An Integrated Role-Based Approach for Modeling,
Designing and Implementing Multi-Agent Systems

Xiaoqin Zhang, Haiping Xu and Bhavesh Shrestha
Department of Computer and Information Science
University Of Massachusetts At Dartmouth
North Dartmouth, MA 02740
Email: {x2zhang, hxu and g bshrestha}@umassd.edu

Abstract— To facilitate the development of multi-agent systems
and improve the reusability, robustness and feasibility of these
systems, we have developed a role-based agent development
framework (RADE). In this paper, we present an integrated
approach for modeling, designing and implementing multi-agent
systems using RADE. We describe the design of agents and
motivations within such framework. We introduce a practical
approach for modeling agent’s motivation and specifying agent’s
goals, where a role-agent mapping mechanism is developed based
on this design. Dynamic task allocation is achieved through the
creation of role instances and the mapping from role instances
to agents. We also introduce the RTZAEMS language based on the
extension of TAEMS to model the plan tree for each goal. This rep-
resentation enables the reuse of general planning/scheduling and
collaboration/cooperation mechanisms developed in multi-agent
system research community. We have developed an automatic
agent generation interface and also implemented a simple demo
system in health care domain.

Keywords: Role-Based Agent Development, Multi-Agent
Systems, Agent Motivations, Role-Agent Mapping

I. INTRODUCTION

Multi-Agent System (MAS) is a suitable programming
paradigm for distributed information systems and applica-
tions, where resources, data, control and services are widely
distributed. However, the application of multi-agent system
has been limited by the difficulty to develop such systems.
Considerable amount of time and highly-experienced program-
mers are required to develop a multi-agent system. After such
system is built, it is also difficult to test and maintain the
system because of its complexity. The reusability of such
system is low, it is unlikely to use an existing system for
another application domain with little or minor change.

A number of approaches for defining and developing au-
tonomous agents and multi-agent system from different di-
rections have been studied by many researchers. Luck and
d’Inverno presents a formal definition of agent including goal
and motivation [11]. [21] describes a new BDI agent frame-
work - the SRI Procedural Agent Realization Kit (SPARK) to
develop agent systems that can scale to real world applications.
[25] presents how to use a Java-based platform to implement
BDI agents. Some researchers use UML and its extension
to model agents and the interactions among agents. [13]
presents an intermediate language UML-AT for translation
between models in different language. [23] describes a meta-
encoding schemas for compiling non-monotonic logic theories

into Verilog Hardware Description Language descriptions. [22]
introduces MAS-ML for modeling multi-agent systems. [6]
proposes use of UML activity diagrams to model agent plans
and actions. [10] demonstrates that a variety of adaption of
business process can be handled through business protocol
composition. [1] proposes a process to specify an agent-
oriented information system with successive refinements us-
ing extended UML and AUML diagrams and notation. [3]
proposes an ontology based on the language metamodel as
a formal specification of MAS design models. The group of
work most related to our work is the role-based methodology
for developing of multi-agent systems. Typical examples of
such efforts include the Gaia methodology [29] , its extension
[15] and Multi-agent Systems Engineering (MaSE) methodol-
ogy [9]. The Gaia methodology models both the macro (social)
aspect and the micro (agent internals) aspect of the multi-agent
system. The methodology covers the analysis phase and the
design phase. Similarly, the MaSE methodology is a special-
ization of more traditional software engineering methodolo-
gies. During the analysis phase of the MaSE methodology, a
set of roles are produced, which describes entities that perform
some functions.

We have been working on a set of technologies and mech-
anisms to ease and formalize the development of MAS, and
to increase its reliability and reusability too. We aim to cover
the analysis and modeling, design and implementation phases.
The first goal is to separate concerns. There are multiple
issues in a multi-agent system, such as problem-solving issue,
coordination issue, organization issue, communication issue,
security issue, etc. Some of them are application-dependent,
others are not. Some of them are platform-dependent and
others are not. We have proposed a three-layered development
process: the application independent, platform independent
model (AIPI), the application specific, platform independent
model (ASPI), and the application specific and platform spe-
cific model (ASPS) are developed in the three consecutive
phases respectively [31]. Another approach for separating con-
cern is to separate the domain knowledge and the intelligent
problem-solving capabilities. We adapt a role-based modeling
approach. In this approach, conceptual roles are defined with
the domain related knowledge, such as goals, permissions, or-
ganizational relationship, and interaction protocols, etc; where
agent is a concrete entity equipped with motivations, resources
and problem-solving capabilities. However, our role-based ap-

proach is different from other proposed role-based approaches
[17], [14], [S]. We introduce the concept of role instance,
which is a concrete implementation of a conceptual role, and
this approach provides a stronger support for system openness
and dynamics. Our approach supports the dynamic creation of
role instances, and agents can take a role instance and then
create more role instances according to the needs to fulfill its
goal.

The second goal is to automate the agent generation
process, while utilizing the existing tools and mechanisms as
much as possible. We propose to create agents using a drag-
and-drop mechanism where the user can select components to
plug in the agent depending on the application requirement.
Rather than a practical reasoning agent architecture such
as BDI, we adopt a utility-driven agent architecture with
quantitative reasoning capabilities. Our high-level design is
based on roles, however, the mapping from role instances
to agents in our work is different from other role assign-
ment mechanisms [7] . Besides the logical reasoning on the
matching of motivations and the conflicts among different
roles, we adapt a quantitative model of motivation named
MQ framework [27]. Based on this MQ framework, the agent
can perform a quantitative reasoning on how important a role
instance is given its preference, its utility function and its
current achievement. In the definition of a role, we introduce a
RTZAMS language (Role-Based Task Analyzing, environment
Modeling, and Simulation) to represent the domain knowl-
edge about how to achieve a goal. RTAEMS language is
an extension of TZAMS language [8] - a hierarchical task
network representation language with task inter-relationships
and quantitative descriptions of different alternatives to achieve
a goal. When an agent takes a role instance, it has access to this
RTZAMS representation of the goal. As a result, the existing
planning/scheduling [28] and coordination [18] mechanisms
based on TAEMS language can easily be exploited by the agent.

The main contribution of this work include proposing an
integrated approach for modeling, designing and implementing
multi-agent systems, and the development of a prototype
system to support such approach. This approach bridges the
formalized role-based MAS models and the utility-driven
agent architecture that are suitable for dealing with complex
tasks and sophisticated organizational context. The uniqueness
of this work includes the following. First, role instance is used
not only as a design concept but also a real entity in the system
run-time. By dynamically creating, taking and releasing role
instances, dynamic task allocation is accomplished. Second,
agents are able to perform quantitative reasoning on choosing
role instances based on a quantitative modeling of motivation.
Third, the RTAMS description of complex tasks supports
the easy plug-in reuse of existing domain-independent plan-
ning/scheduling and coordination mechanisms.

