
Two-Level Smart Search Engine Using Ontology-
Based Semantic Reasoning

Haiping Xu and Arturo W. Li
Computer and Information Science Department

University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
{hxu, ali}@umassd.edu

Abstract—Traditional search engines are typically keyword-
based, which cannot understand the semantics of a query or
relationships among queried concepts, causing much of the
related information to be absent from the search results. As
opposed to traditional keyword-based search engines, in this
paper, we introduce an approach to developing a smart search
engine using ontology-based semantic reasoning. The search
engine can understand the semantics of a concept or multiple
concepts entered by a user, and classify and reason about the
concepts within a knowledge domain specified using ontology.
The search engine consists of two levels, namely the semantic
reasoning level and the traditional keyword searching level. The
semantic reasoning level supports reasoning about subsumption,
supersumption, semantic equivalency and property relationships
among concepts. Once new concepts related to the queried
concepts have been inferred from the ontology, they can be
further matched using a traditional keyword-based search
mechanism. To demonstrate the feasibility of our approach, we
adopt the domain of computer science courses for semantic
search, and show that our approach may produce more relevant
search results to user queries.

Keywords-Search engine; smart search; semantic reasoning;
ontology; domain knowledge.

I. INTRODUCTION

The growth of Internet has made search engines one of the
most frequently used web applications over the past decades.
Search engines can be used to search information on the web,
including documents, images, audios, videos, and related web
pages. Traditional search engines such as Google search
engine, typically use the keyword-matching approach and
ranking algorithms to retrieve the desired information for user
queries. They have been quite successful by providing users
simple search interface and useful search results. However,
since traditional search engines cannot understand the
semantics of a query or relations among queried concepts
entered by a user, they often offer low recall and precision,
with much of the related information being absent from the
search results or too many irrelevant and ambiguous results
being presented [1],[2]. For example, the word “Football” may
refer to the sport played in North America with an oval ball or
the Olympic sport played with a spherical shape ball known as
soccer in America. When a user types the query “Football
Leagues” into a traditional search engine, expecting some
search results related to the Olympic sport, the highly ranked
search results are unfortunately all about American football

leagues with no relation to the Olympic sport. In order to
return desirable results (e.g., the European Football League)
for this user, it is required that the search engine can clearly
understand the ambiguous meaning of the word “Football.” In
another example, suppose a computer science student wants to
search for information related to a concept called “pushdown
automaton.” Unfortunately, the student cannot remember this
terminology, though he knows that such a model contains
some states and a stack. Using semantic search, when the
student types a pair of concepts “State” and “Stack” within the
domain of computer science courses, the reasoner should
efficiently infer the concept of “pushdown automaton” and
present it to the student for further querying. Different from
traditional search engines, semantic search engines utilize
semantic information of certain domain knowledge specified
using ontology. With the support of domain knowledge, user
queries are precisely and unambiguously analyzed in order to
provide better precision and recall rates for search results.
Thus, ontology-based semantic search can highly improve
search accuracy of the query and deliver results that are more
relevant to the user queries.

In this paper, we propose an ontology-based methodology
combined with traditional keyword-matching approaches to
obtain more accurate and relevant search results for user
queries. The proposed smart search engine model consists of
two levels, namely the semantic reasoning level and the
traditional keyword searching level. As one of the advantages
of our approach, users are not required to be familiar with the
exact concepts to be searched when formulating queries.
Instead, the smart search engine can automatically infer the
desired concepts by analyzing and reasoning about user-
provided concepts within the given knowledge domain. To
demonstrate the advantages of our approach, we develop a
prototype smart search engine that supports reasoning about
subsumption, supersumption, semantic equivalency and object
property relations among concepts, and adopt the domain
knowledge in computer science courses to demonstrate how
semantic search may benefit computer science students.

