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Abstract—With the proliferation of service-oriented systems 
and cloud computing, web services security has gained 
much attention in recent years. Web service attacks, called 
XML-based attacks, typically occur at the SOAP message 
level, thus they are not readily handled by existing security 
mechanisms such as a conventional firewall. In order to 
provide effective security mechanisms for service-oriented 
systems, XML firewalls have recently been introduced as 
one of the major means for web services security. In this 
paper, we present a framework for state-based XML 
firewall, called S-Wall, which supports dynamic role-based 
access control (D-RBAC) and detection of XML-based 
attacks in real-time. We provide a detailed design of the S-
Wall security model by defining state-based information, 
user information, access control policies, and detection and 
verification (D&V) rules. The D&V rules are modularized 
into separate units, which support real-time detection and 
verification of various types of attacks using state-based 
information. To illustrate the effectiveness of our approach, 
we develop a prototype S-Wall, and utilize a case study to 
demonstrate how S-Wall can be used to efficiently detect 
and defend against XML-based attacks.  
 
Index Terms—State-based XML firewall (S-Wall), web 
services security, service-oriented architecture, dynamic 
role-based access control (D-RBAC), XML-based attack, 
detection and verification (D&V) 
 

I.  INTRODUCTION 

Service-oriented architecture (SOA), as a promising 
system development paradigm, is defined as an inherently 
interoperable architecture, which enables interoperability 
across different enterprise and business solutions [1]. 
SOA allows the construction of systems using reusable 
components with well-defined service interfaces, where 
components can be published as discoverable services 
over the Internet based on their capabilities. Recently, 
cloud computing has been proposed as a broad movement 
to enable interactions among service providers and 
service consumers using the Internet [2, 3]. Cloud 
computing paradigm supports not only storage service 
and platform as a service (PaaS); it also supports software 
as a service (SaaS) [4]. In this sense, cloud computing 

follows the philosophy of service-oriented computing, 
and defines a more comprehensive framework for 
service-oriented systems. While the industry and 
government are quickly moving towards SOA and cloud 
computing paradigm, trust and security issues in service-
oriented systems become one of the primary concerns [5].  

The key to protect a service-oriented system from 
XML-based attacks is to understand its threat profile, and 
to study how threats may affect the performance of the 
service-oriented system. Many organizations such as IBM 
and Cisco, attempted to identify major threats to web 
services in order to protect service-oriented systems more 
effectively [6, 7]. Threats to web services are typically 
XML-based attacks that can perform on web services 
through SOAP (Simple Object Access Protocol) 
messages, which rely on eXtensible Markup Language 
(XML) as its message format and application layer 
protocols such as HTTP for message negotiation and 
transmission. Typical XML-based attacks include XPath 
injection attack, XML-based denial of service (XDoS) 
attack, overloaded payload attack, recursive payload 
attack, parameter tampering attack, XML injection attack, 
SQL injection attack, and schema poisoning attack [8-
11]. For example, an XPath injection attack takes 
advantage of the weakness of an XPath parser of a 
service provider to allow malicious XPath queries on 
URLs, forms, or other methods in order to gain access to 
privileged information or unauthorized information; an 
XDoS attack is a type of request flooding attacks, where 
an attacker directs malicious traffic to a web service to 
exhaust the resources at the server side; and an 
overloaded payload attack can exhaust the XML parser 
by sending huge XML data embedded in SOAP messages 
as web service requests. An XML-based attack can also 
be in a form of a distributed multi-phased attack, e.g., an 
XML-based Mitnick attack is adapted from the Mitinick 
attack, which can be used in conjunction with the XML 
injection attack against web services [12]. Most of the 
XML-based attacks are not well understood, and their 
performance has not yet been carefully studied. In order 
to effectively protect service-oriented systems from 
XML-based attacks, it is vital to thoroughly investigate 
the characteristics and behaviors of such attacks and 
justify their undesired effects on service-oriented 
systems. Once we are able to successfully simulate major 
threats to service-oriented systems, the simulated XML-
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based attacks can be used to evaluate the effectiveness of 
security mechanisms for service-oriented systems. Thus, 
effective simulations of major XML-based attacks such 
as XPath attack, XDoS attack, and overloaded payload 
attack, are necessary efforts for justifying the usefulness 
of our proposed security mechanism. 

Since XML-based attacks can be initiated as 
request/response traffic using HTTP protocol that is 
typically not blocked by a conventional firewall, 
conventional firewalls are not sufficient for protecting 
service-oriented systems from XML-based attacks. The 
most commonly used conventional firewalls are package 
filtering firewalls, stateful inspection firewalls, and 
application level firewalls [13]. A packet filtering firewall 
only restricts IP addresses or TCP ports recorded in an IP 
table; however, the port 80 reserved for HTTP and SOAP 
traffic is typically not blocked on a server where web 
services are deployed. Thus, a web service invocation can 
easily pass a packet filtering firewall. On the other hand, 
a stateful inspection firewall can keep track of TCP/IP 
connection states and take actions accordingly, but it does 
not look into packet contents. Similarly, an application 
level firewall only blocks those suspicious network 
traffics with protocols that might be used by an attacker. 
For example, an application gateway for an FTP server 
can be configured only to accept FTP traffic and reject all 
packets using other protocols. Therefore, both stateful 
inspection firewalls and application level firewalls are not 
capable of detecting XML-based attacks (e.g., an 
overloaded payload attack), which are embedded in 
XML-based messages [14, 15]. 

Many security standards have been developed for 
protecting web services, but they are still vulnerable to a 
variety of attacks such as an XDoS attack. Lack of 
effective security mechanisms for web services is one of 
the major reasons why some organizations hesitate to 
adopt service-oriented technologies despite their many 
advantages. In this paper, we introduce an approach to 
defending against XML-based attacks at the application 
level using a state-based XML firewall, called S-Wall. 
Our approach supports dynamic role-based access control 
(D-RBAC) for users and detection of XML-based attacks 
in real-time. The design of the S-Wall security model 
introduced in this paper is based on a formal XML 
firewall model presented in previous work [16], where 
access permissions to web services are only granted to 
those users who are authenticated and authorized. This 
work also extends our previous efforts on prototyping 
state-based XML firewall [15] by providing dynamic 
RBAC mechanism and a reasoning engine for real-time 
detection of XML-based attacks. Furthermore, we utilize 
a comprehensive case study to demonstrate how to 
simulate, detect and defend against two major XML-
based attacks, namely, XPath injection attack and a 
hybrid XDoS and overloaded payload attack. Our 
experimental results show that the S-Wall security model 
provides an effective way to protect service-oriented 
systems from XML-based attacks.  

