State-Based XML Firewall for Service-Oriented Systems

Introduction

Web services security has been a challenging issue in
recent years because current security mechanisms,
such as conventional firewalls, are not sufficient for
protecting service-oriented systems from XML-based
attacks. In order to provide effective security
mechanisms for service-oriented systems, XML
firewalls were recently introduced as an extension to
conventional firewalls for web services security. In this
project, we introduce a state-based XML firewall
architecture that supports role-based access control
and real-time detection of XML-based attacks. We
develop a detailed design of the state-based XML
firewall by defining state-based information, user
information, and various access control policies and
detection rules. To illustrate the effectiveness of our
approach, we develop a prototype state-based XML
firewall, and demonstrate how XML-based attacks can
be efficiently detected.

Examples of XML-Based Attacks

= XML-Based Denial of Service (XDoS): An XDoS
attack directs malicious XML-based traffic to a web
service to exhaust the resources at the server side.

= SQL Injection: An SQL injection attack could
tamper the input fields of database requests to
obtain unauthorized access to data or stored
procedures.

= Overloaded Payload: An overloaded payload
attack can exhaust the XML parser of a service

provider by sending huge XML data)
in a service request. ,ﬁ

Conventional Firewall
= Firewall is a component that limits network access.
= Three major types of conventional firewalls
< Packet filtering firewall
« Stateful inspection firewall
< Application-level firewall
= A conventional firewall typically

< Restricts IP addresses or TCP ports, but port 80
reserved for HTTP and SOAP traffic cannot be
blocked on a server that hosts web services.

Does not look into packet contents, and does
not support parsing or validating XML data.

Does not support authentication and
authorization for web services access.

Server Machines

Firewall

Client Machines

Figure 1. Conventional Firewall Protected System

State-Based XML Firewall

= Comes from a Petri net based XML firewall formal
model we proposed previously.

= Grants only those users who are properly
authenticated and authorized for access of web
services.

= Adopts dynamic role-based access control (D-
RBAC) for user authorization.

= |s supported by policy rules based on user
information and state information

“ Role-based access control policy rules for user
authentication and authorization.

« Detection rules for identifying XML-based
security threats.

= Can examine the contents of incoming XML-based
messages (SOAP messages).

Web Service 1

= pree—
€50 _-

User Appl
Interface i PolicyDB

i Applcation_2 (service Consumen) POy Sevice rovider

Figure 2. XML Firewall Protected Service-Oriented System

Design of Policy Rules
Role-Based Access Control Polices

Specify the roles that a user may adopt and the
permissions associated with each role.

Examples of role-based access control policy rules

isvalidRole(patient). isvalidRole(doctor). isvalidRole(nurse).
isvalidRole(staff) ole(pharnacist) .
assignRole(U,R)
canlnvoke(R, T,bi ey accessBill):-
contains(R, [staf rmacist,patient]),
contains(T, [norm: ah)-
caninvoke(R, T,bi llingService , conputeBi 11): -
contains(R, [staff,pharmacist]),
contalns(T [normal,highl)-
m—mtams(w [doctor,nurse, patientl).
contains(T, [nornal ,highl).
canlnvoke(R, T,accessService, writeRecord,P,U):-
contains(R, [doctor ,nurse]) ,
contains(T, [nornal ,highl). assugnPatlent(P vy,
P,patient), U.R).
R,T. a Contact):-
contains(R, [staff,doctor,nurse, patient]).,
contains(T, [nornal ,high]).

Real-Time Detection of XML-Based Attacks

SOARP filter is responsible for real-time detection of
XML-based attacks.

Example of suspicious XDoS attack detection rules

checkThreshold(W,S,X):- threshold(W,SI,Y),X > Y.
‘threshold(accessSe! ,busy,20).
threshold(accessServi ,normal ,40).
threshold(accessService, free,60) .

Example of XDoS attack verification rules

xdosVerify(U,T):-_inspectHistory(U,T,V).
inspectHistory(U,T,V):-
T = high, dataConnect(U,3,V), V = "3,
degradeTrustLevel (U, normal) .
inspectHistory(U.T,V):-
T = normal, dataConnect(U,5,V), V = *3°
degradeTrustLevel (U, Tow) .
inspectHistory(U,T,V):-
T = low, dataConnect(U,7,V), V = *3°
degradeTrustLevel (U, pernanentlyBlocked)
dataConnect(U,X,V):~
Jjava_object(*DataConnect", [].d:
da(a<»ge(HlstorySesslonStatus(U x) returns V.
degradeTrustLevel (U, T):-
Jjava_object(*DataConnect", [],data),
data <- recordTrustLevel (U,X)-

Case Study 1

= Simulate an SQL injection attack by accessing the
web service accessService.

INSERT INTO patientRecords VALUES("User2®, “Userl®, "The
patient reacted abnormally to new drugs.®, “Observation®);
DELETE FROM users; -- dummystring”);

[Loginfo DAL Fitewall 400 I [0 |

gy Suiny Fe—

Figure 3. Log Information for SQL Injection Detection

Case Study 2

Simulate request flooding attacks on the web
service reportGenerationService.

Use large number of requests from the attacker.
Record the response behavior from a normal user.

The attacked service takes around 10 seconds as
normal processing time.

Perform two experiments with thresholds for the
firewall are set to 80 and 60, respectively.

Response Time vs. Number of Requests Per Minute

Response time in secs.

80 00 120 140 160
Number of requests per mine from attacker

Figure 4. Experimental Results for XDoS Attacks

Conclusions

We introduced a state-based XML firewall, which can
be used to protect a service provider from various
XML-based attacks. We also developed a detailed
design and implemented a prototype state-based XML
firewall. For more information, please refer to web:
http:/iwww.cis.umassd.edu/~hxu/Projects/XMLFirewall

Contact:
Prof. Haiping Xu

Ph: (508) 910-6427
Email: hxu@umassd.edu
Web: http://www.cis.umassd.edu/~hxu

Acknowledgements

This work is supported by the Chancellor's Research
Fund/Healey Endowment Grants, and the Research
Seed Initiative Fund (RSIF), COE, UMass Dartmouth.

