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Abstract—Ontology-based web service composition allows for 
integration of available web services in real-time to meet desired 
objectives. In order to evaluate the quality of composite web 
services at runtime, there is a pressing need to define a feasible 
real-time web service reliability model. In this paper, we present 
such a model. We first introduce a dynamic process model that 
supports the evaluation of web service reliability. Then we 
provide a hybrid reliability model for atomic web services by 
considering both software and hardware aspects of the services. 
In order to calculate efficiently the reliability of ontology-based 
dynamic composite web services, we present a recursive 
algorithm that evaluates the reliability of various service 
composition constructs in real-time. Finally, we use a case study 
to show how to compute and monitor the reliability of composite 
web services in real-time, and how our approach supports 
reliable ontology-based dynamic web service composition. 

Keywords-web service composition; ontology; reliability model; 
quality of service (QoS); dynamic process model; real-time. 

I. INTRODUCTION

Web services are self-contained software components that 
can be published, discovered and invoked over the Internet. 
However, in many cases, a standalone web service is not 
sufficient to provide the needed functionality for certain user 
requirements [1]. This leads to the idea of composing different 
web services in order to meet such requirements. The process 
of web service composition can be either static or dynamic. In 
the former, the services are pre-determined during the design 
phase; while in the latter, only the service template can be 
initially defined, but the available web services associated with 
each constitutive component defined in the template must be 
determined at runtime. In order to discover, invoke, compose 
and monitor web services with a high degree of automation, we 
can use the semantic and ontological techniques [2]. In this 
paper, we adopt the semantic markup language for web 
services (OWL-S), which is an ontology language, to formally 
specify the semantics of web services. Such specification 
makes the definitions of web services machine-understandable. 
Decisions on adoption of a web service for service composition 
require matching not only the functional properties of the 
service, but also the nonfunctional properties such as service 
reliability. The functional and non-functional properties of a 
web service can be formally specified using an OWL-S profile. 
An OWL-S profile can be published and stored in an ontology-

based UDDI (Universal Description, Discovery and 
Integration) such as an OWL-S/UDDI service registry so that 
when a service client searches it, services with matching 
profiles can be discovered and the corresponding grounding 
information can be retrieved. Since there may be more than one 
matched profiles published in an OWL-S/UDDI, a service 
client has to select one of them according to certain criteria 
such as the service reliability. This requires the calculation of 
service reliability in real-time. To achieve this, we first provide 
a hybrid reliability model for atomic web services, which 
considers both software and hardware aspects of the services. 
Then, to calculate the reliability of composite web services, we 
design an efficient recursive algorithm that evaluates various 
service composition constructs in real-time. By employing a 
real-time reliability model for service composition, our 
approach not only supports the selection of desirable web 
services for dynamic web service composition, but also 
provides an effective way to monitor the reliability of both 
atomic and composite web services in real-time.  

Service reliability has been an important measure of the 
quality of web services for service composition. There are 
many different kinds of existing software reliability models for 
web services. Li et al. developed a user-oriented software 
reliability model for evaluating the reliability of web services 
[3]. Their approach can be used to evaluate the reliability of 
atomic web services based on an extended UDDI model, and to 
predict the overall reliability of a composite web service using 
a Business Process Execution Language (BPEL)-specified 
structure. Tsai et al. proposed a software reliability model that 
could dynamically evaluate the reliability of atomic and 
composite web services [4]. The model first calculates the 
reliability of atomic services by using group testing and 
majority voting, and then the overall reliability of a composite 
service by using an architecture-based model. The above 
approaches consider only the software aspect of web services 
and assume the reliabilities of the machines that host the web 
services are near perfection. Furthermore, they are typically 
based on BPEL-like architectures that require static binding of 
available web services with the service components defined in 
a process model at design time. Thus, they do not support 
dynamic web service composition. In contrast, our approach 
considers both software and hardware aspects of service 
reliability. Furthermore, since our approach supports ontology-
based web service composition, it provides a feasible way for 
maintaining reliable composite web services at runtime.  