The role-based design approach and the agent architecture
are presented in [30]. In this paper we focus on the definition
and implementation of agents, the dynamic role-agent mapping
mechanisms, the automatic agent generation process and a case
study of applying this approach to a health care domain. This
paper is organized as the follows. We first present an overview
of the RADE approach in Section II. The detailed description

IHIEHIII

A

| role B | | role_C

¢
.
[P A

rolelnstance_1

agent_2

agent_1

agent_3 T
1eenl3 oot Society

Fig. 1. A generic model of role-based open multi-agent systems (adapted
from [30])

of agent is presented in Section III. The definition and more
details about role are described in Section IV. Section V
describes operation details of multi-agent systems including
the role-agent mapping mechanisms, planning, scheduling,
collaboration and cooperation mechanisms among agents. The
automated agent generation process is presented in Section
VI. The case study of a health care application is described
in Section VII. Lastly, the conclusion and discussion of the
future work is presented in Section VIII. Related work are
discussed in various places.

II. OVERVIEW OF RADE APPROACH

The basic idea of the role-based agent development envi-
ronment (RADE) is illustrated in Figure 1. The top level is
the role organization, including the conceptual roles and their
relationships such as inheritance, aggregation, association and
incompatibility. The second level is the role space, which
consists of multiple role instances, each role instance is
instantiated from a conceptual role dynamically. The bottom
level is the agent society, which consists of multiple agent
entities. Agent can take and release role dynamically, the
mapping from role instances to agents is called R-A mapping.

In order to separate software architecture from application
domain and to separate application logic from the underlying
technologies to improve reusability and development process,
we have proposed a three-layered development model in
[31]. This development model is defined in three steps. The
first step is to define the Application Independent Platform
Independent Model (AIPI model), which is a generic model
that corresponds to the role-based development methodology
for open MAS. The AIPI model includes the definition of
Role, Role Space, Role Organization, Agent and Agent So-
ciety. The second step is to define the Application Specific
Platform Independent Model (ASPI model) that is based
on the AIPI model. The ASPI model involves knowledge
from the application, including the definition of specific role
classes, role organization classes, agent classes, etc. In the
third step, based on the ASPI model, it defines the Application
Specific Platform Specific Model (ASPS model) that further
incorporates information on software platform, middleware
and communication mechanisms.

—_Agent

attributes : P Attribute

motivations : P Motivation

utilityFunction : MQState — utility

sensor : Environment - SensorData
reasoningMechanisms :

P SensorData x P Motivation — P | Role

P SensorData x P Motivation X P | Role

— P CurrentGoal

P SensorData x P Motivation x P CurrentGoal
— P CurrentSchedule

executionMechanisms :

P SensorData x P CurrentPlan — newEnvironment
rolesTaken : P | Role

Fig. 2. Definition of agent class

In the actual software system, agent instances are auto-
matically generated based on the definition of agent classes.
Each agent instance is a software entity that performs specific
functions and also coordinates and communicates with other
agent instances. On the contrast, role classes are defined to
incorporate domain knowledge and organizational relationship.
Each role class is associated with specific goals and detailed
descriptions of how to achieve such goals. The relationships
among different role classes also depict the organizational
relationships among the real-world entities represented by
these roles. Such information is expected to be provided by
domain experts rather than software engineers. In the system
runtime, role instances are created dynamically either by a
human user or by agents to represent that there are certain
goals needed to be realized. Those role instances are mainly
to carry domain knowledge and they do not actually perform
any actions like agents. When a role instance is taken by an
agent, the agent will use the knowledge incorporated in this
role instance to achieve the goals defined in this role instances.

III. AGENT DEFINITION

Agent is an entity with attributes, motivations, sensors and
a set of reasoning mechanisms. Figure 2 shows the formal
definition of agent class in Object-Z [12] . Agent attributes
include agent names, user, identification and other descriptive
characteristics. The values of these attributes are set when an
agent instance is instantiated from the agent class. Different
agent instances have different attribute values. According to
[19], motivation is defined as “any desire or preference that can
lead to the generation and adoption of goals and which affects
the outcome of the reasoning or behavioral task intended to
satisfy those goals”. Motivation is the key for agent to decide
which goals it should pursue and how to pursue a goal.
A. Agent Motivation

We adopt a quantitative view of motivation in our practice.
Motivation is defined as a set of motivation quantities (MQs)
[27] that the agent tracks and accumulates. Each MQ is

associated with a preference function'. Each MQ represents
progresses towards an abstract goal. An abstract goal is a long-
term commitment to make progress toward certain direction
but not a concrete task with a specified plan. For example, the
designed purpose of a personal assistant agent is to serve its
owner. With this purpose, the agent has motivation to manage
the owner’s address-book, organize daily appointment and
purchase items desired by the owner. Therefore, this agent’s
motivation is represented as a set of three types of MQ:

Motivation of Personal Assistant

= {M QmanageAddressbook) M QorganizeActiviries) M qurchaseltems} (1)

A concrete goal (task), e.g., schedule a meeting with the
family doctor, contributes to the abstract goal organize daily
activity, which is represented by the generation of a certain
amount of MQ,reanizeActiviies- Agent is able to determine which
role it should take by analyzing the (concrete) goal of the role
and to find if the goal generates a certain type of MQ that this
agent is interested in.

Each MQ; is associated with a preference function Uy,
which maps a specific amount of M(Q); into some quantity of
utility U;: U; = Ui (MQ;), where U; is the utility associated
with MQ; and it is not inter-exchangeable with other type of
utility. The overall utility of the agent Ugg,, depends on the
accumulation of the different types of MQs in its motivation:
{MQ;,MQj, MQy, ...}. The function: Uggen, = ¥(U;, Uj, Uy, ...)
describes how different types of utilities are contributed to the
agent’s overall utility.

B. Extended MQ Definition to Support Automatic Agent Gen-
eration and Dynamic Organizations

The original MQ framework is intended to support agent
control in soft real-time environment, where agents are han-
dling multiple tasks and each task has specified temporal
constrains. It is assumed that all MQ types are designed by
the user when the agent is created, and the MQ types are fixed
in the runtime of the system. This assumption works fine for
small-scale multi-agent systems when all agents are created
by hand and the organization structure is fixed.

However, this original design does not fit the need to
automate the development of multi-agent system and support
the dynamic organization structure. For example, it would be
nice to automatically create two personal assistant agents for
user A and user B, each agent has the motivations to manage
the owner’s address-book, organize daily appointment and
purchase items desired by the owner. If we use the original def-
inition as described in (1), confusion is unavoidable since the
agents cannot distinguish their goals to serve different users.
The confusion can be resolved by designing different types
of MQs with different names, such as: MQ,eanizeActivitiesForUserA
and MQ,reanizeActivitiesForUsers- However, this approach deviates
from the intention to use an unified agent class design for
all personal assistant agents. So, we extend the original MQ

IThe concept of MQ is originated from the work on soft real-time agent
control by Wagner and Lesser. We extended the original MQ framework to
make it more suitable for general agent design in RADE process.

framework by introducing a parameter, namely subject, into
the definition of MQ: every unique MQ type is defined
by the MQ name and the MQ subject. The subject is the
entity who is being served or benefited from the achievement
of this MQ. For example, MQorganizeActivities(A) represent the
motivation to organize activities for user A (assume “A” is
the identification for this unique user). MQ,eanizeaciivisies(A)
and MQ,reanizeaciivities(B) are different MQs and they are not
inter-exchangeable. In the design phase, a unique pattern
MQ ranizeacriviries(User) can be used for the personal assistant
agent class, User refers to the agent’s user, which is one of
the attributes of the agent. When the two personal assistance
agent instances are instantiated for user A and B, they have
different values for their attributes such as name, user and
identification.
The formal definition of MQ type is:
MQ

name : String
subject : P entity

A brief representation i8: MQyame (M Qsupject)- The subject of
MQ is a set of entities, which can be defined in one of the
following ways or a combination of them:

1) List the identification of the entities that belongs to this
set, {id1,id>, ...id,}, id; is the identification of entity or
a function that returns an entity identification, such as
Owner(id).