The rest of this paper is organized as follows. In 
Section II, we describe related work and highlight the 

relationships to our research. In Section III, we first 
provide a motivating example of complex XML-based 
attacks, and then we present a framework for S-Wall 
security model. In Section IV, we give a detailed design 
of S-Wall by defining state-based information, user 
information, access control policies, and detection and 
verification (D&V) rules. The D&V rules are defined and 
modularized into separate units, which support real-time 
detection and verification of various types of attacks 
using state-based information. In Section V, we utilize a 
case study to show how major XML-based attacks can be 
simulated, and how our approach can be used to 
effectively defend against them. In Section VI, we 
provide a brief conclusion and mention future work. 

II.  RELATED WORK 

Web services security has been an active research area 
in recent years [11, 17]. However, there is still very little 
previous work on protecting web service providers from 
being attacked. Fernandez et al. proposed a pattern-based 
language for XML firewall [18, 13]. Two patterns for 
design of XML firewall were proposed, which are 
security assertion coordination pattern using role-based 
access control for access to distributed resources, and 
filter pattern for filtering XML messages or documents 
according to institution policies. Hoktamp discussed the 
need for XML firewall and possible techniques to protect 
web services [19]. He analyzed the security issues at 
three levels of enterprise application integration, namely 
intranet, extranet and Internet. Cremonini et al. attempted 
to integrate XML firewall with existing web services 
security specifications [20]. They analyzed serious 
security risks in stateful SOAP protocols such as WS-
Reliable Messaging, and presented some design 
guidelines to develop semantics-aware firewalls that can 
be integrated with the web service architecture (WSA). 
Bebawy et al. discussed how to apply business specific 
rules in a centralized manner to develop a web service 
firewall, called Netdgy [21]. In their implementation, 
SOAP messages are removed from the transport layer and 
examined for attack detection, and then induced back into 
the OSI stack if the XML message is not corrupt. The 
Netdgy system only supports prevention of limited types 
of web services attacks such as buffer overflow and 
SOAP-based DoS attacks. Furthermore, it does not 
provide any access control mechanisms for users; instead, 
it supports IP table based authorization, which is in the 
same manner as a conventional packet filtering firewall 
where messages originating from a certain IP address are 
either dropped or accepted according to a list of blocked 
IP addresses. Different from the Netdgy system, our 
approach is to develop a modularized state-based XML 
firewall that is customizable for defending against various 
XML-based attacks. Thus, our approach provides a more 
comprehensive solution to web services security. 

In addition, there are currently a few products available 
on the market for XML-based protection of web services. 
The Forum XWALL [22] and IBM DatapowerXS40 
XML Gateway [6] are the typical examples that provide 
interfaces for users to define policies. In these products, 
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policies can be defined through a GUI or using XSLT 
(EXtensible Stylesheet Language Transformations) as in 
XWALL or DatapowerXS40, respectively, and can be 
used for content inspection against malicious SOAP 
messages. Although these products provide some level of 
security to web services, their functionalities are still very 
limited. For example, the above approaches are not state-
based, so they cannot effectively protect web services 
from state-based attacks (e.g., an overloaded payload 
attack on a web server with a heavy load). Furthermore, 
they typically do not support role-based user 
authorization, and thus, unauthorized user may access 
web services with insufficient permissions. In contrast, 
our approach provides a more general solution to 
implementing state-based XML firewalls, which supports 
both role-based user access control and real-time 
detection of XML-based attacks.  

On the other hand, an intrusion detection system (IDS) 
is complementary to the firewall approach by monitoring 
and detecting intrusions to systems and networks in real-
time [23-26]. Although there are previous efforts to build 
IDS using SOA [27-29], to the best of our knowledge no 
attempts on using IDS to secure service-oriented systems 
from XML-based attacks have been reported. This is not 
only because SOA is a relatively new architecture that is 
becoming more and more popular in recent years, but 
also because XML-based attacks typically occur at the 
SOAP message level, they are not readily to be detected 
by monitoring audit data or network traffic using existing 
IDS approaches. In contrast, our proposed S-Wall 
security model aims at protecting service providers from 
XML-based attacks – it not only behaves as an 
application layer firewall, but also utilizes existing IDS 
analysis approaches such as the misuse detection method 
for detection of XML-based attacks in real-time. 

 In our previous work, we introduced a Petri net based 
formal model of XML firewall and verified its 
correctness using an existing Petri net tool [16]. The 
formal model supports user authentication and role-based 
user authorization according to policy rules that can be 
updated dynamically. In this paper, we use the formal 
model as a high-level design, and present a framework 

for S-Wall. We develop the detailed design of the S-Wall 
security model and use a case study of a financial 
management service-oriented system to demonstrate the 
effectiveness of our S-Wall approach. 

III.  DEFENDING AGAINST XML-BASED ATTACKS 

A.  A Motivating Example 
 Consider a scenario where a financial company has 

established a set of stock market services (SMS) to allow 
users to query the stock prices and trade stocks during the 
trading day. The users require real-time up-to-date 
information to make educated decisions on their financial 
investments. Certain traders would also need this 
information quickly and frequently, so that they can 
respond to emerging changes in a stock. As shown in Fig. 
1, a user can access the stock information service (SIS) 
and stock trading service (STS) through a real-time stock 
information and trading application (RT-SIT). A stock 
advisor may provide stock trading advising service to a 
user through the same RT-SIT application. In addition to 
the stock prices, SMS can provide recommendations on 
stock market trading, which require dynamic invocation 
of the stock recommendation service (SRS). The SRS is 
designed as an internal service because it can only be 
accessed by a certified stock analyst or a system 
administrator. Since different certified stock analysts 
provide their own SRSs that are typically deployed on 
different machines, the endpoint address of a currently 
adopted SRS must be configured by an administrator in 
an XML settings file. In addition, the XML settings file 
also contains authentication information of users and 
stock advisors. Thus, at runtime, the SIS needs to make 
an XPath query to authenticate a user or a stock advisor, 
read the location of the adopted SRS from the XML 
settings file, and invoke that SRS dynamically. Fig. 1 also 
shows the dependency of the provided SMS services. For 
example, SIS requires invocation of SRS in order to 
provide stock users stock information including 
recommendations on stock options, and STS requires 
invocation of SIS because stock trading is based on real-
time stock information available through SIS. In addition, 
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Figure 1.  XML-based attacks on stock market services   
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both SIS and STS require invocation of remote services 
provided by various stock companies who have contracts 
with the financial company. 

