
Complete Sequence Generation Algorithm for Reliability Analysis of Dynamic Systems
with Sequence-Dependent Failures

Monika Shrestha, Liudong Xing, Haiping Xu

University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
E-mails: {mshrestha, lxing, hxu}@umassd.edu

Key Words: Dynamic fault tree, priority-AND, sequence dependence, sequential binary decision diagram, topological
sorting.

Abstract -- Sequence-dependent failures can be found in
many real-life fault-tolerant systems where the occurrence
order of fault events is important. The priority-AND
(pAND) gates have been used to model such dependent
behavior in the dynamic fault tree (DFT) reliability analysis.
In order to overcome limitations of existing approaches
(e.g., state-space-based or simulation-based methodologies),
a combinatorial and analytical method has recently been
proposed, which offers an exact and efficient solution to the
reliability analysis of dynamic systems with sequence-
dependent failures. Using this approach, it is necessary to
adopt an efficient algorithm to enumerate the list of
complete sequences from partial sequences. Thus in this
paper, we propose a sorting algorithm for enumerating
complete sequences of events from the partial
orders/sequences of the events for the reliability analysis of
systems subject to sequence-dependent failure behavior.
The generation algorithm is based on the topological sorting
algorithm which finds the optimal sequence that satisfies the
precedence constraints in a directed acyclic graph. Several
examples are given to illustrate the basics and application of
the proposed approach.

Acronyms

BDD Binary Decision Diagram
DAG Direct Acyclic Graph
DFT Dynamic Fault Tree
IE Inclusion-Exclusion
pAND Priority-AND
pdf probability density function
r.v. random variable
SBDD Sequential Binary Decision Diagram

I. Introduction

Traditional static fault trees [1, 2] cannot capture dynamic
behavior of system failures related to sequence-dependence
in which the order that fault events occur is important. As an
example of sequence-dependent failures, consider a standby
sparing system shown in Figure 1. The system has one
primary unit (M) and one standby spare unit (S) connected
with a switch controller (Sw). The system can continue to
operate when the switch controller fails after the primary unit
fails as the standby is already in use. However, if the switch
controller fails before the primary unit fails, then the system
fails upon the failure of the primary unit as the standby unit
cannot be switched into active operation [1]. Thus, the failure

criteria of the system depend not only on the combinations of
events, but also on the sequence in which events occur. In
order to model such sequence-dependent behavior, a priority-
AND (pAND) gate has been proposed in the dynamic fault
tree (DFT) reliability analysis [1, 3, 4].

Primary
(M)

Spare
(S)

Sw

Figure 1. An example of sequence dependent systems

The pAND gate is a dynamic gate that is logically equivalent
to an AND gate along with an added condition that events
must occur in a specific order (from left to right). As shown
in Figure 2, a pAND gate has two inputs A and B whose
output is true if both A and B have occurred, and A occurred
before B. The gate will not fire if either of the two events has
not occurred, or if B occurred before A.

A B
Figure 2. The pAND gate

Figure 3 illustrates the DFT model of the sequence-dependent
system of Figure 1 constructed using the traditional AND and
OR gates, and the pAND gate. It shows that the system fails
when both the primary unit and the standby unit have failed,
or when both the primary unit and the switch have failed and
the switch fails before the primary unit fails.

M MSwS

Failure

Figure 3. DFT of the example sequence dependent system

There exist various techniques to analyze a DFT with the
pAND sequence dependent behavior. Typically, the DFT can
be solved by automatic conversion to an equivalent Markov
model [2, 5]. However, the Markov-based methods are
subject to the well-known state-space explosion problem and
typically require exponential time-to-failure distribution for

the system components. Therefore, they are generally
applicable for systems with very limited size.

To mitigate the state-space explosion problem of the Markov
methods, the modularization technique [2, 5, 6] has been
proposed to analyze a large dynamic system via a divide-and-
conquer strategy, where the system is divided into
independent subtrees. A subtree containing a dynamic gate
will be solved using a Markov model; otherwise, it is solved
using a combinatorial method called Binary Decision
Diagrams (BDD) [7, 8]. Solutions of all the subtrees will be
integrated to obtain the solution for the entire fault tree
model. However, in practice the modularization technique
may not work well for complex systems with lots of repeated
or shared events and a high degree of interdependence [9].