154 155

There are also many previous efforts on ontology-based 
web service composition and formal modeling of dynamic 
service composition. Ma et al. introduced an ontology-based 
model for web service composition, called OMWSC [5]. They 
presented a goal-driven and ontology-based architecture that 
could support automatic composition of web services. Xiong et 
al. presented a service functional configuration net based on 
Petri nets for automatic service composition [6]. They 
described the configuration specification for component 
services through the structure of disassembly Petri nets, and 
obtained the optimal one using linear programming. Tan et al.
introduced a formal method to derive possible web service 
composition candidates based on a service portfolio [7].  They 
first generated a service net (SN) containing all needed 
operations, and then used Petri net decomposition techniques to 
derive a subnet of SN that meets the business requirements. 
Although the above approaches support dynamic web service 
composition, most of them consider only the functional 
requirements for service composition, and none of them 
attempted to use service reliability as a major criterion for 
service selection. Different from the above approaches, we 
developed a real-time service reliability model for ontology-
based web service composition. Thus, our approach supports 
dynamic composition of reliable web services at runtime. 

II. ONTOLOGY-BASED WEB SERVICE COMPOSITION

A. Ontology-Based Web Service Composition 
Specifying service related information semantically is the 

key to effective dynamic service discovery and service 
composition. Web service description language (WSDL) can 
be used to describe the syntax of a web service such as its input 
and output parameters, as well as related information such as 
the service provider and the service endpoint address; however, 
it does not support specifying the semantics of a web service. 
Therefore, WSDL has its limitations in supporting the dynamic 
service discovery, execution, composition and interoperation of 
web services. On the other hand, ontology-based techniques 
can not only be used to describe the syntax but also the 
semantics of web services. In ontology-based semantic 
modeling, the terms used in the concerned domain can be 
precisely defined, thus services can be matched based on their 
semantics rather than their syntax or keywords. In our 
approach, the process model is defined as a template, called a 
Process Model Template (PMT). In order to instantiate a PMT 
into an Instantiated Process Model (IPM), we need to search 
for available web services for its constitutive service 
components. For this purpose, each service component, which 
is also called a simple component, is associated with an OWL-S 
profile template. An OWL-S profile template is essentially an 
incomplete OWL-S profile with semantically defined input, 
output, preconditions and effects so that it can be matched with 
existing OWL-S profiles published in an OWL-S/UDDI. Based 
on the matched OWL-S profiles, a simple component can be 
bound to either an atomic or a composite web service. When a 
matched web service is a composite one, its process model 
must also be defined using a PMT, which can be instantiated 
further in the same manner. This procedure repeats until all 
matched web services become atomic. In this case, the process 
of instantiating the PMT is completed. 

Since a profile template can be matched with more than one 
published OWL-S profiles, the most desirable one must be 
selected for execution. The criteria for service selection can be 
based on multiple features, such as provider, reliability, and 
price; however, for simplicity, in this paper, we only consider 
the reliability as the sole criterion for service selection. Since 
service reliability is a dynamic property, it requires the system 
be able to calculate it in real-time. This serves two purposes, 
namely the selection of web services for dynamic service 
composition and the real-time monitoring of web service 
reliabilities. With the monitoring function, a reliable service-
oriented system can be maintained continuously – when the 
reliability of some web services drop to an unacceptable level, 
they can be replaced by other reliable ones at runtime.  

B. Dynamic Process Model 
A PMT is defined as a dynamic process model that consists 

of structural components, such as a sequence component and a 
parallel one. Each structural component contains simple 
components and possibly other structural ones. At runtime, a 
simple one can be bound to either an atomic web service or a 
composite one. The PMT is formally defined using Backus-
Naur form (BNF) as in Fig. 1. As shown in the definition of 
PMT, the reliability requirements for a process model are 
described by using two parameters, namely <desired 
reliability> and <marginal reliability>. The former 
defines the desired reliability of an instantiated process model 
(i.e., a composite web service). A composite web service with 
at least the desired reliability is considered to be reliable. On 
the other hand, a composite web service with at least the 
<marginal reliability> but less than the <desired 
reliability> is considered as not reliable but is acceptable 
for a temporary usage. In this case, the application must try to 
search for more reliable ones in order to meet the reliability 
requirements of the composite web service. If it fails, a warning 
message must be sent to the user of the application. 
Furthermore, when the reliability of a composite web service 
becomes less than the marginal reliability, the composite web 
service becomes unacceptable and must stop its execution. 

