
Defending Against XML-Based Attacks Using
State-Based XML Firewall

Haiping Xu, Abhinay Reddyreddy, and Daniel F. Fitch

Computer and Information Science Department
University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA

Email: {hxu, g_areddyreddy, daniel.fitch}@umassd.edu

Abstract—With the proliferation of service-oriented systems
and cloud computing, web services security has gained
much attention in recent years. Web service attacks, called
XML-based attacks, typically occur at the SOAP message
level, thus they are not readily handled by existing security
mechanisms such as a conventional firewall. In order to
provide effective security mechanisms for service-oriented
systems, XML firewalls have recently been introduced as
one of the major means for web services security. In this
paper, we present a framework for state-based XML
firewall, called S-Wall, which supports dynamic role-based
access control (D-RBAC) and detection of XML-based
attacks in real-time. We provide a detailed design of the S-
Wall security model by defining state-based information,
user information, access control policies, and detection and
verification (D&V) rules. The D&V rules are modularized
into separate units, which support real-time detection and
verification of various types of attacks using state-based
information. To illustrate the effectiveness of our approach,
we develop a prototype S-Wall, and utilize a case study to
demonstrate how S-Wall can be used to efficiently detect
and defend against XML-based attacks.

Index Terms—State-based XML firewall (S-Wall), web
services security, service-oriented architecture, dynamic
role-based access control (D-RBAC), XML-based attack,
detection and verification (D&V)

I. INTRODUCTION

Service-oriented architecture (SOA), as a promising
system development paradigm, is defined as an inherently
interoperable architecture, which enables interoperability
across different enterprise and business solutions [1].
SOA allows the construction of systems using reusable
components with well-defined service interfaces, where
components can be published as discoverable services
over the Internet based on their capabilities. Recently,
cloud computing has been proposed as a broad movement
to enable interactions among service providers and
service consumers using the Internet [2, 3]. Cloud
computing paradigm supports not only storage service
and platform as a service (PaaS); it also supports software
as a service (SaaS) [4]. In this sense, cloud computing

follows the philosophy of service-oriented computing,
and defines a more comprehensive framework for
service-oriented systems. While the industry and
government are quickly moving towards SOA and cloud
computing paradigm, trust and security issues in service-
oriented systems become one of the primary concerns [5].

The key to protect a service-oriented system from
XML-based attacks is to understand its threat profile, and
to study how threats may affect the performance of the
service-oriented system. Many organizations such as IBM
and Cisco, attempted to identify major threats to web
services in order to protect service-oriented systems more
effectively [6, 7]. Threats to web services are typically
XML-based attacks that can perform on web services
through SOAP (Simple Object Access Protocol)
messages, which rely on eXtensible Markup Language
(XML) as its message format and application layer
protocols such as HTTP for message negotiation and
transmission. Typical XML-based attacks include XPath
injection attack, XML-based denial of service (XDoS)
attack, overloaded payload attack, recursive payload
attack, parameter tampering attack, XML injection attack,
SQL injection attack, and schema poisoning attack [8-
11]. For example, an XPath injection attack takes
advantage of the weakness of an XPath parser of a
service provider to allow malicious XPath queries on
URLs, forms, or other methods in order to gain access to
privileged information or unauthorized information; an
XDoS attack is a type of request flooding attacks, where
an attacker directs malicious traffic to a web service to
exhaust the resources at the server side; and an
overloaded payload attack can exhaust the XML parser
by sending huge XML data embedded in SOAP messages
as web service requests. An XML-based attack can also
be in a form of a distributed multi-phased attack, e.g., an
XML-based Mitnick attack is adapted from the Mitinick
attack, which can be used in conjunction with the XML
injection attack against web services [12]. Most of the
XML-based attacks are not well understood, and their
performance has not yet been carefully studied. In order
to effectively protect service-oriented systems from
XML-based attacks, it is vital to thoroughly investigate
the characteristics and behaviors of such attacks and
justify their undesired effects on service-oriented
systems. Once we are able to successfully simulate major
threats to service-oriented systems, the simulated XML-

Manuscript received January 11, 2011; revised February 14, 2011;
accepted February 14, 2011.

Corresponding author: Haiping Xu, Email: hxu@umassd.edu

JOURNAL OF COMPUTERS, VOL. 6, NO. 11, NOVEMBER 2011 2395

© 2011 ACADEMY PUBLISHER

based attacks can be used to evaluate the effectiveness of
security mechanisms for service-oriented systems. Thus,
effective simulations of major XML-based attacks such
as XPath attack, XDoS attack, and overloaded payload
attack, are necessary efforts for justifying the usefulness
of our proposed security mechanism.

Since XML-based attacks can be initiated as
request/response traffic using HTTP protocol that is
typically not blocked by a conventional firewall,
conventional firewalls are not sufficient for protecting
service-oriented systems from XML-based attacks. The
most commonly used conventional firewalls are package
filtering firewalls, stateful inspection firewalls, and
application level firewalls [13]. A packet filtering firewall
only restricts IP addresses or TCP ports recorded in an IP
table; however, the port 80 reserved for HTTP and SOAP
traffic is typically not blocked on a server where web
services are deployed. Thus, a web service invocation can
easily pass a packet filtering firewall. On the other hand,
a stateful inspection firewall can keep track of TCP/IP
connection states and take actions accordingly, but it does
not look into packet contents. Similarly, an application
level firewall only blocks those suspicious network
traffics with protocols that might be used by an attacker.
For example, an application gateway for an FTP server
can be configured only to accept FTP traffic and reject all
packets using other protocols. Therefore, both stateful
inspection firewalls and application level firewalls are not
capable of detecting XML-based attacks (e.g., an
overloaded payload attack), which are embedded in
XML-based messages [14, 15].

Many security standards have been developed for
protecting web services, but they are still vulnerable to a
variety of attacks such as an XDoS attack. Lack of
effective security mechanisms for web services is one of
the major reasons why some organizations hesitate to
adopt service-oriented technologies despite their many
advantages. In this paper, we introduce an approach to
defending against XML-based attacks at the application
level using a state-based XML firewall, called S-Wall.
Our approach supports dynamic role-based access control
(D-RBAC) for users and detection of XML-based attacks
in real-time. The design of the S-Wall security model
introduced in this paper is based on a formal XML
firewall model presented in previous work [16], where
access permissions to web services are only granted to
those users who are authenticated and authorized. This
work also extends our previous efforts on prototyping
state-based XML firewall [15] by providing dynamic
RBAC mechanism and a reasoning engine for real-time
detection of XML-based attacks. Furthermore, we utilize
a comprehensive case study to demonstrate how to
simulate, detect and defend against two major XML-
based attacks, namely, XPath injection attack and a
hybrid XDoS and overloaded payload attack. Our
experimental results show that the S-Wall security model
provides an effective way to protect service-oriented
systems from XML-based attacks.

The rest of this paper is organized as follows. In
Section II, we describe related work and highlight the

relationships to our research. In Section III, we first
provide a motivating example of complex XML-based
attacks, and then we present a framework for S-Wall
security model. In Section IV, we give a detailed design
of S-Wall by defining state-based information, user
information, access control policies, and detection and
verification (D&V) rules. The D&V rules are defined and
modularized into separate units, which support real-time
detection and verification of various types of attacks
using state-based information. In Section V, we utilize a
case study to show how major XML-based attacks can be
simulated, and how our approach can be used to
effectively defend against them. In Section VI, we
provide a brief conclusion and mention future work.