Monte Carlo simulation [10] represents another class of
methods used to solve DFT. The simulation-based methods
can offer great generality in representation and solution to
highly complex and dynamic systems. However, they have
certain limitations. They can only offer approximate results.
They often involve long computational time, especially when
results with high degree of accuracy are desired. They also
require a completely new simulation to be performed
whenever the input failure parameter value changes. Bayesian
network approach is another method proposed for the DFT
analysis [11]. However, it has the same complexity problem
as the Markov-based methods.

Recently, an analytical method based on inclusion-exclusion
(IE) formulation [12,13] has been proposed to analyze a DFT
with pAND gates, where a set of minimal cut sets/sequences
is first generated from the DFT specifications, and is then
combined using the IE formula to obtain the system
unreliability. The major problem of this method is it requires
enumeration or a priori knowledge of the minimal cut
sets/sequences, which is often a costly process with
exponential complexity. Also, the IE-based method in [12]
assumes the exponential time-to-failure distribution for the
system components.

In order to overcome the limitations of the above described
existing methods, a combinatorial and analytical method has
been proposed in [9]. The method can offer an exact and
efficient solution to the reliability analysis of non-repairable
systems with the sequence dependent behavior, without
requiring the enumeration or a prior knowledge of the
minimal cut sets/sequences. Also, this method does not have
any limitation on the type of time-to-failure distributions for
the system components. In [9], the necessity of an efficient
algorithm to generate the complete orders/sequences from the
partial orders/sequences for the evaluation of the system
unreliability has been pointed out. Hence, in this paper, we
address the above need by proposing a complete sequence
generation algorithm based on topological sorting. Several
examples are given to show the application of the proposed
algorithm.

The remainder of the paper is organized as follows. Section II
summarizes the combinatorial method proposed in [9] and
indicates the necessity of the generation algorithm to be

discussed in Section III. Section III presents the proposed
complete sequence generation algorithm. Section IV presents
the step-by-step analysis of an illustrative example using the
proposed algorithm, as well as results for several other
examples. Lastly, Section V gives conclusions as well as
directions for future work.

II. Background

In order to illustrate the necessity and application of the
complete sequence generation algorithm, we brief the
analytical approach proposed in [9] for analyzing DFT with
pAND gates in this section.

The combinatorial approach [9] integrates an analytical
solution for considering pAND dependence at the lower
level, and a Sequential BDD (SBDD)-based solution for
representing the system structure function at the upper level.
This approach can be implemented as a three-step process
summarized below and illustrated using the example
sequence-dependent system in Figure 1.

Step 1: Transformation of system DFT model: The pAND
gates in the system DFT is transformed into a set of
sequential events such that the final fault tree does not
contain pAND gates. For example, Figure 4 shows the
converted fault tree of Figure 3, where “≺” represents the
precedence order of component failure. Thus, the sequential
event “Sw≺M” means that the switch fails before the primary
unit M fails.

Failure

M S Sw<M
Figure 4. Transformed DFT of the example system

Step 2: Generation of the system SBDD model: The system
SBDD model is generated from the transformed fault tree
obtained in the first step in the bottom-up manner using
manipulation rules of traditional BDD [7]. Figure 5 shows the
final SBDD resulting from the application of first ANDing
between the basic events M and S and then ORing them with
the sequential event (Sw≺M) in the transformed DFT of
Figure 4.

Sw<M

M

S

0 1
Figure 5. SBDD model of the transformed DFT

Step 3: Evaluation of the system SBDD model: The system
unreliability can be calculated as the sum of probabilities for
all the disjoint paths from the root to the sink node '1' in the

system SBDD. Specifically, all the paths to the sink node are
enumerated and their probabilities are evaluated. Consider
the SBDD of Figure 5, there are two paths to the sink node
'1': (Sw≺M) '1' and (Sw≺M)' (M) (S) '1'. Thus,

Pr{System Failure}= Pr{Sw≺M}+ Pr{(Sw≺M)'.(M.S)}. This
is a simple case where each path involves at most one
sequential event. For some cases, we may obtain a path that
involves more than one sequential event. For example, Figure
6(a) shows the DFT model of a subsystem with two pAND
gates, each representing a sequential event. Figure 6(b) shows
the transformed DFT model. Figure 6(c) is the SBDD model
generated from the transformed DFT model.

