
1

A Model-Based Approach for
Development of Multi-Agent
Software Systems

Haiping Xu, Ph.D.
Computer and Information Science Department

University of Massachusetts Dartmouth

http://www.cis.umassd.edu/~hxu

12/03/2003 CIS Dept., UMass Dartmouth 2

Acknowledgments
Sol M. Shatz
Thesis Advisor, Professor at UIC
Co-Director, Concurrent Software Systems Laboratory
Tadao Murata
UIC Distinguished Professor
Director, Concurrent Software Systems Laboratory

2

12/03/2003 CIS Dept., UMass Dartmouth 3

Outline
Part 1: Background and Motivations
Part 2: Design of Agent-Based G-net Model
Part 3: Modeling Agent-Oriented Software
Part 4: Analysis of Agent-Oriented Model
Part 5: Design of Intelligent Mobile Agents
Part 6: Agent Development Kit (ADK)
Part 7: Conclusions and Future Work.

12/03/2003 CIS Dept., UMass Dartmouth 4

Part 1: Background and Motivations
The development of software systems starts with
two main activities:

Software requirements analysis
Software design

Software requirements analysis: to reduce
potential errors caused by incomplete and
ambiguous requirements
Software design: to depict the overall structure of
a system by decomposing the system into its
logical components.

3

12/03/2003 CIS Dept., UMass Dartmouth 5

Formal Methods in Software
Engineering

The purpose of software requirements analysis can
be achieved in two ways:

Write a specification in natural languages
Choose a formal language, e.g., Petri nets

Ideally, formal methods can be applied in each
phase of the software development life cycle, e.g.,
the design phase
However, to create a formal model in the design
phase and to verify its correctness is rare.

12/03/2003 CIS Dept., UMass Dartmouth 6

Introduction to Petri Net
“Three-in-one” capability of Petri net models [Murata 1989]

Graphical representation
Mathematical description
Simulation tool

Definition:
A Petri net is a 4-tuple, PN = (P, T, F, M0) where

P = {P1, P2, …, Pm} is a finite set of places;
T = {t1, t2, …, tn} is a finite set of transitions;
F ⊆ (P x T) ∪ (T x P) is a set of arcs (flow relation);
M0: P --> {0, 1, 2, 3, …} is the initial marking.

4

12/03/2003 CIS Dept., UMass Dartmouth 7

An Example

P4

P2

P5
t1

t5

t3

t4

t2P1

P3

12/03/2003 CIS Dept., UMass Dartmouth 8

G-Net: A High Level Petri Net

Defined to support modeling of systems as a
set of independent and loosely-coupled
modules [Deng et al. 1993]
Provides support for incremental design and
successive modification
Is not fully object-oriented due to a lack of
support for inheritance.

5

12/03/2003 CIS Dept., UMass Dartmouth 9

An Example

GSP(Buyer)

ISP(Seller,
sellGoods())

buyGoods() askPrice()

t1

t2

ISP(Seller,
returnPrice())

t3

t4

returnPrice()

calculate_
price

sell_
goods

sellGoods()

GSP(Seller)

t8

t7

t6

t5

12/03/2003 CIS Dept., UMass Dartmouth 10

Introduction to Agents

The term “agent” comes from the greek word “agein”,
which means to drive or to lead
A agent is a computer system that is situated in some
environment, and that is capable of autonomous action
It is suitable to describe current trends in computer science:
active instruments (to which work can be delegated) vs.
passive tools
The term “agent” in computer science generally refers to a
software agent.

6

12/03/2003 CIS Dept., UMass Dartmouth 11

Research Directions
Multi-agent systems (MAS)

Agents act as “active” objects (intelligence)
Collaborative or competitive
Generally use distributed but static (non-mobile) agents

Mobile agents (MA)
Model agent mobility and agent coordination
Generally assume very limited or even no intelligence.

