
1

10/21/2005 CIS Dept., UMass Dartmouth 1

Towards a Role-Based Agent
Development Environment for

Open Multi-Agent Software Systems

Prof. Haiping Xu
Concurrent Software Systems Laboratory

Computer and Information Science Department
University of Massachusetts Dartmouth

North Dartmouth, MA 02747
Email: hxu@umassd.edu

URL: http://www.cis.umassd.edu/~hxu/

10/21/2005 CIS Dept., UMass Dartmouth 2

Acknowledgment
Prof. Xiaoqin Zhang
Neural and Intelligent Systems Laboratory
Computer and Information Science Department
University of Massachusetts Dartmouth

Rinkesh Patel
Concurrent Software Systems Laboratory
Computer and Information Science Department
University of Massachusetts Dartmouth

2

10/21/2005 CIS Dept., UMass Dartmouth 3

Outline
Part 1: A Formal Framework for Role-Based Agent
Modeling

Background and Motivation
An Organizational Approach

Part 2: Development of Role-Based Open MAS
Three Layered Model-Driven Development Model
Case Study: Organizing a Conference
Role-Based Agent Development Environment (RADE)

Conclusions and Future Work

Part 1: A Formal Framework for RolePart 1: A Formal Framework for Role--Based Agent Based Agent
ModelingModeling

Background and MotivationBackground and Motivation
An Organizational Approach An Organizational Approach

10/21/2005 CIS Dept., UMass Dartmouth 4

Intelligent Agent – An AI
Perspective

From AI perspective, an agent is a computer
system situated in some environment, that is
capable of flexible, autonomous actions in
order to meet its design objectives
Agent properties include

Situatedness (reactiveness)
Autonomy (proactiveness)
Sociability (responsibility, communication
capability, organization capability, etc.)

3

10/21/2005 CIS Dept., UMass Dartmouth 5

Software Agent – A Software
Engineering Perspective

From software engineering perspective, an
agent can be considered as an active object,
i.e., an object with a mental state
A software agent is a program that acts on
behalf of (human) user
Example: air ticket seller agent and air ticket
buyer agent in e-commerce

10/21/2005 CIS Dept., UMass Dartmouth 6

Open Multi-Agent System

Multi-agent system (MAS) is a concurrent
software system with more than one agent
A traditional MAS consists of a fixed number
of software agents
In an open MAS, agents can

join or leave an agent society at will
take or release roles dynamically

4

10/21/2005 CIS Dept., UMass Dartmouth 7

An Example (Simulating a Company)

Employee 1:
TeamLeader_1
P_1.1

Employee 2:
P_1.m
P_2.2

Employee X:

...

Manager

TeamLeader_1 TeamLeader_2

P_1.1 P_1.m P_2.1 P_2.n… …

10/21/2005 CIS Dept., UMass Dartmouth 8

Role-Based Modeling
Role-based modeling is one of the most
effective methodologies for agent-based
system analysis and design
In most of the existing work

abstract constructs used to conceptualize and
understand the system
no realizations in the implemented system
Suitable for closed multi-agent systems

We propose a methodology for role-based
modeling of open multi-agent systems

5

10/21/2005 CIS Dept., UMass Dartmouth 9

An Organizational Approach
Separate the concepts of role organization
and role space

role organization contains conceptual roles
role space contains role instances

At the third layer, we define an agent society
that consists of agent instances
The agent society can be designed
independently of the role organization and
role space

10/21/2005 CIS Dept., UMass Dartmouth 10

A Generic Model of Role-Based
Open MAS

role_A

role_C role_D

role_E

Role OrganizationRole Organization

Role SpaceRole Space

agent_1
agent_2

agent_3

Agent SocietyAgent Society

roleInstance_1

roleInstance_2

roleInstance_n

role_B

roleInstance_k

6

10/21/2005 CIS Dept., UMass Dartmouth 11

Formal Specifications - Role and
Role Organization

Role

attributes : P Attribute
goals : P Goal
plans : P Plan
actions : P Action
permissions : P Permission
protocols : P Protocol
beTaken : B

