
Two-Level Smart Search Engine Using Ontology-
Based Semantic Reasoning  

Haiping Xu and Arturo W. Li 
Computer and Information Science Department 

University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA 
{hxu, ali}@umassd.edu 

 
 

Abstract—Traditional search engines are typically keyword-
based, which cannot understand the semantics of a query or 
relationships among queried concepts, causing much of the 
related information to be absent from the search results. As 
opposed to traditional keyword-based search engines, in this 
paper, we introduce an approach to developing a smart search 
engine using ontology-based semantic reasoning. The search 
engine can understand the semantics of a concept or multiple 
concepts entered by a user, and classify and reason about the 
concepts within a knowledge domain specified using ontology. 
The search engine consists of two levels, namely the semantic 
reasoning level and the traditional keyword searching level. The 
semantic reasoning level supports reasoning about subsumption, 
supersumption, semantic equivalency and property relationships 
among concepts. Once new concepts related to the queried 
concepts have been inferred from the ontology, they can be 
further matched using a traditional keyword-based search 
mechanism. To demonstrate the feasibility of our approach, we 
adopt the domain of computer science courses for semantic 
search, and show that our approach may produce more relevant 
search results to user queries.  

Keywords-Search engine; smart search; semantic reasoning; 
ontology; domain knowledge. 

I.  INTRODUCTION 

The growth of Internet has made search engines one of the 
most frequently used web applications over the past decades. 
Search engines can be used to search information on the web, 
including documents, images, audios, videos, and related web 
pages. Traditional search engines such as Google search 
engine, typically use the keyword-matching approach and 
ranking algorithms to retrieve the desired information for user 
queries. They have been quite successful by providing users 
simple search interface and useful search results. However, 
since traditional search engines cannot understand the 
semantics of a query or relations among queried concepts 
entered by a user, they often offer low recall and precision, 
with much of the related information being absent from the 
search results or too many irrelevant and ambiguous results 
being presented [1],[2]. For example, the word “Football” may 
refer to the sport played in North America with an oval ball or 
the Olympic sport played with a spherical shape ball known as 
soccer in America. When a user types the query “Football 
Leagues” into a traditional search engine, expecting some 
search results related to the Olympic sport, the highly ranked 
search results are unfortunately all about American football 

leagues with no relation to the Olympic sport. In order to 
return desirable results (e.g., the European Football League) 
for this user, it is required that the search engine can clearly 
understand the ambiguous meaning of the word “Football.” In 
another example, suppose a computer science student wants to 
search for information related to a concept called “pushdown 
automaton.” Unfortunately, the student cannot remember this 
terminology, though he knows that such a model contains 
some states and a stack. Using semantic search, when the 
student types a pair of concepts “State” and “Stack” within the 
domain of computer science courses, the reasoner should 
efficiently infer the concept of “pushdown automaton” and 
present it to the student for further querying. Different from 
traditional search engines, semantic search engines utilize 
semantic information of certain domain knowledge specified 
using ontology. With the support of domain knowledge, user 
queries are precisely and unambiguously analyzed in order to 
provide better precision and recall rates for search results. 
Thus, ontology-based semantic search can highly improve 
search accuracy of the query and deliver results that are more 
relevant to the user queries. 

In this paper, we propose an ontology-based methodology 
combined with traditional keyword-matching approaches to 
obtain more accurate and relevant search results for user 
queries. The proposed smart search engine model consists of 
two levels, namely the semantic reasoning level and the 
traditional keyword searching level. As one of the advantages 
of our approach, users are not required to be familiar with the 
exact concepts to be searched when formulating queries. 
Instead, the smart search engine can automatically infer the 
desired concepts by analyzing and reasoning about user-
provided concepts within the given knowledge domain. To 
demonstrate the advantages of our approach, we develop a 
prototype smart search engine that supports reasoning about 
subsumption, supersumption, semantic equivalency and object 
property relations among concepts, and adopt the domain 
knowledge in computer science courses to demonstrate how 
semantic search may benefit computer science students. 