Now suppose there is an attacker who attempts to 
compromise the SMS. The attacker first tries to attack 
SIS or STS using an overloaded payload attack or XDoS 
attack; however, since these services were designed for 
concurrent access with a large volume of data by many 
users, they are typically very robust. Upon failure on such 
attempts, the attacker turns his attention to the internal 
service SRS. As expected, internal services are not 
published to the public and can be accessed only by 
authorized personnel, thus the information for invocation 
of SRS is unknown to the attacker. In order to capture 
such information, the attacker pretends to be a normal 
user and utilizes an XPath injection attack to the public 
service SIS. The XPath attack brings the attacker 
pertinent information regarding the internal service SRS 
such as its endpoint address, credentials to access the 
service, and connection timeout and limits that should be 
imposed on the response. Based on the captured 
information, the attacker performs a hybrid of 
XDoS/overloaded payload attack to compromise SRS by 
combining elements of an XDoS attack with elements of 
an overloaded payload attack. The attacker utilizes a 
multi-threaded application to generate many requests that 
contain very large headers in a very short time. These 
attacks compromise both the memory and CPU of the 
computer where the currently adopted SRS is deployed. 
This would result in very slow response or even failure of 
the SRS, which makes the performance of SIS and STS 
that depend on SRS significantly affected. 

 Since the above attack consists of two major steps, 
namely XPath injection attack and a hybrid of 
XDoS/overloaded payload attack, we call such attack a 
two-phased XML-based attack. In order to provide 
protections to the SMS from such an attack, we introduce 
a framework for state-based XML firewall (S-Wall) in 
the following section. Although an S-Wall looks similar 

to an application firewall, it provides much more 
comprehensive functionalities for detecting and 
defending against XML-based attacks in real-time. 

B.  A Framework for State-Based XML Firewall 
The general architecture of the S-Wall model is 

illustrated in Fig. 2. As shown in the figure, an S-Wall 
sits between service consumers and a service provider, 
and can be installed either on the same or a different 
machine where the actual web services are deployed. An 
S-Wall interacts with service consumers through its client 
interface (CI) module, which is responsible for receiving 
requests from and sending responses back to the service 
consumers. The CI module is configured such that it can 
only accept requests from a service consumer through a 
service proxy defined in the CI module. For example, 
when web service WS1 is deployed, a corresponding 
service proxy WS1P is automatically generated in the CI 
module. The CI module is transparent to a service 
consumer since it provides exactly the same interface of 
the deployed web services; a service consumer, however, 
can access an actual web service only after it successfully 
passes through the S-Wall. 

As shown in Fig. 2, there are two major databases 
supporting S-Wall, namely User_Info database and 
State_Info database, which store user information and 
state-based information, respectively. In the S-Wall 
security model, authentication and authorization are the 
major features for providing user access control, which 
ensure that only valid users are allowed to access certain 
web services. For example, the Login service defined in 
the CI module provides a basic mechanism for user 
authentication, and the dynamic role-based access control 
(D-RBAC) module is responsible for authorizing a user 
with predefined user roles and access permissions. The 
D-RBAC module is also responsible for determining 
whether a consumer has appropriate permissions to 
access a web service at runtime. If a malicious user is 
detected for a lack of access permissions, any attempts to 
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access web services by that user will be denied, and the 
user will be forced to log out of the system. Conventional 
RBAC mechanism has been proposed as one of the most 
attractive solutions to providing security features in 
different distributed computing infrastructure [30]. In an 
RBAC model, users are assigned roles with permissions, 
which are access modes that can be exercised on a 
particular object in the system. RBAC mechanism 
ensures that only authorized users are given access to 
certain data or resources. Most of the conventional RBAC 
models follow the same basic structure of subject, role 
and privilege. However, in a more sophisticated RBAC 
model, access decisions for an application depend on the 
combination of a user’s credential, the context, the 
system state, and other factors such as relationship, time 
and location [31]. The concept of dynamic RBAC 
mechanism was first introduced in our previous work 
[32]. It is adopted in our S-Wall security model because 
S-Wall requires that the access control process should 
depend not only on a user’s identity, but also on the 
user’s current state. In other words, in our S-Wall model, 
we define certain policy rules that specify a user’s access 
right to web services with certain permissions 
(restrictions) based on the user’s current state and system 
state. Thus, our S-Wall approach is stateful. 

In order to provide valid execution duration for a user 
to invoke a web service, we formally define the concept 
of user session as follows. 

Definition 3.1 User Session. A user session is defined 
as a 6-tuple (UID, SID, RO, AP, ST, ET), where UID is a 
user ID, SID is a session ID, RO is a set of roles assigned 
to the user, AP is a set of access permissions that must be 
updated at runtime, ST is the session start time, and ET is 
the session expiration time. A user session is created 
when a user logs in, and destroyed when the user logs out 
or when the S-Wall rejects any of the user’s requests. 

Once a user has logged in and been authenticated, his 
user information is transferred to the D-RBAC module 
for authorization. The D-RBAC module then interacts 
with the Policy Rules module, which is a repository of 
access control policies defined in Prolog, for role 
assignment and determination of access permissions. The 
process for authorization is supported by information 
about a user, such as a user’s trust level, stored in the 
User_Info database, as well as state information, such as 
how often the same request has been made, stored in the 
State_Info database. After the role and access permission 
assignment is done, a user session is created for that user, 
which has a start time and an expiration time, and is 
recorded in the User_Info database. During the period of 
time when the session is valid, a user can make requests 
to web services without being authenticated again. For 
every incoming web service request from a user, the 
Session Verifier checks whether the associated user 
session is valid and the user has sufficient permissions to 
invoke the web service based on state information. If the 
user has enough permission to access the web service, his 
request in a form of XML message, along with the 
session information is passed to the Reasoning Module 
for threat detection and content analysis. Otherwise, the 

user’s request is sent to the Action Module, where a reject 
message is generated and sent to the corresponding 
service proxy. In this case, the user session is destroyed 
by the S-Wall, and this information is recorded into the 
User_Info database. 