2) Specify the conditions for an entity to belong to this
set, {x | condition(x)}. For example, {x | x € groups}
is a set of all members that belong to groups, which is
another entity.

With this extension, it becomes possible to support dynamic
organization structure. For example, agent x has a motivation
MQserveGroup({G | x € G}) to serve the groups it belongs to.
This motivation is created for the agent class in the design
phase, agent x is an instance of such agent class. In the system
runtime, agent x joins a group A, it also forms a group B with
other agents. According to the motivation to serve the groups
it belongs to, agent x is willing to work on goals that serve
both group A and B.

Under this extended definition, we have the following
definition on the relationships of MQs.

Definition 3.1: Two MQ types MQ; and MQ; are identical
(inter-exchangeable) (MQ; == MQ;) if and only if:

1) name(MQ;) == name(MQ;) and

2) subject(MQ;) 2 subject(MQ;) and
subject(MQ;) C subject(MQ;).

Definition 3.2: MQ type MQ; is a special case of MQ; if

and only if:

1) name(MQ;) == name(MQ;) and

2) subject(MQ;) C subject(MQ;).

Dynamic organization structure is very important for multi-
agent systems to function efficiently, as other researchers also
recognized. [24] propose a framework for modeling agent or-
ganizations called OMNI, which allows both the representation
of the global organizational requirements and the autonomy of

role
instance
1

role role
instance instance
i j

role-agent mapping mechanism

role
instance
i
—

ey

role
instance
n

role
instance

goal selecting mechanism

approach selecting mechanism

Linear Schedule of Actions

A

Git-step1, Git-step2, Gje-step1, Gii-step3, Gje-step2,

Fig. 3. Agent’s reasoning mechanisms

individual agents. Our framework has this same virtue, though
we adopt a quite different approach that combines role-based
modeling and quantatitive reasoning.

C. Sensor Data

Sensor data refers to the input for the agent. For robot
agents, the sensor data is collected by different sensors, like
camera, speedometer, etc. For software agents, sensor data
refers to the messages and information the agent receives from
the environment including other agents.

D. Reasoning Mechanisms

Each agent is equipped with a set of reasoning mechanisms,

which are used for the following purposes:

1) Decide what roles the agent should take or release at
this moment, given the agent’s motivation, current roles
it is taking, the resource and time constraints.

2) Decide what goals the agent should pursue at this
moment. The agent may take multiple roles and each
role may have multiple goals, so the agent needs to
decide which goals it need to focus on at this moment
based on how the goals contribute to its motivations, how
each goal could be achieved given the resource and time
constraints.This issue is related to the next issue.

3) Decide how to achieve a goal given the available alter-
natives, resources and time constraints. Some planning
and scheduling mechanisms are needed for this decision.

Given the formal definition of motivations, goals and the

detailed description of alternatives to achieve a goal, it is
possible to build some general, domain-independent reasoning
mechanisms/toolkits. The user can select appropriate com-
ponents from such toolkits and add them to the agent, the

—_Role

P Attribute

goals : P Goal

plantrees : P RT EMS PlanTree
actions : P Action

attributes :

permissions : P Permission
protocols : P Protocol
beTaken : B

— IniT
permissions = &
protocols = &
beTaken = false

— setPermission
Apermissions
perm? : Permission

permissions’ = permissions U {perm?}

—_addProtocol
Aprotocols
prot? : Protocol

procotols’ = protocols U {prot?}

Fig. 4. Definition of role

user can also customize these general mechanisms/toolkits by
setting some parameters. These general mechanisms/toolkits
are reusable for agents in different application domains.
Figure 3 shows an agent’s reasoning mechanisms. In gen-
eral, agents decide what to do using the reasoning mechanisms.
The decisions are made at different levels: selection of roles,
selection of goals, and selection of the approach to fulfill
the goals. The first issue is resolved by role-agent mapping
mechanisms, and the later two issues are inter-related, which
are solved by planning-scheduling mechanisms. More details
of these two types of reasoning mechanisms are described in
Section V after the detailed description of role is presented.

E. Execution Mechanisms

Execution mechanisms are used to generate the output,
which changes the environment. For robot agents, their actors
such as their motors, are the execution mechanisms, which are
used to execute some actions to change the environment states.
For software agents, the execution mechanisms are the prim-
itive actions to change the environment state. Some of these
execution mechanisms are domain-dependent. For example,
the personal assistant agent is built with execution mechanism
to perform an online purchase, which is not built in a math-
ematics theorem proven agent. Other execution mechanisms
are application-independent but platform-dependent, such as
sending a message. Some common execution mechanisms can
be built as toolkits and reused for different applications.

The major difference between the reasoning mechanisms
and execution mechanisms is: the reasoning mechanisms only

role class role: meeting coordinator

goal: schedule group meeting
MQPS: { (MQorganizeActivity(x| x € meeting-group), 3),
(MQserveGroup(meeting-group), 5)}

role instances { h
\

¥ @%%

group B
Meeting coordinator role example

-

agents

group A

Fig. 5.

change the agent’s internal state, and have no effect on the
outside environment directly, while the execution mechanisms
change the outside environment directly.

IV. ROLE DEFINITION

Figure 4 shows the definition of role class. Same as agent,
a role is defined with a set of attributes, such as role name
and identification. A role is also defined with a set of goals,
each goal is associated with a plan tree, which is a hierarchal
description of the alternatives to accomplish a goal.

A. Goal Definition

The definition of a goal contains the name of the goal and
a MQ Production Set (MQPS):

MQPS = {(MQ;, qi), (MQ;, q;), (MQx, qi).---},

which represents the success accomplishment of this goal
will generate ¢; amount of MQ;, g; amount of MQ;, g
amount of MQy, etc. The MQPS describes how this goal
contribute quantitatively to some higher-level goals (abstract
goals), which are built in agents’ motivations. For example,
there is a meeting coordinator role, which has a goal defined
as:

goal name: schedule group meeting

MOQPS : {(MQnrganizeActivity(x|x€meetingﬂgmup)7 3)a
(MQserveGmup(meering,group) s 5) }

This goal generates two types of MQs, meaning that the
achievement of this goal contributes to two abstract goals:
organize activity (for any member that belongs to this meeting
group) and serve this meeting group. The degrees of the
contributions are represented by the units of the MQs, 3 and
5 respectively in this example. It should be noticed that the
meeting group is an abstract concept when this role is defined
as a role class, this concept represents any group who needs to
have meetings. When an role instance is instantiated from this
class, this abstract concept is instantiated as a concrete group.
Depending on the context when the meeting coordinator role
instance is created, a specific group will replace this abstract

Provide Cure

(Physician)
min
\ 4 I
Examine Patient enables ﬁ Provide Treatment
sum max
Medical /History | Prescribe Treatment
—| Record
facilitates
Administer
v Treatment
Clinical Test -
™ (MA_Clinical) mm
enables Setup Equipment
: ”| (Nurse Assistant)
enables
4>| Test Interpretation |< p| Operate
enables
Provide Care

Fig. 6. Plan tree for goal Provide Cure in RTAEMS representation

meeting group in the goal definition. Assume that two meeting
coordinator role instances CA and CB have been created, as
shown in Figure 5, one for group A, and another for group
B. Both of them have the goal of the same name but not the
same MQPS. All agents who belong to group A are motivated
to take the role CA, those agents who belong to group B are
motivated to take the role CB, those agents belong to both
groups are motivated to take both role instances.