Although there have been many efforts on semantic search, 
research on this topic is still in its premature stage. SHOE 
search engine [3], introduced by Heflin and Hendler, has a 
standalone architecture and is one of the first form-based 
semantic search engines. It provides sophisticated web forms 
that allow users to specify queries. Similar to SHOE, the 
OntoIR system [4] proposed by Garcia and Sicilia also belongs 
to the form-based semantic search engine category. It improves 
the SHOE approach by providing a selection-based interface 
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for the users. Although the above form-based approaches can 
be useful for those who are familiar with the domain ontology, 
they are not quite usable for typical Internet users. In contrast, 
our approach is not form based and does not require users to be 
familiar with the domain knowledge; thus, our approach allows 
users to interact with the system in a similar way to traditional 
search engines. There are also a few semantic search engines 
with standalone architecture and a RDF-based querying 
language. Swoogle is a crawler-based semantic web search 
engine that discovers and indexes documents containing RDF 
data [5]. When a new semantic web document is discovered, 
Swoogle analyzes it and extracts the needed data, and then it 
computes the metadata and derives the statistical properties. 
Similar to Google, Swoogle uses two ranking algorithms, 
namely OntoRank and Term Rank, to rank search results. 
Likewise, SWSE (Semantic Web Search Engine) consists of 
components that support web crawling, data enhancing and 
indexing, search interface, and browsing and retrieval of 
information [6]. It operates over RDF web data, and adapts 
large-scale web search engines to the case of structured data. 
Although the semantic search engines mentioned above can 
operate on RDF data, they do not support reasoning about 
relations among concepts in order to infer new knowledge. In 
contrast, our approach uses the Web Ontology Language 
(OWL) to specify domain ontologies, which is a knowledge 
representation language for authoring ontologies or knowledge 
bases. Thus, our approach supports reasoning about user 
queries, and can classify and infer related concepts to enhance 
search performance. 

II. ONTOLOGY DEVELOPMENT  

Ontology can be used to formally and explicitly specify a 
conceptualization, and precisely describe the concepts and 
relationships that exist in a particular domain of knowledge. 
Ontology allows computers to understand and infer about 
meaning of information by providing an organized framework 
for classification and reasoning of given concepts and 
relationships. In the following sections, we describe important 
relations between concepts, and show how to use object 
property restrictions to define new concepts. 

A. Concept Definition and Class Hierarchy 

Ontology is typically organized as a hierarchical structure, 
which contains a set of concepts and relationships that can be 
inherited to their child elements. The combination of all 
concepts and their relationships constitute the knowledge base 
of the domain. Concepts can be represented in the form of 
classes organized within a class hierarchy, where classes are 
connected with each other by class-level relationships, namely, 
subsumption relation (i.e., is-subsumed-by or is-subclass-of, 
denoted as ⊑), supersumption relation (i.e., is-superclass-of, 
denoted as ⊒), and semantic equivalence (i.e., is-equivalent-to, 
denoted as ≡) [7]. We follow a top-down approach to develop 
the class hierarchy for the domain knowledge. The top-down 
development approach starts with the definition of the most 
general concepts in the domain and subsequent specialization 
of the concepts. In an ontology-based class hierarchy, class-
level relations between concepts are explicitly defined using 
the keywords subClassOf and equivalentClass. For 
example, the class FiniteAutomaton can be defined using 

ontology language OWL as a subclass of the Automaton class. 
Since it has the same semantic as a finite state machine, it is 
also defined as an equivalent class of the FiniteState-
Machine class. Based on the above definitions, a reasoner can 
infer that all properties of the Automaton class and the 
FiniteStateMachine class are also properties of the 
FiniteAutomaton class due to subsumption and semantic 
equivalence relations among the classes, respectively. 

