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Abstract -- Sequence-dependent failures can be found in 
many real-life fault-tolerant systems where the occurrence 
order of fault events is important. The priority-AND 
(pAND) gates have been used to model such dependent 
behavior in the dynamic fault tree (DFT) reliability analysis. 
In order to overcome limitations of existing approaches 
(e.g., state-space-based or simulation-based methodologies), 
a combinatorial and analytical method has recently been 
proposed, which offers an exact and efficient solution to the 
reliability analysis of dynamic systems with sequence-
dependent failures. Using this approach, it is necessary to 
adopt an efficient algorithm to enumerate the list of 
complete sequences from partial sequences. Thus in this 
paper, we propose a sorting algorithm for enumerating 
complete sequences of events from the partial 
orders/sequences of the events for the reliability analysis of 
systems subject to sequence-dependent failure behavior. 
The generation algorithm is based on the topological sorting 
algorithm which finds the optimal sequence that satisfies the 
precedence constraints in a directed acyclic graph. Several 
examples are given to illustrate the basics and application of 
the proposed approach. 

Acronyms 

BDD Binary Decision Diagram 
DAG Direct Acyclic Graph 
DFT Dynamic Fault Tree 
IE Inclusion-Exclusion 
pAND Priority-AND 
pdf probability density function 
r.v. random variable 
SBDD Sequential Binary Decision Diagram 

I. Introduction 

Traditional static fault trees [1, 2] cannot capture dynamic 
behavior of system failures related to sequence-dependence 
in which the order that fault events occur is important. As an 
example of sequence-dependent failures, consider a standby 
sparing system shown in Figure 1. The system has one 
primary unit (M) and one standby spare unit (S) connected 
with a switch controller (Sw). The system can continue to 
operate when the switch controller fails after the primary unit 
fails as the standby is already in use. However, if the switch 
controller fails before the primary unit fails, then the system 
fails upon the failure of the primary unit as the standby unit 
cannot be switched into active operation [1]. Thus, the failure 

criteria of the system depend not only on the combinations of 
events, but also on the sequence in which events occur. In 
order to model such sequence-dependent behavior, a priority-
AND (pAND) gate has been proposed in the dynamic fault 
tree (DFT) reliability analysis [1, 3, 4]. 

             

Primary
(M)

Spare
(S)

Sw

 
Figure 1. An example of sequence dependent systems 

The pAND gate is a dynamic gate that is logically equivalent 
to an AND gate along with an added condition that events 
must occur in a specific order (from left to right). As shown 
in Figure 2, a pAND gate has two inputs A and B whose 
output is true if both A and B have occurred, and A occurred 
before B. The gate will not fire if either of the two events has 
not occurred, or if B occurred before A. 

A B  
Figure 2. The pAND gate 

Figure 3 illustrates the DFT model of the sequence-dependent 
system of Figure 1 constructed using the traditional AND and 
OR gates, and the pAND gate. It shows that the system fails 
when both the primary unit and the standby unit have failed, 
or when both the primary unit and the switch have failed and 
the switch fails before the primary unit fails.  
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Figure 3. DFT of the example sequence dependent system 

There exist various techniques to analyze a DFT with the 
pAND sequence dependent behavior. Typically, the DFT can 
be solved by automatic conversion to an equivalent Markov 
model [2, 5]. However, the Markov-based methods are 
subject to the well-known state-space explosion problem and 
typically require exponential time-to-failure distribution for 



the system components. Therefore, they are generally 
applicable for systems with very limited size.  

 
To mitigate the state-space explosion problem of the Markov 
methods, the modularization technique [2, 5, 6] has been 
proposed to analyze a large dynamic system via a divide-and-
conquer strategy, where the system is divided into 
independent subtrees. A subtree containing a dynamic gate 
will be solved using a Markov model; otherwise, it is solved 
using a combinatorial method called Binary Decision 
Diagrams (BDD) [7, 8]. Solutions of all the subtrees will be 
integrated to obtain the solution for the entire fault tree 
model. However, in practice the modularization technique 
may not work well for complex systems with lots of repeated 
or shared events and a high degree of interdependence [9].   

 
Monte Carlo simulation [10] represents another class of 
methods used to solve DFT. The simulation-based methods 
can offer great generality in representation and solution to 
highly complex and dynamic systems. However, they have 
certain limitations. They can only offer approximate results. 
They often involve long computational time, especially when 
results with high degree of accuracy are desired. They also 
require a completely new simulation to be performed 
whenever the input failure parameter value changes. Bayesian 
network approach is another method proposed for the DFT 
analysis [11]. However, it has the same complexity problem 
as the Markov-based methods. 

