - RDF minimal distortion. Let an RDF graph

Gg be a generalisation of an RDF graph G with respect to
QID(G). Gg(QID(G)) is said to be the RDFminimal distortion
of an RDF graph G with respect to QID(G) ⇔ Gg(QID(G))
is a k-RDFanonymous graph ∧ ∀Gi(QID(G)): RDFprec(G) ≥
RDFprec(Gi), RDFprec(Gi) ≥ RDFprec(Gg), Gi(QID(G)) is a
k-RDFanonymous graph ⇒ Gg(QID(G)) ≡ Gi(QID(G)).

IV. USE OF THE RDF ANONYMISATION FRAMEWORK

This section presents a use case of the RDF anonymisation
framework presented in this paper. In this use case, we examine
different generalisations of an RDF graph G that describes the
medical records presented in Table I, based on the domain
generalisation hierarchies presented in Figure 1.

For graph G six different suppressions and five different
generalisations are possible. In this example, we focus only on
generalisations that are addressed through a generalisation of
the QID attributes, which include Job and Age.

The original RDF graph G with no generalisation, written
G[0,0], describes the values for the Job and Age attributes at
the lowest (zero) level in the domain generalisation hierarchies,
and corresponds to the data in Table I. In this case, the k
constraint is 0 and RDFprec(G[0,0]) = 1. Listing 5 shows the
excerpt of the original graph G[0,0] which includes information
about teachers and lawyers.

Possible generalisations of graph G are: G[0,1] (meaning
Job is not generalised while Age is generalised by one level),
G[1,0], G[1,1], G[2,0], and G[2,1]. Graphs G[0,1], G[1,1], and G[2,1]

are k-RDFanonymous for k=2, while G[1,0] and G[2,0] are not
k-RDFanonymous since in these cases k = 0.

650

1 <http://example.com/resource/Person/Per01> a foaf:Person;
2 foaf:age "24"; ex:hasJob ex:Teacher; ex:hasHIV "true".
3 <http://example.com/resource/Person/Per02> a foaf:Person;
4 foaf:age "28"; ex:hasJob ex:Lawyer; ex:hasFlu "true".
5 <http://example.com/resource/Person/Per06> a foaf:Person;
6 foaf:age "22"; ex:hasJob ex:Lawyer; ex:hasFlu "true".
7 <http://example.com/resource/Person/Per07> a foaf:Person;
8 foaf:age "25"; ex:hasJob ex:Teacher; ex:hasHIV "true".

Listing 5: Excerpt of the original graph with no generalisation.

Listing 6 presents the excerpt of the generalisation graph
G[0,1] related to the excerpt presented in Listing 5. We can
observe that, for any given combination of resources that
include information about the Job and Age attributes, there are
two resources that represent patients that are described with
that same combination. For example, Per01 and Per07 are both
teachers that are between 20 and 30 years old, and they both
have HIV. Similarly, Per02 and Per06 are both lawyers that
are between 20 and 30 years old, and they both have flu.

1 <http://example.com/resource/Person/Per01> a foaf:Person;
2 foaf:age "2x"; ex:hasJob ex:Teacher; ex:hasHIV "true".
3 <http://example.com/resource/Person/Per02> a foaf:Person;
4 foaf:age "2x"; ex:hasJob ex:Lawyer; ex:hasFlu "true".
5 <http://example.com/resource/Person/Per06> a foaf:Person;
6 foaf:age "2x"; ex:hasJob ex:Lawyer; ex:hasFlu "true".
7 <http://example.com/resource/Person/Per07> a foaf:Person;
8 foaf:age "2x"; ex:hasJob ex:Teacher; ex:hasHIV "true".

Listing 6: Excerpt of a generalisation of the original graph – G[0,1].

Among the three 2-RDFanonymous graphs, G[0,1] generalises
Age by one level, G[1,1] generalises both Job and Age by one
level, and G[2,1] generalises Job by two levels and Age by one
level. Furthermore, since G[1,1] is generalisation of G[0,1], and
G[2,1] is a generalisation of both G[1,1] and G[0,1], G[0,1] is the
k-RDFminimal generalisation of G.

Since there are three generalisation graphs that are 2-
RDFanonymous, by calculating RDFprec for each graph it can
be determined which of the three graphs has minimal distortion.
In this use case, RDFprec(G[0,1]) = 0.75, RDFprec(G[1,1]) =
0.58, and RDFprec(G[2,1]) = 0.42. Therefore, the RDFminimal
distortion of a graph G that satisfies 2-RDFanonymity is G[0,1].

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a framework for the anonymisation
of RDF data that addresses the particularities of the RDF
specification and can help in preserving the privacy of entities
of interest in RDF data sets. Such framework describes an
anonymisation model, several anonymisation operations, and
an anonymisation metric.

The anonymisation model presented in this paper helps in
preserving the privacy of RDF data sets. However, in order to
ensure the maximum possible protection of privacy in RDF data
by implementing such anonymisation model, it is first necessary
to correctly identify resources that include information about
QID and sensitive attributes, which is a difficult task. In
those cases when these resources are not correctly identified,
anonymisation can lead to an overprotection of the RDF data

(i.e., lowering the precision of the anonymised data) or to a
failure in ensuring the privacy of the RDF data.

The anonymisation model presented in this paper, although it
ensures the protection of privacy to a certain level, is vulnerable
to different kinds of attacks, such as in those cases when the
order of entities of interest can compromise their privacy, or
when subsequent releases of the same private information take
place. Therefore, future work includes additional formalisations
and recommendations on the implementation of the model to
address those potential issues. These formalisations can be
based on future case studies that will investigate the strength
of the anonymisation model.

The framework for the anonymisation of RDF data described
in this paper presents an initial effort towards the privacy
protection of RDF data. Therefore, one line of future work
consists of enriching the anonymisation framework described
in this paper with other anonymisation models, besides the
one presented in this paper, which can be based on the already
existing set of models developed for tabular data. Furthermore,
future work consists of including into the RDF anonymisation
framework additional anonymisation metrics, and development
of anonymisation algorithms. A variety of anonymisation mod-
els, metrics, and algorithms can help in achieving better privacy
protection and will provide a comprehensive anonymisation
framework for the privacy protection of RDF data.

ACKNOWLEDGMENTS

This work is supported by the 4V project (TIN2013-46238-
C4-2-R), funded by the Spanish Ministry of Economy and
Competitiveness, and by the FPU grant (FPU2012/04084) of
the Spanish Ministry of Education, Culture and Sport.

REFERENCES

[1] L. Sweeney, “k-Anonymity: A model for protecting privacy,” International
Journal of Uncertainty, Fuzziness and Knowledge-based Systems, vol. 10,
pp. 557–570, 2002.

[2] L. Sweeney, “Uniqueness of simple demographics in the U.S.” Carnegie
Mellon University, School of Computer Science, Data Privacy Laboratory,
Tech. Rep., 2000.

[3] G. Klyne, J. J. Caroll, and B. McBride, “RDF 1.1 Concepts and Abstract
Syntax. Available online: http://www.w3.org/TR/rdf11-concepts/. Last
retrieved on 10.12.2014.” World Wide Web Consortium, Tech. Rep., 2014.

[4] B. C.M. Fung, K. Wang, A. Wai-Chee Fu, and P. S. Yu, Introduction to
Privacy-Preserving Data Publishing: Concepts and Techniques. Chapman
& Hall/CRC, 2010.

[5] P. Samaratiy and L. Sweeney, “Protecting privacy when disclosing
information: k-anonymity and its enforcement through generalization
and suppression,” SRI International, Tech. Rep., March. 1998.

[6] M. Ashwin, J. Gehrke, D. Kifer, and M. Venkitasubramaniam, “l-
diversity: Privacy beyond k-anonymity,” in Proceedings of the 22nd IEEE
International Conference on Data Engineering (ICDE), Atlanta, GA, USA,
pp. 24–35, 2006.

[7] P. Samaratiy, “Protecting respondents’ identities in microdata release,”
IEEE Transactions on Knowledge and Data Engineering, vol. 13, pp.
1010–1027, 2001.

[8] L. Sweeney, “Achieving k-anonymity privacy protection using generaliza-
tion and suppression,” International Journal on Uncertainty, Fuzziness
and Knowledge-based Systems, vol. 10, pp. 571–588, 2002.

[9] A. Gkoulalas-Divanis, S. Kotoulas, L. Vanessa, and M. L. Sbodio,
“Guaranteeing anonymity in Linked Data graphs,” International Patent
PCT/US2014/033 261, 2014.

651

An Information Retrieval Model using Query
Expansion based on Ontologies in the Computer

Science Domain
Bonnie G. Carranza Chávez∗, Andrés Melgar∗†

∗ Grupo de Reconocimiento de Patrones e Inteligencia Artificial Aplicada,
Pontificia Universidad Católica del Perú, Lima, Perú

† Sección de Ingenierı́a Informática, Departamento de Ingenierı́a,
Pontificia Universidad Católica del Perú, Lima, Perú

Abstract—This paper presents a model that aims to support
knowledge retrieval stored in digital repositories through domain
ontologies. In this model the ontology contains concepts and
relationships which describe a specific part of the world. The
model mechanisms aim to reduce the impact of some of the main
obstacles identified in the Information Retrieval process such as
user specific characteristics, natural language characteristics or
retrieval systems limitations. As a result the user, by providing
a query to the system, can retrieve relevant information which
better meet his information need. A prototype was developed
to demonstrate the feasibility of the model using queries in the
computer science domain.

Index Terms—information retrieval, query expansion, ontology

I. INTRODUCTION

In the past years, we have been witness to an exponential
growth of digital information [1] which was triggered by the
continuous development of IT. From a user’s point of view,
the traditional way to meet his information need would be
performing an exhaustive review of contents from physical and
digital documents [2]. However, this process clearly demands
a considerable investment of time and effort, for that reason
this alternative may not be possible for many users.

In order to lighten this process, Information Retrieval Sys-
tems (IR systems) progressively emerged [3]. These systems
represented a tool for, in an automated way, retrieving useful
information corresponding to the user’s query, which at the
same time lightened to a certain degree the difficulties of
the manual exhaustive traditional search process [4]. How-
ever, nowadays these systems not necessarily present an ideal
behavior. In first place, since they are not always able to
effectively interpret what users want and need, it is not unusual
they provide irrelevant documents. In second place, due to
intrinsic characteristics of Natural Language (NL) such as:
words ambiguity, context dependencies, the fact that a word
may have different domain-specific meanings and the fact
that a concept may be expressed by different words. As a
result, it is common that documents relevant for the user are
omitted, or that excessive information that does not meet user
requirements is delivered.

In this paper we propose an alternative to the retrieval
information problem so that retrieved documents are to a
certain degree more relevant. This retrieval is treated under the

Query Expansion (QE) approach for which knowledge models
such as ontologies are used. In specific, we developed an
ontology in the Computer Science (CS) domain in the scope of
a university curricula and a prototype to test the model. After
analyzing the results of tests, it was concluded the integration
of components succeeded on retrieving information relevant
for the user and overcoming to a degree some of the obstacles
identified for the retrieval process.

II. LITERATURE REVIEW

A. Information Retrieval

IR can be understood as the scientific discipline in charge of
the analysis, design and implementation of computer systems
which deal with the representation, storage, organization and
access to non-structured information, and can provide answers
to user queries [5]. The retrieved information which from the
user point of view meet the stated query is called “relevant”.
The IR discipline focus on the maximization of retrieved
relevant documents while at the same time minimizing the
retrieval of non-relevant documents. These objectives can be
quantified through the use of precision (ratio of the number of
relevant documents retrieved to the total number of documents
retrieved) and recall (ratio of the relevant documents retrieved
to the total number of relevant documents) metrics [6].

B. Query expansion

Usually, users tend to formulate short queries instead of
carefully built ones. Such short queries lack of words that if
were provided, could be very useful search terms [7]. The QE
goal is to add new meaningful terms to the initial query [8].
For example, for a query stating Pilas which is an ambiguous
plural-form Spanish word that may refer to batteries, cells,
heaps and stacks, adding the word Baterias (batteries) to the
query would be meaningful because it would help the system
to identify the domain the user is trying to query about. This
addition would represent a QE.

C. Ontologies in IR

A conceptualization is an abstract, simplified view of the
world. An ontology is an explicit specification of a concep-
tualization [9]. It consists of entities, attributes, relationship,

(DOI reference number: 10.18293/SEKE2015-002)

652

and axioms in a human understandable and machine readable
format [10]. In recent years, ontologies have been adopted
in many business and scientific communities as a way to
share, reuse and process domain knowledge. For example,
an ontology in the animal diseases domain developed by a
medical expert would represent a base of knowledge which
could be used by software developers to create applications to
diagnose an animal illness from the symptoms [11]. Ontologies
are increasingly being used in IR research as knowledge to
support semantic search [12], [13]. For an ontology based IR
system, when the user inputs the QE, the system tries to insert
the ontology knowledge to enhance the QE in order to increase
the probability of relevancy [10]. In [14] authors discuss that
it isn’t optimal the using of general purpose ontologies like
WordNet for specific domains because it could lead to the
losing of precision. For that reason, they introduced a QE
algorithm for medical IR using concepts from the MeSH
ontology. A different approach was proposed in [10], where
the author introduced ontologies into QE and made a deep use
of semantic relations of concepts to expand query keywords
and to make the retrieval results more accurate. In [15]
authors used automated QE with the support of ontologies. The
objective of their QE in data integration proposal is to extend
the results of a given query in a semantically meaningful way.
They focused in the integration of different sources, and over
this unification performing the QE.

III. PROPOSED MODEL FOR INFORMATION RETRIEVAL

The proposed model (see figure 1) was designed to facilitate
IR using both ontologies and user information as input for the
QE. It consists of 5 layers with a total of 10 components:

• Visualization Layer: is used to get the input from user
and to show the outputs.

• Support Layer: contains support components in charge
of coordinating all interactions and preparing the query
for the expansion.

• Retrieval Layer:retrieves the documents based on the
expanded query and the tagged documents.

• Expansion Layer: in charge of coordinating the overall
QE process. This component has two sub-components,
the Equivalence Handler and the Ambiguity
Handler.

• Data Access Layer: retrieves information from the ontol-
ogy, the documents repository and the user information
DB.

A. Preprocessing Handler

This component aims to reduce the difficulties determined
by the difference between how is knowledge stated in doc-
uments and how it was formulated in the query. In order
to reduce some of the blurring effects of NL characteristics
over the retrieval effectiveness two mechanisms are proposed.
The first one, the stopwords removal mechanism (SRM),
will perform a removal of those words which do not make
a significant contribution of relevant concepts. The second
one, the lemmatization mechanism (LM), will support the
simplification of both, the query and the documents tags, in

Expansion

Handler

(Language)

Preprocessing Handler

User Information

Manager

Information

Retrieval Engine

VISUALIZATION

LAYER

RETRIEVAL

LAYER

SUPPORT

LAYER

EXPANSION

LAYER

Domain Knowledge

Repository

DATA ACCESS

LAYER

Documents

Repository

Computer Science

Curricula Ontology

Computer Science

Evaluations

Database

Tuition Enrollment

Database

Equivalence

Handler

1

3
2

4

5 6

7

8User Query / Student ID Ranked documents

Expanded Query

Preprocessed

Query & User

Information

Student

 ID

User

Query

Ambiguity Handler

User Interface

Orchestator

Fig. 1. Model architecture

Start

Evaluate whether

analyzed token is

ambiguous

Retrieve from the

ontology all literal

coincidences of the

ambiguous term

Rank according

to similarity

values

End

Calculate for each

coincidence a

“similarity” value

Fig. 2. General flow of the disambiguation mechanism

order to reduce different representations of a same concept to
a single base form.

B. Expansion Handler

This component is in charge of performing the search,
selection and addition of significant new terms to the query.
It is supported by two sub-components which aim at dealing
with two different NL features.

1) Equivalence Handler: Given that a same concept can be
expressed by different words, this component aims to enrich
the query by adding different but semantically equivalent
words. Has as input the resulting terms from the preprocessed
query. In first place, a list of nodes which does not contain
the analyzed term will be retrieved.Then, a search of that term
within the synonyms of the retrieved nodes will be performed,
and if the term is found in the synonyms, both, synonyms and
main concept, will be added to the expanded query.

2) Ambiguity Handler: This component will allow to iden-
tify the related concept of one or more words considered
ambiguous within a knowledge domain. A domain ontology
and the other supplementary query terms will support the
identification of possible concepts to which the ambiguous
term in analysis could be making reference. Figure 2 shows
the general flow for the proposed mechanism, which was
designed adapted from the general flow of the personal name
disambiguation model [16]. The similarity computing consists
of a recursive evaluation of the ontology nodes, and at each
level evaluating if the supplementary query term is found in653

the analyzed node or in its equivalent (i.e., synonym nodes).
For cases when the retrieved coincidence itself contains the
supplementary term, the similarity is maximum (defined as 0),
otherwise, the evaluation will continue in the hierarchically
superior nodes which have a relationship with the analyzed
(ambiguous term-coincident) node. The similarity value is
defined as CONSTANTEREC ∗ LEV EL, where level is
the recursiveness level where the supplementary term was
found. The more distant levels will be considered as less
similar, and this will represent the end of the similarity
calculation. Another stop condition is set to when reaching
a maximum number of recursions without having found a
coincidence of the supplementary term at any analyzed level.
Finally, a ranking will be established based on the calculated
scores. The top ranked term (similarity nearest to 0) represent
the most accurate concept which will be added to the expanded
query. The purpose of the CONSTANTEREC constant will
be described in the User Information Manager section.

C. Domain Knowledge repository

In order to represent and store the knowledge, a customized
ontology in a university curricula in the CS domain was
developed with the following considerations:

• A property NombrePreferente (Preferred Name),
designed to store the principal name of each concept.
Each node has only one preferred name.

• A property Sinonimos (Synonyms), which relates each
node to their equivalent lemmatized terms without stop-
words. Each node may have one or more synonyms.

• A property Lemma, which relates each node to their
respective base form denomination. Each node in the
ontology has exactly one associated lemma.

Even though each node’s NombrePreferente is fulfilled
based on the specialized knowledge provided by an expert,
the lemmatized forms to be put in the other two properties
are generated using the preprocessing mechanisms previously
explained. After obtaining those lemmatized terms, they are
manually inserted in the ontology development phase because
the preprocessing mechanisms’ overall execution time, when
applied in a complex structure like this ontology is consider-
able, so online execution is not feasible.

D. Documents Repository

For simplification purposes, for this work it has been
excluded from the scope the use of online information, and
instead the documents repository consist of documents tagged
with semantic content inserted to a relational DB.

E. User Information Manager

It consists of artifacts related to the information about the
user. For our case the user information DB is a relational
DB representing a tuition enrollment management system
for university students, which contains information about the
courses each student is currently enrolled in. It is within the
disambiguation mechanism that user information will increase
in relevance, because in case two or more concepts obtain

the same similarity score, the user information will be used
to route the decision to one concept. In order to do so an
additional flow is added to the similarity calculation which
consist of verifying if the analyzed node is present in the
user information and if so, decrementing the score in order
to get it closer to a better similarity score. When using the
user information the CONSTANTEREC constant increase
in relevance, because if the space enabled by the use of
this constant would not exist, it may be the case that when
decreasing the similarity score of a concept a new tie occurs.

IV. PROTOTYPE IMPLEMENTATION

In order to demonstrate the feasibility of the proposed
model, we developed a prototype. The SRM was built based
on the StopAnalyzer from Lucene library, and was config-
ured with the default stopwords dictionary used by Lucene’s
SpanishAnalyzer. The LM was built based on the de-
fault Spanish lemmas dictionary from the Freeling language
analysis tool. The disambiguation mechanism was built with
support of the SPARQL query language for navigation and
retrieval from the ontology. As part of the configuration for
the prototype, the stop for the recursion was set to a deep of
up to 5 levels, and the CONSTANTEREC constant value
was set to 3. The user information DB was filled with 30
tagged documents including university examinations in the CS
domain and the IR Engine was developed based on Lucene
without particular customizations. The developed ontology
was created using Protégé in OWL/RDF.

V. RESULTS

As previously explained, the ontology was developed con-
sidering knowledge on a CS curricula. We took a query
stating pilas y quicksort, in an attempt to retrieve information
regarding to the specific topics of Stacks (abstract data
type) and the Quicksort algorithm. The word Pilas is an
ambiguous plural-form Spanish word. The word Quicksort
even though it does have a Spanish translation, the reference
to the sorting algorithm can be found indistinctly either in
English or in Spanish. When the user inputs the query (fig.
1 step 1), the SRM removes the stopword y (and) and the
LM converts the resulting pilas quicksort query to pila (single
form) quicksort (step 2). Next, the student ID provided by
the user is sent to the User Information Manager
in order to retrieve the courses he is currently enrolled in
(step 3). Then, the Orchestrator sends the preprocessed
query to the Equivalence Handler (step 5) in order
to verify if any of the preprocessed query terms is present
in a synonym node. In this case, the word Quicksort was
found as synonym of the main node ordenamiento rapido, for
that reason this word was added as an expansion term. The
relevance of this term ends here because the word Quicksort
is not ambiguous. On the other hand, the word pila also goes
through the mentioned mechanisms, without major relevance
in respect to the Equivalence Handler. Continuing with
the flow, the Ambiguity Handler (step 6) calculated the
similarity values between the ambiguous token and the sup-
plementary one. In this case, the AplicacionesPilas and654

TADPilas nodes reached the same optimum because both of
them include the term pila; however, inside the ontology both
refer to different topics related to stacks. In this point the user
information gains relevance for the disambiguation because
in the ontology structure the AplicacionesPilas node
belongs, by transitivity, to the Algoritmia (AL) course,
which includes training in problems and applications of stacks,
and the TADPilas node belong to the Fundamentos de
Programacion (Programming Fundamentals - PF) course,
which includes theoretical instruction on the Stack abstract
data type. When previously consulted to the DB, it was
determined the user is currently taking the AL course, but
not PF. For that reason, the node from the AL course was
selected as a better match. The final expanded query is pila
ordenamiento rapido aplicacion quicksort which is sent to the
IR Engine (step 7) in charge of retrieving the information
and outputting the ranked list of documents (step 8).

When using the IR engine without QE, 6 documents
were retrieved, all of them containing the word pila in their
tags, and the ones in the top were mostly related to the
theory of the abstract data type of the PF course. From the
6 documents, just two of them were relevant, which led to
a 33% of precision. When using QE 10 documents were
retrieved. The one in the top was indeed the most relevant
which included in the same university examination exercises
about applications of stacks and the quicksort method, and
gradually other documents relevant to a lesser degree. From
the 10 documents, 7 of them had a degree of relevance, which
led to a 70% of precision.

VI. DISCUSSION

After the execution of tests we realized some stopwords
would better be excluded from the stopwords list. This is
the case of the word no from the query no programacion en
pascal (not pascal programming). Even though the word no
can be considered a stopword, its existence in order to keep
the semantic integrity of the complete query is considered a
relevant factor to take into account. However, for this work,
those particular scenarios will not affect the results because
the scope of this model excludes the analysis by propositional
logic. We use the user information only for disambiguation
cases, and don’t directly include that information as terms
for the expansion. That is because the information obtained
regarding the user may be more general, and adding it as
terms for the expansion in the total of cases could generalize
the query and negatively affect the precision measure.

VII. CONCLUSION AND FUTURE WORKS

The developed tool based on the proposed model has proven
that from an ambiguous query was possible to retrieve relevant
information for the user. Different tests were performed in
order to measure the tool. Tests without using QE resulted
in an overall of 16.5% of precision, whereas tests using QE
resulted in an overall of 69% of precision, so it reaffirms
the proposed model led to better results. From a point of
view of benefits, the selected domain is particularly useful for
academic purposes, because the tool can be used for students

from careers related to CS to retrieve relevant information for
their studies or research projects. In second place, this model
is generic, so if the ontology is changed to another which
follows the described structure, it is possible to perform the
searching. In third place, the result of this work is a conceptual
model which can be implemented on different platforms and
without dependencies on specific technologies.

It would be interesting to test the model with other different
domain ontologies. Regarding the mechanisms, it would be
very useful one that pulls information from online sources and
another that captures in an automatic way the always dynamic
user information. Finally, we propose the inclusion of further
query preprocessing which takes into account propositional
logic, and so stopwords dictionary can consider those cases
for accurate results.

REFERENCES

[1] P. H. Cleverley and S. Burnett, “Retrieving haystacks: a data driven
information needs model for faceted search,” Journal of Information
Science, vol. 41, no. 1, pp. 97–113, 2015.

[2] M. C. de Andrade and A. A. Baptista, “Researchers’ information needs
in the bibliographic database: A literature review,” Information Services
and Use, vol. 34, no. 3, pp. 241–248, 2014.

[3] Y. Gupta, A. Saini, and A. K. Saxena, “A new fuzzy logic based ranking
function for efficient information retrieval system,” Expert Systems with
Applications, vol. 42, no. 3, pp. 1223–1234, 2015.

[4] M. Mitra and B. B. Chaudhuri, “Information retrieval from documents:
A survey,” Information Retrieval, vol. 2, no. 2-3, pp. 141–163, May
2000.

[5] F. Ren and D. B. Bracewell, “Advanced information retrieval,” Electronic
Notes in Theoretical Computer Science, vol. 225, no. 0, pp. 303–317,
2009.

[6] M. Kobayashi and K. Takeda, “Information retrieval on the web,” ACM
Comput. Surv., vol. 32, no. 2, pp. 144–173, 2000.

[7] M. Mitra, A. Singhal, and C. Buckley, “Improving automatic query
expansion,” in Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, ser.
SIGIR ’98. New York, NY, USA: ACM, 1998, pp. 206–214.

[8] G. J. Hahm, M. Y. Yi, J. H. Lee, and H. W. Suh, “A personalized query
expansion approach for engineering document retrieval,” Advanced
Engineering Informatics, vol. 28, no. 4, pp. 344–359, 2014.

[9] T. R. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing?” International Journal of Human-Computer Studies,
vol. 43, no. 56, pp. 907–928, Nov. 1995.

[10] H. Wang, Y. Guo, X. Shi, and F. Yang, “Conceptual representing of
documents and query expansion based on ontology,” in Web Information
Systems and Mining, ser. Lecture Notes in Computer Science, F. L.
Wang, J. Lei, Z. Gong, and X. Luo, Eds. Springer Berlin Heidelberg,
Jan. 2012, no. 7529, pp. 489–496.

[11] H. Melgar S., D. Salas Guillen, and J. Gonzales Maceda, “Ontology
based inferences engine for veterinary diagnosis,” in Semantic Technol-
ogy, ser. Lecture Notes in Computer Science. Springer International
Publishing, 2015, pp. 79–86.

[12] S. Kara, . Alan, O. Sabuncu, S. Akpnar, N. K. Cicekli, and F. N.
Alpaslan, “An ontology-based retrieval system using semantic indexing,”
Information Systems, vol. 37, no. 4, pp. 294–305, 2012.

[13] M. Fernandez, I. Cantador, V. Lpez, D. Vallet, P. Castells, and E. Motta,
“Semantically enhanced information retrieval: An ontology-based ap-
proach,” Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 9, no. 4, pp. 434–452, 2011.

[14] V. Jalali and M. Borujerdi, “The effect of using domain specific ontolo-
gies in query expansion in medical field,” in International Conference
on Innovations in Information Technology, 2008. IIT 2008, Dec. 2008,
pp. 277–281.

[15] W. Ali and S. Khan, “Ontology driven query expansion in data integra-
tion,” in Fourth International Conference on Semantics, Knowledge and
Grid, 2008. SKG ’08, Dec. 2008, pp. 57–63.

[16] Z. Lu, Z. Yan, and L. He, “OnPerDis: Ontology-based personal name
disambiguation on the web,” in 2013 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence (WI) and Intelligent Agent Technologies
(IAT), vol. 1, Nov. 2013, pp. 185–192.

655

Toward an Architecture for
Model Composition Techniques

Kleinner Farias, Lucian José Gonçales,
Murillo Scholl, Maurício Veronez

PIPCA, University of Vale do Rio dos Sinos (Unisinos)
São Leopoldo, RS, Brazil

kleinnerfarias@unisinos.br,
lucianjosegoncales@gmail.com,

murillosholl@hotmail.com, veronez@unisinos.br

Toacy Oliveira
PESC/COPPE, Federal University of Rio de Janeiro

(UFRJ)
Rio de Janeiro, RJ, Brazil

toacy@cos.ufrj.br

Abstract—Academia and industry are increasingly concerned
with producing general-purpose model composition techniques to
support many software engineering activities, e.g., evolving UML
design models or reconciling conflicting models. However, the
current techniques fail to provide flexible and reusable
architectures, a comprehensive understanding of the critical
composition activities, and guidelines about how developers can
use and extend them. These limitations are one of the main
reasons why state-of-the-art techniques are often unable to aid
the development of new composition tools. To overcome these
shortcomings, this paper, therefore, proposes a flexible,
component-based architecture for aiding the development of
composition techniques. Moreover, an intelligible composition
workflow is proposed to help developers to improve the
understanding of crucial composition activities and their
relationships. Our preliminary evaluation indicated that the
proposed architecture could support composition tools for UML
class, sequence, and component diagrams.

Keywords: model composition, architecture, UML

I. INTRODUCTION
Researchers and practitioners recognize the importance of

model composition in many software engineering activities
[1][2][8], e.g., evolving design models to add new features and
reconciling multi-view models developed in parallel by
different software development teams [5][7]. In collaborative
software development, for example, separate virtual teams may
concurrently work on a partial model of the overall architecture
to allow developers to concentrate more effectively on parts of
the architecture relevant to them. At some point, it is necessary
to bring these models together to generate a “big picture” view
of the overall architecture. Unfortunately, this composition task
is considered as an error-prone, time-consuming task [1][8]. In
[8], the authors highlight that the model comparison and
merging task are tedious, time-consuming, and error-prone. In
[1], Mens reinforces that software merging continues to be “a
time-consuming, complicated, and error-prone process
because many interconnected elements are involved and
merging depends on both the syntax and semantics of these
elements.”

For this reason, there has been a significant body of
research into defining model composition techniques in the
areas of software modeling [9], synthesis of feature models

[12], and software product lines [11]. In fact, the high number
of conventional, general-purpose composition techniques
created in the last decade attests this importance, e.g., Kompose
[13], IBM Rational Software Architect (IBM RSA) [4], MATA
[3] and Epsilon [5].

Model composition can be briefly defined as an operation
where a set of tasks should be performed over two input
models, MA and MB, in order to produce an output-intended
model, MAB. While MA represents the base model, MB consists
of the delta model having all increments that should be inserted
into MA to transform it into MAB. Existing composition
techniques usually produce an output composed model (MCM)
that often does not match the output intended model (MAB), i.e.
MCM ≠ MAB. Because the elements of the input models usually
conflict with each other in some way, and these techniques end
up being unable to deal with all contradicting changes properly.

The problem is that the general-purpose feature of
composition techniques hinders coping with a set of particular
composition cases. Unfortunately, they fail to provide flexible,
reusable architectures, a comprehensive understanding of the
chief composition activities, or even provide guidelines about
how developers can use and extend them. The limitations can
be explained for two principal reasons as follows: (1)
composition techniques are not structured with design-for-
change principles upfront, being rigid to support modern
composition strategies. Typically, developers are commonly
forced to go through the source code to locate the component
to-be changed or even create new architectural components to
implement upcoming features. An incorrect modification of
such components can jeopardize the implementation of new
features, and (2) they rely on generic representation, i.e.,
usually graph, rather than on the semantics of constructs of OO
design modeling languages, e.g., UML [9]. Since the current
multi-view UML diagrams demand different but
complementary ways to be integrated, generic approaches tend
to produce output models with inconsistencies. Consequently,
they fail to provide a systematic and flexible way to derive
composition techniques for a particular purpose, or even
provide guidelines about how developers can evolve them.

 To overcome these shortcomings, this paper, therefore,
proposes a flexible, component-based Architecture for aiding
the development of Model Composition Tools, hereafter called

(DOI reference number: 10.18293/SEKE2015-107) 656

MoCoTo-Arch, and a model composition workflow for helping
developers to improve the understanding of the crucial
composition activities and their relationships. Our preliminary
evaluation indicated that the proposed architecture could
support the development of composition tools for UML class,
sequence, and component diagrams.

The remainder of the paper is organized as follows. Section
II contrasts this work with the current literature. Section III
presents the MoCoTo architecture. Section IV describes the
composition tool developed using the MoCoTo-Arch. Finally,
Section V presents some concluding remarks and future work.

II. RELATED WORK
The last few years, some techniques have been proposed,

including MATA [3], a tool based on graph transformations for
composing aspects, IBM RSA [4], a robust software modeling
and model composition tool, and Epsilon [5], an Eclipse Plugin
consists of a family of languages for composing models and
other vast functions. Although some works provide
programming languages to express composition logic [5], little
is known about the flexibility and capacity of the current
techniques to support new composition strategies. This lack
hinders the understanding about how such techniques can
evolve to support the composition of new design models, until
then not supported.

Many works aim at studying the proactive detection and
earlier resolution of composition conflicts. In [2], Brun et al.
proposes Crystal, an approach to help developers identify and
resolve conflicts early. The authors highlight the ever-present
occurrence of composition conflicts, more than would be
expected, e.g. overlapping textual changes and their subsequent
build and test failures. Likewise, Sarma [6] comes up with
Palantír, a workspace-aware approach for detecting and
resolving contradicting changes in early stage. Although these
two approaches are interesting studies, they neither propose a
flexible, design-for-change approach nor provide a
comprehensible workflow to leverage the understanding of the
inherent model composition activities and its relationships.
Still, they overlook the challenging considering the synthesis of
heterogeneous design models, thus not leading to broader
generalizations of their findings at the modeling level.

On the other hand, in [7], the authors discuss the problem of
tolerating conflicts and transforming them in an object of
enhancement in collaborative software development. The
purpose is to maintain all the conflicting changes in the
resulting model. For this, they propose annotations, relating the
conflicts as well as the developers involved in a further
resolution. In [8], the authors introduce an approach to find
similarities between business process models. For this, they
define metrics to match the input model elements, and use
typography and synonym dictionary.

III. MOCOTO ARCHITECTURE
We present the MoCoTo’s built-in model composition

process by identifying the phases, the artifacts generated, and
the main activities required to transform the input models, MA
and MB, into an intended output composed model, MAB.
Moreover, it details the most relevant characteristics related to
design and implementation issues, including feature model

elicited, components that implement such features, and the
architectural design.

A. Model Composition Process
Figure 2 shows the proposed model composition process. It

is represented as an intelligible workflow, thus allowing
developers to understand the inherent activities of a
composition process in terms of phases, its artifacts, activities
and the flow among each other.

1) Analysis Phase: the prime goal is to analyze the input
models adequately as a basis for assuring the composition of
compatible input models as well as preventing input models
with inconsistencies. This phase should attend to the Lifecycle
Analysis Milestone criteria answering: are the input models of
the same type? Do the input models have inconsistencies? If
the input models do not attend to this milestone, the
composition process can be cancelled or repeated after the
input models are redesigned to comply with milestone criteria.

2) Comparison Phase: the chief goal is to systematically
compare the input models for determining the similarity
between their elements, thereby mitigating mistaken
equivalence relationships, including false-positive and false-
negative ones. The MoCoTo architecture supports a range of
matching strategies (but not limited to), including default,
partial and complete one [10], to alleviate the more severe risk
items. The inputs of this phase are: ngram algorithm, synonym
dictionary, matching strategies, matching rules, and threshold.
Hence, producing the following outputs: (1) the similarity
matrix, specifying the degree of equivalence (ranging from 0 to
1) between the input model elements; (2) the matching
elements, a description of the elements of MA and MB being
considered equivalent; (3) the no-matching elements, a
description of the elements of MA and MB being considered no
equivalent. Two input elements are considered similar when

Figure 1. The proposed model composition process.

657

the degree of similarity between them is equal or higher than
0.8, the threshold used. This threshold is based on previous
studies [10] on model comparison, which have demonstrated its
usefulness.

3) Composition Phase: The master goal is to carefully bring
together the matching and no-matching elements for producing
an output intended model, MAB. For this, the proposed
composition technique takes into account the similarity matrix,
as well as the description of the matching and no-matching
elements of the input models. In addition, it uses a range of
well-established composition strategies (but not limited to),
including override, merge, and union [15], to accommodate the
elements from MB into MA, thereby alleviating the more severe
risk items. The MoCoTo’s built-in composition strategies
integrate the matching elements while the no matching ones are
just inserted into the MAB. Thus, MAB represents the matching
and no-matching elements, all blended systematically.

4) Evaluation Phase: the master goal is to evaluate if the
output model produced in the previous phase matches the
output intended one, i.e. MCM = MAB. If MCM ≠ MAB, then
MCM needs to be manipulated so that the inconsistencies can be
resolved. For this, the tool checks if the output model is in
compliance with well-formedness rules defined in the UML
metamodel and meets a set of desired features specified by the
user. If the model has inconsistencies, then some
transformation rules can be applied to transform MCM into MAB.
This phase end producing the output intended model. After
detailing the composition process, the next Section focuses on
describing the design and implementation issues required to put
the process in practice.

B. MoCoTo architecture feature model
 The MoCoTo architecture was proposed due to several

reasons and requirements identified in previous works
[10][14][15]. First, our experience with model composition has
indicated the increasing need for reusable architecture to
support and guide the development of new composition tools.
Second, it is representative of the model composition domain,
since its design decomposes the key concerns into well-
modularized features. Third, it assures the derivation of
different products by defining several variability points related
to heterogeneous strategies related to analyzing, comparing,
and composing the input models. Lastly, it allows evaluating
the models generated and persisting the results. Thus, the
proposed architecture provides a set of pivotal features,
including analysis of the input models, comparison of the input

models, composition of the equivalent input model elements,
persistence of the output model generated, and evaluation of
the output model.

Figure 3 shows a simplified view of MoCoTo-Arch’s
feature model. Thus, to develop composition tools developers
should firstly implement the mandatory features, including
analysis, comparison, composition, persistence, and evaluation.
Besides identifying a set of core functionalities, the mandatory
features seamlessly specify their dependencies in an easy-to-
understand manner. An ever-present concern throughout the
MoCoTo architecture was to assure the mandatory features
comply with the model composition process described in
Figure 3, for example, the analysis feature implements the first
phase and the persistence feature provides the functionality
required to persist the output-composed model generated at the
end of the model composition process. The optional features
are the types of file format that the output-composed model can
be persisted, including UML and UML profile format. The or
features are represented by the composition strategies, and the
comparison strategies, the latter are not shown in the feature
model for space constraints. Thus, one (or more) comparison
and composition strategy should be selected when a
composition tool is derived from the MoCoTo-Arch.

C. MoCoTo architectural components
Figure 4 shows the components that are responsible for

implementing the feature model as well as relates them with the
features depicted in Figure 3. The small squares located on the
left or bottom sides of the components represent this feature-
component mapping. For instance, the C on the top of the
Comparison component (Figure 4) indicates that this
component contributes to the implementation of the
comparison feature. This design-for-features is supported by
the component-based development, a systematic feature-
component mapping and aspect-oriented programming.

This method of decomposing components based on the
features allows creating autonomous, well-modularized design
elements within a model composition tool, thereby promoting
the reuse of previously elicited feature and constructed
components. Each component was designed to: (1) be a self-
contained module that encapsulates the state and behavior of a
set of executable elements, which are responsible for the
implementation of one (or more) feature; (2) present emergent
behaviors resulting from the interaction of its executable
elements, i.e., one or more classes that realize the expected
functionalities of the features; and (3) have well-defined

Figure 4. The MoCoTo architectural components.

Figure 3. A simplified MoCoTo-Arch feature model.

658

interfaces, including the provided and required ones. For
example, to provide the behavior of matching two input
models, the Comparison component implements the provided
interface, ComparisonStrategy. If new components are
inserted, then they should implement this interface only.
Moreover, Figure 4 focuses on presenting the components as a
coherent group of elements implementing one (or more)
feature. Each component can be seen as a building block that
plays a crucial role within the model composition process.

D. MoCoTo multilayered architecture layers

The logical, multilayered architecture enables us to support
a well-modularized design, thereby putting the heterogeneous,
crosscutting concerns, previously described in Figure 2, in
shape. The architecture is composed by five layers: (1)
Presentation layer represents the topmost tier of the application
gathering the input data required to perform the functionalities
and putting out the results to the compositions; Application
layer encompasses MoCoTo's engine and its operators. It is
responsible for orchestrating, along with its operators, the
composition process as a whole. As an orchestrator, it plays a
pivotal role by providing the principal main entry point,
coordinating incoming composition requests, transforming the
requests into commands for the operators, and rendering views;
(3) Variability layer implements the variation points. For this,
aspectual components weave the behaviors (or advices) from
design elements (from the business logic layer) to the operators
(in the application layer). Aspectual components augment the
operators with additional or alternative behaviors, i.e. strategies
and their rules; (4) Business Logic layer defines a family of
algorithms that implement the MoCoTo features. These
algorithms analyze the input models, seek to find the
commonalities and differences between the input models,
integrate the commonalities, and then evaluate the output
models, and (5) Infrastructure layer accommodates the
concerns related to handling exception, data access, persistence
and logging, which are key crosscutting functionalities to put
the composition process in practice.

IV. CASE STUDY
We evaluate this work by implementing a model

composition tool based on the MoCoTo architecture. The tool,
so-called MoCoTo, is an Eclipse Plug-in that allows a seamless
integration with Eclipse Platform. In addition, it makes use of a
range of Eclipse modeling technologies, including EMF,
UML2, GEF, UML2 tool, to implement all required activities
described in the model composition process discussed earlier.
MoCoTo ties together these technologies in such a way that
makes it easy to use, even for users with little or no Java or
XML coding experience. For example, UML2 API reads and
filters information from the tags of files written in XML and
transforms it to an abstract data model in which input model
elements can be manipulated as objects.

V. CONCLUSIONS AND FUTURE WORK
This paper introduced a flexible, component-based

architecture for supporting the development of model
composition techniques, and an intelligible model composition
workflow for aiding developers to comprehend the crucial

composition activities and their relationships more properly.
We also reported the MoCoTo tools, a composition tools
defined over the MoCoTo-Arch. The preliminary results have
indicated that the proposed architecture is able to support the
development of composition tools for UML models. Although
MoCoTo-Arch has shown to-be useful, further empirical
studies are still required, other than case study presented, to
check their usefulness to compose other models, including
business process models, and with different developers,
compared to other composition techniques.

The future investigations should seek to answer some
questions such as: (1) do developers invest significantly more
effort to develop a new composition technique than derive one
from MoCoTo-Arch? (2) How effective is MoCoTo to
combine realistic, semantically richer design models? (3) Do
developers invest more effort to resolve semantic
inconsistencies than syntactic ones using a strategy-based
composition technique? (4) How do developers observe the
benefits of the composition process? Lastly, this work
represents a first step in a more ambitious agenda on better
supporting the elaboration of model composition techniques.

ACKNOWLEDGMENT
This work was funded by Universal project – CNPq (grant

number 480468/2013-3).

REFERENCES
[1] T. Mens, “A state-of-the-art survey on software merging,” IEEE Trans.

Softw. Eng. 28(5), 449–562, 2002.
[2] Y. Brun et al., “Proactive Detection of Collaboration Conflicts,” In: 8th

SIGSOFT ESEC/FSE, pp. 168-178, Szeged, Hungary, 2011.
[3] J. Whittle, P. Jayaraman, “Synthesizing hierarchical state machines from

expressive scenario descriptions,” ACM TOSEM, 19(3), 1–45, 2010.
[4] IBM Rational Software Architecture (IBM RSA), http://www.ibm.

com/developerworks/rational/products/rsa/, 2011.
[5] Kolovos et. al., “The Epsilon Book,”

http://eclipse.org/epsilon/doc/book/, 2015.
[6] A. Sarma et al., “Palantír: early detection of development conflicts

arising from parallel code changes,” IEEE TSE, vol. 99, no.6, 2011.
[7] K. Wieland et al., “Turning conflicts into collaboration - concurrent

modeling in the early phases of software development,” CSCW: The
Journal of Collaborative Computing, 22 (2013), 2-3; 181 - 240.

[8] M. La Rosa et al., “Business process model merging: an approach to
business process consolidation,” ACM TOSEM, 22(2): 11, 2013.

[9] OMG, UML: Infrastructure version 2.4, August 2011.
[10] K. Farias et al, “A flexible strategy-based model comparison approach:

bridging the syntactic and semantic gap,” Journal of Universal Computer
Science, 15(11):2225-2253, 2009.

[11] P. Jayaraman, J. Whittle, A. Elkhodary, H. Gomaa, “Model Composition
in Product Lines and Feature Interaction Detection using Critical Pair
Analysis,” MODEL’7, pages 151-165, 2007.

[12] S. She, U. Ryssel, N. Andersen, A. Wasowski, K. Czarnecki, Efficient
synthesis of feature models, Information & Software Technology, 56(9):
1122-1143, 2014.

[13] Fleurey et. al., Kompose : A generic model composition tool,
http://www.kermeta.org/kompose/, 2015.

[14] S Clarke, Composition of Object-Oriented Software Design Models,
Ph.D. Thesis, Dublin City University, January, 2001.

[15] K. Farias, Empirical Evaluation of Effort on Composing Design Models,
PhD thesis, Department of Informatics, PUC-Rio, Rio de Janeiro, RJ,
Brazil.

659

(DOI reference number: 10.18293/SEKE2015-165)

JSAN: A Framework to Implement Normative Agents

Marx Viana1, Paulo Alencar3, Everton Guimarães2, Francisco Cunha1, Donald Cowan3, Carlos Lucena1
1Pontifical Catholic University - PUC-Rio – Rio de Janeiro, RJ - Brazil
mleles@inf.puc-rio.br, fplacido@inf.puc-rio.br, lucena@inf.puc-rio.br

2University of Fortaleza – Unifor – Fortaleza, CE - Brazil
eguimaraes@unifor.br

3University of Waterloo – Waterloo, Ontario - Canada
palencar@uwaterloo.ca, dcowan@uwaterloo.ca

Abstract— Norms have become a promising mechanism to
ensure that open multi-agent systems (MASs) produce a
desirable social outcome. MASs can be defined as societies in
which autonomous agents work to achieve both societal and
individual goals. Norms regulate the behavior of agents by
defining permissions, obligations and prohibitions, as well as
encouraging and discouraging the fulfillment of norms through
rewards and punishments mechanisms. Once the priority of
software agent is the satisfaction of its own desires and goals,
each agent must evaluate the effects associated to the
fulfillment or violation of one or more norms before choosing
which one should be complied. This paper introduces a
framework for normative MASs simulation that provides
mechanisms for understanding the impact of norms on an
agent and the society to which an agent belongs.

Keywords. Normative Agents; Multi-agent Systems, Simulation;
Norms.

I. INTRODUCTION
Open multi-agent systems (MASs) are societies in which

autonomous, heterogeneous and independently designed
entities work towards specific goals [9]. In order to deal with
autonomy and diversity of interests among the different
members, such systems provide a set of norms that is used as
a social control mechanism to ensure that a desirable social
order in which agents can work is maintained [19]. For the
best of our knowledge, norms can be defined as agent-
oriented mechanisms for regulating the behavior of agents
through the definition of obligations (agents must accomplish
a specific outcome), permissions (agents can act in a
particular way) and prohibitions (agents must not act in a
specific way) [13]. Although norms are promising
mechanisms to regulate the behavior of agents, one should
take into account that they are autonomous and, therefore,
free to decide to fulfill or violate each system norm. This
type of agent reasoning refers to normative strategies [10].

Several approaches [4, 19] have been proposed for the
specification and implementation of norms. According to
Garcia Camino et al. [4], norms constitute a powerful
coordination mechanism among heterogeneous agents. The
authors propose means to specify and explicitly manage the
normative constraints on agents (i.e., permissions,
prohibitions and obligations), with which distinct deontic
notions and their relationships can be captured. Silva
presents a normative language to specify norms and proposes

the implementation of such norms by using a rule-based
system [19]. The implementation is achieved by
automatically transforming the specification of each norm of
the system into a set of rules used to govern the behavior of
the agents according to the norm. In addition, these works
have focused on the definition of parts of an infrastructure
that can be used by Belief-Desire-Intention (BDI) agents,
which consists of beliefs, desires and intentions as mental
attitudes that deliberate human action [14] to reason about
norms [7, 11]. However, there is still a need to define an
agent-oriented framework to support the implementation of
goal-oriented normative agents. The main purpose of goal-
oriented normative agents consists on achieving their goals
and desires while satisfying system norms. Although there
are a number of existing agent-oriented platforms such as [1,
5, 11, 14], there is a lack of support of a framework for
normative agents.

In this context, we present a framework for Normative
Agent Java Simulation (JSAN). This framework aims at
providing support to build and operate agents able for
dealing with goals, desires and norms – that is, agents that
support normative reasoning. JSAN extends the JASON
framework [1], which already provides support for the
implementation of BDI agents and a set of hot-spots that
enable the implementation of normative functions. By using
these new functions, it is possible to build BDI agents that
can check whether they should: (i) adopt a norm, (ii) evaluate
the effects on their desires with respect to the fulfillment or
violation of a norm, (iii) detect and solve conflicts among
norms, and (iv) select desires and plans based on the decision
on whether to fulfill a norm. A preliminary overview of the
framework is described in [20]. The reminder of this paper is
organized as follows. Section 2 focuses on the representation
of norms, while Section 3 presents the JASON Platform.
Section 4 discusses related work. In Section 5 the JSAN
framework is detailed and Section 6 describes a case study
by showing how agents deal with norms in real situations.
Finally, Section 7 presents our conclusions and future work.

II. REPRESENTATION OF NORMS
According to Lopez [9], norms are designed to regulate

the behavior of agents, and therefore, a norm definition
should include the address of the agent being regulated.
When the norm need be applied, the nature of the norm
(permission, obligation or prohibition), as well as the

660

consequences of either fulfilling or violating the norm
(reward or punishment) should be described. In this work, we
use the norm representation described in [18], which is
composed the representation of an element norm – it contains
many different properties. Those properties are briefly
described in Table 1. For example, the property Addressee is
used to specify the agents or roles responsible for fulfilling
the norm.

In order to understand the definition of norms and their
representation better, imagine a Fireman Commander agent
is leading the rescue of civilians who are in hazardous areas.
This agent is responsible for regulating the behavior of all
fireman agents and the usage of the resources available to
them (e.g., helicopters, troops and land-based helicopters) –
we are assuming the resources are limited. In addition, each
fireman agent should perform a rescue according to specific
norms. Eventually, a norm is sent to each fireman agent with
the following state: “protect lives of civilians in hazardous
areas.” This norm has the following attributes: (i) the
addressees are the firemen agents; (ii) the required deontic
concept is obligation; (iii) when an agent agrees to a norm
that agent will receive a reward. In this case, the reward
could be either air or ground transportation during the
agent’s mission. If the fireman agent does not follow a
certain norm directed at him in the environment, after
violating the norm, this agent receives the punishments
associated with the norm. For example, there are situations
when a fireman agent requests aircraft support to accomplish
a specific rescue operation activity that places him or her in a
degree of risk above the one allowed by the norm. In this
case, a punishment (e.g. a warning or an order that he should
be temporarily restricted to headquarters to assist other
rescuers) associated with the norm will be applied for the
agent. Note the norm is activated if there is any person in a
risky situation. In turn, the norm expires when all civilians
are safe, and the state or element regulated by the norm is the
action of using aircraft, because of the costs.

TABLE I. NORM ELEMENTS

Property Description

Addressee It is the agent or role responsible for fulfilling
the norm.

Activation It is the activation condition for the norm to
become active.

Expiration It is the expiration condition for the norm to
become inactive

Rewards It represents the set of rewards to be given to
the agent for fulfilling a norm.

Punishments It is the set of are the punishments to be given
to the agent for violating a norm

DeonticConcept It indicates if the norm states an obligation, a
permission or a prohibition.

State It describes the set of states being regulated.

III. THE JASON PLATFORM
The JASON platform enables the development and

implementation of Belief, Desire and Intention (BDI) agents.
In addition, the platform uses a language called AgentSpeak
for implementing agents. Figure 1 illustrates how JASON
interprets AgentSpeak programs [12]. In this figure, sets of
beliefs, events, plans and intentions are represented by

rectangles. Diamonds represent the selection of an element of
a set and circles represent some of the processes involved in
the interpretation process.

Each interpretation cycle updates the list of events based
on the agent’s perception of the environment, the messages
the agent receives and the information coming from the
agent’s own execution of a plan. The Belief Review Function
(BRF) revises the Belief Base with a literal to be added or
deleted, and the intention structure required to change the
belief. A single event is chosen by the Event selection
function (SE) and the event is unified with the triggering
events in the heads of plans by the Unify Event cycle that
generates a set of all relevant plans. The context of such
plans is verified according to the Belief Base by the Check
Context cycle, which generates a set of options. The Option
Select Function (SO) selects a single applicable option from
the set of options, which becomes the intended means for
handling the selected event. The option either pushes the
plan on top of an existing intention (if the event was an
internal one), or creates a new intention in the set of
intentions (if the event was external, i.e., generated from
perceptions of the environment). The Intention Select
Function (SI) selects one of the agent’s intentions and this
intention is executed by the Execute Intention cycle. When
all formulas in the body of a plan have been executed, the
whole plan is removed from the intention list, and so is the
achievement goal that generated the plan. This ends a cycle
of execution, and the interpretation starts over again,
checking the state of the environment after agents have acted
upon it and generated the relevant events.

Figure 1. An Interpretation Cycle of an AgentSpeak Program [12].

IV. RELATED WORK
Some approaches [3, 8, and 10] have been proposed in

the literature to develop agents that evaluate the effects of
fulfilling or violating norms. For instance, the n-BDI
architecture defined by Criado et al. [3] presents a model for
designing agents capable of operating in environments
governed by norms. Basically, the architecture selects
objectives to be performed based on the priority associated
with each objective. An objective’s priority is determined by
the priority of the norms governing a specific objective.
However, it is not clear in this approach how the properties

661

of a norm can be evaluated. In addition, the approach does
not support a strategy to deal with conflicts between norms.

In turn, Meneguzzi and Luck [10] proposed a formal
model using the Z specification language, for modeling
agents that achieve their objectives based on the systems’
norms. For instance, an agent created from such a model
should be able to: (i) check if it is the one responsible for
fulfilling a norm; (ii) verify the activation and expiration of a
norm based on the beliefs of the agent; (iii) evaluate and
decide to fulfill or violate every norm of the system; and (iv)
make the decision to fulfill or violate a norm while removing
or adding agent goals. Besides not showing how the
evaluation of a norm is performed, the authors do not focus
on (i) identifying and resolving of conflicts between norms;
(ii) checking fulfilled or violated norms; and (iii) showing
the influence of norms on the plan selection process and
intentions of the agents.

Finally, Lopes et al. [8] defined a set of strategies that
can be adopted by agents to deal with norms as follows:
Pressured, Opportunistic and Selfish. For instance, the
Pressured strategy happens when agents fulfill the norms to
achieve their individual goals considering only the
punishments that will harm them. Another strategy is the
Opportunistic strategy, in which agents consider only the
effects of rewards on their individual goals, and seek to
fulfill only the norms for which the rewards of the individual
goals are more important than those of the social goals.
Finally, the Selfish strategy is the combination of the
Pressured and Opportunistic strategies. Although this work
provides some mechanisms for agents that handle standards,
the authors provide a framework that can be extended to
create simulations of normative multi-agent systems by
including new strategies. In addition, this work cannot
extend mechanisms to collect information during the
simulations or mechanisms for generating norms and goals
of the agents.

V. JSAN – A FRAMEWORK FOR NORMATIVE AGENT
JAVA SIMULATION

This section describes the main concepts required to
understand the framework proposed in this paper. In
addition, we provide an overview of JSAN framework and
discuss the different its different components, including the
kernel (frozen-spots) and flexible points (hot-spots) [21].

A. The Framework
The JSAN framework is implemented using software

agents, as illustrated in Figure 2. The JSAN extends the
JASON framework [1], which is an interpreter for an
extended version of the AgentSpeak language [15]. For the
best of our knowledge, the AgentSpeak language is an agent-
oriented programming language that supports the creation of
BDI agents. In addition, JSAN framework provides a
platform for development of multi-agent systems (MASs).
The framework comprises three main functions: (i) agents
responsible for dealing with norms; (ii) visualizations for
agent simulations involving norms; and (iii) creation of
norms. In order to implement normative agents, it is
necessary to instantiate the JSAN framework. For extending

the framework, developers should implement the agents’
goals, movement strategies (different agents’ movement
strategies) and normative strategies (to represent how the
agents deal with norms). JSAN already supports a normative
process composed of four activities, as detailed in Section
IV.B.