INIT

permissions = ∅

protocols = ∅

beTaken = false

setPermission
∆permissions
perm? : Permission

permissions ′ = permissions ∪ {perm?}

addProtocol
∆protocols
prot? : Protocol

procotols ′ = protocols ∪ {prot?}

RoleOrganization

roles : P ↓ RoleMetaClass
relationship :

↓ RoleMetaClass × ↓ RoleMetaClass �→ Relationship

∀ r1, r2 ∈ roles, r1 �= r2 • (r1, r2) ∈ dom relationship

INIT

roles = {Role}

addRole
∆roles, relationship
role? : ↓ RoleMetaClass

role? �∈ roles ∧ roles ′ = roles ∪ {role?}
∃ r ∈ roles • relationship′ =

relationship ∪ {(r , role?) �→ inheritance}

setRelationship
∆relationship
r1?, r2? : ↓ Role
rela? : Relationship

r1?, r2? ∈ roles ∧ rela? �= inheritance ∧
relationship′ = relationships ∪ {(r1?, r2?) �→ rela?}

10/21/2005 CIS Dept., UMass Dartmouth 12

Formal Specifications - Role
Space and Agent

RoleSpace

roleOrganization : RoleOrganization

#roleOrganization.roles > 1

roleInstances : P ↓ Role

∀ ri ∈ roleInstances • ri .getClass ∈ roleOrganization.roles

INIT

roleInstances = ∅

createRoleInstance
∆roleInstances
ri? : ↓ Role

ri?.getClass ∈ roleOrganization.roles
ri? �∈ roleInstances ∧ roleInstances ′ = roleInstances ∪ {ri?}

deleteRoleInstance
∆roleInstances
ri? : ↓ Role

ri? ∈ roleInstances ∧ roleInstances ′ = roleInstances − {ri?}

findRoleInstance
ΞroleInstances
ra? : Role.Attribute
ri ! : ↓ Role

(NotFound ∧ ri ! = null) ∨
∃ ri ∈ roleInstances • ri .attributes = ra? ∧ ri ! = ri

Agent

attributes : P Attribute
motivations : P Motivation
sensor : Environment �→ SensorData
reasoningMechanism :

P SensorData × P Motivation → P Goal → P ↓ Role
rolesTaken : P ↓ Role

INIT

rolesTaken = ∅

takeRole
∆rolesTaken
ri? : ↓ Role

ri?.beTaken = false ∧ ri?.beTaken ′ = true
ri? �∈ rolesTaken ∧ rolesTaken ′ = rolesTaken ∪ {ri?}

releaseRole
∆roleTaken
ri? : ↓ Role

ri?.beTaken = true ∧ ri?.beTaken ′ = false
ri? ∈ rolesTaken ∧ rolesTaken ′ = rolesTaken − {ri?}

7

10/21/2005 CIS Dept., UMass Dartmouth 13

Role-Based MAS Design

Design Role classes and their relationships
inheritance relationship
aggregation relationship
association relationship
incompatibility relationship

To ease software engineer’s effort, we
propose a design process for MAS
development

10/21/2005 CIS Dept., UMass Dartmouth 14

A Generic Procedure to Design
Open MAS
1. Design the set of Role classes Ω and their relationship Π1: Ω X Ω → [IH |

AG], where IH and AG represent the relationship types of inheritance and
aggregation, respectively.

2. Design the role organization Φ according to the class schema
RoleOrganization, and define any association relationships and incompatibility
relationships between classes, i.e., Π2: Ω X Ω → [AS | IC], where AS and IC
represent the relationship types of association and incompatibility,
respectively.

3. Design the role space Γ according to the class schema RoleSpace. The role
space Γ should support creating, advertising, and searching for role
instances. It may use existing middleware, e.g., Sun Jini, for its purpose.

4. Refine the Agent class with a set of sensors and a set of appropriate
reasoning mechanisms. This step may overlap with Step 1-3.