Although there have been many efforts on semantic search,
research on this topic is still in its premature stage. SHOE
search engine [3], introduced by Heflin and Hendler, has a
standalone architecture and is one of the first form-based
semantic search engines. It provides sophisticated web forms
that allow users to specify queries. Similar to SHOE, the
OntoIR system [4] proposed by Garcia and Sicilia also belongs
to the form-based semantic search engine category. It improves
the SHOE approach by providing a selection-based interface

648

for the users. Although the above form-based approaches can
be useful for those who are familiar with the domain ontology,
they are not quite usable for typical Internet users. In contrast,
our approach is not form based and does not require users to be
familiar with the domain knowledge; thus, our approach allows
users to interact with the system in a similar way to traditional
search engines. There are also a few semantic search engines
with standalone architecture and a RDF-based querying
language. Swoogle is a crawler-based semantic web search
engine that discovers and indexes documents containing RDF
data [5]. When a new semantic web document is discovered,
Swoogle analyzes it and extracts the needed data, and then it
computes the metadata and derives the statistical properties.
Similar to Google, Swoogle uses two ranking algorithms,
namely OntoRank and Term Rank, to rank search results.
Likewise, SWSE (Semantic Web Search Engine) consists of
components that support web crawling, data enhancing and
indexing, search interface, and browsing and retrieval of
information [6]. It operates over RDF web data, and adapts
large-scale web search engines to the case of structured data.
Although the semantic search engines mentioned above can
operate on RDF data, they do not support reasoning about
relations among concepts in order to infer new knowledge. In
contrast, our approach uses the Web Ontology Language
(OWL) to specify domain ontologies, which is a knowledge
representation language for authoring ontologies or knowledge
bases. Thus, our approach supports reasoning about user
queries, and can classify and infer related concepts to enhance
search performance.

II. ONTOLOGY DEVELOPMENT

Ontology can be used to formally and explicitly specify a
conceptualization, and precisely describe the concepts and
relationships that exist in a particular domain of knowledge.
Ontology allows computers to understand and infer about
meaning of information by providing an organized framework
for classification and reasoning of given concepts and
relationships. In the following sections, we describe important
relations between concepts, and show how to use object
property restrictions to define new concepts.

A. Concept Definition and Class Hierarchy

Ontology is typically organized as a hierarchical structure,
which contains a set of concepts and relationships that can be
inherited to their child elements. The combination of all
concepts and their relationships constitute the knowledge base
of the domain. Concepts can be represented in the form of
classes organized within a class hierarchy, where classes are
connected with each other by class-level relationships, namely,
subsumption relation (i.e., is-subsumed-by or is-subclass-of,
denoted as ⊑), supersumption relation (i.e., is-superclass-of,
denoted as ⊒), and semantic equivalence (i.e., is-equivalent-to,
denoted as ≡) [7]. We follow a top-down approach to develop
the class hierarchy for the domain knowledge. The top-down
development approach starts with the definition of the most
general concepts in the domain and subsequent specialization
of the concepts. In an ontology-based class hierarchy, class-
level relations between concepts are explicitly defined using
the keywords subClassOf and equivalentClass. For
example, the class FiniteAutomaton can be defined using

ontology language OWL as a subclass of the Automaton class.
Since it has the same semantic as a finite state machine, it is
also defined as an equivalent class of the FiniteState-
Machine class. Based on the above definitions, a reasoner can
infer that all properties of the Automaton class and the
FiniteStateMachine class are also properties of the
FiniteAutomaton class due to subsumption and semantic
equivalence relations among the classes, respectively.

B. Relation Between Concepts

Concepts defined as classes in a hierarchical order are not
sufficient for describing certain domain knowledge. Properties
between instances of classes may also be needed to describe
further relations between different concepts. Relations between
concepts can be specified using object properties in OWL,
which are usually defined as actions. For example, the two
concepts Automaton and Language can be defined as the
domain and the range of the object property relation
recognizes, respectively. Since all subclasses inherit the
properties of their superclasses, when defining the domain and
the range of an object property relation, we usually choose the
most general classes that satisfy the relation from the class
hierarchy. In addition, we also define the object property
recognizes as an inverse relation of the object property
isRecognizedBy since a language can be recognized by an
automaton. Furthermore, the object property recognizes can
be defined as a functional property because each automaton
recognizes only one language, i.e., the language of an
automaton is unique.