Figure 2. The JSAN Architecture.

B. The JSAN Architecture
The JSAN framework supports creating simulations that

show the impact of norms on normative agents. Thus, the
JSAN framework provides means for the implementation of
Normative Agents (see Figure 3). For this purpose, there is a
need to: (i) create the goals of an agent; (ii) create different
movement strategies of an agent; and (iii) provide normative
strategies to represent how the agents deal with norms.

Figure 3. The Internal Structure of the Normative Agents provided by

JSAN.

JSAN provides a normative application process to agents
capable of reasoning about norms, represented by the
NormStrategy class, which is composed of four activities
(see Figure 4): Norm Awareness (Section IV.B.1), Norm
Adoption (Section IV.B.2), Norm Deliberation (Section
IV.B.3) and Norm Impact (Section IV.B.4).

Figure 4. The Normative Strategy provided by the JSAN Framework.

The normative application process is based on the
process proposed in [10]. Note that, although JSAN already

662

provides such process, it is possible to define alternative
processes using the NormStrategy class. In addition, it is
possible to implement different activities (or steps for the
process) by extending the class NormStrategy. Once an
active norm is defined in the environment for a specific
software agent, some steps should be performed in the
process in order to apply the norm. Each of those steps is
described in the following.

1) Norm Awareness - the software agent identifies
which norms are active in the environment, and hence, those
norms are assigned to specific agentes.

2) Norm Adoption - the agents recognise their
responsibilities towards other agents by internalising the
norms where their responsibilities are specified.

3) Norm Deliberation - in order to execute a specific
norm, an agent should access to diferent information: (i) the
goals that should be hindered by satisfying the normative
goals; and (ii) the goals they might benefit from the
associated rewards.

4) Norm Impact - after the agents execute the norm (step
3), the goals of the agents will be updated. After that, the
cycle continues and the agent starts identifying other norms
that should be addressed.

It is important to note the steps need to take into account
not only the agents’ goals, but also the mechanisms
available to avoid the violation of norms (e.g. rewards and
punishments). That is, agents should consider consider the
so called social pressure (i.e., agents recognized their
responsibilities before other agents), of norms before
making any decision regarding norms.

C. Hot-Spots and Frozen-Spots
As previously mentioned, JSAN is an extension of

JASON framework, and therefore, they share the same core
and hot-spots. The process used for the communication
between software agents, and the identifiers of agents are
examples of hot-spots that JSAN inherited from JASON. In
addition, JSAN define other specific hot-spots, which are:

Environment (EnvironmentSimulation class): The
ExecuteAction method was extended from the Environment.
Whenever an agent tries to perform an essential action, the
agent’s identification and its chosen actions are passed to this
method. For this reason, the ExecuteAction method must
verify that the action is valid and then perform the action.
The action will possibly change an agent’s perception. If this
method returns true it means that the action was performed
successfully.

Normative Agent (NormativeAgent class): By extending
such a class and implementing the execute method it is
possible to define different algorithms to execute the plans of
an agent.

Created Norms (GenerateNormsStrategy class): It is
possible to define new strategies to create norms in the
environment.

Norm Strategies (NormStrategy class): It is possible to
define new strategies (or plans) for agents to deal with

norms, and proceed to execute the activities of the normative
application process. JSAN already provides a default process
implemented in the classes Selfish, Rebellious and Social.

Created Agent Goals (GenerateGoalStrategy class): It is
possible to create new goals for agents.

Movement Strategies (MovementStrategy class): It is
possible to create new movement strategies for the agents in
the environment.

Simulation Environment Report (ReportStrategy class): It
is possible to define reports as the output of the simulation.
In order to use this mechanism it is necessary to extend the
ReportStrategy class, where the following parameters should
be provided: (i) the environment of the simulation is being
carried out; and (ii) an object of NormStrategy class, which
contains the strategy used by the agent to handle the norms

VI. USAGE SCENARIO: EVACUATING PEOPLE FROM AREAS
OF RISK

The need to build platforms to assist both experts on risk
analysis as well as experts in planning the evacuation of
civilians located in areas of risk is currently a critical
problem, especially in large cities that have grown in an
unplanned and often disorderly manner [2]. These cities
experience many circumstances in which people need to be
rescued from dangerous areas as a result of floods, landslides
and other natural phenomena. Landslides, for example, are
difficult to predict since they depend on many factors such as
climate, soil properties, and humidity and the specific
relationship between them. The annual number of landslides
is estimated to be in the thousands, and the associated
infrastructure damage resulting from them is worth billions
of dollars [16]. Planning evacuations from areas of risk can
be assisted by simulations using the JSAN framework. These
simulations implement scenarios representing hazardous
situations. For example, a simulation can be used as a way to
examine different strategies that can be adopted by the
firemen agents, who are regulated by norms, in order to
rescue civilian personnel.

A. Overview
The implemented simulation is composed of firemen

agents, civilian agents and norms, as illustrated in Figure 5.
The goal of the firemen agents is to rescue people who are at
risk. The civilian agents do not deal with norms. The
structure of the norms is created to extend the JSAN
GenerateNormStrategy class. This structure was proposed in
[17]. These simulations are normative multi-agent systems
that receive data containing information about (i) a
hazardous area, such as weather conditions, (ii) civilian
personnel, (iii) ways of saving civilians by removing them
from these locations (with troops, land vehicles or aircraft),
(iv) norms that firemen agents must follow during the rescue
operation, and (v) rescue plans used in the simulation.
Through the simulations, it is possible to find different
solutions the firemen agents can follow in order to evacuate
civilians from these hazardous areas.

To deal with these problems and understand the related
norms, the fire-fighter agents have: (i) a set of objectives that

663

is connected directly to their individual satisfaction; (ii) an
information base of facts collected by the simulation
environment to help characterize risky locations; and (iii) a
base of strategies used to deal with norms. The Selfish
strategy of the firemen agents (See description in Section III)
was implemented using the calculate method of the Selfish
class (see Figure 3). This method aims at analyzing the
situation where norm compliance will help the agent to meet
its individual goals, without forgetting the social goals, since
norm compliance is directly linked to the benefits the agent
will receive.

Figure 5. Conceptual model of the usage scenario.

We used the PlanGenerateNorms class, an extension of- the
GenerateGoalsStrategy class (see Figure 2) that uses the
generateGoals method to create the goals for the firemen
agents based on their plans. The objectives generated for the
simulation were: (i) to save civilians in hazardous areas; (ii)
not to put civilian lives at risk; and (iii) to receive aircraft
support. The generateNorms method of the
GenerateNormsStrategy class was used to create norms in
the environment aiming only at firemen agents, namely a
specific set of agents provided by the
PerceptGenerateNorms class in the JSAN framework. With
the ability to specify how to move the firemen agents, the
MovementStrategy class has been extended to implement the
method to specify the specific form of the firemen agents’
movement. For this purpose, we used the ReactiveMovement
class, which extends the MovementStrategy class. The
movement strategy of the firemen agents checks whether
there is any civilian at risk. If there is, they must make the
rescue, and they place their lives at risk. To manage that risk
a fireman agent can ask for help that will be sent in the form
of land vehicles, aircraft, or even fire.

In the Norm class (see Table 1), the attributes were
defined so that they can create the sanctions, activation and
expiration conditions, which are elements that will be
regulated by the norm, and also the norm’s deontic concept
(see Section II). The EnviromentSimulation class is also
responsible for managing a set of strategies for visualizing
the simulation information represented by the ReportStrategy

class. The social contribution strategy provided by the JSAN
framework was used to check the social contribution of a
norm in case the norm is fulfilled or violated by a firemen
agent. The norm-related information is also tested, that is, (i)
the rewards and punishments linked to norms; (ii) the deontic
concept associated with norms; and (iii) the plans adopted to
comply with the norm.

Figure 6. Flow of start of simulation of the JSAN.

In Figure 6, the Fireman Commander agent receives a
message about bad weather and then receives a second
message about some civilians in a hazardous location. After
receiving the latter message, the Fireman Commander agent
sends an alert to the firemen agents saying that information
about the existence of civilians in a hazardous area was
received.

Figure 7. Emergency plans described in the simulation.

In this case, the rescue operation plans involve the use of
aircraft, ground vehicles, and these plans include asking if
the firemen agents need the air or ground support (see Figure
7). These plans are related to the goal: “protect the lives of
civilians in hazardous areas.”

Figure 8. Norm created in the simulation.

664

As part of the norm instantiation, (i) the deontic concept
in this case is an obligation; (ii) a reward is granted if the
norm is met and the agent gets air or ground support, and if
the norm is violated the agent will not get ground support for
the rescue; (iii) the norm is enabled if there is any person at
risk and the norm is disabled when all civilians are safe; and
(iv) the element that the norm regulates is the action of using
aircraft. The norm Rewards in Figure 8 are the rewards
associated with norm and Reward Norm shows how the
agent will get the reward if the agent complies with the
norm.

Finally Figure 9 illustrates the specific plans the firemen
agents decide to use after the norm has been activated
because of the existence of civilians in hazardous areas risk.

Figure 9. Firemen agents dealing with active norms in the usage scenario.

If they choose to use aerial vehicles, this will contribute
negatively, and if they choose to use land vehicles, their
contribution will be positive. Because in the simulation
firemen agents use the Selfish strategy to deal with the
norms, they decided to evacuate civilians who were in this
hazardous area using ground vehicles.

VII. CONCLUSION AND FUTURE WORK
This paper proposes the JSAN framework, a framework

for Normative Agent Java Simulation, to build goal-oriented
agents that can reason about norms. The implementation
helps agents (i) to check if they should adopt or violate the
norm; (ii) to evaluate the effects of the fulfillment or
violation of the norm on their desires and intentions; and (iv)
to select desires and plans according to their choices of
fulfilling or violating a norm. The applicability of such an
implementation can be verified by using the scenario
presented in Section VI, where agents are responsible for
planning the evacuation of people that are in hazardous
locations [2]. The agents were able to reason about the norms
they would like to fulfill, and to select plans meeting an
agent’s intention of fulfilling or violating the norms.

For future work we are defining an experimental study in
order complete the evaluation of our approach. It is also our
aim to study other BDI architectures and platforms in order
to investigate the possibility of extending them to support the
development of BDI normative agents. We also plan to
implement new mechanisms to deal with different levels of
agent autonomy and show how different levels of restriction

and communities can influence the satisfaction of a norm
application [8, 17]. In the current version of the framework
the autonomy-related restriction levels were not taken into
account. However, the framework can be enhanced with
different levels of restrictions, thus offering the possibility to
achieve better results in promoting a desirable social order
and, as a result, agents can work in function of the common
goals of the society in which they are inserted.

REFERENCES
[1] Bordini, R. H.; Hübner, J. F.; Wooldridge, M. Programming Multi-

Agent Systemns in AgentSpeak using Jason. [S.l.]: [s.n.], 2007.
[2] Cerqueira, S. L. R. et al. Plataforma GeoRisc Engenharia da

Computação Aplicada à Análise de Riscos Geo-ambientais. PUC-
RIO. Rio de Janeiro, 2009.

[3] Criado, N., Argente, E., Noriega, P., and Botti, V. Towards a
Normative BDI Architecture for Norm Compliance. COIN@
MALLOW2010, pages 65–81, 2010.

[4] Garcia-Camino, A., Rodriguez-Aguilar, J., Sierra, C., Vasconcelos,
W.: Norm-oriented programming of electronic institutions. In:
AAMAS, 2006.

[5] Jadexhomepage,http://jade.tilab.com/.
[6] Jennings, N.; Wooldridge, M. Software Agents, IEEE Review,. p. 17-

20, 1996.
[7] Kollingbaum, M.: Norm-Governed Practical Reasoning Agents. PhD

thesis, University of Aberdeen, 2005.
[8] Lopez, F. L.; Luck, M.; D'Inverno, M. Constraining Autonomy

through Norms, AAMAS, 2002.
[9] Lopez, Fabiola López. Social Power and Norms. Diss. University of

Southampton, 2003.
[10] Lopez, L. F.; Marquez, A. A. An Architeture for Autonomous

Normative Agents, IEEE, Puebla, México, 2004.
[11] Meneguzzi, F., Luck, M.: Norm-based behaviour modification in bdi

agents. In: Proc. of 8th Int. Conf. on Autonomous Agents and
Multiagent Systems, 2009.

[12] Machado, R. Bordini, R. H. “Running AgentSpeak(L) agents on SIM
AGENT”, August 1–3, 2002.

[13] Oren, N., Luck, M., Norman, T.: Argumentation for normative
reasoning. In: Proc. Symp. Behaviour Regulation in Multi-Agent
Systems, pp. 55–60, 2008.

[14] Rao, A.S., Georgeff, M.P.: Modeling rational agents within a bdi-
architecture. In: Proc. 2nd Int. Conf. on Principles of Knowledge
Representation and Reasoning, 1991.

[15] Rao, A.S.:Agentspeak(l):Bdi agents speak out in a logical computable
language. In:Perram, J., Van de Velde, W. (eds.) MAAMAW 1996.
LNCS, vol. 1038. Springer, Heidelberg, 1996.

[16] Santos Neto, B. F. D.; Lucena, C. J. P. D. JAFF: implementando
agentes auto-adaptativos orientados a serviços, Pontifícia
Universidade Católica do Rio de Janeiro, Departamento de
Informática, 2010.

[17] Santos Neto, A deontic Approach for the Development of
Autonomous Agents Normative. Pontifical Catholic University -
PUC-Rio – Rio de Janeiro, RJ – Brazil, 2012.

[18] Silva, V. T. D.; Lucena, C. J. P. D. Modeling Multi-agente Systems,
Communica-tions of ACM, p. 103-108, 2007.

[19] Silva, V.: From the specification to the implementation of norms: an
automatic approach to generate rules from norms to govern the
behavior of agents. In: JAAMAS, pp. 113–155, 2008.

[20] Viana, M. L., Cunha, F. P., Santos Neto, B., Alencar, P., Lucena, C. J.
P. A Framework for Supporting Simulation with Normative Agents.
WESAAC, 2015. (To Appear).

[21] Wooldridge, M. and Jennings, “N. R. Pitfalls of agent-oriented
development,” Proceedings of the Second International Conference
on Autonomous Agents (Agents'98), ACM Press, pp. 385-391, 1998.

665

Quantitative Reasoning of Goal Satisfaction in the
i* framework

Chitra M Subramanian, Aneesh Krishna, Raj P.
Gopalan

Department of Computing, Curtin University
Perth, Western Australia

chitra.muniyapp@postgrad.curtin.edu.au, {A.Krishna,
R.Gopalan}@curtin.edu.au

Arshinder Kaur
Department of Management Studies, Indian Institute of

Technology Madras, Tamil Nadu, India
 and School of Information Systems, Curtin Business

School, Curtin University, Australia
arshinder@iitm.ac.in , Arshinder.kaur@curtin.edu.au

Abstract—In requirement analysis, goal models play an
important role in assessing alternative design options of a
software system. Many qualitative and quantitative goal
reasoning approaches have been proposed for goal models such
as Knowledge Acquisition in Automated Space (KAOS), Non-
Functional Requirements (NFR), and Goal Oriented
Requirement Language (GRL). However, for i* goal model only
qualitative reasoning has been proposed in Requirement
Engineering literature. The aim of this paper is to present a
quantitative goal reasoning for i* goal model. The proposed
approach was validated with case studies from existing literature
and offers a guide in the decision process. To support the
validation a simulation was developed in Visual C++.

Keywords- Requirements engineering, i* goal model,
quantitative analysis, fuzzy numbers

I. INTRODUCTION
In the early stages of Requirement Engineering (RE), goal

models are considered a convenient way for modeling and
reasoning about alternative design solutions of any software
system [1-4]. These models through refinement hierarchy
denote the alternative ways of achieving the stakeholder’s
goals. These different alternative designs have disparate impact
on the system goals and different degrees of goal satisfaction.
Alternative design solutions are assessed based on some
evaluation criteria to choose the best among them. Many
qualitative and quantitative reasoning approaches have been
proposed in RE literature to support the goal analysis [4-7].

Qualitative reasoning is of limited use of reaching
conclusions as the labels become ambiguous in the propagation
algorithm. Also, it provides only a quick approach for coarse
evaluation in the early stages of the RE process. Quantitative
reasoning leads to limited conclusions due to the lack of
accuracy and measurability of goal formulations. It is also
crucial to assign definite numbers to stakeholder’s
requirements as requirement elicitation may involve distinct
stakeholders having different preferences for the same
requirements. The rationale behind it is that distinct
stakeholders have different levels of knowledge, training and
skills [8]. Moreover in reality, linguistic terms such as low cost,
high profit are generally used by the stakeholders to
communicate their requirement preferences. The linguistic
representation of stakeholder’s requirement preferences can be
more easily expressed in Fuzzy Logic [9].

The i* frameworks are useful in qualitatively representing
and analysing how stakeholders goals influence each other [7].
However, the existing RE literature seems to be lacking for
some method of quantitative support for goal analysis. The
objective of this paper is to present a fuzzy based quantitative
analysis for evaluating different design alternatives and to
identify the best one among them.

 The remainder of the paper is structured as follows:
Section 2 proposes the fuzzy based quantitative analysis for i*
goal models; Section 3 presents simulation and validation of
our work; Section 4 discusses related works; Section 5
concludes the paper.

II. THE QUANTITATIVE FUZZY BASED REASONING OF
GOALS

The proposed approach involves the selection of an option
based on the impact of the alternative options on soft goals.
The results are examined from the point of view of each actor.
The goal impacts represented by make, help, hurt, and break
are represented by triangular fuzzy numbers. These impacts
along with the soft goal preferences are propagated to the high
level soft goals in the goal model to find the level of
satisfaction. The option that gives the highest level of
satisfaction is selected. For understandability, the Youth
Counselling case study as shown in Figure 1 has been used
throughout the following section to describe the proposed
approach. Due to space restrictions readers are directed to Yu
[7, 10] for details on Youth Counselling case study and i* goal
models and Gani [11] for details on fuzzy numbers.

i) Identify the correlation between goals and soft
goals in terms of fuzzy weights: The correlation between
alternative options and leaf soft goals are assigned fuzzy
weights and our representation is shown in TABLE 1. This
contribution is referred to as 𝐶̅𝐶A*L, where A is the alternative
option and L is the leaf soft goal. It shows the extent to which
an alternative option satisfies a leaf soft goal.

Youth Counselling: For the actor Kids and Youth, correlation
weights between the alternative option Use Text Messaging
and the leaf soft goals Comfortableness with service,
Anonymity[service] and Immediacy[service] are assigned
(0.48, 0.64, 0.80), (0.48, 0.64, 0.8), and (0,0.16, 0.32)
respectively (TABLE 2). The correlation links between the
other option Use Cyber Cafe/Portal/Chat Room and the leaf

666

mailto:arshinder@iitm.ac.in

TABLE 1. FUZZY VALUES FOR GOAL AND LEAF SOFT GOAL
CORRELATION

Name Fuzzy contribution
 Make (0.64, 0.80, 1)
Help (0.48, 0.64, 0.80)
Some+ (0.32, 0.48, 0.64)
Some- (0.16, 0.32, 0.48)
Hurt (0, 0.16, 0.32)
Break (0, 0, 0.16)

soft goals are assigned weights (0.48, 0.64, 0.80), (0, 0.16,
0.32) and (0.64, 0.80, 1).

ii) Assign weights to the leaf soft goals: The leaf soft
goals are assigned weights in percentage from 0 to 100 based
on their relative importance. The weight is referred to as ωL.

Youth Counselling: The leaf soft goals (LSG)
Comfortableness with service, Anonymity (service) and
Immediacy (service) of the actor Kids and Youth are assigned
weights based on their relative importance as 50%, 30%, and
70% respectively (TABLE 2).

iii) Calculation of the leaf soft goal score: For each
alternative, the leaf soft goals are associated with a score
showing its satisfaction level. The leaf soft goal score is
represented by 𝑆̅𝑆L(A) and is computed by the equation 1 below:
 𝑆̅𝑆L(Α) = 𝐶̅𝐶Α∗L ∗ ωL (1)
Youth Counselling: For the actor Kids and Youth, the score
for the leaf soft goal Comfortableness with service for Text
Messaging is calculated as below
𝑆̅𝑆Comfortablenesswithservice(Text Messaging)
 = (0.48, 0.64, 0.80) *0.5= (0.24, 0.32, 0.4)
𝑆̅𝑆Comfortablenesswithservice(CyberCafe/Portal/Chat Room)
 = (0.48, 0.64, 0.80)*0.5 = (0.24, 0.32, 0.4)
TABLE 2 shows the scores of other leaf soft goals.

iv) Propagation of leaf soft goal scores to find the
scores of soft goal: Once leaf soft goal scores are calculated
for each alternative, the scores are propagated backwards to
find the scores of the high level soft goals. Soft goals are
recipients of multiple contribution links, which can be
considered as children of each soft goal. The score is
calculated in two steps. In first step, the score of its children
are multiplied with their respective impact links. In second
step, the combined effects of all the children are taken by
using the fuzzy maximum operation. The soft goal score is
referred to as S�SG(A) and is obtained by equation 2 :

S�SG(Α) = ⋀ {𝐶̅𝐶SCi ∗ 𝑆̅𝑆LCi|SCi}𝑛𝑛
𝑖𝑖=1 (2)

Where ˄ represents fuzzy maximum operation, 𝐶̅𝐶SCi is the
correlation link between a soft goal and its ith child, 𝑆̅𝑆LCi|SCi is
the score of its ith child and ‘n’ is the number of its children.

Youth Counselling: For the actor Kids and Youth, the score of
soft goal GetEffectiveHelp for the alternative option
UseTextMessaging is
𝑆̅𝑆 GetEffectiveHelp(TextMessaging) = MAX {MAX {(0.24, 0.32,

0.4)*(0.64, 0.80, 1), (0.144, 0.192, 0.24)* (0.64, 0.80, 1)}, (0,
0.112, 0.224)* (0.64, 0.80, 1)}
 𝑆̅𝑆GetEffectiveHelp (TextMessaging) = (0.154, 0.256, 0.4)

v) Selection of an alternative with the highest score:
The scores are propagated backwards until we reach the soft

goals that are top in the hierarchy. These soft goals are called
top soft goals. These scores are compared to determine the
best alternative implementation design option and there by
assist the analyst in decision making. This is done from each
actor point of view. To obtain quantifiable result, the scores are
defuzzified by applying α-cut operation and using an optimal
index λ. The λ indicates the degree of confidence and it can
take values λ=0 for pessimistic index, λ=0.5 for moderate index
and λ=1 for optimistic index.

Youth Counselling: From TABLE 3 we can see that, for all
actors the alternative option UseCyberCafe/Portal/ChatRoom
has the highest score when compared to alternative option
UseTextMessaging. The option UseCyberCafe/Portal/Chat
Room provides the best satisfaction level and hence is selected
for all the actors.

 In case of scenario where all the actors have same type
of alternatives and if the proposed approach gives different
alternatives selected for each actor, then the composite score
for each alternative is calculated. It is calculated by the
summation of all top soft goals scores for each alternative. It is
referred to as 𝑆̅𝑆AO and is given by equation 3 below:
 𝑆̅𝑆AO = ∑ 𝑆̅𝑆SGi

𝑛𝑛
𝑖𝑖=1 (3)

where 𝑆̅𝑆SGi is the ith top soft goal score and ‘n’ is the
number of top soft goals. The sum is normalised if it is falls
beyond the membership functions defined for goal
contributions. The normalised value is defuzzified and the one
with the highest is selected.

III. SIMULATION AND EVALUATION
Validation of quantitative models is a concern as they play

vital role in critical decision making. The proposed framework
was evaluated based on its ability to assist analyst in decision
making. To facilitate this, a simulation was developed in Visual
C++ and was tested with test cases taken from Meeting
Scheduler System and Youth Counselling System (YCS) from
existing literature [2, 7]. The proposed approach was found to
be effective in deciding the alternative design options.
Furthermore, it avoids ambiguity (when one or more goals lead
to same label) that arise in the i* qualitative approach.
Algorithm 1 outlines the steps in alternative option selection.
The soft goal score distribution graph for YCS is provided in
Figure 2.

There are many qualitative [4, 5, 7] and quantitative
approaches [6, 13] for goal analysis in the existing literature. In
our approach, we use fuzzy numbers for alternative selection
and goal estimations. By using fuzzy numbers, our approach
can handle imprecise and vague requirements of stakeholders
like high quality, low cost, good performance. On comparing
with qualitative approach, our approach also avoids the
requirements conflicts in decision making that arise in
qualitative analysis. In quantitative analysis the alternative
options are selected based on its impact to the leaf soft goals. It
does not take into account its impact on other soft goals in goal
graph. Our approach selects the alternative option based on the
impact of the alternatives on soft goals by propagating the
scores of the leaf soft goals to the top soft goals. Hence we can
say that the alternative that is selected will have better
satisfaction of the top soft goals.

667

TABLE 2. LEAF SOFT GOAL SCORES FOR ALL THREE ACTORS

 TABLE 3. TOP SOFTGOAL SCORES (*INDICATES GOAL SELECTION)

IV. RELATED WORK
Lamsweerde [4] proposed a lightweight quantitative

alternative evaluation system for KAOS framework. The
proposal uses variables like gauge variable, ideal target value,
maximum acceptable value associated with each soft goal. The
values of these variables are obtained from the specification of
the system. Lamsweerde et al. [12] proposed more accurate,
but heavy weight approach based on probability’s

interpretation of numbers. Bayesian Networks concepts are
used for making predictions about soft goals. This approach
becomes difficult to use in case of a complex system.

Affleck et al. [13, 14] proposed a process-orientated,
lightweight, quantitative extension to the NFR Framework. The
objective of their proposal is to apply a quantitative approach
for the decision process and impact of the decision over the
system. Liaskos et al. [15] employed the Analytic Hierarchy

LSG Weight

Impact

Score

Use Text
Messaging

Use
CyberCafe/Portal/

ChatRoom
Use Text Messaging

Use
CyberCafe/Portal/

ChatRoom
Comfortableness 0.5 (0.48,0.64,0.8) (0.48,0.64,0.8) (0.24, 0.32, 0.4) (0.24, 0.32, 0.4)

Anonymity 0.3 (0.48,0.64,0.8) (0,0.16,0.32) (0.144, 0.192, 0.24) (0, 0.048, 0.096)
Immediacy 0.7 (0,0.16,0.32) (0.64 ,0.80,1) (0, 0.112, 0.224) (0.448, 0.56, 0.7)

ListenforCues 0.3 (0,0,0.16) (0,0.16,0.32) (0, 0, 0.048) (0, 0.048, 0.096)
HighQualityCounselling 0.5 (0,0,0.16) (0,0.16,0.32) (0, 0, 0.08) (0, 0.08, 0.16)

Immediacy 0.7 (0,0.16,0.32) (0.48,0.64,0.8) (0, 0.112, 0.224) (0.336, 0.448, 0.56)
Anonymity 0.3 (0.48,0.64,0.8) (0,0.16,0.32) (0.144, 0.192, 0.24) (0, 0.048, 0.096)

Actor Top Soft Goals

Alternative option Score Defuzzified scores

Use Text Messaging
Text

Use
CyberCafe/Portal/Chat

Room

Use Text
Messaging Text

Use
CyberCafe/Portal/

ChatRoom

Kids and Youth Get Effective Help (0.154, 0.256, 0.4) (0.287, 0.448, 0.7)* 0.53(53%) 0.94(94%)

Counsellors Happiness (0, 0, 0.03) (0, 0.02, 0.064)* 0.0075(0%) 0.02(2%)

Organization Help Kids (0.004, 0.072, 0.18) (0.16, 0.29, 0.45)* 0.05(5%) 0.15(15%)

Figure 1. An SR Model: Youth Counselling Example (adapted from [7]).

668

Process (AHP), a mathematical decision making method for
goal elicitation in the semi-formal goal models. This suit for
goal models that can be viewed as individual AHP problems
based on eliciting contribution levels.

Horkoff and Yu [7] have proposed an interesting approach
that evaluates goal achievement in enterprise models. However,
the main issue with their approach is ambiguity of decision-
making process when one or more goal receives the same
labels. Furthermore, it requires frequent customer intervention.

Sidiq and Jain [16] proposed a fuzzy based AHP for
requirements prioritization. The AHP pairwise comparison are
used for assigning weights to goals/soft goals and finds the
prioritized list of requirements using binary sort tree method.
A. Teka et al. [17] applied fuzzy based reasoning to compare
NFR and TROPOS to analyse the impact of goals and
requirements changes in goal models. This approach suffers
from specifying goal satisfaction levels in terms of concrete
numbers.

V. CONCLUSION
This paper proposed a quantitative approach for analysing

goals in i* framework. Compared with the qualitative analysis
of i* framework, our approach strengthens the decision process
by avoiding ambiguities and making decisions when the
requirements are fuzzy. The proposed approach was validated
by applying it to test cases such as Youth Counselling, Meeting
Scheduler. In addition, a simulation was developed in Visual
C++ to support the evaluation. As a future work, the approach
will be extended by including inter-actor dependencies.
Furthermore, we plan to apply goal optimisation to i* goal
models.

REFERENCES
[1] Mylopoulos, J., et al., Exploring alternatives during requirements

analysis. Software, IEEE, 2001. p. 92-96.
[2] van Lamsweerde, A., Reasoning about alternative requirements options,

in Conceptual Modeling: Foundations and Applications. 2009, Springer.
p. 380-397.

[3] Giorgini, P., et al., Reasoning with goal models, in Conceptual
Modeling—ER 2002. 2003, Springer. p. 167-181.

[4] Liaskos, S., et al., Representing and reasoning about preferences in
requirements engineering. RE, 2011. 16(3): p. 227-249.

[5] Amyot, D., et al., Evaluating goal models within the goal‐oriented
requirement language. International Journal of Intelligent Systems,
2010. 25(8): p. 841-877.

[6] Franch, X. On the quantitative analysis of agent-oriented models. in
Advanced Information Systems Engineering. 2006. Springer.

[7] Horkoff, J. and E. Yu, Evaluating goal achievement in enterprise
modeling–an interactive procedure and experiences, in The Practice of
Enterprise Modeling. 2009, Springer. p. 145-160.

[8] Wang, X.-T. and W. Xiong, An integrated linguistic-based group
decision-making approach for quality function deployment. Expert
Systems with Applications, 2011. 38(12): p. 14428-14438.

[9] Zadeh, L.A., The concept of a linguistic variable and its application to
approximate reasoning—II. Information sciences, 1975. 8(4): p.301-357.

[10] Eric Yu, Social modeling for requirement engineering, 2011:
Mit Press.

[11] A.N. Gani: A new Operation on triangular fuzzy numbers for solving
fuzzy linear programming problem. Applied Mathematical Sciences,
Vol. 6, no. 11, 525-532 (2012).

[12] E. Letier and A. van Lamsweerde, Reasoning about partial goal
satisfaction for requirements and design engineering. In Proceedings of
the 12th International Symposium on the Foundation of Software
Engineering (FSE-04). Newport Beach, CA, pp. 53– 62 (2004).

[13] A. Affleck, and A. Krishna: Supporting quantitative reasoning of non-
functional requirements: A process-oriented approach Int. Conf.
Software and System Process (ICSSP), Zurich, Switzerland, June, pp.
88–92. IEEE Computer Press, Los Alamitos, CA, USA (2012).

[14] A. Affleck, A.Krishna and N.R. Achuthan, Selection of
Operationalizations for Non-Functional Requirements. Proc. 9th APCCM
’13, Vol. 143, pp. 69-78. Australian computer Society, Inc., Australia.

[15] S. Liaskos, R. Jalman, and J. Aranda : On Eliciting Contribution
Measures in Goal Models. Proc. 20th IEEE Int. Requirements
Engineering Conf. (RE’12), USA, September, pp. 221–230 (2012).

[16] Mohd Sidiq and S.K. Jain, Applying fuzzy preference relation for
requirements prioritation in goal oriented requirements elicitation
process, Int. J. Syste. Assur. Eng. Manag. (2014)

[17] A. Teka, N. Condori-Fernndez, I. Kurtev, D. Quartel, and W.
Engelsman, Change Impact Analysis of Indirect Goal Relations:
Comparison of NFR and TROPOS Approaches Based on Industrial Case
Study, in MoDRE 2012, Chicago, USA, 2012, pp. 58–67.

Figure 2. Soft Goals Score distributions

0

20

40

60

80

100

Text Cyber

G
oa

l
Sc

or
es

Alternative Options

GetEffectiveHelp
Happiness
HelpKids

Algorithm 1: Goal/task Elicitation (Alternative Selection) and
to find the satisfaction levels of intentional elements and actor

for each graph in the collection do
 Assign weights to each Leaf Soft Goal (LSG)
 for each task/goal associated in the graph do
 Find task/goal impact associated with each Soft Goal (SG)
 Calculate the LSG score
 for each SG in the graph do
 Calculate the SG score
 end for
 end for
 Defuzzify the top soft goal score
 Select the task/goal with the highest score
 end for
case 1: the tasks/goals are same for each input graph
 if the task selected from each graph is different then
 For each task in the input graph
 Add the top soft goal scores of each graph
 Normalize the added score
 Defuzzify and select the highest one
 else
 Compare the alternative scores to select the highest
 end if
case 2: the tasks/goals are different for each actor in input graph

Display the task/goal selected for each graph

669

DOI reference number: 10.18293/SEKE2015-040

CQV-UML Tool: a tool for managing the impact of

change on UML models

Dhikra Kchaou
Mir@cl Laboratory,

 University Of Sfax, Sfax, Tunisia

Dhikra.kchaou@fsegs.rnu.tn

Nadia Bouassida
Mir@cl Laboratory,

 University Of Sfax, Sfax, Tunisia

Nadia.Bouassida@isimsf.rnu.tn

Hanêne Ben-Abdallah
King Abdulaziz University,

Jeddah, KSA

hbenabdallah@kau.edu.sa

Abstract— An automated change impact analysis and

management approach is vital to handle the complexity of

adapting software during its evolution. Such an approach

reduces the maintenance cost and provides for adequate

decision making when confronted with the choice of

accepting or ignoring changes. This paper presents a change

impact management approach between UML models. It

verifies the consistency and the quality of interdependent

diagrams after a change is handled. In addition, it calculates

the effort required in managing any change and displays a

report indicating to the designer all necessary modifications

to keep the design coherent. The approach is supported by

a toolset, called CQV-UML tool.

Keywords—change impact; consistency; quality; effort estimation

I. INTRODUCTION

With the continuous evolution of software systems, it comes
the need to automate the process of analysing and managing the
change impact both on the necessary model updates and quality.
Change impact analysis and management of interdependent
models while keeping their quality is necessary.

A change impact analysis (CIA) method must firstly
identify changes made by the designer. Such precise definition
provides for the identification of the change operations and the
elements affected directly by this change. Secondly, a CIA
method must provide for the needed traceability between the
different elements in order to analyse the impact of a change not
only in the changed model but also between the interdependent
models. Based on the identified change and the traceability
between elements, the violated consistencies must be detected
using a set of consistency rules. The objective of a change
impact management approach should cover not only the
detection of inconsistencies, but also the ability to provide for a
means to estimate both the effort required to handle a change
and its impacts on the quality of the various models. A tool that
automates this process while taking into account the quality of
the changed models and the effort needed represents a success
factor of a change management method.

Several change impact management methods for UML
diagrams have been implemented (e.g., [1], [3], [5]). They tried
to assist the designer in correcting inconsistencies caused by
change. However, these techniques do not evaluate the quality
of UML diagrams after evolution. In addition, the effort
estimation is not treated.

In this paper, we present the tool support CQV-UML tool to
automate the impact of changes on UML models. The tool aims
to produce a report with warnings about every change that may
deteriorate the quality of the model, recommendations about
how to make the design consistent, and the number of
corrections required to ensure the consistency of all the models.
The designer can use this report to decide about which changes
should be rethought and/or canceled. Moreover, assisted by a
set of quality rules based on metrics, the designer would have
an important support in producing a good quality design, which
is an essential determinant of the success of the software
project.

The remainder of the paper is organized as follows. Section
2 presents an overview of the existing change impact analysis
tools. Section 3 presents our change impact analysis and
management approach. Section 4 illustrates the usage of the
tool through the T-Rot example. Section 5 summarizes the
paper and outlines future work.

II. EXISTING UML CHANGE IMPACT ANALYSIS TOOLS

An idea that all researchers involved in change impact
analysis agree on is that a manual change impact analysis is too
expensive and error prone and that tool support is necessary. In
this section, we briefly present change impact analysis tools that
have been proposed in the literature. Essentially, we are
interested in tools for change impact management applied to
UML models.

For instance, Briand et al., [1] propose the iACMTool which
manage the change between class, sequence and state chart
diagrams by identifying specific change propagation rules for
all types of changes. In order to assist the designer to decide
about the change, they propose a measure of distance between
a changed element and potentially impacted elements to
prioritize the results of impact analysis. However, due to the
large number of UML model element types and the large
number of change types, the number of impact analysis rules is
quite large which makes the process of change impact not easy
to implement.

Egyed [3] extends the tool in order to assist the designer in
discovering unintentional side effects, locating choices for
fixing inconsistencies, and then in changing the design model.
In fact, for a given inconsistency and for each element in the
scope elements, the tool enumerates a list of choices to correct
the change. Since there is a large number of choices, the author
tries to reduce this list based on the reason of the inconsistency.
However, the number of choices as well as the choices

670

themselves may be ambiguous for the designer especially with
for large diagrams.

Keller at al., [5] present an inconsistency resolution
framework implemented as an Eclipse plug-in. The tool takes
as input one type of change applied to one or more UML model
element and outputs a set of impacted elements. In fact, for a
given changed element, the tool implements seven impact
analysis rules suitable for seven change types. The tool does not
give any support to help the designer to correct the change.

Overall, existing works try to detect inconsistencies caused
by changes in order to ensure the consistency within and inter
UML diagrams. However, they do not offer any assistance to
correct detected inconsistencies and to preserve the quality after
the change. In addition, they do not support the generation of
the corrected diagrams.

III. THE CHANGE IMPACT ANALYSIS AND MANAGEMENT

APPROACH

Our approach allows the identification and measurement of
potential side effects resulting from requirement/design
changes. Its first originality is that it provides traceability
between documented use case, class and sequence diagrams.
The second originality of our approach is that, besides verifying
the consistency of changed UML diagrams, it verifies their
quality using a set of metric based quality rules. The third
originality is that it measures the effort needed to manage
inconsistencies in order to assist the designer in deciding about
which changes should be rethought and/or canceled. The fourth
originality is that it is supported by a tool that automates all
steps and that automatically generates a new version of the
corrected diagrams after resolving the inconsistencies caused
by different changes.

A change impact analysis technique needs first of all a way
to specify changes. Thus, in a previous work [4], we defined a
MOF [2] based change meta-model that covers all change types
at a high level of abstraction. Being MOF-based, our change
meta-model defines all possible changes affecting the elements
independently of a particular modeling language. In addition, it
can be extended and adapted to define changes that affect any
MOF-based model and, in particular, UML models.

The second hurdle that change impact analysis and
management faces is the semantic and structural traceability
among the numerous elements of the different diagrams. For
this purpose, we propose a graph concept, called "model
dependency graph" that encodes the requirements (use case)
and design (class, sequence) diagrams in an integrated way. The
encoding uses the semantic traceability results and explicitly
represents the syntactic relationships among the diagrams'
elements. The model dependency graph provides for the needed
traceability to analyze systematically the impact of a change on
the consistency of the diagrams.

Inspired from the work of Lallchandani et al., [6] for static
slicing of UML models, the model dependency graph (MDG)
is constructed by transforming the use case, class and sequence
diagrams to graphs. In particular, our adaptation accounts for
the association relationships (not treated by Lallchandani et al.,
[6]). In addition, we integrated the documented use case

diagram to the MDG which is also not treated in by
Lallchandani et al., [6].

In our approach, the UML class diagram is transformed into
a Class Dependency Graph (CDG) and every UML sequence
diagram is transformed into a Sequence Dependency Graph
(SDG). Every UML use case diagram is transformed into a Use
Case Dependency Graph (UCDG) based on a structured use
case description [7]. To get all dependencies among the various
diagrams, the UCDG, CDGs and SDGs are merged into a
Model Dependency Graph (MDG).

To trace the change impact from the use case diagram across
the class and sequence diagrams, the CDG and SDGs are firstly
integrated into a single graph. The constructed MDG must be
completed with the requirements diagram, i.e., the documented
use case diagram. For this, we need to identify the
correspondence among the ordered actions (specified in the use
case scenarios) and the messages in the sequence diagrams. For
this purpose, we use an information retrieval technique: term
frequency – inverse document frequency (TF-Idf) [8] to
measure the cosine similarity measure [12] in order to
determine the most resembling message in the sequence
diagram to the query (i.e., action in the scenario) and
consequently to a use case. In our case, documents and queries
contain the set of grammatical units that compose a
message/action in SD/UC added to their synonyms extracted
from WordNet. The calculus of the different weights for the
terms is followed by the calculation of a similarity measure
which is the cosine.

After the cosine similarity calculation, the documents (i.e. the
actions in the UCs) that are similar to a query (i.e. messages in
SD) are linked together in order to construct the MDG. Note
that after this step, a validation step may be needed by the
designer since the results of the cosine similarity computation
may return several ranked possibilities. The designer should
validate/select one value that better fits his situation.

Once the change is detected and the traceability is
established, the consistency of changed diagrams is verified
based on a set of consistency rules. As an example of an inter-
diagram consistency rule, each operation in SD must be defined
in the receiver’s class in CD. A change may affect not only the
consistency of UML diagrams, but also their quality. Thus, in
addition to the preservation of the consistency of UML
diagrams, their quality must be evaluated and preserved after a
change is introduced. For instance, the deletion of a class that
had many important relationships with other classes, or that
participates in a design pattern [10] depreciates the quality of
the class diagram. The quality of software can be evaluated
using several metrics (cf., [9]) interpreted through a set of
thresholds (cf., [11]). In our approach, these metrics and their
thresholds are used to evaluate and/or to predict the quality
effects of a change in order to propose a set of recommendations
to the designer. For this objective, we propose a set of quality
rules. To preserve the intra-diagram quality after a change, we
calculate the CK metrics suite [9] before and after every change,
and based on their thresholds [11], we verify a set of quality
rules and we inform the designer about any violation. On the
other hand, in order to approximate the effort needed for change
impact management, we propose to calculate the number of

671

required modifications (NRM) necessary when correcting the
inconsistencies caused by an intra/inter diagram changes. The
NRM sums up the number of update/change operations needed
to correct a violated consistency rule.

To calculate NRM, we propose the new intra/inter diagram
metrics shown in Table 1. Note that the proposed thresholds for
these metrics will be defined using an empirical study in a
future work. For a given change, the NRM is the sum of the
metrics values, concerned by the change.

TABLE 1: METRICS USED TO MEASURE THE INTRA/INTER-DIAGRAM QUALITY

Metrics Definitions

In
tr

a
-d

ia
g
r
a
m

m
e
tr

ic
s

NAt/Op
Number of times an attribute (and operation) of a class

is used (called) in an operation.

NAtPr
Number of times an attribute is used as a parameter in an
operation.

NM2Ob Number of messages between two objects.

In
te

r
-d

ia
g
r
a
m

m
e
tr

ic
s

NCSD Number of times a class is used as an object in SDs.

NATSD Number of times an attribute is used in SDs.

NOpSD
Number of times an operation is used as a message in

SDs.

IV. CQV-UML TOOL: A TOOL SUPPORT FOR CHANGE

MANAGEMENT

To implement our change impact management approach,
we have developed a tool named CQV-UML Tool: a
Consistency and Quality Verification tool for UML diagrams.

A. Functional architecture

The principal activities performed by our tool are the change
detection, the consistency verification and quality verification.
The tool takes as input a set of UML models versions
corresponding to the original and changed diagrams modelled
using the CASE Tool: ARGOUML. The first step transforms
the XMI files corresponding to the design diagrams into XML.
The transformation is performed thanks to XSLT to obtain
reduced representations using the API JDOM. The aim of this
step is to eliminate all superfluous information, that is specific
to the CASE tool ARGOUML. Secondly, the list of changes is
recorded and displayed to the designer. Afterwards, the cosine
similarity measure is calculated and our graph based technique
(MDG) is implemented in order to establish the traceability
between the interdependent diagrams. Based on the achieved
traceability, the set of violated consistency and quality rules
corresponding to each change type is displayed to the designer.
Finally, after accepting the proposed correction, the corrected
diagram is generated.

B. CQV-UML tool application

To illustrate the various functionalities of the CQV-UML
Tool including the consistency and quality verification of the
different diagrams after evolution, let us consider a case study
where UML was used to develop a system for autonomous
navigation by the intelligent service robot, T-Rot. The use case
diagram comprises two use cases (Figure 1): “Navigation” and
“Obstacle Avoidance”. The “Navigation” use case textual
description is presented in Table 2. The sequence diagram SD
corresponding to the Navigation use case is presented in Figure

2. The class diagram CD of this example is presented in Figure
3.

Figure 1. Main use-case diagram of T-Rot system

Figure 2. SD1: the sequence diagram of the UC1 “Navigation”

Figure 3. The Robot system class diagram CD

The first step in our approach consists in detecting changes
for each UML diagram. The interface 1 of Figure 4 shows the
detected changes in the class diagram. By clicking on the
change (delete the Start() operation from the WheelActuator
class in the CD), the list of violated consistency rules in the top-
right of the screen shot are displayed. In fact, the change
violates the consistency rule: Each operation in SD must be
defined in the receiver’s class in CD since the deleted start()
operation exists in the SD1 between the Navigationcontrol
object and the WheelActuator object. This inconsistency is
detected thanks to the traceability obtained through the MDG.
The CQV-UML tool recommends the designer to correct this
inconsistency by deleting the message start() in SD1
corresponding to the deleted operation or undo the change. To
take the appropriate decision, the CQV-UML tool calculates the
number of required modification NRM needed to correct the
inconsistency. The NRM is calculated based on the metric
NOpSD: number of times the operation is used as a message in
SDs. The start() operation exist one time in the SD1, so, the
designer has one delete to do.

To manage the second change, the CQV-UML tool
calculates the similarity measure between the deleted action

commandlinecommandline NavigationcontrolNavigationcontrol WheelactuatorWheelactuator NavigationtimerNavigationtimer DestinationDestination

enterdestination()

start()

started

starttimer()

checkdestination()

yes

stoptimer()

notifystoppedmoving

stop

672

NSa3 in the Navigation use case and the list of messages in the
sequence diagram corresponding to the Navigation use case.
The interface 3 of Figure 4 presents the similarity results which
show that the NSa3 action corresponds to the
notifytostopmoving message in SD1. The system informs the
designer that the deleted action exists as a message in SD and
as an operation in CD and proposes to delete them.

TABLE2. “NAVIGATION” USE CASE DESCRIPTION (UC1)

The quality verification in the interface 2 of Figure 4 shows
that the deletion outputsto association from CD violates a
quality rule. In fact, the WheelActuator class becomes isolated.
The tool recommends to the designer to add an association or
to cancel the change.

When the designer accepts the proposed corrections, the
affected diagrams are modified and displayed to the designer.
The interface 4 of Figure 4 shows the generation of the
corrected class diagram.

V. CONCLUSION

This paper introduced an approach for change impact
management and its associated CQV-UML tool. The proposed
approach consists in managing the impact of changes affecting
elements in UML diagrams essentially use case, class and
sequence diagrams. The MDG graph is used to model the inter-

dependencies between the different diagram elements and as a
consequence to trace the impact of the change.

We are currently examining how to evaluate the proposed
approach on open-source systems and comparing the results of
our experiments with other existing approaches.

REFERENCES

[1] L. C. Briand, Labiche, Y. O'Sullivan, L. Impact Analysis and Change
Management of UML Models‖. In Proceedings of the International
Conference on Software Maintenance, 2003, pp. 276-280.

[2] OMG Meta Object Facility (MOF) Core Specification, Version 2.4.1,
OMG Document Number: formal/2011-08-07,
http://www.omg.org/spec/MOF/2.4.1/PDF.

[3] A. Egyed, Fixing Inconsistencies in UML Design Models. Proceedings of
the 29th International Conference on Software Engineering, 2007, pp.
292-301.

[4] D. Kchaou, N. Bouassida, H. Ben-Abdallah, A MOF-based change meta-
model”, Proceedings of the International Arab Conference on Information
Technology, CCIS, Zarqa, Jordon, 2012.

[5] A. Keller, S. Demeyer, Change Impact Analysis for UML Model
Maintenance‖. Book chapter: Emerging Technologies for the Evolution
and Maintenance of Software Models, 2012, pp. 32-56.

[6] J.T. Lallchandani, R. Mall, Static Slicing of UML Architectural Models,
Journal of object technology, Vol. 8, No. 1, 2009, pp. 159-188.

[7] M. Ali, H. Ben-Abdallah, F. Gargouri, Towards a Validation Approach of
UP Conceptual Models, In : Proceeding of Consistency in Model Driven
Engineering in European Conference on Model Driven Architecture -
Foundations and Applications Nuremberg, Germany, 2005, pp. 143-154.

[8] H. Wu and R. Luk and K. Wong and K. Kwok. "Interpreting TF-IDF term
weights as making relevance decisions". ACM Transactions on
Information Systems, 26 (3). 2008.

[9] S.R. Chidamber, C.F. Kemerer, Towards a metrics suite for object
oriented design. In Conference proceedings of Object-oriented
programming systems, languages, and applications, 1991, pp. 197-211.

[10] Bouassida N., Ben-Abdallah, Issaoui I. Evaluation of an automated multi-
phase approach for pattern discovery ", International Journal of Software
Engineering and Knowledge Engineering, World Scientic, Vol 23, N10,
pp 1367-1398 (2013).

[11] E. Chandra, P. Linda, Class Break Point Determination Using CK Metrics
Thresholds‖, Global Journal of Computer Science and Technology, Vol.
10, 14, 2010, pp. 73-77.

[12] A. Singhal, Modern Information Retrieval: A Brief Overview. Bulletin of
the IEEE Computer Society Technical Committee on Data Engineering
24, 2013, pp. 35–43.

Figure 4: Snapshots of the CQVUML tool

Use case Navigation

Actor Commander

Precondition The robot system has the grid map and the current position.

PostCondition The robot system is at the destination and waiting for the

next destination

Extension

Point

[obstacles are recognized], use case « Obstacle Avoidance
»

Normal

Scenario NS

<NSa1><The user > <enters a destination >

<NSa2><The system> < commands the wheel actuator to
start moving to the destination >

< NSa3>< The wheel actuator > < notifies the system that

it has started moving >
< NSa4>< The system> <determines that it arrives at the

destination>

< NSa5>< The wheel actuator><notifies the system that it
has stopped moving >

Alternatives

Scenario AS

< If the system doesn’t arrive at the destination >

<AS1a1> <the system> < keeps moving >

673

An evolution management model for
multi-level component-based software architectures

Abderrahman Mokni1, Marianne Huchard2, Christelle Urtado1, Sylvain Vauttier1, and Yulin Zhang3

1LGI2P / Ecole des Mines d’Alès, Nı̂mes, France, {Abderrahman.Mokni, Christelle.Urtado,
Sylvain.Vauttier}@mines-ales.fr

2LIRMM / CNRS & Montpellier University, France, huchard@lirmm.fr
3Laboratoire MIS, Université de Picardie Jules Verne, Amiens, France, yulin.zhang@u-picardie.fr

Abstract

Handling evolution in component-based software archi-
tectures is a non trivial task. Indeed, a series of changes ap-
plied on software may alter its architecture leading to sev-
eral inconsistencies. In turn, architecture inconsistencies
lead to software erosion and shorten its lifetime. To avoid
architectural inconsistencies and increase software reliabil-
ity, architecture evolution must be handled at all steps of
the software lifecycle. Moreover, changes must be treated
as first class entities. In this paper, we propose an evolution
management model that takes these criteria into account.
The model is a support for our three-level Dedal architec-
tural model. It captures and handles change at any of the
Dedal abstraction levels: specification, implementation and
deployment. It generates evolution plans using evolution
rules proposed in previous work. The generation process is
implemented using the ProB model checker and evaluated
through three evolution scenarios of a Home Automation
Software.

Keywords: software architecture evolution, component
reuse, evolution rules, evolution management, abstraction
level, change propagation, consistency checking.

1 Introduction

Software evolution [1] is becoming more and more chal-
lenging due to the increasing complexity of software sys-
tems and their importance in everyday life. While compo-
nent reuse has become crucial to shorten large-scale soft-

DOI reference number: 10.18293/SEKE2015-172

ware systems development time, handling evolution in such
systems is a serious issue. As witnessed by Garlan et al.
in their recent study [2], the difficulty of reuse lies essen-
tially on architectural mismatches that arise due to several
changes that affect software. A famous problem is software
architecture erosion [3, 4]. It arises when modifications of
the implementation of a software violate the design prin-
ciples captured by its specification architecture. Such ero-
sion leads to software degradation and shortens its lifetime.
Increasing confidence in reuse-centered, component-based
software systems lies on resorting out multiple issues.

First, software architectures must support change at any
step of component-based development to meet new user
needs, improve component quality, or cope with component
failure. Second, the impact of change must be handled lo-
cally (at the same abstraction level) to avoid architecture
inconsistencies and propagated to the other abstraction lev-
els to avoid incoherence between the architecture descrip-
tions, notably erosion. Third, the evolution activity must
be tracked to enable monitoring, commitment and/or roll-
back and versioning. In this paper, we propose an evolution
management model that deals with all these issues. It is
based on our Dedal architectural model [5, 6] that covers
the three main steps of component-based software develop-
ment: specification, implementation and deployment. The
model uses architecture properties and evolution rules pro-
posed in previous work [7, 8] to generate evolution plans
that preserve the consistency of all architecture descriptions
as well as coherence between them. The remainder of this
paper is outlined as follow: Section 2 gives the background
of this work. Section 3 presents the evolution management
model. Section 4 presents the evolution plan generation pro-
cess, an implementation and evaluation. Section 5 discusses

674

related work before Section 6 concludes the paper and gives
future work directions.

2 Background

This article is concerned with evolution management in
multi-level component-based architectures. Specifically, we
address software architectures described by Dedal [6], a
three-level architectural model. First, we introduce Dedal
and then we give a brief overview of its formalization.

2.1 Dedal a three-level architectural model

Dedal is a novel architectural model that covers the three
main steps of component-based development by reuse:
specification, implementation and deployment. The idea of
Dedal is to build a concrete software architecture (called
configuration) from suitable software components stored in
indexed repositories. Candidate components are selected
according to an intended architecture (called specification)
that represents an abstract and ideal view of the software.
The implemented architecture can then be instantiated (the
instantiation is called assembly) and deployed in multiple
contexts.

The Dedal model is then constituted of three descriptions
that correspond to three architecture abstraction levels.

The architecture specification corresponds to the high-
est abstraction level. It is composed of component roles
and their connections. Component roles encapsulate the re-
quired functionalities of the future software.

The architecture configuration corresponds to the sec-
ond abstraction level. It is composed of concrete component
classes selected from repositories and realize the identified
component roles in the architecture specification.

The architecture assembly corresponds to the lowest
abstraction level. It is composed of component instances
that instantiate the component classes of the architecture
configuration. While the specification and configuration de-
scriptions represent the software at design-time, the assem-
bly description represents the software at runtime.

Figure 1 illustrates the three abstraction levels of Dedal
on an example of a Home Automation Software. The soft-
ware enables to manage the light of buildings in function
of the time through an orchestrator (component role Home-
Orchestrator). The specified functionalities are turning
on/off the light (component role Light), controlling its in-
tensity (component role Intensity) and getting information
about the time (component role Time).

2.2 Dedal formalization

Dedal formalization is crucial to enable the verification
and validation of the derived architectural models as well

Figure 1. Example of a Dedal model: Home
Automation Software

as evolution management. In [7], we propose a formaliza-
tion of Dedal that comprises two kinds of typing rules. The
first kind is about intra-level rules. These rules define the
relations between components of the same abstraction level
such as compatibility and substitutability. The second kind
is about inter-level rules. These rules define the relations
between components of different abstraction levels (cf. Fi-
gure 1 for inter-level relations). For instance, the realization
rule checks whether a (or a set of) component class(es) real-
izes a (or a set of) component role(s). This rule is also used
to search for candidate concrete components in repositories
to implement a specified software architecture. Inter-level
and intra-level rules are generalized to support the architec-
tural level. First, using intra-level rules, we can check archi-
tecture consistency at any abstraction level. Second, using
inter-level rules, it is possible to check coherence between
architecture descriptions at different abstraction levels. For
instance, we can check whether a configuration implements
all the desired functionalities documented in its specifica-
tion. In [8], we propose a set of evolution rules that enable
to evolve Dedal models. The proposed rules allow the ma-
nipulation (addition, deletion and substitution) of architec-
tural elements (e.g., components, connections) at the three
Dedal abstraction levels.