II. RELATED WORK

Web services security has been an active research area
in recent years [11, 17]. However, there is still very little
previous work on protecting web service providers from
being attacked. Fernandez et al. proposed a pattern-based
language for XML firewall [18, 13]. Two patterns for
design of XML firewall were proposed, which are
security assertion coordination pattern using role-based
access control for access to distributed resources, and
filter pattern for filtering XML messages or documents
according to institution policies. Hoktamp discussed the
need for XML firewall and possible techniques to protect
web services [19]. He analyzed the security issues at
three levels of enterprise application integration, namely
intranet, extranet and Internet. Cremonini et al. attempted
to integrate XML firewall with existing web services
security specifications [20]. They analyzed serious
security risks in stateful SOAP protocols such as WS-
Reliable Messaging, and presented some design
guidelines to develop semantics-aware firewalls that can
be integrated with the web service architecture (WSA).
Bebawy et al. discussed how to apply business specific
rules in a centralized manner to develop a web service
firewall, called Netdgy [21]. In their implementation,
SOAP messages are removed from the transport layer and
examined for attack detection, and then induced back into
the OSI stack if the XML message is not corrupt. The
Netdgy system only supports prevention of limited types
of web services attacks such as buffer overflow and
SOAP-based DoS attacks. Furthermore, it does not
provide any access control mechanisms for users; instead,
it supports IP table based authorization, which is in the
same manner as a conventional packet filtering firewall
where messages originating from a certain IP address are
either dropped or accepted according to a list of blocked
IP addresses. Different from the Netdgy system, our
approach is to develop a modularized state-based XML
firewall that is customizable for defending against various
XML-based attacks. Thus, our approach provides a more
comprehensive solution to web services security.

In addition, there are currently a few products available
on the market for XML-based protection of web services.
The Forum XWALL [22] and IBM DatapowerXS40
XML Gateway [6] are the typical examples that provide
interfaces for users to define policies. In these products,

2396 JOURNAL OF COMPUTERS, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

policies can be defined through a GUI or using XSLT
(EXtensible Stylesheet Language Transformations) as in
XWALL or DatapowerXS40, respectively, and can be
used for content inspection against malicious SOAP
messages. Although these products provide some level of
security to web services, their functionalities are still very
limited. For example, the above approaches are not state-
based, so they cannot effectively protect web services
from state-based attacks (e.g., an overloaded payload
attack on a web server with a heavy load). Furthermore,
they typically do not support role-based user
authorization, and thus, unauthorized user may access
web services with insufficient permissions. In contrast,
our approach provides a more general solution to
implementing state-based XML firewalls, which supports
both role-based user access control and real-time
detection of XML-based attacks.

On the other hand, an intrusion detection system (IDS)
is complementary to the firewall approach by monitoring
and detecting intrusions to systems and networks in real-
time [23-26]. Although there are previous efforts to build
IDS using SOA [27-29], to the best of our knowledge no
attempts on using IDS to secure service-oriented systems
from XML-based attacks have been reported. This is not
only because SOA is a relatively new architecture that is
becoming more and more popular in recent years, but
also because XML-based attacks typically occur at the
SOAP message level, they are not readily to be detected
by monitoring audit data or network traffic using existing
IDS approaches. In contrast, our proposed S-Wall
security model aims at protecting service providers from
XML-based attacks – it not only behaves as an
application layer firewall, but also utilizes existing IDS
analysis approaches such as the misuse detection method
for detection of XML-based attacks in real-time.

 In our previous work, we introduced a Petri net based
formal model of XML firewall and verified its
correctness using an existing Petri net tool [16]. The
formal model supports user authentication and role-based
user authorization according to policy rules that can be
updated dynamically. In this paper, we use the formal
model as a high-level design, and present a framework

for S-Wall. We develop the detailed design of the S-Wall
security model and use a case study of a financial
management service-oriented system to demonstrate the
effectiveness of our S-Wall approach.

III. DEFENDING AGAINST XML-BASED ATTACKS

A. A Motivating Example
 Consider a scenario where a financial company has

established a set of stock market services (SMS) to allow
users to query the stock prices and trade stocks during the
trading day. The users require real-time up-to-date
information to make educated decisions on their financial
investments. Certain traders would also need this
information quickly and frequently, so that they can
respond to emerging changes in a stock. As shown in Fig.
1, a user can access the stock information service (SIS)
and stock trading service (STS) through a real-time stock
information and trading application (RT-SIT). A stock
advisor may provide stock trading advising service to a
user through the same RT-SIT application. In addition to
the stock prices, SMS can provide recommendations on
stock market trading, which require dynamic invocation
of the stock recommendation service (SRS). The SRS is
designed as an internal service because it can only be
accessed by a certified stock analyst or a system
administrator. Since different certified stock analysts
provide their own SRSs that are typically deployed on
different machines, the endpoint address of a currently
adopted SRS must be configured by an administrator in
an XML settings file. In addition, the XML settings file
also contains authentication information of users and
stock advisors. Thus, at runtime, the SIS needs to make
an XPath query to authenticate a user or a stock advisor,
read the location of the adopted SRS from the XML
settings file, and invoke that SRS dynamically. Fig. 1 also
shows the dependency of the provided SMS services. For
example, SIS requires invocation of SRS in order to
provide stock users stock information including
recommendations on stock options, and STS requires
invocation of SIS because stock trading is based on real-
time stock information available through SIS. In addition,

Real-T ime Stock Info &
T rading (RT -SIT) App

Stock Info Service
(SIS) [Public]

Stock Analysis
Interface

Stock Info
File

XML Settings
File

Stock Recommendation Service
(SRS) [Internal]

Stock Market Services(SMS)

Attacker User / Stock_AdvisorAnalyst / Administrator

XPath Attack

Payload Attack

Stock Trading Service
(STS) [Public]

Real-T ime Stock Info &
T rading (RT -SIT) App

User / Stock_Advisor

.....

Invoke services
from stock companies

XPath Query

invoke invoke

Service Provider
Service Consum

er

Figure 1. XML-based attacks on stock market services

JOURNAL OF COMPUTERS, VOL. 6, NO. 11, NOVEMBER 2011 2397

© 2011 ACADEMY PUBLISHER

both SIS and STS require invocation of remote services
provided by various stock companies who have contracts
with the financial company.

Now suppose there is an attacker who attempts to
compromise the SMS. The attacker first tries to attack
SIS or STS using an overloaded payload attack or XDoS
attack; however, since these services were designed for
concurrent access with a large volume of data by many
users, they are typically very robust. Upon failure on such
attempts, the attacker turns his attention to the internal
service SRS. As expected, internal services are not
published to the public and can be accessed only by
authorized personnel, thus the information for invocation
of SRS is unknown to the attacker. In order to capture
such information, the attacker pretends to be a normal
user and utilizes an XPath injection attack to the public
service SIS. The XPath attack brings the attacker
pertinent information regarding the internal service SRS
such as its endpoint address, credentials to access the
service, and connection timeout and limits that should be
imposed on the response. Based on the captured
information, the attacker performs a hybrid of
XDoS/overloaded payload attack to compromise SRS by
combining elements of an XDoS attack with elements of
an overloaded payload attack. The attacker utilizes a
multi-threaded application to generate many requests that
contain very large headers in a very short time. These
attacks compromise both the memory and CPU of the
computer where the currently adopted SRS is deployed.
This would result in very slow response or even failure of
the SRS, which makes the performance of SIS and STS
that depend on SRS significantly affected.

 Since the above attack consists of two major steps,
namely XPath injection attack and a hybrid of
XDoS/overloaded payload attack, we call such attack a
two-phased XML-based attack. In order to provide
protections to the SMS from such an attack, we introduce
a framework for state-based XML firewall (S-Wall) in
the following section. Although an S-Wall looks similar

to an application firewall, it provides much more
comprehensive functionalities for detecting and
defending against XML-based attacks in real-time.

B. A Framework for State-Based XML Firewall
The general architecture of the S-Wall model is

illustrated in Fig. 2. As shown in the figure, an S-Wall
sits between service consumers and a service provider,
and can be installed either on the same or a different
machine where the actual web services are deployed. An
S-Wall interacts with service consumers through its client
interface (CI) module, which is responsible for receiving
requests from and sending responses back to the service
consumers. The CI module is configured such that it can
only accept requests from a service consumer through a
service proxy defined in the CI module. For example,
when web service WS1 is deployed, a corresponding
service proxy WS1P is automatically generated in the CI
module. The CI module is transparent to a service
consumer since it provides exactly the same interface of
the deployed web services; a service consumer, however,
can access an actual web service only after it successfully
passes through the S-Wall.