5. Design agent society Θ according to the class schema AgentSociety. The
agent society Θ contains a set of agent instances of type Agent, and it
corresponds to the role organization Φ with the same organization/society
design purpose.

8

10/21/2005 CIS Dept., UMass Dartmouth 15

Open Role Space and Open
Agent Society

Open role space
role instances can be added into or deleted from
a role space dynamically

Open agent society
agents can join or leave the system at will
agents can take or release role instances in a role
space dynamically

10/21/2005 CIS Dept., UMass Dartmouth 16

A-R Mapping
A-R mapping is a process for agents from an agent
society Θ to take or release role instances in a role
space Γ.
Both of agent society Θ and role space Γ are defined
upon the role organization Φ.
Formally, the A-R mapping is defined as follows

where f is a partial function mapping from an agent
instance to a set of role instances.

A-R mapping =̂ f : Agent �→ P ↓ Role

9

10/21/2005 CIS Dept., UMass Dartmouth 17

The Process of A-R Mapping
1. Initialization: The agent society Θ makes a request to the role space Γ to instantiate the major

LeadingRole class defined in the role organization Φ, and create a role instance for it.
2. Role assignment: for each agent α in the agent society Θ, do the following:

a. When agent α receives any sensor data from its environment, it may decide to generate
some new goals or subgoals based on the sensor data and agent α’s motivations.

b. With its reasoning mechanisms, agent α further deduce a set Ω of needed roles of types
defined in the role organization Φ. If none of the roles in set Ω is of type LeadingRole, go
to step 2.d.

c. If any role in role set Ω is a leading role of type LeadingRole, agent α takes the
corresponding role instance from the role space Γ, if available, updates the hiring number
of other roles as needed, and makes requests to the role space Γ to create role instances
for those roles under hiring.

d. Repeat the following for a period of time Τ: Search the role space Γ for any role instances
that match roles in role set Ω. If there is a match, agent α takes that role instance. If all
roles in role set Ω have been matched with some role instances in the role space Γ, go to
Step 3.

e. If any role in the role set Ω cannot be matched with a role instance in the role space Γ,
agent α may decide to release all role instances or keep its current occupations.

3. Marking role incompatibility: for each agent α, mark its role incompatibility as the following: for
any role instances r1, r2 ∈ α.rolesTaken, if Φ.relationship(r1.getClass, r2.getClass) ==
incompatibility, mark agent α as potential role incompatibility with a self-loop.

4. Setting up interaction relationships: for each agent α, set up the interaction relationship between
agent α and other agents from the same agent society Θ as the following : for any agent instance
β ∈ Θ.agentInstances, where α ≠ β, if ∃ r1 ∈ α.rolesTaken, r2 ∈ β.rolesTaken such that
Φ.relationship(r1.getClass, r2.getClass) == association, then (α, β) ∈ dom Θ.interaction.

10/21/2005 CIS Dept., UMass Dartmouth 18

Outline
Part 1: A Formal Framework for Role-Based Agent
Modeling

Background and Motivation
An Organizational Approach

Part 2: Development of RolePart 2: Development of Role--Based Open MASBased Open MAS
Three Layered ModelThree Layered Model--Driven Development ModelDriven Development Model
Case Study: Organizing a ConferenceCase Study: Organizing a Conference
RoleRole--Based Agent Development Environment (RADE)Based Agent Development Environment (RADE)

Conclusions and Future Work

10

10/21/2005 CIS Dept., UMass Dartmouth 19

Development of Open MAS

“The sooner you start, the longer it takes.”
by Fred Brook

Need to spend time on requirements capture
Need to spend time on software design

Propose our model-driven development of
open MAS
Develop a Role-based Agent Development
Environment (RADE) to support rapid
application development (RAD).