12/03/2003 CIS Dept., UMass Dartmouth 12

Agent-Oriented Software Engineering

The agents can be considered as active objects,
i.e., objects with a mental state
However, object-oriented methodologies do not
address the following aspects:

asynchronous message-passing mechanism
autonomous behavior (mental states)

Agent-oriented approaches: provide guidelines
for agent specification and design

AAII methodologies: based on BDI model
Gaia methodologies: based on role modeling.

7

12/03/2003 CIS Dept., UMass Dartmouth 13

Formal Methods in Agent-Oriented
Software Engineering

Limited work on formal specification and design for agents
Use formal languages, such as Z, to provide a framework for describing
the agent architecture [Luck and d’Inverno 1995]
Use temporal logic to specify agent behavior [Fisher 1995]
Design formal languages for specifying agent-based systems, e.g.,
DESIRE [Brazier et al. 1997] and SLABS [Zhu 2001]
Agent models based on Petri nets, such as [Moldt and Wienberg 1997]
[Merseguer et al. 2000] [Xu and Deng 2000]

However, they do not explicitly model agent interactions,
and they do not address the issue of inheritance
Unlike the previous work, our proposed agent models:

Serve as a high-level design for agent implementaion
Support protocol-based agent interaction/communication
Support reuse of functional units of our agent class models.

12/03/2003 CIS Dept., UMass Dartmouth 14

Our Incremental Approach

Object-based G-nets (the original G-nets)

Standard G-nets (support class modeling)

Object-Oriented G-nets
(support inheritance)

Agent-based G-nets (support agent
modeling)

Agent-Oriented G-nets (support
inheritance)

8

12/03/2003 CIS Dept., UMass Dartmouth 15

Part 2: An Agent-Based G-Net Model

Multi-agent systems (MAS): one of the most important
topics in distributed and autonomous decentralized
systems
Key features: autonomous, reactive and internally-
motivated agents
However, the G-net model is not sufficient for agent
modeling because:

Does not support a common communication language and
common protocols among agents
Does not directly support asynchronous message passing
Does not support modeling agent’s mental state, such as
goals, plans and knowledge.

12/03/2003 CIS Dept., UMass Dartmouth 16

An Agent-Based G-Net Model
GSP(G)

message_
processing

incoming message

Goal

outgoing message
action_1 action_m

Knowledge-base

Planner

MSP(self) MSP(self) MSP(G’.Aid) MSP(G’.Aid)

action_1 action_n

message_
processing

message_
processing

message_
processing

Return Return

utility method
utility_1 utility_p

…

…

…

…

…

…

utility_1 utility_p

Plan Environment

9

12/03/2003 CIS Dept., UMass Dartmouth 17

A Template of Planner Module
GSP(G) Goal/Plan/KB Environment

ignore

start_a_
conversation

…

…

…

…

…

continue

external internal

update

to place “goal”

to place “knowledge base”

from transition “update”

update_
goalplan/kb

next_
action

dispatch_
utilities

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

private_utility

incoming messages

outgoing messages utility methods

12/03/2003 CIS Dept., UMass Dartmouth 18

Definitions of the Message Token
struct Message{

int sender; // the identifier of the message sender
int receiver; // the identifier of the message receiver
string protocol_type; // the type of contract net protocol
string name; // the name of incoming/outgoing messages
string content; // the content of this message

};

enum Tag {internal, external};

struct MtdInvocation {
Triple (seq, sc, mtd); // as defined in Section 2.1

}
if (mTkn.tag ∈ {internal, external})
then mTkn.body = struct {

Message msg; // message body
}
else mTkn.body = struct {

Message msg; // message body
Tag old_tag; // to record the old tag: internal/external
MtdInvocation miv; // to trace method invocations

}

10

12/03/2003 CIS Dept., UMass Dartmouth 19

Formal Definitions of Agent-Based
G-Net Model

Definition 3.1 AgentAgent--Based GBased G--NetNet
An agent-based G-net is a 7-tuple AG = (GSP, GL, PL, KB, EN, PN, IS), where GSP is a Generic Switch Place providing an abstract for the agent-
based G-net, GL is a Goal module, PL is a Plan module, KB is a Knowledge-base module, EN is an Environment module, PN is a Planner module,
and IS is an internal structure of AG.