Subsystem
Failure

e1 e3 e3e7 e9

Subsystem
Failure

e1 ≺ e3 e7 ≺ e3 ≺e9

e1 ≺ e3

e7 ≺ e3 ≺e9

10

(a) DFT (b)Transformed (c) SBDD
Figure 6. An example with more than one sequential event

In Figure 6(c), there is one path to the sink node '1': (e1≺e3)

(e7≺e3≺e9) '1'. And the two sequential events involved in
this path are not independent because they share the same
event e3. For such cases, when we calculate the path
probability, we must generate the complete sequences from
the presented partial sequences for considering the
dependence between them. For example, to calculate
Pr{(e1≺e3).(e7≺e3≺e9)}, we must expand the partial sequences

(e1≺e3) and (e7≺e3≺e9) into complete sequences over all the

four basic events as (e1≺e7≺e3≺e9) and (e7≺e1≺e3≺e9). The
resultant complete sequences must preserve all the ordering
constraints imposed by the input partial sequences. Because
the two complete sequence events are mutually exclusive, we
have: Pr{(e1≺e3).(e7≺e3≺e9)} = Pr{e1≺e7≺e3≺e9} +

Pr{e7≺e1≺e3≺e9}. The focus of this paper is to propose an
algorithm to implement the generation of the complete
orders/sequences from the partial orders/sequences, which is
a necessary and significant task for accomplishing the
reliability analysis of sequence-dependent systems using the
approach of [9].

After generating the list of complete sequences, the
probability of the ordered failures can be computed using the
following formula based on the basic probability theory on
distribution functions:

Pr{X1≺X2≺…≺Xn}

= 110 0 2230 1120 1)(...)()()(... 3 2 1
−−∫ ∫ ∫ ∫

nnn
T

dfdfdfdttf ττττττ
τ τ τ

where X1≺X2≺…≺Xn is an event representing the sequential
failures of n components, and fi(t) is the probability density

function (pdf) of the random variable (r.v.) Ti representing the
time-to-failure of component Xi.

Applying the above formula to our example system, Pr{Sw ≺

M} can be evaluated as: Pr{Sw≺M}=

ττ
τ

∫ ∫

T

msw dfdttf
0 0

)()(. When both the switch and the

primary unit fail exponentially with constant rates of λsw and
λm, respectively, we have

Pr{Sw ≺ M} = τλλ τλτ λ∫ ∫

T

m
t

sw dedte msw

0 0

 =)-(1)1()Tλ-(λ

swm

mT-λ swmm e
λλ

λe +

+
−−

 Because (Sw≺M)' = Sw'M' + Sw'M + SwM' + (M≺Sw) = Sw'

+SwM'+(M≺Sw) and Pr{(Sw≺M).(M.S)}= Pr{(Sw≺M).Pr(S)},
we can calculate the unreliability of the example standby
sparing system as:

Pr{Sw≺M}+Pr{M.S}- Pr {Sw≺M}. Pr{S}

=)-(1)1()Tλ-(λ

swm

mT-λ swmm e
λλ

λe +

+
−− +)e1)(1(T-λT-λ sme −− -

)1()-(1)1(T-λ)Tλ-(λ

swm

mT-λ sswmm ee
λλ

λe −

+

−− +

= T-λ)Tλ-(λ

swm

mT-λ sswmm ee
)λ(λ

λ
e)(1)-(1 +−

+
−

III. Proposed Generation Algorithm

The proposed complete sequence generation algorithm is
based on topological sort [14], which is a method of
arranging vertices in a directed acyclic graph (DAG) as a
sequence such that no vertex appears in the sequence before
its predecessor. For a DAG, we define in-degree of a vertex
as the number of edges/arrows going into the vertex and out-
degree as the number of edges/arrows coming out of the
vertex. In the context of precedence constraints, the in-degree
refers to the number of predecessors of a vertex and the out-
degree refers to the number of successors of the vertex. Next,
we describe the proposed algorithm as a five-step procedure.

Generation Algorithm:

1. Initialization: set up an array R that records the in-degree
value of each vertex in a DAG. Initially, the in-degree
values are all set to zero.

2. Update the in-degree of each vertex according to partial
sequences. Specifically, search each partial sequence.
Except the first vertex in the sequence, for each of the
remaining vertex appearing in the sequence, increase its
in-degree by 1 and update the array R.

3. Let Q be the queue used to keep track of vertices with in-
degree of zero. If Q contains more than one element
with in-degree of zero, then split Q into n! queues Qi,
where n is the number of elements with in-degree of zero
in Q. Each Qi contains a distinct permutation of those n
elements.