 
Recently, an analytical method based on inclusion-exclusion 
(IE) formulation [12,13] has been proposed to analyze a DFT 
with pAND gates, where a set of minimal cut sets/sequences 
is first generated from the DFT specifications, and is then 
combined using the IE formula to obtain the system 
unreliability. The major problem of this method is it requires 
enumeration or a priori knowledge of the minimal cut 
sets/sequences, which is often a costly process with 
exponential complexity. Also, the IE-based method in [12] 
assumes the exponential time-to-failure distribution for the 
system components.  

 
In order to overcome the limitations of the above described 
existing methods, a combinatorial and analytical method has 
been proposed in [9]. The method can offer an exact and 
efficient solution to the reliability analysis of non-repairable 
systems with the sequence dependent behavior, without 
requiring the enumeration or a prior knowledge of the 
minimal cut sets/sequences. Also, this method does not have 
any limitation on the type of time-to-failure distributions for 
the system components. In [9], the necessity of an efficient 
algorithm to generate the complete orders/sequences from the 
partial orders/sequences for the evaluation of the system 
unreliability has been pointed out. Hence, in this paper, we 
address the above need by proposing a complete sequence 
generation algorithm based on topological sorting. Several 
examples are given to show the application of the proposed 
algorithm.  

 
The remainder of the paper is organized as follows. Section II 
summarizes the combinatorial method proposed in [9] and 
indicates the necessity of the generation algorithm to be 

discussed in Section III. Section III presents the proposed 
complete sequence generation algorithm. Section IV presents 
the step-by-step analysis of an illustrative example using the 
proposed algorithm, as well as results for several other 
examples. Lastly, Section V gives conclusions as well as 
directions for future work. 

II. Background 

In order to illustrate the necessity and application of the 
complete sequence generation algorithm, we brief the 
analytical approach proposed in [9] for analyzing DFT with 
pAND gates in this section. 
 
The combinatorial approach [9] integrates an analytical 
solution for considering pAND dependence at the lower 
level, and a Sequential BDD (SBDD)-based solution for 
representing the system structure function at the upper level. 
This approach can be implemented as a three-step process 
summarized below and illustrated using the example 
sequence-dependent system in Figure 1. 

 
Step 1: Transformation of system DFT model: The pAND 
gates in the system DFT is transformed into a set of 
sequential events such that the final fault tree does not 
contain pAND gates. For example, Figure 4 shows the 
converted fault tree of Figure 3, where “≺” represents the 
precedence order of component failure. Thus, the sequential 
event “Sw≺M” means that the switch fails before the primary 
unit M fails.  

Failure

M S Sw<M  
Figure 4. Transformed DFT of the example system 

Step 2: Generation of the system SBDD model: The system 
SBDD model is generated from the transformed fault tree 
obtained in the first step in the bottom-up manner using 
manipulation rules of traditional BDD [7]. Figure 5 shows the 
final SBDD resulting from the application of first ANDing 
between the basic events M and S and then ORing them with 
the sequential event (Sw≺M) in the transformed DFT of 
Figure 4.  

Sw<M
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0 1  
Figure 5. SBDD model of the transformed DFT 

Step 3: Evaluation of the system SBDD model: The system 
unreliability can be calculated as the sum of probabilities for 
all the disjoint paths from the root to the sink node '1' in the 



system SBDD. Specifically, all the paths to the sink node are 
enumerated and their probabilities are evaluated.  Consider 
the SBDD of Figure 5, there are two paths to the sink node 
'1': (Sw≺M)  '1' and (Sw≺M)' (M) (S) '1'. Thus, 

Pr{System Failure}= Pr{Sw≺M}+ Pr{(Sw≺M)'.(M.S)}. This 
is a simple case where each path involves at most one 
sequential event. For some cases, we may obtain a path that 
involves more than one sequential event. For example, Figure 
6(a) shows the DFT model of a subsystem with two pAND 
gates, each representing a sequential event. Figure 6(b) shows 
the transformed DFT model. Figure 6(c) is the SBDD model 
generated from the transformed DFT model.   
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Figure 6. An example with more than one sequential event 

In Figure 6(c), there is one path to the sink node '1': (e1≺e3)  

(e7≺e3≺e9) '1'. And the two sequential events involved in 
this path are not independent because they share the same 
event e3. For such cases, when we calculate the path 
probability, we must generate the complete sequences from 
the presented partial sequences for considering the 
dependence between them. For example, to calculate 
Pr{(e1≺e3).(e7≺e3≺e9)}, we must expand the partial sequences 

(e1≺e3) and (e7≺e3≺e9) into complete sequences over all the 

four basic events as (e1≺e7≺e3≺e9) and (e7≺e1≺e3≺e9). The 
resultant complete sequences must preserve all the ordering 
constraints imposed by the input partial sequences. Because 
the two complete sequence events are mutually exclusive, we 
have:  Pr{(e1≺e3).(e7≺e3≺e9)} = Pr{e1≺e7≺e3≺e9} + 

Pr{e7≺e1≺e3≺e9}. The focus of this paper is to propose an 
algorithm to implement the generation of the complete 
orders/sequences from the partial orders/sequences, which is 
a necessary and significant task for accomplishing the 
reliability analysis of sequence-dependent systems using the 
approach of [9].   