Definition 3.2 Planner ModulePlanner Module
A Planner module of an agent-based G-net AG is a colored sub-net defined as a 7-tuple (IGS, IGO, IPL, IKB, IEN, IIS, DMU), where IGS, IGO,
IPL, IKB, IEN and IIS are interfaces with GSP, Goal module, Plan module, Knowledge-base module, Environment module and internal structure
of AG, respectively. DMU is a set of decision-making unit, and it contains three abstract transitions: make_decision, sensor and update.

Definition 3.3 Internal Structure (IS)Internal Structure (IS)
An internal structure (IS) of an agent-based G-net AG is a triple (IM, OM, PU), where IM/OM is the incoming/outgoing message section, which
defines a set of message processing units (MPU); and PU is the private utility section, which defines a set of methods.

Definition 3.4 Message Processing Unit (MPU)Message Processing Unit (MPU)
A message processing unit (MPU) is a triple (P, T, A), where P is a set of places consisting of three special places: entry place, ISP and MSP.
Each MPU has only one entry place and one MSP, but it may contain multiple ISPs. T is a set of transitions, and each transition can be associated
with a set of guards. A is a set of arcs defined as: ((P-{MSP}) x T) ∪ ((T x (P-{entry}).

Definition 3.5 UU--MethodMethod
A U-Method or method is a triple (P, T, A), where P is a set of places with three special places: entry place, ISP and return place. Each method
has only one entry place and one return place, but it may contain multiple ISPs. T is a set of transitions, and each transition can be associated
with a set of guards. A is a set of arcs defined as: ((P-{return}) x T) ∪ ((T x (P-{entry}).

12/03/2003 CIS Dept., UMass Dartmouth 20

Selling and Buying Agent Design

Buyer Buyer BuyerSeller Seller Seller

request-price

x

• refuse

propose

x

accept-proposal

reject-proposal

• confirm

request-price

propose

accept-proposal

• confirm

request-price

propose

reject-proposal

propose

accept-proposal

• confirm

(a) (b) (c)

propose

x

accept-proposal

reject-proposal

*

11

12/03/2003 CIS Dept., UMass Dartmouth 21

Buying Agent Class Design

GSP(G)

mesg_pr-
ocessing

incoming message

Plan

outgoing message
propose refuse

t4

Environment

Planner

MSP(self) MSP(self) MSP(self) MSP(G’.Aid)

confirm request-price
accept-proposal

reject-proposal

mesg_pr-
ocessing

mesg_pr-
ocessing

mesg_pr-
ocessing

Return Return

utility method
utility_1 utility_p

…

…

utili-
ty_1

utili-
ty_p

mesg_pr-
ocessing

MSP(G’.Aid) MSP(G’.Aid)

mesg_pr-
ocessing

Goal Knowledge-base

12/03/2003 CIS Dept., UMass Dartmouth 22

Verifying the Agent-Based G-Net
Model

• L3-live: any communicative act can be
performed as many times as needed

• Concurrent: a number of conversations
among agents can happen concurrently

• Effective: an agent communication
protocol can be correctly traced in the
agent models.

