A Framework for Agent-Based Trust Management in Online Auctions

Prof. Haiping Xu
Computer and Information Science Department
University of Massachusetts Dartmouth
Email: hxu@umassd.edu

Acknowledgement

- Dr. Sol M. Shatz, Professor
 Concurrent Software Systems Laboratory
 Computer Science Department
 University of Illinois at Chicago

- Chris Bates, Graduate Student
 Concurrent Software Engineering Laboratory
 Computer and Information Science Department
 University of Massachusetts Dartmouth
Online Auctions

- Different types of auctions
 - Increase-price auction (English auction)
 - Decrease-price auction (Dutch auction)
 - Second-price sealed-bid auction (Vickrey auction)

- English auction has become the most popular one in online auction houses (e.g., eBay).
- However, it is time-consuming for a human user to search and place bids on an auctioned item.
- There is a pressing need to introduce agent technology into online auction systems.

Agent-Based Online Auctions

- It consists of an auction house and a number of clients.
- It is designed as a multi-agent system.
- The auction house is managed by auction house administrator.
- Agents at the client side work on behalf of human users.

Security agent monitors online auction transactions for any undesired bidding activities, e.g., shilling behaviors.
Shilling Behaviors

- A shill bidding is a deliberate activity of placing bids in order to artificially raise the price of an auctioned item.
- Although most of the online auction houses prohibit shilling behaviors, it is easy for malicious users to disguise themselves and put in shill bids in online auctions.
- In a recent research study at Carnegie Mellon University, dozens of probable fraudsters were detected at eBay using data mining techniques.
- It is vital to introduce a feasible trust management mechanism to prevent, detect and avoid trading frauds, such as shilling behaviors.

An Example

- We call this type of shilling behavior concurrent shilling.
- Other types of shilling behaviors include: reserve price shilling, competitive shilling etc.
- Shilling behaviors become much more severe in an agent-based online auction system because
 - Automatic detection of shill bidders in agent-based online auctions can be much more difficult.
 - Malicious users may set up bidding strategies and automatically initiate shilling activities.
Trust Management

- Trust management has been a promising approach to building trustworthiness in networked systems.
- Two major types of trust management approaches
 - Reputation-based trust management, e.g., in eBay,
 - It uses a very simple reputation based rating scheme for users
 - After each successful transaction, sellers and buyers are invited to rate each other on a 3-point scale, i.e., +1, 0, or -1.
 - The accumulative feedback score of a member represents how other members are satisfied with this member for doing business.
 - Policy-based trust management, e.g., in policyMaker,
 - Credentials and policies are fully programmable
 - Input \((r, C, P) \) \(\rightarrow \) output whether the set \(C \) of credentials proves that the request \(r \) complies with the local security policy \(P \).
Our Role-Based Approach

- Our approach is a combined approach, which
 - Takes advantages of agent-based technologies.
 - Considers agent reputations stored in a history module.
 - Adopts role-based access control (RBAC) mechanism based on a set of policy rules.
- In an RBAC model, users are assigned roles with permissions
 - Results in reduced administrative costs as compared to associating users directly with permissions.
 - Most of the RBAC models follow the same basic structure of subject, role and privilege.
 - However, in a more sophisticated role-based access control model, access decisions also depend on other factors.
 - We use user’s real-time behaviors as factors in our RBAC model. Thus our approach supports dynamic role assignment and access control.

Agent-Based Trust Management (ATM)
Examples of Policy Rules

Table 1. Examples of RA-Policy

<table>
<thead>
<tr>
<th>RA-Policy: A</th>
<th>RA-Policy: B</th>
</tr>
</thead>
<tbody>
<tr>
<td>assignRole(Requester, NeutralBidder) ← newUser(Requester), requestType(Requester, buy).</td>
<td>changeRole(Requester, UnTrustedBidder) ← currentRole(Requester, NeutralBidder), shillingScore(Requester, X, current), X ≥ 0.6, reputationScore(Requester, Y, oneMonth), Y ≤ 0.7.</td>
</tr>
</tbody>
</table>

Table 2. Examples of AC-Policy

<table>
<thead>
<tr>
<th>AC-Policy: A</th>
<th>AC-Policy: B</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow(Requester, Bid) ← currentRole(Requester, TrustedBidder), shillingScore(Requester, X, current), X ≤ 0.3, reputationScore(Requester, Y, current), Y ≥ 0.6.</td>
<td>disallow(Requester, Bid, oneWeek) ← currentRole(Requester, UnTrustedBidder), shillingScore(Requester, X, current), X ≥ 0.6, reputationScore(Requester, Y, current), Y ≤ 0.7.</td>
</tr>
</tbody>
</table>

Auction Data Analysis

- The reputation score is simply an accumulative value of the rating scores from other users.
- The shilling score of a user can be calculated using an **S-Point** system.

\[
\text{point}(U, 0).
\text{point}(U, P + 1) :\text{positive-indication}(U, PF), \text{point}(U, P).
\text{point}(U, P - 1) :\text{negative-indication}(U, NF), \text{point}(U, P).
\]

point(U, P) is a predicate that denotes user *U*’s accumulated *S-Points* is *P*.
positive-indication(U, PF) is a predicate that denotes user *U* is a possible shill according to temporal formula *PF*.
negative-indication(U, NF) is a predicate that denotes user *U* is not likely a shill according to temporal formula *NF*.

04/07/2008 CIS Dept., UMass Dartmouth
Model Checking Technology

A Predicate for Positive Indication: after "start of Auction 1" until "end of Auction 0", does "(User A bids in Auction 0 && Price is lower in Auction 1) or (User A bids in Auction 1 && Price is lower in Auction 0) become true?"

\[
\text{((S1 \&\& \neg E0 \Rightarrow (\neg E0 U(P \&\& \neg E0)))) \mid \mid ((S0 \&\& E0 \Rightarrow \neg E0 U(S \&\& \neg E0)))}
\]

Decision Making Process

- The security agent determines whether a shill suspect (detected by a monitoring agent) is an actual shill.
- We propose to use evidence-based theory, e.g., the Dempster-Shafer theory (D-S theory) to support the decision making process.
- Currently, we are working on a Bayesian network with multi-state nodes
 - Calculate the probability of being a shill or a normal user
 - Use additional evidence such as trading history, win-ratio etc.
- Build a feasible intention model for bidding agents to support evaluation of agent behaviors.
Agent Communication Language

- Use asynchronous message passing for agent communication.
- FIPA-ACL is an agent communication standard
 - is grounded in speech act theory.
 - defines a set of 22 communicative acts.

```
(INFORM
 :sender (agent-identifier :name MonAgent-2@PT502989:1099/JADE
 :addresses (sequence http://192.168.1.100:7778/acc)))
:receiver (set (agent-identifier :name SecurAgent@PT502989:1099/JADE
 :addresses (sequence http://192.168.1.100:7778/acc)))
:content "Suspicious shill B2 detected!"
:language "Plain English"
:ontology "Online Auctions"
:protocol "shill Detection Protocol"
:conversation-id inform-shill-suspects)
```

Agent Communication Protocol
The Security Agent Interface

The Sniffer Agent
Conclusions and Future Work

- We introduced a framework for agent-based trust management for online auctions
- We demonstrated that the agents in the ATM module can effectively communicate with each other
- For our future work, we plan to develop efficient and effective trust management mechanisms
- Formalize shill patterns (and normal bidding patterns), and implement the model checking approach for efficient analysis of auction data
- Develop a prototype trustworthy agent-based online auction systems.

Questions?

The slides for this talk can be downloaded from
http://www.cis.umassd.edu/~hxu