B. Plan Tree Definition

For each goal associated with a role, there is a plan tree
to describe the possible alternatives to achieve this goal. This
plan tree is part of the domain knowledge and needed to be
defined by the user. To represent this domain knowledge, we
introduce RTAEMS (Role-Based Task Analyzing, environment
Modeling, and Simulation) language based on the extension
of the TAMS language [8]. TAEMS is a hierarchical task
representation language, which support the representation of
the relationships among goals and subgoals, the quantitative
description of the atomic approaches and uncertainties, and
resources. We extend the TZEMS language by introducing a
role attribute for task nodes that represent goals and subgoals.
The attribute role specifies what roles are needed to carry this
goal or subgoal.

For example, Figure 6 shows the plan tree for the goal
Provide Cure, which belongs to the role Physician. The goal

(Nurse Assistant)

Provide Cure consists of two subgoals: Examine Patient and
Provide Treatment. The min quality accumulative function
(qaf) associated with the goal Provide Cure specifies the
following relationship:

Quality(ProvideCure) = min(Quality(ExaminePatient),
Quality(ProvideTreatment))

In other words, the min quality function associated with
a goal describes that the success of this goal depends on
the success of all of its sub-goals. On the other hand, the
use of max quality function represents that there are several
alternatives to achieve the goal. For example, to Provide
Treatment for the patient, the Physician can choose either
Prescribe Treatment or Administer Treatment. Other available
quality accumulation functions include sum and seq_sum, etc.

Each subgoal can further be decomposed into smaller goals,
i.e. Examine Patient includes three subgoals: (Read) Medical
History Record, Clinical Test and Test Interpretation. For some
non-local goals - the tasks need to be performed by other
roles, the specification of the other role is included in the
plan tree description. For example, Clinical Test should be
performed by a Clinical Medical Assistant (MA_Clinical), and
Setup Equipment and Provide Care are goals belonging to the
Nurse Assistant role.

The dash lines represent the interrelationship between

goals/sub-goals. For example, Clinical Test enables Test In-
terpretation describes the fact that the first goal Clinical Test
needs to be achieved successfully before it is possible to
implement the second goal Test Interpretation. In addition,
(Read) Medical History Record facilitates the Clinical Test
process because it may provide some useful information about
the patient. Other types of interrelationships defined in TAEMS
include disables and hinders.

The primitive goal (lowest-level goal) in the RTAEMS rep-
resentation can be specified with more details in another plan
tree that is associated with another role. For example, the plan
tree for the subgoal Provide Care is described in Figure 10,
this information belongs to the role Nurse Assistant.

The RTAMS shows all possibilities to achieve a goal
and the interrelationship among goals/subgoals. It provides
fundamental knowledge for agents to plan and schedule its
local activities, and it also supports the collaboration and
cooperation among agents. More details are presented in
Section V.

V. OPERATION OF THE MULTI-AGENT SYSTEMS

In this Section, we will discuss more details on how a multi-
agent system will be developed and operated based on the
RADE framework that we have presented in [30] and earlier
in this paper.

A. Dynamic Mapping Process Between Role Instances and
Agents

In RADE framework, agents can dynamically choose the
role instances, and role instances can be created dynamically
too. In the development phases, roles and agents are designed
separately. In the implementing phases, agents are created by
users. In addition, there is a role space component built in the
system with the following functionalities:

1) Keep record of all role instances that have been created
and their current status: whether this role instance has

been taken and the creator of this role instance.
2) Reply messages from agents for querying the current

available role instances.
3) Create new role instances according to the requests from

agents or users.
4) Delete obsoleted role instances according to the requests

from agents or users.
5) Monitoring the role-agent mapping processes by veri-

fying the qualification of agents and checking the con-
straints on role interrelationships, to ensure the new role
instance is compatible with other role instances that have
already been taken by the same agent.

When the system execution starts, one or more role in-
stances are created by a human user. Those agents who are
interested in taking a particular role instance send messages to
the role space. The role space then checks the qualification of
the agents. The verification process is based on two criteria:

1) Whether the agent (A) has the capability to take this

role instance (R). The following conditions are checked:
Actions(R) - ExecutionMechanism(A) or
Certification(R) - Qualification(A), where

Certification and Qualification are attributes that
belong to Role and Agent classes respectively.

2) Whether this role instance is consistent with other role
instances that the agent currently takes. This condition
is checked based on the incompatibility relationships
defined in the role organization.

After this process, a list of qualified agents is sent to
the creator of this role instance (in this case, the creator is
the human user, it can be an agent too). The creator then
selects one agent from this list to take the role instance. This
selection is totally based on the creator’s preference, the user
can define different criteria for the selection, such as based on
the profile of the candidate agent, or the experience of previous
interaction with the candidate agent.

When an agent takes a role instance, it checks the goals that
belong to this role instance and decides if more role instances
need to be created to carry the subgoals or to achieve some
necessary preconditions. If this is the case, more role instances
will be created and posted in the role spaces. The process
described above is repeated until no more role instances are
created.

An agent decides whether it is interested in a role instance
by checking if there is a goal that belongs to the role instance
matches the agent’s motivation. A goal G matches agent A’s
motivation if and only if:

IMQ, € MQPS(G),IMQ, € Motivations(A),

MQ;, is a special case of MQ,.

According to the above definition, there may be multiple role
instances an agent is interested at the same time. How much
the agent is interested in a particular role instance depends on
the following:

o The type and number of units of MQ associated with the
goal that belongs to this role instance.

o The agent’s preference on different MQs given its current
MQ accumulations.

o The agent’s resource and capability.

An heuristic search algorithm has been presented in [27],
which is used to select the most appropriated tasks based on
agent’s MQ preference, MQ states and resource limitations.
Similar mechanisms can be adopted here for agent to select
the appropriated role instances.

Since each goal defined in a role instance essentially rep-
resents a task to be accomplished, so the role-agent mapping
process is a task allocation process. In this process, the agent
decides which task it would like to take depending on the
user-defined preference functions, its previous experience on
accomplishment of such tasks and its resource limitation. On
the other hand, which agent is chosen to perform this task also
depends on the qualification requirement, the organizational
rules (represented as the incompatibility relationship) and
other dynamic issues such as the agent’s previous performance.