12

12/03/2003 CIS Dept., UMass Dartmouth 23

Verifying the Agent-Based G-Net
Model (continued)

GSP(G)

(goa/plan/kb) (env)

(ignore) (continue)

(external) (internal)

(next_
action)

GSP(G)

Buyer Seller

(dispatch_
incoming_
message)

(dispatch_
incoming_
message)

(dispatch_
outgoing_
message)

(dispatch_
outgoing_
message)

(next_
action)

(external) (internal)

(start_a_
conversation)

(start_a_
conversation)

(env)

(continue)(ignore)

a1 b1 c1 a2 b2 c2

d1 d2e1 e2

f1 g1 h1 f2 g2 h2
i1 i2

j1 j2

k1 l1 m1 k2 l2 m2

t1 t2

t4 t5 t6 t7 t8

t9 t10 t11
t12 t13 t14 t15

t16 t17 t18

t19 t20
t21t3

t22 t23 t24 t25 t26

t27 t28 t29
t30 t31

t34

t32

t35

t33

t36

(update) (update)

(propose, refuse, confirm)

(request_price, accept_proposal,
reject_proposal)

(request_price, accept_proposal,
reject_proposal)

(propose, refuse, confirm)

(goa/plan/kb)

12/03/2003 CIS Dept., UMass Dartmouth 24

Part 3: A Framework for Modeling
Agent-Oriented Software

Core approaches that can be extended:
Object-oriented (OO) methodologies
Knowledge engineering (KE) methodologies

We follow the first approach, and separate traditional
object-oriented features and reasoning mechanism to
enhance reuse of communication components
Show the useful role of inheritance in agent-oriented
software design.

13

12/03/2003 CIS Dept., UMass Dartmouth 25

The Agent-Based Model (Revisited)

GSP(G)

message_
processing

incoming message

Goal

outgoing message
action_1 action_m

Knowledge-base

Planner

MSP(self) MSP(self) MSP(G’.Aid) MSP(G’.Aid)

action_1 action_n

message_
processing

message_
processing

message_
processing

Return Return

utility method
utility_1 utility_p

…

…

…

…

…

…

utility_1 utility_p

Plan Environment

12/03/2003 CIS Dept., UMass Dartmouth 26

A Revised Planner Module

Abstract transition: represents abstract units of decision-
making or mental-state-updating (with synchronization)
Autonomous unit: makes an agent autonomous and
internally-motivated
Asynchronous Superclass switch Place (ASP): used to
forward a MPU or a method call (token) to a “superclass”
model in the case of inherited communication mechanisms.

14

12/03/2003 CIS Dept., UMass Dartmouth 27

A Template for the Planner Module
(Initial Design)

GSP(G) Goal Knowledge-base

make_
decision

start_a_
conver_
sation

…

…

…

…

…

continue

external internal

to place “Goal”
to place “Plan”

t o place “Knowledge base”

from transition
“update”

update_
goal/plan/kb

check_
primary

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

dispatch_
private_
utility

private

Plan

bypass

ASP(super)

ignore

next_
action

sensor

automatic_
update

new_
action

ASP(super)

ASP(super)
update

outgoing messages

utilit y methods

incoming messages

autonomous unit

Environment

syn
<e>

<e>

<e>

12/03/2003 CIS Dept., UMass Dartmouth 28

Examples of Agent-Oriented Design
(class hierarchy)

Shopping agent

Customer agent

Buying agent Selling agent

Retailer agent Auctioneer agent

15

12/03/2003 CIS Dept., UMass Dartmouth 29

Examples of Agent-Oriented Design
(contract net protocol)

shopping agent facilitator agent

request- registration

• refuse

request- info
x

• confirm

(a) (b)

supply- info

x
accept- info *

buying agent selling agent

request- price

• refuse

x

accept- proposal

reject- proposalx

propose

propose

accept- proposal

reject- proposal
x

• confirm

• refuse

buying agent selling agent

request- price

propose

reject- proposal

propose

accept- proposal

• confirm

(c)

12/03/2003 CIS Dept., UMass Dartmouth 30

Examples of Agent-Oriented Design
(shopping agent class)