In this work, we present an evolution management model
for architecture models derived from Dedal. We show how
evolution rules can be used to generate evolution plans that
preserve the consistency of architecture descriptions and co-
herence between them.

3 The evolution management model

Figure 2 presents our evolution management model. It
is composed of three parts: the architectural Model (meta-

675

classes of group 1), the changes that affect the architectural
model (meta-classes of group 2) and the evolution manager
(meta-classes of group 3).

3.1 The architectural model

The architectural model is the target of change. It is de-
rived from the Dedal meta-model and hence includes three
architecture descriptions, each represents the component-
based software at a different abstraction level.

Architecture properties represent the set of rules that
decide about the well-formedness of the architectural
model. These properties have to be preserved after change
and hence are part of the analysis goals that must be en-
forced during the software evolution. In our work we focus
on two properties,

Architecture consistency states whether the elements of
the architecture are correctly typed and well connected
(each interface is connected to a compatible one). Addi-
tionally, consistency involves the internal completeness of
the architecture, i.e., an architecture is said complete if all
its required properties are met. From a structural viewpoint,
an architecture is complete if all its required interfaces are
connected to compatible provided ones.

Architecture coherence states whether an architecture de-
scription at an abstraction level is in conformance with
an architecture description at an adjacent abstraction level.
Verifying architecture coherence keeps all architecture de-
scriptions up-to-date and avoids the problems of drift and
erosion.

Model manipulation operations are elementary change
operations that manipulate the artifacts of the architectural
model (e.g., component roles, component classes, or con-
nections). They are classified into three types: addition,
deletion and substitution. Manipulation operations are com-
posed of four parts. A signature defines the operation name
and states its arguments. Preconditions are related to the
architectural model (e.g., a precondition checks if substi-
tutability between two components is possible). Actions are
applied on the architectural model by updating the set of its
artifacts. Post-conditions must be verified by the new state
of the architectural model after applying the actions of the
operation.

3.2 The architectural change

Architectural changes characterize all the modifications
that alter the software architecture. They meet new re-
quirements to keep software up-to-date or arise due to an
environmental change (e.g., lack of resources, or faults).
Software architectures are subject to change at any abstrac-
tion level of component-based development. The impact of
change may affect the other abstraction levels. All of these

facts about software change make its handling a non trivial
task. In order to tackle this complexity, we represent change
as a first class entity that interferes with the architectural
model. Furthermore, we identify three main change char-
acteristics necessary for the evolution management process:
origin, level and subject.

There are two types of change origin: initiated change
and triggered change. Initiated change has an external
source. It may be originated from user action or from the ex-
ecution environment. Triggered change is internal and is in-
duced by the evolution manager to reestablish the architec-
ture consistency at the same abstraction level (local change)
and/or preserve conformance between all architecture de-
scriptions at other abstraction levels (propagated change).

Change level designates the level where a change is cur-
rently performed. It allows to identify which properties
must be checked to ensure a successful evolution.

Change subject designates the artifacts subject to
change. This information is useful to identify the elements
that have to be manipulated in the evolution process.

3.3 The evolution manager

The evolution manager captures software change and
controls its impact on the architectural model. It uses evolu-
tion rules to generate an evolution plan that satisfies a given
evolution goal. The evolution manager ensures also the co-
evolution of the descriptions of the software architectures at
the other abstraction levels.

Evolution rules are specific operations that are com-
posed of model manipulation operations. They manage and
control access to these operations using preconditions re-
lated to the change, according its origin, level, or subject.

The evolution goal sets all the conditions that must be
satisfied by the architectural model after the change. Basi-
cally, it is composed of two parts: architecture properties
(i.e., consistency and coherence) and the post-condition of
the initiated change.

4 The generation process

In this section, we state the generation process prob-
lem. Then, we test and evaluate two search strategies im-
plemented by the ProB [9] model-checker.

4.1 Problem formalization

Notations: Let M be an instance of the Dedal archi-
tectural model and S be the state space of M . Then, let
L be the enumeration of Dedal abstraction levels. L =
{specLevel, configLevel, asmLevel}. Let E be the set
of all evolution rules and El the subset of E related to an
abstraction level l, l ∈ L. For each ei ∈ E, let pre(ei) be

676

Figure 2. The evolution managment model (ecore)

the precondition of ei. Let Cil be the change initiated at an
abstraction level l and post(Cil) the post-condition satis-
fied by s ∈ S after applying Cil on M . Let Pconsistency(l)
be the consistency property related to the abstraction level l
and Pcoherence(l, k) be the coherence property between the
two adjacent abstraction levels l and k. Finally, let Gl be an
evolution goal related to an abstraction level l.

Problem: Considering an initiated change Cil on M ,
we would like to (1) find a sequence of ei ∈ El where
Gl = post(Cil) ∧ Pconsistency(l) is satisfied and (2)
∀ l, k where Pcoherence(l, k) = false, find a sequence of
ek ∈ Ek where Gk = Pcoherence(l, k) ∧ Pconsistency(k)
is satisfied. The evolution plan Pl is thus the concatena-
tion of all found sequences. Pl = Pllocal;Plpropagated
where Pllocal is the plan related to the local change and
Plpropagated is the concatenation of the plans related to the
propagated change.

4.2 Implementation overview

The implementation is composed of two parts: the Dedal
modeler and the ProB [9] model-checker. The Dedal mod-
eler is an eclipse-based tool that enables the creation and
edition of Dedal diagrams (i.e., specification, configura-
tion and assembly diagrams) and the automatic generation
of B [10] formal models corresponding to those diagrams.
ProB is a model-checker and animator for B models. It cal-
culates and simulates state-transitions. In our case, it can
calculate all the enabled evolution rules (defined as B op-
erations) at each state of the model. Moreover, using for-
ward chaining inferences, ProB can search for a sequence
of evolution rules that reaches the evolution goal. It pro-
poses depth-first (DF), breadth-first (BF) and mixed depth-
first/breadth-first (DF/BF) search strategies to find invariant
violations or defined goals. The most suitable strategy de-

pends on the kind of checking the user wants to perform.
In the case of searching for a specific state by exploring a
large state space, depth first seems to be the most efficient
strategy as stated in [11]. In the remainder, we use ProB
to generate evolution plans and observe the resolution time
using DF and mixed DF/BF. We compare the results to see
which strategy is the most efficient.

4.3 Evaluation

To illustrate the generation process, we run three evolu-
tion scenarios on the example of HAS. The initial architec-
tures are illustrated by Figure 3.

Figure 3. The initial state of HAS

Scenario 1 corresponds to a requirement change. The
specification of HAS needs to be evolved to enable the con-
trol of the building luminosity. This consists in adding a
new role (cr1a) that provides a luminosity functionality.

Scenario 2 corresponds to an implementation change.

677

The configuration needs to be evolved to turn under android
OS. The initiated change consists in adding an android or-
chestrator (cl3a). This entails to delete the current orches-
trator (cl3).

Scenario 3 corresponds to a runtime change. The clock1
(ci2) component instance must be replaced due to a dry bat-
tery of the clock. That of the embeddedClock1 (ci2a) mo-
bile device is used instead.

We run two tests for each evolution scenario. The first
test uses the DF strategy and the second one uses the DF/BF
strategy. The results (cf. Table 1) show that DF is more
efficient than BF/DF in all cases.

Change level DF (seconds) DF/BF (seconds)

Scenario1
(top-down
change)

specLevel (initial) 2.36 48
configLevel 16.71 4.97
asmLevel 9.12 23.83
full process 28.19 76.8

Scenario2
(mixed)

configLevel (initial) 9 13.39
specLevel 2.98 5.37
asmLevel 12.01 65.41
full process 23.99 84.17

Scenario3
(bottom-up
change)

asmLevel (initial) 4.5 26.54
configLevel 77.8 136.08
specLevel (not affected) 0 0
full process 82.3 162.62

Table 1. Evaluation results

Due to space limitation, we only show the generated
plans corresponding to scenario2. Figure 4-a, Figure 4-
b and Figure 4-c respectively show the ProB output for local
change (configuration level), bottom-up change (specifica-
tion level) and top-down change (assembly level). The se-
quence must be read from the bottom to the top of the output
view. We use the following notation to explain the syntax of
the generated rules: cr, cl, ct and ci correspond respectively
to component role, class, type and instance. The pint and
rint prefixes respectively denote a provided or a required
interface. HASSpec, HASConfig and HASAssm respectively
name the HAS specification, configuration and assembly.

5 Related work

Managing software architecture evolution is still an open
issue. For more than two decades, a lot of efforts have been
dedicated to provide methods, tools and techniques for ar-
chitecture modeling and analysis. Several ADLs (Archi-
tecture Description Languages) [12] have been proposed.
Most of them provide textual notations for describing and
analyzing software systems. They are usually supported by
tools or integrated environments for edition, analysis and
simulation. Examples include C2SADL [13], Wright [14],
Darwin [15] and ArchJava [16]. C2SADL is an ADL
for the design of concurrent systems. It includes a sub-
architecture modification language (AML) to support evolu-
tion. Changes are first applied at the architectural level and
then implemented using a runtime infrastructure. Wright is

Figure 4. generated plans

also a domain-specific ADL. It aids the design of distributed
architectures. Wright focuses more on increasing the archi-
tect’s confidence on the design of systems. It enables con-
sistency checking and analysis using CSP (Communicating
Sequential Processes) as a formal basis. However, it does
not propose any language or notation to describe architec-
tural changes. Darwin is relatively similar to Wright as it
shares the same goal. Unlike Wright, it includes a declar-
ative language that supports change description (including
operations such as create, remove, link, or unlink). Beside
the fact that they are domain-specific, C2SADL, Wright
and Darwin do not support reverse (bottom-up) evolution.
Moreover, they cover only the specification level of the soft-
ware system and hardly support the implementation and de-
ployment levels. This gap between architecture specifica-
tion and its implementation generates several inconsisten-
cies when applying changes and shortens the software life-
time. ArchJava is an ADL that unifies the architectural level
and the implementation code in a single entity. It uses a
type system to check conformance between both descrip-
tions. Although, this unification enables co-evolution, it
makes it harder to separate program implementation from
its specification. Separating specification from implemen-
tation is central in our approach to foster component reuse.
Moreover, as far as we know, all cited ADL do not han-
dle changes as first class entities, neither do they propose a
mechanism for generating evolution plans.

678

6 Conclusion and future work

This work proposes an evolution management model
for component-based software architectures. It represents
changes as first class entities as the architecture models de-
rived from Dedal. The model enables to (1) capture change
at any architecture abstraction level, (2) handle its impact at
the same level and (3) propagate it to the lower and higher
abstraction levels keeping then all the architecture descrip-
tions coherent. Both top-down (forward) and bottom-up (re-
verse) evolution are then supported by the proposed model.

At this stage of work, evolution is not yet automated and
is simulated using model-checking techniques on the gener-
ated formal models of Dedal [7]. Unfortunately, this is lim-
ited by combinatorial explosion. Using meta-heuristic tech-
niques could be a solution to reduce the complexity of evo-
lution plan generation. Ongoing work is the development
of an eclipse-based environment of Dedal that automates
the evolution plan generation process. Change requests can
be expressed using a change description language such as
Dedal-CDL [17]. Furthermore, we are considering to set a
versioning mechanism for the architectural models derived
from Dedal.

References

[1] T. Mens and S. Demeyer, Software Evolution.
Springer, 2008.

[2] D. Garlan, R. Allen, and J. Ockerbloom, “Architec-
tural mismatch: Why reuse is still so hard,” IEEE Soft-
ware, vol. 26, no. 4, pp. 66–69, July 2009.

[3] D. E. Perry and A. L. Wolf, “Foundations for the study
of software architecture,” SIGSOFT Software Engi-
neering Notes, vol. 17, no. 4, pp. 40–52, Oct. 1992.

[4] L. de Silva and D. Balasubramaniam, “Controlling
software architecture erosion: A survey,” JSS, vol. 85,
no. 1, pp. 132–151, Jan. 2012.

[5] H. Y. Zhang, C. Urtado, and S. Vauttier, “Architecture-
centric component-based development needs a three-
level ADL,” in Proc. of the 4th ECSA conf., ser. LNCS,
vol. 6285. Copenhagen, Denmark: Springer, August
2010, pp. 295–310.

[6] H. Y. Zhang, L. Zhang, C. Urtado, S. Vauttier, and
M. Huchard, “A three-level component model in
component-based software development,” in Proc. of
the 11th GPCE Conf. Dresden, Germany: ACM,
Sept. 2012, pp. 70–79.

[7] A. Mokni, M. Huchard, C. Urtado, S. Vauttier, and
H. Y. Zhang, “Towards automating the coherence ver-
ification of multi-level architecture descriptions,” in

Proc. of the 9th ICSEA, Nice, France, Oct. 2014, pp.
416–421.

[8] ——, “Formal rules for reliable component-based ar-
chitecture evolution,” in Formal Aspects of Compo-
nent Software - 11th International FACS Symposium
revised selected papers, Bertinoro, Italy, Sept. 2014,
pp. 127–142.

[9] M. Leuschel and M. Butler, “ProB: An Automated
Analysis Toolset for the B Method,” International
Journal on Software Tools for Technology Transfer,
vol. 10, no. 2, pp. 185–203, Feb. 2008.

[10] J.-R. Abrial, The B-book: Assigning Programs to
Meanings. Cambridge University Press, 1996.

[11] M. Leuschel and J. Bendisposto, “Directed model
checking for B: An evaluation and new techniques,”
in Formal Methods: Foundations and Applications,
ser. Lecture Notes in Computer Science, J. Davies,
L. Silva, and A. Simao, Eds. Springer Berlin Hei-
delberg, 2011, vol. 6527, pp. 1–16.

[12] N. Medvidovic and R. N. Taylor, “A classification and
comparison framework for software architecture de-
scription languages,” IEEE TSE, vol. 26, no. 1, pp.
70–93, Jan. 2000.

[13] N. Medvidovic, “ADLs and dynamic architecture
changes,” in Joint Proc. of the Second International
Software Architecture Workshop and International
Workshop on Multiple Perspectives in Software De-
velopment on SIGSOFT ’96 Workshops. New York,
USA: ACM, 1996, pp. 24–27.

[14] R. Allen and D. Garlan, “A formal basis for archi-
tectural connection,” ACM TOSEM, vol. 6, no. 3, pp.
213–249, Jul. 1997.

[15] J. Magee and J. Kramer, “Dynamic structure in soft-
ware architectures,” ACM SIGSOFT Software Engi-
neering Notes, vol. 21, no. 6, pp. 3–14, 1996.

[16] J. Aldrich, C. Chambers, and D. Notkin, “Archjava:
connecting software architecture to implementation,”
in Proc. of the 24rd ICSE Conf., May 2002, pp. 187–
197.

[17] H. Y. Zhang, C. Urtado, S. Vauttier, L. Zhang,
M. Huchard, and B. Coulette, “Dedal-CDL: Modeling
first-class architectural changes in Dedal,” in Proc. of
the Joint 10th WICSA and 6th ECSA conf., Helsinki,
Finland, August 2012.

679

DOI reference number: 10.18293/SEKE2015-228

Using Learning Styles of Software Professionals to

Improve their Inspection Team Performance

Anurag Goswami
1
, Gursimran Walia

2
, Abhinav Singh

3

Department of Computer Science, Office of International Services

North Dakota State University
1, 2

, Indiana University
3

anurag.goswami@ndsu.edu
1
, gursimran.walia@ndsu.edu

2
, singhab@iu.edu

3

Abstract— Inspections of software artifacts during early software

development aids managers to detect early faults that may be hard

to find and fix later. While inspections are effective, evidence

suggests that inspection abilities of individuals vary widely which

affect overall inspection effectiveness. Cognitive psychologists

have used Learning Styles (LS) to measure an individual’s

characteristic strength and ability to acquire and process

information. This concept of LS is being utilized in software

engineering domain as a means to improve inspection

performance. This paper presents the results from an industrial

empirical study, wherein the LS’s of individual inspectors were

manipulated to measure its impact on the fault detection

effectiveness of inspection teams. Using inspection data from

nineteen professional developers, we developed virtual teams with

varying LS’s of individual inspectors and analyzed the team

performance. The results from the current study show that, teams

of inspectors with diverse LS’s are significantly more effective at

detecting faults as compared to teams of inspectors with similar

LS’s. Therefore, LS’s can aid software managers to create high

performance inspection team(s) and manage software quality.

Keywords-software inspection; learning style; requirements.

I. INTRODUCTION

Inspecting early lifecycle artifacts (e.g., requirements and
design) can improve software quality by helping developers
detect faults early in the Software Development Life Cycle
(SDLC). Empirical evidence showed that, finding and fixing
faults earlier rather than later is easier, less expensive and saves
significant rework costs [1]. To have most impact on software
quality, researchers and practitioners have focused efforts on
finding and fixing faults committed during the requirements
development [2]. Requirements development is the first and a
critical phase, wherein requirements are gathered from different
technical (developers, designers, testers) and non-technical
(managers, end-users) stakeholders. These requirements are
recorded using Natural Language (NL) in a Software
Requirements Specification (SRS) document. SRS is a means of
communications amongst stakeholders but is prone to mistakes
and faults due to inherently ambiguity, imprecision and
vagueness in NL [3].

Among different approaches used for detecting NL
requirement faults (e.g., NL to State transitions [4], checklist
based inspections [5], scenario based reading [6], ad hoc
inspections [7]), software inspections are widely recognized as
most effective technique. Inspection process includes reviewing
a software work-product by a group of skilled individuals to
identify faults. Empirical evidence demonstrate the benefits of
inspection on artifacts developed at all phases of development
(e.g., requirement, design, code, interfaces) [8].

The phases in the inspection process defined by Fagan [9]
are: 1) selecting skilled individuals/inspectors; 2) individual
review to find faults; 3) team meeting to consolidate faults; 4)
follow-up and repair. Fagan [9] emphasized different parts of the
process (e.g., more emphasis on an individual preparation phase
rather than team meeting phase). Regardless of the team
meetings, evidence shows that the effectiveness (# of faults
found) of an inspector during the individual review significantly
impacts the overall effectiveness of an inspection team [10].

To improve the performance of inspectors during the
individual review, researchers have tried to understand whether
individual factors (e.g., educational background; level of
technical degree) are correlated to their inspection effectiveness
[11]. Contrary to the expectations, results at major software
organizations showed that software engineers with a non-
technical degree found significantly more number of
requirement faults as compared to the technical degree holders
[11]. Even when inspectors use same technique, and receive
same training, their effectiveness varies significantly. These
results led us to hypothesize that inspector’s ability of detecting
faults in a software artifact are affected by the ways with which
they psychologically acquires, process and retains information
(as opposed to their technical expertise and level of education).

On that end, cognitive psychology research [12] affirms that
individuals vary in their abilities to perceiving and process
information, i.e. they have varying Learning Style (LS)
preferences and strengths. For example, some people like to
think and work alone; some are more comfortable learning
through concrete evidence and examples. Research results of LS
in psychology prove that an individual perceive and process
information better if it is presented in their preferred LS [13].
Our research extends the idea of individual LS’s to evaluate its
impact on the software inspection process.

While the concept of using LS in software engineering
domain is novel, academia have experimented with creating
heterogeneous teams to improve team performance [14].
Software Engineering researchers have also borrowed
psychology research to improve inspection team performance
[15]. As an example, researchers’ used Myers-Briggs Type
Indicator (MBTI) instrument (that measures psychological
preference of individuals) to create heterogeneous inspection
teams to maximizing disparity between team members. Despite
these novel efforts, they have met with limited success because
unlike LS instruments (that measure the learning preferences),
MBTI is a personality inventory [16]. The only research linking
LS’s in software engineering domain [17] have been at studying
the communication aspects of the stakeholders during
requirements elicitation. Their research has shown that LS’s of
non-technical stakeholders should be considered when selecting

680

the requirements elicitation methods. The results also showed
that software engineers (like other human beings) have different
learning preferences. This result motivated us to evaluate if LS
can aid in planning and performing the inspection.

We hypothesize that inspector’s Learning Styles (LS) can be
used to create heterogeneous inspection teams which in turn,
would increase their team performance by detecting more
unique faults (i.e. less fault overlap) during the inspection. To
evaluate this hypothesis, this paper presents results of an
industrial study on the effect of LS preferences of nineteen
professional software engineers on their inspection team
performance. The participants reported their LS’s and
individually inspected a requirements document using the fault-
checklist technique and recorded faults. We analyzed the impact
of LS’s of inspectors by creating virtual inspection teams (by
combining individual data) for different team sizes. Next, all
virtual teams for each team size were sorted from most dissimilar
to most similar in terms of the LS’s of individual inspectors
followed by an evaluation of their team performances. The
results show that team of inspectors with dissimilar LS’s
performed significantly better than the teams of inspectors with
similar LS’s. Software managers can use these results to plan
and manage inspections in their organizations.

II. BACKGROUND - MEASURING LEARNING STYLES

Kolb [18] introduced the concept of LS’s, and developed the

first LS instrument. Over the years, psychologists have

developed different versions of LS models [19] and validated

the use of LS’s in engineering education [12]. Previous

researches revealed that the Felder and Silverman’s Learning

Style Model (FSLSM) is the most advanced and widely used to

measure the LS’s preference of individuals [20]. The instrument

used to measure LS is known as the Index of Learning Styles

(ILS) [12] and is used in this research as below.

A. Felder and Silverman Learning Style Model (FSLSM)

The FSLSM model (shown in Fig. 1) capture most
important LS preferences among individuals and then classifies
characteristic strength and preference across four LS
dimensions. These dimensions related to the way individuals
“perceive” and “process” information. The two dimensions
which relates to perceiving information includes: a)
Sensing/Intuitive; and b) Visual/Verbal. The remaining two
dimensions (i.e. Active/Reflective and Sequential/Global) relate
to information processing. Brief description of LS model is
described in Fig. 1.

We have used FSLSM and its accompanying instrument,

Index of Learning Style (ILS), to measure the LS of inspectors.

B. Index of Learning Styles (ILS)

The ILS instrument has been empirically validated for its
reliability and construct validity [21]. A sample ILS output is
shown in Fig. 2. The ILS instrument is an online questionnaire
with 44 questions. Each LS dimension has 11 questions. For
example, in Visual/Verbal dimension, if a person selects 10
answers that favors visual category and 1 towards verbal
category then the LS score will be 9 (i.e. 10-1) with a ‘strong’
preference towards the visual category represented by a symbol
‘X’ on the top of the score (see Fig. 2). The symbol ‘X’
represents the preference towards a category in a LS dimension.

ILS score ranging from 1 to 3 represents that a person is balanced
towards both the categories in an LS dimension. A score
between 5-7 and 9-11 states that the person has a moderate and
strong preference towards a category in a LS dimension.

III. RESEARCH APPROACH – USING LS TO FORM VIRTUAL

INSPECTION TEAMS

The goal of the study was to be evaluate the impact of LS’s
on the inspection performance by creating multiple virtual
inspection teams for varying number of inspectors (e.g., ranging
from N=2 to N=10 inspectors) and then sorted from most
dissimilar to most similar w.r.t the LS’s of team members. This
was followed by an evaluation of their inspection performances
(effectiveness). To achieve this objective, a software tool was
developed to automate this process by utilizing different
multivariate statistical approaches. These approaches are
briefly described here with more details in [22].

A. Principal Component Analysis (PCA)

FSLSM classifies each LS dimension into two categories
(sensing/intuitive, visual/verbal, active/reflective and
sequential/global). The relationship between two categories of
each dimension is negatively correlated. That is, as score in one
category increases, score in the other decreases. The first step
was to transform the original correlated variables (i.e. LS scores
across categories in each LS dimension) into uncorrelated
variables. PCA is a multivariate technique that is being used to
convert a set of observations of possibly correlated variables into
set of values of uncorrelated variables called principal

Figure 2. Example result of the questionnaire on the ILS

Figure 1. Felder Silverman Learning Style Model

681

components (PCs) [23]. PCA is used in this research to better
understand the interrelationships between two categories (e.g.,
visual/verbal) of each of the four LS dimensions and between all
the four LS dimensions for each individual. PCA transforms the
original correlated data (i.e., FSLSM output, Fig. 2) into a new
set of uncorrelated variables called principal components (PCs)
[23]. Note, for each individual in our research, the numbers of
possible PC’s are always equal to or less than the number of
original variables (i.e., 8 categories across 4 LS dimensions)[24].

B. Cluster Analysis (CA)

During the second step, CA was used to group similar

participants into different clusters based on their LS’s. CA [23]

is being used in our research to form groups/clusters of

individuals based on their LS data. The resulting clusters of CA

explain high similarity of LS’s within each cluster and high

dissimilarity of LS’s between different clusters [25]. Among

different types of clustering techniques (e.g. Hierarchical, Non-

Hierarchical, Agglomerative, Divisive clustering); we have used

k-means clustering algorithm [26]. CA groups the participants

into clusters of similar LS, which helped us to study the relation

between LS of members on the scale ranging from dissimilar to

similar LS preferences. A team formed with different cluster

members will lead to dissimilar LS group and a team formed

from same cluster members leads to a similar LS group. More

details of CA can be found here [22].

C. Discriminant Analysis (DA)

During the third step, DA was used to find out the probability

of a participant belonging to a cluster. Using DA, LS variations

are partitioned into a “between group” and a “within-group”.

This result of the DA is used to maximize the LS variations

across different clusters, and minimize the LS variations within

each cluster [27]. While CA explained that there is more

dissimilarity among different clusters, there is a lack of

dissimilarity in the LS preferences of the individuals belonging

to the same cluster. DA provides Group Membership (GM) to

determine the dissimilarities between individual LS’s within the

same cluster and with respect to the individuals in other clusters.

So, DA provides GM values for each individual w.r.t each

cluster. GM was used in our study to sort the teams ranging from

most dissimilar LS to most similar LS preferences and strengths.

This process of extracting software inspection teams with

varying levels of LS preferences was automated. Details of

evaluating the performance of these teams appears in Section V.

IV. EMPIRICAL STUDY DESIGN

To evaluate the impact of LS variability on the inspection

performance, LS’s of nineteen professionals (working in IT

Company) were gathered via online survey questionnaire. The

participating subjects were trained on the inspection process and

on using the fault checklist to record faults found during the

inspection. Next, each subject individually inspected an

industrial strength requirements document (that was seeded with

faults) and reported faults. Study details are provided below.

Research Question: Whether the variation in the LS’s of

individual inspectors is positively correlated to their team

performance during an inspection of requirements document?

Variables: The study manipulated the LS’s of individual

inspectors (independent variable) and measured its effect on the

team effectiveness (dependent variable) during the inspection.

Participating Subjects: Nineteen software professionals

working in a software company participated in the study. Some

of them have worked on multiple projects in industry. The

subjects’ reported to have an average of three years of

experience in interacting with user to writing and inspecting

requirements and use cases.

Artifacts: The document inspected in the study described

the requirements for the Loan Arranger system (LAS). LAS is

responsible for grouping loans into bundles based on user-

specified characteristics and then sell to other financial

institutions. For use in previous studies, the document was

written in plain English, was 10 page long, and seeded with

thirty realistic faults. The fault seeding was done by Microsoft

researchers prior to the study. The document is publicly

available1 and have been used in several inspection studies [28,

29].

Experiment Procedure: Study steps as described below:

Step 1 – Pre study survey: participants were asked to fill pre-

study survey questionnaire to provide feedback about their

experience of working in software industry. The survey elicited

information about their experience in interacting with end-users

to write requirements, writing use cases, inspecting

requirements, and changing requirements for maintenance.

Step 2 – Learning Style Questionnaire Survey: participants

were given Felder Silverman’s LS questionnaire. Participants

answered 44 multiple choice questions2 and, the LS results are

generated for each participant on ILS scale (Fig. 2). For each

dimension on ILS (Active/Reflective, Sensing/Intuitive,

Visual/Verbal, and Sequential/Global), the participant has score

towards one category. Hence, only four LS categories (from

each dimension) form LS of an individual with a score of either

1 or 3 or 5 or 7 or 9 or 11. These scores are then converted into

actual scores which has scores in both the categories (i.e. number

of answers supported for each category in a dimension) as shown

for a subset of 10 (out of 19) subjects in Table I. For example, in

Active/Reflective dimension, subject ID 9 answered 8 questions

in favor of Active and 3 in favor of Reflective.

1 http://steel.cs.ua.edu/~carver/BackgroundReplication
2 https://www.engr.ncsu.edu/learningstyles/ilsweb.html

TABLE I. EXAMPLE OF ACTUAL SCORES OF 10 PARTICIPANTS

ID ACT REF SEN INT VIS VER SEQ GLO

1 5 6 8 3 9 2 6 5

2 5 6 7 4 6 5 6 5

3 9 2 9 2 10 1 5 6

4 3 8 7 4 4 7 7 4

5 4 7 10 1 11 0 6 5

6 4 7 5 6 9 2 4 7

7 5 6 8 3 11 0 9 2

8 3 8 5 6 4 7 10 1

9 8 3 6 5 8 3 3 8

10 4 7 10 1 6 5 6 5

682

Step 3 – Training and Inspecting LAS Requirements: The

subjects were trained (by the same researcher in a single

session) on basic concepts in an inspection and how to detect

faults in a requirements document using fault checklist

technique. The subjects were instructed on different fault types

and how to use the fault form to record faults during the

inspection using example requirements. Then, the subjects were

asked to work alone and performed an inspection of LAS to

identify and record faults. To normalize the results, the subjects

were provided sixty minutes to perform the inspection (read the

document and record faults). At the end of inspection process,

nineteen fault lists were collected (one per subject). One of the

researchers read through the faults reported by each participant

(and compared against the seeded fault list) to remove any false-

positives before analyzing the data. In addition, the fault

reporting forms required the subjects to classify the faults

identified during the inspection into one of the following fault

types: Omission (O), Ambiguous Information (A), Inconsistent

Information (II), Incorrect Fact (IF), Extraneous (E), and

Miscellaneous (M).

V. EVALUATION CRITERIA

This section describes the process used to form virtual
inspection teams (using individual LS data), sorting teams (w.r.t
LS dissimilarity) and evaluating their team performance (using
individual fault data). Our previous results showed that, for cost-
effective inspections, team sizes should be limited to ten
inspectors due to high cost of inspections and diminishing return
beyond a size of 10 inspectors [30]. Therefore; the tool generated
all possible virtual inspection teams for inspection team size
from N=2 to N=10 inspectors. For each inspection team size, the
tool sorts the virtual teams in the decreasing order of LS
dissimilarity of the inspectors. The tool then outputs the total
unique faults found by each team and their fault detection rate.
The evaluation steps are described in subsections V.1-4.

1) Creating Virtual inspections: We created virtual

inspection teams (i.e. teams that did not actually meet, we just

combined their data) with team size ranging from 2 to 10

inspectors and each team size has all the possible combinations

of virtual teams. For example, to create virtual inspection team

of size 4 (from a pool of 19 inspectors), we created 3876 virtual

inspection teams (i.e. 19C4).

2) Grouping of similar inspectors in clusters: The

correlated LS of inspectors in each LS dimension were

converted into uncorrelated variables by the tool using PCA

(Section III.A). Next, inspectors of similar LS’s were grouped

together in the same cluster (number of cluster is same as the

team size being analyzed) using CA (Section III.B).

3) Sorting teams based on the LS of inspectors: In this step,

the tool calculates the group membership (GM) of each

inspector in a cluster using DA. Next, tool sorts all inspection

teams (i.e. 32C4, from step 1) in the order of decreasing level of

dissimilarity (i.e. most dissimilar to similar) in the LS’s of the

individual inspectors.

4) Evaluating inspection performance of teams: During this

step, the tool combines the individual inspection data and

outputs the total unique faults and average time taken by each

virtual inspection team of all sizes. To summarize, all possible

inspection team were formed for each team size and their virtual

inspection results were organized from teams with dissimilar to

similar LS’s along with their performance.

VI. DATA ANALYSIS AND RESULTS

This section presents the results on the; 1) effect of variation
in the LS’s on the inspection team performance; 2) distribution
of fault types (mentioned in Section IV) across different LS
dimension and categories.

As stated earlier, for each team size (e.g., N=4), all possible
virtual teams were generated and then sorted with dissimilar
LS’s (highest number of cluster involved in team formation) to
similar (least number of cluster involved) LS’s. Inspection data
(i.e. faults found by each participant) was individual data; so
fault detection effectiveness for virtual teams was calculated by
combining the unique faults detected by each participant in LAS
requirements document. This analysis was performed on all
possible virtual inspection teams for all sizes.

Fig. 3 compares the average number of unique faults found
by virtual inspection teams ranging from N= 2 to 10 inspectors.
Each line represents a particular team size (e.g., N=4) and maps
the average number of faults found by the virtual inspection
teams (formed with a certain # of clusters). Results are organized
by the increasing number of clusters (or increasing dissimilarity)
involved in the team formation (i.e., the higher the cluster
number, the more dissimilarity the team members). Also
mentioned earlier, the # of clusters that could participate in the
team formation is always less than or equal to the team size (e.g.,
1 or 2 or 3 clusters for team size 3).

Based on the results in Fig. 3, a general observation is that,
for each team size, teams with highest number of clusters
involved (i.e. most dissimilar inspectors) found maximum
average number of faults as compared to the same team size with
less number of clusters. The results show a consistent increase
in the inspection effectiveness with an increase in the number of
clusters used to form teams. For example, in team size 5, teams
created with only one cluster (i.e. most similar teams) found an
average of 13.42 faults; whereas teams created from five
different clusters (i.e. most dissimilar team) found an average of
17.45 faults. This effectiveness trend is consistent across all
team sizes.

Figure 3. Team effectiveness organized by increasing # of clusters

683

As an exception (in Fig. 3), for some larger team size (e.g.,
team size 10), virtual inspection teams could not be formed from
a single cluster. This is because for team size 10, the tool creates
10 different clusters via k-means algorithm. All 19 participants
were distributed across these 10 clusters and there was no cluster
that contained all 10 participants. Therefore, as the team size
increases, the number of participants that belong to the same
cluster decreases which reduces the probability that a team will
be formed from less number of clusters

Based on the above results, teams of inspectors with
dissimilar LS’s had less fault overlap and consequently, their
inspection effectiveness is higher.

To evaluate this effect, we performed a linear regression test
to see whether the dissimilarity in the LS’s of inspectors is
positively correlated with the average number of unique faults
found by inspection teams of different sizes. The results (Table
II) show that, dissimilarity in the LS of inspectors had a strong
and significant positive correlation with the team effectiveness
for team size 3 to 10 (shaded rows). We anticipate that increasing
the team size beyond a certain number of inspectors would not
significantly diversify the LS’s of inspectors in a team (due to 8
possible LS categories). Generally, software companies do not

employ a large inspection teams (which is the reason we had
analyzed up to team of 10 inspectors). Overall, creating
inspection teams based on the dissimilarity in their LS strengths
(guided by the number of clusters involved in their formation)
appears to increase the fault detection effectiveness during an
inspection of requirements document.

We analyzed the impact LS dimensions (made up of
combination of categories) had, on inspection effectiveness and
nature of fault found. The was done to gain insights about
whether certain LS are responsible for higher inspection
effectiveness and detection of particular fault type or distributed
across different LS dimension? To perform this analysis, we
captured the classification of faults according to their fault type
(Section IV) found by the participants belonging to each cluster.
From raw data it was found, none of the inspectors had a
preference towards Verbal-VER. The remaining LS categories
(Active–ACT, Reflective–REF, Sensing–SEN, Intuitive–INT,
Sequential–SEQ, and Global–GLO) were analyzed.

To analyze the effect of each LS (i.e. combination of
categories across each dimension) on inspection effectiveness
and fault types, we created groups of each LS using six LS
categories across three LS dimensions. Therefore, eight clusters
with their respective number of members were: REF-SEN-GLO
(five), ACT-SEN-SEQ (five), ACT-INT-SEQ (one), REF-SEN-
SEQ (one), REF-INT-SEQ (two), ACT-SEN-GLO (one), ACT-
INT-GLO (two), and REF-INT-GLO (one). Fig. 4 shows the

average inspection effectiveness (shown by solid line) and
average fault type (shown by bars) correlation for each LS
cluster during inspection. Results are ordered from most
effective to least effective cluster. Left y-axis shows the average
number of different fault type detected and secondary y-axis on
the right shows the average inspection effectiveness.

Based on results in Fig 4, following observations were made:
a) Inspectors with REF-SEN-GLO LS’s had the maximum

inspection effectiveness (6.4) and close to that, REF-INT-
SEQ LS cluster found the next maximum effectiveness (6).
Upon analyzing the pre-study survey data, it was found that
inspectors with REF-SEN-GLO LS preference had high
experience of working with requirements analysis as
compared to inspectors with REF-INT-SEQ LS preference.

b) Inspectors belonging to the REF-SEN-GLO (i.e. most
effective cluster) found the maximum number of
Ambiguous Information fault (A). This result suggests that
inspection performance rely on a combination of categories
along each LS dimension and a single LS category cannot
help detect all types of faults. Hence, there should be an
inspection team with inspectors of diverse LS’s.

c) Another observation is that REF-INT-SEQ and REF-SEN-
SEQ cluster found the maximum number of Omission (O)
faults. Also, REF-INT-GLO cluster found maximum
number of Inconsistent Information (II) faults.

These results reinforce that, a combination of different LS’s
enabled inspectors to find faults of different types and that
difference in the LS of inspectors enable a higher coverage of
faults present in an artifact. The result however revealed that
inspectors belonging to the five LS clusters (i.e., REF-SEN-
GLO, REF-INT-SEQ, REF-SEN-SEQ, ACT-INT-GLO, ACT-
SEN-SEQ) out of 8 clusters were able to uncover all the three
types (O, A, and II) of faults present in requirements document.

VII. THREATS TO VALIDITY

In this experiment, we were able to address some of the

validity threats. Participating subjects were software

professionals working in real industry settings. Heterogeneity

of document was handled by providing participants with the

same LAS document to inspect. Our experiment consists of

inspectors who has different levels of work experience due to

which group composition effect was not addressed. Training

was provided by one trainer to all the participating subjects

which addressed the training bias. We were also able to address

Figure 4. Effectiveness and Fault Type by each LS

TABLE II. LINEAR REGRESSION RESULTS

Team size Effectiveness Correlation

2 P=0.14; Correl. Coeff = 0.112; r2=0.013

3 P<0.001; Correl. Coeff = 0.387; r2=0.015

4 P<0.001; Correl. Coeff = 0.185; r2=0.034

5 P<0.001; Correl. Coeff = 0.268; r2=0.072

6 P<0.001; Correl. Coeff = 0.228; r2=0.052

7 P<0.001; Correl. Coeff = 0.292; r2=0.085

8 P<0.001; Correl. Coeff = 0.211; r2=0.044

9 P<0.001; Correl. Coeff = 0.166; r2=0.028

10 P<0.001; Correl. Coeff = 0.060; r2=0.004

684

fatigue effect by providing enough time to participants to take

surveys (i.e. LS questionnaire, pre-study, and post-study

survey) and perform requirements inspection in their

comfortable environment where they can take break(s).

However, the LAS document was developed externally by

Microsoft and we do not have access of LS of authors which did

not led us to control the effect of LS of authors of SRS on

inspection output. Also, for larger team size (e.g., team size 10),

there was not enough data to form virtual inspection teams with

small number of clusters. These issues regarding the

generalization of results will be addressed in future studies.

VIII. DISCUSSION OF RESULTS

The focus of our study was to investigate the impact of
individual inspector on performance of inspection team during
the requirements inspection. The results from Section VI (Fig.
3) showed that dissimilarity in LS of inspectors had a direct and
positive relationship with inspection team effectiveness. This
means, higher the dissimilarity in the LS of inspectors in a team,
the more number of faults are detected in requirements
document during the inspection (i.e. higher inspection output).
While testing this results statistically (Table II), there was a
strong significant correlation between the LS dissimilarity and
inspection effectiveness. Therefore, using LS’s as an input to
guide staffing/formation of inspection teams is beneficial for
software managers. Results also revealed that some LS do favor
inspection positively (i.e. high effectiveness and on detection of
different fault type) as compared to other LS’s. Based on the
results provided in this paper, the concept of LS is applicable in
software inspections domain and can help to manage the quality of

software by creating high performance inspection team(s).

IX. CONCLUSION AND FUTURE WORK

While the data size used in this study was small, these results
showed that if inspection teams are created by taking different
LS of inspectors into account, they would read requirements
document with different perspectives. This results in less fault
overlap among inspectors in a team and leads to high inspection
output. These results are interesting and provide us with initial
evidence to continue on this path. We plan to analyze the
pre/post study data to gain more insights into the LS’s of
professional developers and its impact on their daily activities.
Our future works includes replicating this analysis for larger data
sets. Another future work includes analyzing the data to evaluate
the correlation (positive or negative) inspectors with certain LS
preferences (e.g., Active vs. Reflective) may have on their
performance during the requirements inspections.

REFERENCES

[1] Perry, W.E.: ‘Effective Methods for Software Testing: Includes Complete
Guidelines, Checklists, and Templates’ (John Wiley & Sons, 2006. 2006)

[2] Ackerman, A.F., Buchwald, L.S., and Lewski, F.H.: ‘Software

inspections: an effective verification process’, Software, IEEE, 1989, 6,
(3), pp. 31-36

[3] Berry, D.M., and Kamsties, E.: ‘Ambiguity in requirements
specification’: ‘Perspectives on software requirements’ (Springer, 2004),

pp. 7-44

[4] Aceituna, D., Do, H., Walia, G.S., and Lee, S.-W.: ‘Evaluating the use of
model-based requirements verification method: A feasibility study’.

Empirical Requirements Engineering (EmpiRE), 2011 First International

Workshop on2011 pp. 13-20

[5] Parnas, D.L., and Lawford, M.: ‘The role of inspection in software quality

assurance’, Software Engineering, IEEE Transactions on, 2003, 29, (8),
pp. 674-676

[6] Shull, F., Rus, I., and Basili, V.: ‘How perspective-based reading can

improve requirements inspections’, Computer, 2000, 33, (7), pp. 73-79
[7] Porter, A.A., Votta Jr, L.G., and Basili, V.R.: ‘Comparing detection

methods for software requirements inspections: A replicated experiment’,

Software Engineering, IEEE Transactions on, 1995, 21, (6), pp. 563-575
[8] Fagan, M.E.: ‘Design and code inspections to reduce errors in program

development’: ‘Pioneers and Their Contributions to Software

Engineering’ (Springer, 2001), pp. 301-334
[9] Fagan, M.E.: ‘Advances in software inspections’: ‘Pioneers and Their

Contributions to Software Engineering’ (Springer, 2001), pp. 335-360

[10] Porter, A., Siy, H., Mockus, A., and Votta, L.: ‘Understanding the sources
of variation in software inspections’, ACM Transactions on Software

Engineering and Methodology (TOSEM), 1998, 7, (1), pp. 41-79

[11] Carver, J.: ‘The impact of background and experience on software
inspections’, Empirical Software Engineering, 2004, 9, (3), pp. 259-262

[12] Felder, R.M., and Silverman, L.K.: ‘Learning and teaching styles in

engineering education’, Engineering education, 1988, 78, (7), pp. 674-681
[13] Allert, J.: ‘Learning style and factors contributing to success in an

introductory computer science course’, (IEEE, 2004), pp. 385-389

[14] Rutherfoord, R.H.: ‘Using personality inventories to help form teams for
software engineering class projects’, SIGCSE Bull.,2001, 33,(3),pp.73-76

[15] Miller, J., and Yin, Z.: ‘A cognitive-based mechanism for constructing

software inspection teams’, Software Engineering, IEEE Transactions on,
2004, 30, (11), pp. 811-825

[16] Montgomery, S.M.: ‘Addressing diverse learning styles through the use
of multimedia’. Frontiers in Education Conference, 1995. Proceedings.,

19951995 pp. 3a2. 13-13a12. 21 vol. 11

[17] Aranda, G.N., Vizcaíno, A., Cechich, A., and Piattini, M.: ‘A cognitive-
based approach to improve distributed requirements elicitation processes’.

Cognitive Informatics, 2005.(ICCI 2005). Fourth IEEE Conference on,

Irvine, USA, 8-10 Aug. 2005 pp. 322-330
[18] Kolb, D.A.: ‘Experiential learning: Experience as the source of learning

and development’ (Prentice-Hall Englewood Cliffs, NJ, 1984. 1984)

[19] Charkins, R., O'Toole, D.M., and Wetzel, J.N.: ‘Linking teacher and
student learning styles with student achievement and attitudes’, Journal of

Economic Education, 1985, pp. 111-120

[20] Felder, R.M.: ‘Are learning styles invalid?(Hint: No!)’, On-Course
Newsletter, 2010, pp. 1-7

[21] Felder, R.M., and Spurlin, J.: ‘Applications, reliability and validity of the

index of learning styles’, International Journal of Engineering Education,
2005, 21, (1), pp. 103-112

[22] Goswami, A., and Walia, G.:'Using Learning Styles to Create Virtual

Inspection Teams: A Technical Report',
http://www.goswamianurag.com/techRep/LSTeamsTech.pdf, The

Department of Computer Science, North Dakota State University, 2015

[23] Anderson, T.W.: ‘An introduction to multivariate statistical analysis’
(Wiley New York, 1958.)

[24] 24 Jolliffe, I.T.: ‘Principal component analysis’ (Springer verlag, 2002.

2002)
[25] Steinbach, M., Ertöz, L., and Kumar, V.: ‘The challenges of clustering

high dimensional data’: ‘New Directions in Statistical Physics’ (Springer,

2004), pp. 273-309
[26] Hartigan, J.A., and Wong, M.A.: ‘Algorithm AS 136: A k-means

clustering algorithm’, Journal of the Royal Statistical Society. Series C

(Applied Statistics), 1979, 28, (1), pp. 100-108
[27] Tatsuoka, M.M., and Tiedeman, D.V.: ‘Chapter IV: Discriminant

Analysis’, Review of Educational Research, 1954, 24, (5), pp. 402-420

[28] Carver, J., Shull, F., and Basili, V.: ‘Observational studies to accelerate
process experience in classroom studies: an evaluation’. Empirical

Software Engineering, 2003. ISESE 2003. Proceedings. 2003

International Symposium on2003 pp. 72-79
[29] Shull, F., Carver, J., and Travassos, G.H.: ‘An empirical methodology for

introducing software processes’, ACM SIGSOFT Software Engineering

Notes, 2001, 26, (5), pp. 288-296
[30] Mandala, N.R., Walia, G.S., Carver, J.C., and Nagappan, N.: ‘Application

of kusumoto cost-metric to evaluate the cost effectiveness of software

inspections’. Proceedings of the ACM-IEEE international symposium on
Empirical software engineering and measurement, Lund, Sweden, 17-22

Sep. 2012 pp. 221-230

685

How do software engineers apply an early usability
inspection technique? A qualitative study

Natasha Malveira C. Valentim, Tayana Conte
USES Research Group, Universidade Federal do Amazonas

Manaus, Brazil
{natashavalentim, tayana}@icomp.ufam.edu.br

Bernardo Estácio, Rafael Prikladnicki
Pontíficia Universidade Católica do Rio Grande do Sul

Porto Alegre, Brazil
{bernardo.estacio, rafaelp}@ pucrs.br

Abstract — Usability inspections can be employed in early phases
of the software development process. They improve usability
through artifacts that are built during the development of the
software. These artifacts will influence the usability of the
developed software. Usability inspection techniques have been
proposed and considered as an effective alternative for
addressing usability issues in early phases. However, these
techniques are often avoided by software engineers due to their
lack of experience and knowledge in the field. Therefore, there is
an opportunity to investigate how industry practitioners have
employed an early usability inspection technique in practice. This
paper describes an observational study in the industry aimed at
eliciting the process used by software engineers when applying an
early usability inspection technique. We analyzed the qualitative
data, discussing their impact in the improvement of the
technique. The results indicated which steps the software
engineers adopted in the technique’s application.

Keywords- Usability evaluation, usability inspection; early
usability; qualitative study.

I. INTRODUCTION

Usability is universally acknowledged as a significant
aspect of the overall quality of interactive systems [1].
Including usability allows benefits such as improving user
productivity and reducing training and documentation costs [2].
Therefore, a large number of researchers have investigated
ways to include usability in software development [3], [4].
Donahue [5] says that investments in usability have allowed
benefits such as income increase. This has motivated more
organizations to consider usability as a relevant factor in their
software products [6].

However, Seffah and Metzker [7] highlight some the
following challenges when including usability into the
development process: (a) usability activities are usually
separated from the software development process, and (b) the
notations and tools in which usability is considered are
different from those employed in the development process.
Furthermore, the development processes do not take advantage
of the intermediate artifacts that are produced during early
stages (i.e., requirements and design stages). These
intermediate artifacts (e.g., navigational models) are mainly
employed to guide software engineers and to document the
application. Since the traceability between these artifacts and
the final application is not well defined, performing evaluations
using these artifacts can be difficult [8].

For this reason, it is important to propose technologies that
can be applied by software engineers in the usability evaluation
of the artifacts that are employed in the early stages of the
development process. The benefits of using this type of
technologies are: (i) to assist developers in learning about
usability and interaction design and (ii) to reduce the usability
evaluation costs because often these evaluations are performed
only when the software is ready, generating rework and
increasing costs with repairs and improvements.

In this context, this paper describes an observational study
with 15 software engineers who applied a usability inspection
technique in mockups. They had between 1 and 13 years of
experience in the development of projects with the software
industry, both Web applications and Mobile applications. In
this observational study, we intended to ‘look inside’ the
inspection process, enabling us to understand how software
engineers apply an early usability inspection technique.

The early usability inspection technique analyzed in this
study is called MIT 2. This technique aims at evaluating the
usability through mockups [9]. The MIT 2 is part of a set of
techniques called Model Inspection Techniques for Usability
Evaluation (MITs), composed by two other techniques: MIT 1
(for the usability evaluation of use case specifications) and
MIT 3 (for the usability evaluation of activity diagrams). The
MITs intend to reduce the cost of fixing usability problems in
artifacts that are employed in the early stages of the
development process. They have verification items that guide
the software engineers in the discovery of usability problems.
Therefore, investigating how software engineers apply this
technique during an early usability inspection is important to
understanding such practice.

The remainder of this paper is organized as follows: Section
2 discusses the concept of Early Usability. Section 3 presents
the MITs technique. Section 4 describes the planning and the
execution of the Observational Study. Sections 5 and 6 present
the results of the Quantitative and Qualitative Analysis,
respectively. Section 7 presents some discussions. Section 8
describes the threats to validity. Section 9 concludes the paper.

II. EARLY USABILITY

Early Usability considers the usability in early phases of the
development lifecycle. The goal of Early Usability is to
improve usability through artifacts that are built during the
software development that will influence the quality of the
developed software. Early Usability can help reduce the

DOI reference number: 10.18293/SEKE2015-156

686

number of problems detected in software development projects.
It also provides benefits such as increasing the quality of the
develop software and higher user satisfaction [2]. According to
Fernandez et al. [8], if usability problems are repaired earlier,
the quality of the final application can be improved, saving
resources in the development stage. Therefore, contributing to
reducing the cost of the development process.

Propp et al. [10] proposed a representative example of a
technology that considers Early Usability. This approach
focuses specifically in the development of interactive systems
based on task models. To evaluate usability, first we use the
task model to control the user interaction at a degree of
abstraction based on tasks. After having introduced the usage
of a task engine for task model based on capture, it is necessary
to perform the connection between the initial task model and
the further refined software artifacts at different stages of the
development. To use this approach, it is necessary to adopt the
development process based on the proposed model.

Hornbæk et al. [3] propose the UCE method (Use Case
Evaluation) for the usability evaluation based on use cases that
employs Nielsen’s [11] heuristics as a basis. This method
consists of three activities: (1) Inspection of Use Cases, that
seeks to identify usability problems that the evaluator is
convinced one or more prospective users will experience, (2)
Assessment of Use Cases, that seeks to assess the quality of the
use cases, and (3) Documentation of Evaluation, where the
results are compiled into a coherent evaluation product. This
method does not require computer support itself.

III. MODEL INSPECTION TECHNIQUE FOR

USABILITY EVALUATION

The MITs are reading techniques to include usability in the
early stages of the development process (analysis and design
phase), in order for the final applications to become easier to
use. According to Travassos et al. [12], reading techniques are
a type of inspection technique that contains a series of steps for
the individual analysis of a software product in order to achieve
the necessary understanding for a specific task. Thus, the MITs
main innovation is the verification items that serve as a guide
to interpret Nielsen’s [11] heuristics. That is, the MITs guide
software engineers during the usability evaluation of Use Case
specifications (MIT 1), Mockups (MIT 2) and Activity
Diagrams (MIT 3). This allows software engineers to be
assisted by the technique during the search for usability
problems, even if they have little experience in usability.

One artifact that is often available in early stages of the
software development is the mockup. It is an important artifact
for both software development and for the design of user
interfaces. According to Luna et al. [13], mockups are artifacts
employed to represent aspects of the user interface serving as
sketches of the applications. They are intended to be developed
quickly to reflect the needs of customers in terms of
presentation more significantly than the requirements expressed
in written language. Therefore, evaluating the usability of these
artifacts allows the discovery of problems early. The MIT 2
technique was built for this purpose: to assist in the discovery
of problems in the initial stages of the development process,
through mockups, even the early prototypes made of low-
fidelity materials. It has verification items that are based on the

heuristics by Nielsen [11], but in a more guided way. That is,
the verification items guide the software engineers, even if not
usability experts, in the search of usability problems. The
current version of MIT 2 is available in a technical report [9].
Table I presents some verification items of MIT 2.

TABLE I. PART OF THE MIT 2 TECHNIQUE [9].

MIT-2AE. Error prevention Heuristic

Verification
Item 2AE3

Verify if there is any system warning that alerts,
through messages or informational texts, that what the
user is doing may be inappropriate at that time;

Verification
Item 2AE4

Verify if all available options, buttons and links have
names that clearly define what results or conditions
will be met.

The steps for using the MIT 2 technique are shown in
Figure 1. These steps are: (1) to evaluate the mockup using the
MIT 2 technique and (2) to identify usability problems. In
order to illustrate the MIT 2’s steps, we have employed it to
evaluate the usability of a mockup. This mockup was created
based on a page of the SION System1. This page is used in the
SION System to register a course of a training center. In the
next paragraphs we describe how we applied the steps to
perform a simple inspection of the mockup from the SION
System. This example shows only part of the inspection of the
SION System, since we are only evaluating one of its mockups.

The first step for the identification of usability problems is
to evaluate the usability through verification items. In other
words, software engineers must check if the mockup meets all
the usability verification items described within each heuristic.
Table I shows an example of the usability verification items.

In order to identify usability problems (2nd step), software
engineers must point in the mockup which part did not meet the
usability verification items. If we look at Figure 1 and Table I,
we can relate the nonconformities of the usability verification
items in Table I with the augmented element A in Figure 1.

Figure 1. Example of the MIT 2’s steps.

1 http://sion.secti.am.gov.br/principal/.

687

The 2AE4 verification item requires software engineers to
verify if all available options, buttons and links have names
that clearly define the results that will be achieved. The name
of the button “Go” does not make it clear if the course will be
registered or if the user will go forward into the next screen
(see Figure 1 element A). In other words, the button name does
not make clear what will happen after clicking it.

IV. THE OBSERVATIONAL STUDY

To support the development and validation of the MIT 2,
we have adopted the empirical methodology presented in Shull
et al. [14]. It comprises four stages: (1) feasibility studies: to
determine the usage possibility of the technology; (2)
observational studies: to improve the understanding and the
cost-effectiveness of the technology; (3) case studies in real
lifecycles: to characterize the application of the technology
during a real lifecycle; (4) case studies in industry: to identify if
the application of the technology fits into industrial settings.