When the reasoning module starts to detect malicious 
requests, it first examines the session information passed 
to it as well as the related data from the State_Info 
databases to determine whether the user request is 
suspicious of any kind of XML-based attacks. The 
detection process is supported by the D&V Rules module, 
which consists of detection and verification rules defined 
in Prolog by system administrators. The detection rules 
are used to detect suspicious requests only; while the 
verification rules are modularized into different rule sets 
for verification of different types of XML-based attacks, 
e.g., an XDoS attack. Thus, the modularized rule sets can 
be invoked individually, and support efficient reasoning 
in real-time. For example, when the reasoning module 
detects a suspicious user with high frequency of requests 
(determined by a predefined threshold as shown in 
Section IV-C), the user’s request will be verified using 
XDoS verification rules for possible XDoS attack. 
Similarly, if the reasoning module detects that a user 
request exceeds the normal packet size, the XML 
message will be verified for overloaded payload attack. 
On the other hand, if a user request is not a suspect of any 
kind of attacks, the request will be immediately passed to 
the corresponding deployed web service for service 
invocation. Note that verification of XML-based attacks 
(e.g., an XDoS attack) requires investigation of a user’s 
previous behaviors. If the user has a very low trust level 
or has been suspected as an XDoS attacker for a number 
of times, not only the request from that user will be 
dropped, but also the user’s trust level may be degraded 
further. Different from the XDoS detection, detection of 
injection attacks (e.g., an XPath injection attack) only 
requires evaluating the parameters passed to a web 
service operation by matching them with predefined 
string patterns to identify any malformed parameters or 
parameter tampering. If any malicious activity is detected 
and confirmed, the service request is sent to the action 
module, where a reject message is generated and sent to 
the corresponding service proxy. In this case, the user 
session is destroyed, and such information is recorded 
into the User_Info database. On the other hand, if the 
request is accepted, it is passed to the deployed web 
service for service invocation, and the result is forwarded 
back to the service consumer through CI. 

IV.  DESIGN OF STATE-BASED XML FIREWALL 

A.  Definitions of User and State Information 
In the detection and verification process, the critical 

information used by the S-Wall for decision making is the 
data stored in the State_Info and User_Info databases. 
The state-based information and user information are 
used by the S-Wall to detect and verify different types of 
XML-based attacks. As an example, we now consider 
XDoS attack and overloaded payload attack, and give 
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some key related definitions of the data types used in the 
State_Info database as follows. 

Definition 4.1 User State. A user state is a 5-tuple 
(UID, SID, TR, FR, TL), where UID is the ID assigned to 
the user at the time of registration, SID is the session ID 
that is initiated, TR is the total number of requests made 
by the user in the current session, RF is the request 
frequency, i.e., the number of requests made by the user 
in a recent predefined time interval (e.g., one minute), 
and TL is the user’s current trust level, which can be high, 
normal, low or permanentlyBlocked. 

Definition 4.2 Firewall State. A firewall state is a 4-
tuple (RE, DE, RT, SEC), where RE is the number of 
requests that are received by the S-Wall but not yet 
forwarded to the web server, DE is the number of 
requests that are being processed by the reasoning 
module, RT is the number of requests in a recent 
predefined time interval, and SEC is a current security 
level of the firewall, which can be green, yellow or red.  

Definition 4.3 Service State. A service state is a 7-
tuple (SID, NR, AT, RT, NP, SR, SI), where SID is the 
service ID, NR is the number of requests currently being 
processed by the web service, AT is a list of attacks that 
have been performed on the service, RT is the average 
response time during the recent predefined time interval, 
NP is the number of overloaded payload attacks detected 
during the recent predefined time internal, SR is the 
average size of SOAP requests during the recent 
predefined time interval, and SI is a state indication of the 
web service, which can be busy, normal or free.  

We also give some key definitions of the data types 
used in the User_Info database for detection and 
verification of XDoS attack and overloaded payload 
attack as follows. 

Definition 4.4 User Credential. A user credential is a 
4-tuple (UN, PW, UID, TL), where UN is the user name, 
PW is the password specified by the user at registration 
time, UID is the user ID, and TL is the current trust level 
assigned to the user. A user receives a “normal” trust 
level at the time of registration, and his trust level can be 
updated later at runtime based on the user’s most recent 
behaviors or activities. 

Definition 4.5 Active User. An active user is a triple 
(UID, RO, TO), where UID is the ID of the user who has 
logged into the S-Wall, RO is the set of roles assigned to 
the user, and TO is the number of tokens assigned to the 
user when the user logs in. Note that the tokens assigned 
to a user are used to control the maximal number of 
requests that the user can make in each valid session. 

Based on the above state-based information and user 
information, the reasoning module can detect and verify 
XDoS attack and overloaded payload attack in real-time. 
The corresponding tables are created in the State_Info 
and User_Info databases, which are used to store not only 
the current state and user information, but also the 
previous states and recent user information that are useful 
for attack detection and verification. 

B.  Role-Based Access Control Policies 
A role is an abstraction that represents a set of 

permissions that are needed to perform the tasks 

associated with a position. Role-based authorization 
policies specify the roles that each user may adopt, and 
the permissions associated with each role [30, 33]. From 
earlier research, it has been argued that it is desirable to 
separate policy from the application code, so policies can 
be easily changed over time [34]. Furthermore, a policy 
language must be expressive so that the intended rules 
can be written naturally, easy to understand and 
effectively computable. There has been some previous 
research in defining policy languages [34-36]. Most of 
the policy languages such as Delegation Logic [35], 
Binder [36], and Cassandra [34] are based on DataLog, 
where a DataLog statement can be easily translated into 
declarative English sentences. This helps users to 
formulate security policies that capture their intentions 
accurately. However, an obstacle to deployment of trust 
management systems with Datalog-based policy 
languages is that there is a lack of tool support for such 
languages. In this paper, we choose Prolog as a 
specification language for both access control policies 
and D&V rules for the following reasons. Prolog is a 
declarative language, and can be used to specify both 
facts and production rules or policies. With a solid 
mathematical foundation, Prolog allows to reason from a 
set of rules and supports meta-level reasoning, making 
policy conflict detection possible. Consider the following 
access control policies based on the motivating example 
presented in Section III-A. In the stock information & 
trading system, any user (registered or unregistered user), 
analyst, stock advisor, and administrator can access real-
time stock information, but only an analyst or an 
administrator can update stock recommendation 
information. Both a registered user and an administrator 
can access trading transaction history, but only a 
registered user is allowed to initiate a transaction for 
stock trading. The system also provides stock training 
sections, where a registered user is assigned to a stock 
advisor who is responsible for giving training lessons on 
the operations of the system and providing financial 
advices to the user. The above access control policies can 
be specified in Prolog as follows. 