As shown in Fig. 2, there are two major databases
supporting S-Wall, namely User_Info database and
State_Info database, which store user information and
state-based information, respectively. In the S-Wall
security model, authentication and authorization are the
major features for providing user access control, which
ensure that only valid users are allowed to access certain
web services. For example, the Login service defined in
the CI module provides a basic mechanism for user
authentication, and the dynamic role-based access control
(D-RBAC) module is responsible for authorizing a user
with predefined user roles and access permissions. The
D-RBAC module is also responsible for determining
whether a consumer has appropriate permissions to
access a web service at runtime. If a malicious user is
detected for a lack of access permissions, any attempts to

Reasoning
Module

Dynamic
Role-Based

Access Control
(D-RBAC)

WS Request

State-Based XML
Firewall (S-Wall)

Service
Consumer

.....

State Info

User Info

Web Service Proxy

Deployed Web Service (Service Provider)
WS Response

valid

Action
Module

Login Service
Client Interface (CI)

Service
Consumer

invalid

Service
Consumer

WS Response

Session
Verifier

Policy Rules D&V Rules

reject

accept

reject

Service Invocation

String
Patterns

Figure 2. A framework for state-based XML firewall

2398 JOURNAL OF COMPUTERS, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

access web services by that user will be denied, and the
user will be forced to log out of the system. Conventional
RBAC mechanism has been proposed as one of the most
attractive solutions to providing security features in
different distributed computing infrastructure [30]. In an
RBAC model, users are assigned roles with permissions,
which are access modes that can be exercised on a
particular object in the system. RBAC mechanism
ensures that only authorized users are given access to
certain data or resources. Most of the conventional RBAC
models follow the same basic structure of subject, role
and privilege. However, in a more sophisticated RBAC
model, access decisions for an application depend on the
combination of a user’s credential, the context, the
system state, and other factors such as relationship, time
and location [31]. The concept of dynamic RBAC
mechanism was first introduced in our previous work
[32]. It is adopted in our S-Wall security model because
S-Wall requires that the access control process should
depend not only on a user’s identity, but also on the
user’s current state. In other words, in our S-Wall model,
we define certain policy rules that specify a user’s access
right to web services with certain permissions
(restrictions) based on the user’s current state and system
state. Thus, our S-Wall approach is stateful.

In order to provide valid execution duration for a user
to invoke a web service, we formally define the concept
of user session as follows.

Definition 3.1 User Session. A user session is defined
as a 6-tuple (UID, SID, RO, AP, ST, ET), where UID is a
user ID, SID is a session ID, RO is a set of roles assigned
to the user, AP is a set of access permissions that must be
updated at runtime, ST is the session start time, and ET is
the session expiration time. A user session is created
when a user logs in, and destroyed when the user logs out
or when the S-Wall rejects any of the user’s requests.

Once a user has logged in and been authenticated, his
user information is transferred to the D-RBAC module
for authorization. The D-RBAC module then interacts
with the Policy Rules module, which is a repository of
access control policies defined in Prolog, for role
assignment and determination of access permissions. The
process for authorization is supported by information
about a user, such as a user’s trust level, stored in the
User_Info database, as well as state information, such as
how often the same request has been made, stored in the
State_Info database. After the role and access permission
assignment is done, a user session is created for that user,
which has a start time and an expiration time, and is
recorded in the User_Info database. During the period of
time when the session is valid, a user can make requests
to web services without being authenticated again. For
every incoming web service request from a user, the
Session Verifier checks whether the associated user
session is valid and the user has sufficient permissions to
invoke the web service based on state information. If the
user has enough permission to access the web service, his
request in a form of XML message, along with the
session information is passed to the Reasoning Module
for threat detection and content analysis. Otherwise, the

user’s request is sent to the Action Module, where a reject
message is generated and sent to the corresponding
service proxy. In this case, the user session is destroyed
by the S-Wall, and this information is recorded into the
User_Info database.

When the reasoning module starts to detect malicious
requests, it first examines the session information passed
to it as well as the related data from the State_Info
databases to determine whether the user request is
suspicious of any kind of XML-based attacks. The
detection process is supported by the D&V Rules module,
which consists of detection and verification rules defined
in Prolog by system administrators. The detection rules
are used to detect suspicious requests only; while the
verification rules are modularized into different rule sets
for verification of different types of XML-based attacks,
e.g., an XDoS attack. Thus, the modularized rule sets can
be invoked individually, and support efficient reasoning
in real-time. For example, when the reasoning module
detects a suspicious user with high frequency of requests
(determined by a predefined threshold as shown in
Section IV-C), the user’s request will be verified using
XDoS verification rules for possible XDoS attack.
Similarly, if the reasoning module detects that a user
request exceeds the normal packet size, the XML
message will be verified for overloaded payload attack.
On the other hand, if a user request is not a suspect of any
kind of attacks, the request will be immediately passed to
the corresponding deployed web service for service
invocation. Note that verification of XML-based attacks
(e.g., an XDoS attack) requires investigation of a user’s
previous behaviors. If the user has a very low trust level
or has been suspected as an XDoS attacker for a number
of times, not only the request from that user will be
dropped, but also the user’s trust level may be degraded
further. Different from the XDoS detection, detection of
injection attacks (e.g., an XPath injection attack) only
requires evaluating the parameters passed to a web
service operation by matching them with predefined
string patterns to identify any malformed parameters or
parameter tampering. If any malicious activity is detected
and confirmed, the service request is sent to the action
module, where a reject message is generated and sent to
the corresponding service proxy. In this case, the user
session is destroyed, and such information is recorded
into the User_Info database. On the other hand, if the
request is accepted, it is passed to the deployed web
service for service invocation, and the result is forwarded
back to the service consumer through CI.

IV. DESIGN OF STATE-BASED XML FIREWALL

A. Definitions of User and State Information
In the detection and verification process, the critical

information used by the S-Wall for decision making is the
data stored in the State_Info and User_Info databases.
The state-based information and user information are
used by the S-Wall to detect and verify different types of
XML-based attacks. As an example, we now consider
XDoS attack and overloaded payload attack, and give

JOURNAL OF COMPUTERS, VOL. 6, NO. 11, NOVEMBER 2011 2399

© 2011 ACADEMY PUBLISHER

some key related definitions of the data types used in the
State_Info database as follows.

Definition 4.1 User State. A user state is a 5-tuple
(UID, SID, TR, FR, TL), where UID is the ID assigned to
the user at the time of registration, SID is the session ID
that is initiated, TR is the total number of requests made
by the user in the current session, RF is the request
frequency, i.e., the number of requests made by the user
in a recent predefined time interval (e.g., one minute),
and TL is the user’s current trust level, which can be high,
normal, low or permanentlyBlocked.

Definition 4.2 Firewall State. A firewall state is a 4-
tuple (RE, DE, RT, SEC), where RE is the number of
requests that are received by the S-Wall but not yet
forwarded to the web server, DE is the number of
requests that are being processed by the reasoning
module, RT is the number of requests in a recent
predefined time interval, and SEC is a current security
level of the firewall, which can be green, yellow or red.

Definition 4.3 Service State. A service state is a 7-
tuple (SID, NR, AT, RT, NP, SR, SI), where SID is the
service ID, NR is the number of requests currently being
processed by the web service, AT is a list of attacks that
have been performed on the service, RT is the average
response time during the recent predefined time interval,
NP is the number of overloaded payload attacks detected
during the recent predefined time internal, SR is the
average size of SOAP requests during the recent
predefined time interval, and SI is a state indication of the
web service, which can be busy, normal or free.

We also give some key definitions of the data types
used in the User_Info database for detection and
verification of XDoS attack and overloaded payload
attack as follows.

Definition 4.4 User Credential. A user credential is a
4-tuple (UN, PW, UID, TL), where UN is the user name,
PW is the password specified by the user at registration
time, UID is the user ID, and TL is the current trust level
assigned to the user. A user receives a “normal” trust
level at the time of registration, and his trust level can be
updated later at runtime based on the user’s most recent
behaviors or activities.

