
University of Massachusetts Dartmouth ■ College of Engineering ■ www.umassd.edu/engineering/cis

285 Old Westport Road ■ North Dartmouth ■ MA 02747-2300 ■ 508.999.8265 ■ ABET Accredited

Computer and
Information Science

Department

Ph.D. THESIS DEFENSE (FALL 2017)

TOPIC: A Software Reliability Model for Trusted Cloud-Based Software Systems Using Extended

Dynamic Fault Tree

PRESENTOR: Jean F. Rahme

ADVISOR: Dr. Haiping Xu

DATE & TIME: Friday, November 3, 2017, 10:00 AM – 12:00 PM

LOCATION: Dion 303

COMMITTEE MEMBERS: Dr. Ramprasad Balasubramanian, Dr. Jan Bergandy, Dr. Liudong Xing,

 Haiping Xu (Chair), and Dr. Xiaoqin Zhang

ABSTRACT

A trusted cloud-based software system is a highly reliable, available and predictable advanced

computing system with guaranteed Quality of Service (QoS). To maintain the high reliability of a

cloud-based software system, it is critical to find a feasible solution to counteract the software

aging problem, where system performance may be progressively degraded due to exhaustion of

system resources, fragmentation and accumulation of errors. In this thesis, we adopt a proactive

technique, called software rejuvenation, to enhance the fault tolerance of a cloud-based system

equipped with software standby spares. We extend the dynamic fault tree (DFT) formalism with

Software SPare (SSP) gates, to model the system reliability before and during a software

rejuvenation process in an aging cloud-based software system. A novel analytical approach is

presented to derive the reliability function of a cloud-based SSP gate, with either one or two Hot

Software Spares (HSS). We verify our approach using Continuous Time Markov Chains (CTMC)

for the case of constant failure rate. Then, to extend our approach for non-constant failure rates, we

adopt Weibull distribution to model the increasing failure rates for software components with

aging issues. We use case studies of a cloud-based software system with multiple HSSs to

illustrate the validity of our approach for both the constant and non-constant failure rate cases.

Based on the reliability analytical results, we show how software rejuvenation schedules can be

created to keep the system reliability consistently staying above predefined critical levels.