In order to verify the possibility of employing the MIT 2
technique, the authors conducted two feasibility studies.
Valentim et al. [15] and Valentim and Conte [16] describe the
results of the studies. The statistical test results showed that
MIT 2 obtained similar effectiveness and efficiency as the
Heuristic Evaluation in both the first and the second feasibility
study. This indicates that further studies need to be performed
to identify which part of the inspection process with the MIT 2
needs improvement. We expect that software engineers can use
MIT 2 to ensure the quality of their mockups. To achieve this
goal, we carried out the second stage of the methodology by
obtaining a detailed understanding of how the MIT 2 is applied.

The goal of an observational study is to collect data about
how a particular task is accomplished. We performed an
observational study with the purpose of eliciting the process
employed by software engineers when applying the current
version of the MIT 2 technique. Our goal was to deeply
understand the MIT 2 process, so we did not compare the MIT
2 with any other technique. The observational study should
answer the following question: “Which steps the software
engineers adopted in the MIT 2’s application?”.

Observational techniques can be employed to understand
current work practices [17]. In this study, we gathered two
types of data: observational and inquisitive data. The
observational data were collected during the inspection process.
To gather the observational data, we used the “Cooperative
Evaluation” method [18]. In this method, the software engineer
describes what (s)he is doing and the observer is free to ask
questions/explanations about the software engineer’s decisions
or actions [2]. Inquisitive data were gathered after finishing the
inspection using interviews.

A. Planning

Quantitative data were measured in order to compare the
quantitative results of this study with other studies conducted
with the MIT 2 technique. The quantitative investigation points
were the efficiency and effectiveness indicators of the
technique. Efficiency and effectiveness were calculated for
each subject as: (a) the ratio between the number of defects
found and the time spent to find them; and (b) the ratio between

the number of detected defects and the total number of existing
(known) defects, respectively.

The mockups used in this study are part of the SION
System. The SION is a website that provides information about
the advertisement and support of activities regarding Science,
Technology and Innovation. The mockups that were evaluated
in this study are: mockup of course registration (see Figure 1),
mockup of course listing (where one can select a course to
delete it or edit it), and some messages that the system displays
after saving data. The mockups had real usability problems that
would influence the use of the designed system.

The interviews and observations took place in a Formation
Center from a large IT Company, where the focus is in
innovation and software development. The center supports
several software engineers in real projects, mainly in the
development of Web systems and Mobile applications,
adopting agile methodologies such as Scrum and XP. In order
to meet ethical needs, we created a free consent form to inform
about research procedures and confidentiality. Fifteen software
engineers signed the consent form. All participants received
one-hour training on mockups and usability principals.
Examples were shown on how to use the MIT 2 technique.

The qualitative investigation points were Application
Process and Intention to Use of Technique. Theses
investigation points were collected during the study and were
analyzed together with the data obtained from the interviews.
For the interviews, a semi-structured questionnaire was used
with open questions (see Table II)

TABLE II. INVESTIGATION POINTS RELATED TO THE QUESTIONS THAT
WERE USED ON THE QUESTIONNAIRE.

Investigation
Points Questions

Application
Process

How did you apply the technique regarding its reading
order and looking for problems? Why do you think this is
the best way to apply the technique?

How did you apply the technique with respect to the
order of using the heuristics? Why do you think this is the
best way to apply the technique?

How would you apply the technique if you were to carry
out a new usability evaluation?

Intention to
Use the

Technique

Would you use this technique in a software development
project on your work environment? How?

B. Execution

Each software engineer applied the MIT 2 technique,
evaluating the mockup and identifying usability problems.
When a software engineer found a usability problem, (s)he
described the problem in a worksheet. After this, a researcher
interviewed the software engineers and they provided their
impressions regarding the MIT 2 technique. The observer
provided forms containing some notes. It is important to notice
that the observer could question the software engineer’s actions
at any time, but (s)he was not allowed to help the software
engineer in the discovery activity.

One of the researchers acted as the inspection’s moderator.
The moderator was responsible for conducting the study. After
the individual inspection by each software engineer, the
moderator checked all discrepancies’ worksheets for incorrect

688

information and gathered the discrepancies. A discrepancy is
an issue reported by the software engineer that could be a real
defect or a false positive. During this activity, the moderator
highlighted duplicated discrepancies.

After this, the discrimination meeting was executed by the
moderator and two others researchers (not involved with the
study). The purpose of this meeting was to analyze all
discrepancies identified by each software engineer. The
researchers verified if the discrepancy was a real defect or a
false positive. It is worth mentioning that the researchers had
high usability knowledge and prior experience in usability
evaluations. The quantitative results of the discrimination
meeting are presented in Section 5.

Finally, we transcribed the interviews to forms. The
interviews allowed this research to gather information in order
to understand how software engineers employed the MIT 2.
The data analysis of these interviews is presented in Section 6.

V. QUANTITATIVE DATA ANALYSIS

After the discrimination activity, we counted the number of
discrepancies, false-positives and defects, the time spent during
the inspection, the efficiency and effectiveness per software
engineer (see Table III)

TABLE III. SUMMARY OF INSPECTION RESULTS PER SUBJECT

Partici-
pants

Discre-
pancies

False
Positive

Defects

Time
(Hour)

Efficiency
(Defects/
Hour)

Effecti-
veness

P01 9 0 9 0.38 23.48 25.00%
P02 6 0 6 0.58 10.29 16.67%
P03 4 1 3 0.28 10.59 8.33%
P04 8 1 7 0.30 23.33 19.44%
P05 7 0 7 0.45 15.56 19.44%
P06 9 3 6 0.40 15.00 16.67%
P07 9 1 8 0.38 20.87 22.22%
P08 11 3 8 0.43 18.46 22.22%
P09 13 8 5 0.47 10.71 13.89%
P10 13 1 12 0.40 30.00 33.33%
P11 10 4 6 0.62 9.73 16.67%
P12 12 4 8 0.57 14.12 22.22%
P13 12 5 7 0.48 14.48 19.44%
P14 16 6 10 1.02 9.84 27.78%
P15 19 3 16 0.50 32.00 44.44%
Ave-
rage

10.53 2.67 7.87 0.48 - 21.85%

Overall, the inspection resulted in a set of 36 usability
defects, including the 7 seeded ones. Software engineers who
used MIT 2 managed to find between 3 and 16 defects
spending about 0.28 and 1.02 hours. The effectiveness in this
observation study was 21,85%. Comparing this measure with
the effectiveness of the group of undergraduate students who
used the MIT 2 technique in the first feasibility study (16%)
and in the second feasibility study (15,87%), we can notice that
this measure was higher in the observation study.

VI. QUALITATIVE DATA ANALYSIS

After the quantitative analysis, we carried out a specific
analysis of the qualitative data that were obtained through the
comments of software engineers in an interview. These
comments provide information such as difficulties and
questions during the use of the technique. These issues pointed

us what parts of the technique need improvements. The
qualitative analysis was based on the procedures of Grounded
Theory (GT) [19].

The qualitative data collected through the interviews were
analyzed using a subset of the stages of the coding process
suggested by Strauss and Corbin [19] for the GT method: the
open coding (1st phase) and axial coding (2nd phase). When
analyzing the qualitative data, we created codes (relevant
concepts to understand the perception on the technique and its
use process) related to the speeches of the participants - open
coding (1st phase). After this, the codes were grouped
according to their properties, forming concepts that represent
categories and subcategories. Finally, these codes were related
to each other – axial coding (2nd phase). The goal of the
analysis in this study was to understand how software
engineers perform the application process of MIT 2. We
decided not to elect a core category, because the GT rule is the
circularity between the collection and analysis stages until the
theoretical saturation is reached [19]. Therefore, the selective
coding was not performed (3rd phase of the GT method). The
steps of the open and axial coding were enough to understand
why some problem occurred and how the inspection process is.

A. Point of View regarding the Application Process of MIT 2

This subsection presents the analysis of how the technique
was applied in this study. Through the interviews we identified
that the software engineers employed the MIT 2 in three
different ways: (i) first, the software engineer read the
technique and then looked for problems in the mockup (see
quotation from P08 below); or (ii) first, the software engineer
looked for the problem in the mockup and then (s)he read the
technique (see quotation from P03 below); or (iii) initially the
software engineer viewed the mockup, then (s)he read the
technique and after this, (s)he changed the way in which the
technique was applied, looking for problems as soon as an item
was read (see quotation from P10 below).

“I read item by item and tried to find the problems in
each mockup” (Participant 8).
“First, I gave a quick look to the mockups and I saw
some problems that I knew. Then, I began to read the
technique from the beginning” (Participant 3).
“As there are several items in the technique, I looked
at the mockup and found some issues, but if I had to
look for these issues (...) one by one I think it would
take longer. So I preferred to keep these wrong things
that I found and (...) I was doing the inspection in the
order I had to read each item and found or related to
something that (...) I had identified” (Participant 10).

Some opinions were also collected regarding the
application of the technique. Some participants noted that when
applying the MIT 2, after knowing it, it is better to skip some
items (see quotation from P11 below). In addition, other
participants said that first seeing the mockup and then reading
the MIT 2 technique is not the best way to start the inspection
(see quotation from P05 below). However, one of the
participants believes that first observing the mockup and then
reading the MIT 2, allowed him to think that applying the
technique was easy because he knew where some of the
problems were (see quotation from P06 below).

689

“I was skipping; there were even some [items] for
which I did not find problems” (Participant 11).
“Looking [at the mockup] first I don’t think it is the
best way to start the inspection” (Participant 5).
“During this evaluation I realized that I began to
learn what this technique meant and I could look at
one element and already know what problem was
associated (...). Then this strategy of looking at the
mockup and looking at the list can be a starting point
for you to memorize the heuristics, but in the future
what you realize is that you end up abandoning it and
you develop a skill” (Participant 6).

Additionally, this study aimed at obtaining information
about how participants would apply the MIT 2 if given the
opportunity. Some participants would read the verification item
and would already search for problems (see quotation from P03
below). The reasons given by the participants for this way of
applying the technique are: if not employed that way (i) the
inspection can be more time consuming, (ii) the inspector can
forget the problems, (iii) the inspectors does not remember the
item is and (iv) because it eliminates primary errors. One of the
participants said that first (s)he would view the heuristics and
then (s)he would look for the problem and only after (s)he
found the problem, (s)he would look for the verification item
related to it (see quotation from P14 below). However, other
participants said that they would first analyze the mockups and
then they would relate the problems encountered with
technique (see quotation from P11 below).

“I think reading [the MIT 2] and then looking for the
problems in the mockups would be the best way to do
it [the inspection]” (Participant 3).
“If I were to carry out a new evaluation, I would not
waste time reading it [MIT 2]. If I carried out an
evaluation a second time, as I already have prior
knowledge, I would look (...) in which of these
heuristics (...) [the problem] it is related. But (...) to
indicate the verification item, only the second time,
checking the item number.” (Participant 14).
“The most appropriate way is to look at the mockups,
analyzing it and relating it to the technique”
(Participant 11).

B. Opinion about the Intention to Use the MIT 2 in projects

This subsection presents the participants' opinions
regarding the use of the MIT 2 technique in software
development projects. Some of the opinions were: (s)he would
use the MIT 2 early in the project (see quotation from P04
below); and to apply to MIT 2 on a project it will be necessary
to explain its advantage, because although there are cost of
training and spending time, later there will be gain with the
improvements (see quotation from P06 below).

“I would like to try using it [MIT 2] early in the
project so I don’t carry it [the evaluation] out in the
end” (Participant 4).
“[About the use of the technique in projects] (...) first
there should be an explanation, an understanding
that it will generate an additional cost to your
development process. This cost can be time or human

resources and these impacts on the development of
the software. So this cost has to be very well
explained to the managers indicating that although
you have an initial cost, you have a benefit short
after. What is difficult is to convince people that this
is important and that organizations can actually
recognize such importance and assume that deadlines
can be postponed or budgets reduced because of
these improvements” (Participant 6).

VII. DISCUSSION

Regarding the Application Process of the MIT 2
investigation point (Subsection VI.A), it can be noted that
there were participants who preferred to review the mockup
first and then read the technique. When they read a
verification item of MIT 2 and remembered a possible
usability problem they already observed in the mockup, they
related the problem with the verification item. For them, by
reading the technique, there was the advantage of already
knowing where some of the problems were. These software
engineers also stated that it may be a starting point for the use
of the technique, because this way of applying the technique
also helps memorizing the items. However, other participants
said they first observing the mockup and then reading the MIT
2 is not the best way to start the inspection. These participants
read a verification item and started searched for the problem.
For them, the inspection becomes faster, the software engineer
does not forget to point out identified problems and where the
verification item related to the problem are.

During the analysis of the study, the researchers noted that
the technique helps identifying usability problems in the two
ways of applying the technique. In addition, after using the
technique for the first time, the software engineers gain prior
knowledge of it, and can skip the reading of some heuristics.
This way, there is no need to stipulate a prescribed order in the
application process of the MIT 2. The software engineers tend
to adjust the application of the technique to their own way of
use. This allows software engineers to feel more comfortable
using the technique according their convenience.

It can be noted that the second investigation point
(Subsection VI.B) presented some opinions from the
participants related to the use of the MIT 2 in projects. One of
the participants indicated that in order to apply the MIT 2 in a
project, it would be necessary to explain its advantage,
because even though there will be costs in training and time,
the software company will have gains with the improvements.
For some software engineers, the usability evaluation in the
early stages may allow advantages such as: less rework rate
and lower costs. This is because the usability problems are
identified earlier and repairs are carried out before the coding
of the application. Fixing problems earlier is cheaper than
correcting problems of something that has already been
developed. Through this study with industry practitioners,
software companies have evidence of the benefits and
opinions of practitioners about early usability evaluation.

VIII. THREATS TO VALIDITY

As in all studies, there are threats that may affect the
validity of the results [20]. In this section, we discuss the main

690

threats to validity of this study. Two main threats were
considered that represent a risk for an inappropriate
interpretation of the results: (1) training effects and (2)
influence of the moderator. There may have been an effect of
the training if the training regarding the MIT 2 was different in
quality for each software engineer. We controlled the training
effects by preparing a single training for all software
engineers. Finally, to reduce the second threat, at the
discrimination meeting, a team of experts made the analysis of
the identified discrepancies, judging if they were usability
defects or not, without interference from the moderator.

Three threats were considered regarding the generalization
of our findings: (1) the validity of the evaluated artifact as a
representative artifact; (2) the researcher inserted some defects
in the mockups; and (3) participants with need for training.
With regard to issue 1, the inspected mockups are part of the
project for a real system. However, it is not possible to say that
the mockup used represents all kinds of mockups. With regard
to issue 2, all participants found every inserted usability
problems. Furthermore, the number of defects found by the
participants was much greater than the number of defects
inserted by the moderator. With regard to issue 3, the ideal
would be that there was no need for training. However, the
short training time allows the technique to be used by software
engineers with low experience in usability evaluations.

The main threats that may affect the ability to obtain
correct conclusions in this study are the size and homogeneity
of the sample. These are known problems in Software
Engineering studies. Therefore, there are limitations in our
results, which are considered indicators and not conclusive.

IX. CONCLUSIONS

This paper described an observational study aimed at
eliciting the sequence of activities that is employed by
software engineers when applying the MIT 2 technique. Both
the qualitative and quantitative results of this study provided
us with important feedback to improve the MIT 2 technique.

The qualitative analysis was based on the following
investigation points: (1) the application process of MIT 2; and
(2) the intention to use MIT 2 in development projects. The
qualitative analysis showed that the 2 identified ways of
applying MIT 2 in the study proved effective in detecting
problems. Through these results, we also noticed that it is not
necessary to define a predefined order of applying the MIT 2.

The quantitative analysis showed that the calculated
effectiveness in this observational study (21.85%) was higher
than the effectiveness measured in the feasibility studies,
showing that the improvements made in the MIT 2 previously
allowed it to support on the identification of more usability
problems. However, other factors may have influenced this
outcome, such as: (1) the knowledge increase regarding
usability evaluations, (2) and the participants from the
observational study were software engineers.

ACKNOWLEDGMENTS

This research is partially funded by the National Science
Foundation (grant 1242257, Pan American Software Quality
Institute). We would like to acknowledge the financial support
granted by CAPES and FAPEAM through processes numbers:

062.00146/2012; 062.00600/2014; 062.00578 /2014;
01135/2011; and PAPE 004/2015. We also thank the
participants in the observational study and researchers from
USES Group, especially Ana Carolina Oran.

REFERENCES
[1] A. De Angeli, M. Matera, M. Costabile, F. Garzotto, P. Paolini. “On the

Advantages of a Systematic Inspection for Evaluating Hypermedia
Usability”. In International Journal of Human-Computer Interaction, v.
15(3), pp. 315-335, 2003.

[2] F. Molina, A. Toval. “Integrating usability requirements that can be
evaluated in design time into Model Driven Engineering of Web
Information Systems”. In Journal Advances in Engineering Software,
v.10 (12), pp. 1306-1317, 2009.

[3] K. Hornbæk, R. Høegh, M. Pedersen, J. Stage. “Use Case Evaluation
(UCE): A Method for Early Usability Evaluation in Software
Development”. In International Conference on Human-Computer
Interaction, pp. 578–591, 2007.

[4] N. Juristo, A. Moreno, M. Sánchez, M. Baranauskas. “A Glass Box
Design: Making the Impact of Usability on Software Development
Visible”. In Conference on Human-Computer Interaction, v. 4663, pp.
541-554, 2007.

[5] G. Donahue. “Usability and the bottom line”. In Journal IEEE Software,
v.18 (1), pp. 31-37, 2001.

[6] X. Ferré, N. Juristo, H. Windl, L. Constantine. “Usability Basics for
Software Developers”. In Journal of IEEE Software, v.18(1), pp. 22-29,
2001.

[7] A. Seffah, E. Metzker. “The obstacles and myths of usability and
software engineering”. In Communications of the ACM - The
Blogosphere. v. 47(12), pp. 71–76, 2004.

[8] A. Fernandez, E. Insfran, S. Abrahão. “Usability evaluation methods for
the web: A systematic mapping study”. In Information and Software
Technology, v.53 (8), pp. 789-817, 2011.

[9] N. Valentim, T. Conte “Technical Report: Version 3 of MIT 2”. Report
Number 004. Available at:
http://uses.icomp.ufam.edu.br/attachments/article/42/RT-USES-2015-
0004.pdf, 2015.

[10] S. Propp, G. Buchholz, P. Forbrig. “Integration of usability evaluation
and model-based software development”. In Journal Advances in
Engineering Software, v. 40 (12), pp. 1223 – 1230, 2009.

[11] J. Nielsen. “Heuristic evaluation”. In Usability Inspection Methods (Eds.
Nielsen and Mack), John Wiley & Sons, New York, 1994.

[12] G. Travassos, F. Shull, J. Carver, V. Basili. “Reading Techniques for
OO Design Inspections”. University of Maryland, pp. 1 – 56, 2012.

[13] E. Luna, J. Panach, J. Grigera, G. Rossi, O. Pastor. “Incorporating
usability requirements in a test/model-driven web engineering
approach”. In Journal of Web Engineering, v. 9 (2), pp. 132-156, 2010.

[14] F. Shull, J. Carver, G. Travassos. “An empirical methodology for
introducing software processes”. In ACM SIGSOFT Software
Engineering Notes, v. 26, n. 5, pp. 288-296, 2001.

[15] N. Valentim, K. Oliveira, T. Conte. “Defining an Approach for Usability
Inspection in Design Models through Experimentation” (in Portuguese).
In Symposium on Human Factors in Computing Systems, pp. 165-174,
2012.

[16] N. Valentim, T. Conte. “Improving a Usability Inspection Technique
based on Quantitative and Qualitative Analysis” (in Portuguese). In
Brazilian Symposium on Software Engineering, pp. 171-180, 2014.

[17] M. Maguire “Methods to support human-centred design”.In International
Journal of Human Computer Studies, v.55(4), pp. 587-634, 2001.

[18] M. Müller, J. Haslwanter, T. Dayton. “Participatory Practices in the
Software Lifecycle”. In Handbook of Human-Computer Interaction, 2nd
edition, Elsevier, pp. 255-297, 1997.

[19] A. Strauss, J. Corbin. “Basics of Qualitative Research. Techniques and
Procedures for Developing Grounded Theory”. Sage Pub, 400 pg., 2008.

[20] C. Wöhlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, A. Wessl.
“Experimentation in software engineering: an introduction”. Kluwer
Academic Publishers, 2000.

691

A Empirical Study on the Status of Software Localization in Open
Source Projects

Zeyad Alshaikh1 and Shaikh Mostafa1 and Xiaoyin Wang1 and Sen He2
1 Department of Computer Science, University of Texas at San Antonio, San Antonio, USA

2 Department of Computer Science, Harbin Polytechnic University, Harbin, China
Email:{zeyad.alshaikh, shaikh.mostafa xiaoyin.wang}@utsa.edu, he.sen@hpu.edu.cn

Abstract

In modern software development, software localiza-
tion is a key process to support distribution of soft-
ware products to the global market. During software
localization, developers typically convert all user-visible
strings, resource files, and other culture-related ele-
ments to the local versions that are well accepted by
local users. Despite the popularity of software local-
ization, there have been few studies on the its current
status in software practice, such as the proportion of
localized projects, the most popular locales, and more
importantly, the quality of software localization. In
this paper, we present an empirical study on the sta-
tus of software localization in open source projects. We
find from that, popularity of software localization varies
a lot in different User Interface (UI) frameworks and
domains. Furthermore, we surprisingly find that only
about 60% of string keys are actually translated on av-
erage in localized top software projects and software lo-
calization often span a long period of time in the soft-
ware development history.

1 Introduction

In this era of globalization, most software appli-
cations have potential users from different regions of
the world. A typical process to develop multiple lo-
cal versions of a software application includes two
steps: an internationalization step in which develop-
ers externalize all region-specific code elements (e.g.,
user-visible strings, measures, date formats, writing-
direction-specific inputs, and sometimes also laws and
policies) to resource files, and a localization step in
which software localizers transform the original re-
source files to local resource files for certain locales [5].

Despite of the popularity of software localization,

there has been few research efforts to study the cur-
rent status of software localization in practice, and the
major challenges faced in software localization. In this
paper, we present an empirical study on open source
Java software projects in SourceForge [1]. Specifically,
we studied the factors that affect where a project is
localized, the popular languages that projects are lo-
calized to, and the quality of software localization in
the localized projects. Our major findings are as fol-
lows.

• Software Localization is widely used in open source
projects, but the popularity of software localiza-
tion varies a lot for different software domains and
UI frameworks.

• The quality of software localization in top open
source projects are relatively low.

• The localization of a software project often spans
a long period of time during software evolution.

2 Study Design

In our study, we plan to answer the following re-
search questions.

• RQ1: How popular is software localization in
open source software projects?

• RQ2: What is the quality of software localization
in open source software projects?

• RQ3: How long does it take for a software project
to finish its software localization?

In our empirical study, we used two subject sets,
both are downloaded from Sourceforge. We choose
software projects from Sourceforge as subjects for the
following two reasons. First, Sourceforge is a popular
software repository with a large number of open source

1(DOI Reference Number: 10.18293/SEKE2015-018)

692

software projects and long history. Second, Sourceforge
provides the statistics of software downloads during dif-
ferent time period and from different countries.

Specifically, we built a random subject set including
2,500 randomly selected software projects which are ac-
tive in 6 months and whose weekly downloads is larger
than 10. Also, we built a top subject set which includes
10 software projects among the top 100 projects, which
are from different software domains, and whose prop-
erty files are in standard “key=value” format (so that
it is possible to partially automate our data extraction
in our study). To answer RQ1, we studied the random
subject set due to its large size and representativeness.
To answer RQ2 and RQ3, we studied only the top
subject set, because some manual in-depth inspection
of resource files and version history are required.

To perform our empirical study, we extracted the fol-
lowing information from each subject software project.
First of all, from the web site of each software project
in our random subject set, we extracted the relevant
meta data including supported locales, weekly down-
loads, domains, and used UI frameworks. Second, to
answer RQ2, and RQ3, we manually identified the lo-
cal resource files for each project in the top subject set,
and extracted the file content and version history.

3 Study Results

In this section, we present and discuss the results of
our empirical study.

3.1 Popularity of Software Localization

In our study, we find that, the proportion of lo-
calized software projects in the random subject set is
38.0%. To understand the factors that may affect soft-
ware localization, We further studied our random sub-
ject set to find out how the proportion localized soft-
ware varies with different number of weekly downloads,
UI frameworks, and domains. The results are shown in
Figure 1 through Figure 3.1. Since there are too many
different UI frameworks and domains, we present only
the results for the 5 UI frameworks / domains that are
most popular in our subjects (the 5 labels on the left),
with highest localization popularity (the 5 labels in the
middle), and lowest localization popularity (the 5 la-
bels on the right). It should be noted that a UI frame-
work / domain may belong to two categories of above,
so they may appear twice as a label in a figure. Also,
for representativeness, we consider only UI frameworks
/ domains with more than 10 projects using them.

From the figures, we have the following observations.

Figure 1. Localization Popularity among
Projects with Different Downloads

Figure 2. Localization Popularity among
Projects with Different UIs

Figure 3. Localization Popularity among Soft-
ware Projects in Different Domains

2
693

Figure 4. Top Locales in Software Localiza-
tion

First of all, among the software projects with higher
weekly downloads, the proportion of localized software
projects is higher.

Second, among the most popular UI frameworks
(left 5 labels in Figure 2), projects that are web-based
or Java-Swing-based are more likely to be localized
(with a localization proportion higher than 50 %),
while command-line-based projects are less likely to
be localized. The results are reasonable, because web-
based applications are typically accessible from users
all over the world, and Java-Swing-based applications
are light-weight and easy to be distributed.

Fourth, among the most popular 5 software do-
mains, Internet applications, System administration
applications, and game applications are relatively more
likely to be localized, perhaps because they are de-
signed for a larger variety of end users.

Finally, we also studied the popularity of locales,
and the top 10 most popular locales are presented in
Figure 4. In the rest of our study, we will focus on
these locales.

3.2 Software Localization Quality

We studied the quality of software of localization by
checking the proportion of key-value pairs that are ac-
tually translated in the localization. Our study reveals
that software developers often perform partial localiza-
tions (maybe due to the lack of time / effort or proper
translator). In such cases, an untranslated string ei-
ther appears in their default language version in the
locale property file, or the pairs of keys and translated
strings are simply omitted from the local property file
(the software will refer to the default locale property
file when it cannot find a key).

We present the results of our study in Figure 5. Fig-
ure 5 shows the average percentage of translated keys

Figure 5. Localization Quality for Different Lo-
cales

for a certain locale among all projects in the top sub-
ject set.

3.3 Software Localization Process

To further understand the software localization pro-
cess in practice, we studied the version history of re-
source files to calculate the time span of the software
localization process. In Figure 6, we present the break
down of all local resource files on the time difference
between its commit, and the commit of the default re-
source file.

From the figure, we can observe that, about 32%
of all local resource files were committed more than 6
months after the default resource file was committed.
This indicates that the software localization process of-
ten takes a long time. Actually, it is unlikely that the
developers were working on the localization during this
period of time. A more possible reason is that, the de-
velopers failed to find a proper translator / contributer
to perform the localization for certain locales. Also, we
observe that there are 4% of resource files were com-
mitted before their corresponding default resource files
were committed. The reason is that, some modules of
some projects were initially written with a locale dif-
ferent than English, and the developers later added an
English resource file, and reset the English resource file
as default.

4 Related Works

The most related work to our study is a recent
study [2] on the Android Framework. This previous
work studies the version history of the Android project,
and reported some findings on the quality and code
commit frequency on software localization. Compared
to their study, we used a much larger set of software

3
694

Figure 6. Break Down of Resource Files based
on the Commit Delay

projects, and provide more detailed results on the pop-
ularity and quality of software localization.

In academia, researchers have summarized a number
of important research issues in software international-
ization and localization [6, 3], including architectural
practice, extraction of region-specific code elements,
management of strings in resource files, translation,
and cultural adaptation. These issues have been stud-
ied by various research efforts [4, 7, 9, 8, 10].

5 Conclusions

In this paper, we present a study about the software
localization status on open source software projects
from SourceForge. In our study, we find that, the
popularity of software localization is higher in software
projects with more downloads, and varies for differ-
ent UI frameworks / domains. Furthermore, we find
that the quality of software localization in open source
projects is relatively low and the localization process
often span a long period of time.

Our findings mainly call for two future research di-
rections. First of all, the current study shows low qual-
ity as well as high time cost (or the difficulty to find
proper contributor) for software localization. So auto-
matic support fo software localization is highly desired.
Second, it is surprising that some top software projects
have a low quality in software localization. So it would
be interesting to perform a more in-depth research on
the impact of software localization on the success of a
software project on the global market.

Acknowledgment

The authors from University of Texas at San Anto-
nio are supported in part by NSF grant CCF-1464425,
and DHS grant DHS-14-ST-062-001.

References

[1] Sourceforge, http://sourceforge.net/.

[2] L. Arjona Reina and G. Robles. Mining for local-
ization in android. In Proceedings of Internation
Working Conference on Mining Software Reposi-
tories, pages 136–139, 2012.

[3] V. Dagiene and R. Laucius. Internationalization of
open source software: framework and some issues.
In 2nd International Conference on Information
Technology: Research and Education, pages 204–
207, 2004.

[4] A. Danko. Formalization of functional aspects in
business software globalization. In 14th IEEE In-
ternational Enterprise Distributed Object Comput-
ing Conference Workshops (EDOCW), pages 107–
116, 2010.

[5] B. Esselink. A Practical Guide to Software Local-
ization: For Translators, Engineers and Project
Managers. John Benjamins Publishing Co, 2000.

[6] J. H. Hogan, C. Ho-Stuart, and B. Pham. Current
issues in software internationalisation. In Proc.
Australian Computer Science Conference, pages
1–10, 2003.

[7] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun.
Locating need-to-translate constant strings for
software internationalization. In International
Conference on Software Engineering, pages 353–
363, 2009.

[8] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun.
Transtrl: An automatic need-to-translate string
locator for software internationalization. In Pro-
ceedings of the 31st International Conference on
Software Engineering, ICSE ’09, pages 555–558,
2009.

[9] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun.
Locating need-to-translate constant strings in
web applications. In Proceedings of the Eigh-
teenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages
87–96, 2010.

[10] X. Xia, D. Lo, F. Zhu, X. Wang, and B. Zhou.
Software internationalization and localization: An
industrial experience. In 18th International Con-
ference on Engineering of Complex Computer Sys-
tems, pages 222–231, 2013.

4
695

RiSE-DA: A Lightweight Domain Analysis Process
And Its Industrial Evaluation

Tassio Vale

Federal University of Recôncavo da Bahia
Cruz das Almas - Brazil

Email: tassio.vale@ufrb.edu.br

Iuri Santos Souza
and Eduardo Santana de Almeida

Federal University of Bahia
Salvador - Brazil

Email: {iurisin,esa}@dcc.ufba.br

Ivonei Freitas da Silva

State University of West Paraná
Cascavel - Brazil

ivonei.silva@unioeste.br

Abstract—In the Brazilian software development scenario,
most software development companies focus on building products
in the same business domain. However, they tend to perform ad-
hoc reuse practices and show interest on the adoption of agile
methods. However, the combination of systematic reuse activities
and agile practices is not trivial. In this paper, we present a
lightweight domain analysis process called RiSE-DA by describing
its activities, tasks, roles, and artifacts of the process. This process
is evaluated through two case studies performed in companies
with different sizes, constraints, and business knowledge. As
results, we can conclude the proposed process provides a set
of comprehensive domain assets and addresses management
problems such as poor feedback, adaptability, and iterativeness.

I. INTRODUCTION

Although the integration of domain analysis with Agile
Software Development (ASD) can provide benefits, there is
a lack of studies combining both practices [1]. A process
for domain analysis with ASD is a challenge, since these
approaches can present conflicts regarding tasks, activities,
artifacts, and roles. Aiming to decrease conflicts between
both approaches, companies which are applying ASD need to
choose and adapt domain analysis activities for their scenarios.

This paper presents a lightweight domain analysis pro-
cess called RiSE-DA by describing its activities, tasks, roles,
and artifacts of the process, since the related work [2][3]
do not address iterativeness, adaptability, and feedback in a
lightweight domain analysis process. In addition, this process
was evaluated through two case studies performed in two
Brazilian companies with different sizes, constraints, and busi-
ness knowledge. These results are synthesized in a cross-case
analysis that investigated similarities and differences among
the findings.

The remainder of this paper is structured as follows:
Section II describes the activities, tasks, roles, and artifacts of
the process; Section III presents two case studies performed
to evaluate this proposal; Section IV discusses lessons learned
from the research and development projects; and Section V
summarizes the study findings and presents future work.

II. RISE-DA

We define the roles, activities, and work products of RiSE-
DA, a software modeling process combining domain analysis
and Scrum practices. The process description is based on

the Software Process Engineering Metamodel (SPEM) 1. The
entire RiSE-DA specification (activities, tasks, steps, roles and
work products) is available on the web2.

Figure 1 shows an overview of the process activities and
work products (assets). The main activities are: Pre-Analysis,
Product Map Development, Major Features Priorization, Sub-
Features Definition, and Commonality and Variability Analysis.
Furthermore, the main work products are: Market Analysis
Document, Product Map, Domain Backlog, Sprint Backlog,
Features List and Feature Model. Given space constraints, .

Fig. 1. RiSE-DA Overview.

Additionally, the process roles are (the definitions are
exclusively available on the web): Scrum Master, Business
Expert, Domain Expert, Inspector, Legacy Systems Engineer,
Product Expert, Domain Analysis Expert, Domain Engineer,
Scrum Team and Domain Owner.

The RiSE-DA activities and work products are described
next.

A. Pre-Analysis

This activity identifies marketing strategies and other mar-
keting details that are important to define proper features and

1Software & Systems Process Engineering Metamodel Specification
(SPEM) - http://www.omg.org/spec/SPEM/2.0

2RiSE-DA is available at http://tassiovale.com/rise-da/DOI reference number: 10.18293/SEKE2015-003

696

products to the customers. Pre-Analysis is divided into two
tasks: Market Analysis (evaluates the market regarding its busi-
ness goals, user profile, legal and cultural constraints, business
opportunities, competitors, and other factors that the Business
expert and Domain expert define) and Marketing Strategies
Identification (defines how the products will be released to
the customers considering the sale units, integration methods,
installation, product maintenance, and user skill level).

B. Product Map Development

The Product Map Development consists of tasks to build
a matrix comprising features and products, indicating, for
each product, which features it implements. Kang et al. [4]
define feature as “a prominent user visible aspect, quality, or
characteristic of a software system or systems”. As result, there
is a common understanding and sharing of the major features
and products. This activity comprises four tasks: Products
Identification (identifies the products available in the company
portfolio that share business activities in common) and Major
Features Identification (identifies major features and provides
a description of them), Features Grouping (arranges the fine-
grained feature into major features) and Product Map Building
(Domain Analysis Expert builds a map indicating, for each
product, which major features it implements).

C. Major Features Prioritization

This activity prioritizes the major features using classifica-
tion criteria relevant for reuse. Major Features Prioritization
is divided into two tasks: Domain Potential Assessment (as-
sessment is performed by applying on Domain expert a ques-
tionnaire using a set of criteria, such as domain maturity, reuse
potential and risks) and Major Features Ranking (defines the
final ranking of major features based on assessment previously
applied).

D. Sub-Features Definition

Sub-features express the details of major features. The Sub-
Features Definition specifies descriptions and properties of the
sub-features for each major feature in the domain. Since the
major features involve a considerable number of functional-
ities, an iterative process is necessary to optimize the com-
pany effort. This activity comprises four tasks: Sub-Features
Identification (Domain Analysis Expert captures reusable sub-
features from the Domain Expert or Product Expert through
workshops), Legacy Assets Mining (Domain Analysis Expert
captures reusable sub-features by studying the system-as-is,
their flows, work procedures, business rules, reports about
defects, user manuals, screenshots of the products, and proto-
types), Sub-Features Inspection (Inspector inspects the features
list in terms of non-conformities that consider aspects such as
feature granularity, understanding, and duplication), and Sub-
Features Validation (Domain Analysis Expert collects opinions
from the Domain Expert and Product Expert to adapt the
features specification whether necessary, and integrate them
with the other available features).

E. Commonality and Variability Analysis

This activity specifies the commonalities and variabilities
through feature model and product map work products. It

defines which features are directly linked (father-son) and
how they are classified (mandatory, optional, and variant).
Three tasks support the Commonality and Variability Analysis:
Product Map Updating (updates the product map created
during the Product Map Development and Sub-Features Defini-
tion activities), Feature Modeling (organizes hierarchically the
feature model [4] based on the features list, commonalities and
variabilities provided by the Domain Expert, Product Expert
or Legacy Assets Expert), and Models Inspection (verifies the
Product Map and Feature Model inconsistencies).

F. Agile Practices

For the proposed process, the activities Sub-features Defi-
nition and Commonality and Variability Analysis incorporates
certain practices, artifacts, and roles of the Scrum framework.
These practices are: Sprint Planning, Regular Meeting and
Sprint Review and Retrospective.

Sprint Planning: aims to find the most appropriate major
features for a specific sprint that provide reuse potential for the
organization. Based on the Scrum framework, the planning is
divided into two parts: part one, where the major features are
selected (from the domain backlog) for the next sprint (sprint
backlog); and part two, where the major features selected are
broken into Scrum tasks (in the sprint backlog).

Regular Meeting: adapted from the daily meeting from
Scrum, the Regular Meeting is a practice that intends to aid
the stakeholders with fast feedbacks about the sprint. The
frequency of this meeting is defined according to the effort
spent in the domain analysis activities (such as daily or every
two days). Issues related to the process, artifacts and team
are raised by the Scrum Team. From this meeting, some small
adjustments can be performed during the sprint, since the sprint
goal does not change.

Sprint Review and Retrospective: after finishing the
sprint, the Sprint Retrospective and Sprint Review practices
adjust and improve what is necessary for the next sprints (e.g.
process and team adjustments). An initial cause analysis also is
performed to explore the root of the issues during the process.
In addition, the team should provide a new effort estimation for
each major feature in the scope backlog in order to be more
precise when performing the Sprint Planning part one. The
Domain Analysis Expert, Domain Engineer, and the Legacy
Systems Engineer would consider the technical issues to per-
form these new estimation. Technical issues can be associated
to the variability implementation complexity, structuring the
common and variable components or using new technologies.
The Scrum Team, for instance, would estimate how long it will
take to perform the Commonality and Variability Analysis for
the major features.

III. CASE STUDIES

We evaluated the RiSE-DA process qualitatively, through
the case study technique [5]. Our assumption is that the
proposed domain analysis process achieves acceptable results
in terms of work products quality and applicability in the
organizations. However, companies moving to agile principles
and practices are looking for software reuse processes provid-
ing mechanisms to support faster changes in volatile business

697

domains. In this context, process iterativeness, feedback among
stakeholders, and process adaptability are essential [1].

In order to evaluate iterativeness, feedback among stake-
holders, and process adaptability in our proposal, we defined
the research question “How do the stakeholders characterize
the iterativeness, adaptability and feedback of the process?”.
In order to enable the triangulation of information [5], the data
collection procedure involved the following techniques: survey,
field observation, document analysis, and focus group.

A. Case #1: An Oil, Gas and Energy Company

The Case #1 was applied in an Oil, Gas and Energy
company, working with software development for more than
thirty years and is spread over several cities, whose main
locations are Rio de Janeiro and Salvador, in Brazil. In this
project, a set of applications was selected in a pilot.

A training was applied to the company employees (project
participants). Presentations were prepared by the RiSE mem-
bers and company members were grouped by availability. It
was a training of eighteen hours divided into three days.
Support materials and practical examples were used to provide
a better learning.

Despite the company size, the pilot was performed with a
small team, considering time restrictions for many employees
participate in this project. Then, the roles were played by more
than one member, i.e., the Domain Expert and Business Expert
roles were performed by the same participant.

The resulting product map and feature model described
three different domains, 17 major features and 96 sub-features.
It took three weeks with three sprints to describe the features.
Time variations occurred in the three performed sprints, with
an average of four hours and thirty minutes per sprint. Twenty
percent of the time (forty minutes) was spent with the agile
management tasks. The company participants did not provide
details about the features and product functionalities, since they
were not business experts. It might have influenced the spent
time.

1) Case #1 Findings: RiSE-DA fostered the iterativeness
only when defining sub-features and analyzing commonalities
and variabilities. There was not change for the sprint time
box. The company participants argued RiSE-DA fostered the
iterativeness in the project, since the sprints were short and the
domain was incrementally defined.

Adaptability was also fostered when defining sub-features
as well as analyzing commonalities and variabilities. The
Scrum practices (retrospective, planning, review, and daily
meeting) detected needs of changes in the process activities
and artifacts.

Furthermore, RiSE-DA fostered continuous feedback,
when defining sub-features and analyzing commonalities and
variabilities. Workshops and model storming were good strate-
gies to achieve it. The feedback among stakeholders were
effective, and iterativeness provided a considerable impact on
feedbacks.

Therefore, all evaluation aspects had a significant impact.
Frequent feedbacks and small (but frequent) changes were
possible because of the iterativeness. Feedbacks supported the

changes detection, providing insights for next sprints, and
adaptability supported process adjustments such as changes on
the daily meeting practice (daily meeting questions changed
since the Scrum Team worked together in many sprints.

For each new sprint with a different group of company
members, the Scrum Team analyzed previous models and
evolved them, then, obsolete features were detected and re-
moved for next sprints. The decision of removing obsolete
features occurred after the Scrum Team evaluate the retrospec-
tive and review results, during the sprint planning, and since
the features were in the target domain of the current sprint.

Iterativeness and feedback enabled the Scrum Team to
anticipate problems regarding the requirements, technical con-
straints, staff, or other external factors such as demands for
product development. Adaptability had an important impact
on the process performance when the adjustments on activities
optimized the way as the company performed them.

B. Case #2: An Educational Management Systems Company

The Educational Management Systems company works
with software development for the educational/scholar domain
for eighteen years and is located at Salvador, Bahia, Brazil. A
domain analysis project was set up to organize the customiza-
tions as derived products from a common reuse platform.
Seven participants (four from the company) participated in the
project.

The company members were trained before the domain
analysis. Basically, the domain analysis concepts were commu-
nicated, then the case participants applied them in the company
context.

As results, product map and feature model described one
domain, 8 major features, and 159 sub-features (from two of
the major features). The company participants were involved
in other demands and the project took about six months
(the amount of features also influenced the spent time). The
meetings duration varied in the eleven sprints, with an average
time of fifteen hours for each one. Sixteen percent of the time,
approximately, was spent on sprint planning, regular meetings,
retrospective, and review.

1) Case #2 Findings: RiSE-DA fostered iterativeness in
the Sub-Features Definition and Commonality and Variability
Analysis activities. There were changes in the sprint time box
during the project due to external factors such as the legacy
systems maintenance. Defects in the software caused the
variations in time boxes. The company participants considered
the iterativeness fostered flexibility in the project in terms of
changes and reflections.

In addition, the process fostered adaptability, mainly when
defining sub-features and analyzing commonalities and vari-
abilities. The Scrum practices (retrospective, planning, review,
and daily meeting) detected needs of changes in the process
activities and artifacts. The participants argue the process
adaptability supported the flexibility in the project, and the
adaptability was frequent because of the iterativeness.

RiSE-DA also supported continuous feedback, mainly
when defining sub-features and analyzing commonalities and
variabilities. Workshop was a good strategy to achieve it.

698

Although the Scrum Team members were in different locations
(they used tools for remote communication), the feedback
among them and other team members was effective. Scrum
and model storming practices supported the feedbacks. The
feedbacks were continuous due to iterativeness.

Frequent feedbacks and small (but frequent) changes were
possible because of the iterativeness. Feedbacks detected
changes and provided it for the next iteration. Adaptability
encouraged adjustments to improve feedback (e.g. the daily
meeting questions changed to a simpler format, since the
Scrum Team worked together in many sprints).

IV. LESSONS LEARNED

In order to report the experience from the application of
RiSE-DA in real-world scenarios, we have present the lessons
learned as follows:

Duration of RiSE-DA Sprints. Sprints with one or two
weeks were considered appropriate, because the team was
learning how to perform domain analysis and understand
the domain (both companies). This lesson learned favor the
iterativeness (maximum of two weeks), frequent feedbacks and
adaptability.

Presence of the Domain Expert in workshops. The
Domain Expert has deep knowledge about the domain and
he can provide frequent feedbacks. This lesson enables the
identification of some obsolete features during the sprints and
the changes were made earlier.

Presence of Business Expert. The Business Expert aligns
business goals and market strategies of companies. In the
larger company, we faced the absence of business experts and
it impacted on the process results. The involved employees
were from the software development sector, and provided in-
formation based the product development they are responsible
for. They did not have an overall knowledge on the domain.
As consequences, they provided fine-grained features, revealed
difficulties to identify major features and relationships among
features implemented by different products. To deal with these
consequences, we combined the participants’ information with
legacy systems analysis.

Early changes detection. Changes detection impacted
on the performance, effort, obsolete features control, risks
management, and problems during the project. As a final
result, the motivation in the projects was considered beyond
expectations.

Deal with complex organizational structure. The com-
plex organizational structure of the larger company influenced
the results, since important products could not be included in
the case, and important experts were not available. The process
adaptability allowed the participants to build comprehensive
domain models considering only the available information.

Feature identification. Feature was a new concept for most
participants. During the initial activities, they had problems by
defining the products features. We adopted two strategies to
mitigate this problem: for the small company, we presented
practical examples of features and investigated the functional-
ity description provided by the participants in order to verify
whether it was a feature or not; for the larger company, the

participants used the activity diagram notations during model
storming practices, and the domain analysis experts extracted
the candidate features from these diagrams.

Sprint scope. During the sprints, participants proposed
to add activities that meet other companies’ objectives (e.g.
combining the domain analysis process with the development
of a framework). This focus shift impacted on the process
results in terms of time and effort. Therefore, as lesson learned,
the process must focus on defined activities and possible
adaptations, without adding different ones.

Tool support for domain analysis. The available commer-
cial tools to model domain variability provide more functional-
ities than needed for domain analysis, since they are expensive.
Thus, it was not feasible use these tools in the context of
this work. We used an unstable academic tool which caused
problems during the project such as missing information. In
addition, they do not address traceability among product map
and feature model. It still remains an open problem in our
research work.

V. CONCLUSION

In this paper we described activities, tasks, roles, and
artifacts of RiSE-DA, a lightweight domain analysis pro-
cess adapted to the Brazilian software development scenario.
According to our evaluation, RiSE-DA provides appropriate
domain analysis activities considering the evaluated cases.

In addition, the stakeholders manifested motivation with
management aspects (iterativeness, feedback, and adaptability)
of the process. Scrum practices helped domain analysis activ-
ities to find obsolete features and make changes in a faster
way, decreasing effort and increasing the motivation to use
the process.

Although the qualitative studies are hard to replicate and
generalize, in future work, new evaluations should be per-
formed in different scenarios to reinforce the findings in this
study. We also intend to define new activities for the process
(e.g. requirements, architecture, and testing) in order to build
a complete domain engineering process.

REFERENCES

[1] I. F. da Silva, P. A. da Mota Silveira Neto, P. O’Leary, E. S. de Almeida,
and S. R. de Lemos Meira, “Agile software product lines: A systematic
mapping study,” Software Practice and Experience, vol. 41, no. 8, pp.
899–920, Jul. 2011.

[2] K. Schmid, “A comprehensive product line scoping approach and its
validation,” in Proceedings of the 24th International Conference on
Software Engineering, ser. ICSE ’02. New York, NY, USA: ACM,
2002, pp. 593–603. [Online]. Available: http://doi.acm.org/10.1145/
581339.581415

[3] J. Bosch and P. M. Bosch-Sijtsema, “Introducing agile customer-centered
development in a legacy software product line,” Software: Practice and
Experience, vol. 41, no. 8, pp. 871–882, 2011.

[4] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (foda) feasibility study,” Carnegie-
Mellon University Software Engineering Institute, Tech. Rep., November
1990.

[5] R. K. Yin, Case Study Research: Design and Methods (Applied Social
Research Methods), 4th ed. Sage Publications, 2008.

699

A Feature-Based Tool-Selection Classification for
Agile Software Development

Mohsen Taheri
School of Computing and Information Sciences

Florida International University
Miami, FL 33199, USA

mtahe006@fiu.edu

S. Masoud Sadjadi
School of Computing and Information Sciences

Florida International University
Miami, FL 33199, USA

sadjadi@cs.fiu.edu

Abstract—With the advancement in technology, software
development complexities are rising across the globe. This trend is
forcing companies and organizations to adopt management
methods and tools to accelerate time to market, more easily
manage changing priorities, increase the customer satisfaction and
reduce product expenses. Agile software development methods
offer a solution to these issues, but problems remain over
evaluation along with the offering of the correct agile software as
well as a collection of agile tools. The purpose of this paper is to
introduce best tools and features, criteria used for evaluating
currently existing tools and propose a classification model to right
agile tool selection. To prepare a list of the best tools and their
features in the market, a practical research on existing tools and
their features were performed. Finally, a classification model was
prepared and the results show which tools best fit into different
level of maturity in projects and companies.

Keywords-software development; agile tools; agile tool selection;
feature-based classification.

I. INTRODUCTION

Agile software development is a set of software development
methodologies based on incremental and iterative development
in which specifications and alternatives, develop by means of
cooperation between self-organizing, cross-functional groups. It
promotes adaptive arranging, evolutionary improvement, early
delivery, ongoing enhancement, and encourages rapid and
accommodating response to change. In recent years, many
startups, software companies and organizations adopting agile
development methodology. They want to develop fast and high
quality software products. Also, some other benefits obtained
from implementing agile consist of the ability to deal with the
software development visibility, cost, risk and priority
management, to improve team moral and to make simpler
project implementation process. This research is based on
standard agile definitions and concepts and uses agile principles
and agile manifesto to review the tools and their features.
According to the agile manifesto, “individuals and interactions
are over processes and tools, working software is over
comprehensive documentation, customer collaboration is over
contract negotiation and responding to change is over following
a plan”.

The market industry regarding software agile tools is now
becoming more mature with commercial tools and dozens of
small and large vendors which guide you to learn and work with

agile methodology. Sometimes companies make mistake to
choose appropriate tool, therefore many corporations arise three
questions in their mind. First of all, which agile tools in the
market is the best? Secondly, which agile tool is the best for our
organization? And last but not least, how to select the right tool?
Thus does a special agile tool fully meet all company
expectations as a "one size fits all" tool for a product team, and
make their collaboration and project tracking overall enjoyable.

Although there are many apps and tools offering traditional
project management, tasks management & To-Do List planning,
this survey focuses only on agile project management tools, their
specification and a classification to select best and right agile
tool for each organization. This paper is organized as follows:
Section 2 presents the literature review and previous works.
Section 3 presents the methodology and research steps
conducted during the study, agile tools, and describes the criteria
used for evaluating currently existing tools. Section 4 analyses
the lists and Section 5 presents the tool evaluation results.
Finally, Section 6 concludes with final remarks [1, 2].

II. LITERATURE REVIEW & RELATED WORKS

For this step, we analyzed the present white papers, journal
and conference papers and best tool usage surveys in the agile
development context. We went through many most important
world’s largest scientific and educational sources such as IEEE,
ACM, Springer, Google scholar, and etc. We even surfed
through less scientific online sources such as websites,
whitepapers and published surveys. Finally, we only found few
different surveys, which some of them were sponsored by tool
vendors themselves. Some of the most relevant works to our
research are presented as follows.

In 2011 Azizyan provides a list of features that are most
desired by the existing software companies. Its result shows that
the most satisfactory tool attribute is ease of use. As a positive
point it is an unbiased survey and the negative point is it has
focused just on gathering statistics as other surveys. Another
negative point is the use of spreadsheets, yahoo groups, and the
like to collect information using questionnaires. Although they
had an IP tracker that it isn’t reliable to have a normal
distribution of countries, people and companies. This paper
helps us to prepare a list of tools, criteria and metrics for our
tables [3].

DOI reference number: 10.18293/SEKE2015-234 700

In 2012 Azizyan presents a journey towards agile tool
selection for a specific anonymous company and the tool
selection process is based on a study of the tool no functional
features such as flexibility and usability. This paper gives a brief
description of the company, then another section lists and
describes the metrics used for evaluating currently existing tools.
It has focused just on a special company and few tools, but in
comparison with other papers, it introduces a methodology to
select the right tool [4].

In 2006 “Agile Project Management (APM), Tooling Survey
Results” focused on collecting statistics on tools used in
requirements management, and also there are some statistics on
agile method used and reasons for selecting an agile project
management tool. It helps us to prepare a list of tools, criteria
and metrics for our tables [5].

In 2008 “Agile tools: the good, the bad, and the ugly” mainly
focused on tools used in agile projects. It focused on gathering
statistics on company structure and maturity of agile methods
using TargetProcess trial versions. Although the paper has
published a couple years ago and in recent years, many new tools
have captured the market, it is beneficial as a reference to choose
most important tools and metrics [6].

In 2013, “8th Annual State of Agile,” written by the
VersionOne Company includes a normalized and wide
distribution of responses of multitude of channels from
companies, engineers, scrum masters, product owners and even
self-employed engineers. The respondents are from different
countries and questions have focused on details such as reasons
for adopting Agile, agile techniques used. The main points of the
paper are detailed statistics in the agile methods in projects, and
the information about adopting agile methods [7].

In 2014,”Agile Tools Evaluator Guide” written by the
VersionOne Company intended to help organizations in
choosing software to support their agile teams and processes.

Some of the mentioned research is considerable due to their
direct relevance to our research problem. Some of them are
sponsored by vendors, therefore the questions probably have
been prepared based on the product features of the company.
None of the papers and surveys provide comprehensive method
and opportunity to select a tool among a wide range of agile
tools. Also, none of them provide a methodology for right tool
selection regarding the size and maturity of projects and
companies for instance for a small startup or large organization.

III. METHODOLOGY

Companies that are successful in agile software development
know that "Individuals and Interactions" are more important
than "Processes and Tools"; but the right agile tools really can
affect the enterprise, especially when interactions can be more
productive. Thus, how top agile tools are provided and which
important factors are essential, are discussed in this section.

A. Tools

To prepare a list of the best tools in the market, firstly, more
than 300 blogs, web pages, including reviews, tutorials and
online books have been read. Afterward, we reviewed papers,
surveys, and white papers, especially those which had been
published in recent years. Secondly, more than 40 graduate

students, including 10 PhD students from the computer science
department of Florida International University (FIU) during a
semester were supposed to choose one or two tools and make a
practical research in the enterprise or project using chosen tools
and finally they made a video describing tool and their features.
Some of them are still adopting agile tools in self-employed
projects, senior projects, startups, and even organizations and
they provide us precise feedbacks. Also, they installed tools,
paid if necessary, and released their results on Github and
YouTube [8].

There are different types of management tools. Traditional
Project Management Tools, Spreadsheets, Physical Walls and
Paper, and commercial modern Agile Project Management
Tools. Other than physical tools we consider features like the
size of the project, the size of the team, stability of the
requirements and complexity of the software for a wide range of
available tools to maintain diversity among them. Afterwards the
tools are divided into Proprietary tools vs. open source tools. To
keep a better comparison, we consider some of the criteria as
well like satisfactory aspects of the tools like:

 Ease of Use

 Integration with Other Systems

 Availability of Reports

 Price

 Customizability

B. Criteria to consider

To prepare a list of the most important criteria to satisfy
agile techniques employed, all of the recent surveys were
considered. In addition, some feedbacks provided by students
helped us to balance some of the vendor’s surveys. Six different
core criteria definition is presented as follows.

1) Flexibility
Organizations and companies are different and unique. The

agile project management tool should have flexibility to adapt
to those differences.

2) Ease of Use
Ease of use is that users can utilize the agile tool without a lot

of training and time consuming procedures.
3) Category
Companies are placed into the categories that fit with their

organization’s needs. For example, if it is an organization with
a hundred users, it is probably not going to want a simple
standalone solution.

4) Pricing
Pricing and cost models are an important factor in any

purchase and agile project management tool.
5) Responsiveness
How responsive are the vendors? How do the vendors support

their customers? Responsiveness is how the vendors respond to
the needs of their customers.

6) Features
Features are an essential part of any agile tool evaluation.

After you figure out which specifications and features a system
supports, understand how those features would be used to
perform your project process.

701

7) Open source tools
Agile project management are divided to proprietary tools

and Open Source Tools. Open source agile tools may have some
restriction while using some features; thus each organization
should consider its situation before choosing a tool. Particular
features may be vital for one enterprise whereas is not important
for another company. The following factors are considerable
using open source tools.