 
After generating the list of complete sequences, the 
probability of the ordered failures can be computed using the 
following formula based on the basic probability theory on 
distribution functions: 

Pr{X1≺X2≺…≺Xn}  
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where X1≺X2≺…≺Xn is an event representing the sequential 
failures of n components, and fi(t) is the probability density 

function (pdf) of the random variable (r.v.) Ti representing the 
time-to-failure of component Xi. 

 
Applying the above formula to our example system, Pr{Sw ≺ 

M} can be evaluated as: Pr{Sw≺M}= 

ττ
τ
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 Because (Sw≺M)' = Sw'M' + Sw'M + SwM' + (M≺Sw) = Sw' 

+SwM'+(M≺Sw) and Pr{(Sw≺M).(M.S)}= Pr{(Sw≺M).Pr(S)}, 
we can calculate the unreliability of the example standby 
sparing system as: 

Pr{Sw≺M}+Pr{M.S}- Pr {Sw≺M}. Pr{S} 
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III. Proposed Generation Algorithm 

The proposed complete sequence generation algorithm is 
based on topological sort [14], which is a method of 
arranging vertices in a directed acyclic graph (DAG) as a 
sequence such that no vertex appears in the sequence before 
its predecessor. For a DAG, we define in-degree of a vertex 
as the number of edges/arrows going into the vertex and out-
degree as the number of edges/arrows coming out of the 
vertex. In the context of precedence constraints, the in-degree 
refers to the number of predecessors of a vertex and the out-
degree refers to the number of successors of the vertex. Next, 
we describe the proposed algorithm as a five-step procedure.  

Generation Algorithm: 

1. Initialization: set up an array R that records the in-degree 
value of each vertex in a DAG. Initially, the in-degree 
values are all set to zero. 

2. Update the in-degree of each vertex according to partial 
sequences. Specifically, search each partial sequence. 
Except the first vertex in the sequence, for each of the 
remaining vertex appearing in the sequence, increase its 
in-degree by 1 and update the array R.  

3. Let Q be the queue used to keep track of vertices with in-
degree of zero.  If Q contains more than one element 
with in-degree of zero, then split Q into n! queues Qi, 
where n is the number of elements with in-degree of zero 
in Q. Each Qi contains a distinct permutation of those n 
elements.   



4. For each Qi, define Ri = R. As long as Qi is not empty, do 
the following: 
a. Visit each vertex of the queue and move it to an array 

Fi.          
b. Delete that vertex from the array Ri. 
c. If the vertex has a successor, then decrease the in-

degree of its successor and update array Ri. 
d. If the in-degree of that successor becomes zero then 

keep that successor at the end of queue Qi. If Qi 
contains more than one element with in-degree of zero, 
then do the following: 
• Split Qi into ni! queues Qij, where j = 1, ..., ni! 

and ni is the number of elements with in-degree 
of zero in Qi. Each Qij contains a distinct 
permutation of those ni elements.  

• Set up an array Fij for each Qij, and initialize it to 
be the current Fi. Then delete Fi.   

• Also, set up an array Rij for each Qij, and 
initialize it to be the current Ri. Then delete Ri. 

• Go back to 4(a).     
Note that when iteration in Step 4 is performed for Qij, 
then corresponding arrays Fij and Rij will be used in 
those four sub-steps. In addition, it is possible that Qij 
can be split further into Qijk. Thus, corresponding 
arrays Fijk and Rijk will be set up and used in the 
subsequent operations. Similar split can be done 
further for Qijk. 