Kamboj and Decker has proposed an organizational self-
design approach in semi-dynamic environment [16]. It uses
TZAEMS language as the underlying representation for prob-
lems. Agents can be dynamically created or merged together
depending on the needs of the system at runtime. It also uses
role-assignment to assign a task to an agent. However, in

that work, a role is defined as a TAMS subtree rooted at a
particular node, which is different from our work, where a role
is a position in an organization associated with organizational
rules and interaction rules. Additionally, our work proposes an
integrated approach for designing and implementing MAS. In
our approach, a lot of domain knowledge can be represented in
the definition of roles. We also adapt a motivational quantita-
tive measure for agents to evaluate what tasks are interesting.
These make our work quite different from theirs.

B. Planning and Scheduling

The planning and scheduling mechanisms are used to gen-
erate a linear schedule of activities for the agent to execute.
The plan tree associated with each goal consists of all possible
alternatives to achieve a goal, it is not a linear schedule. The
agent needs to make decisions on how to achieve a goal based
on this plan tree and the time/resource constraints. A general,
domain-independent planner/scheduler for TAEMS task struc-
ture has been developed [28]. Such toolkits can be modified
and used for RTZEMS plan trees. We propose to build multiple
planning/scheduling toolkits using different technologies with
varying complexities from heavy-duty contingency planner to
quick and easy one-step-look-ahead planner. The agent builder
can choose from them and the agent also can choose which one
to use at that time if multiple planner/scheduler components
are build in.

C. Collaboration and Cooperation

In an open agent society with distributed information,
resources and tasks, agents need to collaborate and cooper-
ate on their actions. Efficient collaboration and cooperation
mechanisms are important to the performance of the system.
Large amount of effort has been spend on the development of
collaboration and cooperation mechanisms in multi-agent sys-
tems. Our intention is to develop a set of domain-independent
mechanisms for collaboration and cooperation, so that they
can be reused in different applications. This need is also
recognized by other researchers [4]. In ROPE project [2],
cooperation process is build as separated component from the
concrete agents, the ROPE engine provides the execution of
the cooperation process, which is described as a high-level
petri-net class. However, the implementation of ROPE Engine
is based on a shared memory, which is not always feasible for
agents widely distributed on different machines. Additionally,
the cooperation process in ROPE project is based on token
and transition firing, which is not feasible to support more
proactive cooperation and collaboration, i.e. agents are able to
consider the cooperation and collaboration needs when they
are planning their own activities.

The RTZAEMS language supports collaborations and co-
operation by specifying interrelationship among goals and
subgoals, so that agents know why they need collaboration
and cooperation, when and with whom. A set of domain-
independent general collaboration mechanisms (GPGP) based
on TAMS language has been developed [18]. we propose
to develop (or reuse some of GPGP) similar mechanisms
in RADE framework based on RTZAMS language. Agents

CID
otvations~_—
overall utility ‘ ’J

ensor Data

= > G ————

Reasonlng Mechanisms

" S Joal role
planning planning selection selection
tool 1 tool 2
tool tool

xecution Mechanisms
ommu
ication

i learning shopping financial
tool tool tool tool

Agent

Fig. 7. An general agent architecture

collaborate and cooperate with each other using this set of
mechanisms and also according to the protocols defined in
the role, which specify how the interaction between different
roles should be proceeded.

VI. AUTOMATIC AGENT GENERATION PROCESS

The automatic agent generation process is based on a
component-based agent architecture. The user can select which
components to be included in this agent, and the user can also
specify a set of attributes of the agent.

Figure 7 shows a general agent architecture. Each agent has
a set of attributes. Its motivation is a set of MQs it accumulates
and tracks, which are mapped into its overall utility through
specific utility functions. An agent also receives sensor data
from outside environment including events and messages. An
agent has a set of reasoning mechanisms including role/goal
selection, and planning/scheduling mechanisms. The designer
of the agent decides what reasoning tools should be built in for
this agent, the designer also selects the appropriate execution
tools for this agent according to the designed purpose of this
agent. It is assumed there are a set of reasoning and execution
mechanisms available as toolkit, which can be selected and
plugged into the agent seamlessly.

Based on this general agent architecture, we developed a
tool to support the automatic agent generation process. This
tool is created by extending the current JAF framework [26]
developed by MAS lab at UMass Amherst. This tool includes a
graphic user interface, which can be used to create new agents,
modify existing agents, run agents and delete agents. A screen
shot of the graphicial user interface is shown in Figure 8.

Agent class is defined by a set of attributes, motivations,
utility function, and a set of reasoning mechanisms and exe-
cution mechanisms. Individual users can create their own agent
classes through this interface. The user can define a variety of
attributes including name, qualification, and other parameters
for recording information during the agent execution process
such as log file name and log level. Qualification is an

£ hgent example g@@
| CREATE & MODIFY | RUN AGENT | DELETE AGENT |
AGENT INFO
Name Adam
Motivation MZ_Professoinal P 0,0;MG R
Log Files configfexampleddarm.og
Qualification WD
Log Level 2
agent.mass.Control = lagentmass Control, 3
agent. mass.State |=|anentmass State,
C agent.mass.C lagem.mass Cammunicate
agent.mass.Execute = =

[[] create Copies [v] Create copyfrom Existing (old)

gnt
harosh.gnt
gnt

[T

(CHOOSE FILE iy

[| ok

1]

ant

Create Modify Exit

Fig. 8. Automatic agent generation interface

attribute that describes a particular capability this agent class
owns, which is used in the role-agent mapping process to
decide whether an agent is qualified for a particular role.

The user also defines the agent’s motivation by specifying
a set of motivational quantities (MQs) [27] that the agent
tracks and accumulates. The user also defines the agent’s
reasoning and execution mechanisms by selecting a number
of ready-to-plug-in components such as: planning, scheduling,
communication, etc. Currently all available components are
created in JAF project, new components can be created and
added to this selection list at any time in the future.

After an agent class is defined, one or multiple agent
instances (the executable programs) can be created from this
class definition. Each agent instance is an independent program
and the agent is named after its class with a unique number
ID. For example, when the user creates an agent class X and
three agent instances of this class, the three agents are named
as Xi, X2 and X3 respectively.

The user can run agents from this interface by clicking the
“RUN AGENT” menu box on the top, and selecting a number
of agents to run from a list of agents that have already been
created. Multiple agents can be created and run on difference
machines. The user can also choose to delete existing agents
by clicking on the “DELETE AGENT” menu box.

VII. CASE STUDY: HEALTH CARE APPLICATION DOMAIN

We have implemented a prototype system including a role-
definition component and an agent definition and creation
component. Using this system, we implement a simple health
care application as an example to demonstrate this integrated
role-based approach for modeling, designing and implement-
ing multi-agent systems, including the definition of role and
agent classes, automatic agent generation process and the
dynamic mapping process between agents and role instances.

The purpose of this health care application system is to assist
health care providers and patients to schedule and coordinate
their activities so as to provide feasible and efficient health
care services for patients.