 Feature sets
 Usability
 Viability
 Suitability for large companies, projects and products

IV. RESULTS

The comparison table “Table I, II” is used to compare best
agile project management tools. The purpose of the comparison
table is to highlight the requirements for which you are looking,
and to be able to compare different agile tools against those

requirements. Some of the most important key factors should be
considered in order to select an agile tool for project
management.

A. Life Cycle Management using One Agile Tool

Storing project information in different multiple tools
causes inaccurate results and prevents to comfortable real-time
visibility.

B. Cross-Functional Teams

It means to manage the requirements of the customers,
programmers, testers, product owners, and other stakeholders in
an integrated environment to enhance collaboration and
consistency.

C. Enterprise Scale

In order to deployment of an enterprise, agile tools should be
able to handle the project structure, tasks, defects and tests.

Table I: Evaluation criteria
Lifecycle Coverage Product and their release. Iteration planning and its tracking, Strategic Goals, backlog and the repository for defects, Test

management
Simplicity & Ease of Use Customizable dashboards for tracking, Drag and Drop; Shortcut options for actions such as: Close, open and delete;

Interactive environment supporting the daily activities of teams
Collaboration Communication media for teams; Mobile Stream to keep projects moving; Email notifications and RSS feeds; Reporting

and tracking for distributed team members; Customizable boards and coding
Analytics, Visibility and
Reporting

Dashboards with sufficient metrics; Advanced planning e.g. what-if analysis; Reports, charts and graphs; Hierarchy
charts, Relationship mapping, Release dependency visibility

Workspace and Process Drag and drop story, task and boards; Customizable methodologies (XP, Scrum, Kanban, etc.); Extensive options for
boards, fields; Color coded visual representation

Program Management Release rollouts; Program-level Epicboards; Epic planning; Cross- team planning, tracking
Deployment, Integrity and
Security

Free trial software available; Maturity size-based product versions; Web services API; Project-level security; Integrates
with Existing Tools like Source control systems (e.g. GitHub), bugtrackers (e.g. JIRA).

Table II: Agile tools comparison chart (A: Full support, B: Quite good, C: Bad, *: Free applicable trial)
Commercial modern Agile tools Traditional &

SpreadsheetsProprietary tools Open source tools

A
tl

as
si

an
Ji

ra
/G

re
en

ho
pp

er

A
xo

so
ft

 O
nT

im
e

T
ar

ge
t P

ro
ce

ss

M
ic

ro
so

ft
T

F
S

R
al

ly
 P

la
tf

or
m

M
in

gl
e

V
er

si
on

 O
ne

B
lo

ss
om

.io

S
cr

um
w

is
e

B
as

e
C

am
p

L
ea

nK
it

A
gi

le
Z

en

P
la

nB
ox

K
an

ba
ni

ze

S
cr

um
W

or
ks

P
ro

B
an

an
a

S
cr

um

A
gi

le
F

an
t

Ic
eS

cr
um

X
P

la
nn

er

T
re

ll
o

A
sa

na

A
gi

lo

E
xc

el

M
ic

ro
so

ft
P

ro
je

ct

G
oo

gl
e

D
oc

s

Lifecycle
Coverage

A A A A A B A A B B B B B A B B A B B B C B C C B

Simplicity &
Ease of Use

B B A B B A B B B B A B B B B B B B B A A B A A B

Collaboration A A B B B A A A B B B A A A B A A C A B B C C C B
Analytics, and
Reporting

A A B B A B A A B B C B B B C B B B C A C B B B C

Workspace and
Process

B B A B B A B B A B B A A A B A C C A B B B B C C

Program
Management

A A A B A B A A B B C B C C B C B C C B B C B C B

Deployment,
Integrity and
Security

A A A B B A B B A B B A B B B B C B C A C B C C C

Free plan * * * * * * * * * * * * * * * * * * *
Scrum&Kanban
Supported

A A B A A A A A B C B A B C A B B A B B B C C C C

Popularity on
the web

A A A B C A A C C A A A B A A C A C B A C C C A B

702

V. CLASSIFICATION

The comparison tables focus only on top 25 agile project
management tools and compare them; but there are also a lot of
commercial vendors offering solutions in this market. How to
select right agile project management tool for different maturity
level? Agile only fits in some company scales and the sad truth
is that agile doesn’t fit all company scales. So, many agile
adoptions in progress right now are going to fail for this reason
“Table III”.

 Start-up: During this time manager usually struggles
to survive.

 Growth stage: Company has added customers and
increased sales to new markets and also new
professional staff must be added.

 Maturity stage: The business is operating well, with an
established market share “Fig. 1” [9, 10].

Table III: Ease of Use for Different levels of Maturity (A: Quite appropriate, B: good, C: Bad)

Commercial modern Agile tools Traditional &
SpreadsheetsProprietary tools Open source tools

A
tl

as
si

an
Ji

ra
/G

re
en

ho
pp

er

A
xo

so
ft

 O
nT

im
e

T
ar

ge
tP

ro
ce

ss

M
ic

ro
so

ft
T

F
S

R
al

ly
 P

la
tf

or
m

M
in

gl
e

V
er

si
on

 O
ne

B
lo

ss
om

.io

S
cr

um
w

is
e

B
as

e
C

am
p

L
ea

nK
it

A
gi

le
Z

en

P
la

nB
ox

K
an

ba
ni

ze

S
cr

um
W

or
ks

P
ro

B
an

an
a

S
cr

um

A
gi

le
F

an
t

Ic
eS

cr
um

X
P

la
nn

er

T
re

ll
o

A
sa

na

X
P

S
to

ry
S

tu
di

o

E
xc

el

M
ic

ro
so

ft
 P

ro
je

ct

G
oo

gl
e

D
oc

s

Senior
Projects
&Self-
employed

C B B B B B B B A B A A B A B A B A A A A B A A B

Start Up B A B A A B A A B A B A B A B B B A B B B B B B C

Growth A A A B B A A B B B B B B C A C B A A B C A C C C

Mature A A A B A A A B B C B C C C C C C C C C C C C C C

VI. CONCLUSION

As project team members in the company continue to use
agile and enterprise scales agile development within their
companies, the challenges of managing different groups
continue to increase. Agile software development tools provide
solutions to manage this sophisticated process using a
framework to maximize the consistency and success of agile
development. In this paper, we presented a feature-based
classification approach to select best and the right tools. In brief
some key factors in this classification reply to these considerable
questions:

1. Flexibility: Can the system adapt to how your organization
does business? 2. Ease of Use: Will your people be able to use
the tool without a couple of hours training? 3. Category: Into
which classification of agile project management tools does it
fit, and does that class match with the needs of your
organization? 4. Responsiveness: How responsive is the
organization? 5. Pricing: Does the pricing of the system match
the value you will receive? 6. Features: Does the system have
enough features to meet your current and future objectives [11]?

Then we classified them in a table based on comprehensive
factors:

- Feature-driven Development: Some companies attempt to
use a traditional tool that causes their project to be more
complicated due to these tools don't support basic agile practices
[12].

- Lifecycle Management: Storing project information in
different multiple tools causes inaccurate results and prevents to
comfortable real-time visibility [13].

- Cross-Functionality: It means to manage the requirements
of the customers, programmers, testers, product owners, and
other stakeholders in an integrated environment to enhance
collaboration and consistency [14].

- Configuration with Flexibility: An agile management tool
should let companies to organize, and plan according to their
requirements.

- Simplicity: Like agile software project development, the
simple one with ease of use is better, but the level of maturity is
considerable.

- Enterprise Scale: In order to deployment of an enterprise,
agile tools should be able to handle the project structure, tasks,
defects and tests [15].

Finally, we classified results in a table and presented a model
to select right agile tool based on features of agile software
development tool and enterprise needs [17, 18, 19]. In this
model, 3 key criteria is applied, 1- cloud ability which indirectly
covers security, 2- Open source vs. proprietary, 3- Co-located
teams vs. Distributed teams. Finally, at each leaf, a couple of
agile tools which best fits in this situation is offered. Due to
most of the tools even those which needs high security, have
cloud and web based capabilities, our model is based on cloud.

703

Figure 1. A selection model to choose the right agile tool on the cloud

ACKNOWLEDGMENT

This research was partly supported by the Leona M. and
Harry B. Helmsley Charitable Trust via the Georgia Tech’s
Vertically Integrated Projects (VIP) Program. The authors also
thank the FIU graduate students attended Dr. Sadjadi's Fall 2014
Advanced Software Engineering class for their technical
assistance and insightful discussions during the class sessions.
This material is based in part upon work supported by the
National Science Foundation under Grant Numbers of I/UCRC
IIP-1338922, AIR IIP-1237818, SBIR IIP-1330943, III-Large
IIS-1213026, MRI CNS-1429345, MRI CNS-0821345, MRI
CNS-1126619, CREST HRD-0833093, I/UCRC IIP-0829576,
and MRI CNS-0959985.

REFERENCES

[1] Martin, Robert Cecil. Agile software development: principles, patterns,
and practices. Prentice Hall PTR, 2003.

[2] Abrahamsson, Pekka. Agile Software Development Methods: Review and
Analysis (VTT publications). 2002.

[3] Azizyan, Gayane, Miganoush Katrin Magarian, and Mira Kajko-Matsson.
"Survey of agile tool usage and needs." Agile Conference (AGILE), 2011.
IEEE, 2011.

[4] Azizyan, Gayane, Miganoush Magarian, and Mira Kajko-Mattsson. "The
Dilemma of Tool Selection for Agile Project Management." ICSEA 2012,
The Seventh International Conference on Software Engineering
Advances. 2012.

[5] Behrens, Peter. "Agile Project Management (APM) tooling survey
results." Trail Ridge consulting (2006).

[6] Dubakov, Michael, and Peter Stevens. "Agile Tools: The Good, the Bad
and the Ugly." Report, TargetProcess, Inc (2008).

[7] VersionOne.com. "The 8th Annual“State of Agile” Survey."

[8] https://www.youtube.com/channel/UCucIZz2RRY6tYcKuTDxO8pw

[9] Kumar, Misha, Laszlo Huber, and Milan M. Jovanovic. "Start-up
procedure for three-phase six-switch boost PFC rectifier." Applied Power
Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth
Annual IEEE. IEEE, 2014.

[10] Giardino, Carmine, et al. "What do we know about software development
in startups?." Software, IEEE 31.5 (2014): 28-32.

[11] Bustard, David, George Wilkie, and Des Greer. "The maturation of agile
software development principles and practice: Observations on successive
industrial studies in 2010 and 2012." Engineering of Computer Based
Systems (ECBS), 2013 20th IEEE International Conference and
Workshops on the. IEEE, 2013.

[12] Thakur, Siddharth, and Harshavardhan Singh. "FDRD: Feature driven
reuse development process model." Advanced Communication Control
and Computing Technologies (ICACCCT), 2014 International
Conference on. IEEE, 2014.

[13] Reichert, Manfred, Alena Hallerbach, and Thomas Bauer. "Lifecycle
management of business process variants." Handbook on Business
Process Management 1. Springer Berlin Heidelberg, 2015. 251-278.

[14] K Majchrzak, Ann, Philip HB More, and Samer Faraj. "Transcending
knowledge differences in cross-functional teams." Organization Science
23.4 (2012): 951-970.

[15] Ambler, Scott W., and Mark Lines. Disciplined agile delivery: A
practitioner's guide to agile software delivery in the enterprise. IBM Press,
2012.

[16] Misha, Laszlo Huber, and Milan M. Jovanovic. "Start-up procedure for
three-phase six-switch boost PFC rectifier." Applied Power Electronics
Conference and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE.
IEEE, 2014.

[17] Abrahamsson, Pekka, Nilay Oza, and Mikko T. Siponen. "Agile Software
Development Methods: A Comparative Review1." Agile Software
Development. Springer Berlin Heidelberg, 2010. 31-59.

[18] Langer, Tomáš, and Pavel Vaněček. "AGILE METHODS IN TECH-
STARTUP." IMEA 2012

[19] Turk, Dan, Robert France, and Bernhard Rumpe. "Limitations of agile
software processes." arXiv preprint arXiv:1409.6600 (2014).

Senior
Projects

A: Trello
B: Asana

Start Up A: IceScrum
B: XPStoryStudio

Growth A: IceScrum
B: Trello

Mature A: AgileFant
B: XPlanner

Senior
Projects

A: Trello
B: Asana

Start Up A: IceScrum
B: XPStoryStudio

Growth A: IceScrum
B: Trello

Mature A: AgileFant
B: XPlanner

Senior
Projects

A: Kanbanize
B: Rally

Start Up A: Mingle
B: Version One

Growth A :Rally
B: Atlassian
Jira/Greenhoppe

Mature A :Rally
B: Version One

Senior
Projects

A: Target Process
B : Axosoft OnTime

Start Up A:Mingle
B: Version One

Growth A: Rally
B: Mingle

Mature A: Rally
B: Atlassian
Jira/Greenhoppe

Right agile tool selection

Cloud

ProprietaryOpen source

Co-located teams Distributed teams Co-located teams Distributed teams

704

Adoption of Software Product Line to a Voice User

Interface Environment

Diógenes R. F. Oliveira, Byron L. D. Bezerra, Elyda L. S. X. Freitas, Alexandre M. A. Maciel

Polytechnic School of Pernambuco – University of Pernambuco

Recife, Brazil

{drfo, byronleite, amam}@ecomp.poli.br, elyda.freitas@upe.br

Abstract — Software Product Line is a software development

paradigm created to meet different market segments. This

paradigm has shown great acceptance in the corporate

environment (Motorola, Nokia, and Hewlett Packard) to allow

the construction of more efficiently through reusing common

components applications, besides being extensively researched by

academics. The segment of voice interface, in turn, came up with

the demand for systems capable of interacting with users, but in

the application development process for this domain there is a

lack of tools that make the task more productively. The FIVE

(Framework for an Integrated Voice Environment) is a

development environment for Voice Interface products designed

to increase productivity in this segment. This paper aims to apply

a SPL approach to FIVE. For this, a comparative evaluation of

the process of construction of FIVE and SPL platforms was

performed. Then adjustments in order to correct structural

problems and, finally, the framework was validated using a set of

experiments which sought to ensure the confirmation of such

changes have been made.

Keywords: Experience Report,s Software Product Line; Voice

User Interface.

I. INTRODUCTION

In recent years, the area of Voice User Interface (VUI) has
received great attention from academics, for two main reasons:
first, due to improvements in the performance of automatic
speech processing systems, including speech recognition and
speech synthesis; secondly, due to convergence device and
mass production of multimedia content, which requires means
of user interaction faster and efficiency [1].

According to Huang et al. [2], the typical architecture for
the development of VUI has three components: the first
represents the set of engines responsible for the speech
recognition or the speech synthesis; the second consists of a
API (Application Programming Interface) used to facilitate
communication between engines and applications; and the last
one consists of a set of possible applications. This architecture
has guided this area over the years and many resources have
been created with the aim to assist in this process.

Much has been done, both academia and in industry to
provide improvements in speech recognition rates and speech
synthesis naturalness, however, little effort has been made to
bring these advances at the application level. Given this
scenario, was developed the FIVE (Framework for an
Integrated Voice Environment) in order to assist in speech

engines building and in instantiation of them in different
technological environments (Telephone, Mobile, SmartTV) [3].

The FIVE has been used by the company Vocal Lab in a
real development environment. With him, the time-to-market
was considerably reduces and enable the mass development of
products with voice interface. The Voc Refactoring the
Environment al Lab, offers a products family for speech
recognition (VL Recognizer), speech synthesis (VL Synthesizer)
and speaker verification (VL Identificator).

According to Pohl [5] Software Product Line (SPL) is a set
of software systems that have a certain set of features in
common, and meet the needs of a particular market segment or
mission and are developed with the same core assets. Although
it is not explicit in the original work of Maciel [4], FIVE
presents a SPL behavior, however, various features of SPL
presents some problems inherent in this approach, as:

 Lack of variability management, which causes a lack
of control of altered or removed features;

 Severe failure of the features configuration, generating
products with errors and / or locking tool.

 No identification of features, preventing management
for maintenance and evolution.

Given these problems, FIVE does not function properly as
SPL in all family products. This leads to lost productivity,
reducing the potential of time-to-market as suggested by the
tool. In this sense, this paper aims to propose the adoption of
Software Product Line approach in FIVE. For this, this paper is
organized as follows: Section 2 provides a background to the
literature of SPL adoption. Section 3 shows adoption process.
Section 4 shows the experiments performed for the FIVE and
his adaptation to the concepts of SPL and finally section 5
describes conclusions.

II. SOFTWARE PRODUCT LINE ADOPTION

The adoption the SPL concept emerged together with the
practice of software reuse. In 1983, Doe and Bersoff [6]
presented the software industry an initiative to increase
productivity and quality by creating an environment composed
of techniques and tools to assist the process of software
development with reuse. The literature on the adoption of
software product line is enough extensive. Bosch [7] reports the
adoption of alternatives is generally much more diverse than
those presented in the literature and the technical and

DOI reference number: 10.18293/SEKE2015-185

705

organizational criteria for adoption have more freedom than we
might expect.

This diversity can be seen through an analysis of the major
works published in recent decades. Bosch in [7] created a
maturity model served as a reference in the evolution of
product lines. Clements and Northrop [8] synthesized the
fundamentals of SPL, practices and standards used, which
provided a model with the essential approach to application of
SPL. Linden et al. [9] presents the best practices of the industry
in the adoption of SPL using the foundations created by
Clements and Northrop, which provide practical actions used
SPL processes. Finally, more recently, Apel et al. [10] present
a features-oriented model for SPL with concepts and practical
implementations.

Despite the freedom in SPL adoption, these models have
common areas: Domain Engineering, responsible for
collecting, organizing and storing past experience in systems
development activities; and the Application Engineering
responsible for the process where applications are built by
reusing the artifacts of Domain Engineering and by exploration
the variability [5]. Given this scenario, this work has been
inspired Pohl et al. [5] and Apel et al. [10] to making the
decisions about the necessary actions that would be applied to
FIVE environment.

III. ADOPTION PROCESS

Considering the reading of the Hall of Fame of SPL
adoption we propose a adoption methodology composed of
four steps: Interview with Experts; Evaluation by Inspection;
and Refactoring the Environment.

A. Interview with Experts

The purpose of these interviews was to obtain qualitative
information regarding conceptual and architectural issues of
FIVE as a SPL solution. Three researchers were selected with
practical proven of the SPL approach, and by the vast
theoretical knowledge through the publication of articles,
consultancies and projects.

At this stage it was possible to better understand existing
problems in the framework and know the possible actions that
could be taken to solve the problem of traceability of artifacts
of the tool. Two key points were mentioned by specialists. First
one was the need to identify the features that FIVE pretend to
present within the domain of VUI. The second point raised was
the need to implement a Configuration Knowledge in order to
manage the features and the dependencies control. According
to experts, these actions guarantee the stable operation of FIVE
by defining constraints as the variability of the components of
the platform should compose the derivation of products.

B. Evaluation by Inspection

Pohl [5] propose two steps for SPL adoption: evaluation of
Domain Engineering and Evaluation of Application
Engineering.

1) Evaluation of Domain Engineering

a) Product Management

At this step, we analyzed the original work of Maciel [4]

and reports on the design of FIVE had scoped the area of VUI.

Tool's market strategy would provide developers, a productive

mechanism, with fast learning curve and multi-platform. This

observation was confirmed from the many difficulties on the

part of developers, which apply in systems the interface

models. A more detailed evaluation of the product was carried

out, using three basis listed by Pohl [5] to be observed in the

phase of product management activities. Table 1 shows the

result of the evaluation.

TABLE I. EVALUATION OF PRODUCT MANAGEMENT

Activity Description Application in FIVE

Scope of
product

portfolio

Determines the
range of products to

be offered

Engines for speech recognition,
speaker verification and speech

synthesis.

Scope
domain

Identifies major
functional areas that

are relevant to SPL

Pattern Acquisition, Feature
Extraction, Pattern Classification

and Engine Generation.

Scope core

asset

Define the required

features of
components

Functionalities needed are

techniques for feature extraction and
pattern classification.

b) Requirements Engineering Domain

In FIVE, requirements engineering domain were made

through the use of questionnaires, interviews and surveys with

VUI experts. Thus, the notation used for specifying the

specific language was the domain of VUI. Based on the

identified functional areas, process was a questionnaire made

available in order to meet the difficulties, the needs, the

environment, suggestions, among other aspects of the process

of construction and application of models of voice interface.

Table 2 shows the main requirements raised.

TABLE II. EVALUATION OF ENGINEERING DOMAIN

Scope Domain Requirements

Pattern Acquisition Features integrated audio recording
and edition.

Feature Extraction and

Pattern Classification

Provide mechanisms for analysis and

comparison of techniques.

Engine Generation Platform independence and ease of
integration with applications.

c) Design Domain

The general architecture of FIVE was designed
independently based on three modules: CORE consisting of a
framework of classes where the central implementation of the
framework; API that is a proprietary implementation that
provides a set of resources needed to mediate between the
speech engines and the application layer; and the GUI
(Graphical User Interface) which is a graphical interface that
assists the development of projects.

Although the proposed architecture meets in an adequate
manner the generation of products, a failed architecture was
identified. In Engine Generation step all features are loaded to
the end product, with no differentiation in architecture on
unused features.

d) Realization of the Domain

Previous study evaluated the implementation of FIVE that
the best approach to implementing a mechanism for mass

706

production voice interface, according to know requirements
would be through the mechanism Framework Gray-box [11].

The class diagram is centered on the Project Class that
relates to the classes: Utterance, Sample, Speaker, Extraction,
Classification and ProjectType. All these classes have their
methods of adding, updating, deleting and research, except
ProjetcType which is just a class of type Enum. The Utterance
class has a special behavior to receive the grapheme-phoneme
of the utterance of helper classes Phrase, Word and Syllable are
responsible for representing the linguistic details of each
phrase. They make common variability in code level serving
different products and product-specific aspects are addressed
from use of the inheritance mechanism.

2) Evaluation of Application Engineering
The environment for generation of products FIVE is a

platform that has the format wizard that has sequential tabs, the
classic process of recognizing patterns defined by Duda et al.
were inspired. [12]. The user-friendly interface, how they are
arranged the information, the ease of applying the techniques of
feature extraction and classification, and the definition of
parameters, all these criteria together, decrease the learning
curve in the generation of models for VUI applications.

For this evaluation were built several engines and it was
observed that even with the use of the framework mechanism
for implementing the variability of the components, it hurts not
enough for a proper functioning of FIVE as a SPL. Thus,
taking into account the background regarding the adoption of
SPL and interviews with experts, if make know that other
activities should be performed: the construction of the Feature
Model and a Knowledge Configuration.

In the Feature Model to identify the features available, its
constraints and dependencies occurs, and from it is possible to
know the potential variability of the platform. Configuration
Knowledge has the role of expressing the relationships and
dependencies between the variables of the product line and
features, and their interactions. Thus, observed the need of
carrying a refactoring of FIVE environment given that, in its
initial implementation, the proposed fast generate products was
achieved, but there is a lack of the integrity of the products and
the operation of the line from of features selected.

C. Refactoring the Environment

The process of FIVE refactoring the environment in two
steps: first the Feature Model was developed and then
implemented a mechanism of Configuration Knowledge.

1) Development of the Feature Model

The development of the Feature Model was accomplished
with the aid of pure::variants tool [13]. The choice of this tool
was made because it is widely used in both academia and
industry. From the evaluation of all features FIVE and its
dependencies were identified. Some numerical features were
created in order to empirically parameter settings are adopted
in the area of voice interface.

The Feature Model, which is attributed as the main element
of the project itself FIVE contains five features as direct
daughters, three of which were considered more complex due
to the number of variations, specifically Rating Standards and

Feature Extraction, where various techniques are implemented
and the internal variations caused mainly by setting parameters.
Features like numbers are justified because of being parameters
adopted in the literature for specific techniques.

2) Implementation of Configuration Knowledge

The development of the Knowledge Configuration
happened according to the proposal of Domain-Specific
Modeling of Cyril [14]. According to him the use of domain
specific abstractions tends to facilitate the understanding of the
variability, this mechanism has been used implicitly in FIVE,
even to the point of an individual with experience in VUI
applications do not need to run the platform.

According to the results of the evaluation of five to failure
dependence between the features is the main problem in the
platform. For example, given an "A" feature selected at a time,
necessarily requires a "B" functionality later for maintenance
operation. Thus, the implementation of a knowledge
configuration meets solve this dependency failure.

The development of the Knowledge Configuration was
done through crosstree constraints following three phases:
change in GUI, register control and inclusion of features
extracted from the field and ranked. In the original version of
FIVE, the graphical interface allowed the indiscriminate
selection of techniques for extracting's characteristic, regardless
of the technique of pattern classification. To resolve this
problem with a new interface control features available for
selection was developed.

The control record of the features was necessary because
the original version of FIVE, Each new selection of features for
feature extraction, the data were overwritten, not allowing to
have a history of previous features. To mitigate this problem
adaptation was performed for selected features were stored in
the corresponding techniques of extraction of features selected
subdirectories.

The inclusion of the field extracted and classified was
necessary as the original version of FIVE only the last feature
extraction of selected features could be used for classification.
To mitigate this problem it was tailored to data structure for
addition of a new Boolean attribute (extracted). This solution
allowed the use of any features extraction that are available.

IV. EXPERIMENTATION WITH DEVELOPERS

In this study, an observational assessment of the use of
FIVE original and the new version after refactoring, followed
by the application of a questionnaire was carried out. The
purpose of this evaluation was to assess the implementation of
FIVE experiencing the potential variability of products,
specifically variants of techniques used in generating speech
engines, both feature extraction as the classification of patterns.

The experiment with the collaboration of five developers
who had no prior knowledge about the FIVE, however, all
were familiar with the process of pattern recognition. The
developers used the FIVE in the environment composed by
Windows 8 operating system with as NetBeans with Java 7
Update 45 operating system, with all the default settings. FIVE
were present in all the features of the production line required
to build a product.

707

Observational assessment began with the realization with
an orientation about the concept of SPL and it is the FIVE
within the context of VUI, to equalize the knowledge of users.
Then were distributed both versions of FIVE and requested the
construction of a speech recognition engine for isolated words.
Then a database of audio and text with five control commands
(Open, Close, Follow, Stop, No) was available. The developers
were free to choose the features for feature extraction and
pattern classification. At the end, everyone was able to
successfully generate the engines in both versions.

During the FIVE observational assessment metrics were
used: time (in minutes), number of turns to earlier stages, the
tool crashes, errors and doubts. Tables 3 and 4 present the
results observed in two scenarios: evaluation with the original
version, and evaluation with new version, respectively.

TABLE III. EVALUATION WITH THE ORIGINAL VERSION

Developer Time Turn

Back

Crashes Errors Doubts

A 34 7 6 3 9

B 44 6 8 3 9

C 38 8 6 1 10

D 42 9 7 2 11

E 43 10 6 3 9

TABLE IV. EVALUATION WITH NEW VERSION

Developer Time Turn

Back

Crashes Errors Doubts

A 26 7 0 0 6

B 35 7 0 0 8

C 31 5 0 1 6

D 32 7 1 0 7

E 28 9 0 0 6

It is observed that the average for the construction of speech

in scenario 2 engine time was 25% faster than in scenario 1,
Although, the generation of speech remained in a short period
of time engines. The number of turns was similar in both
scenarios. The crashes were practically used, since their
occurrence occurred due to the absence of Configuration
Knowledge, specifically in the areas of feature extraction and
pattern classification. The crash that occurred with the user D
in scenario 2 was due to internal problems with the operating
system. Errors in scenario 2 were reduced because the account
Configuration Knowledge and doubts about the features
decreased smoothly in scenario 2 since at that time there was
already a greater familiarity with the tool.

V. CONCLUSIONS

A major strength of this study was the exploration of the

SPL approach in the field of VUI, since this area is little

explored by Software Engineering. Another important

contribution was the refactoring of FIVE to make it really a

SPL. With this the FIVE passes to carry around a set of values,

among them, the possibility of development of research

techniques of extraction and classification, because reading

from the perspective of oriented features.

The correction of faults in the functioning of FIVE process,

through the Knowledge Configuration and Feature Model

solved the problems found in the previous version by defining

the constraints of the features. The identification of features

and construction of the model feature that provides

visualization and potential of the platform.

In the experiments the features were willing to users only in

accordance with the availability of the same features as the

previously chosen, proving the importance of Configuration

Knowledge for the correct operation of the platform and

product generation correctly. After the restructuring, the FIVE

happened to have a clear definition as to its engineering

software, making their understanding for researchers and

developers easier.

VI. REFERENCES

[1] Kurniawati, E.; Celetto, L.; Capovilla, N.; George, S., "Personalized
voice command systems in multimodal user interface," Emerging Signal
Processing Applications (ESPA), 2012 IEEE International Conference
on , vol., no., pp.45,47, 12-14 Jan. 2012

[2] Huang, X., Acero, A., Hon, H.W., Spoken Language Processing – A
Guide to Theory, Algorithm, and System Development, Prentice Hall,
2001.

[3] Maciel, A.; Carvalho, E.; FIVE – Framework for an Integrated Voice
Environment, IWSSIP, 2010.

[4] Maciel, A., Investigação de um ambiente para o desenvolvimento
integrado de interface de voz. Tese de doutorado, CIn/UFPE, 2012.

[5] Pohl, K.; Böckle, G.; Van Der Linden, F.: Software Product Line
Engineering – Foundations, Principles, and Techniques. Springer,
Heidelberg 2005.

[6] Doe, D. D. and Bersoff, E. H. (1986). The Software Productivity
Consortium (SPC): An industry initiative to improve the productivity
and quality of mission-critical software. Journal of Systems and
Software, 6(4), 367–378.

[7] Bosch, Jan. Maturity and Evolution in Software Product Lines:
Approaches, Artefacts and Organization. Software Product Lines, 257-
271,2002,Springer Berlin Heidelberg

[8] Northrop, L. M. e Clements, P.C. A Framework for Software Product
Line Practice. Version 5.0. Pittsburg. Software Engineering Institute,
2007. Disponível em: <
http://www.sei.cmu.edu/productlines/framework.html >. Acesso em:
02/12/ 2013 às 10:24.

[9] Linden, Van der; Frank J., Schmid, Klaus; Rommes, Eelco. Software
Product Lines in Action: The Best Industrial Practice in Product Line
Engineering, Springer-Verlag Berlin Heidelberg, pp. 26, 2007.

[10] Apel, S., Batory, D., Kstner, C., and Saake, C. Feature-Oriented
Software Product Lines: Concepts and Implementation. Springer
Publishing Company, Incorporated. 2013.

[11] Fayad, M. E.; Schimidt, D. C.; Johnson, R. E. Building Application
Frameworks: Object-Oriented Foundations of Frameworks Design. New
Jersey: Wiley, 1999.

[12] Duda, R.O., Hart, P.E., Stork, D.G., Pattern Classification, Wiley-
Interscience. 2000.

[13] pure::variants, available em: <http://www.pure-systems.com/> Acessado
em Março de 2014.

[14] Cirilo E., Nunes, I.; Kulesza, U.; Lucena, C.; Automating the product
derivation process of multi-agent systems product lines. No SBES '09,
página 12, Brasil, 2009. IEEE.

708

(DOI reference number: 10.18293/SEKE2015-159)

Adopting Agile Methods in the Public Sector:

A Systematic Literature Review

Isaque Vacari

Embrapa Informática Agropecuária

Empresa Brasileira de Pesquisa Agropecuária, Embrapa

Campinas/SP, Brazil

isaque.vacari@embrapa.br

Rafael Prikladnicki

Faculdade de Informática

Pontifícia Universidade Católica do Rio Grande do Sul

Porto Alegre/RS, Brazil

rafaelp@pucrs.br

Abstract - Agile software development (ASD) has become an

important research topic. However, despite the increase in the

number of studies in this area in the last few years, there is a lack

of structured information about its adoption in the public sector.

Since the public sector is the part of the economy concerned with

providing various government services, the goal of this study is to

report from a systematic literature review and provide

information that may enhance the understanding of the

implications of adopting ASD within public companies. As the

main results, we found that ASD could indeed be adopted in the

public sector. The analysis suggests that a good alternative is to

start the adoption of ASD with people willing to change - strongly

supported by senior management - working on important pilot-

projects. Second, we found that job satisfaction is greater when

adopting agile methods within public companies. Finally, we also

found some barriers that are difficult to overcome, including the

ingrained use of plan-drive methods, as well as big bang deliveries

and lack of experience in ASD.

Keywords: agile methodologies; software development; software

engineering; public organizations; government.

I. INTRODUCTION

The public sector is the part of the economy concerned with
providing various government services. With the development
and evolution of technology in the past few years, public
organizations began to gradually incorporate software products
in their development processes. Thus, the incentive to adopt new
and better approaches to Software Engineering (SE) has become
something essential for the future of software projects in
government. In the context of SE, the government always
attempted to enforce software standards for the development of
its systems, based on plan-driven methods with big bang
deliveries. For example, the United States Department of
Defense attempted to enforce “US Military Software
Development Standards” from the 1970s to 1990s [1]. Also, the
United Kingdom (UK) Government decided to adopt
“Structured Systems Analysis and Design Method” from the
1980s to mid-2000s [2]. The benefits are that it contributed to
spreading the use of valuable techniques. On the other hand,
software standards based on plan-driven methods are unlikely to
cope well with uncertainty, changing requirements, user
communication and staff development [2].

A good solution to these problems was formalized in
February of 2001 with the agile methods. Since then the
government has gradually waived its ways of working and has
adopted agile software development [3]. Although ASD has

become an important research topic and the number of studies in
this area has increased in the last few years, there is a lack of
structured information about its adoption in the public sector.
For this reason, the goal of this study is to report from a
systematic literature review about the adoption of agile methods
in the public sector and provide empirical evidence about its
current situation, challenges, and opportunities.

Public organizations have been adopting agile methods in
order to improve the results of their IT projects [7][8][9]. This is
motivated by the benefits that agile methods can bring to
organizations, including the ability to manage changing
priorities, better alignment between IT and business objectives,
enhanced software quality and increased customers / users /
stakeholders satisfaction with the software product [10].

However, the adoption of agile methods in the public sector
has some challenges. Agile methods are incompatible with
hierarchical and bureaucratic structures, typical of government
[11]. Many public organizations, especially large ones, have
spent years changing their culture so that the processes were
defined and followed, it is difficult to switch to a working model
in which the processes are informal and defined by the
development team [3]. Even so, agile methods can bring better
results for the public sector, than those that would be possible to
achieve with plan-drive methods big bang deliveries [3].

This paper organized as follows: in Section II, we present the
method. In Section III, we set out the results, while in Section IV
we discuss the findings. In Section V, the limitations of the study
are discussed. Finally, in Section VI the conclusions and future
work are addressed.

II. RESEARCH METHODOLOGY

The research methodology used is a systematic literature
review. The main purpose was to find evidence regarding the
adoption of agile methods in the public sector. Our review
protocol was based on the recommendations provided by
Kitchenham [4], and the research question that guided the
systematic review was:

What is known about the adoption of agile
methods in the public sector?

The search included digital libraries available and papers
published in journals, conference and workshop proceedings.
We searched seven digital libraries and one-conference
proceedings, the following: ACM Digital Library, Bielefeld

709

Academic Search Engine (BASE), ScienceDirect, Engineering
Village, IEEEXplore, Scopus, SpringerLink, Web of
Knowledge and Wiley. In extra, we hand-searched Portuguese
studies for research papers: Bases de Dados da Pesquisa
Agropecuária (BDPA), Biblioteca Digital Brasileira de
Computação, Workshop Brasileiro de Métodos Ágeis (WBMA).

The keywords were defined based on two main categories of
terms: those related to “Public Sector”, and those related to
“Software Development”. Table I outlines the keywords.

TABLE I. KEYWORDS USED IN THE REVIEW PROCESS.

Reference Category Keywords

A Public Sector

Government (1)

Public sector (2)

Public administration (3)
Public organization (4)

B
Software
Development

Software development life cycle (5)

Software development methodology (6)

Software development process (7)
Software development projects (8)

Software process (9)
Unified process (10)

Rational unified process (11)

RUP (12)
Microsoft solutions framework (13)

Agile methodologies (14)

Agile methods (15)
Agile principles (16)

Agile process (17)

Agile software development (18)
Extreme programming (19)

Lean software development (20)

The search was a combination of A and B. Category B has
more keywords and reflects the fact that there are many
variations of the same term. We defined the search string as:

(1 OR 2 OR 3 OR 4) AND (5 OR 6 OR 7 OR 8 OR… 20)

Figure 1 shows the systematic review process and the
number of papers identified at each stage.

Figure 1. Stages of the study selection process.

We searched for government experience reports and
empirical papers. This search strategy resulted in a total of 9.872
citations. As we can see, the lack of standard terminology in
“Public Sector” and “Software Development” resulted in a large
number of papers to start with, but only a few were selected,
confirming the high sensitivity and low precision of our search.

To include a paper in the analysis, the paper must have been
available online, must have been written in English or
Portuguese, and must have described the aspects of the adoption
of agile methods in the public sector. The papers were classified
following a three-step approach. First, based on the reading of
the papers’ titles and abstracts, the papers were classified into
three categories:

 [Inc], indicating the papers collected and possibly
related to software development in the public sector.

 [Exc], indicating the papers collected but not related to
software development in the public sector.

 [Dup], indicating the papers collected but repeated with
other studies.

All the papers in category [Exc] or [Dup] were excluded,
while the papers in category [Inc] were analyzed more
carefully based on the reading of the full text (introduction,
conclusion, and specific parts related to the main
contribution). Then, a subset of papers in [Inc] related to
software development in the public sector was selected for
the next step. Finally, a new subset of papers in [Inc] was
selected, keeping only those addressing regarding agile
software developments in the public sector.

After this process, the papers were classified according to
three general categories of information:

 General information: digital library, title, authors,
source (e.g. journal or conference proceedings) type of
source (i.e. journal, conference, workshop, technical
report), and category ([Inc] or [Exc] or [Dup]).

 Research-related information: type of paper (i.e.
theoretical, industrial experience report, or empirical
study), research empirical strategy (i.e. case study,
survey, experiment, ethnography, action research,
combination), data collection methods (i.e. interview,
observation, questionnaire, document inspection, or
multiple data collection methods), type of data analysis
(i.e. qualitative, quantitative or both), and data analysis
method (i.e. statistics, grounded theory, content
analysis). For papers reporting empirical work, the type
of study was classified according to the proposal in
Dias Neto et al. [5]. Research strategy, data collection,
type and method of data analysis were classified
according to the terminology used by Oates [6].

 Content-related information: aspects of the adoption
of agile methods (i.e. reasons, benefits, problems and
challenges, recommendations), project features (i.e.
team size, agile method, agile experience, project
duration, domain, customers, contractors), attributes,
and general comments.

Stage 1
Identify
relevant
studies

n = 9.872

Stage 2
Exclude

studies on the
basis of title
and abstract

n = 280

Stage 3
Exclude

studies on the
basis of full

text

n = 62

Stage 4
Obtain primary
papers about

ASD in the
public sector

n = 17

710

TABLE II. PAPERS SELECTED FOR ANALYSIS.

Study DL Title Authors Year

[P01] Scopus
A case study: Introducing eXtreme programming in a US government system

development project
A. Fruhling, P. McDonald, and C. Dunbar 2008

[P02] Scopus Staying agile in government software projects B. Upender 2005

[P03] WBMA
Adoção de métodos ágeis em uma Instituição Pública de grande porte - um

estudo de caso
C. de O. Melo, and G. R. M. Ferreira 2010

[P04] Scopus The FBI gets agile
C. Fulgham; J. Johnson; M. Crandall; L.

Jackson; N. Burrows
2011

[P05] Scopus
Collaborative development of public information systems: A case study of
"Sambruk" e-services development

C.-O. Olsson, and A. Öhrwall Rönnbäck 2010

[P06] IEEE
Making agile development work in a government contracting environment-

measuring velocity with earned value
G.B. Alleman, and M. Henderson 2003

[P07] Scopus Agile development in a bureaucratic arena - A case study experience H. Berger 2007

[P08] Scopus An industrial case study for Scrum adoption H. Hajjdiab, A. S. Taleb, and J. Ali 2012

[P09] Scopus Army simulation program balances agile and traditional methods with success J. Surdu, and D.J. Parsons 2006

[P10] BASE
A Case Study on the Adoption of Measurable Agile Software Development

Process
M. Iliev, I. Krasteva, and S. Ilieva 2009

[P11] BDPA Extreme Programming by example
M. Pedroso Jr, M. C. Visoli, and J. F. G.

Antunes
2002

[P12] Scopus Lessons learned using agile methods on large defense contracts P. E. McMahon 2006

[P13] IEEE Evolving to a "lighter" software process: a case study R. J. Moore 2001

[P14] Springer Is Agile the Answer? The Case of UK Universal Credit R. Michaelson 2013

[P15] Scopus Agile software development under university-government cooperation S. Kaneda 2006

[P16] Scopus Exploring XP for scientific research W. A. Wood, and W. L. Kleb 2003

[P17] Scopus Agile metrics at the Israeli Air Force
Y. Dubinsky, D. Talby, O. Hazzan, and A.
Keren

2005

TABLE III. OVERVIEW OF THE STUDIES.

Study Research Method Agile Method
Agile

Experience
Project duration Team size Co-located Contractors Domain, comment

[P01] Case study XP Beginner - 5 Yes Yes Events management

[P02] Case study Scrum and XP Beginner 24 months 7 - Yes Health

[P03] Case study Scrum and XP Beginner 14/10 months 7/6 Yes/Yes No/No Bank, financial management

[P04] Case study Scrum Beginner 72 months 45 Yes Yes Cases management

[P05] Multicase Scrum - - - No No Help desk

[P06] Case study XP - - - - - -

[P07] Mixed - Mature 36+ months 50+ Yes - IT mega project

[P08] Case study Scrum Beginner NA NA Yes No Adopting agile methods

[P09] Case study - Mature - 26 teams Yes Yes Modeling and Simulation

[P10] Case study - Beginner - 16+ No No Distributed system

[P11] Case study XP Beginner - - No Yes Projects management

[P12] - - Mature NA NA NA NA Large defense contracts

[P13] Case study XP Beginner - - - No -

[P14] Case study - Beginner 18 months - - - Payment of social benefits

[P15] Case study - Beginner - - - - Events management, Web-GIS

[P16] Experiment XP Beginner - 2 Yes No Aerospace engineering

[P17] Case study XP Beginner 12 months 60 - - -

711

III. RESULTS

The systematic literature review was conducted from August
2013 to March 2014 and we identified 17 primary studies on
agile software development in the public sector (see Table II).
Key data, along with a description of the domain in which each
study was conducted, is presented in Table III.

We categorized the studies into three main groups: (1) reason
and benefits obtained from adopting agile methods in the public
sector, (2) problems and challenges faced from adopting agile
methods in the public sector, and (3) lessons learned obtained
from adopting agile methods in the public sector.

A. Reasons and benefits benefits obtained from adopting agile

methods in the public sector

One of the biggest reasons for the adoption of agile methods
is the benefits that they can bring to the government, which are
a response to a history of failure of IT projects in public sector.
Thirteen studies described some benefits obtained from adopting
agile methods in the public sector. Table IV presents these
studies.

TABLE IV. BENEFITS OBTAINED FROM ADOPTIONG AGILE METHODS IN THE

PUBLIC SECTOR.

Factor Study

Deliver value to customers/stakeholders
earlier

[P02] [P09] [P12] [P13]

Better collaboration between IT and business
[P01] [P02] [P04] [P05]

[P07] [P09] [P10] [P17]

Improved customer/stakeholder satisfaction
[P01] [P02] [P03] [P04]

[P10]

Improved team morale and reduced
dependence on contractors

[P03] [P11] [P17]

Improved communication [P01] [P02] [P04] [P09]

Improvement in learning new technologies [P03]

Improved product quality [P16]

Improved project visibility [P02] [P12] [P17]

Increased productivity [P03] [P16]

Reduced cost [P07]

Improved manage changing priorities [P05] [P17]

Based on Table IV, we can observe that benefits were
reported in the following areas: customer/stakeholder
collaboration and alignment between IT and business object.
Some studies have found that job satisfaction is greater,
developers are more satisfied with their job and that customers
are more satisfied with the product. However, a study did not
find any benefit, and the evidences suggest that not all
development environments have evolved with the same pace.
For this reason, an organization's inherent culture may not match
the development approach adopted, causing project failures
[P07].

B. Problems and challenges faced from adopting agile

methods in the public sector

In some cases, the optimistic view of agile methods can be
imposed by a practical reality dominated by problems and
challenges. Table V presents some of problems and challenges
found.

TABLE V. PROBLEMS AND CHALLENGES FROM ADOPTIONG AGILE

METHODS IN THE PUBLIC SECTOR.

Factor Study

Organizational culture
[P01] [P02] [P03] [P07] [P08]

[P14] [P15] [P16] [P17]

Lack of knowledge and experience with
agile methods

[P01] [P02] [P03] [P08] [P11]
[P14] [P17]

Little or no involvement of

customers/stakeholders
[P07]

The ingrained use of prescriptive

approaches and big bang deliveries

[P01] [P03] [P04] [P08] [P15]

[P17]

IT mega projects [P04] [P14]

Traditional procurement and contracts [P01] [P03] [P04]

Compliance with standards and
regulations

[P04] [P06] [P09] [P12]

The lack of senior management support [P03] [P07] [P08] [P16] [P17]

Delays [P01] [P04] [P07] [P08]

Based on Table V, the organizational culture is a primary
factor for the success of any change initiative, including the
adoption of a new approach to developing software. Although
the culture incorporates many facets, we want to highlight just
one specific part, since it presents relevant elements to agile
methods in the public sector. This part is “The ingrained use of
prescriptive approaches and big bang deliveries”. Although
various aspects of adaptive development have been advocated
and valued by the US and UK Government lately [7] [8], there
is still a bias towards prescriptive approaches and big bang
deliveries in public sector. The roots of this trend are often
associated with traditional procurement and contracts [3]. The
US Government has to follow procurement processes that
exacerbate the tendency to big projects, prescriptive approaches
and big bang deliveries [3]. On the other hand, recently, the UK
Government published a new clarification of business case
guidance, explaining how government organizations get
permission to spend money on agile work, supporting an agile
culture in the public sector [9].

Moreover, some studies reported that agile software
development practices are easy to understand, but applying them
in practice can be difficult.

 Teams did not recognize value in Pair
Programming

Studies: [P01] [P11]

 Teams encountered difficulties to write unit tests

Studies: [P03]

 Teams did not adopt Test-Driven Development
(TDD) because of the lack of real examples

Studies: [P11]

 Teams have not found benefits on acceptance
testing for web applications, due to frequent
changes

Studies: [P02]

 Teams faced difficulties in convincing customers to
deploy partial system in production, even if they
add value to business

Studies: [P03]

712

 Teams reported difficulties in implementing
iterative and incremental development

Studies: [P17]

C. Lessons learned from adopting agile methods in the public

sector

One of the best ways to increase organizational memory is
by conducting a lessons learned session. The storage and
dissemination of lessons learned make the organization of
workers reflect on experiences and use organizational memory
as a starting point for present and future decisions. Some lessons
learned are presented in the following dimensions:

1) Team

 Agile methods require knowledge and experience
of the team

Studies: [P01]

 Training and coaching contributes to the formation
of teams with less experience in agile methods

Studies: [P01] [P02] [P03] [P08] [P09] [P17]

 Agile encourages the formation of small and
interdisciplinary teams, which reduces the
complexity of communication and the time for
decision-making

Studies: [P04]

 Agile can be adopted by geographically distributed
software development teams

Studies: [P05]

2) Customer relationship

 Agile requires commitment and preparation, both
for customers and developers to achieve their full
potential

Studies: [P05] [P11]

 Agile opens the software development process to
the customers through a direct communication with
developers

Studies: [P01] [P04] [P07] [P09] [P10] [P11]
[P17]

 Agile requires timely communication, accurate and
complete among all members of the development
team, customer and end-users

Studies: [P01]

 The best solutions are created when the customer is
actively involved in the software development

Studies: [P07]

3) Relationship with business

 Incremental and regular delivery of software are
important to demonstrate the emerging solution for
customers/stakeholders, which increases trust
between all project members

Studies: [P02]

 Progress meetings to communicate project status
are tailored for specific audiences

Studies: [P01]

 Agile requires earned value management to
maintain compliance with government regulations
at all levels

Studies: [P04] [P06] [P09] [P12]

 Agile metrics are essential to make the decision-
making more efficient and are important to promote
project visibility sooner

Studies: [P02] [P12] [P17]

 Agile contracts requires negotiable scope

Studies: [P04]

4) Processes and practices

 Agile practices are simple to understand, however,
to internalize them and follow them is strictly
difficult

Studies: [P02] [P03] [P08] [P17]

 Agile achieves better results when government
experts and developers work together with
contractors in all phases of software development,
in the same physical location and near customers

Studies: [P04] [P09]

 Pair Programming can be used in specific tasks of
software development

Studies: [P02] [P16]

 To support Pair Programming the layout of the
rooms of the developers needs to be changed

Studies: [P16]

 Agile requires more written tests by developers,
which are executed automatically

Studies: [P03] [P04] [P09] [P10] [P11] [P13]
[P16] [P17]

 Agile does not require less written documents and
can be combined with prescriptive approaches

Studies: [P02] [P09]

 User experience aspects need to be considered from
the earliest iterations

Studies: [P01]

5) Software tools

 Collaborative tools facilitate the adoption of agile
methods

Studies: [P03] [P09] [P11] [P13]

IV. DISCUSSION

In this section we discuss our findings as follows.

A. Agile methods can be adopted in the public sector

We found that agile methods could be adopted in the public
sector. In some studies, the results were better than those
possible to achieve with prescriptive approaches. This is partly
because customers/stakeholders are no longer just at the fringes
of software development, but actively shaped and guided the
evolution of the end software product or service. Secondly, there
is a learning element inserted into each delivery cycle and a job
satisfaction [P01][P02][P03][P04][P10][P11][P16][P17].

713

B. Adopting agile methods in the public sector can be even

more challenging

The analysis suggests that agile software development in the
public sector can be more challenging because people with little
experience need to direct projects towards success with positive
results in the short term, and sometimes they do not have the
support organization necessary, and still depend tightly on
external coaches [P08].

C. Adopting agile methods in the public sector can be slower

and complex

The studies that address the adoption of agile methods
suggests that a good alternative is to start the adoption of agile
software development with people willing to change - strongly
supported by senior management - working on important pilot-
projects. After, the change will depend on their interaction with
other teams, in order to reach the vast majority of the
organization, which can be slower and complex
[P01][P03][P11][P16]. One study showed that implementation
of agile methods across the organization is recommended only
when the negative results remain constant in time [P04]. In
general, big bang adoption approach is not recommended, being
more prone to failure [P08].

D. There is a need for more studies related to agile

procurement

In government, the emphasis is on risk management through
rigorous procurement processes, which generally includes a
prescriptive fixed-price and fixed-requirement contract between
client (government) and supplier (software industry) [3]. This
approach is in disagreement with agile principles. As a result,
those using agile development in the public sector are opting for
resource augmentation (use of a supplier’s staff on a time and
materials basis) to run agile projects internally [P04] [P09]. This
creates an opportunity for researchers to explore and understand
the degree to which this approach is useful or appropriate to agile
procurement context.

E. Aspects of the adoption of agile methods in the public sector

should be empirically evaluated

Agile methods have not been sufficiently tested and
exploited in the public sector. In addition, there is a restricted set
of scientific evidence to extract conclusive results. However,
there are promising results from adopting agile methods in
public sector. Therefore, there is an opportunity for SE
researchers to understand how these methodologies are adopted
in practice and which effects they generate, including their
advantages and disadvantages.

V. LIMITATIONS

Systematic literature review is a useful method. However, as
any other method, there are some limitations. We address three
of them. First, we see that the primary studies selected in our
systematic review present significantly more evidence on
success than failure cases. This may have limited or influenced
the results.

Second, the full text of the articles was obtained through the
libraries at the Brazilian Agricultural Research Corporation
(Embrapa), Pontifícia Universidade Católica do Rio Grande do
Sul (PUCRS) and University of Campinas (Unicamp). For this
reason, some studies that could be related with the subject were
not analyzed because they were not accessible.

Finally, the immediate definition of search strategy makes
knowledge as something well defined and explicit. However,
new knowledge was discovered while performing a systematic
review, which could have resulted in a reformulation of the
search strategy, along with a new execution of the whole process
with the new discoveries. This means that an initial description
accurate of reality makes it difficult to apply this method
successfully, since the knowledge can also be volatile, tacit and
diffuse.

VI. CONCLUSIONS

In this paper we report from a systematic literature review
about adopting agile methods in the public sector. We found that
agile methods could be adopted in the public sector. However,
not all the implications of adopting agile methods in the public
sector are widely known. For this reason, as next steps we plan
to interview ASD teams from public organizations, aiming at
expanding "what is known about the adoption of agile methods
in the public sector", proposing a set of recommendations for
adopting agile methods in this context.

REFERENCES

[1] C. McDonald , “From art form to engineering discipline? A history of US
military software development standards, 1974-1998,” IEEE Annals of
the History of Computing, vol. 32-4, pp. 32-47, December 2010.

[2] P. Middleton, “Managing information system development in
bureaucracies,” Information and Software Technology, vol. 41-8, pp. 473-
482, June 1999.

[3] B. Wernham, Agile project management for government. London:
Maitland and Strong, 2012.

[4] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering”. Technical Report, p. 57. Keele
University and Durham University.

[5] A. C. Dias Neto, R. Subramanyan, M. Vieira, G. H. Travassos,
Characterization of model-based software testing approaches, Technical
Report TR – ES 713/07, COPPE/UFRJ, 2007.

[6] B. J. Oates, Researching information systems and computing. CA: Sage
Publications, 2006.

[7] US GAO, “Software development: Effective practices and federal
challenges in applying agile methods,” United States Government
Accountability Office, 2012.

[8] UK NAO, “Governance for agile delivery,” National Audit Office, 2012.

[9] HM Treasury, “Guidance: Agile digital and IT projects: clarification of
business case guidance,” HM Treasury.

[10] VERSIONONE, “8th Annual state of agile development survey”.
VersionOne, 2013.

[11] J. Iivari and N. Iivari, “Organizational culture and the deployment of agile
methods: The competing values model view,” in: Agile Software
Development - Current Research and Future Directions, Springer Berlin
Heidelberg, 2010, pp. 203-222.

714

Modeling Framework for Developing and Testing
Network Security Techniques against DDoS Attacks

Konstantin Borisenko#1, Ivan Kholod#2 and Andrey Shorov#3,
#Faculty of Computer Science and Technology,

Saint Petersburg Electrotechnical University (LETI),
 Professor Popov str. 5, St.Petersburg, 197376, Russia

1borisenkoforleti@mail.ru, 2iiholod@mail.ru, 3ashxz@mail.ru

Abstract — In the paper we introduce a hybrid system for
simulating DDoS attacks and computer network protection
techniques. The developed system makes it possible to create
various network topologies, perform experiments with DDoS
attack simulation, develop new protection methods and test the
existing ones. The suggested system not only allows us to design
virtual networks, but also makes it possible to connect real
network nodes for improving the accuracy of the experiments.

Massive DDoS attacks often affect websites of
governments and government bodies of various countries,
websites of leading IT-corporations. The world leaders in the
area of information security consider DDoS detection and
DDoS resistance as a primary task in their research and
developments.

To study DDoS attacks and to develop new defense
mechanisms researchers mostly use simulation methods.
However, DDoS attack simulation often causes problems of
the accuracy of the attack simulation on application level.
Furthermore, depending on the software installed on a server
this server can function in a different way. Also multi-level
network construction in reality often requires dozens of time
and resources

Thus, we suggest to integrate simulation and testbed
methods. Using simulation, we create attacking network and
connect it to the real server. A virtual network is very similar to
a real one. In case of using DDoS attack traffic generators
defense can be placed only on attacked server. Our approach
allows to develop defense mechanisms, which can be placed
anywhere in the attacking network. Furthermore protection
mechanisms can be architecture-dependent, which is important
for performing experiments in a way very close to a real
network. An important advantage is the possibility of
connecting real nodes to a virtual network, which will improve
the accuracy of our experiments and allow us to test different
settings and types of servers.

System development was performed using the discrete-
event simulation system OMNeT++. The INET library was
used for making network settings and packet switching. The
ReaSE library was completed for creating topology settings.
The system has special network interface, which allows to
redirect traffic from the simulated network to real network and
vice versa.