<PMT> ::= <pmt><desired reliability> 
<marginal reliability><process model></pmt> 

<desired reliability> ::= <float> 
<marginal reliability>::= <float> 
<process model> ::= <process><start>  
    <structural component><finish></process> 
<structural component> ::= <sequence component>|  

<parallel component>|<loop component>| 
<choice component> 

<sequence component> ::= <sequence><component> 
    <component>{<component>}</sequence> 
<parallel component> ::= <parallel>component> 
    <component>{<component>}</parallel> 
<loop component> ::= <loop><condition><component>  

</loop>
<condition> ::= <Boolean expression> 
<choice component> ::= <choice><component>  
    <component>{<component>}</choice> 
<component> ::= <simple component>| 
    <structural component> 
<simple component> ::= <simple><component id> 
    <owl-s profile template></simple> 
<component id> ::= <string>

Figure 1. Definiton of PMT in BNF 
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A structural component can be one of the four major 
composition constructs, namely sequence, parallel, loop, and 
choice [4]. We now give a description of the major constructs 
defined in a PMT as follows. 

Sequence In a sequence structural component, the 
constitutive components are executed in series. Fig. 2(a) shows 
an example with two simple components A and B, defined in a 
PMT. The directed arrow between A and B indicates the order 
of execution. When one of the constitutive components in a 
sequence construct is not functioning, the entire sequence 
structural component is not. 
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BA
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      (a)                         (b)                                (c)                                 (d)
Figure 2. Examples: (a) sequence (b) parallel (c) loop (d) choice constructs 

Parallel In a parallel structural component, two or more 
constitutive components can execute concurrently. The 
structural component terminates when all of its components 
have finished their execution. Fig. 2(b) shows a parallel 
structural component with two simple components A and B.

Loop A loop structural component refers to the repetitive 
execution of a simple or structural component. As shown in 
Fig. 2(c), when the condition cond is evaluated to be true,
simple component A is executed repetitively. Only when it 
becomes false, the loop construct terminates. Note that the 
“skip” component is an empty component that is used to 
separate the loop construct from other components.

Choice In a choice structural component, only one of the 
constitutive components can be selected for execution. Fig. 
2(d) shows an example of a simplified choice structural 
component with no guards (conditions). When guards are not 
defined, the component (A or B) to be selected for execution is 
determined manually by user inputs.

Fig. 3 shows an example of PMT with multiple structural 
components. The process model is defined as a parallel 
component with two sequence components defined as its 
constitutive ones, which can execute concurrently. The first 
sequence component consists of two components, namely 
simple component A and a choice structural component with 
two simple ones B and C. The second sequence component 
consists of two simple ones D and E.
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parallel

Figure 3. An example of PMT with mutiple structural components 

C. Instantiation of PMT into IPM 
When a PMT is instantiated into an IPM, each simple 

component defined in the PMT needs to be bound to either an 
atomic web service described by a WSDL file or a composite 
one specified by another PMT. Since such information must be 
recorded in the IPM when a matched web service is selected, 
we define an IPM as an extended version of a PMT with a set 
of placeholders for the mapping information that details how a 
simple component can be bound to a selected web service. At 
runtime, the placeholders are filled up with such detailed 
service information. The IPM can be formally defined using 
BNF as in Fig. 4. 