A. Define Roles

One advantage of this role-based multi-agent system ap-
proach is the support of the separation of concerns principle.
We believe that a complicated information system should be
developed collectively by both the domain experts and the
software experts. For example, in this health care application
domain, there are a lot of domain knowledge that is not famil-
iar to the software engineers. Health care domain experts are
the best candidates to engineer such knowledge in the system.
Hence we developed a role-definition tool with graphical user
interface for the domain experts to represent those domain
knowledge through role definition.

In this demo example, we pretend ourselves to be domain
experts by reading some books [20] and articles in medical ap-
plication domain. We created a simplified system just to verify
the feasibility of this approach. In this process, we recognized
the difficulty and inefficiency for a software engineer to grasp
the vast amount of domain knowledge in a short period of
time, which enhance our belief of the separation of concerns
principle.

In this simplified system, we define the following role
classes:

1) Patient: who seeks for health care.

2) Physician: who determines whether diagnostics are to
be undertaken, provides prescriptions, performs medi-
cal and surgical interventions, has the ability to direct
patient care and advance a patient to the next step of

care.
3) Medical Assistant: a health care professional who per-

forms a variety of clinical, clerical and administrative
duties within a health care setting. There are two roles
defined as subclasses of this role class:

o Administrative Medical Assistant (MA_Admin):
Medical assistant who performs the administrative
job.

. JClim'cal Medical Assistant (MA_Clinical): Medical
assistant who performs the clinical job.

4) Nurse: there are two roles defined as subclasses of this
role class:

o Nurse Assistant a nurse who assesses the patient’s
medical problem, provides care and helps setup

laboratory specimen and medical instruments.
e Nurse Practitioner: a registered nurse who has

completed an advanced training program in primary
health care delivery, and may provide primary care
for non-emergency patients, usually in an outpatient
setting.

Figure 9 shows the RADE interface for user to create role
classes and define the interrelationships among role classes.
In this example, the interrelationships include inheritance,
association and incompatibility. An inheritance relationship
describes the generalization/specification relationship between

< Multi Agent System v 1.0

File Role Oraganization Role Space AgentSociety CodeGen Help

: Rale Organization | Role Space | Agent Society |

Role

Assoiciation

Aggregation

Murse

Role Class ==

LA

Associationd Physician

Inheritance L =

¥

= Incomp

s, 4

i LA T

T
Inconp3
| AssocigfionS

Medical_sssistant =)

Murse_#Assistant

fissoriafion?

o Patient

-
—~ ~ -Incompz oo

M4 _aAdmin

Ma_Clinical

Type of Relation

Association:dssociatio
nG Associafion]

Murse_Practitioner

Assoriationt

Fig. 9. RADE interface for creating roles

two role class. For example, both MA_Admin and MA_Clinical
inherit the Medical Assistant role class since they are specified
medical assistants. Association is a very common relationship
between role classes, it indicates an instance of one role
class may perform an action on an instance of another role
class. Association relationships exist between Physician and
Nurse, Physician and Patient, etc. Incompatibility relationship
describes the constraints that the role instances of the two
role classes cannot be taken by the same agent for the same
interaction scenario. For example, an agent cannot take a
Physician role instance for treating a Patient role instance
if the agent is taking this Patient role instance right now,
however the agent can take another Physician role instance
for treating another Patient role instance that is not taken by
this agent. The definition of such relationships depends on the
domain knowledge, so we feel the domain experts are the best
candidates to use this interface to define the role classes and
their interrelationships.

Each role is defined with a goal, a plan tree, a motivational
quantity production set (MQPS), a certificate and other at-
tributes. A goal is a task that this role needs to accomplish,
and the plan tree specifies the domain knowledge of how to
accomplish this goal in terms of decomposing it as sub-goals.

ROLE: Physician

GOAL: Provide Cure

MQPS: (Mmefessional,P:pl)v (MQmoralJ”pQ)v (MQexperienceJ’va)
CERTIFICATE: MD (Doctor of Medicine)

For example, Physician role is defined with a goal to
Provide Cure. The plan tree shown in Figure 6 provides
domain knowledge of how to accomplish this goal. Detail
explanation of the plan tree is in Section IV-B. Figure 10

shows the plan trees for those goals Get Cure, Assist Patient,
Provide Cure, and Provide Care, which belongs the role Pa-
tient, Administrative Medical Assistant, Physician, and Nurse
Assistant respectively.

The MQPS specifies the type and the number of units
of motivational quantities that can be collected by the agent
after it accomplishes the goal defined in the role. For the
agent who is taking the Physician role, it collects pl units
of MQprofessionai_p> P2 units of MQpore_p and p3 units of
MQ xperience_p- The MQPS specification in the role definition
and the agent’s motivation are used by the agent to determine
whether it is interested in a role instance, and how interested
it is.

The Certificate defined in the role describes the qualifi-
cation requirement for this role. This role can only be taken
by an agent who has this specified certificate. For example,
Physician role is defined with a certificate of MD (Medical
Doctor).

B. Define Agents

Agents are the real programming entities running in the sys-
tem. In this example, each agent represents a personal assistant
for a human user in the real world. The agent is responsible
for scheduling the user’s daily tasks according to the user’s
preference and constraints. The agent is also responsible for
coordinating with other agents when coordination is needed
between its own user and other users.

As Figure 8 shows, a user creates an assistant agent named
Adam. The user specifies his preference on choosing tasks by

‘-‘ Conditioned Taems Views A5 Gl |
Conditioned Conditioned

Conditioned Taems Views (==

Aszist-Patient

Assist-Patient

Answer-Telephone ‘

|Scheduleprpmmmem | ‘ Greet-Patient ‘ |Admit—Patiem

4]

[*]

Conditioned

Conditioned Taems Views

Examine-Fatient

Medical-History-Recard

qmin

Provide-Treatment

q_max =

Administer-Treatment

Clinical-Test

‘Testflmerprelauun |

‘ Prescribe-Treatment ‘

[enablesol

Setup-Equipment
enables03

< 1l

[¥]

Conditioned

Conditioned Taems Views

Serve-Patient

Walk—Patient | [Clean-Room | [Serve—Meal | Dress-Patient

Provide-Skin-Care

Ohserve-Patient
amay,

‘thswca\—cundmnn ‘ ‘Memal{nndmnn ‘ |EmutiunaI—Cundeﬂ

‘Check—Pulse ‘ |Check—EInnd—Pressure | |Checkaemperature | |Check—Respira{nw—Ra\e ‘

4]

[l i

|

Fig. 10. Plan tree definitions for multiple goals
TABLE I
AGENT’S MOTIVATION - REPRESENT USER’S OBJECTIVES

MQ Type Function Index | Initial Amount
M me essional _P 0 0
MQOmorar_p 1 1
M Qexperience,P 2 2

defining the motivation® of this agent as:

Motivation : {MQprofessional_p, 0, 0;
MQmomlJ’; 17 17 MQexperienceJa 27 2}

This specifies three long-term goals this user has: pro-
fessional achievement, moral achievement and experience
achievement, as a physician, which are represented by three
types of MQs shown in Table I . The function index specifies
a utility function that maps a certain number of units of MQ
of this type into the agent’s local utility. Since the function
can be a non-linear function and is also context sensitive, the
initial amount of this type MQ is also important. The user
also provides this agent with his qualification MD so that this
agent can be qualified for a Physician role.