The verification of the system was successfully made.
Comparison was made between system and networks
constructed using Planetlab.

Authors have made series of experiments with different
attack scenarios: SYN-Flooding attack, HTTP attack.
Experiments were made without any defense methods and with
filtering methods (Ingress, Egress). The network topology for
conducting experiments consisted of 7 routers, 204 clients and
1 real server. The delays between network nodes are equal to 1
microsecond.

Now consider the analysis of scenario experiments for SYN
Flooding using the Egress Filtering method and without using
protection techniques. During SYN-Flooding attack, 20% of
the total number of network clients (40 computers) participated
in the attack. SYN cookies were switched off on the server for
a successful SYN Flooding attack. At the beginning of the
attack, at the 10th second, the number of server applications is
increasing because more and more virtual clients are starting to
take part in an attack. Till the 15th second the server is coping
with the task of processing all requests and then the TCP stack
is overflowed and the server is unable to process the increasing
flow of applications. In the period from the 15th second till the
57th second the server provided no response to all arriving
SYN-packets.

A series of experiments has been performed with the use of
a filter with 2, 3, or 4 routers in a virtual network. At the same
time the clients attacking the server continuously were located
in the local network of a router that did not use Egress
Filtering. With the increase of the number of filters the power
of a server attack decreased.

The developed system can be used for studying DDoS-
attacks and the protection techniques against them. Network
administrators can quickly and precisely reproduce a network
they are servicing, execute load testing, estimate server
stableness to attacks, network capacity, and the quality of
protection mechanism performance.

The paper has been prepared within the scope of the state
project ”Organization of scientific research” of the main part of
the state plan of the Board of Education of Russia as well as
project part of the state plan of the Board of Education of
Russia (task # 2.136.2014/K).

715

Natural Language Processing to Quantify Security
Effort in the Software Development Lifecycle

Constantine Aaron Cois
Carnegie Mellon University (CMU)
Software Engineering Institute (SEI)

Pittsburgh, PA, USA
cacois@andrew.cmu.edu

Rick Kazman
University of Hawaii and

SEI/CMU
Honolulu, HI, USA

kazman@hawaii.edu

Abstract—Addressing security in the software development
lifecycle is an ever-present concern for software engineers and
organizations. From a management and monitoring perspective,
it is difficult to measure 1) the amount of effort being focused on
security concerns during active development and 2) the success of
security related design and development efforts. Such data is
simply not recorded. If reliable measurements were available,
software project leaders would have a powerful tool to assess risk
and inform decision making. This would enable managers to
direct development and testing to assure a desired level of
security in their software products, to protect both their
organizations and customers. To fill this need and provide such
data, we propose a technique for performing topic detection on
data commonly available in most software development projects:
text artifacts from issue tracking and version control systems. We
apply machine learning and natural language processing
techniques to create classifiers capable of accurately detecting
whether a given text snippet is related to the topic of security.
Realization of such a capability will give software teams the
ability to analyze current and past levels of security effort,
revealing immediate project focus and the long-term impacts of
security tasking. We validate our approach via experiments on
data from the large-scale open source Chromium software
project. Our results show that a Naïve Bayes classification
scheme using an n-gram feature-space is an appropriate and
effective approach to automated topic detection of software
security text snippets, and that effective training data can be
derived from public data sources without the need for manual
intervention.

Keywords-natural language processing; machine learning;
software security; security; topic defection; classification; naïve
bayes

I. INTRODUCTION
Adequately injecting security into the software

development lifecycle (SDLC) to ensure the creation of secure
systems is a growing concern. Recent high profile security
breaches in major industry and government organizations [1, 2,
3] have shown the unsettling vulnerability of modern software
systems, even those developed by mature technology firms
with experienced software engineering teams. Industry has
taken note, and is responding with initiatives such as
Microsoft’s Security Development Lifecycle (SDL), a
framework for formalizing and monitoring regular security
effort throughout the SDLC [4]. In the open source community,

equally prolific security holes have recently been exposed,
including the high profile Heartbleed [5, 6] and Shellshock [7]
vulnerabilities, which contribute to a broad threat faced by
many technology sectors and industries.

It is widely accepted that to achieve a high level of quality
with regards to security in a software application, security as a
quality attribute must be consistently addressed through all
phases of the SDLC [4, 8, 9]. Techniques such as threat
modeling, attack surface reduction, and penetration testing
have been developed and put into practice in an attempt to meet
this condition of secure software development [4, 10].
However, these techniques represent the injection of isolated
activities at specific phases of the SDLC, not an overarching,
consistent amount of concern for and effort towards security
throughout software development. The goal of consistent
security thought and effort in software development is
hampered by the lack of robust means of identifying and
measuring security effort within a software project or team.

 Despite the efforts to regularize the reporting of security
bugs (e.g., the CVE classification [11]), software development
teams rarely record security bugs, tasks, or effort specifically.
For this reason, accurate measurement of security effort is
virtually impossible. In fact, our analysis of over 400,000
project repositories hosted on Github, a popular open source
project management system, showed that only 1.4% of projects
using a labeling system for tasks made available to developers
a label for security related issues. The ability to identify and
measure, at any point in time, the amount and type of effort
being dedicated to security would give software developers and
project managers powerful new capabilities. For example, they
could plan and track the levels of effort expended towards
software security throughout the SDLC. Additionally, such
capability would allow teams to recognize early when projects
are at risk of lowering security quality through inattention, thus
avoiding the unintentional injection of vulnerabilities into their
software product. Further, if applied continuously (or even in
hindsight), such a quantitative capability would allow architects
and project managers to identify points of introduction of
design flaws, process failures, architectural inconsistencies, or
weakness in security process enforcement, enabling isolation of
areas of code developed during these periods for more rigorous
testing and maintenance. This data would also allow the project
to make informed decisions about when the technical debt of

Sponsored by the U.S. Department of Homeland Security Science and
Technology Directorate

(DOI Reference Number: 10.18293/SEKE2015-050)
716

such flaws had accumulated sufficiently that it was
economically advantageous to refactor the affected portions of
the code base.

For example, in other work we have shown how certain
types of design flaws are consistently highly correlated with
high bug and change rates [12, 13]. If these design flaws are
not fixed, no amount of bug-finding and bug-fixing effort will
result in higher quality software. We are interested to know
whether the same patterns hold specifically for security bugs. If
this were true then, armed with this information, a project
manager could focus project resources on refactoring, to
remove the design flaws, and hence systematically increase
system security. But such an analysis is almost impossible
today: most projects do not indicate which bugs in their issue-
tracking system or which commits in their Version Control
System (VCS) are security related. We simply lack the raw
information to perform this analysis. To address this
shortcoming we have focused on filling this gap—that is,
providing the missing information—in software development
project situational awareness. In this way we can provide
insight to software architects and project managers as to the
ongoing security efforts within their projects based on a data-
driven assessment of their project repositories.

To achieve this goal, two common sources of
incontrovertible data were identified for use: 1) text from tasks
entered into trackers and 2) text messages accompanying
source code commits to a VCS. It is expected that most
organized software development teams use both issue trackers
and some form of VCS that provides the opportunity for
commit messages, and as such that these data sources will be
readily available in the vast majority of operational contexts.
To quantify security effort using these sources of data, natural
language processing (NLP) methods were applied to derive
feature sets from the unstructured text data and machine
learning classification methods were applied to determine
whether each text snippet was likely to represent a security-
related topic. While others have attempted to use NLP
techniques to detect specific security information within full
text documents [14], our approach represents a generalized
topic detection scheme with broad potential utility in informing
software development processes.

II. BACKGROUND
NLP techniques have been used by researchers in a number

of ways to analyze artifacts of the software development
process, often focused on commit messages or defect reports
[15, 16, 17]. Other researchers have noted the challenges and
potential rewards of mining process and requirements data
from software project artifacts [18, 19]. Our work builds on this
research by attempting to create a generalized classifier capable
of identifying security-focused text artifacts from data residing
in standard software development tools.

The classification method that we have been exploring,
Naïve Bayes, simplifies statistical learning processes by
adopting an assumption of independence between features of a
given classification. Though this assumption can be questioned
for many applications, in practice Naïve Bayes competes well

against more sophisticated techniques, and is therefore a
common starting point for exploration of a new problem space
[20].

III. DATA
To train classifiers to identify software security-focused

text snippets, reliable gold-standard data was required. The
most accessible source of large quantities of such training data
comes in the form of issue tracker items from open source
projects in which contributors specifically label security-related
issues with a “security” tag. The Chromium projects [21]
hosted on the Google Code platform were identified as one
such source. The issue-tracking repository for these projects
included 875 issues labeled as “security”, dating from 3/10/13
to 1/9/15. The summary statements of these issues were
extracted as positive examples of software security-related text
snippets, while the summary statements of additional
Chromium issues not tagged as “security” were used as
negative examples. The full data set used in this study
contained 1874 text samples (875 security related, 999 not
security related). Table I shows examples of both positive and
negative text snippets used for training.

Data were randomized and divided into training and testing
sets for performance validation, discussed in detail in the next
section.

IV. EXPERIMENTAL METHODS
This initial study applied Naïve Bayes classification to the

problem of determining whether snippets of text are related to
software security. To perform feature selection and
classification, the Python programming language and the
associated Natural Language Toolkit (NLTK) were used.
Methods of Naïve Bayes classifier training, testing, accuracy
calculation, and confusion matrix generation used were all
unmodified NLTK implementations [22].

TABLE I. TRAINING DATA SAMPLES

Chromium Project Training Data

Summary Message (text snippet) Correct
Classification

Clicking “Safe Browsing diagnostic page” link
broken on malware interstitial

security

Block chrome-extension:// pages from importing
script over non-HTTPS connections

security

Security: XSS issue in the FTP parser security

Heap-use-after-free in
WebCore::RenderLayer::repaintBlockSelectionGaps

security

Rendering glitch when switching windows not security

Regression: Default cursor not seen in Sign in page of
chrome after navigating back from any other tab.

not security

Status Bar fails to hide not_security

Separators on column header disappear when display
language is RTL.

not_security

717

A. Feature Extraction
Features for text classification were derived from the

presence or absence of n-grams in tokenized text snippets. For
example, the text snippet “I am a rock, I am an island” is
tokenized into the following set of tokens: [‘i’, ‘am’, ‘a’,
‘rock’, ‘i’, ‘am’, ‘an’, ‘island’]. Prior to feature detection, stop
words (words too common to indicate any semantic meaning
for our classification) were removed. Removing stop words
(including ‘i’, ‘am’, and ‘an’, as defined in [23]) from our
example yields the following remaining tokens: [‘rock’,
‘island’]. These tokens indicate two unigram (or n-gram of
size one) features for our text snippet, namely contains(rock)
= True and contains(island) = True. It is also relevant to know
if a text snippet does not contain certain words, such as
contains(snowblower) = False, as the presence of the word
“snowblower” would likely impact the meaning or topic of our
text. N-gram feature analysis often goes beyond unigram
features to also include bigram (adjacent word pair) features
[e.g., contains(rock, island)], trigram (adjacent word triplet)
features, etc.

To determine the set of all potential features relevant to the
domain of interest (i.e., software security), a training set of
summary messages from issues in the open source Chromium
project was analyzed, as depicted in Fig. 1.

Text from the summary message of each issue was
tokenized and stop words were removed. The remaining
tokens were used to generate feature spaces S1, S2, and S3,
representing a unigram-only feature space, a (unigram +
bigram) feature space, and a (unigram + bigram + trigram)
feature space, respectively. These feature spaces were used to
extract features from the text for classifier training and testing,
as described in the next section.

Figure 1: Generation of Experimental Feature Spaces

B. Naïve Bayes Classification
Once the full feature space was determined, text samples in

a training set with known classifications could be analyzed to
determine their feature vectors. For our text samples, a feature
vector is a representation of the presence or absence of all
features in the full feature space. Thus, when running an
experiment using feature space S1, the feature vector V1(t) for
a given tokenized text snippet t is an array containing a
Boolean value for each token feature represented in S1,
indicating whether the text contained or did not contain the
token. See Fig. 2. These feature vectors and their correct
classifications were used to train a Naïve Bayes classifier,
yielding a statistical model of features and their statistical
contributions to the classification of software security related
text.

It should be expected that the words comprising highly
informative features in models generated from training will be
independent of words found by prior studies to be common to
text snippets from many areas of software projects, such as
those reported in [24]. For example, words like “html”, “add”,
or “feature” would be common to almost any software project
text, and thus would not be expected to yield highly
informative features to our security classifier after training.
Table II presents an example of the most informative features
of a model from a single training run, illustrating unigram
features and their likelihood ratios in classifying software
security related text. True to expectations, the highly
informative features discovered have no overlap with high-
frequency words common across many software systems [24],
lending confidence to the domain-centric training of the
classifiers.

Figure 2. Feature Vector Generation

718

TABLE II. UNIGRAM CLASSIFIER MODEL EXAMPLE

Informative Features for Classifying Software Security Text

Feature Likelihood Ratio
(security : not_security)

contains(heap) = True 25.3 : 1.0

contains(corruption) = True 18.1 : 1.0

contains(security) = True 17.9 : 1.0

contains(bad) = True 16.2 : 1.0

contains(integer) = True 15.2 : 1.0

contains(overflow) = True 13.9 : 1.0

contains(pointer) = True 12.0 : 1.0

contains(doesn) = True 1.0 : 11.4

contains(stack) = True 11.3 : 1.0

contains(buffer) = True 11.2 : 1.0

contains(seen) = True 1.0 : 10.5

contains(ui) = True 1.0 : 9.4

A number of words highly relevant to the topic of software

security appear in the models derived from classifier training.
As might be expected, we see that words such as “corruption”,
“overflow”, and “security” are strong indicators that a text
snippet should be classified as a software security message.
Strong negative indicators also appeared, such as the presence
of the word “ui” (user interface) indicating that the message
was likely not related to software security. It is worth noting
that while the top 15 indicators for each classifier training run
were stored, no strong indicators based on the absence of a
word were observed. This shows no indication, for example,
that any single feature is so common in security-related text
that its absence alone conveys strong semantic meaning.

Further experiments expanded the feature space by
allowing bigram (two-word) and trigram (three-word) features
to be used in classification. Table III shows an example
feature model for a classifier derived using a feature space
containing unigrams, bigrams, and trigrams.

It can be seen that new strong indicators were introduced
by the addition of larger n-grams, including the (buffer,
overflow) bigram and (heap, buffer, overflow) trigram. These
phrases are consistent with expected terms highly relevant to
software security, and provide positive anecdotal evidence for
the classifier training data and methodology.

C. Validation
Repeated random sub-sampling validation [25] was

performed to validate the approach to text classification. This
validation method was chosen to demonstrate the efficacy of
training functional classifiers from many possible selected
data sets in the hopes of proving the approach robust without
specifically selected training data. Repeated random sub-
sampling is performed by repeatedly splitting gold standard
data into two randomly distributed partitions of pre-defined

proportions, training and testing the classifier for each split,
and recording all performance results.

TABLE III. UNIGRAM + BIGRAM + TRIGRAM CLASSIFIER MODEL
EXAMPLE

Informative Features for Classifying Software Security Text

Feature Likelihood Ratio
(security : not_security)

contains(heap) = True 38.7 : 1.0

contains(overflow) = True 27.3 : 1.0

contains(security) = True 24.9 : 1.0

contains(cast) = True 23.4 : 1.0

contains(pointer) = True 21.8 : 1.0

contains(bad) = True 18.3 : 1.0

contains(buffer, overflow) = True 17.8 : 1.0

contains(doesn) = True 1.0 : 17.7

contains(corruption) = True 17.3 : 1.0

contains(fails) = True 1.0 : 14.3

contains(integer) = True 13.9 : 1.0

contains(buffer) = True 12.6 : 1.0

contains(heap, buffer) = True 12.3 : 1.0

contains(heap, buffer, overflow) = True 12.3 : 1.0

In this study, three experiments were performed, using
different feature sets. The first feature set included only
unigram (single word) tokens observed in data from the
Chromium project. The second experiment used a feature set
containing unigrams and bigrams, and the third experiment
used a feature set containing unigrams, bigrams, and trigrams.
In each experiment, we performed 50 repetitions of random
sub-sampling on our aforementioned issue tracker data from
the Chromium project. The full experimental data set was
distributed into 80/20% training/test distributions, resulting in
random training sets containing 1499 samples and random test
sets containing 375 samples.

Classifier performance from the experiments can be seen
in Table IV.

TABLE IV. RESULTS OF N-GRAM FEATURE STUDIES

Classifier Performance for Various n-gram Feature Spaces

Feature Space Average
Precision

Average
Recall

Average F-
Measure

S1
(Unigrams,

12674 total features)

0.91 ± 0.026 0.89 ± 0.023 0.90 ± 0.019

S2
(Unigrams +

Bigrams,
25347 total features)

0.92 ± 0.022 0.88 ± 0.022 0.90 ± 0.015

719

Classifier Performance for Various n-gram Feature Spaces

Feature Space Average
Precision

Average
Recall

Average F-
Measure

S3
(Unigrams +

Bigrams + Trigrams,
38019 total features)

0.93 ± 0.017 0.88 ± 0.020 0.91 ± 0.016

Overall, the trained classifier performed well at software
security topic detection. The average precision (or positive
predictive value), which measures the fraction of text snippets
classifier as “security” by our classifier that were proven to be
correct classifications, was observed between 91% and 93% in
our experiments. This data not only represents a promising
classifier, but show that the addition of more complex features
(bigrams and trigrams) increases performance of a classifier
for this domain. Recall (or true positive rate), which measures
the fraction of correctly classified security text snippets out of
the total number of security text snippets in the data set, was
measured at between 88% and 89% in our experiments.
Finally, the average f-measure (the harmonic mean of
precision and recall) increased from 90% to 91% as more (and
more complex) features were added.

V. CONCLUSIONS

This paper has presented the results of an initial study
investigating the potential of applying NLP and machine
learning techniques to extract information from data residing
in VCSs and issue tracking systems. The information that we
extracted in this study was a classification of issues as security
related or not security related. Using this information we can
create measures of, and get insights into, software process and
software quality.

We have shown here that we can fully automate the
process of extracting semantically meaningful information
from issue-tracking systems and that this information has both
high precision and high recall. Our belief is that the precision
and recall are high enough that this technique will open up
many possibilities for post-hoc analysis of project repositories
and communications, enabling insights that were hitherto
impossible, due to the dearth of data. While our goal here was
to identify security-related issues, we believe that this
technique has the potential to “mine” many other kinds of data
from project repositories.

It is expected that more sophisticated feature extraction
and classification techniques may further improve on these
results. The initial success of this methodology using token-
derived features also indicates that the lexicon of security
within software development is sufficiently common and
consistent that this domain is ripe for the sort of analysis
presented here. As training data was extracted, unaltered, from
active open source projects with no interaction with
developers generating the text, we remain confident that the
language used naturally within this domain will yield
successful training data from other software development
projects in the future.

VI. FUTURE WORK AND LIMITATIONS

We recognize a number of limitations and areas for fruitful
expansion of this work, including (1) a broader number of data
sets, spanning a wider range of software project types and
teams, (2) more sophisticated classification methods such as
Support Vector Machines or ensemble methods, and (3)
application of these techniques to detect software quality
attributes other than security.

It is hoped that versions of the classifiers demonstrated
here can be proven effective in classifying not only text
snippets from tasks in issue-tracking systems, but also to
classify other text snippets common to the software
development lifecycle, such as commit messages in version
control systems. Validation of this will be explored in future
studies.

Additionally, the authors plan to explore the efficacy of
this approach in autonomously measuring and monitoring a
variety of software quality attributes from data derived from
standard software process management and DevOps systems.
For example, it would be valuable to monitor when the
occurrences of issues related to other quality attributes—such
as usability or availability or safety—was spiking.

It is anticipated that the achievement of autonomous
quality monitoring can be leveraged into real-time alerting and
predictive capabilities suitable for providing expert decision
support to software development management, and proactively
improving the quality of software developed by organizations
employing the envisioned data-driven process optimization
techniques.

ACKNOWLEDGMENT
We would like to acknowledge the support of Carol Woody,
Bob Ellison, Yuanfang Cai, and Qiong Feng for this research.
In addition we gratefully acknowledge the support of the U.S.
Department of Homeland Security.

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by
Department of Homeland Security under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally
funded research and development center sponsored by the
United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON
UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS”
BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE

720

MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

This material has been approved for public release and
unlimited distribution.

Carnegie Mellon® is registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

DM-0002234

REFERENCES
[1] Target Puts Data Breach Cost at $148 Million, and Forecasts Profit

Drop. New York Times. August 2014, retrieved March 2015.
http://www.nytimes.com/2014/08/06/business/target-puts-data-breach-
costs-at-148-million.html

[2] JPMorgan Hack Exposed Data of 83 Million, Among Biggest Breaches
in History. Reuters. October 2014, retrieved March 2015.
http://www.reuters.com/article/2014/10/03/us-jpmorgan-cybersecurity-
idUSKCN0HR23T20141003

[3] U.S. Postal Service Says It Was Victim of Data Breach. The Wall Street
Journal. November 2014, retrieved March 2015.
http://www.wsj.com/articles/u-s-postal-service-says-it-was-victim-of-
data-breach-1415632126

[4] M. Howard and S. Lipner. The Security Development Lifecycle: SDL: A
Process for Developing Demonstrably More Secure Software. Microsoft
Press, 2006.

[5] The Heartbleed Bug, 2014. http://heartbleed.com/
[6] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman,

Michael Bailey, Frank Li, Nicolas Weaver, Johanna Amann, Jethro
Beekman, Mathias Payer, and Vern Paxson. 2014. The Matter of
Heartbleed. In Proceedings of the 2014 Conference on Internet
Measurement Conference (IMC '14). ACM, New York, NY, USA, 475-
488.

[7] MITRE. 2014b. CVE-2014-7169. Common Vulnerabilities and
Exposures. November 1, 2014: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-7169

[8] OWASP, Comprehensive, lightweight application security process,
http://www.owasp.org, 2006.

[9] G. McGraw, Software Security: Building Security, Addison Wesley
(2006).

[10] Bart De Win, Riccardo Scandariato, Koen Buyens, Johan Grégoire,
Wouter Joosen, On the secure software development process: CLASP,
SDL and Touchpoints compared, Information and Software Technology,
Volume 51, Issue 7, July 2009, Pages 1152-1171.

[11] MITRE, Common Vulnerabilities and Exposures, https://cve.mitre.org/,
2015.

[12] L. Xiao, Y. Cai, and R. Kazman, "Design Rule Spaces: A New Form of
Architecture Insight", Proceedings of the International Conference on
Software Engineering (ICSE) 2014, (Hyderabad, India), June 2014.

[13] R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot Patterns: The Formal
Definition and Automatic Detection of Architecture Smells”,
Proceedings of The Working IEEE/IFIP Conference on Software
Architecture (WICSA 2015), (Montreal, Canada), May 2015, in press.

[14] Xusheng Xiao, Amit Paradkar, Suresh Thummalapenta, and Tao Xie.
2012. Automated extraction of security policies from natural-language
software documents. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering
(FSE '12).

[15] Abram Hindle, Neil A. Ernst, Michael W. Godfrey, and John
Mylopoulos. 2011. Automated topic naming to support cross-project
analysis of software maintenance activities. In Proceedings of the 8th
Working Conference on Mining Software Repositories (MSR '11). ACM,
New York, NY, USA.

[16] Runeson, P.; Alexandersson, M.; Nyholm, O., “Detection of Duplicate
Defect Reports Using Natural Language Processing,”. ICSE 2007. 29th
International Conference on Software Engineering, 2007, pp.499-510,
20-26 May 2007.

[17] Rubén Prieto-Díaz. 1991. Implementing faceted classification for
software reuse. Communications of the ACM 34, 5 (May 1991), 88-97.

[18] Poncin, W.; Serebrenik, A.; van den Brand, M., "Process Mining
Software Repositories," 15th European Conference on Software
Maintenance and Reengineering (CSMR), pp.5,14, 1-4 March 2011.

[19] Cleland-Huang, J.; Settimi, R.; Xuchang Zou; Solc, P., “The Detection
and Classification of Non-Functional Requirements with Application to
Early Aspects," Requirements Engineering, 14th IEEE International
Conference, pp. 39,48, 11-15, Sept. 2006.

[20] Rish, Irina. "An empirical study of the naive Bayes classifier." IJCAI
2001 workshop on empirical methods in artificial intelligence. Vol. 3.
No. 22. IBM New York, 2001.

[21] The Chromium Projects, 2015, http://www.chromium.org/
[22] Bird, Steven, Edward Loper and Ewan Klein (2009), Natural Language

Processing with Python. O’Reilly Media Inc.
[23] Porter, M. F. 1980. “An Algorithm for Suffix Stripping.” Program,

14(3), 130-37.
[24] Alali, A.; Kagdi, H.; Maletic, J.I., “What's a Typical Commit? A

Characterization of Open Source Software Repositories,” International
Conference on Program Comprehension (IPCP) 2008, 10-13 June
2008, pp.182-191.

[25] Ron Kohavi. 1995. “A study of cross-validation and bootstrap for
accuracy estimation and model selection.” In Proceedings of the 14th
International Joint Conference on Artificial Intelligence - Volume 2
(IJCAI'95), Vol. 2. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

721

Towards Goal-Oriented Conformance Checking

Hiroki Horita, Hideaki Hirayama, Yasuyuki Tahara and Akihiko Ohsuga
Graduate School of Information Systems

The University of Electro-Communications
Tokyo, Japan

Email: h-horita@ohsuga.is.uec.ac.jp, hirayama968@ybb.ne.jp, {tahara,ohsuga}@is.uec.ac.jp

Abstract—Constructing a business process is important area
between requirements engineering and business process man-
agement. Goal-oriented requirements analysis method is widely
researched in requirements engineering and useful for reflecting
organizational requirements to business process models, but
actual business processes deviate from defined process models.
Therefore, it is not sufficient for business process analysis only
using model’s information. It is important to analyze actual con-
ducted business process logged data. Analyzing business process
logged data is called process mining and detecting differences
between models and logs is called conformance checking. A lot
of conformance checking approaches mainly focus on process
aspects of business process, but this is not sufficient for analysis
whether actual business processes can satisfy organizational
goals. In this paper, we propose a goal-oriented conformance
checking approach which can detect deviations between logs
and models, and can analyze the effects of the deviation. It is
useful for evaluation of the detected deviation. We represent the
effectiveness of our approach conducting a case study using the
publicly available log.

I. INTRODUCTION

In recent years, problems of business process complexity
and rapidly changing business environments are needed to deal
with. In that situation, constructing business process is used for
discussion, verification, documentation and etc [1]. Using goal
models are effective against constructing appropriate business
process models. Goal models are researched in requirements
engineering area, and used for requirements analysis [2]. Goal
models have systematic and logical construction for represent-
ing requirements for information systems. These characteristics
are useful for reflecting organizational requirements to business
process models.

Using goal models for constructing business process mod-
els is effective, but it is not sufficient for organization, because
acutual business often deviate from defined business process
models [1]. In that situation, model-based analysis is not ade-
quately effective. Therefore, in recent years, analyzing business
process logged data is widely researched and it is called
process mining. In process mining, conformance checking
between models and logs are important topics. Conformance
checking can detect deviations between normative models and
actual logged data (it is called event logs). When the models
and reality (logged data) have little in common, model-based
analysis does not make much sense [1]. Therefore, analyzing
logs and improving models are important.

Quite a lot of conformance checking researches are con-
ducted. At first, these approaches only focus on control-
flow perspective afterward, data (event related information)
and resource (agent conducting the event) perspectives are

focused. These approaches can check various perspectives
relating business process. These perspectives are important,
but it is not sufficient yet. Using these approaches against
logs and models represents deviations between them, but it
is not concrete what should we do for interpreting deviation
and improving business process.

In this work, we propose a goal-oriented conformance
checking approach. Goal-oriented aspects are effective against
deviation interpretation. Goal models have systematic and
logical construction. Therefore, it is possible to represent what
is important in a business process and encourage efficient
decision making. Our approach is constructed by two phases.
The first phase checks deviation between a goal model and
logs focusing control-flow, data and resources. Goal models
are described using linear temporal logic, so verification is
formally conducted. In addition, in case of deviation detected,
goals are combined with a goal using goal model construction
for evaluating the deviation. Therefore, a cross tabulation table
relating these goals is constructed. In the second phase, we
calculate significant difference between two goals in a cross
tabulation table. Next, if these goals have significant differ-
ences, a relation between two goals are positive or negative is
calculated. In this way, deviations are detected and evaluated
the effects of the deviation. It is useful for interpretation of
deviations between processes and logs.

II. GOAL MODEL AND BUSINESS PROCESS
MANAGEMENT

Goal models are used for requirements elicitation, eval-
uation, negotiation, eraboration, structuring, documentation,
analysis and evolution [2] for system development. Goals
should be achieved and refined into subgoals through AND/OR
decompositions.

Relating goal models and business process models are
important. Various researches are conducted in this area (e.g.
transformation:[3],[4], validation: [5], integration: [6]). These
approaches are mainly used in business process construc-
tion phase. It is corresponding to diagnosis/requirements and
(re)design phases in the business process life cycle [1]. These
phases are important, but business processes are life cycle
and improved at various times. Therefore, it is needed to
confirm desirable business process that can achieve organi-
zational goals. In many cases, actual processes deviate from
the normative business process model. In these cases, it is
difficult to know the effect of deviations from business process
models using only model information because models only
have normative information. Therefore, it is needed to use
event logs of business process and to confirm event logs can

DOI reference number: 10.18293/SEKE2015-079
722

achieve business goal or not. These are enactment/monitoring
and adjustment phase in business process life cycle. It is
needed to research using goal models, business process models
and event logs for continual improvement of business process.

III. APPROACH

In this section, we present the details of the proposed
approach. Figure 1 sketches the proposed Goal-oriented con-
formance checking method. It relies on two phases: Trace &
Goal Processing phase to filter traces by a goal is achieved
or not and Combine Goals to construct a cross tabulation
table and a Statistical Analysis phase to measure significant
differences between two goals in a cross tabulation table
constructed in prior phase and evaluate the deviation have
positive effects or negative effects.

　　　

　　 Fig.1. Overview of Our Proposed Method 　　

A. Trace & Goal Processing phase

Trace & Goal Processing phase contains three processes
and represented as an ellipse in Trace & Goal Processing phase
of Figure 1. This phase conducts checking whether event logs
satisfy goals of a goal model represented as logical formula
and a constructing cross tabulation table for the next phase.

First step, Filtering Traces uses a goal of a goal model and
traces as inputs and divides all traces to a goal satisfied traces
or not satisfied traces. Goals are described using linear tem-
poral logic, so it is possible to verify the trace satisfy the goal
or not using LTL checker [7] on ProM. If any of these traces
can not satisfy the goal, the goal is considered as violated
goal. Second step, Combining Goals conduct combining the
violated goal and a more upper or a high priority goal using
information about a goal model configuration. more upper or
high priority goals is more important than low level goals.
Combining Goals is conducted for evaluating the violated goal
influences other goals or not. Third step, Constructing Cross
Tabulation Table use goals combined in the prior step and use
these goals to construct a cross tabulation table. Table I is a
cross tabulation table we want to construct. The table has two
variables which represent a each combined goal is achieved or
not. B in Table I represents a case when the violated goal is
achieved, conversely, !B in Table I represents a case when
the violated goal is not achieved. A in Table I represents
a case when the combined goal is achieved, conversely, !A
in Table I represents a case when the combined goal is not

achieved. Therefore the cross tabulation table has 2 × 2 cells
which represent traces numbers of (A ∧ B), traces numbers
of (A∧!B), traces numbers of (!A ∧ B), traces numbers of
(!A∧!B). The cross tabulation table represents the correlation
between goal A and B. These numbers in cells are used in next
statistical analysis phase. In these ways, the deviation from
process defined by goal models are detected and preparation
for the next phase are conducted.

TABLE I. CROSS-TABULATION TABLE USED FOR STATISTICAL
HYPOTHESIS TESTING

B !B
A trace numbers of (A ∧ B) trace numbers of (A∧!B)
!A trace numbers of (!A ∧ B) trace numbers of (!A∧!B)

B. Statistical Analysis phase

Statistical Analysis phase contains two processes and rep-
resented as an ellipse in the Statistical Analysis phase of Figure
1. This phase analyzes whether goals achievement relation
have significant differences and when the goal is not achieved,
whether it have positive effects or negative effects against
achieving the combined goal are evaluated.

First step, Statistical Hypothesis Testing uses cross tabula-
tion table constructed in the prior phase as an input. We use
Chi-squared test and Fisher’s exact test. These statistical hy-
pothesis testing methods are suitable for cross tabulation tables
including categorical data and used for testing independence
between two variables. If goal relations have significant dif-
ferences in the significance level of 0.05 (p-value < 0.05), we
consider these goals having relations. If some cells have lower
values, Fisher’s exact test is used. Second step, Calculating
Effect are conducted for goals having significant differences
in the significance level of 0.05 (p-value < 0.05). In this step,
it is evaluated that violated goal influences positive effects or
negative effects in a combined goal. Therefore, we use below
equation (1). A is the number of traces when a combined goal
is achieved. B is the number of traces when a violated goal
is achieved. !A and !B are the number of traces when a each
goal is not achieved. The equation represents the effect of not
achieving goal B concerning goal A. If the value of effect is
positive, not achieving goal B concerning goal A has positive
relation. If value of effect is negative, not achieving goal B
concerning goal A has negative relation. In this way, a relation
between two goals are evaluated.

effect =
A∧!B
A
− !A∧!B

!A
(−1 ≤ effect ≤ 1) (1)

IV. CASE STUDY

We have evaluated our approach on an event log which
taken from a phone repair process and is publicly available
and used in some researches for evaluations. The log contained
11855 events from 12 different events in 1104 cases, each
case representing a phone terminal repair process (register,
analyze defect, repair, test repair, archive and etc.). The log
deta format is XES. Each trace describes a sequential list of
events corresponding to a particular case. The log, its traces,
and its events may have any number of attributes [1]. Attributes
are standard (case id, time and etc.) or domain specific (phone

723

TABLE II. GOALS AND FORMALLY DEFINED GOALS OF GOAL MODEL

goal name formal defined goal goal type priority
Achieve [repairing
phone]

3Repair (S) ∨ 3Repair (C) event low

Achieve[archiving
information]

3(Archive Repair) event low

low repair numbers numberRepairs < 3 constraint medium

Fig.4. partial goal model of phone repair process

type, defect type and etc.). We constructed a goal model and
use the model in Figure 4 for evaluations. Blue rectangles
represent event and process related goals. Red rectangles
represent constraint goals. Green pentagon represents agent
that should achieve the goal devoted to the arrow. These goals
are partially and formally described in Table II using linear
temporal logic.

A. Goal: low repair numbers & other goals

In this section, we explain cases when goal: low repair
numbers are detected as a deviation. First, in Trace & Goal
Processing phase, goal: low repair numbers is combined with
goal: completing repair using goal model construction. Next,
a cross tabulation table is constructed. This is represented in
the table III. This table represents 4 cases which show the
number of both goals are achieved, only one goal is achieved
and both goals are not achieved. Next, Statistical analysis phase
uses this cross tabulation table. Fisher’s exact test is used for
calculating significant differences between these goals and p-
value are calculated. The results are described in table IV.
Calculated p-value is 2.2e−16, so this has significant differ-
ences in significance level of 0.05. Therefore, next, the effect
is calculated using equation (1). The equation can represent
that not achieving goal: low repair numbers is positive effects
or negative effects against Goal: completing repair. The result
is represented in table IV. Effect value is -0.903 (truncate a
number to 3 decimal places). Therefore, not achieving Goal:
low repair numbers detected as deviations are negative effects
against Goal: phone repair completed.

TABLE III. CROSS-TABULATION TABLE OF GOAL (COMPLETING
REPAIR) & GOAL (LOW REPAIR NUMBERS)

low repair numbers !(low repair numbers)
completing repair 1014 50

!(completing repair) 2 38

V. RELATED WORK

In this section, we explain related work about conformance
checking. Related works excepted for conformance checking
are lined up in section 2. Rozinat et al proposed token replay
conformance checking method [8]. It measures the fitness

TABLE IV. P-VALUE & EFFECT

A: combined goal & B: vio-
lated goal

testing method p-value effect

A: completing repair & B: low
repair numbers

Fisher’s exact test 2.2e−16 -0.903

A: ending repair process
shortly & B: low repair
numbers

Pearson’s Chi-squared test 2.2e−16 -0.317

of the process model and event log. Adriansyah proposed
alignment based conformance checking method [9]. It makes
it possible to check conformance more precise. Leoni et
al proposed multi perspective conformance checking method
[10]. This technique deal with control flow, data and resource
for conformance checking.

These researches mainly focus on deviation between pro-
cess models and event logs. This is an important aspect in
process improvements, but detecting deviation between process
models and event logs are not conclusive destination. Utilizing
the results of conformance checking as a means to improve
business process models, business rules and to reconfigure
business goals should be conducted. In this perspective, our
proposed conformance checking method is suitable for this.

VI. CONCLUSION

Today’s organizations need to comply with a rapidly chang-
ing business environments and need to set goals against the
change. In this paper we proposed a goal-oriented conformance
checking method. The method can detect deviations between
goal models and logs using the verification method based
on linear temporal logic and can evaluate detected deviations
using statistical analysis. It is useful for constructing more
appropriate business processes and organizational goals.

REFERENCES

[1] W.M.P. van der Aalst. Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Springer, Verlag, 2011.

[2] A. van Lamsweerde. Requirements Engineering :From System Goals to
UML models to software specications. WILEY, 2009.

[3] H. Horita, K. Honda, Y. Sei, H. Nakagawa, Y. Tahara and A. Ohsuga ”
Transformation Approach from KAOS　Goal Models to BPMN Models
Using Refinement Patterns,”in SAC 2014, ACM, Gyeongju, pp. 1023-
1024, 2014.

[4] J.L. de la vara, J. Sánchez, and Ó. Pastor. ”On the Use of Goal Models
andBusiness Process Models for Elicitation of System Requirements,” in
BPMDS 2013, Springer, Valencia, 　 pp.168-181, 2013.

[5] G. Gröner, M. Asadi, B. Mohabbati, D. Gašević and F. Silva Parreirasand
Marko Bošković. ”Validation of User Intentions in Process Models,” in
CAiSE 2012, Springer, Berlin, pp. 366-381, 2012.

[6] M. Ruiz, D. Costal, S. España, X. Franch, Ó. Pastor, ”Integrating the
goal and business process perspectives in information system analysis,”
in CAiSE 2014, Springer, Heidelberg, pp. 332-346, 2014.

[7] W.M.P. van der Aalst, H. de Beer and B. van Dongen, ”Process Mining
and Verification of Properties: An Approach Based on Temporal Logic,”
in OTM 2005, Heidelberg, pp. 130-147, 2005.

[8] A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Pro-
cesses Based on Monitoring Real Behavior. Information Systems, 33 :
pp. 64-95, March 2008.

[9] A. Adriansyah, ”Aligning Observed and Modeled Behavior”, PhD The-
sis. 　 Technische Universiteit Eindhoven, The Netherlands, 2014.

[10] M. de Leoni and W.M.P. van der Aalst, ”Aligning event logs and process
models for multi-perspective conformance checking: An approach based
on integer linear programming,” in BPM 2013, Splinger, pp. 113-129,
Beijing, 2013.

724

Image retrieval based on structural and textual
context

Sana FAKHFAKH
Laboratory MIRACL,

Institute of Computer Science
and Multimedia of Sfax,
Sfax University, Tunisia

Email: sanafakhfakh@yahoo.fr

Mohamed TMAR
Laboratory MIRACL,

Institute of Computer Science
and Multimedia of Sfax,
Sfax University, Tunisia

Email: mohamed.tmar@isimsf.rnu.tn

Walid MAHDI
Laboratory MIRACL,

Institute of Computer Science
and Multimedia of Sfax,
Sfax University, Tunisia

Email: walid.mahdi@isimsf.rnu.tn

Abstract—In this paper, We propose a geometric method who
use implicitly of textual and structural context of XML elements
and we are particularly interested by improve the effectiveness
of various structural factors for multimedia retrieval. Using a
geometric metric, we can represent structural information in
XML document with a vector for each element. Experimental
evaluation is carried out using the INEX 2007, ImageCLEF 2010
and 2014. The results show that integration of structural context
significantly improves compared results of using a single textual
context.

Keywords—Structural context, Textual context, Approximative
resolution, XML element, Image retrieval

I. INTRODUCTION

In this article, we focus on techniques for multimedia
retrieval based on textual and structural context in XML
documents. This type of document includes textual information
and structural constraints. So, XML document cannot be
effectively exploited by classical techniques of information
retrieval, which regard document as a plane source of infor-
mation. The implicit incorporation of multimedia elements in
XML documents requires the exploitation of textual context for
multimedia retrieval. However, the textual context remains in-
sufficient in most of time. The idea is to calculate the relevancy
score of media element based on information from the textual
and structural context to answer a specific information needs
of user, expressed as query composed of set of keywords. Our
main inspiration is to use the structure to involve each textual
information depending on its position in XML document, that
is textual information that gives the best possible description
of multimedia element. In our work, we will be interested by
media ”image”.

II. PROPOSED APPROACH

We propose a new metric for multimedia retrieval in XML
documents which involves the use of geometric distances to
calculate the relevance of each node from the multimedia node.
This method consists of placing the nodes of XML document
in Euclidean space and define each node by a vector of coordi-
nates to calculate then the distance between each pair of nodes.
This distance will play a beneficial role in to calculate the score
of multimedia element. Thus, it facilitates the presentation
of information in terms of interpretation and exploitation.
Replying to this need, we propose a new method in the field

of multimedia retrieval that takes into account the structure as
a source of evidence and its impact on search performance.
We present a new source of evidence dedicated to multimedia
retrieval based on the intuition that each textual node contains
information that describes semantically a multimedia element.
And the participation of each text node in the score of a
multimedia element varies with its position in there XML
document. To compute the geometric distance, we initially
place the nodes of each XML document in an Euclidean
space to calculate the coordinates of each node by a detailed
algorithm in our paper [1]. Then, we compute the score of a
multimedia element depending on the distance between each
textual node. We evaluate our system into three databases
extracted from three collections : INEX 2007 (Initiative for
the Evaluation of XML Retrieval) Ad Hoc task, ImageCLEF
2010 Wikipedia image retrieval task and ImageCLEF 2014
Plant task. The first two databases are composed by XML
documents extracted from Wikipedia. The latest dataset is
collected by scientific community for testing and validation
of their approaches.

0 0,1 0,2 0,3 0,4 0,5

TC

TC and TS Manha!an

TC and TS Euclidean

TC and TS Minkowski

MAP

ImageCLEF 2014

ImageCLEF 2010

INEX 2007

Fig. 1. Results of impact our approach on INEX 2007, ImageCLEF 2010
and ImageCLEF 2014 based in MAP(Mean Average Precision).

III. CONCLUSION

In this work, we studied the impact of textual and structural
context on multimedia element retrieval, where the user need
can be a multimedia element (text). We plan to investigate the
impact of a mixture of text and multimedia element (text +
image) with to using visual descriptors.

REFERENCES

[1] S. Fakhfakh, M. Tmar, and W. Mahdi, “Multimedia retrieval based on
geometric distance in semi-structured document,” inWEBIST 2014 -
Proceedings of the 10th International Conference on Web Information
Systems and Technologies, Barcelona, Spain, 2014, pp. 220–225.

725

Probabilistic Failure-causing Schema in Input-Domain Testing

Ziyuan Wang Yuanchao Qi Jiawei Lin
School of Computer, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China

Email: wangziyuan@njupt.edu.cn

Abstract—To describe characteristics of failure test cases in
the input-domain testing, we propose a model of probabilistic
failure-causing schema. In this model, test case that contains a
probabilistic failure-causing schema has a probability to be a fail-
ure test case. It may help testers to find out input characteristics
that have more close relationship to the fault.

I. INTRODUCTION

Once there are failure test cases reported in input-domain
testing, input-level fault localization technique aims to find out
characteristics of failure test cases.

To describe the characteristics, a model of minimal failure-
causing schema was proposed [1]. Considering a boolean
expression: a ∧ (−b ∨− c) ∧ d ∨ e, and a clause disjunction
fault (CDF) mutant: a∧ (−b∨− c)∧ d∨ (d∨ e) [2]. There are
total 5 failure test cases. In all 7 failure-causing schemas, (- 1
1 1 0) and (0 - - 1 0) are minimal ones. They predict that all
5 input variables are involved in the fault. But factually, only
d and e are related to this fault, where e is replaced by d∨ e.

a b c d e
test1 0 0 0 1 0
test2 0 0 1 1 0
test3 0 1 0 1 0
test4 0 1 1 1 0
test5 1 1 1 1 0

a b c d e
schema1 0 0 0 1 0
schema2 0 0 1 1 0
schema3 0 1 0 1 0
schema4 0 1 1 1 0
schema5 1 1 1 1 0
schema6 - 1 1 1 0
schema7 0 - - 1 0

In this paper, we propose a model of probabilistic failure-
causing schema to describe this phenomena.

II. PROBABILISTIC FAILURE-CAUSING SCHEMA

Considering a program under test with n input variables,
each variable has a value set Vi (i = 1, 2, ..., n). The input
domain of program is D = V1 × V2 × ...× Vn.

Definition 1 (test case). A test case is a n-tuple (v1 ∈ V1,
v2 ∈ V2, ..., vn ∈ Vn).

Definition 2 (schema). A k-value schema (or called a
schema with strength k) s is a n-tuple (-, ..., -, vi,1, -, ..., -,
vi,2, -, ..., -, vi,k, -, ..., -) where 1 ≤ k ≤ n. Where, the values
of k variables have been fixes, while the values of other n−k
variables have not been fixed as denoted as ”-”.

Definition 5 (probabilisitic failure-causing schema). A k-
value schema is a k-value probabilisitic failure-causing schema
with a failure probability pfail, if the ratio of the number of
failure test cases that contain such schema to the number of
test cases that contain such schema is pfail.

A schema with failure probability pfail means that, for
arbitrary test case t ∈ D = V1 × V2 × ... × Vn that contains
such schema, the probability that t is a failure one is pfail.

Definition 6 (coverage probability). The coverage proba-
bility pcov of a schema is the ratio of the number of test cases
that contain such schema to the number of all test cases.

A schema with coverage probability pcov means that,
for arbitrary test case t ∈ D = V1 × V2 × ... × Vn, the
probability that t contains such schema is pcov . There is
negative correlation between the coverage probability and the
strength of schema

III. APPROACH

People need characterize schemas with both higher failure
probability and higher coverage probability, since the more
pfail means there is closer relationship between the schema
and the fault, and the the more pcov predicts less input variables
that may be concerned with fault. By define a metric:

score(s) = pcov(s)× pfail(s)

We can select probabilisitic failure-causing schemas with the
greatest score in input-level fault localization.

For previous example, we calculate pfail and pcov for each
schema in 5 failure test cases (see Fig. 1). Three probabilistic
failure-causing schemas with the greatest scores include:

score(- - - 1 0)= 1
4 ×

5
8 = 5

32
score(- - - 1 -)= 1

2 ×
5
16 = 5

32
score(- - - - 0)= 1

2 ×
5
16 = 5

32

They predict that 2 variables d and e are involved in the fault.

Fig. 1. Probabilistic failure-causing schemas (only some with greate pfail)

IV. CONCLUSION

A model of probabilistic failure-causing schema in input-
domain testing is proposed. A simple example shows that
they could reveal the source of faults more precision. More
experiments are required in future works.

REFERENCES
[1] C. Nie, H. Leung. The Minimal Failure-causing Schema of Combinatorial

Testing. ACM Transactions on Software Engineering and Methodology
(TOSEM), 2011, 20(4): 15.

[2] Z. Chen, T. Y. Chen, B. Xu. A Revisit of Fault Class Hierarchies
in General Boolean Specifications. ACM Transactions on Software
Engineering Methodology (TOSEM), 2011, 20(3).

DOI reference number: 10.18293/SEKE2015-229 726

CARE: A Computer-Aided Requirements

Engineering Tool for Problem-Oriented Software

Development

Guoyuan Liu

College of Computer Science and

Information Technology

Guangxi Normal University

No. 15 Yu Cai Road, Guilin,

Guangxi 541004, China

153123439@qq.com

Zhi Li*

College of Computer Science and

Information Technology

Guangxi Normal University

No. 15 Yu Cai Road, Guilin,

Guangxi 541004, China

zhili@gxnu.edu.cn

Zhaofeng Ouyang

College of Computer Science and

Information Technology

Guangxi Normal University

No. 15 Yu Cai Road, Guilin,

Guangxi 541004, China

751194151@qq.com

Abstract—This paper presents a tool to help software design in

the development process. This software prototype will promote

further development of Problem Frames framework (PF) and

drive it to maturity, i.e., from theoretical research to practical

applications.

Keywords-Problem Frames (PF);Problem diagram;Computer-

Aided Requirements Engineering (CARE)

I. INTRODUCTION


Software requirements engineering plays an important role
in software development projects. So how to conduct the
practice of requirements elicitation, modeling, analysis and
transform the results into correct software specifications is a
key factor contributing to the successes of software
development projects. We designed and implemented a
prototype based on the theoretical foundations and principles of
a problem-oriented requirements modeling framework–
Jackson’s Problem Frames approach [1,2] (PF for short). PF
has been regarded as one of the major requirements
engineering approaches for assisting system analysts in
structuring software development problems. They deploy
problem diagrams for capturing and describing important
contextual information for the software solutions to be built.

Over the years, there have been many extensions and
advancements in Problem Frames research. For example, Hall
et al have proposed Problem-Oriented Software Engineering
(POSE) as a theoretic framework for software development
[3,4]. Other researchers have made many theoretical extensions
to PF and applied them to requirements analysis and reasoning
for safety-critical systems [5,6], and identifying reliability
concerns [7]. However, how to embed the PF framework in a
software development practice remains an open problem.


Zhi Li is the corresponding author. The research was supported in part by the

Natural Science Foundation of China under Grant No.61262004, and the

authors’ joint research is sponsored by the National Science Foundation of
Guangxi Province under Grant No.2012GXNSFCA053010, and the Guangxi

Scientific Research and Technological Development Project under Contract

No.(Gui-Ke-He)1347004-22. Zhaofeng Ouyang is sponsored by University
Innovation and Startup Project (No. 201410602104).

In this paper, we present a computer-aided requirements
engineering (CARE) tool for system analysts to use in the
requirements analysis phase of software development. This
work is motivated by the challenges and difficulties faced by
many software development practitioners when communicating,
modeling, analyzing and elaborating requirements in the early
phase of a software development project. The tool not only can
animate a visual transformation of requirements models, but
also provide a vehicle for an automated textual transformation
of requirements statement, accordingly.

II. PROBLEM MODELLING AND ITS

TRANSFORMATION RULES

The PF is further development of Jackson’s work on JSP
(Jackson Structured Programming) and JSD (Jackson System
Development) [9]. Its basic tenet is that in requirements
analysis phase, we should first understand the contextual
environment in which the problem occurs, before giving any
software solution. The rationale behind it is that most modern
software systems inevitably interact with their surrounding
environment to serve their ultimate purposes – satisfying the
problem owner’s needs. PF deploys problem diagrams – a
visual modeling notation as a way of concretizing the problem
owner’s needs or wishes into observable or measurable
phenomena [2]. The following is a typical problem diagram
describing an insulin injection control system for diabetes.

Power

supply C

ControllerAlarm
C

Clock
C

Keypad
C

Display
C

Medical

record X

Pump
C

Sensor
C

Needle
C

Patient
B

Proper and

reliable injection

of insulin

g
c

d

h

i

j

k

a

b
f

e

e

Fig. 1 Insulin injection control system for diabetes

 Figure 1 shows that problem diagrams are extended
context diagrams, with the following extensions:

 Rectangles with double stripes represent the

computerized machine domain on which the software

runs, e.g. the Controller domain; 

 Application domains are represented by rectangles,

which represent physical equipment (e.g., the Pump

727

domain and the Sensor domain - the sub-labels with the

symbol “C” represent “causal”, which means their

properties or behaviors are predictable); or living beings

(usually people, e.g., the Patient domain – the sub-label

with the symbol “B” represents “biddable”, which means

the domain has his own freewill but can follow orders or

pre-determined rules after being trained or notified); 

 Rectangles with a single stripe represent domains which

can store information, e.g., the Medical record domain -

the sub-label with the symbol “X” represents “lexical”,

for instance, USB disks or other data storing devices;

 The solid lines labeled “a”, “b”, “c”, “d” , “e” , “f” , “g”,

“h”, “i”, “j”, “k”, “l”, represent observable or measurable

phenomena shared between domains;

 The dotted oval labeled “Proper and reliable injection of

insulin” in Figure 1 represents the requirements. The text

is a statement of needs or wishes of the problem owner

(the diabetic patient in this case). The application

domains that the statement concerns are connected with

the oval by dotted lines – the Needle domain and the

Patient domain; the label “e” and “f” represent the

observable or measurable phenomena (either internal to

the domains or external phenomena of the Needle and

Sensor domain shared with other domains); 

 The dotted rectangle which is connected with the Patient

domain represents the Patient domain’s properties, i,e,

“f” represents the phenomena “the patient’s blood sugar

reaches abnormal level”, “d” represents the phenomena

“the sensor detects the patient’s blood sugar reaches

critical threshold level”, then f->d represents a cause-

and-effect relationship that is the property of the Patient

domain
 From Figure 1, we can observe that PF represents a broad

perspective on software development problems, in which the
hardware, software and relevant application domains should all
be treated as first-class citizens in the modeling process.
Solving this kind of problems is a process of reasoning and
moving from the dotted oval and the dotted lines towards the
controller machine domain. In PF modeling, this process is
known as problem transformation. In order to implement this
transformation, we have defined three classes of transformation
rules, namely the “cause-and-effect substitution rules”,
“switching [domain’s] perspective rules”, and “removing
[unconnected] domain rules”, see [8] for more details.

The contribution of this paper is that we have developed a

computer-aided tool to implement the three classes of rules for

problem transformation.

 The “cause-and-effect substitution” rule: since the

application domain’s properties in PF modeling mainly

describe causal-and-effect relationships in a form like “a-

>b”, we can substitute “cause” events with “effect”

events or vice versa. The algorithm of this rule can be

described by the following pseudo-code (variables are in

italics):

 foreach (i in D.event) //search all events of Domain D

 if (i == a) //find the event a

 foreach (j in R.event) //search all events of requirement R

if ((a -> b)is in D.propety) //if a->b belongs to D’s property

R.event [j]=a; //substitute a for b

 The “switching perspectives” rule: since adjacent

domains share exactly the same set of phenomena, the

requirement statement involving the shared phenomena

can be switched from the viewpoint of the receiving end

to the sending end, and vice versa. The algorithm of this

rule can be described by the following pseudo-code:

foreach (i in D.event) //search all events from domain D

 foreach (j in R.event) //search all events of requirements R

 if (i == j) //if a equals b

 { D’.lines++; //add a new line to domain D’ of R

 D.lines--; //delete the old line connected to domain D

 }

 The “removing domain” rule: after the requirements are

connected with the computing machine domain, all

references and constraints of the requirements are on the

computing machine, therefore, a requirements

engineering problem becomes a pure programming

problem, thus all other diagrammatic elements can be

deleted. The algorithm of this rule can be described by

the following pseudo-code:

if (R.ID is in Controller S.connectedID) //if requirement R is connected to the

//Controller

 for (int i=0; i <Domain.count; i++) //search all the domains

 delete (Domain[i]); //delete domain

 for (int i = 0; i> Model.count; i++) //search all the models

 delete (Model[i]); //delete model

III. TOOL OVERVIEW AND IMPLEMENTATION

A. Tool Overview

Figure 2 shows the overview of CARE, which consists of
three main modules: the Application Domain module, the
Transformation module and the Requirement module.

By combining the three modules we can draw a full
problem diagram, in order to system analysts in requirements
elicitation and analysis. More importantly, the transformation
module can enable diagrammatic transformation, which is the
core innovative part of the tool. So a computer-aided
requirements engineering (CARE) prototype system has been
designed. Its aim is to try to get prospective user involved in
the process of requirements elicitation, modeling, analysis and
transformation as early as possible and as visually engaging as
possible. Another motivation for developing the prototype is to
empirically evaluate the feasibility and practicality of the PF
modeling and transformation framework.

