
State-Based XML Firewall for Service-Oriented Systems

Abhinay Kartik Reddyreddy and Haiping Xu
Computer and Information Science Department, UMass Dartmouth

Introduction
Web services security has been a challenging issue in
recent years because current security mechanisms,
such as conventional firewalls, are not sufficient for
protecting service-oriented systems from XML-based
attacks. In order to provide effective security
mechanisms for service-oriented systems, XML
firewalls were recently introduced as an extension to
conventional firewalls for web services security. In this
project, we introduce a state-based XML firewall
architecture that supports role-based access control
and real-time detection of XML-based attacks. We
develop a detailed design of the state-based XML
firewall by defining state-based information, user
information, and various access control policies and
detection rules. To illustrate the effectiveness of our
approach, we develop a prototype state-based XML
firewall, and demonstrate how XML-based attacks can
be efficiently detected.

Design of Policy Rules
Role-Based Access Control Polices

Specify the roles that a user may adopt and the
permissions associated with each role.

Examples of role-based access control policy rules

Real-Time Detection of XML-Based Attacks

SOAP filter is responsible for real-time detection of
XML-based attacks.

Example of suspicious XDoS attack detection rules

Example of XDoS attack verification rules

Case Study 1
Simulate an SQL injection attack by accessing the
web service accessService.

Case Study 2
Simulate request flooding attacks on the web
service reportGenerationService.

Use large number of requests from the attacker.

Record the response behavior from a normal user.

The attacked service takes around 10 seconds as
normal processing time.

Perform two experiments with thresholds for the
firewall are set to 80 and 60, respectively.

Examples of XML-Based Attacks
XML-Based Denial of Service (XDoS): An XDoS
attack directs malicious XML-based traffic to a web
service to exhaust the resources at the server side.

SQL Injection: An SQL injection attack could
tamper the input fields of database requests to
obtain unauthorized access to data or stored
procedures.

Overloaded Payload: An overloaded payload
attack can exhaust the XML parser of a service
provider by sending huge XML data
in a service request.

Conventional Firewall
Firewall is a component that limits network access.

Three major types of conventional firewalls

Packet filtering firewall

Stateful inspection firewall

Application-level firewall

A conventional firewall typically

Restricts IP addresses or TCP ports, but port 80
reserved for HTTP and SOAP traffic cannot be
blocked on a server that hosts web services.

Does not look into packet contents, and does
not support parsing or validating XML data.

Does not support authentication and
authorization for web services access.

Conclusions
We introduced a state-based XML firewall, which can
be used to protect a service provider from various
XML-based attacks. We also developed a detailed
design and implemented a prototype state-based XML
firewall. For more information, please refer to web:
http://www.cis.umassd.edu/~hxu/Projects/XMLFirewall

Contact:Contact:

Prof. Haiping Xu

Ph: (508) 910-6427
Email: hxu@umassd.edu
Web: http://www.cis.umassd.edu/~hxu

Acknowledgements
This work is supported by the Chancellor’s Research
Fund/Healey Endowment Grants, and the Research
Seed Initiative Fund (RSIF), COE, UMass Dartmouth.

State-Based XML Firewall
Comes from a Petri net based XML firewall formal
model we proposed previously.

Grants only those users who are properly
authenticated and authorized for access of web
services.

Adopts dynamic role-based access control (D-
RBAC) for user authorization.

Is supported by policy rules based on user
information and state information

Role-based access control policy rules for user
authentication and authorization.

Detection rules for identifying XML-based
security threats.

Can examine the contents of incoming XML-based
messages (SOAP messages).

Figure 1. Conventional Firewall Protected System

Figure 4. Experimental Results for XDoS Attacks

Response Time vs. Number of Requests Per Minute

0

5

10

15

20

25

20 40 60 80 100 120 140 160 180 200
Number of requests per minute from attacker

R
es

po
ns

e
tim

e
in

 s
ec

s

without XML Firewall
with XML Firewall (80
with XML Firewall (60

Response

Application
Logic

User A
Application_1 (Service Consumer)

Web Service 1

Web Service n

Admin
Update
Policy

…

Request

Service Provider

Response

Request

Administration

User
Interface

Application_2 (Service Consumer)

User
Interface

User B

Internet
(SOAP,
HTTP, etc.)

Application
Logic

XML
Firewall

StateDB

PolicyDB

Figure 2. XML Firewall Protected Service-Oriented System

checkThreshold(W,S,X):- threshold(W,SI,Y),X > Y.
threshold(accessService,busy,20).
threshold(accessService,normal,40).
threshold(accessService,free,60).

xdosVerify(U,T):- inspectHistory(U,T,V).
inspectHistory(U,T,V):-

T = high, dataConnect(U,3,V), V = '3',
degradeTrustLevel(U,normal).

inspectHistory(U,T,V):-
T = normal, dataConnect(U,5,V), V = '3',
degradeTrustLevel(U,low).

inspectHistory(U,T,V):-
T = low, dataConnect(U,7,V), V = '3'.
degradeTrustLevel(U,permanentlyBlocked)

dataConnect(U,X,V):-
java_object('DataConnect',[],data),
data<-getHistorySessionStatus(U,X) returns V.

degradeTrustLevel(U,T):-
java_object('DataConnect',[],data),
data <- recordTrustLevel(U,X).

isValidRole(patient). isValidRole(doctor). isValidRole(nurse).
isValidRole(staff). isValidRole(pharmacist).
assignRole(U,R) :- isValidRole(R).
canInvoke(R,T,billingService,accessBill):-

contains(R,[staff,pharmacist,patient]),
contains(T,[normal,high]).

canInvoke(R,T,billingService,computeBill):-
contains(R,[staff,pharmacist]),
contains(T,[normal,high]).

canInvoke(R,T,accessService,readRecord):-
contains(R,[doctor,nurse,patient]),
contains(T,[normal,high]).

canInvoke(R,T,accessService,writeRecord,P,U):-
contains(R,[doctor,nurse]),
contains(T,[normal,high]), assignPatient(P,U),
assignRole(P,patient), assignRole(U,R).

canInvoke(R,T,contactService,accessContact):-
contains(R,[staff,doctor,nurse,patient]),
contains(T,[normal,high]).

Figure 3. Log Information for SQL Injection Detection

INSERT INTO patientRecords VALUES('User2', 'User1', 'The
patient reacted abnormally to new drugs.', 'Observation');
DELETE FROM users; -- dummystring');

Server Machines

Firewall

Client Machines

Internet