C. Runtime Scenario

Next we present a runtime scenario to describe how the
system works including how the dynamic task allocation is
accomplished through the role-agent mapping mechanism.

This system is modeling a hospital organization. A special
role space agent is created. This agent is not taking any

’In this simple demo system we implemented, there is only one agent
instance created from each agent class, also there is no dynamic organization
in this demo either. So in the following description, we ignore MQgypjecr and
use only the MQpname to represent a specified MQ type.

active role in the system, rather, it is mainly responsible for
maintaining and managing the role instances in the system,
as we described in Section V-A. Due to the limited imple-
mentation effort and time available, we make the following
simplifications in this implementation, compared to the process
described in Section V-A:

o The role space checks the plan tree of a role instance
when this role instance is taken by an agent and recog-
nizes the needs to create new role instances, rather than
the agent sends a request to the role space to create new
role instances. This simplification is valid when the goals
and plan trees are simple and there is no need for the
agent to choose from different plans.

« The role space selects the appropriate agent for the role
instance after verifying the qualification and consistency
of the candidates, rather than sends a short list to the
creator of this role instance and let the agent who creates
this role instance to make selection according to the
criteria defined by its user. This simplification is valid
when there is only a few candidates.

When the system is initialized, the system administrator
creates several Patient role instances to express the expected
service requirements from patients. The number of Patient role
instances depends on the capability of this hospital. These
patient role instances are posted on the role space and are not
active until they are taken by agents. When a (real) patient
Bryan enters in this hospital for service, a personal assistant
agent named Bryan is created for this patient, and this agent
takes one Patient role instance.

When agent Bryan takes the Patient role instance, it has
one goal to achieve: Get Cure. The plan tree of this goal
describes that two subgoals Assist Patient and Provide Cure
must be achieved so that the goal Get Cure can succeed. The
goal Assist-Patient belongs to a MA_Admin (Administrative
Medical Assistant) role and the goal Provide Cure belongs to
a Physician role. Based on this information, a Physician role
instance and a MA_Admin role instance are created by the role
space.

Three other agents, Adam, Cathy and David that represent
three medical professionals have already been created and are
active in the system. They have been idle and sent requests
to the role space for available role instances. When the
MA_Admin and Physician role instances are created in the
role space, all three agents who are interested in taking any
additional role instances receive a message for this update.

After receiving this message, the agent looks at the goal
associated with this role instance, especially the MQPS and to
see if it matches its own motivation. If the MQPS contains the
same type of MQ the agent has in its motivation, the agent
is interested in taking this role instance. For example, this
Physician role instance has MQPS as: (MQpofessionai_r: P1),
(MQmomLPa PQ)’ (MQexperience,P, p3) ’ all these three types
MQs belong to agent Adam’s motivation. So Adam is inter-
ested in this role instance. How interested Adam is for this
role instances depends on the actual values of pl, p2 and p3,
the exact structures of the mapping functions with index 0, 1,
and 2, and the current accumulation of these MQs for agent
Adam.

If there are multiple available role instances interested to
agent Adam, it will compare the degree of interest it has
towards these role instances and select the most interested
ones, and send requests to the role space. It is also possible that
the role space would receive requests from multiple agents for
the same role instance. The role space verifies the qualification
of each agent by matching the agent’s qualification to the
certificate requirement defined in the role class that this role
instance belongs to. For example, agent Adam is qualified
for this role instance because it has a MD qualification that
matches the certificate requirement of the Physician role class.
The role space also checks if this role instance is compatible
with other role instances the agent is taking right now. For
instance, suppose agent Bryan has a MD qualification and
is also interested in this Physician role instance; however,
according to the incompatibility between the Physician role
and the Patient role, agent Bryan cannot take this role instance
because it takes the Patient role instance related to this
Physician role instance.

After verifying the qualification and checking the consis-
tency, the role space then selects an appropriate agent (Agent
Cathy) for the MA_Admin role instance, whose goal is to
Assist-Patient. The plan tree for the goal Assist Patient consists
of four subgoals: Greet Patient, Schedule Appointment, Admit
Patient, and Answer Telephone. All of these subgoals can
be performed by the same agent who takes the MA_Admin
role instance, so no new role instance needs to be created.
After assigning the MA_Admin role instance to an agent, the
role space then assigns the Physician role instance to another

appropriate agent (Agent Adam) based on its qualification.
The goal of the Physician role is to Provide Cure, the role
space reads the plan tree associated with the goal and finds
that to accomplish this goal, three subgoals Clinical Test,
Setup Equipment and Provide Care must be accomplished by
other roles. In response to this need, new role instances Nurse
Assistant and MA_Clinical are created. The role space then
selects appropriate agents to take these roles. This process
will continue until no more new role instance is needed and
all role instances have been taken.

After a goal defined in a role instance is accomplished, the
agent will collect the MQs as defined in the MQPS of this role
instance. The agent will release this role instance, and this role
space will delete this role instance. In the system runtime, new
role instance is created according to the need to accomplish a
certain goal. Agent is mapped to the role instance according
to the matching of the motivation, the qualification and the
compatibility. Since each role instance is associated with a
goal, the mapping process is also a task allocation process.
In this process, the agent is reasoning on its local utility
achievement, described as its motivation and MQ mapping
functions. The domain-related constrains such as qualification
and compatibility are defined in the role and monitored by
the role space. This implementation realizes the separation
of concerns principle.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented a prototype of automated agent
generation system in connection with a previously devel-
oped role-based agent modeling and designing system. This
integrated framework supports the role-based designing of
multi-agent system and the implementation of utility-driven
agents utilizing a variety of existing agent reasoning and
coordination mechanisms. We also presented a case study
of the development of a multi-agent system for health care
domain. We described how the roles are defined, how agents
are created, and how the role instances are mapped to agents.
We also described a runtime scenario that shows the dynamic
task allocation is accomplished through the creating, taking
and releasing of role instances.

The future work includes further development of the system
from the current prototype. Especially we are interested in
implementing the quantitative description in RTAMS and
incorporating the scheduling/planning and coordination mech-
anisms in agents. We are also interested in providing support
for users to define interaction protocols in role classes, and
then integrating those domain-dependent protocols with the
domain-independent communication mechanisms in agents.

IX. ACKNOWLEDGMENTS

We thank Mr. Michael McGuire for providing health care
domain knowledge. We also thank Prof. Lesser, Dr. Horling,
Dr. Wagner and Prof. Decker for a variety of software and
mechanisms developed in UMass Multi-Agent Systems lab,
including JAF, TEMS , MQ and GPGP.

[1]

[2]

[3]

[4]

[5]

[6]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

Ricardo Melo Bastos and Marcelo Blois Ribeiro. MASUP: An Agent-
Oriented Modeling Process for Information Systems. In Ricardo Choren,
Alessandro Garcia, Carlos Lucena, and Alexander Romanovsky, editors,
Software Engineering for Multi-Agent Systems III: Research Issues and
Practical Applications Series. 2005.