<IPM> ::= <ipm><PMT><simple component mapping> 
{<simple component mapping>}</ipm>  

<simple component mapping> ::= <simple mapping> 
<component id><placeholders for matched  
service></simple mapping> 

<component id> ::= <string> 
<placeholders for matched service> ::= <ph>    

<real-time reliability><service id> 
<service type>(<atomic service grounding  
info>|<composite service grounding info>)</ph> 

<real-time reliability> ::= <float> 
<service id> ::= <string> 
<service type> ::= ”atomic” | ”composite” 
<atomic service grounding info> ::= <wsdl file> 
<composite service grounding info> ::= <ipm file>

Figure 4. Definition of IPM in BNF 

As shown in the definition, the placeholders for a matched 
and selected web service are enclosed by the <ph>…</ph>
tags.  The item <real-time reliability> is the reliability 
of the web service that is bound to a simple component, which 
is calculated at runtime. The two parameters <service id>
and <service type> are the identification and the type of the 
selected web service, respectively, where the service type can 
be either “atomic” or “composite.” If the selected web service 
is an atomic one, the placeholder <atomic service 
grounding info> must be filled with the address of its 
WSDL file. On the other hand, if the selected one is a 
composite one, the placeholder <composite service 
grounding info> needs to be filled with the location of the 
IPM file that specifies the composite web service. The 
procedure for instantiating a PMT into a set of IPMs is defined 
in Algorithm 1. Note that it is defined recursively because a 
simple component can be mapped to a composite web service 
specified by another PMT file. In this case, that IPM file must 
also be instantiated by invoking the method Instantiate-
PMTintoIPM recursively. As a result, the output of the 
algorithm is a set of IPM files organized in a tree-like structure. 
Furthermore, the instantiation process requires calculating web 
service reliabilities in real-time. This is because when more 
than one matched web services are discovered, their 
reliabilities need to be calculated in real-time, such that the 
most reliable one can be selected for execution. In order to 
calculate the reliability of a composite web service, an external 
method CalculateReliability (to be discussed in Section III-B) 
must be invoked. Note that calculating the reliability of a 
composite web service requires its IPM file as an input (line 17 
of the algorithm), which has been generated after the recursive 
method call InstantiatePMTintoIPM (ws.pmt) in line 16. 
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Algorithm 1: Instantiate PMT into IPMs 
Input: a pmt file to be converted
Output: a set of ipm files arranged in a tree structure.

1. InstantiatePMTintoIPM (File fname.pmt)
2.     copy fname.pmt to fname.ipm & create placeholders in fname.ipm
3.     create a PMT object pmt_obj from file fname.pmt
4.     foreach simple component sc in pmt_obj.process_model
5.         initialize sc.realtime_reliability to 0  
6.         query OWL-S/UDDI using sc.profile_template
7.         foreach matched web service ws
8.             if (ws is atomic)
9.                 extract reliability parameters from OWL-S profile 
10.               calculate ws.reliability for atomic web service ws
11.               if (ws.reliability > sc.realtime_reliability)
12         sc.realtime_reliability = ws.reliability
13.         sc.service_id = ws.id
14.                   sc.service_type = “atomic”
15.           else if (ws is composite)
16.     InstantiatePMTintoIPM (ws.pmt)   // create ws.ipm file 
17.     ws.reliability = CalculateReliability (ws.ipm, true, null)
18.     if (ws.reliability > sc.realtime_reliability)
19.         sc.realtime_reliability = ws.reliability
20.         sc.service_id = ws.id
21.                   sc.service_type = “composite”
22.        if (sc.service_type == “atomic”)
23.            extract wsdl address from owl-s profile of sc.id
24.            set sc.service_type = “atomic”
25.            set sc.wsdl_file to the wsdl file of sc.service_id
26.       else
27.            set sc.service_type = “composite”
28.            set sc.ipm to the ipm file of sc.service_id
29.    save the service info of sc into its placeholders in file fname.ipm 

III. REAL-TIME SERVICE RELIABILITY EVALUATION

Service reliability represents an important attribute for the 
QoS of a web service deployed on a certain machine. In this 
paper, we take into account both hardware and software aspects 
of service reliability as both are needed to determine the 
reliability of a deployed atomic web service. Then based on the 
reliability of the participating atomic web services, we can 
calculate the reliability of a composite web service according to 
its dynamic process model. 