GSP(SC)

mesg_pr -
ocessing

incoming message

Goal

outgoing message

request - info refuse

t4

Knowledge - base

Planner

MSP(self) MSP(self) MSP(self) MSP(self)

accept_info c onfirm request - registration supply - info

mesg_pr -
ocessing

mesg_pr -
ocessing

mesg_pr -
ocessing

return return

u tilitiy method

utility_1 utility_p

…

…

utili -
ty_1

utili -
ty_p

mesg_pr -
ocessing

MSP(G’.Aid) MSP(G’.Aid)

mesg_pr -
ocessing

Plan Environment

16

12/03/2003 CIS Dept., UMass Dartmouth 31

Examples of Agent-Oriented Design
(buying agent class)

GSP(BC)
BC extends SC

message_
processing

incoming message

Goal

outgoing message

propose request-price

Knowledge- base

Planner

MSP(self) MSP(G’.Aid) MSP(G’.Aid) MSP(G’.Aid)

accept- proposal reject-p roposal

message_
processing

message_
processing

message_
processing

return return

private utility method

utility_1 utility_p

…

…

utility_1 utility_p

Plan Environment

12/03/2003 CIS Dept., UMass Dartmouth 32

Part 4: Analysis of Agent-Oriented
Models

To help ensure a correct design that meets certain
specifications
To meet certain requirements such as liveness,
deadlock freeness and concurrency
Use Petri net tool: INA (Integrated Net Analyzer)

verifying structural properties
verifying behavioral properties
modeling checking (CTL formulas).

17

12/03/2003 CIS Dept., UMass Dartmouth 33

A Transformed Model of One Buying Agent
and Two Selling Agents

GSP(Shopping) (goal/plan/kb_1)

(make_
decision_1)

(start_a_
conversation_1)

(continue_1)

(external_1)
(internal_1)

(update_
goal/plan/kb_1)

(check_
primary_1)

(dispatch_
outgoing_
message_1)

(dispatch_
incoming_
message_1)

GSP(Selling_2)

(bypass_1)

(ignore_1)

(next_
action_1)

(sensor_1)

(automatic_
update_1)

(new_
action_1)

(update_1)

outgoing messages

incoming me ssages

(environment_1)

(dispatch_
incoming_
message_1)

GSP(Selling_1)

GSP(Buying)

ASP(Super)

(ignore_2)

(continue_2)

(goal/plan/kb_2) (environment_2)

(bypass_2) (sensor_2)

(internal_2)

(external_2)

(automatic_
update_2)

(new_
action_2)

(start_a_
conversation_2)

(make_
decision_2)

(update_
goal/plan/kb_2)

(update_2)

(next_
action_2)

Shopping : Shopping Subagent
Buying : Buying Primary Subagent
(Buying Agent Class extends
Shopping agent Class)

Selling_1 : Selling Agent_1
Selling_2 : Selling Ag ent_2

List of message processing units
=========================

P8: request_info
P9: refuse
P10: accept_info
P11: confirm
P16: request - registration
P17: supply_info
P25: propose
P31: request - price
P32: accept - proposal
P33: reject - proposal

outgoing messages

incoming messages

to superclass
ASP(Super)

to superclass

(dispatch_
outgoing_
message_2)

(check_
primary_2)

P1 P2
P3 P4

P5
P6

P8 P9 P10 P11

P12
P13

P14

P15

P16 P17

P18 P19
P20 P21

P22
P23

P25 P26

P27
P28

P29

P3 0

P31 P33P32
P34

P36

P35

t1
t2

t3 t4 t5 t6 t7 t8
t9

t10
t16

t12 t13 t14
t15

t11
t17

t18 t19

t20

t21
t22

t23 t24

t25 t26 t27
t28

t29

t30
t31

t32 t33 t34 t35

t36
t37 t38

t40

t41
t42 t43 t44

t46

t45

(syn_1)

(syn_2)

P7

P24

t39

(inhib_arc_1)

(inhib_arc_2)

12/03/2003 CIS Dept., UMass Dartmouth 34

Computation of the reachability graph
States generated: 8193
Arcs generated: 29701

Dead states:
484, 485,8189

Number of dead states found: 3
The net has dead reachable states.
The net is not live.
The net is not reversible (resetable).
The net is bounded.
The net is safe.
The following transitions are dead at the initial marking:

7, 9, 14, 15, 16, 17, 20, 27, 28, 32, 33
The net has dead transitions at the initial marking.