10/21/2005 CIS Dept., UMass Dartmouth 20

Model-Driven Development of
Role-Based Open MAS

Inspired by the Model-Driven Architecture
(MDA), proposed by OMG
We propose a three layered development
model

Separation of concerns: architecture domain,
application domain, solution domain
Support automatic or semi-automatic rapid
application development (RAD) of open MAS

11

10/21/2005 CIS Dept., UMass Dartmouth 21

Three Layered Development
Model

AIPIM (Application Independent
Platform Independent Model)

ASPIM (Application Specific
Platform Independent Model)

ASPSM (Application Specific
Platform Specific Model)

10/21/2005 CIS Dept., UMass Dartmouth 22

Application Independent Platform
Independent Model (AIPIM)

Defines a high level of abstraction that is
independent of any particular applications
and any implementation technology
An AIPIM is typically suitable for a set of
applications

Mobile agent model
Multi-agent system model
Role-based agent model

12

10/21/2005 CIS Dept., UMass Dartmouth 23

Application Specific Platform
Independent Model (ASPIM)

Defines a high level of abstraction
Specific to a particular application
Independent of any implementation technology

Needs application domain knowledge
Describes a software system that supports
some business logic.

10/21/2005 CIS Dept., UMass Dartmouth 24

Application Specific Platform
Specific Model (ASPSM)

Defines an abstraction of the software system
Specific to a particular application
Specific to an implementation technology

Specifies the software system in terms of
some specific implementation technology

J2EE, EJB, Java Servlets
Microsoft .Net, C#
IBM Websphere, web services technology

13

10/21/2005 CIS Dept., UMass Dartmouth 25

Model-Driven Development
Process

AIPIM ASPIM ASPSM

transforamtion
tool

transforamtion
tool

transforamtion
tool

Application
domain Solution domain System

refinement

Code

10/21/2005 CIS Dept., UMass Dartmouth 26

Transformation between Two
Models

Language A transformation
definition Language B

Model A transformation
tool Model B

 is
written
 in

 is
written
 in

 is
 used
 by

source modelsource model target modeltarget model

14

10/21/2005 CIS Dept., UMass Dartmouth 27

Example: Transformation
Definition

Suppose model A is written in UML and
model B is a relational database model
A transformation definition that translates an
association in UML into a foreign key relation
may look as follows

10/21/2005 CIS Dept., UMass Dartmouth 28

A Transformation Rule
if the association A to B is adorned by an association class

or the multiplicity at both ends is more-than-one
then create a table representing the association class or the

association
and create foreign keys in both the table representing A
and the table representing B referring this new table

else if the multiplicity at one end is zero-to-one
then create a foreign key in the table representing the

class at that end, referencing the other end
else // the multiplicity of the association is one-to-one

create a foreign key in one of the tables,
referencing the other end

end if
end if

15

10/21/2005 CIS Dept., UMass Dartmouth 29

Association Relationship

10/21/2005 CIS Dept., UMass Dartmouth 30

Relational Database Schema

EYEARGPABDATEEMAILNAMESID

STUDENT

CLIMITTIMEYEARSEMESTCNAMECNUM

COURSE

YEARSEMESTCNUMSID

COURSETAKEN

16

10/21/2005 CIS Dept., UMass Dartmouth 31

Case Study: Organizing a
Conference

Involves the following major processes
Submit papers by authors
Assign program committee members
Assign primary program committee members
Assign papers to (primary) program committee
members

Goal: Automate (or semi-automate) the
above processes using agent technology

10/21/2005 CIS Dept., UMass Dartmouth 32

An Open MAS for Organizing a
Conference

Role

AuthorRole PCChairRole PCMemberRole

Role OrganizationRole Organization

Role SpaceRole Space

agent_1

r1

PrimaryPCMemberRole

r4

assign papers

notify decision

r2 r3 r5 r6
…

[same paper]

LeadingRole

agent_2 agent _3 Agent SocietyAgent Societyagent_4 agent_5
…

notify decision

assign papers assign papers
[same paper]

17

10/21/2005 CIS Dept., UMass Dartmouth 33

Design of the AIPI Model

Is based on the role-based agent formal
framework
Is independent of the application of
organizing a conference
Can be reused for development of other role-
based open MAS applications