4. For each Qi, define Ri = R. As long as Qi is not empty, do
the following:
a. Visit each vertex of the queue and move it to an array

Fi.
b. Delete that vertex from the array Ri.
c. If the vertex has a successor, then decrease the in-

degree of its successor and update array Ri.
d. If the in-degree of that successor becomes zero then

keep that successor at the end of queue Qi. If Qi
contains more than one element with in-degree of zero,
then do the following:
• Split Qi into ni! queues Qij, where j = 1, ..., ni!

and ni is the number of elements with in-degree
of zero in Qi. Each Qij contains a distinct
permutation of those ni elements.

• Set up an array Fij for each Qij, and initialize it to
be the current Fi. Then delete Fi.

• Also, set up an array Rij for each Qij, and
initialize it to be the current Ri. Then delete Ri.

• Go back to 4(a).
Note that when iteration in Step 4 is performed for Qij,
then corresponding arrays Fij and Rij will be used in
those four sub-steps. In addition, it is possible that Qij
can be split further into Qijk. Thus, corresponding
arrays Fijk and Rijk will be set up and used in the
subsequent operations. Similar split can be done
further for Qijk.

 5. Output all the arrays F, each corresponding to a
complete sequence.

IV. Illustrative Examples

To illustrate the proposed algorithm presented in Section III,
we consider the generation of complete sequences for the
following two partial sequences: (e1≺e3) and (e7≺e3≺e9).
Step 1: Set up the array R.
 R [] = {in(e1)=0, in(e3)=0, in(e7)=0, in(e9)=0}
Step 2: Update the in-degree of each vertex according to
partial sequences. For (e1≺e3), we have: in(e3)=0+1=1. For

(e7≺e3≺e9), we have: in(e3)=1+1=2, and in(e9)=0+1=1. The
updated array is: R [] = {in(e1)=0, in(e3) = 2, in(e7)= 0;
in(e9)=1}
Step 3: Set up Q to contain all vertices with in-degree of zero
and do the split. Q = (e1, e7) will be split into 2!=2 queues: Q1
and Q2, where Q1 = {e1≺ e7} and Q2 = {e7≺e1}.
Step 4: For each Qi, as long as Qi is not empty, do the
following:
For Q1:
 R1 [] = R [] = {in(e1)=0, in(e3) = 2, in(e7)= 0; in(e9)=1}
Loop 1: Visit e1.
a. F1 [] = {e1} and Q1 = {e7}
b. Delete e1 from the array R1.

R1 [] = {in(e3) = 2; in(e7)= 0; in(e9)=1}
c. If it has successor then decrease the in-degree of its

successor and update R1.
The successor of e1 is e3. Hence, in(e3) =2-1=1.
Therefore, the updated R1 [] = {in(e3) = 1; in(e7)= 0;
in(e9)=1}

d. If the in-degree of that successor is zero then keep that
successor at the end of queue Q1 .
Here in(e3)!= 0.

Loop 2: Visit e7.
a. F1 [] = {e1, e7} and Q1 = {}
b. Delete e7 from the array R1. R1 [] = {in(e3) = 1; in(e9)=1}
c. If it has successor then decrease the in-degree of its

successor and update R1 []. The successor of e7 is e3.
Hence, in(e3) =1-1=0. Therefore, the updated R1 [] =
{in(e3) = 0; in(e9)=1}

d. If the in-degree of that successor is zero then keep that
successor at the end of queue Q1. Here in(e3)=0. Hence, Q1
= {e3}

Loop 3: Visit e3.
a. F1 [] = {e1, e7, e3} and Q1 = {}
b. Delete e3 from the array R1. R1 [] = {in(e9)=1}
c. If it has successor then decrease the in-degree of its

successor and update R1 []. The successor of e3 is e9.
Hence, in(e9) =1-1=0. Therefore, the updated R1 [] =
{in(e9)=0}

d. If the in-degree of that successor is zero then keep that
successor at the end of queue Q1. Here in(e9)=0. Hence,
Q1= {e9}

Loop 4: Visit e9.
a. F1 [] = {e1, e7, e3, e9} and Q1 = {}
b. Delete e9 from the array R1. R1 [] = { }
c. If it has successor then decrease the in-degree of its

successor and update R1 []. No successor.
d. If the in-degree of that successor is zero then keep that

successor at the end of queue Q1.
Loop ends for Q1 because Q1 is empty.