A. A Hybrid Reliability Model for Atomic Web Services 
Software reliability growth models (SRGM) are based on 

the assumption that the number of faults of a software system 
can be continuously reduced, which results in growth of its 
software reliability [8]. Although SRGM has been considered 
as one of the most successful techniques in software reliability 
engineering, it is most suitable for measuring and predicting the 
improvement of software reliability through the testing process 
[9]. In this paper, we assume that there are no features added 
and no faults removed once an atomic web service is deployed. 
In this case, the failure intensity of the software component 
(i.e., the atomic web service) will be constant. According to 
[10], the number of failures of the service in a given time 
follows a Poisson distribution. The corresponding formula to 
calculate software reliability can be defined as in (1). 
                   )exp()(softwareR  (1) 

where  is the constant failure intensity and  is the execution 
time of the web service. When a web service is computation-
intensive and executed continuously,  can be further replaced 
by the elapsed time since the service is deployed.  

On the other hand, hardware reliability can be represented 
by the two-parameter Weibull distribution [11]. The 
corresponding formula to calculate the reliability of a hardware 
component can be defined as in (2). 
           (2) ])(exp[)( ttRhardware

where  is the shape parameter (  > 0), and  is the scale 
parameter (  > 0). Note that the hardware reliability decreases 
with time. This is because after a certain age, the product enters 
its wear-out phase and the failure rate starts to increase.

Bowles tried to derive a combined hardware and software 
reliability model for networks [12]. According to [12], “The 
probability of successful operation of a device is the probability 
that the hardware does not fail and the probability that the 
software does not fail.” Inspired by this idea, in this paper, we 
calculate web service reliability by considering both the 
reliability of the web service and the reliability of the machine 
where the web service is deployed. For simplicity, we assume 
that a web service is initially deployed on a new machine with 
the perfect reliability of 1. Thus, time t can be defined as t = 
tcurrent – t0, where tcurrent is the time when the reliability is 
calculated and t0 is the time when the web service is deployed. 
Based on (1) and (2), the hybrid reliability model for atomic 
web service can be defined as in (3). 

])(exp[)exp(

)()()(

tt

tRtRtR hardwaresoftwareservice  (3) 

where Rsoftware(t) is the reliability function of the atomic web 
service and Rhardware(t) is the reliability function of the machine 
that hosts the atomic web service.  

The needed parameters for calculating the reliability of a 
deployed atomic web service can be stored in an OWL-S 
profile as follows.  
<profile: Reliability> 
  <FailureIntensity datatype=”float”> 0.0001
  </FailureIntensity>   
  <Shape datatype=”float”>2</Shape> 
  <Scale datatype=”float”>0.00002</Scale> 
  <Date datatype=”date”>07/16/2010</Date> 
  <Time datatype=”time”>14:30</Time> 
</profile: Reliability> 

Note that in the reliability portion of an OWL-S profile, we 
also include the parameters of the deployment date and time of 
the atomic web service because they are needed for calculating 
the web service reliability. Since the reliability of an atomic 
web service is time-dependent, the above parameters must be 
retrieved at runtime such that the reliability of the atomic web 
service can be calculated in real-time.  

B. Reliability Model for Composite Web Services 
The overall reliability of a composite web service depends 

on its structure, the degree of independence between service 
components and the availability of its constitutive web 
services. In order to calculate the reliability of a composite web 
service, we first need to consider the reliability of the major 
structural components defined in Section II-B. Based on 
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previous work [3, 4], we now define the reliability model for 
each structural component as follows.  

Sequence The reliability of a composite web service 
composed of services in sequence can be calculated as in (4). 

  (4) 
n

i
iservicesequence tRtR

1
_ )()(

where the constitutive web services service_i (1 i n) are all 
independent of each other (i.e., the failure of one service does 
not lead to the failure of the others), and Rservice_i(t) is the 
reliability function of each constitutive atomic or composite 
web service.