 
isValidRole(unregisterUser).  
isValidRole(registeredUser). 
isValidRole(stockAdvisor).  
isValidRole(stockAnalyst). 
isValidRole(administrator). 
assignRole(U,R) :- isValidRole(R). 
canInvoke(R,T,stockInfoService,getQuote):-   
  contains(R,[stockAnalyst,administrator, 
              stockAdvsior,registerUser, 
              unRegisteredUser]),    

contains(T,[normal,high]). 
canInvoke(R,T,stockInfoService,updateStockRec
omInfo):-   

contains(R,[analyst,administrator]), 
contains(T,[normal,high]). 

canInvoke(R,T,stockTradingService,readTransHi
strory):- 

contains(R,[registeredUser,administrator]),   
contains(T,[normal,high]). 

canInvoke(R,T,stockTradingService,initiateTra
nsaction):- 

contains(R,[registeredUser]), 
contains(T,[normal,high]). 
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canInvoke(R,T,stockTradingService,stockTraini
ng,U,A):-     

contains(R,[stockAdvisor]),      
contains(T,[normal,high]), 
assignAdvisee(U,A), 
assignRole(U,registeredUser), 
assignRole(A,R). 
 

In the above Prolog code, R represents a user’s role, 
and T represents the trust level of a user. Any user must 
take a certain role and maintain at least a normal or high 
trust level before he can access some resource. The 
predicate isValidRole lists various roles defined in the 
system. The predicate assignRole(U,R) is true when a 
user with UID U is assigned a valid role R. Similarly, 
assignAdvisee(U,A) is true when a registered user with 
UID U is assigned to a stock advisor with UID A. The 
predicate canInvoke determines whether a user with a 
certain role has the permission to invoke an operation 
defined in a web service. For example, the predicate 
canInvoke(R,T,stockInfoService,accessStockInf
o) specifies that a user with role R and trust level T can 
invoke the web service operation accessStockInfo defined 
in web service stockInfoService. Similarly, the predicate 
canInvoke(R,T,stockTradingService,stockTraini
ng,U,A) ensures that a stock advisor with UID A and a 
trust level normal or high can train a registered user U 
only if the user U has been assigned to stock advisor A.  

Note that our D-RBAC approach is dynamic, which 
means the access control permissions assigned to a user 
can be changed at runtime based on user states. For 
example, according to the aforementioned access control 
policies, when a registered user’s trust level is normal or 
high, the user is allowed to initiate a transaction on STS. 
However, when the registered user’s trust level is 
downgraded from normal to low, the user’s access to 
STS for initializing transactions will be denied. 

C.  Real-Time Detection of XML-Based Attacks 
The reasoning module is responsible for real-time 

detection and verification of XML-based attacks by 
checking the SOAP message as well as the parameters 
passed to a web service operation. The reasoning engine 
algorithm adopted by the reasoning module for decision 
making is presented in Algorithm 1. As shown in the 
algorithm, when a SOAP message with a valid user 
session is sent to the reasoning module, the reasoning 
engine first verifies if the parameters involves any 
injection attack (e.g., an XPath injection attack or an SQL 
injection attack) by checking against predefined string 
patterns that define possible threats to parameters. If an 
injection attack is detected, the SOAP message is 
rejected, and the information related to the attack is 
recorded into the User_Info and State_Info database. 
Note that the detection of an injection attack does not 
require any user information or state information from the 
two major databases. On the other hand, if the reasoning 
module concludes that the parameters are not 
compromised, it starts to detect other types of XML-
based attacks by investigating the SOAP message 
content. The process of detecting other types of XML-
based attacks involves two major steps, which are 

detection of suspicious SOAP messages and verification 
of attacks. Suspicious SOAP messages can be detected 
using the session and state information by the reasoning 
module. For example, in order to detect XDoS attack and 
overloaded payload attacks, the reasoning module 
attempts to find possible flooding requests, and keep 
track of the maximal allowed message size and the 
maximal allowed nesting depth in the incoming XML 
messages. If a certain type of attack is detected, the 
reasoning module will attempt to verify the attack using 
additional evidence from the User_Info and State_Info 
database. Once an attack is confirmed, the SOAP 
message is rejected, and sent to the action module, where 
a rejection message is generated and sent back to the 
service consumer through the service proxy. In addition, 
the User_Info and State_Info database are updated 
accordingly with the information related to the attack. 
Otherwise, the SOAP message is sent to the deployed 
web service for service invocation, and after the service 
invocation, the results are sent back to the service 
consumer through the service proxy. 

Algorithm 1: Reasoning Engine 
Input: SOAP message with parameters for service invocation 
Output: accept / reject 
1. Verify parameters for injection attacks using string patterns 
2. if pattern matched  
3.     then update User_Info and State_Info database 
4.         output reject to the action module 
5. else detect suspicious SOAP message using detection rules 
6.     if SOAP message is suspicious of any attack 
7.         then switch (attack_type) 
8.             case XDoS_attack: 
9.                 verify XDoS attack using XDoS verification rules 
10.           case Overloaded_payload_attack:  
11.               verify Overloaded_payload_attack using Payload 
12.               verification rules 
13.           case ...  // other types of XML-based attacks 
14.        if any attack confirmed 
15.        then update User_Info & State_Info database 
16.                 output reject to the action module 
17.        else output accept and invoke a deployed web service 
18.    else output accept and invoke a deployed web service 
 

We now use the XDoS attack as an example to show 
how to detect XML-based attacks using S-Wall. To detect 
XDoS attacks, the reasoning module looks into the 
session information to check if the current frequency of 
requests (e.g., the number of request during the last 
minute) made by a certain user exceeds the threshold 
predetermined by an administrator. If the frequency 
exceeds the limit, any new requests from that user must 
be checked further using XDoS verification rules. Some 
sample rules used by the reasoning module for XDoS 
detection are illustrated as follows. 
checkThreshold(W,S,X):-  
  threshold(W,SI,Y), X > Y. 

threshold(accessService,busy,20). 
threshold(accessService,normal,40). 
threshold(accessService,free,60). 

In the above rules, W is the service name, S represents 
the session ID, and X is the number of requests per minute 
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made by a user who is currently under investigation. The 
predicate checkThreshold evaluates to be true when the 
number of requests made by the user during the last 
minute exceeds the limit determined by the service state 
indication SI. In this example, the state indication of a 
web service is set as busy, normal, or free if the number 
of requests processed by the web service during the last 
minute is larger than 40, between 20 and 40, or less than 
20, respectively. According to the above rules, when the 
web service is busy, normal or free, the corresponding 
limit on number of requests per minute is 20, 40 or 60, 
respectively. Note that the information about the web 
service state and the number of requests the user made 
during the last minute are stored in the State_Info 
database. To simplify matters, in our current S-Wall 
implementation, the threshold does not depend on the 
firewall state that is specified in Definition 4.2. 