    5. Output all the arrays F, each corresponding to a 
complete sequence. 

IV. Illustrative Examples  

To illustrate the proposed algorithm presented in Section III, 
we consider the generation of complete sequences for the 
following two partial sequences: (e1≺e3) and (e7≺e3≺e9).  
Step 1: Set up the array R.   
            R [ ] = {in(e1)=0, in(e3)=0, in(e7)=0, in(e9)=0} 
Step 2: Update the in-degree of each vertex according to 
partial sequences. For (e1≺e3), we have: in(e3)=0+1=1. For 

(e7≺e3≺e9), we have: in(e3)=1+1=2, and  in(e9)=0+1=1. The 
updated array is:  R [ ] = {in(e1)=0, in(e3) = 2, in(e7)= 0; 
in(e9)=1} 
Step 3: Set up Q to contain all vertices with in-degree of zero 
and do the split. Q = (e1, e7) will be split into 2!=2 queues: Q1 
and Q2, where Q1 = {e1≺ e7} and Q2 = {e7≺e1}. 
Step 4: For each Qi, as long as Qi is not empty, do the 
following:  
For Q1:  
        R1 [ ] = R [ ] = {in(e1)=0, in(e3) = 2, in(e7)= 0; in(e9)=1} 
Loop 1: Visit e1.  
a. F1 [ ] = {e1} and Q1 = {e7} 
b. Delete e1 from the array R1. 

R1 [ ] = {in(e3) = 2; in(e7)= 0; in(e9)=1}  
c. If it has successor then decrease the in-degree of its 

successor and update R1. 
The successor of e1 is e3. Hence, in(e3) =2-1=1. 
Therefore, the updated R1 [ ] = {in(e3) = 1; in(e7)= 0; 
in(e9)=1} 

d. If the in-degree of that successor is zero then keep that 
successor at the end of queue Q1 .  
Here in(e3)!= 0. 

Loop 2: Visit e7. 
a. F1 [ ] = {e1, e7} and Q1 = {} 
b. Delete e7 from the array R1. R1 [ ] = {in(e3) = 1; in(e9)=1}  
c. If it has successor then decrease the in-degree of its 

successor and update R1 [ ]. The successor of e7 is e3. 
Hence, in(e3) =1-1=0. Therefore, the updated R1 [ ] = 
{in(e3) = 0; in(e9)=1} 

d. If the in-degree of that successor is zero then keep that 
successor at the end of queue Q1. Here in(e3)=0. Hence, Q1 
= {e3} 

Loop 3: Visit e3. 
a. F1 [ ] = {e1, e7, e3} and Q1 = {} 
b. Delete e3 from the array R1. R1 [ ] = {in(e9)=1}  
c. If it has successor then decrease the in-degree of its 

successor and update R1 [ ]. The successor of e3 is e9. 
Hence, in(e9) =1-1=0. Therefore, the updated R1 [ ] = 
{in(e9)=0} 

d. If the in-degree of that successor is zero then keep that 
successor at the end of queue Q1. Here in(e9)=0. Hence, 
Q1= {e9} 

Loop 4: Visit e9. 
a. F1 [ ] = {e1, e7, e3, e9} and Q1 = {} 
b. Delete e9 from the array R1. R1 [ ] = { }  
c. If it has successor then decrease the in-degree of its 

successor and update R1 [ ]. No successor. 
d. If the in-degree of that successor is zero then keep that 

successor at the end of queue Q1. 
Loop ends for Q1 because Q1 is empty.   
 
For Q2:  
       R2 [ ] = R [ ] = {in(e1)=0, in(e3) = 2, in(e7)= 0; in(e9)=1} 
Loop 1: Visit e7. 
a. F2 [ ] = {e7}, and Q2 = {e1} 
b. Delete e7 from the array R2. R2 [ ] = {in(e3) = 2; in(e1)= 0; 
in(e9)=1}  
c. If it has successor then decrease the in-degree of its 

successor and update R2 [ ]. The successor of e7 is e3. 
Hence, in(e3) =2-1=1. Therefore, the updated R2 [ ] = 
{in(e3) = 1; in(e1)= 0; in(e9)=1} 

d. If the in-degree of that successor is zero then keep that 
successor at the end of queue Q2. Here in(e3)!=0. 

Loop 2: Visit e1. 
a. F2 [ ] = {e7, e1} and Q2 = {} 
b. Delete e1 from the array R2. R2 [ ] = {in(e3) = 1; in(e9)=1}  
c. If it has successor then decrease the in-degree of its 

successor and update R2 [ ]. The successor of e1 is e3. 
Hence, in(e3) =1-1=0. Therefore, the updated R2 [ ] = 
{in(e3) = 0; in(e9)=1} 

d. If the in-degree of that successor is zero then again keep 
that successor at the end of queue Q2. Here in(e3)=0. 
Hence, Q2= {e3} 