For Q2:
 R2 [] = R [] = {in(e1)=0, in(e3) = 2, in(e7)= 0; in(e9)=1}
Loop 1: Visit e7.
a. F2 [] = {e7}, and Q2 = {e1}
b. Delete e7 from the array R2. R2 [] = {in(e3) = 2; in(e1)= 0;
in(e9)=1}
c. If it has successor then decrease the in-degree of its

successor and update R2 []. The successor of e7 is e3.
Hence, in(e3) =2-1=1. Therefore, the updated R2 [] =
{in(e3) = 1; in(e1)= 0; in(e9)=1}

d. If the in-degree of that successor is zero then keep that
successor at the end of queue Q2. Here in(e3)!=0.

Loop 2: Visit e1.
a. F2 [] = {e7, e1} and Q2 = {}
b. Delete e1 from the array R2. R2 [] = {in(e3) = 1; in(e9)=1}
c. If it has successor then decrease the in-degree of its

successor and update R2 []. The successor of e1 is e3.
Hence, in(e3) =1-1=0. Therefore, the updated R2 [] =
{in(e3) = 0; in(e9)=1}

d. If the in-degree of that successor is zero then again keep
that successor at the end of queue Q2. Here in(e3)=0.
Hence, Q2= {e3}

Loop 3: Visit e3.
a. F2 [] = {e7, e1, e3} and Q2 = {}
b. Delete e3 from the array R2. R2 [] = {in(e9)=1}
c. If it has successor then decrease the in-degree of its

successor and update R2 []. The successor of e3 is e9.
Hence, in(e9) =1-1=0. Therefore, the updated R2 [] =
{in(e9)=0}

d. If the in-degree of that successor is zero then again keep
that successor at the end of queue Q2. Here in(e9)=0.
Hence, Q2 = {e9}

Loop 4: Visit e9.
a. F2 [] = {e7, e1, e3, e9} and Q2 = {}
b. Delete e9 from the array R2. R2 [] = { }
c. If it has successor then decrease the in-degree of its

successor and update R2 []. No successor.
d. If the in-degree of that successor is zero then again keep

that successor at the end of queue Q2.
Loop ends for Q2 because Q2 is empty.

Step 5: Output Fi.
F1 [] = {e1, e7, e3, e9} F2 [] = {e7, e1, e3, e9}

In the following, we also show the generated complete
sequences for several more complex examples by applying
the proposed generation algorithm.
1. (e2≺e4)(e7≺e2≺e1)(e5≺e2) = {e7≺e5≺e2≺e4≺e1} + {e7≺e5≺e2≺