10/21/2005 CIS Dept., UMass Dartmouth 34

AIPIM

18

10/21/2005 CIS Dept., UMass Dartmouth 35

Design of the ASPI Model

Define the LeadingRole class
Each role organization defines a leading role
Is responsible for creating other role instances

Define role classes in role organization
PCChairRole as a subclass of LeadingRole
PCMemberRole, PrimaryPCMemberRole, and
AuthorRole as subclasses of the Role class

Define LeadingAgent and OrdinaryAgent

10/21/2005 CIS Dept., UMass Dartmouth 36

ASPIM

19

10/21/2005 CIS Dept., UMass Dartmouth 37

Examples of Agent Interaction
Protocol (AIP)

Request for Primary PC Member Request for Paper Reviewer

10/21/2005 CIS Dept., UMass Dartmouth 38

Design of the ASPS Model
Design the role space as a server

Contains role instances
Provides two interfaces: Interface for the leading
agent and interface for ordinary agents

The database server is behind the role space
Each agent can run on a different machine

An agent communicate with the role space
through middleware
An agent society is chaired by the leading agent
Agents communicate with each other using AIP

20

10/21/2005 CIS Dept., UMass Dartmouth 39

Architecture of Agent-Based
Conference Organizer

Middleware

Database

Role Space

Agent Society

Ordinary Agents Leading Agent

PCChairRoleAuthorRole PCMemberRole

PrimaryPCMemberRole

10/21/2005 CIS Dept., UMass Dartmouth 40

Design of Database Schema
AIDACTIONPLANGOALATTRMID

PCMEMBER

REASMSENSMOTIATTRAID

AGENT

PAGESKEYWDSTITLEPID

PAPER

AIDREASMSENSMOTIATTRTID

AUTHOR

PIDAID

WRITEPAPER

21

10/21/2005 CIS Dept., UMass Dartmouth 41

Choosing the Right Middleware

Communication support
between agents and the role space
between the leading agent and ordinary agents

Middleware functionalities
Service provider vs. service consumer
Service publisher vs. service subscriber
Synchronous vs. asynchronous message passing
Security issues

Middleware options: RMI, CORBA, Sun Jini, Web
Services, etc.

10/21/2005 CIS Dept., UMass Dartmouth 42

Role-Based Agent Development
Environment (RADE)

To support rapid application development
(RAD) of open MAS
To provide a friendly graphical user interface
for software development
To provide automated or semi-automated
tools for model transformation
To automatically generate code based on
ASPSM

22

10/21/2005 CIS Dept., UMass Dartmouth 43

A Prototype of RADE

10/21/2005 CIS Dept., UMass Dartmouth 44

Graphical Editor for Role
Organization

23

10/21/2005 CIS Dept., UMass Dartmouth 45

Some User Interfaces
Role Properties

Agent Properties

10/21/2005 CIS Dept., UMass Dartmouth 46

Role Assignment and Paper
Assignment

24

10/21/2005 CIS Dept., UMass Dartmouth 47

Conversation Example - 1

10/21/2005 CIS Dept., UMass Dartmouth 48

Conversation Example - 2

25

10/21/2005 CIS Dept., UMass Dartmouth 49

EXPECTED Final Schedule

10/21/2005 CIS Dept., UMass Dartmouth 50

Conclusions
A role-based methodology has been
proposed for development of open MAS
The design of roles and agents can be
separated, which simplifies agent
development
A three-layered agent development model is
proposed
A prototype of RADE is built to show the
feasibility of our approach (in progress)

26

10/21/2005 CIS Dept., UMass Dartmouth 51

Future Work

Develop and demonstrate the RADE
prototype with case studies
Design automatic model transformation tools
Incorporate agent negotiation mechanisms
for agent communications
Develop the Role-based Agent Development
Environment (RADE) for rapid application
development of open MAS

10/21/2005 CIS Dept., UMass Dartmouth 52

Thank you for
your attention!

The slides for this talk can be downloaded from

http://www.cis.umassd.edu/~hxu