Loop 3: Visit e3. 
a. F2 [ ] = {e7, e1, e3} and Q2 = {} 
b. Delete e3 from the array R2. R2 [ ] = {in(e9)=1}  
c. If it has successor then decrease the in-degree of its 

successor and update R2 [ ]. The successor of e3 is e9. 
Hence, in(e9) =1-1=0. Therefore, the updated R2 [ ] = 
{in(e9)=0} 



d. If the in-degree of that successor is zero then again keep 
that successor at the end of queue Q2. Here in(e9)=0. 
Hence, Q2 = {e9} 

Loop 4: Visit e9. 
a. F2 [ ] = {e7, e1, e3, e9} and Q2 = {} 
b. Delete e9 from the array R2. R2 [ ] = { } 
c. If it has successor then decrease the in-degree of its 

successor and update R2 [ ]. No successor. 
d. If the in-degree of that successor is zero then again keep 

that successor at the end of queue Q2. 
Loop ends for Q2 because Q2 is empty. 
 
Step 5: Output Fi.  
F1 [ ] = {e1, e7, e3, e9}   F2 [ ] = {e7, e1, e3, e9} 
 
In the following, we also show the generated complete 
sequences for several more complex examples by applying 
the proposed generation algorithm.  
1. (e2≺e4)(e7≺e2≺e1)(e5≺e2) = {e7≺e5≺e2≺e4≺e1} + {e7≺e5≺e2≺ 

e1≺e4} + {e5≺e7≺e2≺e4≺e1} + {e5≺e7≺e2≺e1≺e4} 

2. (e2≺e4)(e7≺e4≺e1)(e7≺e6) = {e2≺e7≺e6≺e4≺e1} + {e2≺e7≺e4≺ 

e1≺e6} + {e2≺e7≺e4≺e6≺e1} + {e7≺e6≺e2≺e4≺e1} + {e7≺e2≺e6≺ 

e4≺e1} + {e7≺e2≺e4≺e1≺e6} + {e7≺e2≺e4≺e6≺e1} 

3. (e1≺e3)(e1≺e8)(e7≺e3≺e9) = {e1≺e8≺e7≺e3≺e9} + {e1≺e7≺e8≺ 

e3≺e9} + {e1≺e7≺e3≺e8≺e9} + {e1≺e7≺e3≺e9≺e8} + {e7≺e1≺e8≺ 

e3≺e9} + {e7≺e1≺e3≺e9≺e8} + {e7≺e1≺e3≺e8≺e9} 

4. (e1≺e5)(e6≺e5≺e7)(e5≺e2) = {e1≺e6≺e5≺e7≺e2} + {e1≺e6≺e5≺ 

e2≺e7} + {e6≺e1≺e5≺e7≺e2} + {e6≺e1≺e5≺e2≺e7} 

5. (e1≺e3)(e2≺e1)(e2≺e4)(e4≺e3)(e4≺e5) = {e2≺e1≺e4≺e3≺e5} + 

{e2≺e1≺e4≺e5≺e3} + {e2≺e4≺e5≺e1≺e3} + {e2≺e4≺e1≺e3≺e5} + 

{e2≺e4≺e1≺e5≺e3} 

6. (e1≺e9)(e6≺e1≺e8)(e7≺e6≺e10)(e10≺e2) = {e7≺e6≺e1≺e8≺e9≺ 

e10≺e2} + {e7≺e6≺e1≺e8≺e10≺e2≺e9} + {e7≺e6≺e1≺e8≺e10≺e9 

≺e2} + {e7≺e6≺e1≺e9≺e10≺e2≺e8} + {e7≺e6≺e1≺e9≺e10≺e8≺e2} 

+ {e7≺e6≺e1≺e9≺e8≺e10≺e2} + {e7≺e6≺e1≺e10≺e2≺e8≺e9} + {e7 

≺e6≺e1≺e10≺e8≺e2≺e9} + {e7≺e6≺e1≺e10≺e9≺e2≺e8} + {e7≺e6≺ 

e1≺e10≺e2≺e9≺e8} + {e7≺e6≺e1≺e10≺e8≺e9≺e2} + {e7≺e6≺e1≺ 

e10≺e9≺e8≺e2} 

V. Conclusions & Future Work 

The generation of complete sequences from partial sequences 
has been identified as one of the essential steps in the 
combinatorial reliability analysis of dynamic systems with 
sequence-dependent behavior modeled using pAND gates. In 
this paper, a topological sort-based algorithm was proposed 
to generate complete sequences of elements that satisfy all 
the precedence constraints posed by the input partial 
sequences.  The algorithm involves complex queue split 
process. In our future work, we will explore more efficient 
complete sequence generation algorithm and integrate it into 
the efficient SBDD evaluation procedure for dynamic 

systems subject to various dependent behaviors. Complex 
case studies will be performed to verify the performance of 
the proposed algorithm.   
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