e1≺e4} + {e5≺e7≺e2≺e4≺e1} + {e5≺e7≺e2≺e1≺e4}

2. (e2≺e4)(e7≺e4≺e1)(e7≺e6) = {e2≺e7≺e6≺e4≺e1} + {e2≺e7≺e4≺

e1≺e6} + {e2≺e7≺e4≺e6≺e1} + {e7≺e6≺e2≺e4≺e1} + {e7≺e2≺e6≺

e4≺e1} + {e7≺e2≺e4≺e1≺e6} + {e7≺e2≺e4≺e6≺e1}

3. (e1≺e3)(e1≺e8)(e7≺e3≺e9) = {e1≺e8≺e7≺e3≺e9} + {e1≺e7≺e8≺

e3≺e9} + {e1≺e7≺e3≺e8≺e9} + {e1≺e7≺e3≺e9≺e8} + {e7≺e1≺e8≺

e3≺e9} + {e7≺e1≺e3≺e9≺e8} + {e7≺e1≺e3≺e8≺e9}

4. (e1≺e5)(e6≺e5≺e7)(e5≺e2) = {e1≺e6≺e5≺e7≺e2} + {e1≺e6≺e5≺

e2≺e7} + {e6≺e1≺e5≺e7≺e2} + {e6≺e1≺e5≺e2≺e7}

5. (e1≺e3)(e2≺e1)(e2≺e4)(e4≺e3)(e4≺e5) = {e2≺e1≺e4≺e3≺e5} +

{e2≺e1≺e4≺e5≺e3} + {e2≺e4≺e5≺e1≺e3} + {e2≺e4≺e1≺e3≺e5} +

{e2≺e4≺e1≺e5≺e3}

6. (e1≺e9)(e6≺e1≺e8)(e7≺e6≺e10)(e10≺e2) = {e7≺e6≺e1≺e8≺e9≺

e10≺e2} + {e7≺e6≺e1≺e8≺e10≺e2≺e9} + {e7≺e6≺e1≺e8≺e10≺e9

≺e2} + {e7≺e6≺e1≺e9≺e10≺e2≺e8} + {e7≺e6≺e1≺e9≺e10≺e8≺e2}

+ {e7≺e6≺e1≺e9≺e8≺e10≺e2} + {e7≺e6≺e1≺e10≺e2≺e8≺e9} + {e7

≺e6≺e1≺e10≺e8≺e2≺e9} + {e7≺e6≺e1≺e10≺e9≺e2≺e8} + {e7≺e6≺

e1≺e10≺e2≺e9≺e8} + {e7≺e6≺e1≺e10≺e8≺e9≺e2} + {e7≺e6≺e1≺

e10≺e9≺e8≺e2}

V. Conclusions & Future Work

The generation of complete sequences from partial sequences
has been identified as one of the essential steps in the
combinatorial reliability analysis of dynamic systems with
sequence-dependent behavior modeled using pAND gates. In
this paper, a topological sort-based algorithm was proposed
to generate complete sequences of elements that satisfy all
the precedence constraints posed by the input partial
sequences. The algorithm involves complex queue split
process. In our future work, we will explore more efficient
complete sequence generation algorithm and integrate it into
the efficient SBDD evaluation procedure for dynamic

systems subject to various dependent behaviors. Complex
case studies will be performed to verify the performance of
the proposed algorithm.

Acknowledgment

This work is partly supported by the US National Science
Foundation under Grant No. 0832594.

References

[1] J. B. Dugan and S. A. Doyle, “New results in fault-tree
analysis,” Tutorial notes of the Annual Reliability &
Maintainability Symposium, Jan. 1997.

[2] K. B. Misra (Editor), Handbook of Performability
Engineering, Springer-Verlag, London, ISBN: 978-1-
84800-130-5, Oct. 2008.

[3] J. B. Dugan, S. J. Bavuso, and M. A. Boyd, “Dynamic
fault-tree models for fault-tolerant computer systems,”
IEEE Transactions on Reliability, 41(3): 363-377, 1992.

[4] J. B. Fussell, E. F. Aber, and R. G. Rahl, “On the
quantitative analysis of priority-AND failure logic”,
IEEE Transactions on Reliability, R-25: 324-326, 1976.

[5] R. Gulati and J. B. Dugan, “A modular approach for
analyzing static and dynamic fault trees,” Proceedings of
the Annual Reliability & Maintainability Symposium,
Philadelphia, PA. pp. 568-573, Jan. 1997.

[6] S. V. Amari, G. Dill, and E. Howald, “A new approach
to solve dynamic fault trees,” Proceedings of Annual
Reliability & Maintainability Symposium, pp. 374-379,
Jan. 2003.

[7] R. Bryant, “Graph based algorithms for Boolean function
manipulation,” IEEE Transactions on Computers, C-
35(8): 677-691, Aug. 1986.

[8] L. Xing and J. B. Dugan, "Analysis of generalized
phased mission system reliability, performance and
sensitivity," IEEE Transactions on Reliability, 51(2):
199-211, Jun. 2002

[9] L. Xing, A. Shrestha, and Y. Dai, "Exact combinatorial
analysis of dynamic systems with sequence-dependent
failures," IEEE Transactions on Dependable and Secure
Computing (submitted).

[10] W. Long, T. L. Zhang, Y. F. Lu, and M. Oshima, “On
the quantitative analysis of sequential failure logic using
Monte Carlo method for different distributions,”
Proceedings of Probabilistic Safety Assessment and
Management, pp. 391-396, 2002.

[11] H. Boudali and J. B. Dugan, “A discrete-time Bayesian
network reliability modeling and analysis framework,”
Reliability Engineering & System Safety, 87(3): 337-349,
Mar. 2005.

[12] T. Yuge and S. Yanagi, “Quantitative analysis of a fault
tree with priority AND gates,” Reliability Engineering &
System Safety, 93(11): 1577-1583, Nov. 2008.

[13] D. Liu, C. Zhang, W. Xing, R. Li, and H. Li,
“Quantification of cut sequence set for fault tree
analysis,” HPCC2007, Lecture Notes in Computer
Science, no. 4782, pp. 755-765, Springer-Verlag, 2007.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.
Stein, Introduction to Algorithms (2nd Edition). The MIT
Press, 2001.