Definition 4.5 Active User. An active user is a triple
(UID, RO, TO), where UID is the ID of the user who has
logged into the S-Wall, RO is the set of roles assigned to
the user, and TO is the number of tokens assigned to the
user when the user logs in. Note that the tokens assigned
to a user are used to control the maximal number of
requests that the user can make in each valid session.

Based on the above state-based information and user
information, the reasoning module can detect and verify
XDoS attack and overloaded payload attack in real-time.
The corresponding tables are created in the State_Info
and User_Info databases, which are used to store not only
the current state and user information, but also the
previous states and recent user information that are useful
for attack detection and verification.

B. Role-Based Access Control Policies
A role is an abstraction that represents a set of

permissions that are needed to perform the tasks

associated with a position. Role-based authorization
policies specify the roles that each user may adopt, and
the permissions associated with each role [30, 33]. From
earlier research, it has been argued that it is desirable to
separate policy from the application code, so policies can
be easily changed over time [34]. Furthermore, a policy
language must be expressive so that the intended rules
can be written naturally, easy to understand and
effectively computable. There has been some previous
research in defining policy languages [34-36]. Most of
the policy languages such as Delegation Logic [35],
Binder [36], and Cassandra [34] are based on DataLog,
where a DataLog statement can be easily translated into
declarative English sentences. This helps users to
formulate security policies that capture their intentions
accurately. However, an obstacle to deployment of trust
management systems with Datalog-based policy
languages is that there is a lack of tool support for such
languages. In this paper, we choose Prolog as a
specification language for both access control policies
and D&V rules for the following reasons. Prolog is a
declarative language, and can be used to specify both
facts and production rules or policies. With a solid
mathematical foundation, Prolog allows to reason from a
set of rules and supports meta-level reasoning, making
policy conflict detection possible. Consider the following
access control policies based on the motivating example
presented in Section III-A. In the stock information &
trading system, any user (registered or unregistered user),
analyst, stock advisor, and administrator can access real-
time stock information, but only an analyst or an
administrator can update stock recommendation
information. Both a registered user and an administrator
can access trading transaction history, but only a
registered user is allowed to initiate a transaction for
stock trading. The system also provides stock training
sections, where a registered user is assigned to a stock
advisor who is responsible for giving training lessons on
the operations of the system and providing financial
advices to the user. The above access control policies can
be specified in Prolog as follows.

isValidRole(unregisterUser).
isValidRole(registeredUser).
isValidRole(stockAdvisor).
isValidRole(stockAnalyst).
isValidRole(administrator).
assignRole(U,R) :- isValidRole(R).
canInvoke(R,T,stockInfoService,getQuote):-
 contains(R,[stockAnalyst,administrator,
 stockAdvsior,registerUser,
 unRegisteredUser]),

contains(T,[normal,high]).
canInvoke(R,T,stockInfoService,updateStockRec
omInfo):-

contains(R,[analyst,administrator]),
contains(T,[normal,high]).

canInvoke(R,T,stockTradingService,readTransHi
strory):-

contains(R,[registeredUser,administrator]),
contains(T,[normal,high]).

canInvoke(R,T,stockTradingService,initiateTra
nsaction):-

contains(R,[registeredUser]),
contains(T,[normal,high]).

2400 JOURNAL OF COMPUTERS, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

canInvoke(R,T,stockTradingService,stockTraini
ng,U,A):-

contains(R,[stockAdvisor]),
contains(T,[normal,high]),
assignAdvisee(U,A),
assignRole(U,registeredUser),
assignRole(A,R).

In the above Prolog code, R represents a user’s role,
and T represents the trust level of a user. Any user must
take a certain role and maintain at least a normal or high
trust level before he can access some resource. The
predicate isValidRole lists various roles defined in the
system. The predicate assignRole(U,R) is true when a
user with UID U is assigned a valid role R. Similarly,
assignAdvisee(U,A) is true when a registered user with
UID U is assigned to a stock advisor with UID A. The
predicate canInvoke determines whether a user with a
certain role has the permission to invoke an operation
defined in a web service. For example, the predicate
canInvoke(R,T,stockInfoService,accessStockInf
o) specifies that a user with role R and trust level T can
invoke the web service operation accessStockInfo defined
in web service stockInfoService. Similarly, the predicate
canInvoke(R,T,stockTradingService,stockTraini
ng,U,A) ensures that a stock advisor with UID A and a
trust level normal or high can train a registered user U
only if the user U has been assigned to stock advisor A.

Note that our D-RBAC approach is dynamic, which
means the access control permissions assigned to a user
can be changed at runtime based on user states. For
example, according to the aforementioned access control
policies, when a registered user’s trust level is normal or
high, the user is allowed to initiate a transaction on STS.
However, when the registered user’s trust level is
downgraded from normal to low, the user’s access to
STS for initializing transactions will be denied.

C. Real-Time Detection of XML-Based Attacks
The reasoning module is responsible for real-time

detection and verification of XML-based attacks by
checking the SOAP message as well as the parameters
passed to a web service operation. The reasoning engine
algorithm adopted by the reasoning module for decision
making is presented in Algorithm 1. As shown in the
algorithm, when a SOAP message with a valid user
session is sent to the reasoning module, the reasoning
engine first verifies if the parameters involves any
injection attack (e.g., an XPath injection attack or an SQL
injection attack) by checking against predefined string
patterns that define possible threats to parameters. If an
injection attack is detected, the SOAP message is
rejected, and the information related to the attack is
recorded into the User_Info and State_Info database.
Note that the detection of an injection attack does not
require any user information or state information from the
two major databases. On the other hand, if the reasoning
module concludes that the parameters are not
compromised, it starts to detect other types of XML-
based attacks by investigating the SOAP message
content. The process of detecting other types of XML-
based attacks involves two major steps, which are

detection of suspicious SOAP messages and verification
of attacks. Suspicious SOAP messages can be detected
using the session and state information by the reasoning
module. For example, in order to detect XDoS attack and
overloaded payload attacks, the reasoning module
attempts to find possible flooding requests, and keep
track of the maximal allowed message size and the
maximal allowed nesting depth in the incoming XML
messages. If a certain type of attack is detected, the
reasoning module will attempt to verify the attack using
additional evidence from the User_Info and State_Info
database. Once an attack is confirmed, the SOAP
message is rejected, and sent to the action module, where
a rejection message is generated and sent back to the
service consumer through the service proxy. In addition,
the User_Info and State_Info database are updated
accordingly with the information related to the attack.
Otherwise, the SOAP message is sent to the deployed
web service for service invocation, and after the service
invocation, the results are sent back to the service
consumer through the service proxy.

Algorithm 1: Reasoning Engine
Input: SOAP message with parameters for service invocation
Output: accept / reject
1. Verify parameters for injection attacks using string patterns
2. if pattern matched
3. then update User_Info and State_Info database
4. output reject to the action module
5. else detect suspicious SOAP message using detection rules
6. if SOAP message is suspicious of any attack
7. then switch (attack_type)
8. case XDoS_attack:
9. verify XDoS attack using XDoS verification rules
10. case Overloaded_payload_attack:
11. verify Overloaded_payload_attack using Payload
12. verification rules
13. case ... // other types of XML-based attacks
14. if any attack confirmed
15. then update User_Info & State_Info database
16. output reject to the action module
17. else output accept and invoke a deployed web service
18. else output accept and invoke a deployed web service

We now use the XDoS attack as an example to show
how to detect XML-based attacks using S-Wall. To detect
XDoS attacks, the reasoning module looks into the
session information to check if the current frequency of
requests (e.g., the number of request during the last
minute) made by a certain user exceeds the threshold
predetermined by an administrator. If the frequency
exceeds the limit, any new requests from that user must
be checked further using XDoS verification rules. Some
sample rules used by the reasoning module for XDoS
detection are illustrated as follows.
checkThreshold(W,S,X):-
 threshold(W,SI,Y), X > Y.

threshold(accessService,busy,20).
threshold(accessService,normal,40).
threshold(accessService,free,60).