Fig.2 Design overview of CARE

728

B. Implementation

Since symbols and diagrams can be recognized at a glance
and quite often, good representation can assist intuitive
understanding of the meanings of visual and diagrammatic
modeling. In addition, they can highlight some complex and
important relationships among different entities without
verbose or ambiguous texts.

 Our prototype tool is designed to facilitate system analysts
in drawing and editing problem diagrams, inputting a semi-
structured textual statement of requirements, as a way of
modeling requirements and relevant contexts. In addition, the
tool also allows for visual transformation of the model and a
textual transformation of requirements, which we believe can
simulate or animate system engineers’ process of reasoning
while trying to solve engineering problems. From a
requirements engineering perspective, this tool supports
retaining requirements traceability, which is essential for
requirements engineering [10]. The template is used to format
your paper and style the text. All margins, column widths, line
spaces, and text fonts are prescribed; please do not alter them.
You may note peculiarities. For example, the head margin in
this template measures proportionately more than is customary.
This measurement and others are deliberate, using
specifications that anticipate your paper as one part of the
entire proceedings, and not as an independent document. Please
do not revise any of the current designations.fig.3 shows the
interface of our CARE.

Fig.3 CARE: the Computer-Aided Requirement Engineering tool

IV. EVALUATION SETUP

We evaluated the usability of the CARE tool under both
MS Windows and Android with many practical examples. We
also report on the results of an initial empirical evaluation of
the approach based on the prototype problem transformation
tool. A total of 47 students took part in the evaluation, and the
results are shown in table I.

TABLE I. PARTICIPANTS’ ANSWERS TO THE QUESTIONNAIRE

How helpful is the tool to you in understanding Problem Frames?

Extremely

helpful

very helpful somewhat

helpful

not helpful

15 20 7 5

V. CONCLUSION

In this paper, we present a computer-aided requirements
engineering tool. This is part of the second authors’ long-term
research towards moving PF closer to practice [8,12,13].
Currently, an early version of the prototype can be downloaded
from the website http://www.se.gxnu.edu.cn/tooldemo. There
are also several versions of the tool on mobile platforms, for
example, an Android version and a Windows Phone version of
the tool are also available on the website. When all tools are
matured enough, we plan to empirically evaluate them by
embedding PF theory and the CARE tools in realistic software
development projects.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for the
valuable comments, which helps improve this paper.

REFERENCES

[1] Jackson M. Software requirements and specifications: a lexicon of

principles, practices and prejudices［M］ . Boston: Addison-Wesley,
1995.

[2] Jackson M. Problem frames: analyzing and structuring software
development problems［M］. Boston: Addison-Wesley, 2001.

[3] Hall G H, Rapanotti L, Jackson M. Problem-oriented software
engineering: a design-theoretic framework for software engineering，
2007[C]//Proceedings of the 5th IEEE International Conference on
Software Engineering and Formal Methods.Los Alamitos： IEEE CS
Press，2007：15-24.

[4] Hall G H, Rapanotti L, Jackson M. Problem-oriented software
engineering: solving the package router control problem[J].IEEE
Transactions on Software Engineering,2008,34(2):226-241.

[5] Strunk E A, Knight J C. The essential synthesis of problem frames and
assurance cases[J]. Expert Systems, 2008, 25(1): 9-27.

[6] Mannering D, Hall J G, Rapanotti L. Towards normal design for safety-
critical systems[C]//Fundamental Approaches to Software Engineering.
Springer Berlin Heidelberg, 2007: 398-411.

[7] Yin B, Jin Z, Li Z. Reliability concerns in the Problem Frames Approach
and system reliability enhancement patterns[J]. Jisuanji Xuebao(Chinese
Journal of Computers), 2013, 36(1): 74-87.

[8] Li Z, Hall J G, Rapanotti L. On the systematic transformation of
requirements to specifications[J]. Requirements Engineering, 2013,(doi:
10.1007/s00766-013-0173-8),online first article.

[9] Berry M D. Software requirements and design: the work of Michael
Jackson[J].ACM SIGSOFT Software Engineering Notes,2011,36(2):39-
40.

[10] Jane Cleland-Huang, Orlena Gotel, Jane Huffman Hayes, Patrick Mäder,
Andrea Zisman:Software traceability: trends and future directions. FOSE
2014: 55-69

[11] Sommerville I. Software Engineering 9th Edition[M]. Boston:Addison-
Wesley, 2011.

[12] Rapanotti L,Hall G J, Li Z. Deriving specifications from requirements
through problem reduction[J].Journal of IEE Proceedings-
Software,2006,153(5):183-198.

[13] Li Z,Hall G J,Rapanotti L, On the construction of specifications from
requirements[C]//Procs of the 14th Workshop on Requirements
Engineering. Rio de Janeiro, Brazil: BDBComp, 2011: 431-442

729

http://www.se.gxnu.edu.cn/tooldemo

EXPOSE: Inferring Worst-case Time Complexity by Automatic Empirical Study

Cody Kinneer H Gregory M. Kapfhammer H Chris Wright I Phil McMinn I

H Allegheny College I University of Sheffield

Introduction to doubling. A useful understanding of
an algorithm’s efficiency, the worst-case time complexity
gives an upper bound on how an increase in the size of the
input, denoted n, increases the execution time of the al-
gorithm, f(n). This relationship is often expressed in the
“big-Oh” notation, where f(n) is O(g(n)) means that the
time increases by no more than on order of g(n). Since the
worst-case complexity of an algorithm is evident when n
is large [1], one approach for determining the big-Oh com-
plexity of an algorithm is to conduct a doubling experiment
with increasingly bigger input sizes. By measuring the time
needed to run the algorithm on inputs of size n and 2n, the
algorithm’s order of growth can be determined [1].

The goal of a doubling experiment is to draw a conclu-
sion regarding the efficiency of the algorithm from the ratio
f(2n)/f(n) that represents the factor of change in runtime
from inputs of size n and 2n. For instance, a ratio of 2
would indicate that doubling the input size resulted in the
runtime’s doubling, leading to the conclusion that the algo-
rithm under study is O(n) or O(n log n). Table 1 shows
some common time complexities and corresponding ratios.

Ratio f(2n)/f(n) Worst-Case Conclusion
1 constant or logarithmic
2 linear or linearithmic
4 quadratic
8 cubic

Table 1: Conclusions for worst-case time complexity.

Automatic doubling. EXPOSE [2, 3] is a tool to de-
rive an “EXPerimental bigOh” for supporting “Scalability
Evaluation”. EXPOSE infers an algorithm’s big-Oh order of
growth by conducting a doubling experiment automatically.
In order to evaluate an algorithm A, EXPOSE takes as input
two functions. The first is a timing function f(n) that runs
an implementation of A on the provided input of size n and
returns the runtime, and the second is a doubling function
d(n) that accepts an input for A and returns an input of size
2n. After providing EXPOSE an initial input, the tool will
output an inferred big-Oh order of growth for A.

EXPOSE derives the worst-case time complexity of A by
repeatedly doubling the input until n is large enough that
the worst-case time complexity of A is apparent. EXPOSE
determines when n is large enough by monitoring the dou-
bling ratio f(2n)

f(n) for multiple iterations of doubling. Using
a convergence algorithm, EXPOSE stops the doubling ex-
periment when the doubling ratio reaches a stable value.

To test for convergence, for every time t, where t de-
notes the number of times the input has been doubled, we
record the doubling ratio rt = f(2tn)

f(2t−1n) . The current ra-
tio rc is compared to a previous ratio rp where p is deter-
mined by a lookback value, such that p = c − lookback .
The result of the comparison is a difference value, given by
difference = |rc−rp|. This is then compared to a tolerance
value, and the experiment is judged to have converged when
difference < tolerance. The lookback and tolerance val-
ues are both configurable parameters.

Early use of the tool revealed that this converge check-
ing rule was not enough, since a very small initial n may
complete nearly instantaneously even for multiple rounds
of doubling. For example, the time that it takes to sort a
list of size 1, 2, 4, 8, . . . , 128 might not even be distinguish-
able. This would appear to converge to 1, which indicates
constant time complexity. To prevent the experiment from
incorrectly terminating given a small starting n, EXPOSE
requires that a program under study display a ratio of 1 for
a minimum number of times before judging that the ratio
does in fact converge to 1. That is, if rc = 1, t > minimum
must be true, in addition to the tolerance test, before the
experiment is declared convergent. The minimum value is
also a configurable parameter. Because a doubling ratio of 1
signifies constant or logarithmic time complexity, requiring
these doubles does not significantly increase the experimen-
tation time needed, all the while providing further assurance
that a small ratio is not due to an insufficiently small n.

Implementation. EXPOSE is implemented as a pack-
age of classes in the Java programming language [3]. To
use EXPOSE to evaluate a new algorithm A, you only need
to extend the DoublingExperiment class to provide your
own f and d functions. The f function should be imple-
mented by providing a double timedTest() method, and
d should be implemented by providing a void doubleN()
method. Note that these methods do not accept any param-
eters, and only timedTest() returns a value. The program-
mer must ensure that timedTest() returns the runtime for
the current input size, and that when doubleN() is called,
the input size is doubled. Initializing and storing the in-
put should be handled by the specific implementation. The
runExperiment() method can be called to conduct a dou-
bling experiment and printBigOh() can be called to show
the result. Figure 1 shows an complete Java class that con-
ducts a doubling experiment on QuickSort; note the sim-
plicity of the implementation when using EXPOSE.

DOI reference number: 10.18293/SEKE2015-254
730

p u b l i c c l a s s QuickSor tExp ex tends Doub l ingExpe r imen t{
p r i v a t e i n t s i z e = 1 0 ;
p u b l i c s t a t i c vo id main (S t r i n g [] a r g s){

S o r t i n g E x p e r i m e n t exp = new S o r t i n g E x p e r i m e n t () ;
exp . r u n E x p e r i m e n t () ; exp . p r i n t B i g O h () ; }

p r o t e c t e d void doubleN (){ s i z e *= 2 ; }
p r o t e c t e d double t i m e d T e s t (){

i n t [] n = c r e a t e I n p u t (s i z e) ;
long s t a r t T i m e = System . nanoTime () ;
Q u i c k S o r t . q u i c k S o r t (n , n . l e n g t h) ;
long endTime = System . nanoTime () ;
re turn (double) endTime − s t a r t T i m e ; } }

Figure 1: A simple Java class that performs a performance
evaluation on the QuickSort algorithm.

Case study: Sorting Algorithms. Included with the
EXPOSE tool is an example doubling experiment called
SortingExperiment. This program provides a number
of canonical sorting algorithms with well-known worst-
case time complexities. Doubling experiments may be per-
formed on these algorithms by running the command java
SortingExperiment algname, replacing algname with the
name of the desired sorting algorithm. Running the com-
mand without providing algname will show a list of options.
When run 1000 times for each of the five provided sorting
algorithms, EXPOSE achieves an accuracy of 98.84%.

Case study: SchemaAnalyst. In other work [2], we
used EXPOSE to perform a comprehensive analysis of the
search-based test data generation tool, SchemaAnalyst, that
generates test suites for relational database schemas [4].
Since it is much more complicated than a sorting algo-
rithm, performing doubling experiments on SchemaAna-
lyst requires more parameters than needed to study sorting.
To conduct these experiments, we developed a class called
SchemaExperiment that extends DoublingExperiment.
We developed SchemaExperiment to allow for conduct-
ing doubling experiments using a variety of SchemaAnalyst
configurations, as well as accessing EXPOSE’s parameters.
Usage: <java SchemaExperiment> [options]
Options:
--schema, -s Select which schema to use
--criterion Select which criterion to use
--datagenerator Select which data generator to use
--doubler Select which schemaDoubler to use
--convergence Experiment convergent if diff < this
--lookBack Number of ratios to compare for convergence
--tuningTries Minimum number of times to doubles before O(1)
--minDoubles Minimum number of doubles to try
--giveUp, --maxTime Max time for a single trial in hours
--help, --usage Display command line options
-o, --out, --csv Desired csv filename for saving data
--verbose, --debug Display verbose output

Following the terminology from [5], a doubling experi-
ment to evaluate SchemaAnalyst using the AICC criterion,
a random data generator, the RiskIt database schema, and
the number of NOT NULLs in the schema will run with this
command: java SchemaExperiment --criterion AICC
--datagenerator random --schema RiskIt --doubler
DoubleNotNullsSemantic. Although less accurate than in
the sorting case study, EXPOSE still successfully revealed
meaningful trends in SchemaAnalyst’s performance [2].

Deploying on an HPC cluster. Since the performance
of SchemaAnalyst may depend on a number of factors (i.e.,
criterion, data generator, schema, and doubling strategy) a
comprehensive survey of the parameter space may be con-
ducted by performing a doubling experiment for each con-
figuration. While computationally expensive, an experi-
ment of this scale is possible by using an HPC cluster. Each
doubling experiment can be run independently on a separate
node of the cluster, and the resulting data can be combined
for analysis. Data mining techniques can then be leveraged
to interpret an algorithm’s performance trade-offs.

Parameter Tuning. While EXPOSE greatly eases the
process of conducting doubling experiments, its accuracy
and performance is sensitive to the settings of the system’s
parameters. In particular, the tolerance and lookback val-
ues can result in a doubling experiment terminating pre-
maturely or continuing indefinitely. To complicate the is-
sue further, the parameters must be re-tuned based on hard-
ware properties of the machine(s) being used and the perfor-
mance characteristics of the implementation being studied.

The reliability of the tool and repeatability of its results
would be further improved if EXPOSE could select good set-
tings for these parameters automatically. A reasonable pa-
rameter tuning strategy could be to run EXPOSE on various
algorithms of known worst-case time complexities, such as
the sorting algorithms, and lower the tolerance threshold
until EXPOSE reliably infers the big-Oh time complexities.

Future Work and Conclusion. While we recently used
EXPOSE to study search-based test data generation in the
domain of relational database schemas [2], the tool is gen-
eral and can be applied to many other problem domains.
Future work includes using EXPOSE to evaluate the effi-
ciency of EVOSUITE’s approach to test data generation for
Java programs [6]. In conclusion, EXPOSE makes empir-
ically evaluating the worst-case time complexity of algo-
rithms much more convenient. By automating the process
of conducting these experiments, EXPOSE enables large-
scale empirical studies that would otherwise be infeasible.

References
[1] C. C. McGeoch, A Guide to Experimental Algorithmics, 2012.

[2] C. Kinneer, G. M. Kapfhammer, C. J. Wright, and P. McMinn, “Auto-
matically evaluating the efficiency of search-based test data generation
for relational database schemas,” in proc. of 27th SEKE, 2015.

[3] C. Kinneer, “EXPOSE software tool,” 2015. [Online]. Available:
https://github.com/kinneerc/ExpOse/

[4] G. M. Kapfhammer, P. McMinn, and C. J. Wright, “Search-based test-
ing of relational schema integrity constraints across multiple database
management systems,” in proc. of 6th ICST, 2013.

[5] J. Kempka, P. McMinn, and D. Sudholt, “Design and analysis of dif-
ferent alternating variable searches for search-based software testing,”
Theor. Comp. Sci., 2015, In Press.

[6] G. Fraser and A. Arcuri, “1600 faults in 100 projects: Automatically
finding faults while achieving high coverage with EVOSUITE,” Empir.
Softw. Engin., 2013.

731

Modeling China Metro Train Route
Occlusion Operation Method Based on

Time Petri Nets
Ye Zhang1

Beijing University of Technology1

 Beijing, 100124, China

Ease2003@163.com1

Yatao Wang2, Gang Wang2, Jian Sun2
Beijing Jiaotong University2,

Beijing, 100044, China

Abstract—Urban metro signal system is a complex

system to guarantee the safe and efficient running of

urban metro vehicle, of which any equipment

malfunction could induce danger. In the actual

operation, the degraded mode of signal system is

generally used to organize urban rail transit vehicle

when the signal system work abnormally. The

traditional degraded mode of urban rail transit signal

system is telephone occlusion method, which cannot

meet the demand of a large amount of passengers’

evacuation for its low efficiency in organizing vehicles.

In China, route occlusion, a novel degraded mode, is

proposed by a few urban rail transit companies to

improve the efficiency of transport in abnormal

situation and further ensure rapid evacuation. This

paper comparatively analyzes the capability of

telephone occlusion and route occlusion to

accommodate rail vehicles in an interval between two

depots in the same scene. This paper, furthermore,

models and analyzes telephone occlusion method and

route occlusion method using Petri net in view of its

unique advantage to describe asynchronous and

concurrent system. Finally, an example of Chang Ping

line of Beijing metro is particularized to explain the

different efficiency to organize trains in degraded

mode of urban rail transit signal system.

Keywords-metro train, route occlusion, telephone

occlusion, time petri nets

I. Comparison of Traffic Organization

between Route Occlusion and Telephone

Occlusion

A. Comparison of Ability to Accommodate

Vehicles

Route occlusion and telephone occlusion is

the basic alternative occlusion method.

Telephone occlusion, whose certificate is the

display of signal machine, is a method to

confirm the outside interval idle, the station line

free and subsequent get access to start into front

station through two adjacent station attendants.

Route occlusion method need to confirm

whether the signal lamp is green or not only,

without any telephone communication.

The schematic using route occlusion method

and telephone occlusion method to organize

trains is shown in figure 1.

Yellow Green RedTwo display
signal machine

Three display
signal machine

A B C

train

SCA SCB SCC

XCCXCBXCA

SQ1 SQ2
SQ3

XQ1XQ2XQ3

Route Occlusion

Telephone
Occlusion

 Figure 1 Schematic of route occlusion and

telephone occlusion

SCA,SCB,SCC — Respectively represent

the ascending signal machine to get out of the

station of A,B and C.

SQ1,SQ2,SQ3—Respectively represent the

protective signal machine of the demarcation

(DOI Reference Number: 10.18293/SEKE2015-048)

732

http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6

point of ascending interval.

 XCA,XCB,XCC—Respectively represent

the descending signal machine to get out of the

station of A,B and C.

XQ1,XQ2,XQ3 — Respectively represent

the protective signal machine of the demarcation

point of descending interval.

Among which SQ3, XCC also play a role of

protective signal machine before turnout.

In actual situation, the number of trains

with route occlusion method is at least twice as

much as telephone occlusion method. And if the

number of protective signal machine between

two adjacent stations is n (n>0), n+1 trains can

be accommodated to travel in theory between the

two adjacent stations. However, telephone

occlusion method is only able to accommodate

one train in any situation. Compared to the

phone occlusion method, the advantage of route

occlusion will be bigger and bigger along with

the length of two adjacent stations.

B. Time Petri Net Modeling

We may get some conclusion from the

above analysis that the number of trains that can

be accommodated between two adjacent stations

with route occlusion method is more than

telephone occlusion method. But it is essential

for the difference of the number of trains passing

through the same station within a certain time

between route occlusion method and telephone

occlusion method to establish a model of time

petri net. The time petri net of route occlusion

method and telephone method are as follows:

Figure 2 Time petri net of telephone occlusion method

Figure 3 Time petri net of route occlusion method

Table 1 Definitions of some signs of telephone occlusion

place（P） transition（t）

P1：The train is stopping and

waiting for passengers to get

on and off.

P2 ： The anterior attendant

received ask for starting train

and getting access to the

station.

P3：The anterior station’s line

is free.

P4：The receiving route is

ready.

P5：Mark of allowing train to

access.

P6：Symbol of opening signal.

P7：The train is waiting for

starting.

P8：Symbol of closing signal.

P9：Starting the train.

P10：The train travel into

main rail line.

P11：The interval of two

adjacent stations is idle.

t1: The attendant of rear

station ask to anterior

station for starting the

train into the interval.

t2: The attendant of

anterior station check if

the line is free.

t3: The attendant of

anterior station

accomplished the check.

t4: The attendant of rear

station light the signal

machine.

t5: Closing the door and

starting the train.

t6: The train get out of

the rear station.

733

Table 2 Definitions of some signs of route

occlusion

place（P） transition（t）

P1：The train is stopping

and waiting for passengers

to get on and off.

P2：Section idle.

P3：Line idle.

P4 ： The sign of route

locking.

P5：The sign of route open.

P6 ： The sign of signal

closing.

P7：The train wait to start.

P8：Starting the train.

P9：The train travel into the

first interval of line.

P10：The symbol of the

train has started；

P11：A line seizure.

t1: The system

automatically check interval

occlusion.

t2: Locking approach.

t3: Open the signal

machine.

t4: Start the vehicle and

enter the route. t5: Close the

door and start the vehicle.

t6: Unlock the approach.

V. Conclusion

This article analyzed the different features

between the two degraded mode of urban rail

transit signal system, telephone occlusion

method and route occlusion method, discovering

that the route occlusion is able to accommodate

more trains in one section of two adjacent

stations than telephone occlusion method

through simulating and depicting the different

mode to organize trains. The protective signal

machine is constrained by the curve line and

climatic, which may conduct accidents that the

train operators drive into protective area

unexpectedly. Therefore, the position of

prospective signal machine should be placed

reasonably, for instance, increasing the repeating

signal.

ACKNOWLEDGMENT

This work was supported by the Beijing

Postdoc Program (2014ZZ-64).

References
[1] A. Sahraoui, H. Atabakhche, M. Courvoisier, and R.

Valette, Joining Petri nets and knowledge based
systems for monitoring purposes[C]. in Proc. IEEE
Robotics and Automat. Conf., Raleigh,
NC,1987,1861-1867.

[2] M. C. Zhou, F. DiCesare, and A. A. Desrochers, A
top-down modular approach to synthesis of Petri net
models for manufacturing systems[C] in Proc. 1989
IEEE Robotics and Automat. Conf., Scottsdale, AZ,
May 1989, 534-539.

[3] Huifang Li, Renhou Li. Studies about Schedulability
Analysis of Timing Constraint Petri Nets [J]. Computer
Science, 2000, 27(3).

[4] Antonio Cerone, Andrea Maggiolo-Schettini. Tutorial
Time-based expressivity of time Petri nets for system
specification [J]. Theoretical computer Science,
1999(216).

[5] Woei-Tzy Jong, Yuh-Shin Shiau, Yih-Jen Horng,
Hsin-Horng Chen, Shyi-Ming Chen.Temporal
Knowledge Representation and Reasoning Techniques
Using Time Petri Nets[J].IEEE transactions on systems,
man, and cybernetics. Part B, Cybernetics, 1999, 29(4).

[6] Wei Sheng-jun, Hu Chang-zhen, Sun Ming-qian.
Method of Dynamic Knowledge Representation and
Learning Based on Fuzzy Petri Nets [J].Journal of
Beijing Institute of Technology, 2008, 17(1).

[7] Jia Lixin, Xu Junyi, Ru Feng. Fuzzy Petri Net Based
Formalized Reasoning Algorithm with
Applications[J].Journal of Xi'An Jiao Tong University,
2003, 37(12).

[8] Song Yu-bo, Jiang Zhao-yuan, Mu Hai-bo. Algorithm
for Seeking the Minimal Cost and Maximal Flow
Based on Petri Net[J].Journal of Lanzhou Jiaotong
University, 2011, 30(3).

[9] Li Peng, Li Huimei. Research on Efficency and Safety
of Urban rail Transit with downgrade[J].China Science
& Technology Panorama Magazine, 2011(9).

[10] Li Yuhui. Application of Telephone Occlusion Method
in Train Operation Organization of Metro [J].Modern
Urban Transit, 2010(2).

[11] Zhang Yonggai, Zeng Haijun.Call blocking method in
Metro downgraded security risks in operation and
Countermeasures[J]. Shangpin yu Zhiliang, 2013(1).

[12] Zhou Mengxiang. City track traffic organization method
based on telephone occlusion [J].Technology And Life,
2011(5).

[13] Jiang Zhibin, Ji Tingting. URT Train Regulation
Strategy Based on Passenger Flow Influence[J].Urban
Mass Transit, 2014, 17(1).

[14] Yan Dong. Discussion on the premise of improving
telephone occlusion to ensure the safety of driving
efficiency [J]. Chengshi Jianshe Lilun Yanjiu, 2012(7).

[15] Xie Bin, Zhou Rui, Laiqi. Optimization of city rail
traffic telephone occlusion method[J].transportation
Enterprise Management, 2012, 27(4).

[16] Merlin P.M., A Study of the Recoverability of
Computing Systems. Irvine: Univ. California, PhD
Thesis, 1974. Available from ANN Arbor: Univ.
Microfilms, No.75-11026.

[17] ZHANG Xiao-hui, HE Jie, SUN Jing , ZHANG Di. The
reliability analysis of the subway signal system based
on Petri Nets [J].SHANDONG JIAOTONG KEJI,
2009(4).

[18] ZHONG WEN YAN. Modeling and Analysis for
Railway Signaling System with Petri Nets.
[D].Southwest Jiaotong University , 2005.

[19] Fu Jiehui. Research on Fault Diagnosis Methods Based
on Petri Net [D].Southeast University, 2004.

734

Modeling China Metro Train Route Occlusion Operation

Method Based on Time Petri Nets

Ye Zhang1,Yatao Wang2, Gang Wang2, Jian Sun2

This demo explains methodology of

the Route Occlusion Method (ROM) and

Improved Route Occlusion Method

(IROM) work. The main idea of IROM

is an independent protection system

which embedded in the basic wayside

signal system. It’s mainly function is

checking and confirming each train’s

position.

The fundamental workflow of ROM

is as follows,

Firstly, a train stops at the platform

and waits for passengers to get off or

aboard. The signal system locks

switches at the same time if front section

is empty. Secondly, the train starts when

signal light changes to green. It needs

three factors to start the train. They are

signal machine turning to green, front

section being empty and switches being

locked. Thirdly, all the equipment of

signal system return to initial state after

the train leave off the block section.

A pivotal difference of IROM

compared with ROM is that the train’s

position checking results of protection

system play as a key precondition to

start next train. In this case, IROM

prevents train from start when signal

machine turn to green once any signal

equipment fail to work. It is pointed out

that the checking system is very useful

when signal system converts to degraded

mode.

735

1

System Architecture of a Train Sensor Network for
Ubiquitous Safety Monitoring

Guoqiang Cai1, Limin Jia1, Ji’an Sun1,
Kun Zhang1,Shuai Feng1,Mingming Zheng1

State Key Laboratory of Rail Traffic Control and Safety,
Beijing Jiaotong University, Beijing, 100044, China1

MengChu Zhou2

Department of Electrical and Computer Engineering, New
Jersey Institute of Technology, Newark, NJ 07102, USA2

Guoqiangcai@163.com

ABSTRACT—Train safety monitoring and fault diagnosis are
critically important because of the disastrous results caused by
train collisions and derailments. Train safety protection sensors
network is capable of autonomously monitoring the working
condition and actively control faults. A number of strategically
placed sensors in the vehicles form a network that can monitor
various vital parameters and provide real-time prompt to train
driver and dispatcher. Designing such networks faces a number
of challenging tasks, as one needs to address some conflicting
requirements for quick diagnosis, collaborative decision making,
achieving high precision and reliability. This paper presents an
on-line Train Safety Sensor Network (TSSN) architecture,
discusses its hardware and software structure for ambulatory
failure status monitoring. The network consists of multiple
sensor layers that monitor train’s electrical and mechanical
activities, a train data center and a ground data analysis server.
The server implements fault diagnosis based on a Fault Tree
Analysis method (FTA). The results shows that the sensor
network contributes to higher train safety guarantee.
Keywords-Train safety, Sensor network, FTA

I. Introduction
Real-time train safety monitoring is a key technology

in helping proactive and affordable train healthcare. It
allows workers to continuously monitor changes in vital
signs and provide feedback to improve maintenance
schedule. Recent technological advances in sensor
networks enabled the design and proliferation of wireless
sensor networks capable of autonomously exerting early
control-related parameters under safety thresholds,
preventing some otherwise safe cases from “developing”

into dangerous ones. The systems can early alert
maintenance personnel with a diagnostic procedure via a
friendly user interface and optimal supervised recovery
adhering to repair standards and guidelines. Critical
development in a train sensor network is data acquisition,
wireless communication and vehicle reliability analysis.
However, train faults resulting in fatal accidents
frequently happen in the entire world. Real-time train
working condition monitoring and systematical analysis
are challenging in a transportation domain. 

During the last few years there has been a significant
increase in the number and variety of train monitoring

 DOI reference number: 10.18293/SEKE2015-035

devices and systems. However, their acceptance is limited
due to the following important restrictions. Traditionally,
they are used to collect data only. Data processing and
analysis are performed offline, making them impractical
for continual monitoring and early detection of degraded
components in a train. In addition, their individual sensors
often operate as stand-alone systems and usually do not
offer flexibility and integration with a networks. At
present, train safety network have some applications to
multifunction vehicle buses[4]. A navigation and
communication monitoring system of space-earth
integration for railway safety based on Chinese Area
Positioning System (CAPS), can locate a train and
communicate its positioning data to the monitoring center
[2]. Accidents may stem from decisions and actions taken
at times and places quite distant from their final location
[1,3,5].

This paper proposes a TSSN architecture. It
implements a train-ground wireless on-line tele-
monitoring system. It consists of in-train physiological
sensors that monitor train health, in-train datacenter and
ground server. We describe the hardware and software
organization of TSSN. The result of an example shows
that the TSSN is practical and meaningful for qualitative
and quantitative reliability analysis and useful in practice.

II. System Architecture
A train is a sophisticated mechanical-electrical

system many researchers have devoted their efforts to its
safety monitoring. It consists of several vehicles. Vehicle
faults are the biggest accident source in rail transportation.
For example, ill-function of its door system can lead to
sudden train braking, thereby resulting derail accident.

Our work intends to conduct train safety monitoring.
The monitoring content is composed of the running
condition of vehicles and vehicle loading and
infrastructure conditions. Each vehicle itself records its
working states and stores in vehicle diagnosis node
according to a time sequence. Several train data centers
send data to Ground Data Center (GDC) by wireless
communication channel. GDC synthesizes all of
monitoring information based on certain criteria and

736

http://www.njit.edu/
http://www.njit.edu/
mailto:Guoqiangcai@163.com

2

decision making methods, provides timely diagnosis
results to avoid an accident and predicts hidden dangers.
The TSSN architecture and decision making process are

show in Figure 1.

IP

Antena

Vehicles

Train
Device

on-Vehicle
and Ground

 Communication
Channel

Ground Device

Signal
Node

Bogie
Node

Body
Node

...
Integrate
interface

Vehicle Node n

Train Data Center

Wimax/Mcwill
Communication Station

Unit

Ground Data Center
Dispatcher Human
Machine Interface

Antena

Vehicle Node 1

Driver

Figure 1. Proposed system architecture

 The key technology of TSSN uses distributed sensors
to collect online data. TSSN integrates vehicles’

information addressing different aspects of inter-vehicle
connection, builds an available network structure, a
circulation mechanism, a diagnosis data fusion interface.

III. System Reliability Analysis of TSSN
The most important function of TSSN is reliability

analysis. For critical components, failure rates of events
are calculated via FTA models.

A. FTA Model and State Transfer Algorithm
The events in a fault tree model include basic events,

intermediate events and top event. All the events have
only two states: failure or normal. The corresponding
probabilities are a failure rate and a success rate whose
corresponding state values are expressed by 0 and 1.

The codes according with the basic events are in
Table 1, the Instantaneous Failure Rate data are collected
from Shanghai Metro historical maintain records.

Table 1. Failure modes and their characteristics

Code Name Instantaneous Failure Rate
T Door System Open Failure 0.002707089
X1 Speed Sensor 1 0.001152
X2 Speed Sensor 2 0.001152
X3 Speed Sensor 3 0.001152
X4 Speed Sensor 4 0.001152
X5 Open / Close Button 0.0005
X6 EDCU Failure 0.000813

737

3

X7 Open / Close Solenoid Valve 0.000356
X8 Emergency Unlocking Handle 0.00125
X9 Unlock Solenoid Valve 0.000749
X10 Unlock Signal 0.000962
X11 Screw / Nut Failure 0.0001
X12 Rail Choked 0.00022
X13 Rubber Pad Damage 0.0004
X14 Motor Failure 0.000058
X15 Coupling Failure 0.00025
W1 Speed Sensor Failure 7.944E-06
W2 Unlock Failure 9.362E-07
W3 Auto Unlock Failure 1.203E-06

B. Statistical Simulation
The simulation process is implemented in C + +.

After 10,000 simulation runs, a series of simulation data
are obtained. Then the processing results are displayed in
Figure2.

Figure 2．Density curve of failure distribution

IV. Conclusions
In this paper we describe both hardware and

software architecture of TSSN. The architecture leverages
off-the-shelf commodity computing platforms. The
reliability of application and simulation software
deployed upon real-time operating system for embedded
sensor networks. TSSN promise a ubiquitous monitor
vital working condition parameters. It provides a shift
from passive failure management toward more proactive
preventive accident care and reduces failure occurrence
frequency.

Acknowledgment
This work was supported by the National Science
Foundation of China under grant number 863 Rail
Safety Early-warning and Guarantee Technologies
Program (2012AA112403)(2011AA110501).

References
[1] Hale, A.R. Railway Safety Management: the challenge

of the new millennium, Safety Science Monitor. 4(1),
pp. 1-15, 2000.

 [2] Hu, Z.Q., Cui, J.X., Zhang, J., Zhang, L.R, and Lv,
Ch. Railway Safety Monitoring System Based on
CAPS. Proceedings of 2013 Fifth International
Conference on Measuring Technology and
Mechatronics Automation. pp. 838-40, HongKong,
Jan 16-17 2013.

 [3] Reason, J. Managing the Risks of Organizational
Accidents. Ashgate.1997.

 [4] Sun, Y. and Li, X. Design of safety monitoring
system of locomotive network based on
multifunction vehicle bus, Railway Computer
Application, 16(4), pp. 20-24, Apr. 20 2007.

 [5] Turner, B.A. and Pidgeon, N.F. Man-made disasters:
why technology and organizations (sometimes) fail.
Safety Science 34 pp. 15-30, 2000.

738

System Architecture of a Train Sensor Network for

Ubiquitous Safety Monitoring

Guoqiang Cai1, Limin Jia1, MengChu Zhou2 , Ji’an Sun1, Kun Zhang1,Shuai Feng1,Mingming Zheng1

Train safety monitoring and fault

diagnosis are critically important because

of the disastrous results caused by train

collisions and derailments. Train safety

protection sensors network is capable of

autonomously monitoring the working

condition and actively control faults.

Real-time train safety monitoring is a key

technology in helping proactive and

affordable train healthcare. It allows

workers to continuously monitor changes

in vital signs and provide feedback to

improve maintenance schedule. Recent

technological advances in sensor

networks enabled the design and

proliferation of wireless sensor networks

capable of autonomously exerting early

control-related parameters under safety

thresholds, preventing some otherwise

safe cases from “developing” into

dangerous ones.

Our work presents an on-line Train

Safety Sensor Network (TSSN)

architecture, discusses its hardware and

software structure for ambulatory failure

status monitoring.

TSSN can early alert maintenance

personnel with a diagnostic procedure via

a friendly user interface and optimal

supervised recovery adhering to repair

standards and guidelines. TSSN

promise a ubiquitous monitor vital

working condition parameters. It

provides a shift from passive failure

management toward more proactive

preventive accident care and reduces

failure occurrence frequency. FTA model

and simulation analysis show that TSSN

contributes to train system reliability

analysis.

739

Agile Practices in Maturity Model for Testing: an
Experience Report

Ana Paula C. C. Furtado, Suzana
Sampaio1,2

Informatics Center - CIn
1Federal University of Pernambuco

Recife, PE, Brazil
{apccf, scbs2}@cin.ufpe.br

Ermeson Andrade
2Federal Rural University of

Pernambuco
Recife, PE, Brazil

ermeson@deinfo.ufrpe.br

Ivaldir de Farias Junior, Marcos
Wanderley

3SOFTEXRECIFE
Recife, PE, Brazil

{junior, marcos}@recife.softex.br

Abstract—Software testing is an important tool for ensuring

that software products produced and launched on the market
reach the appropriate quality standards. Testing maturity models
such as MPT.BR or TMMI, appear in the software scenario as a
way to support introducing elements that are essential for
developing the discipline of software testing within organizations.
Together with this reality, it is observed that there is a strong
trend towards using agile methods in software development.
Therefore, this paper presents an experience report on the use of
agile practices together with MPT.BR.

Keywords— software testing, maturity models, agile practices.

I. INTRODUCTION
In today’s context of software development, given the

increase in the demand for products and the reduction in the
number of qualified personnel to develop them, quality is a
key concept in strategies for winning a share of this market. In
the broad context of software quality, one of the common
characteristics observed is that it is essential for the
specification given to be adequate and in accordance with
clients’ needs. Hence, testing software before delivering
products to clients is one of the ways to achieve quality.

In this context, maturity models under test, such as MPT
[1], TMM [2] and TMMI [3], are guides that assist
organizations to introduce the essential elements for the
development of the discipline of testing, given that it is not
always known where to begin to define a testing process.
Agile methods, for their part, appear in the software setting as
an alternative to software development, which is faster and
more readily adaptable to the client´s needs. The practices
arising from this context are also instantiable for testing
processes, which should be interpreted as if one can map the
concepts of agility for testing activities in the software
development scenario.

Therefore the aim of this paper is to present an experience
report on how some process areas of MPT.BR were
implemented together with agile methods based on data
collected from implementing the model in 27 software
engineering organizations over the last 4 years.

II. EXPERIENCE REPORT
This Section describes an experience report based on the

experience of implementing MPT.BR in various organizations
all over Brazil, in which agile practices were adopted in the
testing environment. Table I shows the mapping of the process
areas in agile implementations of MPT.BR.

TABLE I. AGILE IMPLEMENTATION IN MPT.BR

Process
Area Practices Agile Implementation

GPT

GPT4 Scrum Taskboard, Kanban Board, Sprint
Backlog, Improvement Backlog

GPT5 Planning Poker, Ideal Days, Relative
Sizing

GPT6 Short Iterations, Sprints

GPT9 Daily Meetings to Identify Risks

GPT13 Agile Metrics, such as Sprint Burndown
Chart

GPT16,
GPT18

Daily Meetings, Sprint Review,
Retrospective

GPT17 Continuous Feedback, Client
Collaboration

GPT19,
GPT20 Daily Meetings

PET PET1,
PET2

Test Driven Development – TDD
Behavior Driven Development - BDD

GRT GRT1 User Stories,
Backlog Item

FDT FDT3 Sprint Review
Restrospective

GDQ GDQ2 Daily Meetings

MAT
MAT1 Agile Metrics, such as Sprint Burndown

Chart
MAT4 Daily Meetings, Restrospective

TES
TES3 Pair Programming

Peer Review

TES4 Daily Meetings

GDD GDD1 Daily Meetings, Retrospective

AET
AET1
AET2
AET3

Test Driven Development – TDD
Behavior Driven Development - BDD

740

mailto:@cin.ufpe.br
mailto:ermeson@deinfo.ufrpe.br
mailto:@recife.softex.br

The details of how agile practices were mapped to the
process areas can be observed as described below:

 GPT: agile practices were used to introduce the
concept of test sprints, in which the requirements to be
tested are arranged in backlog and made visually
available using scrum boards (or kanban boards).
moreover, planning poker, relative sizing and ideal
days can be used as techniques for estimating the size
of the stories to be tested, particularly as a metric so as
to construct sprint burndown, team velocity, lead time,
etc. Daily meetings were introduced to monitor the
project and as a mechanism to identify and stay
abreast of project risks.

 PET: test driven development (TDD) or behavior-
driven development (BDD) are techniques that could
be used to identify the project's test cases and satisfy
the demand of the process area.

 GRT: instead of formal requirements, the scope of
projects could be organized using user stories that are
part of the project backlog.

 FDT: during the sprint review, the tested items can be
packaged so they can be delivered and the test
environment can be clean, thus satisfying part of what
the test closure process area requires. In addition, the
practice of retrospective adds on the lessons learned,
thus bringing an implemented agile practice to FDT.

 GDQ: for this process area, the practice of daily
meetings can be implemented to include the reporting
of items on the quality of the project.

 MAT: the agile metrics suggested by scrum, such as
burndown, velocity, and lead time can be used as an
option for the indicators of the test project. In
addition, the daily meetings and retrospectives can be
used to report on these results.

 TES: the static test can be conducted by pair
programming, where not only the revision of the code
developed is observed but also the dissemination of
knowledge. In addition, the daily meetings can be
used as a moment to analyze the data from the reviews
and to standardize communication with the team.

 GDD: the daily meetings and retrospectives can also
be used to identify the root causes of the defects
found.

 AET: the test can be automated based on the BDD and
TDD techniques, besides which automating the test
itself is already considered the introduction of agile
design practices.

A. MPT.BR AGILE CERTIFIED ORGANIZATIONS
Based on the results of the current implementations, the

consolidated situation is that, of a total of 16 existing process
areas in MPT.BR, so far 10 have been implemented using
agile methodologies, i.e. 63% of the model has already been
instantiated in an agile way. These data were obtained by

analyzing the implementation of MPT.BR in the 27 companies
that have been evaluated between 2010 and 2014.

The number of implementations with agile methodologies
(16) is greater than the number of companies that have
implemented it using the traditional method (11), which is
another indication that the current trend of software
development is to use agile methodologies. The largest
number of evaluations so far is at the first level of maturity
and 75% of companies have also used agile methods.

III. CONCLUSION AND FUTURE RESEARCH STUDIES
This article presented a theoretical framework for agile

methodologies and how these methodologies were instantiated
in conjunction with a testing maturity model.

The use of agile methods has been observed as a trend in
the area of software development, and this can also be
observed when the aspect of software development is directly
related to the testing processes of a given organization.

From the data collected from the assessments of the
MPT.BR from January 2010 until April 2014, it was observed
that most of the companies evaluated made use of agile
methodologies when instantiating their processes. It was also
observed that the use of agile methods in conjunction with the
testing maturity model is not restricted to how large or small
an organization is because it was conceived in small, medium
and large companies.

Therefore, based on the results obtained so far, it is
predicted that this study can be complemented by the
following future studies:

 Seeking ways to conduct Non-Functional Testing of
agile ways to support the implementation of the TNF -
Non Functional Testing process area;

 Seeking agile practices to carry out the process area of
CEP - Statistical Control of Processes;

 Enhancing the automation of the tests over all process
areas and maturity levels of MPT.BR in order to
maximize the results obtained; and

 Understanding the reasons that lead an organization to
choosing either an implementation with a traditional
approach or an agile approach.

References
[1] A. Furtado, M. Gomes, E. Andrade, I. de Farias Junior (2012). MPT.BR:

A Brazilian Maturity Model for Testing Published in: Quality Software
(QSIC).

[2] E. Veenendaal and R. Swinkels (2002) Guidelines for Testing Maturity.
Available at http://goo.gl/0n5d3V captured 26/04/2014.

[3] E. Veenendaal(2012). Test Maturity Model Integration Release 1.0.
TMMi Foundation, Ireland. Available at
www.tmmifoundation.org/downloads/TMMi/TMMi%20Framework.pdf
captured 26/04/2014.

741

http://goo.gl/0n5d3V
http://www.tmmifoundation.org/downloads/TMMi/TMMi%20Framework.pdf

SEKE2015 Authors’ Index

Authors’ Index

Abou Khaled, Omar 445
Abran, Alain 158
Abrantes, Joilson 359
Abreu, Fernando 279
Adam, Sebastien 158
Adjoyan, Seza 225
Adornes, Daniel 603
Affonso, Frank José 24
Aguiar, Rui 195, 353
Akram, M.Usman 260
Aktouf, Oum-El-Kheir 74
Alencar, Lucas Andre 238
Alencar, Paulo 644
Almeida, Eduardo 680
Almeida, Hyggo 122
Alshaikh, Zeyad 676
Alvares, Luis Otavio 238
Ando, Reou 524
Andrade, Aline 542, 609
Andrade, Ermeson 717
Anvik, John 435
Aparecida de Almeida Ribeiro, Angélica 449
Araujo Ramos, Felipe Barbosa 99
Araujo Soares, Gustavo 99
Ariss, Omar 405
Assunção, Joaquim 565
Ayaz, Sadaf 260

Bagheri, Ebrahim 439
Barbosa Araújo Ramos, Felipe 93
Barbosa, Simone 13
Barcellos, Monalessa P. 500
Barchet, Catherine 303
Behl, Sanjiv 202
Ben Abdallah, Hanêne 654
Ben Saber, Haifa 172
Bertuol, Gelson 217
Bezerra, Byron L. D. 689
Bhalerao, Deepti 110
Binder, Walter 579
Bogorny, Vania 238
Bonifacio, Rodrigo 597
Borisenko, Konstantin 699
Bouassida, Nadia 654

A-1

SEKE2015 Authors’ Index

Brito, Maria 176
Brondani, Camila 217
Bruegge, Bernd 146
Burnay, Corentin 325

Cagnin, Maria Istela 221
Cai, Guoqiang 713, 716
Cai, Xuyang 375
Cao, Bei 299
Carneiro, Glauco 279
Carranza Chávez, Bonnie G. 636
Castro, Thiago M. 597
Cavalcante, Emanuelle 479
Cavalcanti Furtado, Ana Paula 717
Cha, Sungdeok 81
Chang, Ling-Hua 202
Chang, Shi-Kuo 51, 57, 58, 273, 551
Che, Meiru 152
Chen, Deng 347, 455, 591
Chen, Haiming 207
Chen, Lin 128, 254, 261
Chen, Liqiong 569
Chen, Mei 87
Chen, Mingming 381
Chen, Wen-Hui 51
Chen, Xiangping 461
Chen, Yuting 315
Chen, Zhifei 128
Coelho, Roberta 359
Cois, Constantine Aaron 700
Colace, Francesco 58
Confort, Valdemar 506
Conte, Tayana 1, 13, 134, 479, 485, 670
Cowan, Donald 644
Cui, Li 207
Cunha, Francisco J. P. 644

de Paiva Oliveira, Alcione 449
Dias, Sergio M. 250
Ding, Junhua 573
Ding, Wei 387
Domingues, Anderson 211
Du, Miao 512
Du, Yuheng 411
Duran, Adolfo 293
Durelli, Vinicius 335

El Boussaidi, Ghizlane 158

A-2

SEKE2015 Authors’ Index

El-Kharboutly, Rehab 231
Eler, Marcelo Medeiros 335
Elloumi, Mourad 172
Endo, André Takeshi 335

Fagerholm, Fabian 393
Fakhfakh Akrout, Sana 704
Falbo, Ricardo De A. 500
Fan, Guisheng 104, 569
Fani, Hossein 439
Far, Behrouz 182
Farias, Kleinner 530, 640
Faulkner, Stéphane 325
Fernandes, Luiz Gustavo 603
Fernandes, Paulo 565
Fernandes, Ricardo 597
Ferreira, Bruna 485
Fiondella, Lance 189
Fonseca, Vińıcius S. 500
Fontoura, Lisandra 217, 303
Fontán, Carina 42
Francisco Da Matta Vegi, Lucas 449
Freitas, Elyda L. S. X. 689
Fukazawa, Yoshiaki 524, 615

Gao, Jerry 74
Gao, Kehan 423
Garćıa-Castro, Raúl 630
Gokhale, Swapna 189, 231
Gomede, Everton 309
Goncales, Lucian 640
Gonçales, Lucian 530
Gonçalves, Rafael 36
Goswami, Anurag 664
Greco, Luca 58
Gresse von Wangenheim, Christiane 36
Griebler, Dalvan 603
Gu, Junzhong 162
Guimarães, Everton T. 644
Gärtner, Stefan 399
Gómez-Pérez, Asunción 630

Hallstrom, Jason 411
Han, Ah-Rim 81
Hanai, Yoshiiku 524
Hazimeh, Hussein 445
He, Jia 66
He, Sen 676

A-3

SEKE2015 Authors’ Index

He, Xudong 559
Heinrich, Robert 399
Hesse, Tom-Michael 146, 399
Hirayama, Hideaki 701
Hori, Akihiro 623
Horita, Hiroki 701
Hu, Jianpeng 299
Hu, Qingcheng 244
Huang, Chao 364
Huang, Yuan 461
Huchard, Marianne 658
Hughes, Shiree 411

Inoue, Sakae 524

Jarkass, Iman 445
Jenkins, Marcelo 429
Jeong, Sehun 81
Jia, Limin 512
Jiang, Shujuan 347
José de S. Fonseca, Emı́lio 449
José, Bernardo 670
Ju, Jianping 591
Junior, Ivaldir 717
Jureta, Ivan 325
Jürjens, Jan 399

Kalinowski, Marcos 1
Kanazawa, Masanobu 524
Kapfhammer, Gregory 341, 709
Kaur, Arshinder 650
Kazman, Rick 700
Kchaou, Dhikra 654
Kholod, Ivan 699
Khoshgoftaar, Taghi 369, 423
Kinneer, Cody 341, 709
Krishna, Aneesh 650
Kuehlwein, Arthur 146
Kulesza, Uirá 597

Laboon, Bill 551
Lacher, Lisa 393
Landre, Geraldo 221
Laser, Marcelo 211
Ledur, Cleverson 603
Lee, Hyo-Cheol 30
Lee, Seok-Won 30, 168
Leite, Gustavo 24

A-4

SEKE2015 Authors’ Index

Lemma, Saverio 58
Lessa, Ivan 279
Li, Dong 207
Li, Xun 455
Li, Zhi 706
Liang, Peng 7, 387
Lima, Anderson 122
Lin, Jingjian 555
Lin, Lan 66
Lin, Wen-Chyi 51
Linpeng, Huang 299
Lisboa-Filho, Jugurta 449
Liu, Guoyuan 706
Liu, Su 559
Liu, Yan 87, 283, 331
Liu, Zunhe 331
Lombardi, Marco 58
Longo, Douglas Hiura 319
Lopes, Adriana 13
Lopes, Lucelene 565
Lownes, Nick 189
Lucena, Carlos J. P. 644
Luna, Alexandre 46
Luo, Ruici 116

M Subramanian, Chitra 650
Ma, Hui 512
Ma, Wanwangying 128
Ma, Yutao 381
Macedo Rodrigues, Elder 211
Maciel, Alexandre M. A. 689
Maciel, Rita Suzana Pitangueira 542, 609
Magalhaes, Ana Patricia 542, 609
MAHDI, Walid 704
Maia, Marcelo 368
Maldonado, José Carlos 134
Malucelli, Andreia 267, 490
Mani, Nariman 536
Maria Maciel Braga Villela, Regina 449
Marinho, Marcelo 46
Marques, Anna Beatriz 13
Martoglia, Riccardo 140
Matturro, Gerardo 42
McMinn, Phil 341, 709
Melgar, Andrés 636
Menolli, Andre 267, 490
Miranda de Barros, Rodolfo 309
Mokni, Abderrahman 658

A-5

SEKE2015 Authors’ Index

Monteiro, Miguel 279
Mostafa, Shaikh 676
Moura Costa, Antonio Alexandre 93, 99
Moura, Hermano 46
Mugellini, Elena 445
Murillo-Morera, Juan 429
Méndez Fernández, Daniel 1
Münch, Jürgen 393

Nakagawa, Elisa Yumi 24, 293
Nakagawa, Hiroyuki 473
Nakstad, Frederik 615
Namba, Katsushi 524
Napolitano, Amri 369, 423
Neto, Sebastiao M. 250
Noureddine, Hassan 445
Nygard, Kendall 393

Ohsuga, Akihiko 701
Oinuma, Morihide 623
Oliveira de Almeida, Hyggo 93, 99
Oliveira, Brauner R. N. 293
Oliveira, Diógenes R. F. 689
Oliveira, Edson 485
Oliveira, Flavio 211
Oliveira, Rafael A. P. 24
Oliveira, Toacy 530, 640
Ono, Hiroyuki 524
Ouyang, Zhaofeng 706

P Gopalan, Raj 650
Paech, Barbara 146, 399
Pagels, Max 393
Paiva, Debora 221
Palmeira, Alisson 597
Paraiso, Emerson 467
Park, Soojin 18
Park, Young B. 18
Pei, Xin 104
Peng, Li 455
Pereira, Oscar 195, 353
Perkusich, Angelo 93, 99, 122
Perry, Dewayne 152
Petriu, Dorina 536
Prikladnicki, Rafael 1, 670, 693

Qi, Zhengwei 364, 579
Qin, Yong 512

A-6

SEKE2015 Authors’ Index

Qu, Binbin 591

Radulovic, Filip 630
Raffaeta, Alessandra 238
Rahme, Jean 287
Raschetti, Florencia 42
Regateiro, Diogo 353
Reinehr, Sheila 267, 490
Renso, Chiara 238
Reussner, Ralf 399
Rivero Cabrejos, Luis Jorge Enrique 134
Rivero, Luis 479
Roehm, Tobias 146
Rolim de Sousa, Reudismam 99
Rolim, Reudismam 93
Ruhroth, Thomas 399

Sadjadi, S. Masoud 684
Sahar, Sadaf 260
Salehian, Soheil 182
Sampaio, Suzana 46, 717
Santoro, Flavia 506
Santos, Daniel Soares 293
Santos, Gleison 506
Santos, Marcos 176
Saputri, Theresia Ratih Dewi 168
Sato, Seiji 524
Schneider, Kurt 399
Scholl, Murillo 530
Scholl, Murilo 640
Schreiber, Daniel 267
Seriai, Abdelhak 225
Shen, Beijun 315, 375
Shen, Ning 417
Shorov, Andrey 699
Silva, Ivonei 680
Silva, Lúıs Alvaro 303
Silva, Williamson 485
Simões, David 195
Singh, Abhinav 664
Soares, Gustavo 93
Sone, Kazutaka 524
Song, Kwangsik 81
Song, Mark A. J. 250
Souza, Iuri 680
Souza, Paulo 176
Souza, Simone 176
Spinola, Rodrigo 1

A-7

SEKE2015 Authors’ Index

Studeny, Angelika 565
Su, Chao 585
Sun, Haiyang 364
Sun, Hao 520, 585

Tahara, Yasuyuki 701
Taheri, Mohsen 684
Takada, Shingo 623
Takahashi, Hitoshi 473
Tang, Antony 387
Tangari, Guilherme 368
Tanno, Haruto 623
Tasse, Josee 496
Terenciani, Marcelo 221
Thiago Da Silva, Rafael 309
Thomas, Christopher Lee 51
Tironi, Huander 490
TMAR, Mohamed 704
Trinkenreich, Bianca 506
Tsuchiya, Tatsuhiro 473
Tunnell, James 435

Uchida, Chihiro 524
Uehara, Tadahiro 74
Urtado, Christelle 658

Vacari, Isaque 693
Vale, Tassio 680
Valentim, Natasha 670
Van Vliet, Hans 387
Vauttier, Sylvain 658
Veronez, Mauricio 530
Veronez, Mauŕıcio 640
Viana, Marx L. 644
Vilain, Patŕıcia 319
Vilar, Rodrigo A. 122
Vincent, Jean-Marc 565
Vincenzi, Auri Marcelo Rizzo 134

Wagner, Stefan 1
Walia, Gursimran 393, 664
Wanderley Gomes, Marcos André 717
Wanderley, Gregory 467
Wang, Beibei 128
Wang, Haofen 375
Wang, Huanjing 369
Wang, Jingtao 273
Wang, Rongcun 347, 455, 591

A-8

SEKE2015 Authors’ Index

Wang, Shuohong 364
Wang, Xiaoyin 676
Wang, Yatao 712
Wang, Yongming 162
Wang, Yue 520, 585
Wang, Ziyuan 546, 705
Washizaki, Hironori 524, 615
Wei, Wei 455, 591
Woodside, Murray 536
Wright, Chris 341, 709
Wu, Di 254, 261

Xiang, Chengcheng 579
Xie, Kaibin 207
Xing, Chunxiao 244
Xu, Baowen 128, 254, 261
Xu, Dianxiang 417
Xu, Haiping 110, 287
Xu, Weifeng 405
Xu, Xinhui 244
Xu, Yangyang 87, 283
Xuan, Jifeng 555
Xue, Yufeng 66

Yamamoto, Mikihiko 524
Yan, Jun 555
Yang, Hui 7
Ye, Wei 116
Yu, Huiqun 104, 569
Yung, Duncan 58, 551

Zarate, Luiz E. 250
Zegarra, Emilio 273
Zeng, Qingkai 520, 585
Zhang, Dongmei 573
Zhang, Huaxi Yulin 658
Zhang, Shikun 116
Zhang, Tao 74
Zhang, Yanduo 455, 591
Zhang, Ye 711, 712
Zhang, Yong 244
Zhang, Yunpeng 417
Zhao, Shixiong 315
Zheng, Jiabin 283
Zhong, Hao 315
Zhou, Mengchu 713
Zhou, Yuming 254, 261
Zhu, Jiangang 375