Parallel The reliability of a composite web service 
composed of services in parallel can be calculated as in (5). 

  (5) 
n

i
iserviceparallel tRtR

1
_ )()(

where the constitutive web services service_i (1 i n) are all 
independent of each other. Note that the failure of any 
constitutive service results in the failure of the composite one 
because the successful termination of the latter requires the 
successful termination of all of its constitutive web services. 

Loop The reliability of a composite web service composed 
of web services in a loop can be calculated as in (6). 
  (6) ))((min)( _0

titRtR loopbodyserviceniloop

where Rservice_loopbody(t) is the reliability function of the loop 
body that can be an atomic web service or composite one; n is 
the number of iterations; and t is the execution time of each 
iteration. When n* t is not a large value, the reliability of the 
loop structural component would be approximately the same as 
when it was executed the first time. 

Algorithm 2: Calculate composite web service reliability 
Input: an ipm file for a composite web service
Output: the real-time reliability of the composite web service

1. CalculateReliability (File fname.ipm, Boolean initialization,
2.                                     StructuralComponent structcom)
3.      initialize reliability to 1          
4.      if (initialization == true)                           // step 1 
5.         create an IPM object ipm_obj from file fname.ipm
6.         foreach simple component sc in ipm_obj
7.             if (sc.service_type == “atomic”)  
8.                 calculate sc.realtime_reliability
9.             else sc.realtime_reliability =             // sc is “composite” 
10.               CalculateReliability(sc.ipm, true, null)
11. strc = ipm_obj.process_model                 // step 2 
12. if (strc is squenceComponent) 
13.        foreach component com in strc
14.            if (com is simpleComponent)
15.                reliability *= com.realtime_reliability
16.            else reliability *= CalculateReliability(null, false, com)
17. else if (strc is parallelComponent) 
18.        foreach component com in strc
19.            if (com is simpleComponent)
20.                reliability *= com.realtime_reliability
21.            else reliability *= CalculateReliability(null, false, com)
22. else if (…)         // other cases: redundant component,  
23.    …                      // loop component, and choice component 
24. return reliability

Choice The reliability of a composite web service 
composed of web services in choice can be calculated as in (7). 

  (7) ))((min)( _1
tRtR iservicenichoice

Since we consider the worst-case scenario, the reliability of 
a choice structural component equals the minimal reliability of 
the constitutive web services. 

The algorithm for calculating the reliability of a composite 
web service is defined recursively as in Algorithm 2. Algorithm 
2 involves two steps when calculating the reliability of a 
composite web service. In its first step, the reliabilities of all 
simple components are calculated. In a case when a simple 
component is bound to a composite web service, the method 
CalculateReliability must be invoked recursively with the 
parameter initialization being true. In the second step, the 
reliabilities of the structural components are calculated. 
Similarly, when a structural component contains another 
structural component as its constitutive component, the method 
CalculateReliability is also invoked recursively, but this time, 
the parameter initialization is set to false indicating that the 
algorithm is now processing its second step. 

IV. CASE STUDY

To demonstrate the effectiveness of our approach, we 
utilize a case study of financial services, which involves 
investment in mutual funds and stocks. We define a process 
model for financial investment as a composite web service with 
a choice structure. As shown in Fig. 5, the choice is between 
buying mutual funds or stocks. The upper structural component 
represents mutual fund investment wherein the investor has a 
choice of investing in three types of mutual funds. They are 
equity that involves high risk, high gain funds, debt that 
represents low risk low gain funds, and balanced fund that 
gives almost steady gain with medium risk. In order to use the 
financial services, the investor needs to provide information 
about the type of fund, investment amount and personal 
information. For example, if the user wants to invest in equity 
funds, the Equity web service is selected and invoked, which 
provides a list of equity mutual funds along with their returns. 
Then the SelectMutualFund service is invoked to automatically 
choose the service with best returns for the user. Finally, the 
BuyMutualFund service will be invoked to buy the selected 
mutual funds. Similarly, the web services Debt and Balanced
can be invoked to provide a list of debt funds and a list of 
balanced funds with returns, respectively. On the other hand, if 
buying stock is chosen, the process model has the BuyStocks
service, where the input to this service is the stock to be 
bought, the number of stocks, and the rate at which the user 
wants to buy. When the specified stock is available at the 
preferred rate, the BuyStocks service is automatically invoked 
to buy the specified number of stocks.  