Experiment: Result -1

18

12/03/2003 CIS Dept., UMass Dartmouth 35

Redesign of the Planner Module
GSP(G) Goal Knowledge - base

make_
decision

start_a_
conver_
sation

…

…

…

…

…

continue

external internal

to place “Goal”
to place “Plan”

to place “Knowledge base”

from transition
“update”

update_
goal/plan/kb

check_
primary

dispatch_
outgoing_
message

dispatch_
incoming_

message

…

dispatch_
private_
utility

private

Plan

bypass

ASP(super)

ignore

next_
action

sensor

automatic_
update

new_
action

ASP(super)

ASP(super)

update

outgoing messages

private utilities

incoming me ssages

autonomous unit

Environment

syn
<e>

<e>

<e>

12/03/2003 CIS Dept., UMass Dartmouth 36

Experiment: Result - 2
Computation of the reachability graph
States generated: 262143
Arcs generated: 1540095

The net has no dead reachable states.
The net is bounded.
The net is safe.
The following transitions are dead at the initial marking:

7, 9, 14, 15, 16, 17, 20, 28
The net has dead transitions at the initial marking.

Liveness test:
Warning: Liveness analysis refers to the net where all dead

transitions are ignored.
The net is live, if dead transitions are ignored.
The computed graph is strongly connected.
The net is reversible (resetable).

19

12/03/2003 CIS Dept., UMass Dartmouth 37

Property Verification Using
Modeling Checking

• Concurrency (e.g., process incoming and outgoing messages)

EF(P5 &(P13 &(P22 &P28))) Result: The formula is TRUE

• Mutual Exclusion (don’t want simultaneous updating of goals, plan, etc.)

EF(P27 &P30) V (P29 &P30)) Result: The formula is FALSE

• Inheritance Mechanism (decision-making in a superclass model)

AG(-P12 &(-P14 &-P15)) Result: The formula is TRUE

• Inheritance Mechanism (ASP message forwarding I)

A[(P26 VP34)B(P5 VP6)] Result: The formula is TRUE

• Inheritance Mechanism (ASP message forwarding II)

A[P26 BP5]VA[P34 BP6] Result: The formula is FALSE

12/03/2003 CIS Dept., UMass Dartmouth 38

Part 5: Design of Intelligent Mobile
Agents – A Generic Model

Two schemes for agent development:
Weak agent approach
Strong agent approach

Most of the existing work on mobile agents
use weak agent approach (not flexible,
security issues …)
In contrast, we propose a generic model for
intelligent mobile agent.

20

12/03/2003 CIS Dept., UMass Dartmouth 39

Agent World Architecture
Host-A

computer network

AVM: ΘA AVM: ΘB

Host-B

(1) move-request (2) grant (3) notify (4) move

……

FA: θA MA: β MA: α MA: γFA: θB

(1)

(2)

(3)

MA: α

12/03/2003 CIS Dept., UMass Dartmouth 40

Intelligent Mobile Agent (IMA)
GSP(IMA)

incoming message

Goal

outgoing message
ask- authCode refuse - move

Knowledge-base

Planner

MSP(self) MSP(self) MSP(self) MSP(self)

grant - move confirm-move move - request return - authCode

return return

utility method
notify move

…

…

ISP(FA,
inform)

utility

MSP(G’.Aid) MSP(G ’.Aid)

Plan Environment

action action action action action action

21

12/03/2003 CIS Dept., UMass Dartmouth 41

Refinement of Functional Units

ISP(FA,
inform(FAILURE)) ISP(rFA, register)