If a query to the predicate checkThreshold returns 
true, the corresponding request will be further verified 
using XDoS verification rules where the user’s violation 
history is analyzed. The following Prolog rules 
demonstrate how to verify whether a user is an attacker 
and when to degrade a user’s trust level. 

 

xdosVerify(U,T):- inspectHistory(U,T,V). 
inspectHistory(U,T,V):-   
  T = high, dataConnect(U,3,V), V='3', 

degradeTrustLevel(U,normal). 
inspectHistory(U,T,V):-  

T = normal, dataConnect(U,5,V), V='3', 
degradeTrustLevel(U,low). 

inspectHistory(U,T,V):-  
T = low, dataConnect(U,7,V), V='3', 
degradeTrustLevel(U,permanentlyBlocked) 

dataConnect(U,X,V):- 
java_object('DataConnect',[],data), 
data <- getHistorySessionStatus(U,X) 
returns V. 

degradeTrustLevel(U,T):- 
java_object('DataConnect',[],data), 
data <- recordTrustLevel(U,X). 
 

The Prolog code inspects a user’s violation history of 
exceeding the threshold for frequency of service 
invocations. If the user’s trust level is high, the XDoS 
verification rules only check the user’s previous 3 
sessions. If the user has 3 violations, his trust level is 
degraded to normal. On the other hand, if the user’s trust 
level is normal or low, then the user’s previous 5 or 7 
sessions need to be checked. Similarly, when the user 
reaches the limit of 3 violations, the user’s trust level is 
degraded to low or permanentlyBlocked, respectively. In 
all the above cases, if a query to the predicate 
xdosVerify evaluates to be true, the user’s current 
session is immediately closed. In this case, the user must 
log in again before he can make further requests. Note 
that the Prolog code listed above requires invoking Java 
method getHistorySessionStatus to acquire 
information from the State_Info database, and invoking 
Java method recordTrustLevel to record a user’s trust 
level as historical information in the User_Info database. 

In order to demonstrate how to detect injection attacks 
using S-Wall, we utilize some simple examples of SQL 
injection attacks [15]. SQL injection is a technique used 

to exploit the vulnerabilities in web applications that 
communicate with databases [37]. The basic idea behind 
SQL injection is to convince the application to run some 
malicious SQL code that may result in unauthorized data 
access or data loss. SQL injection attack mostly occurs 
due to a lack of user input validation. Although SQL 
injection is a general technique to attack web-based 
applications, in the context of service-oriented systems, it 
can tamper web service parameters which are embedded 
in XML messages. Consider a web service that retrieves 
user information using the following query. 

 
query = "SELECT * FROM user_records WHERE 
userid = '" + uid + "'"; 
 

If User1 is the user ID, the WHERE part of the query 
executed at the database will be “userid = 'User1'”. 
Now a malicious user can obtain access to other users’ 
records by tampering the parameter “User1” into 
“User1' or 'x'='x”, so the resulting Boolean 
expression “userid = 'User1' or 'x'='x'” will 
evaluate to be true. When the query is executed, all 
records from the table user_records are returned. To 
prevent this type of attacks, the reasoning module may try 
to match the parameters of a web service invocation with 
predefined regular expressions [15]. For example, the 
following regular expression can be used to detect the 
aforementioned SQL injection attack. 
 
([a-z0-9A-Z])*(\s*)(\')(\s*)(o|O)(r|R) 
(\s*)(\') (\s*)([a-z0-9A-Z])* 

 

The above regular expression specifies the string 
pattern “' or '”, where ([a-z0-9A-Z])* represents 
zero or more occurrence of alphanumeric characters; 
(\s*) represents zero or more occurrence of space 
characters; and (\') is the single quote. 

Another example of SQL injection attack is called 
concatenated query attack, where the user manipulates a 
parameter to form a concatenated query. When a normal 
query “SELECT * FROM users WHERE userid = 
'user1'” is manipulated to “SELECT * FROM users 
WHERE userid = 'user1'; DELETE FROM users;-- 
j'”, the execution of the query results in data loss. 

In our current implementation of the S-Wall, the 
reasoning module searches for string patterns such as “' 
or '”, and concatenation of “';” and “';--” in the input 
strings. If any input string matches one of the predefined 
patterns, the user will be detected as an attacker for SQL 
injection, and the user’s current session will be closed 
immediately. 

V.  CASE STUDY 

In this section, we utilize a case study to demonstrate 
how S-Wall can be used to effectively defend against 
XML-based attacks. We developed a prototype S-Wall, 
and installed it on the same machine where a financial 
management service-oriented system was deployed. The 
financial management service-oriented system is the 
same one as we described earlier in Section III-A, which 
can be compromised by an attacker using a two-phased 
XML-based attack illustrated in the motivating example. 
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In the following, we first try to simulate the two involved 
XML-based attacks, namely XPath injection attack and a 
hybrid XDoS/overloaded payload attack. Then we 
demonstrate that, with S-Wall installed, the service-
oriented system can effectively defend against these two 
major types of XML-based attacks 

A.  Simulation of XML-Based Attacks 
As mentioned before, an XML settings file contains 

user authentication information and endpoint address of 
internal service SRS (refer to Fig. 1), which can be 
retrieved using XPath queries. To obtain the quote of a 
stock, a user can invoke the service operation getQuote 
defined in SIS, which requires three parameters, namely 
the ID of the user requesting the stock quote, the user 
password, and the ticker symbol on which the user wishes 
to receive a quote. A legitimate user request may look 
like getQuote("afritz", "service1234", "GE"), 
where afritz is a user name, service1234 is a 
password, and GE is a ticker symbol. To authenticate user 
afritz, the user request is first transformed into the 
following XPath query for validation. 
String Query = 
  "//Service/users/user[loginID/text()= 
  'afritz' and password/text() =  
  'service1234']/usertype/text()" 

After the user is authenticated, service operation 
getQuote invokes a remote service operation 
getCurrentQuote provided by GE Company, and returns 
the latest quote to the user. 