C. Class Definition Using Property Restriction

When we declare that class α satisfies condition φ, it is
equivalent to say that α is a subclass of α’ that satisfies a
necessary and sufficient condition φ. This is because all
instances of α must also be instances of α’ since they all satisfy
the necessary and sufficient condition of class α’, namely,
condition φ. Similarly, when concept c has property p(c, c1),
where c has an object property relation p with concept c1,
concept c can be defined as a subclass of concept c’ with
property p(c’, c1) as its necessary and sufficient condition. In
OWL, concept c’ is called a property restriction, which is
usually kept as an anonymous class. For example, when we
define PDA that contains some Stack, we could specify PDA as
a subclass of property restriction r1 that satisfies property
contains(r1, Stack). Similarly, we can specify PDA as a
subclass of a property restriction r2 that satisfies property
isCoveredBy(r2, CIS361) since the concept PDA is covered by
undergraduate course CIS361.

III. ONTOLOGY-BASED TWO-LEVEL SMART SEARCH ENGINE

A. Architectural Design

The framework for the two-level smart search engine is
illustrated in Fig. 1. The system consists of a user interface
module, a query handler, the domain ontology and two major
levels, called the semantic reasoning module (Level 1) and the
keyword-based query matching module (Level 2), respectively.
In this paper, we focus on the first level, i.e., the semantic
reasoning, and adopt an existing keyword-matching traditional

649

QueryHandler

Classified Concepts

Semantic Reasoning (Level 1)

Single
Concept

Multiple
Concepts

Related Concepts

Concept Classification

Paired
Concepts

Property Analysis

Keyword-Based Query Matching (Level 2)

Display & User Selection

Searching
Results

U
se

r
In

te
rf

ac
e

Domain Ontology

Figure 1. A framework for the two-level smart search engine

search engine, such as Google, Yahoo, Bing or DogPile, as the
searching mechanism at the second level.

As shown in Fig. 1, the user interface allows a user to type
in a single or multiple concepts in the form of string(s). The
user inputs are filtered and parsed by the query handler, and
matched with concepts defined in the domain ontology. When
the user inputs are matched with a single concept, it is
processed by the semantic reasoning module directly. On the
other hand, when the user inputs are matched with two or more
than two concepts, paired concepts are generated, and each pair
of concepts is processed by the semantic reasoning module
individually before the reasoning results are combined. For
either a single concept or paired concepts, the semantic
reasoning module first classifies the concept within the class
hierarchy of the domain ontology, and infers the concepts that
have the subsumption, supersumption, and semantic
equivalence relations with the input concept(s). We called such
inferred concepts classified concepts. Then it analyzes the
properties of the input concept(s), and infers any concepts that
are related to the input concept(s) by object properties. We call
such inferred concepts related concepts. Once we derive all
classified concepts and related concepts, they are displayed on
screen to allow a user to select the most desired concept for
further concept matching. In the second level of the smart
search engine, a user-selected concept can be again sent to the
semantic reasoning module (this option is not shown in Fig. 1)
or it can be sent to a keyword-based query matching module,
e.g., the Google search engine, to search for relevant
information to the user query from the Internet.

B. Semantic Reasoning for Single-Concept Query

When a query contains a single concept, we call it a simple
query. For example, if a user types in “Automaton,” we
consider it a simple query since “Automaton” represents a
single concept. For a single concept sc, an inferred concept
can be either a classified one or a related one. A classified
concept subsumes, supersumes or is semantically equivalent to
sc; while a related concept could be inferred due to a
someValuesFrom or allValuesFrom restriction. In the

following defined enumerated single concept relation, the
aforementioned five different types of relations are denoted as
SUB, SUP, EQ, SOME or ALL, respectively,

enum SingleConceptRelation { // for a single concept
 SUB, SUP, EQ, SOME, ALL}

The SimpleRelation and InferredConcept classes are
defined in the following. Note that we also define an abstract
class Relation, which serves as a superclass of the
SimpleRelation class as well as more complicated relations
described in Section III.C.