Return

start_move

succeedfail

retry change_CurIP

(a) (b)

ISP(self, notify)

ISP(self, move)

message_processing

entry place

MSP(G’, Aid)

entry place

move() confirm-move

[retry ≤ MAX_TRIAL]

else

migration

begin_process

after_process

begin_migration

after_migrationend

retry

12/03/2003 CIS Dept., UMass Dartmouth 42

Advantages of This Approach
Application-specific mobile agent class can
be defined as a subclass of IMA
With further refinement of functional units,
the design of mobile agents can be verified
to meet certain requirements
The strong agent approach leaves adequate
room for security modeling.

22

12/03/2003 CIS Dept., UMass Dartmouth 43

Part 6: Agent Development Kit (ADK)

Most of existing work on agent formal modeling
defines whatwhat properties are to be realized by an
agent system instead of howhow
In contrast, agent-oriented G-net model serves as a
high-level design for agent development
Implement Agent Development Kit (ADK)

Use Jini middleware for agent communication
Provide a framework and a full class library to support
development of application-specific agents for MAS.

12/03/2003 CIS Dept., UMass Dartmouth 44

Modularization
GSP (interface)
Goal, Plan, Knowledge-base,
Planner, Internal Structure
Environment

Functional Units (Inheritable)
DMU* (decision-making unit)
MPU (message processing unit)
U-Method (utility method)

Formal Agent Model Implementation Platform

Middleware
Jini/JavaSpaces/RMI

Java Virtual Machine
Java: OO Language
JVM: Thread, Java
Swing etc.

Network
Communication
TCP/IP, UDP

Overview of Agent Design Architecture

Modularization
Interface Definition: GSP
Class Definition: Goal, Plan,
Knowledge, Agent (Planner,
Internal Structure)
Jini Community: Environment

Message Passing Mechanism
MSP: new thread
ISP: method invocation

Functional Units (Inheritable)
DMU: protected method
MPU: protected method
U-Method: protected method

ADK Agent Architecture

* DMUs are not inheritable in agent-oriented G-net model

Message Passing Mechanism
Asynchronous: MSP
Synchronous: ISP

23

12/03/2003 CIS Dept., UMass Dartmouth 45

The Jini Community

AirTicket
Buyer GSP

AirTicket
Seller

GSP

GSP

AirTicket
Seller

GSP

AirTicket
Buyer

Discovery Service Lookup Service Join Manager

Jini Community

…
…

12/03/2003 CIS Dept., UMass Dartmouth 46

The Agent Architectural Design

Goal Plan Knowledge

message
from GSP

SellerGSP
(agent B)

BuyerGSP
(agent A)

BuyerGSP SellerGSP

…
…

Action Component (agent B)

Jini Community
(environment)

message
to GSP

internal
event

external
event

decision-
making units

message
dispatcher sensor

Planner

incoming message
(MPUs)

outgoing message
(MPUs)

utility method
(methods)

Internal Structure

24

12/03/2003 CIS Dept., UMass Dartmouth 47

A Design Pattern for Intelligent Agents

Define the AgentAgent class to provide a pattern for
agent implementation
Derive the AgentAgent class from MiddlewareSupportMiddlewareSupport,
which deals with the Jini community
Separate agent communication capabilities and
agent mental states to enhance reuse of agent
design.