In the above rules, W is the service name, S represents
the session ID, and X is the number of requests per minute

JOURNAL OF COMPUTERS, VOL. 6, NO. 11, NOVEMBER 2011 2401

© 2011 ACADEMY PUBLISHER

made by a user who is currently under investigation. The
predicate checkThreshold evaluates to be true when the
number of requests made by the user during the last
minute exceeds the limit determined by the service state
indication SI. In this example, the state indication of a
web service is set as busy, normal, or free if the number
of requests processed by the web service during the last
minute is larger than 40, between 20 and 40, or less than
20, respectively. According to the above rules, when the
web service is busy, normal or free, the corresponding
limit on number of requests per minute is 20, 40 or 60,
respectively. Note that the information about the web
service state and the number of requests the user made
during the last minute are stored in the State_Info
database. To simplify matters, in our current S-Wall
implementation, the threshold does not depend on the
firewall state that is specified in Definition 4.2.

If a query to the predicate checkThreshold returns
true, the corresponding request will be further verified
using XDoS verification rules where the user’s violation
history is analyzed. The following Prolog rules
demonstrate how to verify whether a user is an attacker
and when to degrade a user’s trust level.

xdosVerify(U,T):- inspectHistory(U,T,V).
inspectHistory(U,T,V):-
 T = high, dataConnect(U,3,V), V='3',

degradeTrustLevel(U,normal).
inspectHistory(U,T,V):-

T = normal, dataConnect(U,5,V), V='3',
degradeTrustLevel(U,low).

inspectHistory(U,T,V):-
T = low, dataConnect(U,7,V), V='3',
degradeTrustLevel(U,permanentlyBlocked)

dataConnect(U,X,V):-
java_object('DataConnect',[],data),
data <- getHistorySessionStatus(U,X)
returns V.

degradeTrustLevel(U,T):-
java_object('DataConnect',[],data),
data <- recordTrustLevel(U,X).

The Prolog code inspects a user’s violation history of
exceeding the threshold for frequency of service
invocations. If the user’s trust level is high, the XDoS
verification rules only check the user’s previous 3
sessions. If the user has 3 violations, his trust level is
degraded to normal. On the other hand, if the user’s trust
level is normal or low, then the user’s previous 5 or 7
sessions need to be checked. Similarly, when the user
reaches the limit of 3 violations, the user’s trust level is
degraded to low or permanentlyBlocked, respectively. In
all the above cases, if a query to the predicate
xdosVerify evaluates to be true, the user’s current
session is immediately closed. In this case, the user must
log in again before he can make further requests. Note
that the Prolog code listed above requires invoking Java
method getHistorySessionStatus to acquire
information from the State_Info database, and invoking
Java method recordTrustLevel to record a user’s trust
level as historical information in the User_Info database.

In order to demonstrate how to detect injection attacks
using S-Wall, we utilize some simple examples of SQL
injection attacks [15]. SQL injection is a technique used

to exploit the vulnerabilities in web applications that
communicate with databases [37]. The basic idea behind
SQL injection is to convince the application to run some
malicious SQL code that may result in unauthorized data
access or data loss. SQL injection attack mostly occurs
due to a lack of user input validation. Although SQL
injection is a general technique to attack web-based
applications, in the context of service-oriented systems, it
can tamper web service parameters which are embedded
in XML messages. Consider a web service that retrieves
user information using the following query.

query = "SELECT * FROM user_records WHERE
userid = '" + uid + "'";

If User1 is the user ID, the WHERE part of the query
executed at the database will be “userid = 'User1'”.
Now a malicious user can obtain access to other users’
records by tampering the parameter “User1” into
“User1' or 'x'='x”, so the resulting Boolean
expression “userid = 'User1' or 'x'='x'” will
evaluate to be true. When the query is executed, all
records from the table user_records are returned. To
prevent this type of attacks, the reasoning module may try
to match the parameters of a web service invocation with
predefined regular expressions [15]. For example, the
following regular expression can be used to detect the
aforementioned SQL injection attack.

([a-z0-9A-Z])*(\s*)(\')(\s*)(o|O)(r|R)
(\s*)(\') (\s*)([a-z0-9A-Z])*

The above regular expression specifies the string
pattern “' or '”, where ([a-z0-9A-Z])* represents
zero or more occurrence of alphanumeric characters;
(\s*) represents zero or more occurrence of space
characters; and (\') is the single quote.

Another example of SQL injection attack is called
concatenated query attack, where the user manipulates a
parameter to form a concatenated query. When a normal
query “SELECT * FROM users WHERE userid =
'user1'” is manipulated to “SELECT * FROM users
WHERE userid = 'user1'; DELETE FROM users;--
j'”, the execution of the query results in data loss.

In our current implementation of the S-Wall, the
reasoning module searches for string patterns such as “'
or '”, and concatenation of “';” and “';--” in the input
strings. If any input string matches one of the predefined
patterns, the user will be detected as an attacker for SQL
injection, and the user’s current session will be closed
immediately.

V. CASE STUDY

In this section, we utilize a case study to demonstrate
how S-Wall can be used to effectively defend against
XML-based attacks. We developed a prototype S-Wall,
and installed it on the same machine where a financial
management service-oriented system was deployed. The
financial management service-oriented system is the
same one as we described earlier in Section III-A, which
can be compromised by an attacker using a two-phased
XML-based attack illustrated in the motivating example.

2402 JOURNAL OF COMPUTERS, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

In the following, we first try to simulate the two involved
XML-based attacks, namely XPath injection attack and a
hybrid XDoS/overloaded payload attack. Then we
demonstrate that, with S-Wall installed, the service-
oriented system can effectively defend against these two
major types of XML-based attacks

A. Simulation of XML-Based Attacks
As mentioned before, an XML settings file contains

user authentication information and endpoint address of
internal service SRS (refer to Fig. 1), which can be
retrieved using XPath queries. To obtain the quote of a
stock, a user can invoke the service operation getQuote
defined in SIS, which requires three parameters, namely
the ID of the user requesting the stock quote, the user
password, and the ticker symbol on which the user wishes
to receive a quote. A legitimate user request may look
like getQuote("afritz", "service1234", "GE"),
where afritz is a user name, service1234 is a
password, and GE is a ticker symbol. To authenticate user
afritz, the user request is first transformed into the
following XPath query for validation.
String Query =
 "//Service/users/user[loginID/text()=
 'afritz' and password/text() =
 'service1234']/usertype/text()"

After the user is authenticated, service operation
getQuote invokes a remote service operation
getCurrentQuote provided by GE Company, and returns
the latest quote to the user.

Now suppose an attacker performs a two-phased
XML-based attack on SMS. During the first phase of the
attack, the attacker forms a crafted user request
getQuote("afritz","']| /* | /abc[def='","GE"),
which results in the following XPath query for user
authentication.
String Query =
 "//Service/users/user[loginID/text()=
 'afritz' and password/text()=
 ''] | /* | /abc[def='']/usertype/text()"

In this query, the “| /*” notation instructs the XPath
engine to return the entire XML file; thus, instead of
authenticating the user, the attacker receives the entire
contents of the XML file. The additional substring “|
/abc[def='']/usertype/text()” in the query is
simply used to ensure correct parsing when the request is
transformed into an XPath query. Having the entire XML
settings file, the attacker knows pertinent information
about other services accessed by SIS, such as the
endpoint address of SRS, credentials needed for
accessing, timeout information, and other information
stored in the XML file.