Start

Finish

Equity

Debt

Balanced

Select Mutual
Fund

Buy
Mutual Fund

Buy Stocks

Start

Finish

Equity

Debt

Balanced

Select Mutual
Fund

Buy
Mutual Fund

Buy Stocks

Figure 5. A process model for financial investment 
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In order to ensure the desired reliability of the financial 
services for investment, we develop a prototype service 
reliability monitoring tool. Fig. 6 shows the interface for 
monitoring the reliability of the financial investment service in 
real-time. Under the ProcessModel tab, it presents the 
predefined process model (as shown in Fig. 5) at the left hand 
side, and displays the real-time reliability of the composite web 
service at the right hand side. The interface also shows the 
status of the composite web service, which could be normal,
warning or unacceptable. A normal status indicates that the 
reliability of the composite web service equals to or more than 
the desired reliability; a warning status indicates that the 
reliability is below the desired reliability but no lower than the 
marginal reliability. When the reliability falls below the 
marginal reliability, the status becomes unacceptable. Note that 
in this example, the desired and marginal reliabilities are set to 
0.85 and 0.75, respectively. They can be easily re-configured 
by clicking on the Configuration tab. In addition, the interface 
also displays the current date and time as well as execution 
information of the composite web service. At the bottom part 
of the interface, all services bound to the simple components 
are listed. If the service is atomic (e.g., EquityService), the 
address of its WSDL and its real-time reliability are displayed 
(e.g., http://192.168.1.112:8080/equity/EquityService?wsdl and 
0.92751); otherwise, if the service is composite (e.g., 
BuyStocks1), the address of the corresponding IPM file and its 
real-time reliability are displayed (e.g., C://Files/Buy-
Stocks1.owl and 0.84917). The detailed information about a 
composite web service (e.g., BuyStocks1) can be retrieved by 
clicking on the CompositeComponents menu at the top of the 
interface. Note that when the real-time reliability of a 
composite service falls below the desired reliability, some of its 
constitutive web services with low reliabilities must be 
replaced by others in order to improve its QoS.  

Figure 6. Interface for monitoring real-time web service reliability  

V. CONCLUSIONS AND FUTURE WORK

In this paper, we define a dynamic process model that 
consists of various constructs for web service composition. The 
dynamic process model is initially defined as a process model 
template, called PMT, where the constitutive components are 
not bound to any specific web services. At runtime, the PMT is 

instantiated into a set of instantiated process models or IPMs. 
During the instantiation process, web services that are matched 
with the simple components in a PMT are discovered and 
selected based on their real-time reliability values. In order to 
calculate the reliabilities of composite web services, we first 
present a hybrid reliability model for atomic web services. 
Then we define a real-time reliability model for a composite 
web service that aggregates the reliabilities of its constitutive 
components according to the definition of its dynamic process 
model. Our approach not only supports service selection for 
dynamic web service composition, but also supports 
maintaining a reliable composite web service at runtime by 
monitoring the service reliabilities in real-time. For future 
work, we will study existing software reliability models and 
propose the most suitable ones for atomic web services by 
considering additional factors such as software aging due to 
performance degradation or a sudden software crash. We will 
demonstrate how to automatically switch a web service to a 
reliable one when its reliability becomes unacceptable. By 
utilizing artificial intelligence techniques, we may further 
improve the service reliability model for automatic adjustment 
of its parameters at runtime. In addition, integrating the 
proposed reliability index into some existing approaches [5, 6] 
can also be considered as a worthy future direction.  
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