12/03/2003 CIS Dept., UMass Dartmouth 48

Classes Diagram: Communication
Capabilities and Mental States

Agent Message

Goal Knowledge

Plan

Goal: myGoals
Plan: myPlans
Knowledge: myKnowledge

initAgent()
autonousmousRun()

ServiceID: senderID
ServiceID: receiverID
String: protocolName
String: content

String: goalName
Goal: subGoal
Plan: associatedPlans

String: planName
Int: priority
Boolean: conditions

S tring: associatedGoalName

AgentInfo: thisAgent
AgentInfo[]: remoteAgents
Protocol[]: protocols

achieveGoal()

send/receive

achieve

use/update

use/update

execute

initialize

communication capabilities
mental states

initKnowledge()
update()

startPlan()
stopPlan()

toString()

Protocol

use/update

String: protocolName
DataStore: protocolSequence

Int: statusID

initProtocol()
callFo rProposal()

25

12/03/2003 CIS Dept., UMass Dartmouth 49

Classes defined in ADK and derived
classes of the Agent class

MiddlewareSupport

Agent

Plan

Air Ticket Buyer

GSP (interface)

Air Ticket Seller

Class Library (ADK)

Derived Classes

KnowledgeGoal
Message

Send / Receive

*
** *

Protocol
*

12/03/2003 CIS Dept., UMass Dartmouth 50

A Design Pattern for Application-
Specific Agents

1 public class ApplicationSpecificAgent extends Agent {
2
3 /**
4 * Class Variables for Knowledge, Goal and Plan *
5 /**/
6 Goal myGoals; // committed goals, redefinition of Goal class is optional
7 Plan myPlans; // plans, redefinition of Plan class is optional
8 Knowledge myKnowledge; // knowledge-base, redefinition of Knowledge
9 // class is optional
10 …
11
12 /***********
13 * Planner *
14 ***********/
15 protected void dispatchMessage(Message message) {…} // refinement
16 // or redefinition
17 protected Message makeDecision(Message message) {…} // refinement
18 // or redefinition
19 protected void updateMentalState() {…) // refinement
20 // or redefinition
21 …
22

26

12/03/2003 CIS Dept., UMass Dartmouth 51

A Design Pattern for Application-
Specific Agents (continued)

23 /**********************
24 * Internal Structure *
25 **********************/
26 // incoming message section – a set of message processing units
27 protected void MPU_In_1(Message message) {…} // new definition
28 …
29
30 // outgoing message section – a set of message processing units
31 protected void MPU_Out_1(Message outgoingMessage) {…}// new definition
32 …
33
34 // utility method section – a set of private utility methods
35 protected void initAgent(String[] args) {…} // refinement
36 // or redefinition
37 protected void autonomousRun() {…} // refinement
38 // or redefinition
39 protected void other_Inherited_Method_1() {…} // refinement
40 // or redefinition
41 …
42 protected void other_New_Method_1() {…} // new definition
43 …
44
45 public static void main(String[] args) {
46 initAgent(args);
47 autonomousRun();
48 }
49 }

12/03/2003 CIS Dept., UMass Dartmouth 52

A Case Study: Air-Ticket Trading

Figure I. The agent interface for knowledge-base, goal and plan modules

27

12/03/2003 CIS Dept., UMass Dartmouth 53

A Case Study: Air-Ticket Trading
(continued)

Figure II. The agent interface for a buyer agent

12/03/2003 CIS Dept., UMass Dartmouth 54

Part 7: Concluding Comments

There is an increasing need to ensure that
complex software systems are robust, reliable and
fit for purpose (Agent-Oriented SE)
Petri nets provide a formal and visual model with
natural expression for concurrency and
coordination
Adapt Petri net models to define a model-based
approach for AOSE and an associated ADK.

28

12/03/2003 CIS Dept., UMass Dartmouth 55

Future Work
Design and implement a compilation process and tools to
automatically translate agent communication protocols into
MPUs and decision-making units
Develop a model-based agent development environment
(ADE) for rapid agent design and implementation (i.e.,
synthesis of the work)
Bring formal methods into the testing phase for concurrent
and distributed software systems
Perform research on the following areas:

Agent mobility
Agent-based peer-to-peer computing
Ubiquitous computing.

Thanks for your
attention!

My Ph.D. thesis and the slides for this talk may be downloaded from

http://www.cis.umassd.edu/~hxu