Michael Becht, T. Gurzki, Jurgen Klarmann, and Matthias Muscholl.
ROPE: Role oriented programming environment for multiagent systems.
In Conference on Cooperative Information Systems, pages 325-333,
1999.

Anarosa A. F. Brandao, Viviane Torres da Silva, and Carlos J. P.
de Lucena. A knowledge-based approach to the specification and
verification of MAS design. In AAMAS ’05: Proceedings of the fourth
international joint conference on Autonomous agents and multiagent
systems, pages 1373—1373, New York, NY, USA, 2005. ACM Press.
Giacomo Cabri, Luca Ferrari, and Letizia Leonardi. Agent role-based
collaboration and coordination: a survey about existing approaches. In
SMC (6), pages 5473-5478. 1IEEE, 2004.

Sen Cao, Richard A. Volz, Thomas R. Ioerger, and Yu Zhang. Role-
based and agent-oriental teamwork modeling. In Hamid R. Arabnia and
Youngsong Mun, editors, /C-Al, pages 1190—. CSREA Press, 2002.
Viviane Torres da Silva, Ricardo Choren Noya, and Carlos J. P. de Lu-
cena. Using the UML 2.0 activity diagram to model agent plans and
actions. In AAMAS ’05: Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems, pages 594—
600, New York, NY, USA, 2005. ACM Press.

Mehdi Dastani, Virginia Dignum, and Frank Dignum. Role-assignment
in open agent societies. In AAMAS ’03: Proceedings of the second
international joint conference on Autonomous agents and multiagent
systems, pages 489—496, New York, NY, USA, 2003. ACM Press.
Keith Decker. TAEMS: A Framework for Environment Centered
Analysis & Design of Coordination Mechanisms. In Foundations
of Distributed Artificial Intelligence, Chapter 16, pages 429-448. G.
O’Hare and N. Jennings (eds.), Wiley Inter-Science, January 1996.
Scott A. DeLoach, Mark F. Wood, and Clint H. Sparkman. Multiagent
systems engineering. International Journal of Software Engineering and
Knowledge Engineering, 11(3), 2001.

Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. An overview of
business process adaptations via protocols. In AAMAS ’06: Proceedings
of the fifth international joint conference on Autonomous agents and
multiagent systems, pages 1326—1328, New York, NY, USA, 2006. ACM
Press.

Mark D’Inverno and Michael Luck. Understanding Agent Systems.
SpringerVerlag, 2004.

R. Duke, G. Rose, and G. Smith. Object-Z: A specification language
advocated for the description of standards. Computer Standards &
Interfaces, 17(5-6):511-533, 1995.

Rubn Fuentes, Jorge J. Gmez-Sanz, and Juan Pavn. Integrating agent-
oriented methodologies with UML-AT. In AAMAS ’'06: Proceedings
of the fifth international joint conference on Autonomous agents and
multiagent systems, pages 1303—-1310, New York, NY, USA, 2006. ACM
Press.

Vincent Hilaire, Abder Koukam, Pablo Gruer, and Jean-Pierre Muller.
Formal specification and prototyping of multi-agent systems. In ESAW
’00: Proceedings of the First International Workshop on Engineering
Societies in the Agent World, pages 114-127, London, UK, 2000.
Springer-Verlag.

Thomas Juan, Adrian R. Pearce, and Leon Sterling. ROADMAP:
extending the Gaia methodology for complex open systems. In AAMAS,
pages 3—10. ACM, 2002.

Sachin Kamboj and Keith S. Decker. Organizational self-design in
semi-dynamic environments. In AAMAS ’06: Proceedings of the fifth
international joint conference on Autonomous agents and multiagent
systems, pages 335-337, New York, NY, USA, 2006. ACM Press.
Elizabeth A. Kendall. Role modeling for agent system analysis, design,
and implementation. In ASA/MA, pages 204-218. IEEE Computer
Society, 1999.

V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling,
D. Neiman, R. Podorozhny, M. NagendraPrasad, A. Raja, R. Vincent,
P. Xuan, and X.Q. Zhang. Evolution of t he GPGP/TAEMS Domain-
Independent Coordination Framework. Autonomous Agents and Multi-
Agent Systems, 9(1):87-143, July 2004.

Michael Luck and Mark d’Inverno. A formal framework for agency
and autonomy. In Victor Lesser and Les Gasser, editors, Proceedings of
the First International Conference on Multi-Agent Systems (ICMAS-95),
pages 254-260, San Francisco, CA, USA, 1995. AAAI Press.

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Michael R. McGuire. Steps Toward a Universal Patient Medical Record
- A Project Plan to Develop One. Universal Publishers, 2004.

David Morley and Karen Myers. The SPARK Agent Framework. In
AAMAS °04: Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 714721, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

Viviane Torres Da Silva and Carlos J. P. De Lucena. From a conceptual
framework for agents and objects to a multi-agent system modeling
language. Autonomous Agents and Multi-Agent Systems, 9(1-2):145—
189, 2004.

Insu Song and Guido Governatori. Designing agent chips. In AA-
MAS ’06: Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, pages 1311-1313, New
York, NY, USA, 2006. ACM Press.

Javier Vazquez-Salceda, Virginia Dignum, and Frank Dignum. Organiz-
ing multiagent systems. Autonomous Agents and Multi-Agent Systems,
11(3):307-360, 2005.

R. Vieira, . FE. Moreira, R. H. Bordini, and J. Hbner. BDI agent
programming in agentspeak using Jason. In Proceedings of the Sixth
International Workshop on Computational Logic in Multi-Agent Systems
(CLIMA VI), pages 143-164, 2005.

Regis Vincent, Bryan Horling, and Victor Lesser. An Agent Infras-
tructure to Build and Evaluate Multi-Agent Systems: The Java Agent
Framework and Multi-Agent System Simulator. Lecture Notes in
Artificial Intelligence: Infrastructure for Agents, Multi-Agent Systems,
and Scalable Multi-Agent Systems., 1887, January 2001.

Thomas Wagner and Victor Lesser. Evolving real-time local agent
control for large-scale mas. In J.J. Meyer and M. Tambe, editors,
Intelligent Agents VIII (Proceedings of ATAL-0I), Lecture Notes in
Artificial Intelligence. Springer-Verlag, Berlin, 2002.

Thomas A. Wagner, Alan J. Garvey, and Victor R. Lesser. Criteria
Directed Task Scheduling. Journal for Approximate Reasoning (Special
Scheduling Issue); a version is also available as UMass Computer
Science Technical Report 1997-59, 19:91-118, January 1998.

Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The Gaia
Methodology for Agent-Oriented Analysis and Design. Autonomous
Agents and Multi-Agent Systems, 3(3):285-312, 2000.

Haiping Xu and Xiaoqgin Zhang. A methodology for role-based modeling
of open multi-agent software systems. In Chin-Sheng Chen, Joaquim
Filipe, Isabel Seruca, and José Cordeiro, editors, ICEIS (3), pages 246—
253, 2005.

Haiping Xu, Xiaoqin Zhang, and Rinkesh J. Patel. Developing role-
based open multi-agent software systems. 7o appear in International
Journal of Computational Intelligence Theory and Practice (IJCITP),
June 2007.