Once the endpoint address of the SRS service becomes
available, the attacker can start to attack SRS. During the
second phase of the attack, the attacker creates a hybrid
XDoS/overloaded payload attack, and attempts to take
down the SRS service. When the SRS service is down, all
other services that rely on SRS, such as SIS and STS, will
be dramatically affected, which may cause significant
damage to the company and its clients. The reason why

we chose to simulate a hybrid XDoS/overloaded payload
attack instead of a pure overloaded payload attack is that,
based on our experiments and experience, a pure
overloaded payload attack that exhausts the XML parser
does not appear to be an effective attack. By increasing
the number of threads that perform overloaded payload
attacks, the attack presents itself as a hybrid
XDoS/overloaded payload attack, which can effectively
exhaust the XML parser as well as the resources of the
service being attacked. Note that the hybrid
XDoS/overloaded payload attack differs from a pure
XDoS attack because it does not require a large number
of requests in order to exhaust the resources at the server
side; thus, it will not be easily detected as an XDoS
attack. For our case study, we developed an attacker
client that can generate multiple threads to send out
requests at a certain frequency. Each request is embedded
with a large and complex header, which makes itself an
overloaded payload attack. Since the SRS service
requires user authentication that is processed prior to the
service invocation, we utilize a handler authenticator to
recursively explore the header for the credentials and
continuously process the request if the credentials are
correct. During the attack, we gathered statistics from
normal clients attempting to use the service as designed,
i.e., utilizing the SIS service to obtain stock information.
The normal response time for a client is 100 milliseconds
when SRS is not under attacks. Fig. 3 shows the results of
the response time from four normal clients attempting to
access the service simultaneously while the attacker client
was running. Each normal client sends out a request,
awaits a response, sleeps for a random amount of time,
and then wakes up and makes a request again. As shown
in the figure, the values of all observed response time are
recorded over a period of 25 minutes, where the curve
represents the average response time during this period.
From the figure, we can see that after around 4 minutes,
the average response time goes up to 10 seconds due to
the hybrid XDoS/overloaded payload attack. After the
service has been constantly attacked for around 25
minutes, the average response time exceeds 50 seconds,
and the service eventually went down and became unable
to service any further requests.

Observed Response Time Without S‐Wall

0

10

20

30

40

50

0:00:00 0:02:53 0:05:46 0:08:38 0:11:31 0:14:24 0:17:17 0:20:10 0:23:02 0:25:55

Observation Time (Seconds)

Re
sp
on

se
 T
im

e
(S
ec
on

ds
)

Response Time

Average Response Time

Figure 3. Observed response time without S-Wall

JOURNAL OF COMPUTERS, VOL. 6, NO. 11, NOVEMBER 2011 2403

© 2011 ACADEMY PUBLISHER

Fig. 4 categorizes the response time into 32 classes
with an interval of 0.5 seconds, and records the number
of requests in each category during the testing period.
The curve in Fig. 4 represents the cumulative percentage
of requests for a given response time category. From the
figure, we can see that during the experiment, around
80% of the requests take over 3 seconds to get a response
(i.e., around 20% of the requests take less than 3 seconds
to get a response), and around 32% of the requests take
over 15 seconds to get a response. Since the service under
normal conditions takes less than one second to respond,
the impact on the service is significant due to the hybrid
XDoS/overload payload attack.

Number of Requests vs. Response Time Without S‐Wall

0

20

40

60

80

100

120

140

0.
00

0.
50

1.
00

1.
50

2.
00

2.
50

3.
00

3.
50

4.
00

4.
50

5.
00

5.
50

6.
00

6.
50

7.
00

7.
50

8.
00

8.
50

9.
00

9.
50

10
.0
0

10
.5
0

11
.0
0

11
.5
0

12
.0
0

12
.5
0

13
.0
0

13
.5
0

14
.0
0

14
.5
0

15
.0
0

15
.0
+

Response Time (Seconds)

N
um

be
r o

f R
eq

ue
st
s

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Number of Requests

Cumulative %

Figure 4. Number of requests vs. response time without S-Wall

B. Defending Against XML-Based Attacks Using S-Wall
When the S-Wall is installed, the service-oriented

system can be protected from both the XPath attack and
the hybrid XDoS/overloaded payload attack. Similar to
the example of SQL injection attack detection described
in Section IV-C, the reasoning module uses predefined
regular expressions to check against XPath queries.
Queries that match regular expressions of known XPath
injection patterns are blocked and are not allowed to
execute. Fig. 5 shows the log file for detection of an
XPath injection attack against SIS.

Figure 5. Log info for detecting XPath injection attacks

In this example, user “afritz” attempts to send a
crafted user request getQuote("afritz","'] |/*|

/abc[def='","GE") to SIS in order to obtain the
location of the internal service. The S-Wall compares the
XPath query with regular expressions defined in the
String Patterns module (as shown in Fig. 2), and
identifies the query as an XPath injection attack. Once the
attack is recognized, the request is sent to the action
module, where the users’ session is terminated and the
information related to the attack is recorded into the
User_Info database. Note that since the location
information of the internal service cannot be captured, the
attacker will not be able to perform a hybrid
XDoS/overloaded payload attack; thus, the two-phased
attack can be effectively prevented.

In our next experiment, we assume that the attacker
used some other technique (e.g., password cracking) to
get the authentication information of a stock analyst. In
this case, the attacker may still be able to perform a
XDoS/overloaded payload attack on internal service SRS.
In order to detect such a complex attack using S-Wall, we
define D&V rules that can detect the nesting level and
size of the elements in the message header. In configuring
the S-Wall, the reasoning engine dynamically determines
an acceptable nesting level based on the current user state
and the firewall state. The following Prolog code
demonstrates some sample detection rules that can be
used to determine an appropriate nesting acceptable based
on the state information.

nestingLimitBreach :-
 nestingLimit(S,SI,SEC,X),
 recordAttack(S,payload).
nestinglimit(S,SI,SEC,X) :-
 S=recomService, SI=free, SEC=green, X>100.
nestinglimit(S,SI,SEC,X) :-
 S=recomService, SI=free, SEC=yellow, X>80.
nestinglimit(S,SI,SEC,X) :-
 S=recomService, SI=free, SEC=red, X>50.
nestinglimit(S,SI,SEC,X) :-
 S=recomService, SI=normal, SEC=green, X>80.
nestinglimit(S,SI,SEC,X) :-
 S=recomService, SI=normal,SEC=yellow, X>50.
nestinglimit(S,SI,SEC,X) :-
 S=recomService, SI=normal, SEC=red, X>20.
nestinglimit(S,SI,SEC,X) :-
 S=recomService, SI=busy, SEC=green, X>50.
nestinglimit(S,SI,SEC,X) :-
 S=recomService, SI=busy, SEC=yellow, X>20.
nestinglimit(S,SI,SEC,X) :-
 S=recomService, SI=busy, SEC=red, X>10.
recordAttack(S,A):-
 java_object('DataConnect',[],data),
 data <- recordAttackInstance(S,A).

In the above rules, W is the web service name, SI
represents the state indication of the service, SEC
represents the current firewall security level, and X is the
number of nesting elements tolerated by the service. The
predicate nestingLimit examines the current web
service state indication, the firewall security level
information, and the tolerance of nesting allowed for a
particular header. A larger tolerance value implies less
chance of blocking a legitimate request, but makes the
web service more susceptible to attack. According to the
above rules, there is a sliding scale of nesting allowed,
with the maximum nesting of 100. The discrete scale

2404 JOURNAL OF COMPUTERS, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

continues at 80, 50, 20, and 10. A deterioration in either
the service state indication or the firewall security level
causes a reduction in nesting tolerance. The nesting
tolerance parameters can be easily set by an administrator
to represent the expectations of a given service. The
predicate RecordAttack is a java connector that can be
invoked to record the attack instance when detected. This
information is utilized in the verification rules to
determine if the request was incidental or if there is a
potential attack. Note that similar detection rules can be
defined for the size of the nodes as well to detect
overloaded payload attacks.