class SimpleRelation extends Relation {
 SingleConceptRelation sRel;
 OntClass queriedConcept;
 Relation getRelation() { … }
}

abstract class Relation {
 abstract Relation getRelation();
}

class InferredConcept {
OntClass concept; // the ontology class
Relation relation; // relationship with the
 concept(s) to be queried

}

The algorithm for inferring new concepts for a single
concept is presented as Algorithm 1. When a user inputs a
single concept, it is first processed (e.g., removing the space in
the input string “Finite Automaton”), and matched with a
predefined concept (i.e., FiniteAutomaton) within the
domain ontology. Then the system uses a semantic reasoner to
infer all classified concepts that subsume, supersume, and are
semantically equivalent to the input concept. In the following
steps, the algorithm checks all restrictions that are superclasses
of the input concept, and infers all related concepts that have
object property relations with the input concept by
someValuesFrom or allValuesFrom restriction. Once all
classified and related concepts are identified, they are returned
as a list of inferred concepts for further processing.

Algorithm 1: Inference of New Concepts (Single Concept)

Input: User input representing a single concept sc
Output: A list of inferred concepts lic related to sc

1. match user inputs with single concept sc in the domain ontology
2. initialize lic to an empty list
3. infer all concepts such that each concept c ⊏ sc, c ⊐ sc or c ≡ sc,
 and store them in sets sSub, sSup, and sEq, respectively.
4. for each c in sSub
5. set c.relation.sRel to SUB, and add c into lic
6. for each c in sSup
7. set c.relation.sRel to SUP, and add c into lic
8. for each c in sEq
9. set c.relation.sRel to EQ, and add c into lic
10. let lres be the list of restrictions from the set of superclasses of sc
11. let inferc be an instance of InferredConcept
12. for each restriction res in lres
13. if res is a someValuesFrom inferc.concept restriction
14. set inferc.relation.sRel to SOME, and add inferc to lic
15. else if res is an allValuesFrom inferc.concept restriction
16. set inferc.relation.sRel to ALL, and add inferc to lic
17. return list lic

650

C. Semantic Reasoning for Multi-Concept Query

When a user types in a query that involves two or more
concepts, we call it a complex query. In this case, the semantic
reasoning module first generates all possible paired concepts
for efficient processing, and for each pair of concepts (c1, c2),
it checks the following special cases that require only
searching for a single concept.

Special Case 1 (SP1). When concept c1 is equivalent to
concept c2 (i.e., c1 ≡ c2), we only need to search for single
concept c1 or c2, and all classified concepts and related
concepts for both c1 and c2 will be inferred.

Special Case 2 (SP2). When concept c1 and c2 have a
subsumption relation (i.e., c1 ⊑ c2), we only need to search for
single concept c1 since c1 inherits all properties of c2. In this
case, all classified and related concepts of c2 will be
automatically inferred for concept c1. Similarly, when c2 ⊑
c1, we only need to search for single concept c2.

Special Case 3 (SP3). When there exists an object property
relation p(c1, c2) between paired concepts c1 and c2, we only
need to search for single concept c1 since in this case, c2 will
be automatically inferred as a related concept of c1.

On the other hand, if the relation between c1 and c2 does
not belong to any of the above special cases, new concepts
must be inferred using both of the two concepts. Four typical
relations between an inferred concept c and the pair of
concepts (c1, c2) are defined as follows.

Common Supersumption (CSUP). Concept c is an inferred
classified concept such that c ⊐ c1 and c ⊐ c2, i.e., c is a
proper superclass of both c1 and c2. Note that in this case, c ≢
c1 and c ≢ c2; otherwise, the relation must belong to either
SP1 or SP2. For example, if c ≡ c1 and c ⊒ c2, we have c1 ⊒
c2, i.e., c2 ⊑ c1, which is defined as SP2.

Common Subsumption (CSUB). Concept c is an inferred
classified concept such that c ⊏ c1 and c ⊏ c2, i.e., c is a
proper subclass of both c1 and c2. Note that in this case, c ≢
c1 and c ≢ c2; otherwise, the relation must belong to either
SP1 or SP2. For example, if c ≡ c1 and c ⊑ c2, we have c1 ⊑
c2, which is defined as SP2.