B. Relation Between Concepts 

Concepts defined as classes in a hierarchical order are not 
sufficient for describing certain domain knowledge. Properties 
between instances of classes may also be needed to describe 
further relations between different concepts. Relations between 
concepts can be specified using object properties in OWL, 
which are usually defined as actions. For example, the two 
concepts Automaton and Language can be defined as the 
domain and the range of the object property relation 
recognizes, respectively. Since all subclasses inherit the 
properties of their superclasses, when defining the domain and 
the range of an object property relation, we usually choose the 
most general classes that satisfy the relation from the class 
hierarchy. In addition, we also define the object property 
recognizes as an inverse relation of the object property 
isRecognizedBy since a language can be recognized by an 
automaton. Furthermore, the object property recognizes can 
be defined as a functional property because each automaton 
recognizes only one language, i.e., the language of an 
automaton is unique. 

C. Class Definition Using Property Restriction 

When we declare that class α satisfies condition φ, it is 
equivalent to say that α is a subclass of α’ that satisfies a 
necessary and sufficient condition φ. This is because all 
instances of α must also be instances of α’ since they all satisfy 
the necessary and sufficient condition of class α’, namely, 
condition φ. Similarly, when concept c has property p(c, c1), 
where c has an object property relation p with concept c1, 
concept c can be defined as a subclass of concept c’ with 
property p(c’, c1) as its necessary and sufficient condition. In 
OWL, concept c’ is called a property restriction, which is 
usually kept as an anonymous class. For example, when we 
define PDA that contains some Stack, we could specify PDA as 
a subclass of property restriction r1 that satisfies property 
contains(r1, Stack). Similarly, we can specify PDA as a 
subclass of a property restriction r2 that satisfies property 
isCoveredBy(r2, CIS361) since the concept PDA is covered by 
undergraduate course CIS361. 

III. ONTOLOGY-BASED TWO-LEVEL SMART SEARCH ENGINE  

A. Architectural Design 

The framework for the two-level smart search engine is 
illustrated in Fig. 1. The system consists of a user interface 
module,  a query handler, the domain ontology and two major 
levels, called the semantic reasoning module (Level 1) and the 
keyword-based query matching module (Level 2), respectively. 
In this paper, we focus on the first level, i.e., the semantic 
reasoning,  and adopt an existing keyword-matching traditional  
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Figure 1.  A framework for the two-level smart search engine 

search engine, such as Google, Yahoo, Bing or DogPile, as the 
searching mechanism at the second level. 

As shown in Fig. 1, the user interface allows a user to type 
in a single or multiple concepts in the form of string(s). The 
user inputs are filtered and parsed by the query handler, and 
matched with concepts defined in the domain ontology. When 
the user inputs are matched with a single concept, it is 
processed by the semantic reasoning module directly. On the 
other hand, when the user inputs are matched with two or more 
than two concepts, paired concepts are generated, and each pair 
of concepts is processed by the semantic reasoning module 
individually before the reasoning results are combined. For 
either a single concept or paired concepts, the semantic 
reasoning module first classifies the concept within the class 
hierarchy of the domain ontology, and infers the concepts that 
have the subsumption, supersumption, and semantic 
equivalence relations with the input concept(s). We called such 
inferred concepts classified concepts. Then it analyzes the 
properties of the input concept(s), and infers any concepts that 
are related to the input concept(s) by object properties. We call 
such inferred concepts related concepts. Once we derive all 
classified concepts and related concepts, they are displayed on 
screen to allow a user to select the most desired concept for 
further concept matching. In the second level of the smart 
search engine, a user-selected concept can be again sent to the 
semantic reasoning module (this option is not shown in Fig. 1) 
or it can be sent to a keyword-based query matching module, 
e.g., the Google search engine, to search for relevant 
information to the user query from the Internet.       