Now suppose an attacker performs a two-phased 
XML-based attack on SMS. During the first phase of the 
attack, the attacker forms a crafted user request 
getQuote("afritz","']| /* | /abc[def='","GE"), 
which results in the following XPath query for user 
authentication. 
String Query = 
  "//Service/users/user[loginID/text()= 
  'afritz' and password/text()= 
  ''] | /* | /abc[def='']/usertype/text()" 

In this query, the “| /*” notation instructs the XPath 
engine to return the entire XML file; thus, instead of 
authenticating the user, the attacker receives the entire 
contents of the XML file. The additional substring “| 
/abc[def='']/usertype/text()” in the query is 
simply used to ensure correct parsing when the request is 
transformed into an XPath query. Having the entire XML 
settings file, the attacker knows pertinent information 
about other services accessed by SIS, such as the 
endpoint address of SRS, credentials needed for 
accessing, timeout information, and other information 
stored in the XML file. 

Once the endpoint address of the SRS service becomes 
available, the attacker can start to attack SRS. During the 
second phase of the attack, the attacker creates a hybrid 
XDoS/overloaded payload attack, and attempts to take 
down the SRS service. When the SRS service is down, all 
other services that rely on SRS, such as SIS and STS, will 
be dramatically affected, which may cause significant 
damage to the company and its clients. The reason why 

we chose to simulate a hybrid XDoS/overloaded payload 
attack instead of a pure overloaded payload attack is that, 
based on our experiments and experience, a pure 
overloaded payload attack that exhausts the XML parser 
does not appear to be an effective attack. By increasing 
the number of threads that perform overloaded payload 
attacks, the attack presents itself as a hybrid 
XDoS/overloaded payload attack, which can effectively 
exhaust the XML parser as well as the resources of the 
service being attacked. Note that the hybrid 
XDoS/overloaded payload attack differs from a pure 
XDoS attack because it does not require a large number 
of requests in order to exhaust the resources at the server 
side; thus, it will not be easily detected as an XDoS 
attack. For our case study, we developed an attacker 
client that can generate multiple threads to send out 
requests at a certain frequency. Each request is embedded 
with a large and complex header, which makes itself an 
overloaded payload attack. Since the SRS service 
requires user authentication that is processed prior to the 
service invocation, we utilize a handler authenticator to 
recursively explore the header for the credentials and 
continuously process the request if the credentials are 
correct. During the attack, we gathered statistics from 
normal clients attempting to use the service as designed, 
i.e., utilizing the SIS service to obtain stock information. 
The normal response time for a client is 100 milliseconds 
when SRS is not under attacks. Fig. 3 shows the results of 
the response time from four normal clients attempting to 
access the service simultaneously while the attacker client 
was running. Each normal client sends out a request, 
awaits a response, sleeps for a random amount of time, 
and then wakes up and makes a request again. As shown 
in the figure, the values of all observed response time are 
recorded over a period of 25 minutes, where the curve 
represents the average response time during this period. 
From the figure, we can see that after around 4 minutes, 
the average response time goes up to 10 seconds due to 
the hybrid XDoS/overloaded payload attack. After the 
service has been constantly attacked for around 25 
minutes, the average response time exceeds 50 seconds, 
and the service eventually went down and became unable 
to service any further requests. 
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Figure 3. Observed response time without S-Wall 
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Fig. 4 categorizes the response time into 32 classes 
with an interval of 0.5 seconds, and records the number 
of requests in each category during the testing period. 
The curve in Fig. 4 represents the cumulative percentage 
of requests for a given response time category. From the 
figure, we can see that during the experiment, around 
80% of the requests take over 3 seconds to get a response 
(i.e., around 20% of the requests take less than 3 seconds 
to get a response), and around 32% of the requests take 
over 15 seconds to get a response. Since the service under 
normal conditions takes less than one second to respond, 
the impact on the service is significant due to the hybrid 
XDoS/overload payload attack. 
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Figure 4. Number of requests vs. response time without S-Wall 

B.   Defending Against XML-Based Attacks Using S-Wall 
When the S-Wall is installed, the service-oriented 

system can be protected from both the XPath attack and 
the hybrid XDoS/overloaded payload attack. Similar to 
the example of SQL injection attack detection described 
in Section IV-C, the reasoning module uses predefined 
regular expressions to check against XPath queries. 
Queries that match regular expressions of known XPath 
injection patterns are blocked and are not allowed to 
execute. Fig. 5 shows the log file for detection of an 
XPath injection attack against SIS.  

 

 
Figure 5. Log info for detecting XPath injection attacks 

In this example, user “afritz” attempts to send a 
crafted user request getQuote("afritz","'] |/*| 

/abc[def='","GE") to SIS in order to obtain the 
location of the internal service. The S-Wall compares the 
XPath query with regular expressions defined in the 
String Patterns module (as shown in Fig. 2), and 
identifies the query as an XPath injection attack. Once the 
attack is recognized, the request is sent to the action 
module, where the users’ session is terminated and the 
information related to the attack is recorded into the 
User_Info database. Note that since the location 
information of the internal service cannot be captured, the 
attacker will not be able to perform a hybrid 
XDoS/overloaded payload attack; thus, the two-phased 
attack can be effectively prevented. 

In our next experiment, we assume that the attacker 
used some other technique (e.g., password cracking) to 
get the authentication information of a stock analyst. In 
this case, the attacker may still be able to perform a 
XDoS/overloaded payload attack on internal service SRS. 
In order to detect such a complex attack using S-Wall, we 
define D&V rules that can detect the nesting level and 
size of the elements in the message header. In configuring 
the S-Wall, the reasoning engine dynamically determines 
an acceptable nesting level based on the current user state 
and the firewall state. The following Prolog code 
demonstrates some sample detection rules that can be 
used to determine an appropriate nesting acceptable based 
on the state information. 

nestingLimitBreach :- 
  nestingLimit(S,SI,SEC,X),   
  recordAttack(S,payload). 
nestinglimit(S,SI,SEC,X) :-  
  S=recomService, SI=free, SEC=green, X>100. 
nestinglimit(S,SI,SEC,X) :-  
  S=recomService, SI=free, SEC=yellow, X>80.  
nestinglimit(S,SI,SEC,X) :-  
  S=recomService, SI=free, SEC=red, X>50. 
nestinglimit(S,SI,SEC,X) :-  
  S=recomService, SI=normal, SEC=green, X>80. 
nestinglimit(S,SI,SEC,X) :-  
  S=recomService, SI=normal,SEC=yellow, X>50. 
nestinglimit(S,SI,SEC,X) :-  
  S=recomService, SI=normal, SEC=red, X>20. 
nestinglimit(S,SI,SEC,X) :-  
  S=recomService, SI=busy, SEC=green, X>50. 
nestinglimit(S,SI,SEC,X) :-  
  S=recomService, SI=busy, SEC=yellow, X>20. 
nestinglimit(S,SI,SEC,X) :-  
   S=recomService, SI=busy, SEC=red, X>10. 
recordAttack(S,A):-  
  java_object('DataConnect',[],data),  
  data <- recordAttackInstance(S,A). 