A-9

SEKE2015 Authors’ Index

Zorzo, Avelino F. 211
Zou, Qiwen 461

A-10

SEKE2015 Program Committee Reviewers’ Index

Program Committee Reviewers’ Index

Silvia T. Acuña Universidad Autonoma de Madrid
Shadi Alawneh Faculty of Engineering & Applied Science, Memorial Univer-

sity
Taiseera Albalushi
Mark Allison University of Michigan-Flint
Izzat Alsmadi Boise State University
John Anvik Department of Computer Science, Central Washington Uni-

versity
Doo-Hwan Bae KAIST
Ebrahim Bagheri Ryerson University
Hamid Bagheri George Mason University
Xiaoying Bai
Purushotham Bangalore University of Alabama at Birmingham
Ellen Barbosa ICMC/USP
Fevzi Belli Univ. Paderborn
Ateet Bhalla Oriental Institute of Science and Technology, Bhopal, India
Swapan Bhattacharya
Alessandro Bianchi Department of Informatics - University of Bari
Ivo Bukovsky Department of Instrumentation and Control Engineering, Fac-

ulty of Mechanical Engineering, Czech Technical University in
Prague

Keith C.C. Chan The Hong Kong Polytechnic University
Chih-Hung Chang Department of Information Management, Hsiuping University

of Science and Technology
Kuang-Nan Chang
Shi-Kuo Chang Uinversity of Pittsburgh
Meiru Che The University of Texas at Austin
Shu-Ching Chen Florida International University
Wen-Hui Chen Taipei University of Technology
Zhenyu Chen Nanjing University
Stelvio Cimato Dipartimento di Informatica, Università degli Studi di Milano
Nelly Condori-Fernández VU University of Amsterdam
Fabio Costa Federal University of Goias
Maria Francesca Costabile Dipartimento di Informatica - University of Bari
Jose Luis de La Vara Simula Research Laboratory
Massimiliano Di Penta Dept. of Engineering - University of Sannio, Italy
Scott Dick University of Alberta
Junhua Ding East Carolina University
Fei Dong
Derek Doran Wright State University
Weichang Du University of New Brunswick
Philippe Dugerdil HEG-Univ. of Applied Sciences, Department of Information

Systems
Christof Ebert Vector
Ali Ebnenasir Michigan Technological University
Raimund Ege Northern Illinois University

A-11

SEKE2015 Program Committee Reviewers’ Index

Magdalini Eirinaki Computer Engineering Dept, San Jose State University
Omar El Ariss The Pennsylvania State University, Harrisburg
Omar Elariss
Mahmoud Elish King Fahd University of Petroleum & Minerals
Davide Falessi
Behrouz Far University of Calgary
Liana Fong IBM T. J. Watson Research
Fulvio Frati Università degli Studi di Milano
Jerry Gao San Jose State University
Kenan Gao
Felix Garcia Alarcos Research Group, Information and Systems Depart-

ment, Escuela Superior de informática, University of Castilla-
La Mancha

Ignacio Garćıa University of Castilla-La Mancha
Raúl Garćıa-Castro Universidad Politecnica de Madrid
Swapna Gokhale
Wolfgang Golubski Westsächsische Hochschule Zwickau
Desmond Greer
Christiane Gresse von Wangen-
heim

Federal University of Santa Catarina - UFSC

Katarina Grolinger UWO
Hassan Haghighi Shahid Beheshti University
Hao Han Kanagawa University
Xudong He Florida International University

Miguel Ángel Herranz UAH
Rubing Huang
Shihong Huang Florida Atlantic University
Bassey Isong
Clinton Jeffery University of Idaho
Yue Jiang Fujian Normal University
Jason Jung Yeungnam University
Selim Kalayci East Tennessee State University
Marcos Kalinowski Universidade Federal Fluminense
Eric Kasten
Taghi Khoshgoftaar Florida Atlantic University
Claudiu Kifor
Jun Kong North Dakota State University
Aneesh Krishna Curtin University, Australia
Vinay Kulkarni Tata Consultancy Services
Yu Lei University of Texas at Arlington
Meira Levy Shenkar Engineering, Design, Art
Bixin Li SOUTHEAST UNIVERSITY
Ming Li National Lab for Novel Software Technology, Nanjing Univer-

sity
Xin Li
Yuan-Fang Li Monash University
Zhi Li College of Computer Science and Information Technology,

Guangxi Normal University

A-12

SEKE2015 Program Committee Reviewers’ Index

Jianhua Lin
Frank Liu Missouri University of Science and Technology
Shih-Hsi Liu California State University, Fresno
Ting Liu Xi’an Jiaotong Univerisity
Xiaodong Liu Edinburgh Napier University
Yi Liu
Luanna Lopes Lobato Universidade Federal de Pernambuco - UFPE
Baojun Ma Beijing University of Posts and Telecommunications
Ivan Machado UFBA - Federal University of Bahia
Marcelo Maia Federal University of Uberlândia
Riccardo Martoglia FIM - University of Modena
Beatriz Maŕın Universidad Diego Portales
Santiago Matalonga Universidad ORT Uruguay
Hong Mei Peking University
Hsing Mei Fu Jen Catholic University
Andre Menolli Universidade Estadual do Norte do Paraná - UENP
Ali Mili NJIT
Alok Mishra Atilim University, Incek 06836, Ankara - Turkey
Manuel Mora Autonomous University of Aguascalientes
Kia Ng ICSRiM - University of Leeds
Allen Nikora
Edson Oliveirajr State University of Maringá
Xin Peng Fudan University
Oscar Pereira University of Aveiro
Dragutin Petkovic San Francisco State University
Antonio Piccinno University of Bari
Alfonso Pierantonio University of L’Aquila
Daniel Plante Stetson University
Rick Rabiser Christian Doppler Laboratory for Monitoring and Evolution

of Very-Large-Scale Software Systems, Johannes Kepler Uni-
versity

Filip Radulovic Ontology Engineering Group, Universidad Politécnica de
Madrid

Damith Rajapakse National University of Singapore
Rajeev Raje IUPUI
Henrique Rebêlo Federal University of Pernambuco - UFPE
Marek Reformat
Robert Reynolds Wayne State University
Ivan Rodero
Elder Rodrigues Pontifical Catholic University of RS - PUCRS
Daniel Rodriguez The University of Alcalá
Samira Sadaoui University of Regina
Seyed Masoud Sadjadi Florida International University
Farshad Samimi Enphase Energy
Claudio Sant’Anna Federal University of Bahia
Akila Sarirete
Andreas Schoenberger Distributed and Mobile Systems Group - University of Bam-

berg

A-13

SEKE2015 Program Committee Reviewers’ Index

Abdelhak Seriai Lirmm/université Montpellier 2
Michael Shin
Martin Solari Universidad ORT Uruguay
Qinbao Song Xi’an Jiaotong Unversity
George Spanoudakis Department of Computer Science, City University
Jing Sun The University of Auckland
Yanchun Sun School of Electronics Engineering and Computer Science,

Peking University, China
Gerson Sunyé Université de Nantes
Chuanqi Tao NJUST
Jeff Tian Southern Methodist University
Genny Tortora Department of Management and Information Technology -

University of Salerno
Genny Tortora
Mark Trakhtenbrot Holon Institute of Technology
Peter Tröger Hasso Plattner Institute, University of Potsdam
T.H. Tse The University of Hong Kong
Burak Turhan University of Oulu
Christelle Urtado LGI2P - Ecole des Mines d’Alès
Sylvain Vauttier LG2IP / Ecole des Mines d’Alès
Silvia Vergilio
Sergiy Vilkomir East Carolina University
Aaron Visaggio University of Sannio
Arndt Von Staa
Gursimran Walia North Dakota State University
Huanjing Wang Western Kentucky University
Jiacun Wang
Linzhang Wang Nanjing University
Xiaoyin Wang University of Texas at San Antonio
Ye Wang Zhejiang Gongshang University
Yong Wang
Hironori Washizaki Waseda University
Victor Winter University of Nebraska at Omaha
Guido Wirtz University of Bamberg
Eric Wong University of Texas ar Dallas
Franz Wotawa Technische Universitaet Graz
Dianxiang Xu Boise State University
Frank Xu
Haiping Xu University of Massachusetts Dartmouth
Zhiwei Xu University of Michigan - Dearborn
Guowei Yang Texas State University
Hongji Yang Bath Spa University
Huiqun Yu
Du Zhang California State University
Yong Zhang Web and Software Technology R&D center, Tsinghua Univer-

sity, Beijing, P.R.China
Yunpeng Zhang
Zhenyu Zhang

A-14

SEKE2015 Program Committee Reviewers’ Index

Jiang Zheng ABB Inc., US Corporate Research
Jianlin Zhu South-Central University for Nationalites
Xingquan Zhu Florida Atlantic University
Eugenio Zimeo University of Sannio

A-15

SEKE2015 External Reviewers’ Index

External Reviewers’ Index

Aktouf, Oum-El-Kheir
Aranda López King, Alejandrina Maŕıa
Ardito, Carmelo
Arimoto, Mauricio
Assunção, Wesley K. G.

Bai, Xiaoying
Barat, Souvik
Bhattacharya, Swapan
Bianchi, Alessandro

Cao, Buqing
Castro Llanos, John Wilmar
Courbis, Anne-Lise

Dittman, David
Du, Weichang
Duan, Feng

Fang, Chunrong
Fazelpour, Ali
Ferreira Aranda, Juan Marcelo
Freitas Duarte Filho, Nemesio
Fu, Yujian

Ghandehari, Laleh
Guizzo, Giovani

Ha, Hsin-Yu
Hao, Dan
Harispe, Sébastien
Hayrapetian, Allenoush
He, Tiantian
Hendijani Fard, Fatemeh
Huang, Tian
Hwa, Jimin

Kane, Shridhar

Lanzilotti, Rosa
Li, Bing
Li, Ge
Liu, Yuzhen

A-16

SEKE2015 External Reviewers’ Index

Macchi, Daŕıo
Malhotra, Ruchika
Marcolino, Anderson
Matturro, Gerardo
Mohamed, Emad Amin
Mokni, Abderrahman

Moraga, Ma Ángeles

Neves Esteca, Antonio Marcos
Nusayr, Amjad

Park, Jihun
Phadke, Aboli
Pouyanfar, Samira

Quintana, Gerardo

Rehman, Zobia
Rodŕıguez, Francy D.
Roychoudhury, Suman
Rybarczyk, Ryan

Schoenberger, Andreas
Seo, Dongwon
Shi, Qingkai
Shin, Donghwan
Sun, Chenglong
Sun, Xiaobing
Sunkle, Sagar

T. Geraldi, Ricardo
Teixeira, Leopoldo
Tian, Haiman
Tieke, He

Vessio, Gennaro

Wang, Jiacun
Wang, Yong
Wen, Wanzhi

Yang, Yimin

Zhang, Han
Zhang, Long
Zhang, Tao
Zhang, Wei
Zhang, Ye

A-17

SEKE2015 External Reviewers’ Index

Zhang, Zhiqiang
Zhao, Haiyan
Zhao, Junfeng
Zhou, Peiyuan

A-18

	full_back.pdf
	I. Introduction
	II. Scrum roles
	A. Product owner
	B. ScrumMaster
	C. Development Team

	III. Uruguay and its software industry
	IV. Research questions
	V. Data Collection
	VI. Data analysis
	A. The most valued soft skills a Product Owner must have.
	B. The most valued soft skills a ScrumMaster must have

	VII. Comparing the points of view of PO, SM and TM
	A. Comparing the points of view of product owners, scrum masters and team members about the most valued soft skills a Product Owner must have.
	B. Comparing the points of view of product owners, scrum masters and team members about the most valued soft skills a ScrumMaster must have.

	VIII. Conclusions and further work
	References

	I. 0BIntroduction
	II. 2BReliable and Secure Cloud Data Storage
	III. 3BErasure Codes and Reed-Solomon Coding
	A. 9BErasure Codes
	B. 10BReed-Solomon Coding for Cloud Based Storage

	IV. Optimal Number of Checksum Pieces
	A. 11BCalculating the Optimal Number of Checksum Pieces
	B. Distibution of Data and Checksum Pieces over CSPs

	V. 4Case Study
	VI. 5BConclusions and Future Work
	12BIn this paper, we addressed three major issues with cloud storage, namely reliability, security and performance. Instead of achieving data reliability using redundancy at the server side, we presented a reliable and secure cloud storage schema for end users. In our approach, we view multiple cloud storage services as virtual disks, and upload redundant data files into multiple cloud storages. The redundant data files are calculated using erasure codes techniques, which allow multiple failures of the data pieces. By forming an optimal problem for calculating the number of checksum pieces, we can achieve the best space efficiency in our approach. Furthermore, we divide the user data into pieces, and distribute them across multiple cloud services; therefore, no single CSP can understand the uploaded user data. As a result, our approach can effectively protect user data from unauthorized access in the cloud, and provide security at the software level for the end users. Finally, the experimental results show that due to concurrent data processing, our approach provides very good performance in file uploading and downloading, with the cost of minor overhead for encoding and decoding data.
	For future work, we will investigate possible ways to automatically select a suitable number of data pieces based on the network condition and the file size. We will consider other major aspects of cloud data, such as data integrity and confidentiality. For example, it would be feasible to adopt the digital signature technique to verify the integrity of the data stored in the cloud to ensure they were not altered by the service providers. Furthermore, when large cloud files are involved, the overhead for encoding and decoding may become a concern. To improve the overall performance in this case, we need to look into more advanced techniques for erasure codes, such as regenerating codes and non-MDS codes [3]. Finally, we will attempt to integrate our approach with cloud-based big data analysis for reliable and secure data stored in the cloud. This may also be considered as a worthy future direction.
	13B
	14BReferences

	. Introduction
	. Document and user profile analysis
	. Relevant document retrieval
	. Experimental Evaluation
	. Concluding remarks
	Introduction
	Background and Related Work
	Annotation Model for Decision Knowledge
	Evaluation
	Conclusion and Future Work
	Introduction
	Background: ADD management in LSD
	ADD Management Paradigms in GSD
	Product-based Paradigm (Product-based Structure / Federated Strategy)
	Process-based Paradigm (Process-based Structure / Client-Server Strategy)
	Release-based Paradigm (Release-based Structure / Incremental Strategy)

	Evaluation
	Research Questions
	Overview of the GSD projects
	Analysis
	Results
	Threats to Validity
	Construct validity
	Internal validity
	External validity

	Related Work
	Conclusions and Future Work
	References
	I. Introduction
	II. Rejuvenation of Cloud-Based Components
	III. Modeling and Analysis Using DFT
	A. Dynamic Fault Tree
	B. Modeling and Analysis Using DFT

	IV. Case Study
	V. Conclusions and Future Work
	References

	Introduction
	Background
	Establishing the Quality Model
	Quality Attributes Selection
	Metrics Definition

	Application of the Quality Model
	Learned Lessons and Discussions
	Conclusions
	References
	Introduction
	Context
	Problem and Research Question
	Contributions
	Structure of the paper

	Related Works and Definitions
	Exploratory Study - Empirical Design
	Procedure
	Assignment and Context
	Group Assignation
	Collecting Survey Data

	Subjects
	Methodological Notes

	Analysis of Results
	Quality Variables
	Quantity Variables
	Efficiency Variables

	Discussion
	Conclusions
	References
	I. Introduction
	II. Related Work
	III. Research Questions
	IV. Experimental Setups
	A. Data Collection
	B. Experiment Design
	C. Regression Models
	D. Evaluation Measures

	V. Experimental Results
	A. Answer to RQ1
	B. Answer to RQ2
	C. Threats to Validity

	VI. Conclusion and Future Work
	Acknowledgment
	References

	I. Introduction
	II. Background –NT Skills, Behavior Markers
	The first BM system, Line Operation Safety Audit (LOSA) is a very successful BM system that focuses on interpersonal communication, leadership, and decision making in the cockpit. Trained observers ride along in the cockpit and observe the flight crew...

	III. Behavior Marker System Development
	IV. Empirical Validation of Behavior Marker
	1) Software Factory Background
	2) Study Design
	Artifacts: Although the NTSA tool could be used to evaluate the NT skills of both individuals and teams, it was decided to test for team skills first. Because we were primarily interested in how the team member’s NT skills manifested when interacting...
	Experiment Procedure: Study steps as described below:

	V. Research Results
	VI. Threat to Validity
	VII. Conclusion And Future Work
	References

	Introduction
	Related Work in Empirical Research
	A Literature Review on Empirical Studies
	Paper Search and Selection Process
	Findings

	The CoCoME Platform
	Evolution Subject
	Evolution Scenarios
	Evolution Life-Cycle

	Lessons Learned
	Conclusion
	I. Introduction
	II. Peak analysis
	III. Choice of values for moving averages
	IV. Validation and discussions
	References

	Introduction
	Related Work
	The Proposed Domain-Specific Language
	Interface components and transformation rules
	Transformation Process

	Methodology
	Effort Evaluation
	Performance Evaluation

	Results
	Conclusions
	Acknowledgments
	References
	Introduction
	Literature Review
	Information Retrieval
	Query expansion
	Ontologies in IR

	Proposed Model for Information Retrieval
	Preprocessing Handler
	Expansion Handler
	Equivalence Handler
	Ambiguity Handler

	Domain Knowledge repository
	Documents Repository
	User Information Manager

	Prototype Implementation
	Results
	Discussion
	Conclusion and future works
	References
	I. Introduction
	II. The Quantitative Fuzzy Based Reasoning of Goals
	i) Identify the correlation between goals and soft goals in terms of fuzzy weights: The correlation between alternative options and leaf soft goals are assigned fuzzy weights and our representation is shown in TABLE 1. This contribution is referred to...
	i)
	i)
	ii) Assign weights to the leaf soft goals: The leaf soft goals are assigned weights in percentage from 0 to 100 based on their relative importance. The weight is referred to as ωL.
	iii) Calculation of the leaf soft goal score: For each alternative, the leaf soft goals are associated with a score showing its satisfaction level. The leaf soft goal score is represented by ,𝑆.L(A) and is computed by the equation 1 below:
	v) Selection of an alternative with the highest score: The scores are propagated backwards until we reach the soft goals that are top in the hierarchy. These soft goals are called top soft goals. These scores are compared to determine the best alterna...

	III. Simulation and Evaluation
	IV. Related Work
	V. Conclusion
	References

	Introduction
	Background
	Dedal a three-level architectural model
	Dedal formalization

	The evolution management model
	The architectural model
	The architectural change
	The evolution manager

	The generation process
	Problem formalization
	Implementation overview
	Evaluation

	Related work
	Conclusion and future work

	SEKE15_Proceeding_middle.pdf
	I. Introduction
	II. Scrum roles
	A. Product owner
	B. ScrumMaster
	C. Development Team

	III. Uruguay and its software industry
	IV. Research questions
	V. Data Collection
	VI. Data analysis
	A. The most valued soft skills a Product Owner must have.
	B. The most valued soft skills a ScrumMaster must have

	VII. Comparing the points of view of PO, SM and TM
	A. Comparing the points of view of product owners, scrum masters and team members about the most valued soft skills a Product Owner must have.
	B. Comparing the points of view of product owners, scrum masters and team members about the most valued soft skills a ScrumMaster must have.

	VIII. Conclusions and further work
	References

	I. 0BIntroduction
	II. 2BReliable and Secure Cloud Data Storage
	III. 3BErasure Codes and Reed-Solomon Coding
	A. 9BErasure Codes
	B. 10BReed-Solomon Coding for Cloud Based Storage

	IV. Optimal Number of Checksum Pieces
	A. 11BCalculating the Optimal Number of Checksum Pieces
	B. Distibution of Data and Checksum Pieces over CSPs

	V. 4Case Study
	VI. 5BConclusions and Future Work
	12BIn this paper, we addressed three major issues with cloud storage, namely reliability, security and performance. Instead of achieving data reliability using redundancy at the server side, we presented a reliable and secure cloud storage schema for end users. In our approach, we view multiple cloud storage services as virtual disks, and upload redundant data files into multiple cloud storages. The redundant data files are calculated using erasure codes techniques, which allow multiple failures of the data pieces. By forming an optimal problem for calculating the number of checksum pieces, we can achieve the best space efficiency in our approach. Furthermore, we divide the user data into pieces, and distribute them across multiple cloud services; therefore, no single CSP can understand the uploaded user data. As a result, our approach can effectively protect user data from unauthorized access in the cloud, and provide security at the software level for the end users. Finally, the experimental results show that due to concurrent data processing, our approach provides very good performance in file uploading and downloading, with the cost of minor overhead for encoding and decoding data.
	For future work, we will investigate possible ways to automatically select a suitable number of data pieces based on the network condition and the file size. We will consider other major aspects of cloud data, such as data integrity and confidentiality. For example, it would be feasible to adopt the digital signature technique to verify the integrity of the data stored in the cloud to ensure they were not altered by the service providers. Furthermore, when large cloud files are involved, the overhead for encoding and decoding may become a concern. To improve the overall performance in this case, we need to look into more advanced techniques for erasure codes, such as regenerating codes and non-MDS codes [3]. Finally, we will attempt to integrate our approach with cloud-based big data analysis for reliable and secure data stored in the cloud. This may also be considered as a worthy future direction.
	13B
	14BReferences

	. Introduction
	. Document and user profile analysis
	. Relevant document retrieval
	. Experimental Evaluation
	. Concluding remarks
	Introduction
	Background and Related Work
	Annotation Model for Decision Knowledge
	Evaluation
	Conclusion and Future Work
	Introduction
	Background: ADD management in LSD
	ADD Management Paradigms in GSD
	Product-based Paradigm (Product-based Structure / Federated Strategy)
	Process-based Paradigm (Process-based Structure / Client-Server Strategy)
	Release-based Paradigm (Release-based Structure / Incremental Strategy)

	Evaluation
	Research Questions
	Overview of the GSD projects
	Analysis
	Results
	Threats to Validity
	Construct validity
	Internal validity
	External validity

	Related Work
	Conclusions and Future Work
	References
	I. Introduction
	II. Rejuvenation of Cloud-Based Components
	III. Modeling and Analysis Using DFT
	A. Dynamic Fault Tree
	B. Modeling and Analysis Using DFT

	IV. Case Study
	V. Conclusions and Future Work
	References

	Introduction
	Background
	Establishing the Quality Model
	Quality Attributes Selection
	Metrics Definition

	Application of the Quality Model
	Learned Lessons and Discussions
	Conclusions
	References
	Introduction
	Context
	Problem and Research Question
	Contributions
	Structure of the paper

	Related Works and Definitions
	Exploratory Study - Empirical Design
	Procedure
	Assignment and Context
	Group Assignation
	Collecting Survey Data

	Subjects
	Methodological Notes

	Analysis of Results
	Quality Variables
	Quantity Variables
	Efficiency Variables

	Discussion
	Conclusions
	References
	I. Introduction
	II. Related Work
	III. Research Questions
	IV. Experimental Setups
	A. Data Collection
	B. Experiment Design
	C. Regression Models
	D. Evaluation Measures

	V. Experimental Results
	A. Answer to RQ1
	B. Answer to RQ2
	C. Threats to Validity

	VI. Conclusion and Future Work
	Acknowledgment
	References

	I. Introduction
	II. Background –NT Skills, Behavior Markers
	The first BM system, Line Operation Safety Audit (LOSA) is a very successful BM system that focuses on interpersonal communication, leadership, and decision making in the cockpit. Trained observers ride along in the cockpit and observe the flight crew...

	III. Behavior Marker System Development
	IV. Empirical Validation of Behavior Marker
	1) Software Factory Background
	2) Study Design
	Artifacts: Although the NTSA tool could be used to evaluate the NT skills of both individuals and teams, it was decided to test for team skills first. Because we were primarily interested in how the team member’s NT skills manifested when interacting...
	Experiment Procedure: Study steps as described below:

	V. Research Results
	VI. Threat to Validity
	VII. Conclusion And Future Work
	References

	Introduction
	Related Work in Empirical Research
	A Literature Review on Empirical Studies
	Paper Search and Selection Process
	Findings

	The CoCoME Platform
	Evolution Subject
	Evolution Scenarios
	Evolution Life-Cycle

	Lessons Learned
	Conclusion
	I. Introduction
	II. Background and Related Work
	III. The Method for Assessing eXperience (MAX)
	IV. Pilot Study and Initial Improvements on the MAX Method
	V. Conclusions and Future Work
	Acknowledgments
	References

	Introduction
	Related Work
	The Proposed Domain-Specific Language
	Interface components and transformation rules
	Transformation Process

	Methodology
	Effort Evaluation
	Performance Evaluation

	Results
	Conclusions
	Acknowledgments
	References
	Introduction
	Literature Review
	Information Retrieval
	Query expansion
	Ontologies in IR

	Proposed Model for Information Retrieval
	Preprocessing Handler
	Expansion Handler
	Equivalence Handler
	Ambiguity Handler

	Domain Knowledge repository
	Documents Repository
	User Information Manager

	Prototype Implementation
	Results
	Discussion
	Conclusion and future works
	References
	I. Introduction
	II. The Quantitative Fuzzy Based Reasoning of Goals
	i) Identify the correlation between goals and soft goals in terms of fuzzy weights: The correlation between alternative options and leaf soft goals are assigned fuzzy weights and our representation is shown in TABLE 1. This contribution is referred to...
	i)
	i)
	ii) Assign weights to the leaf soft goals: The leaf soft goals are assigned weights in percentage from 0 to 100 based on their relative importance. The weight is referred to as ωL.
	iii) Calculation of the leaf soft goal score: For each alternative, the leaf soft goals are associated with a score showing its satisfaction level. The leaf soft goal score is represented by ,𝑆.L(A) and is computed by the equation 1 below:
	v) Selection of an alternative with the highest score: The scores are propagated backwards until we reach the soft goals that are top in the hierarchy. These soft goals are called top soft goals. These scores are compared to determine the best alterna...

	III. Simulation and Evaluation
	IV. Related Work
	V. Conclusion
	References

	Introduction
	Background
	Dedal a three-level architectural model
	Dedal formalization

	The evolution management model
	The architectural model
	The architectural change
	The evolution manager

	The generation process
	Problem formalization
	Implementation overview
	Evaluation

	Related work
	Conclusion and future work

	SEKE15_Proceeding_middle.pdf
	I. Introduction
	II. Scrum roles
	A. Product owner
	B. ScrumMaster
	C. Development Team

	III. Uruguay and its software industry
	IV. Research questions
	V. Data Collection
	VI. Data analysis
	A. The most valued soft skills a Product Owner must have.
	B. The most valued soft skills a ScrumMaster must have

	VII. Comparing the points of view of PO, SM and TM
	A. Comparing the points of view of product owners, scrum masters and team members about the most valued soft skills a Product Owner must have.
	B. Comparing the points of view of product owners, scrum masters and team members about the most valued soft skills a ScrumMaster must have.

	VIII. Conclusions and further work
	References

	I. 0BIntroduction
	II. 2BReliable and Secure Cloud Data Storage
	III. 3BErasure Codes and Reed-Solomon Coding
	A. 9BErasure Codes
	B. 10BReed-Solomon Coding for Cloud Based Storage

	IV. Optimal Number of Checksum Pieces
	A. 11BCalculating the Optimal Number of Checksum Pieces
	B. Distibution of Data and Checksum Pieces over CSPs

	V. 4Case Study
	VI. 5BConclusions and Future Work
	12BIn this paper, we addressed three major issues with cloud storage, namely reliability, security and performance. Instead of achieving data reliability using redundancy at the server side, we presented a reliable and secure cloud storage schema for end users. In our approach, we view multiple cloud storage services as virtual disks, and upload redundant data files into multiple cloud storages. The redundant data files are calculated using erasure codes techniques, which allow multiple failures of the data pieces. By forming an optimal problem for calculating the number of checksum pieces, we can achieve the best space efficiency in our approach. Furthermore, we divide the user data into pieces, and distribute them across multiple cloud services; therefore, no single CSP can understand the uploaded user data. As a result, our approach can effectively protect user data from unauthorized access in the cloud, and provide security at the software level for the end users. Finally, the experimental results show that due to concurrent data processing, our approach provides very good performance in file uploading and downloading, with the cost of minor overhead for encoding and decoding data.
	For future work, we will investigate possible ways to automatically select a suitable number of data pieces based on the network condition and the file size. We will consider other major aspects of cloud data, such as data integrity and confidentiality. For example, it would be feasible to adopt the digital signature technique to verify the integrity of the data stored in the cloud to ensure they were not altered by the service providers. Furthermore, when large cloud files are involved, the overhead for encoding and decoding may become a concern. To improve the overall performance in this case, we need to look into more advanced techniques for erasure codes, such as regenerating codes and non-MDS codes [3]. Finally, we will attempt to integrate our approach with cloud-based big data analysis for reliable and secure data stored in the cloud. This may also be considered as a worthy future direction.
	13B
	14BReferences

	. Introduction
	. Document and user profile analysis
	. Relevant document retrieval
	. Experimental Evaluation
	. Concluding remarks
	Introduction
	Background and Related Work
	Annotation Model for Decision Knowledge
	Evaluation
	Conclusion and Future Work
	Introduction
	Background: ADD management in LSD
	ADD Management Paradigms in GSD
	Product-based Paradigm (Product-based Structure / Federated Strategy)
	Process-based Paradigm (Process-based Structure / Client-Server Strategy)
	Release-based Paradigm (Release-based Structure / Incremental Strategy)

	Evaluation
	Research Questions
	Overview of the GSD projects
	Analysis
	Results
	Threats to Validity
	Construct validity
	Internal validity
	External validity

	Related Work
	Conclusions and Future Work
	References
	I. Introduction
	II. Rejuvenation of Cloud-Based Components
	III. Modeling and Analysis Using DFT
	A. Dynamic Fault Tree
	B. Modeling and Analysis Using DFT

	IV. Case Study
	V. Conclusions and Future Work
	References

	Introduction
	Background
	Establishing the Quality Model
	Quality Attributes Selection
	Metrics Definition

	Application of the Quality Model
	Learned Lessons and Discussions
	Conclusions
	References
	Introduction
	Context
	Problem and Research Question
	Contributions
	Structure of the paper

	Related Works and Definitions
	Exploratory Study - Empirical Design
	Procedure
	Assignment and Context
	Group Assignation
	Collecting Survey Data

	Subjects
	Methodological Notes

	Analysis of Results
	Quality Variables
	Quantity Variables
	Efficiency Variables

	Discussion
	Conclusions
	References
	I. Introduction
	II. Related Work
	III. Research Questions
	IV. Experimental Setups
	A. Data Collection
	B. Experiment Design
	C. Regression Models
	D. Evaluation Measures

	V. Experimental Results
	A. Answer to RQ1
	B. Answer to RQ2
	C. Threats to Validity

	VI. Conclusion and Future Work
	Acknowledgment
	References

	I. Introduction
	II. Background –NT Skills, Behavior Markers
	The first BM system, Line Operation Safety Audit (LOSA) is a very successful BM system that focuses on interpersonal communication, leadership, and decision making in the cockpit. Trained observers ride along in the cockpit and observe the flight crew...

	III. Behavior Marker System Development
	IV. Empirical Validation of Behavior Marker
	1) Software Factory Background
	2) Study Design
	Artifacts: Although the NTSA tool could be used to evaluate the NT skills of both individuals and teams, it was decided to test for team skills first. Because we were primarily interested in how the team member’s NT skills manifested when interacting...
	Experiment Procedure: Study steps as described below:

	V. Research Results
	VI. Threat to Validity
	VII. Conclusion And Future Work
	References

	Introduction
	Related Work in Empirical Research
	A Literature Review on Empirical Studies
	Paper Search and Selection Process
	Findings

	The CoCoME Platform
	Evolution Subject
	Evolution Scenarios
	Evolution Life-Cycle

	Lessons Learned
	Conclusion
	I. Introduction
	II. Background and Related Work
	III. The Method for Assessing eXperience (MAX)
	IV. Pilot Study and Initial Improvements on the MAX Method
	V. Conclusions and Future Work
	Acknowledgments
	References

	Introduction
	Related Work
	The Proposed Domain-Specific Language
	Interface components and transformation rules
	Transformation Process

	Methodology
	Effort Evaluation
	Performance Evaluation

	Results
	Conclusions
	Acknowledgments
	References
	Introduction
	Literature Review
	Information Retrieval
	Query expansion
	Ontologies in IR

	Proposed Model for Information Retrieval
	Preprocessing Handler
	Expansion Handler
	Equivalence Handler
	Ambiguity Handler

	Domain Knowledge repository
	Documents Repository
	User Information Manager

	Prototype Implementation
	Results
	Discussion
	Conclusion and future works
	References
	I. Introduction
	II. The Quantitative Fuzzy Based Reasoning of Goals
	i) Identify the correlation between goals and soft goals in terms of fuzzy weights: The correlation between alternative options and leaf soft goals are assigned fuzzy weights and our representation is shown in TABLE 1. This contribution is referred to...
	i)
	i)
	ii) Assign weights to the leaf soft goals: The leaf soft goals are assigned weights in percentage from 0 to 100 based on their relative importance. The weight is referred to as ωL.
	iii) Calculation of the leaf soft goal score: For each alternative, the leaf soft goals are associated with a score showing its satisfaction level. The leaf soft goal score is represented by ,𝑆.L(A) and is computed by the equation 1 below:
	v) Selection of an alternative with the highest score: The scores are propagated backwards until we reach the soft goals that are top in the hierarchy. These soft goals are called top soft goals. These scores are compared to determine the best alterna...

	III. Simulation and Evaluation
	IV. Related Work
	V. Conclusion
	References

	Introduction
	Background
	Dedal a three-level architectural model
	Dedal formalization

	The evolution management model
	The architectural model
	The architectural change
	The evolution manager

	The generation process
	Problem formalization
	Implementation overview
	Evaluation

	Related work
	Conclusion and future work

	SEKE15_Proceeding_middle.pdf
	I. Introduction
	II. Scrum roles
	A. Product owner
	B. ScrumMaster
	C. Development Team

	III. Uruguay and its software industry
	IV. Research questions
	V. Data Collection
	VI. Data analysis
	A. The most valued soft skills a Product Owner must have.
	B. The most valued soft skills a ScrumMaster must have

	VII. Comparing the points of view of PO, SM and TM
	A. Comparing the points of view of product owners, scrum masters and team members about the most valued soft skills a Product Owner must have.
	B. Comparing the points of view of product owners, scrum masters and team members about the most valued soft skills a ScrumMaster must have.

	VIII. Conclusions and further work
	References

	I. 0BIntroduction
	II. 2BReliable and Secure Cloud Data Storage
	III. 3BErasure Codes and Reed-Solomon Coding
	A. 9BErasure Codes
	B. 10BReed-Solomon Coding for Cloud Based Storage

	IV. Optimal Number of Checksum Pieces
	A. 11BCalculating the Optimal Number of Checksum Pieces
	B. Distibution of Data and Checksum Pieces over CSPs

	V. 4Case Study
	VI. 5BConclusions and Future Work
	12BIn this paper, we addressed three major issues with cloud storage, namely reliability, security and performance. Instead of achieving data reliability using redundancy at the server side, we presented a reliable and secure cloud storage schema for end users. In our approach, we view multiple cloud storage services as virtual disks, and upload redundant data files into multiple cloud storages. The redundant data files are calculated using erasure codes techniques, which allow multiple failures of the data pieces. By forming an optimal problem for calculating the number of checksum pieces, we can achieve the best space efficiency in our approach. Furthermore, we divide the user data into pieces, and distribute them across multiple cloud services; therefore, no single CSP can understand the uploaded user data. As a result, our approach can effectively protect user data from unauthorized access in the cloud, and provide security at the software level for the end users. Finally, the experimental results show that due to concurrent data processing, our approach provides very good performance in file uploading and downloading, with the cost of minor overhead for encoding and decoding data.
	For future work, we will investigate possible ways to automatically select a suitable number of data pieces based on the network condition and the file size. We will consider other major aspects of cloud data, such as data integrity and confidentiality. For example, it would be feasible to adopt the digital signature technique to verify the integrity of the data stored in the cloud to ensure they were not altered by the service providers. Furthermore, when large cloud files are involved, the overhead for encoding and decoding may become a concern. To improve the overall performance in this case, we need to look into more advanced techniques for erasure codes, such as regenerating codes and non-MDS codes [3]. Finally, we will attempt to integrate our approach with cloud-based big data analysis for reliable and secure data stored in the cloud. This may also be considered as a worthy future direction.
	13B
	14BReferences

	. Introduction
	. Document and user profile analysis
	. Relevant document retrieval
	. Experimental Evaluation
	. Concluding remarks
	Introduction
	Background and Related Work
	Annotation Model for Decision Knowledge
	Evaluation
	Conclusion and Future Work
	Introduction
	Background: ADD management in LSD
	ADD Management Paradigms in GSD
	Product-based Paradigm (Product-based Structure / Federated Strategy)
	Process-based Paradigm (Process-based Structure / Client-Server Strategy)
	Release-based Paradigm (Release-based Structure / Incremental Strategy)

	Evaluation
	Research Questions
	Overview of the GSD projects
	Analysis
	Results
	Threats to Validity
	Construct validity
	Internal validity
	External validity

	Related Work
	Conclusions and Future Work
	References
	I. Introduction
	II. Rejuvenation of Cloud-Based Components
	III. Modeling and Analysis Using DFT
	A. Dynamic Fault Tree
	B. Modeling and Analysis Using DFT

	IV. Case Study
	V. Conclusions and Future Work
	References

	Introduction
	Background
	Establishing the Quality Model
	Quality Attributes Selection
	Metrics Definition

	Application of the Quality Model
	Learned Lessons and Discussions
	Conclusions
	References
	Introduction
	Context
	Problem and Research Question
	Contributions
	Structure of the paper

	Related Works and Definitions
	Exploratory Study - Empirical Design
	Procedure
	Assignment and Context
	Group Assignation
	Collecting Survey Data

	Subjects
	Methodological Notes

	Analysis of Results
	Quality Variables
	Quantity Variables
	Efficiency Variables

	Discussion
	Conclusions
	References
	I. Introduction
	II. Related Work
	III. Research Questions
	IV. Experimental Setups
	A. Data Collection
	B. Experiment Design
	C. Regression Models
	D. Evaluation Measures

	V. Experimental Results
	A. Answer to RQ1
	B. Answer to RQ2
	C. Threats to Validity

	VI. Conclusion and Future Work
	Acknowledgment
	References

	I. Introduction
	II. Background –NT Skills, Behavior Markers
	The first BM system, Line Operation Safety Audit (LOSA) is a very successful BM system that focuses on interpersonal communication, leadership, and decision making in the cockpit. Trained observers ride along in the cockpit and observe the flight crew...

	III. Behavior Marker System Development
	IV. Empirical Validation of Behavior Marker
	1) Software Factory Background
	2) Study Design
	Artifacts: Although the NTSA tool could be used to evaluate the NT skills of both individuals and teams, it was decided to test for team skills first. Because we were primarily interested in how the team member’s NT skills manifested when interacting...
	Experiment Procedure: Study steps as described below:

	V. Research Results
	VI. Threat to Validity
	VII. Conclusion And Future Work
	References

	Introduction
	Related Work in Empirical Research
	A Literature Review on Empirical Studies
	Paper Search and Selection Process
	Findings

	The CoCoME Platform
	Evolution Subject
	Evolution Scenarios
	Evolution Life-Cycle

	Lessons Learned
	Conclusion
	I. Introduction
	II. Background and Related Work
	III. The Method for Assessing eXperience (MAX)
	IV. Pilot Study and Initial Improvements on the MAX Method
	V. Conclusions and Future Work
	Acknowledgments
	References

	Introduction
	Related Work
	The Proposed Domain-Specific Language
	Interface components and transformation rules
	Transformation Process

	Methodology
	Effort Evaluation
	Performance Evaluation

	Results
	Conclusions
	Acknowledgments
	References
	Introduction
	Literature Review
	Information Retrieval
	Query expansion
	Ontologies in IR

	Proposed Model for Information Retrieval
	Preprocessing Handler
	Expansion Handler
	Equivalence Handler
	Ambiguity Handler

	Domain Knowledge repository
	Documents Repository
	User Information Manager

	Prototype Implementation
	Results
	Discussion
	Conclusion and future works
	References
	I. Introduction
	II. The Quantitative Fuzzy Based Reasoning of Goals
	i) Identify the correlation between goals and soft goals in terms of fuzzy weights: The correlation between alternative options and leaf soft goals are assigned fuzzy weights and our representation is shown in TABLE 1. This contribution is referred to...
	i)
	i)
	ii) Assign weights to the leaf soft goals: The leaf soft goals are assigned weights in percentage from 0 to 100 based on their relative importance. The weight is referred to as ωL.
	iii) Calculation of the leaf soft goal score: For each alternative, the leaf soft goals are associated with a score showing its satisfaction level. The leaf soft goal score is represented by ,𝑆.L(A) and is computed by the equation 1 below:
	v) Selection of an alternative with the highest score: The scores are propagated backwards until we reach the soft goals that are top in the hierarchy. These soft goals are called top soft goals. These scores are compared to determine the best alterna...

	III. Simulation and Evaluation
	IV. Related Work
	V. Conclusion
	References

	Introduction
	Background
	Dedal a three-level architectural model
	Dedal formalization

	The evolution management model
	The architectural model
	The architectural change
	The evolution manager

	The generation process
	Problem formalization
	Implementation overview
	Evaluation

	Related work
	Conclusion and future work

	full (1).pdf
	I. Introduction
	II. Scrum roles
	A. Product owner
	B. ScrumMaster
	C. Development Team

	III. Uruguay and its software industry
	IV. Research questions
	V. Data Collection
	VI. Data analysis
	A. The most valued soft skills a Product Owner must have.
	B. The most valued soft skills a ScrumMaster must have

	VII. Comparing the points of view of PO, SM and TM
	A. Comparing the points of view of product owners, scrum masters and team members about the most valued soft skills a Product Owner must have.
	B. Comparing the points of view of product owners, scrum masters and team members about the most valued soft skills a ScrumMaster must have.

	VIII. Conclusions and further work
	References

	I. 0BIntroduction
	II. 2BReliable and Secure Cloud Data Storage
	III. 3BErasure Codes and Reed-Solomon Coding
	A. 9BErasure Codes
	B. 10BReed-Solomon Coding for Cloud Based Storage

	IV. Optimal Number of Checksum Pieces
	A. 11BCalculating the Optimal Number of Checksum Pieces
	B. Distibution of Data and Checksum Pieces over CSPs

	V. 4Case Study
	VI. 5BConclusions and Future Work
	12BIn this paper, we addressed three major issues with cloud storage, namely reliability, security and performance. Instead of achieving data reliability using redundancy at the server side, we presented a reliable and secure cloud storage schema for end users. In our approach, we view multiple cloud storage services as virtual disks, and upload redundant data files into multiple cloud storages. The redundant data files are calculated using erasure codes techniques, which allow multiple failures of the data pieces. By forming an optimal problem for calculating the number of checksum pieces, we can achieve the best space efficiency in our approach. Furthermore, we divide the user data into pieces, and distribute them across multiple cloud services; therefore, no single CSP can understand the uploaded user data. As a result, our approach can effectively protect user data from unauthorized access in the cloud, and provide security at the software level for the end users. Finally, the experimental results show that due to concurrent data processing, our approach provides very good performance in file uploading and downloading, with the cost of minor overhead for encoding and decoding data.
	For future work, we will investigate possible ways to automatically select a suitable number of data pieces based on the network condition and the file size. We will consider other major aspects of cloud data, such as data integrity and confidentiality. For example, it would be feasible to adopt the digital signature technique to verify the integrity of the data stored in the cloud to ensure they were not altered by the service providers. Furthermore, when large cloud files are involved, the overhead for encoding and decoding may become a concern. To improve the overall performance in this case, we need to look into more advanced techniques for erasure codes, such as regenerating codes and non-MDS codes [3]. Finally, we will attempt to integrate our approach with cloud-based big data analysis for reliable and secure data stored in the cloud. This may also be considered as a worthy future direction.
	13B
	14BReferences

	. Introduction
	. Document and user profile analysis
	. Relevant document retrieval
	. Experimental Evaluation
	. Concluding remarks
	Introduction
	Background and Related Work
	Annotation Model for Decision Knowledge
	Evaluation
	Conclusion and Future Work
	Introduction
	Background: ADD management in LSD
	ADD Management Paradigms in GSD
	Product-based Paradigm (Product-based Structure / Federated Strategy)
	Process-based Paradigm (Process-based Structure / Client-Server Strategy)
	Release-based Paradigm (Release-based Structure / Incremental Strategy)

	Evaluation
	Research Questions
	Overview of the GSD projects
	Analysis
	Results
	Threats to Validity
	Construct validity
	Internal validity
	External validity

	Related Work
	Conclusions and Future Work
	References
	I. Introduction
	II. Rejuvenation of Cloud-Based Components
	III. Modeling and Analysis Using DFT
	A. Dynamic Fault Tree
	B. Modeling and Analysis Using DFT

	IV. Case Study
	V. Conclusions and Future Work
	References

	Introduction
	Background
	Establishing the Quality Model
	Quality Attributes Selection
	Metrics Definition

	Application of the Quality Model
	Learned Lessons and Discussions
	Conclusions
	References
	Introduction
	Context
	Problem and Research Question
	Contributions
	Structure of the paper

	Related Works and Definitions
	Exploratory Study - Empirical Design
	Procedure
	Assignment and Context
	Group Assignation
	Collecting Survey Data

	Subjects
	Methodological Notes

	Analysis of Results
	Quality Variables
	Quantity Variables
	Efficiency Variables

	Discussion
	Conclusions
	References
	I. Introduction
	II. Related Work
	III. Research Questions
	IV. Experimental Setups
	A. Data Collection
	B. Experiment Design
	C. Regression Models
	D. Evaluation Measures

	V. Experimental Results
	A. Answer to RQ1
	B. Answer to RQ2
	C. Threats to Validity

	VI. Conclusion and Future Work
	Acknowledgment
	References

	I. Introduction
	II. Background –NT Skills, Behavior Markers
	The first BM system, Line Operation Safety Audit (LOSA) is a very successful BM system that focuses on interpersonal communication, leadership, and decision making in the cockpit. Trained observers ride along in the cockpit and observe the flight crew...

	III. Behavior Marker System Development
	IV. Empirical Validation of Behavior Marker
	1) Software Factory Background
	2) Study Design
	Artifacts: Although the NTSA tool could be used to evaluate the NT skills of both individuals and teams, it was decided to test for team skills first. Because we were primarily interested in how the team member’s NT skills manifested when interacting...
	Experiment Procedure: Study steps as described below:

	V. Research Results
	VI. Threat to Validity
	VII. Conclusion And Future Work
	References

	Introduction
	Related Work in Empirical Research
	A Literature Review on Empirical Studies
	Paper Search and Selection Process
	Findings

	The CoCoME Platform
	Evolution Subject
	Evolution Scenarios
	Evolution Life-Cycle

	Lessons Learned
	Conclusion
	I. Introduction
	II. Background and Related Work
	III. The Method for Assessing eXperience (MAX)
	IV. Pilot Study and Initial Improvements on the MAX Method
	V. Conclusions and Future Work
	Acknowledgments
	References

	Introduction
	Related Work
	The Proposed Domain-Specific Language
	Interface components and transformation rules
	Transformation Process

	Methodology
	Effort Evaluation
	Performance Evaluation

	Results
	Conclusions
	Acknowledgments
	References
	Introduction
	Literature Review
	Information Retrieval
	Query expansion
	Ontologies in IR

	Proposed Model for Information Retrieval
	Preprocessing Handler
	Expansion Handler
	Equivalence Handler
	Ambiguity Handler

	Domain Knowledge repository
	Documents Repository
	User Information Manager

	Prototype Implementation
	Results
	Discussion
	Conclusion and future works
	References
	I. Introduction
	II. The Quantitative Fuzzy Based Reasoning of Goals
	i) Identify the correlation between goals and soft goals in terms of fuzzy weights: The correlation between alternative options and leaf soft goals are assigned fuzzy weights and our representation is shown in TABLE 1. This contribution is referred to...
	i)
	i)
	ii) Assign weights to the leaf soft goals: The leaf soft goals are assigned weights in percentage from 0 to 100 based on their relative importance. The weight is referred to as ωL.
	iii) Calculation of the leaf soft goal score: For each alternative, the leaf soft goals are associated with a score showing its satisfaction level. The leaf soft goal score is represented by ,𝑆.L(A) and is computed by the equation 1 below:
	v) Selection of an alternative with the highest score: The scores are propagated backwards until we reach the soft goals that are top in the hierarchy. These soft goals are called top soft goals. These scores are compared to determine the best alterna...

	III. Simulation and Evaluation
	IV. Related Work
	V. Conclusion
	References

	Introduction
	Background
	Dedal a three-level architectural model
	Dedal formalization

	The evolution management model
	The architectural model
	The architectural change
	The evolution manager

	The generation process
	Problem formalization
	Implementation overview
	Evaluation

	Related work
	Conclusion and future work

	full (2).pdf
	I. Introduction
	II. Scrum roles
	A. Product owner
	B. ScrumMaster
	C. Development Team

	III. Uruguay and its software industry
	IV. Research questions
	V. Data Collection
	VI. Data analysis
	A. The most valued soft skills a Product Owner must have.
	B. The most valued soft skills a ScrumMaster must have

	VII. Comparing the points of view of PO, SM and TM
	A. Comparing the points of view of product owners, scrum masters and team members about the most valued soft skills a Product Owner must have.
	B. Comparing the points of view of product owners, scrum masters and team members about the most valued soft skills a ScrumMaster must have.

	VIII. Conclusions and further work
	References

	I. 0BIntroduction
	II. 2BReliable and Secure Cloud Data Storage
	III. 3BErasure Codes and Reed-Solomon Coding
	A. 9BErasure Codes
	B. 10BReed-Solomon Coding for Cloud Based Storage

	IV. Optimal Number of Checksum Pieces
	A. 11BCalculating the Optimal Number of Checksum Pieces
	B. Distibution of Data and Checksum Pieces over CSPs

	V. 4Case Study
	VI. 5BConclusions and Future Work
	12BIn this paper, we addressed three major issues with cloud storage, namely reliability, security and performance. Instead of achieving data reliability using redundancy at the server side, we presented a reliable and secure cloud storage schema for end users. In our approach, we view multiple cloud storage services as virtual disks, and upload redundant data files into multiple cloud storages. The redundant data files are calculated using erasure codes techniques, which allow multiple failures of the data pieces. By forming an optimal problem for calculating the number of checksum pieces, we can achieve the best space efficiency in our approach. Furthermore, we divide the user data into pieces, and distribute them across multiple cloud services; therefore, no single CSP can understand the uploaded user data. As a result, our approach can effectively protect user data from unauthorized access in the cloud, and provide security at the software level for the end users. Finally, the experimental results show that due to concurrent data processing, our approach provides very good performance in file uploading and downloading, with the cost of minor overhead for encoding and decoding data.
	For future work, we will investigate possible ways to automatically select a suitable number of data pieces based on the network condition and the file size. We will consider other major aspects of cloud data, such as data integrity and confidentiality. For example, it would be feasible to adopt the digital signature technique to verify the integrity of the data stored in the cloud to ensure they were not altered by the service providers. Furthermore, when large cloud files are involved, the overhead for encoding and decoding may become a concern. To improve the overall performance in this case, we need to look into more advanced techniques for erasure codes, such as regenerating codes and non-MDS codes [3]. Finally, we will attempt to integrate our approach with cloud-based big data analysis for reliable and secure data stored in the cloud. This may also be considered as a worthy future direction.
	13B
	14BReferences

	. Introduction
	. Document and user profile analysis
	. Relevant document retrieval
	. Experimental Evaluation
	. Concluding remarks
	Introduction
	Background and Related Work
	Annotation Model for Decision Knowledge
	Evaluation
	Conclusion and Future Work
	Introduction
	Background: ADD management in LSD
	ADD Management Paradigms in GSD
	Product-based Paradigm (Product-based Structure / Federated Strategy)
	Process-based Paradigm (Process-based Structure / Client-Server Strategy)
	Release-based Paradigm (Release-based Structure / Incremental Strategy)

	Evaluation
	Research Questions
	Overview of the GSD projects
	Analysis
	Results
	Threats to Validity
	Construct validity
	Internal validity
	External validity

	Related Work
	Conclusions and Future Work
	References
	I. Introduction
	II. Rejuvenation of Cloud-Based Components
	III. Modeling and Analysis Using DFT
	A. Dynamic Fault Tree
	B. Modeling and Analysis Using DFT

	IV. Case Study
	V. Conclusions and Future Work
	References

	Introduction
	Background
	Establishing the Quality Model
	Quality Attributes Selection
	Metrics Definition

	Application of the Quality Model
	Learned Lessons and Discussions
	Conclusions
	References
	Introduction
	Context
	Problem and Research Question
	Contributions
	Structure of the paper

	Related Works and Definitions
	Exploratory Study - Empirical Design
	Procedure
	Assignment and Context
	Group Assignation
	Collecting Survey Data

	Subjects
	Methodological Notes

	Analysis of Results
	Quality Variables
	Quantity Variables
	Efficiency Variables

	Discussion
	Conclusions
	References
	I. Introduction
	II. Related Work
	III. Research Questions
	IV. Experimental Setups
	A. Data Collection
	B. Experiment Design
	C. Regression Models
	D. Evaluation Measures

	V. Experimental Results
	A. Answer to RQ1
	B. Answer to RQ2
	C. Threats to Validity

	VI. Conclusion and Future Work
	Acknowledgment
	References

	I. Introduction
	II. Background –NT Skills, Behavior Markers
	The first BM system, Line Operation Safety Audit (LOSA) is a very successful BM system that focuses on interpersonal communication, leadership, and decision making in the cockpit. Trained observers ride along in the cockpit and observe the flight crew...

	III. Behavior Marker System Development
	IV. Empirical Validation of Behavior Marker
	1) Software Factory Background
	2) Study Design
	Artifacts: Although the NTSA tool could be used to evaluate the NT skills of both individuals and teams, it was decided to test for team skills first. Because we were primarily interested in how the team member’s NT skills manifested when interacting...
	Experiment Procedure: Study steps as described below:

	V. Research Results
	VI. Threat to Validity
	VII. Conclusion And Future Work
	References

	Introduction
	Related Work in Empirical Research
	A Literature Review on Empirical Studies
	Paper Search and Selection Process
	Findings

	The CoCoME Platform
	Evolution Subject
	Evolution Scenarios
	Evolution Life-Cycle

	Lessons Learned
	Conclusion
	I. Introduction
	II. Background and Related Work
	III. The Method for Assessing eXperience (MAX)
	IV. Pilot Study and Initial Improvements on the MAX Method
	V. Conclusions and Future Work
	Acknowledgments
	References

	Introduction
	Related Work
	The Proposed Domain-Specific Language
	Interface components and transformation rules
	Transformation Process

	Methodology
	Effort Evaluation
	Performance Evaluation

	Results
	Conclusions
	Acknowledgments
	References
	Introduction
	Literature Review
	Information Retrieval
	Query expansion
	Ontologies in IR

	Proposed Model for Information Retrieval
	Preprocessing Handler
	Expansion Handler
	Equivalence Handler
	Ambiguity Handler

	Domain Knowledge repository
	Documents Repository
	User Information Manager

	Prototype Implementation
	Results
	Discussion
	Conclusion and future works
	References
	I. Introduction
	II. The Quantitative Fuzzy Based Reasoning of Goals
	i) Identify the correlation between goals and soft goals in terms of fuzzy weights: The correlation between alternative options and leaf soft goals are assigned fuzzy weights and our representation is shown in TABLE 1. This contribution is referred to...
	i)
	i)
	ii) Assign weights to the leaf soft goals: The leaf soft goals are assigned weights in percentage from 0 to 100 based on their relative importance. The weight is referred to as ωL.
	iii) Calculation of the leaf soft goal score: For each alternative, the leaf soft goals are associated with a score showing its satisfaction level. The leaf soft goal score is represented by ,𝑆.L(A) and is computed by the equation 1 below:
	v) Selection of an alternative with the highest score: The scores are propagated backwards until we reach the soft goals that are top in the hierarchy. These soft goals are called top soft goals. These scores are compared to determine the best alterna...

	III. Simulation and Evaluation
	IV. Related Work
	V. Conclusion
	References

	Introduction
	Background
	Dedal a three-level architectural model
	Dedal formalization

	The evolution management model
	The architectural model
	The architectural change
	The evolution manager

	The generation process
	Problem formalization
	Implementation overview
	Evaluation

	Related work
	Conclusion and future work