B. Semantic Reasoning for Single-Concept Query 

When a query contains a single concept, we call it a simple 
query. For example, if a user types in “Automaton,” we 
consider it a simple query since “Automaton” represents a 
single concept. For a single concept sc, an inferred concept 
can be either a classified one or a related one. A classified 
concept subsumes, supersumes or is semantically equivalent to 
sc; while a related concept could be inferred due to a 
someValuesFrom or allValuesFrom restriction. In the 

following defined enumerated single concept relation, the 
aforementioned five different types of relations are denoted as 
SUB, SUP, EQ, SOME or ALL, respectively,  

enum SingleConceptRelation { // for a single concept 
   SUB, SUP, EQ, SOME, ALL}  

The SimpleRelation and InferredConcept classes are 
defined in the following. Note that we also define an abstract 
class Relation, which serves as a superclass of the 
SimpleRelation class as well as more complicated relations 
described in Section III.C. 

class SimpleRelation extends Relation { 
   SingleConceptRelation sRel; 
   OntClass queriedConcept; 
   Relation getRelation() { … } 
} 

abstract class Relation { 
   abstract Relation getRelation();  
} 

class InferredConcept { 
OntClass concept;  // the ontology class 
Relation relation; // relationship with the          
                      concept(s) to be queried 

} 

The algorithm for inferring new concepts for a single 
concept is presented as Algorithm 1. When a user inputs a 
single concept, it is first processed (e.g., removing the space in 
the input string “Finite Automaton”), and matched with a 
predefined concept (i.e., FiniteAutomaton) within the 
domain ontology. Then the system uses a semantic reasoner to 
infer all classified concepts that subsume, supersume, and are 
semantically equivalent to the input concept. In the following 
steps, the algorithm checks all restrictions that are superclasses 
of the input concept, and infers all related concepts that have 
object property relations with the input concept by 
someValuesFrom or allValuesFrom restriction. Once all 
classified and related concepts are identified, they are returned 
as a list of inferred concepts for further processing.   

Algorithm 1: Inference of New Concepts (Single Concept) 

Input: User input representing a single concept sc 
Output: A list of inferred concepts lic related to sc 

1.   match user inputs with single concept sc in the domain ontology 
2.   initialize lic to an empty list  
3.   infer all concepts such that each concept c ⊏ sc, c ⊐ sc or c ≡ sc, 
      and store them in sets sSub, sSup, and sEq, respectively. 
4.   for each c in sSub 
5.     set c.relation.sRel to SUB, and add c into lic 
6.   for each c in sSup  
7.     set c.relation.sRel  to SUP, and add c into lic 
8.   for each c in sEq  
9.     set c.relation.sRel to EQ, and add c into lic                       
10. let lres be the list of restrictions from the set of superclasses of sc
11. let inferc be an instance of InferredConcept 
12. for each restriction res in lres  
13.    if res is a someValuesFrom inferc.concept restriction 
14.       set inferc.relation.sRel to SOME, and add inferc to lic 
15.    else if res is an allValuesFrom inferc.concept restriction 
16.       set inferc.relation.sRel  to ALL, and add inferc to lic 
17.  return list lic  
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C. Semantic Reasoning for Multi-Concept Query 

When a user types in a query that involves two or more 
concepts, we call it a complex query. In this case, the semantic 
reasoning module first generates all possible paired concepts 
for efficient processing, and for each pair of concepts (c1, c2), 
it checks the following special cases that require only 
searching for a single concept. 

Special Case 1 (SP1). When concept c1 is equivalent to 
concept c2 (i.e., c1 ≡ c2), we only need to search for single 
concept c1 or c2, and all classified concepts and related 
concepts for both c1 and c2 will be inferred. 

Special Case 2 (SP2). When concept c1 and c2 have a 
subsumption relation (i.e., c1 ⊑ c2), we only need to search for 
single concept c1 since c1 inherits all properties of c2. In this 
case, all classified and related concepts of c2 will be 
automatically inferred for concept c1. Similarly, when c2 ⊑ 
c1, we only need to search for single concept c2. 