Property Relation (PROP). Concept c is an inferred related
concept, and ∃ p1(c, c1) and p2(c, c2), where p1 and p2 are
object property relations between c and c1, and c and c2,
respectively. Note that p1 and p2 can be either the same or
different object property relations.

Property-Subsumption Relation (PROP-SUB). Concept c is
an inferred related concept such that c ⊏ c2 and ∃ p1(c, c1) or
p1(c1, c), where p1 is an object property relation between c and
c1; or c ⊏ c1 and ∃ p2(c, c2) or p2(c2, c), where p2 is an object
property relation between c and c2.

Note that we do not need to consider the case of Property-
Supersumption Relation, where an inferred related concept c is
a superclass of c1 (or c2), and there exists an object property
relation between c and c2 (or between c and c1). This is
because in such cases, the relation must belong to the special

case SP3. For example, in a paired concept (c1, c2), if concept
c is a superclass of concept c2, and there exists an object
property relation p1(c, c1), there must exist an object property
relation p2(c2, c1) since c2 inherits all properties of c. This is
exactly the case defined in special case SP3; therefore, we
only need to search for single concept c2.

The algorithm for inferring new concepts from multiple
concepts can be designed in a similar way by considering the
special cases and the CSUP, CSUB, PROP, and PROP-SUB
relations (due to page limitation, the algorithm is not presented
in this paper). Briefly, the algorithm first generates a list of
paired concepts, and then infers classified and related concepts
for each pair of concepts (c1, c2). Note that in the special
cases when c1 is equivalent to c2, c1(c2) subsumes c2(c1), or
c1 and c2 has an object property relation, the algorithm
automatically executes Algorithm 1 that infers classified and
related classes for a single concept. Otherwise, the algorithm
first infers classified concepts, namely, the common
superclasses csup that subsume both c1and c2, and the
common subclasses csub that supersume both c1and c2. Then
the algorithm checks whether there exists any concept c that
has object property relations with both c1 and c2. Finally, it
infers any possible concept c that has a property-subsumption
relation with the pair of concepts (c1, c2). All inferred
concepts will be added into a list of inferred concepts, and
returned as output of the algorithm.

IV. CASE STUDY

To demonstrate the feasibility of our proposed approach to
developing the two-level smart search engine using ontology-
based semantic reasoning, we present a case study of semantic
search in the domain of computer science courses. In particular,
we have defined the domain ontology based on two computer
science courses taught by the first author for over 10 years at
the University of Massachusetts Dartmouth (UMassD). The
two courses are the undergraduate course CIS 361: Models of
Computation and the graduate course CIS 560: Theoretical
Computer Science. We expect a feasible smart search engine in
such a knowledge domain can greatly benefit our computer
science students in understanding fundamental concepts and
their relations in computer science.

The smart search engine was developed using the Pellet
reasoner as a Java-based OWL-DL reasoner, which provides
reasoning services for OWL ontologies. The Pellet OWL2
Reasoner for Java works with the Jena framework that provides
a programmatic environment for RDF, OWL, SPARQL, and
includes a rule-based inference engine. The smart search
engine processes a user input as concept(s) rather than
keywords, and infers classified and related concepts. A user
may select an inferred concept for further semantic reasoning
or send it to a traditional search engine for retrieving related
information from the Internet.

Once we have defined the domain ontologies for the
course contents in CIS 361 and CIS 560, we can use our
prototype two-level smart search engine for semantic search.
Suppose a computer science student wants to search for some
concepts that are related to a pair of concepts (Stack, State),
some partial semantic search results for the paired concepts
will be displayed as in Fig. 2.

651

Figure 2. Seach results for a paired concepts “Stack; State”

From the search results, we can see that both Stack and
State are subclasses of CS_Concept. The commonly related
concepts inferred according to the Property Relation defined
in Section III.C include PushDownAutomaton and PDA
because both contain some State and some Stack. By
clicking on the links of PushDownAutomaton and PDA, they
can be further processed as a single concept. Alternatively,
when an associated “Search” link is clicked, the corresponding
single concept (e.g., PushDownAutomaton) can be searched
as a keyword using a traditional search engine.