In the above rules, W is the web service name, SI 
represents the state indication of the service, SEC 
represents the current firewall security level, and X is the 
number of nesting elements tolerated by the service. The 
predicate nestingLimit examines the current web 
service state indication, the firewall security level 
information, and the tolerance of nesting allowed for a 
particular header. A larger tolerance value implies less 
chance of blocking a legitimate request, but makes the 
web service more susceptible to attack. According to the 
above rules, there is a sliding scale of nesting allowed, 
with the maximum nesting of 100. The discrete scale 
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continues at 80, 50, 20, and 10. A deterioration in either 
the service state indication or the firewall security level 
causes a reduction in nesting tolerance. The nesting 
tolerance parameters can be easily set by an administrator 
to represent the expectations of a given service. The 
predicate RecordAttack is a java connector that can be 
invoked to record the attack instance when detected. This 
information is utilized in the verification rules to 
determine if the request was incidental or if there is a 
potential attack. Note that similar detection rules can be 
defined for the size of the nodes as well to detect 
overloaded payload attacks.  

Once an attack is detected, the reasoning module needs 
to verify whether it is an effective attack using predefined 
verification rules, and based on the verification results, it 
may take actions accordingly. The verification process 
typically requires additional evidence stored as user 
information and state information. Notice that since a 
pure overloaded payload attack does not appear to be an 
effective attack, in our S-Wall implementation, we take 
actions only when a hybrid XDoS/overloaded payload 
attack has been verified. The following Prolog code gives 
some related sample verification rules. 

 
hybridXdosPayloadVerify(U,T,S,SEC):-  
  inspectHistory(U,T,S,SEC,A). 
inspectHistory(U,T,S,SEC,A):-  

SEC = green, dataConnect(S,50,A),  
A > '20', T = normal, 
degradeSECLevel(SEC,yellow), 
degradeTrustLevel(U,low). 

inspectHistory(U,T,S,SEC,A):-  
SEC = green, dataConnect(S,50,A),  
A > '20', T = low, 
degradeTrustLevel(U,permanentlyblocked). 

inspectHistory(U,T,S,SEC,A):-  
SEC = yellow, dataConnect(S,100,A),  
A > '50' T = normal, 
degradeSECLevel(SEC,red). 

dataConnect(S,X,A):- 
java_object('DataConnect',[],data), 
data <- getHistoryFirewallAttacks(S,X)  
returns A. 

degradeSECLevel(U,T):- 
java_object('DataConnect',[],data), 
data <- recordSECLevel(SEC,X). 

degradeTrustLevel(U,T) :- 
java_object('DataConnect',[],data), 
data <- recordTrustLevel(T,X). 
 

In the above rules, U represents a user, T is the trust 
level of the user, S is a service, SEC is the current security 
level of the firewall, and A is the number of overloaded 
payload attacks detected during a predefined recent time 
interval. The predicate dataConnect(S,X,A) performs a 
lookup of the last X number of attacks performed against 
the service and checks whether a majority of them are 
overloaded payload attacks. The S-Wall also considers 
the current users’ trust level prior to making a decision. 
For example, the first inspectHistory predicate 
verifies if the current SEC level is green, it then examines 
the last 50 requests as well as the users’ trust level. If 20 
of the requests were overloaded payload attacks and a 
normal user is performing the attack, both the users’ trust 
level and the firewall’s SEC level are degraded. Similarly, 

the second inspectHistory predicate verifies whether 
the user has a low rating stored in the User_State 
database. If so, the S-Wall blocks the user from further 
attempts without degrading the firewall security level. 
Note that when the security level increases, the firewall 
must perform more inspection of incoming requests and 
have stricter constraints. In order to avoid possible 
restriction of legitimate invocations at a heightened level 
of security, the firewall should be cautious in elevating its 
security level. To access the User_Info and State_Info 
database, it requires invoking three Java methods: 
getHistoryFirewallAttacks for acquiring historical 
firewall state information from the State_Info database; 
recordSECLevel for recording change of firewall status 
in the State_Info database; and recordTrustLevel for 
recording change of user status in the User_Info database. 

After deploying the S-Wall, we were able to show 
significant improvements in responsiveness from the 
server. Running the hybrid XDoS/overloaded payload 
attack under the same conditions, we again collected the 
response time information of four normal clients, which 
simultaneously make requests to SRS. Fig. 6 shows the 
individual observed response times recorded over a 
period of 43 minutes, where the curve represents the 
average response time during this period.  
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Figure 6. Observed response time with S-Wall 
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Figure 7. Number of requests vs. response time with S-Wall 

The experimental results show that the average 
response time does not exceed 2 seconds during the 43 
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minutes testing period, and in most of the time, the 
average response is below 1 second. In Fig. 7, we 
categorize the response time into 32 classes with an 
interval of 0.5 second, and record the number of requests 
in each category. The curve represents the cumulative 
percentage of requests for a given response time category. 
From the figure, we can see that during the experiment, 
over 93% of the requests take 1 second or less, and over 
97% of the requests take 2 seconds or less. Such results 
indicate the service is functioning properly with 
reasonable response times. Thus, with S-Wall installed, 
the SIS service was able to maintain a stable response 
time even when the SRS service was being attacked.  

VI.  CONCLUSIONS AND FUTURE WORK 

Service-oriented systems and cloud computing are 
becoming more and more popular due to their 
standardized protocols and techniques that enable the 
efficient integration of loosely coupled applications over 
the Internet. However, due to the open interface for 
service-oriented architecture and cloud computing, 
attacks on web services are more complicated than 
traditional web-based attacks that can be handled by 
conventional firewalls. Thus, there is a pressing need to 
introduce new security mechanisms to protect service-
oriented systems. In this paper, we introduced a security 
model called state-based XML firewall (S-Wall), which 
can be used to protect a service provider from various 
XML-based attacks. We developed a detailed design of 
the S-Wall security model, and implemented a prototype 
S-Wall to demonstrate the effectiveness of our approach. 
The experimental results show that S-Wall can efficiently 
and effectively detect and defend against various XML-
based attacks. For future work, we will study new types 
of XML-based attacks and show how their corresponding 
D&V rules can be modularly constructed and integrated 
into our current system. We will also consider adopting 
agent-based technology to introduce more intelligence in 
S-Wall for detection and verification of more complicated 
XML-based attacks. 
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