Special Case 3 (SP3). When there exists an object property 
relation p(c1, c2) between paired concepts c1 and c2, we only 
need to search for single concept c1 since in this case, c2 will 
be automatically inferred as a related concept of c1. 

On the other hand, if the relation between c1 and c2 does 
not belong to any of the above special cases, new concepts 
must be inferred using both of the two concepts. Four typical 
relations between an inferred concept c and the pair of 
concepts (c1, c2) are defined as follows. 

Common Supersumption (CSUP). Concept c is an inferred 
classified concept such that c ⊐ c1 and c ⊐ c2, i.e., c is a 
proper superclass of both c1 and c2. Note that in this case, c ≢ 
c1 and c ≢ c2; otherwise, the relation must belong to either 
SP1 or SP2. For example, if c ≡ c1 and c ⊒ c2, we have c1 ⊒ 
c2, i.e., c2 ⊑ c1, which is defined as SP2. 

Common Subsumption (CSUB). Concept c is an inferred 
classified concept such that c ⊏ c1 and c ⊏ c2, i.e., c is a 
proper subclass of both c1 and c2. Note that in this case, c ≢ 
c1 and c ≢ c2; otherwise, the relation must belong to either 
SP1 or SP2. For example, if c ≡ c1 and c ⊑ c2, we have c1 ⊑ 
c2, which is defined as SP2. 

Property Relation (PROP). Concept c is an inferred related 
concept, and ∃ p1(c, c1) and p2(c, c2), where p1 and p2 are 
object property relations between c and c1, and c and c2, 
respectively. Note that p1 and p2 can be either the same or 
different object property relations. 

Property-Subsumption Relation (PROP-SUB). Concept c is 
an inferred related concept such that c ⊏ c2 and ∃ p1(c, c1) or 
p1(c1, c), where p1 is an object property relation between c and 
c1; or c ⊏ c1 and ∃ p2(c, c2) or p2(c2, c), where p2 is an object 
property relation between c and c2. 

Note that we do not need to consider the case of Property-
Supersumption Relation, where an inferred related concept c is 
a superclass of c1 (or c2), and there exists an object property 
relation between c and c2 (or between c and c1). This is 
because in such cases, the relation must belong to the special 

case SP3. For example, in a paired concept (c1, c2), if concept 
c is a superclass of concept c2, and there exists an object 
property relation p1(c, c1), there must exist an object property 
relation p2(c2, c1) since c2 inherits all properties of c. This is 
exactly the case defined in special case SP3; therefore, we 
only need to search for single concept c2. 

The algorithm for inferring new concepts from multiple 
concepts can be designed in a similar way by considering the 
special cases and the CSUP, CSUB, PROP, and PROP-SUB 
relations (due to page limitation, the algorithm is not presented 
in this paper). Briefly, the algorithm first generates a list of 
paired concepts, and then infers classified and related concepts 
for each pair of concepts (c1, c2). Note that in the special 
cases when c1 is equivalent to c2, c1(c2) subsumes c2(c1), or 
c1 and c2 has an object property relation, the algorithm 
automatically executes Algorithm 1 that infers classified and 
related classes for a single concept. Otherwise, the algorithm 
first infers classified concepts, namely, the common 
superclasses csup that subsume both c1and c2, and the 
common subclasses csub that supersume both c1and c2. Then 
the algorithm checks whether there exists any concept c that 
has object property relations with both c1 and c2. Finally, it 
infers any possible concept c that has a property-subsumption 
relation with the pair of concepts (c1, c2). All inferred 
concepts will be added into a list of inferred concepts, and 
returned as output of the algorithm. 

IV. CASE STUDY 

To demonstrate the feasibility of our proposed approach to 
developing the two-level smart search engine using ontology-
based semantic reasoning, we present a case study of semantic 
search in the domain of computer science courses. In particular, 
we have defined the domain ontology based on two computer 
science courses taught by the first author for over 10 years at 
the University of Massachusetts Dartmouth (UMassD). The 
two courses are the undergraduate course CIS 361: Models of 
Computation and the graduate course CIS 560: Theoretical 
Computer Science. We expect a feasible smart search engine in 
such a knowledge domain can greatly benefit our computer 
science students in understanding fundamental concepts and 
their relations in computer science. 