In another scenario, when a computer science student
wants to search for the type of language that can be recognized
by a PDA, he/she can simply type in a pair of concepts
(Language, PDA) into the smart search engine, and some
partial semantic search results will be displayed as in Fig. 3.

Figure 3. Seach results for a paired concepts “Language; PDA”

From the search results, we know that both the concepts
ContextFreeLanguage and CFL are commonly related to
the paired concepts (Language, PDA). The inference of these
two new concepts is based on the Property-Subsumption
Relation defined in Section III.C since both of them are
subclasses of Language and can be recognized by PDA. By
clicking on the link of ContextFreeLanguage or CFL, the
inferred concept can be further searched as a single concept.
Alternatively, when an associated “Search” link is clicked, the

corresponding concept (e.g., ContextFreeLanguage) can be
searched as a keyword using a traditional search engine.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present an ontology-based methodology
for semantic search that can produce more accurate and
relevant search results for a concept-based query. The smart
search engine consists of two levels, namely the semantic
reasoning level and the traditional keyword searching level.
The semantic reasoning level can understand the meaning of a
concept or multiple concepts entered by a user, and classify and
reason about the concepts in the corresponding knowledge
domain specified using ontology. Once the semantic reasoning
module infers the concepts related to a user query, in the
second level, a traditional search engine can be used to search
for addition information from the Internet. One major benefit of
our approach is that a user does not have to be familiar with the
domain knowledge when making queries. Instead, the smart
search engine can reason about user queries, and produce those
concepts that are closely related to the user inputs. To
demonstrate the feasibility of our smart search engine
approach, we develop a prototype smart search engine as well
as ontologies in the domain of computer science courses. The
case studies show that the smart search engine can effectively
infer concepts that are semantically related to user queries.

As future work, we plan to develop a set of more complete
domain knowledge for the computer science courses taught at
UMassD, and show that such smart search engine can greatly
help students to understand difficult computer science
concepts. In addition to dealing with paired concepts, we will
also design algorithms that can directly process a complex
query with more than two concepts. Such algorithms should
efficiently infer new related concepts from the given multiple
concepts by reasoning about their relations with each other.

REFERENCES

[1] Y. Lei, V. Uren, and E. Motta, “SemSearch: A Search Engine for the
Semantic Web,” Proceedings of the 15th International Conference on
Knowledge Engineering and Knowledge Management (EKAW 2006),
Lecture Notes in Computer Science, Vol. 4248, Springer, Heidelberg,
Oct. 2-6, 2006, Podebrady, Czech Republic, pp. 238-245.

[2] C. Mangold, “A Survey and Classification of Semantic Search
Approaches,” International Journal of Metadata, Semantics and
Ontologies (IJMSO), Vol. 2, No. 1 , 2007, pp. 23-34.

[3] J. Heflin and J. Hendler, “Searching the Web with SHOE,” Proceedings
of the AAAI Workshop on Artificial Intelligence for Web Search, AAAI
Press, Menlo Park, CA, 2000, pp. 35-40.

[4] E. García and M. Sicilia, “Designing Ontology-Based Interactive
Information Retrieval Interfaces,” Proceedings of the Workshop on
Human Computer Interface for Semantic Web and Web applications
(HCI-SWWA), Lecture Notes in Computer Science 2003, Springer, New
York, 2003, pp. 152-165.

[5] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P Reddivari, V.
Doshi, and J. Sachs. “Swoogle: a Search and Metadata Engine for the
Semantic Web,” Proceedings of the Thirteenth ACM Conference on
Information and Knowledge Management (CIKM’04), Washington DC,
USA, 2004, pp.652-659.

[6] A. Hogan, A. Harth, J. Umbrich, et. al., “Searching and Browsing
Linked Data with SWSE: the Semantic Web Search Engine,” Journal of
Web Semantics, Vol. 9, No. 4, 2011, pp. 365-401.

[7] G. Antoniou and F. van Harmelen, A Semantic Web Primer, 2nd Edition,
MIT Press, Massachuestts, 2008.

652