Once an attack is detected, the reasoning module needs
to verify whether it is an effective attack using predefined
verification rules, and based on the verification results, it
may take actions accordingly. The verification process
typically requires additional evidence stored as user
information and state information. Notice that since a
pure overloaded payload attack does not appear to be an
effective attack, in our S-Wall implementation, we take
actions only when a hybrid XDoS/overloaded payload
attack has been verified. The following Prolog code gives
some related sample verification rules.

hybridXdosPayloadVerify(U,T,S,SEC):-
 inspectHistory(U,T,S,SEC,A).
inspectHistory(U,T,S,SEC,A):-

SEC = green, dataConnect(S,50,A),
A > '20', T = normal,
degradeSECLevel(SEC,yellow),
degradeTrustLevel(U,low).

inspectHistory(U,T,S,SEC,A):-
SEC = green, dataConnect(S,50,A),
A > '20', T = low,
degradeTrustLevel(U,permanentlyblocked).

inspectHistory(U,T,S,SEC,A):-
SEC = yellow, dataConnect(S,100,A),
A > '50' T = normal,
degradeSECLevel(SEC,red).

dataConnect(S,X,A):-
java_object('DataConnect',[],data),
data <- getHistoryFirewallAttacks(S,X)
returns A.

degradeSECLevel(U,T):-
java_object('DataConnect',[],data),
data <- recordSECLevel(SEC,X).

degradeTrustLevel(U,T) :-
java_object('DataConnect',[],data),
data <- recordTrustLevel(T,X).

In the above rules, U represents a user, T is the trust
level of the user, S is a service, SEC is the current security
level of the firewall, and A is the number of overloaded
payload attacks detected during a predefined recent time
interval. The predicate dataConnect(S,X,A) performs a
lookup of the last X number of attacks performed against
the service and checks whether a majority of them are
overloaded payload attacks. The S-Wall also considers
the current users’ trust level prior to making a decision.
For example, the first inspectHistory predicate
verifies if the current SEC level is green, it then examines
the last 50 requests as well as the users’ trust level. If 20
of the requests were overloaded payload attacks and a
normal user is performing the attack, both the users’ trust
level and the firewall’s SEC level are degraded. Similarly,

the second inspectHistory predicate verifies whether
the user has a low rating stored in the User_State
database. If so, the S-Wall blocks the user from further
attempts without degrading the firewall security level.
Note that when the security level increases, the firewall
must perform more inspection of incoming requests and
have stricter constraints. In order to avoid possible
restriction of legitimate invocations at a heightened level
of security, the firewall should be cautious in elevating its
security level. To access the User_Info and State_Info
database, it requires invoking three Java methods:
getHistoryFirewallAttacks for acquiring historical
firewall state information from the State_Info database;
recordSECLevel for recording change of firewall status
in the State_Info database; and recordTrustLevel for
recording change of user status in the User_Info database.

After deploying the S-Wall, we were able to show
significant improvements in responsiveness from the
server. Running the hybrid XDoS/overloaded payload
attack under the same conditions, we again collected the
response time information of four normal clients, which
simultaneously make requests to SRS. Fig. 6 shows the
individual observed response times recorded over a
period of 43 minutes, where the curve represents the
average response time during this period.

Observed Response Time with S‐Wall

0

1

2

3

4

5

6

0:00:00 0:04:19 0:08:38 0:12:58 0:17:17 0:21:36 0:25:55 0:30:14 0:34:34 0:38:53 0:43:12

Observation Time (Seconds)

Re
sp
on

se
 T
im

e
(S
ec
on

ds
)

Response Time
Average Response Time

Figure 6. Observed response time with S-Wall

Frequency vs. Response Time with S‐Wall

0

500

1000

1500

2000

2500

3000

3500

4000

0.
00

0.
50

1.
00

1.
50

2.
00

2.
50

3.
00

3.
50

4.
00

4.
50

5.
00

5.
50

6.
00

6.
50

7.
00

7.
50

8.
00

8.
50

9.
00

9.
50

10
.0
0

10
.5
0

11
.0
0

11
.5
0

12
.0
0

12
.5
0

13
.0
0

13
.5
0

14
.0
0

14
.5
0

15
.0
0

15
.0
+

Response Time (Seconds)

N
um

be
r o

f R
eq

ue
st
s

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Number of Requests

Cumulative %

Figure 7. Number of requests vs. response time with S-Wall

The experimental results show that the average
response time does not exceed 2 seconds during the 43

JOURNAL OF COMPUTERS, VOL. 6, NO. 11, NOVEMBER 2011 2405

© 2011 ACADEMY PUBLISHER

minutes testing period, and in most of the time, the
average response is below 1 second. In Fig. 7, we
categorize the response time into 32 classes with an
interval of 0.5 second, and record the number of requests
in each category. The curve represents the cumulative
percentage of requests for a given response time category.
From the figure, we can see that during the experiment,
over 93% of the requests take 1 second or less, and over
97% of the requests take 2 seconds or less. Such results
indicate the service is functioning properly with
reasonable response times. Thus, with S-Wall installed,
the SIS service was able to maintain a stable response
time even when the SRS service was being attacked.

VI. CONCLUSIONS AND FUTURE WORK

Service-oriented systems and cloud computing are
becoming more and more popular due to their
standardized protocols and techniques that enable the
efficient integration of loosely coupled applications over
the Internet. However, due to the open interface for
service-oriented architecture and cloud computing,
attacks on web services are more complicated than
traditional web-based attacks that can be handled by
conventional firewalls. Thus, there is a pressing need to
introduce new security mechanisms to protect service-
oriented systems. In this paper, we introduced a security
model called state-based XML firewall (S-Wall), which
can be used to protect a service provider from various
XML-based attacks. We developed a detailed design of
the S-Wall security model, and implemented a prototype
S-Wall to demonstrate the effectiveness of our approach.
The experimental results show that S-Wall can efficiently
and effectively detect and defend against various XML-
based attacks. For future work, we will study new types
of XML-based attacks and show how their corresponding
D&V rules can be modularly constructed and integrated
into our current system. We will also consider adopting
agent-based technology to introduce more intelligence in
S-Wall for detection and verification of more complicated
XML-based attacks.

ACKNOWLEDGMENT

We thank the editor and all referees for the careful
review of this paper. This material is based upon work
supported by the Chancellor’s Research Fund and UMass
Joseph P. Healey Endowment Grants, and the Research
Seed Initiative Fund (RSIF), College of Engineering,
University of Massachusetts Dartmouth.

REFERENCES

[1] T. Erl, Service-Oriented Architecture (SOA): Concepts,
Technology, and Design, Prentice Hall PTR, Service-
Oriented Computing Series, Aug. 2005.

[2] D. S. Linthicum, Cloud Computing and SOA Convergence
in Your Enterprise: A Step-by-Step Guide, Addison-
Wesley Professional, Oct. 2009.

[3] G. Raines, “Cloud computing and SOA,” Technical
Report, Service-Oriented Architecture (SOA) Series, The
MITRE Corporation, Oct. 2009.

[4] Z. Jaroucheh, X. Liu, and S. Smith, “A model-driven
approach to flexible multi-level customization of SaaS
applications,” in Proc. 22nd Int. Conf. Software
Engineering and Knowledge Engineering (SEKE’10), San
Francisco, pp. 241-246, Jul. 2010.

[5] S. Mysore, “Securing web services - concepts, standards,
and requirements,” White Paper, Sun Microsystems, Inc.,
Santa Clara, CA, USA, Oct. 2003.

[6] P. Crocker and B. Thompson, “Integrating WebSphere
DataPower SOA appliances with WebSphere MQ,”
Technical Report, IBM Hursley Software Lab, UK, Mar.
2007.

[7] Reactivity, “Architecting the infrastructure for SOA and
XML,” White Paper, Cisco Systems, Inc., USA, 2007.

[8] E. Moradian and A. Håkansson, “Possible attacks on XML
web services,” Int. J. Computer Science and Network
Security (IJCSNS), vol. 6, no. 1B, pp. 154-170, Jan. 2006.

[9] P. Lindstrom, “Attacking and defending web services,”
Technical Report, Spire Security, LLC, Jan. 2004.

[10] S. Shah, Hacking Web Services, Charles River Media,
Boston, Massachusetts, Aug. 2006.

[11] M. O’Neill, P. Hall-Baker, S. M. Cann, M. Shema, E.
Simon, P. A. Watters, and A. White, Web Services
Security, McGraw-Hill Osborne Media, Jan. 2003.

[12] A. Vorobiev, J. Han and N. Bekmamedova, “An ontology
framework for managing security attacks and defenses in
component based software systems,” in Proc. 19th
Australian Conf. Software Engineering (ASWEC 2008), pp.
552-561, Mar. 2008.