The smart search engine was developed using the Pellet 
reasoner as a Java-based OWL-DL reasoner, which provides 
reasoning services for OWL ontologies. The Pellet OWL2 
Reasoner for Java works with the Jena framework that provides 
a programmatic environment for RDF, OWL, SPARQL, and 
includes a rule-based inference engine. The smart search 
engine processes a user input as concept(s) rather than 
keywords, and infers classified and related concepts. A user 
may select an inferred concept for further semantic reasoning 
or send it to a traditional search engine for retrieving related 
information from the Internet.  

Once we have defined the domain ontologies for the 
course contents in CIS 361 and CIS 560, we can use our 
prototype two-level smart search engine for semantic search. 
Suppose a computer science student wants to search for some 
concepts that are related to a pair of concepts (Stack, State), 
some partial semantic search results for the paired concepts 
will be displayed as in Fig. 2.  
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Figure 2.  Seach results for a paired concepts “Stack; State” 

From the search results, we can see that both Stack and 
State are subclasses of CS_Concept. The commonly related 
concepts inferred according to the Property Relation defined 
in Section III.C include PushDownAutomaton and PDA 
because both contain some State and some Stack. By 
clicking on the links of PushDownAutomaton and PDA, they 
can be further processed as a single concept. Alternatively, 
when an associated “Search” link is clicked, the corresponding 
single concept (e.g., PushDownAutomaton) can be searched 
as a keyword using a traditional search engine. 

In another scenario, when a computer science student 
wants to search for the type of language that can be recognized 
by a PDA, he/she can simply type in a pair of concepts 
(Language, PDA) into the smart search engine, and some 
partial semantic search results will be displayed as in Fig. 3. 

 

 
Figure 3.  Seach results for a paired concepts “Language; PDA” 

From the search results, we know that both the concepts 
ContextFreeLanguage and CFL are commonly related to 
the paired concepts (Language, PDA). The inference of these 
two new concepts is based on the Property-Subsumption 
Relation defined in Section III.C since both of them are 
subclasses of Language and can be recognized by PDA. By 
clicking on the link of ContextFreeLanguage or CFL, the 
inferred concept can be further searched as a single concept. 
Alternatively, when an associated “Search” link is clicked, the 

corresponding concept (e.g., ContextFreeLanguage) can be 
searched as a keyword using a traditional search engine. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we present an ontology-based methodology 
for semantic search that can produce more accurate and 
relevant search results for a concept-based query. The smart 
search engine consists of two levels, namely the semantic 
reasoning level and the traditional keyword searching level. 
The semantic reasoning level can understand the meaning of a 
concept or multiple concepts entered by a user, and classify and 
reason about the concepts in the corresponding knowledge 
domain specified using ontology. Once the semantic reasoning 
module infers the concepts related to a user query, in the 
second level, a traditional search engine can be used to search 
for addition information from the Internet. One major benefit of 
our approach is that a user does not have to be familiar with the 
domain knowledge when making queries. Instead, the smart 
search engine can reason about user queries, and produce those 
concepts that are closely related to the user inputs. To 
demonstrate the feasibility of our smart search engine 
approach, we develop a prototype smart search engine as well 
as ontologies in the domain of computer science courses. The 
case studies show that the smart search engine can effectively 
infer concepts that are semantically related to user queries. 

As future work, we plan to develop a set of more complete 
domain knowledge for the computer science courses taught at 
UMassD, and show that such smart search engine can greatly 
help students to understand difficult computer science 
concepts. In addition to dealing with paired concepts, we will 
also design algorithms that can directly process a complex 
query with more than two concepts. Such algorithms should 
efficiently infer new related concepts from the given multiple 
concepts by reasoning about their relations with each other.  
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