[13] E. B. Fernandez, M. M. Larrondo-Petrie, N. Seliya, N.
Delessy-Gassant, and M. Schumacher, “A pattern language
for firewalls,” in M. Schumacher, et al. (Eds.), Security
Patterns: Integrating Security and Systems Engineering,
Wiley, Mar. 2006.

[14] M. Andrews and J. A. Whittaker, How to Break Web
Software: Functional and Security Testing of Web
Applications and Web Services, Addison-Wesley
Professional, Feb. 2006.

[15] A. Reddyreddy and H. Xu, “Securing service-oriented
systems using state-based XML firewall,” in Proc. 20th
Int. Conf. Software Engineering and Knowledge
Engineering (SEKE’2008), Redwood City, San Francisco
Bay, California, USA, pp. 512-518, Jul. 2008.

[16] H. Xu, M. Ayachit and A. Reddyreddy, “Formal modeling
and analysis of XML firewall for service-oriented
systems,” Int. J. Security and Networks (IJSN), vol. 3, no.
3, pp. 147-160, 2008.

[17] E. Bertino, L. Martino, F. Paci, and A. Squicciarini,
Security for Web Services and Service-Oriented
Architectures, Springer, 2009.

[18] E. B. Fernandez, “Two patterns for web services security,”
in Proc. 2004 Int. Symp. Web Services and Applications
(ISWS’04), Las Vegas, Nevada, 2004.

[19] M. Holtkamp, “The role of XML firewalls for web
services,” in Proc. 1st Twente Student Conference IT, Jun.
2004.

[20] M. Cremonini, S. Vimercati, E. Damiani, and P. Samarati,
“An XML-based approach to combine firewalls and web
services security specifications”, in Proc. 2003 ACM
Workshop XML Security, Fairfax, Virginia, pp. 69-78, Oct.
2003.

[21] R. Bebawy, H. Sabry, S. El-Kassas, Y. Hanna, and Y.
Youssef, “Nedgty: web services firewall,” in Proc. IEEE
Int. Conf. Web Services (ICWS’05), pp. 597-601, 2005.

[22] Forum, Forum XWall, Forum Systems, Inc., Retrieved on
Feb. 18, 2008, from http://forumsys.com/products_
xwall.htm.

2406 JOURNAL OF COMPUTERS, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

[23] S. Northcutt and J. Novak, Network Intrusion Detection,
3rd Edition, Sams, Sept. 2002.

[24] R. G. Bace, Intrusion Detection, Macmillan Technical
Publishing, Indianapolis, IN, USA, 2000.

[25] Y. Mai, R. Upadrashta, and X. Su, “J-Honeypot: a Java-
based network deception tool with monitoring and
intrusion detection,” in Proc. Int. Conf. Information
Technology: Coding and Computing (ITCC 2004), Las
Vegas, NV, USA, pp. 804-808, Apr. 2004.

[26] W. Zhang, R. Rao, G. Cao, and G. Kesidis, “Secure routing
in ad hoc networks and a related intrusion detection
problem,” in Proc. IEEE Military Communications
Conference (MILCOM), Oct. 2003.

[27] K. Rao, A. Pal, and M. R. Patra, “A service oriented
architectural design for building intrusion detection
systems,” Int. J. Recent Trends in Engineering, vol. 1, no.
2, pp. 11-14, May 2009.

[28] J. McGibneya, N. Schmidtb, and A. Patelb, “A service-
centric model for intrusion detection in next-generation
networks,” Computer Standards & Interfaces, vol. 27, no.
5, pp. 513-520, Jun. 2005.

[29] B. Zhou, Q. Shi, and M. Merabti, “A framework for
intrusion detection in heterogeneous environments,” in
Proc. 4th IEEE Consumer Communications and
Networking Conference (CCNC 2006), pp. 1244-1248, Jan.
8-10, 2006.

[30] H. Feinstein, R. Sandhu, E. Coyne, and C. Youman, “Role-
based access control models,” in Proc. IEEE Computer,
vol. 29, no. 2, pp. 38-47, 1996.

[31] G. Zhang and M. Parashar, “Context-aware dynamic
access control for pervasive applications,” in Proc.
Communication Networks and Distributed Systems
Modeling and Simulation Conference (CNDS 2004),
Western Multi-Conference (WMC), San Diego, CA, USA,
Jan. 2004.

[32] H. Xu, S. M. Shatz, and C. K. Bates, “A framework for
agent-based trust management in online auctions,” in Proc.
5th Int. Conf. Information Technology: New Generations
(ITNG 2008), Las Vegas, Nevada, USA, pp. 149-155, Apr.
7-9, 2008.

[33] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R.
Chandramouli, “Proposed NIST standard for role-based
access control,” ACM Trans. Information and System
Security (TISSEC), vol. 4, no. 3, pp. 224-274, Aug. 2001.

[34] M. Becker, “Cassandra: flexible trust management and its
application to electronic health records,” Ph.D. Thesis,
University of Cambridge, Oct. 2005.

[35] N. Li, B. N. Grosof, and J. Feigenbaum, “Delegation logic:
a logic-based approach to distributed authorization,” ACM
Trans. Information and System Security, vol. 6, no. 1, pp.
128-171, Feb. 2003.

[36] J. DeTreville, “Binder, a logic-based security language,” in
Proc. 2002 IEEE Symp. Security and Privacy, IEEE
Computer Society Press, pp. 105-113, May 2002.

[37] C. Anley, “Advanced SQL injection in SQL server
applications,” White Paper, Next Generation Security
Software Ltd., Jan. 2002.

Haiping Xu received the B.S. degree in Electrical Engineering
from Zhejiang University, Hangzhou, China, in 1989, the M.S.
degree in Computer Science from Wright State University,
Dayton, OH, in 1998, and the Ph.D. degree in Computer
Science from the University of Illinois at Chicago, IL, in 2003.

Prior to 1996, he successively worked with Shen-Yan
Systems Technology, Inc. and Hewlett-Packard Co., as a
Software Engineer, in Beijing, China. Since 2003, he has been
with the University of Massachusetts Dartmouth, where he is
currently an Associate Professor at the Computer and
Information Science Department, and a Director of the
Concurrent Software Engineering Laboratory (CSEL). He has
published about 50 research papers including over 20 peer-
reviewed journal publications. He has supervised over 30 M.S.
theses and M.S. projects at the University of Massachusetts
Dartmouth, and co-supervised 2 Ph.D. dissertations. His
research has been supported by the National Science Foundation
(NSF) and the U.S. Marine Corps. His research interests include
distributed software engineering, formal methods, Internet
security, multi-agent systems, electronic commerce, service-
oriented systems, and cloud computing.

Dr. Xu is a senior member of both the IEEE and the
Association of Computing Machinery (ACM). He has served as
a program committee Co-Chair for the International Conference
on Software Engineering Theory and Practice (SETP), and a
program committee member for over 50 international
conferences. He is a recipient of the Outstanding Ph.D. Thesis
Award in 2004, and has been included in the 11th Edition of
Who's Who Among America’s Teachers, 2006.

Abhinay Reddyreddy received the B.Tech degree in Computer
Science and Engineering from the Jawaharlal Nehru
Technological University, India, in 2005, and the M.S. degree in
Computer Science from the University of Massachusetts
Dartmouth, North Dartmouth, MA, in 2008. He is currently a
software engineer in Boris FX, Inc. in Marlborough, MA. His
research interests include software engineering, web services
security, and formal methods for specification and analysis of
concurrent and distributed software, especially the application
of Petri net-based models.

Daniel F. Fitch received the B.S. degree in Computer Science
from the Bridgewater State University in 2008. He is currently a
graduate student in the Computer and Information Science
Department at the University of Massachusetts Dartmouth. His
research interests include software engineering, web services
security, and formal methods for specification and analysis of
reliability and fault tolerance model in cloud computing.

JOURNAL OF COMPUTERS, VOL. 6, NO. 11, NOVEMBER 2011 2407

© 2011 ACADEMY PUBLISHER

