
Int. J. Security and Networks, Vol. 3, No. 3, 2008 1

Formal modeling and analysis of
XML firewall for service-oriented
systems
Haiping Xu*, Mihir Ayachit and Abhinay Reddyreddy
Computer and Information Science Department,
University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
E-mail: {hxu, g_mayachit, g_areddyreddy}@umassd.edu
*Corresponding author

Abstract: As more businesses deploy web services over the Internet, the issue of how to
secure them from intruders and possible threats becomes more important. Firewalls have
been designed as a major component to protect a network or a server from being attacked.
However, since conventional firewalls emphasize on packet filtering at the transport and
session layer, rather than verifying user permissions and examining packet contents at the
application layer, they are not suitable for protecting service providers from unauthorized
web service invocations. In this paper, we propose a formal XML firewall security model
using role-based access control (RBAC) mechanisms. Our proposed formal model supports
user authentication and role-based user authorization according to policy rules stored in a
policy database that can be updated dynamically. The formal model is designed
compositionally using colored Petri nets (CPN), which can serve as a high-level design for
XML firewall implementation. The major components of our compositional XML firewall
security model are the application model and the XML firewall model. We analyze the
application model and the XML firewall model separately using an existing Petri net tool,
and demonstrate how key properties of our formal models can be verified, and how a
design error can be detected and corrected at an early design stage.

Keywords: XML firewall, web services, service-oriented systems, role-based access
control (RBAC), colored Petri net (CPN), formal verification.

Reference to this paper should be made as follows: Xu, H., Ayachit, M., and Reddyreddy,
A. (2008) ‘Formal modeling and analysis of XML firewall for service-oriented systems’,
Int. J. Security and Networks, Vol. 3, No. 3, pp. 1–13.

Biographical notes: Haiping Xu received the Ph.D. degree in computer science from the
University of Illinois at Chicago in 2003. He is an assistant professor in the Computer and
Information Science Department at the University of Massachusetts Dartmouth, where he is
a co-director of the Concurrent Software Systems Laboratory. His research interests include
distributed software engineering, formal methods, Internet security, multi-agent systems,
and service-oriented systems. He is a member of the ACM and the IEEE Computer Society.
Mihir Ayachit received the M.S. degree in computer science from the University of
Massachusetts Dartmouth in 2006. He is currently a software engineer in Parametric
Technology Corporation. His research interests include web services security, formal
methods, and model-based software development. Abhinay Reddyreddy is currently a
graduate student in the Computer and Information Science Department at the University of
Massachusetts Dartmouth. His research interests include web services security and formal
methods for specification and analysis of concurrent and distributed software, especially the
application of Petri net-based models.

1 INTRODUCTION

Web services provide a standardized way that support
interoperable machine to machine interaction over the
Internet (Booth et al., 2004). Web services are XML based
software components that can be dynamically incorporated
into different applications using remote method invocation
mechanisms, such as JAX-RPC (Java API for XML-based

RPC) (Nagappan et al., 2003) and WSIF (Web Service
Invocation Framework) (Juric, 2006). A web service is
designed as a loosely coupled software component that can
be described using WSDL (Web Services Description
Language), registered using UDDI (Universal Description,
Discovery and Integration), and invoked using standard
protocols, such as SOAP (Simple Object Access Protocol)
that is bound to standard underlying protocols, e.g., HTTP.

Copyright © 2008 Inderscience Enterprises Ltd.

2 H. XU ET AL

As more businesses deploy web services over the Internet
that dynamically interact with various applications and data
sources, the issue of how to secure them from intruders and
possible threats becomes more important (Mysore, 2003).
Security problems in web services are severe because the
Internet is a public network infrastructure, where the
information available to be accessed over the Internet has
different levels of business confidentiality. Furthermore, a
service consumer may invoke web services using false
identity, access web services with insufficient permissions,
or corrupt web services by attacking the service providers
(e.g., using an XML message-based denial of service attack).
Thus, security consideration becomes very critical for the
successful deployment of service-oriented systems.

A conventional firewall typically resides at the perimeter
of a network server or a business’s private network, and
monitors the data traffic entering and exiting the network to
prevent unauthorized access to the server or the network.
Typical types of conventional firewalls include package
filtering firewalls, application-level gateways, and stateful
inspection firewalls (Pfleeger and Pfleeger, 2003; Fernandez
et al., 2005). However, a conventional firewall may provide
no security at all for web services. This is because most of
the web services are SOAP based or simply XML based,
which is bound to HTTP; thus, XML messages can most
likely pass through port 80, the default web port, which is
normally not blocked by a conventional firewall (Windley,
2003). Furthermore, a potential intruder can include
malicious SOAP attachments, insert harmful SQL code or
executable commands into an XML packet, or send an
extremely large XML packet to overload the XML parser on
the service provider side (Moradian and Håkansson, 2006;
Vorobiev and Han, 2006). A conventional firewall usually
does not examine the content of a packet; thus, it is not able
to identify threats such as SQL injection, denial of service,
schema poisoning, and XML parameter poisoning (Gralla,
2007; Vorobiev and Han, 2006). For example, a packet with
XML data tampered with an SQL injection attack that can
erase a whole database cannot be detected using packet
filtering techniques; instead, it can only be detected by
content filtering approaches. Hence, conventional firewalls
are not sufficient to provide security for web services. In
addition, conventional firewalls usually exist at the transport
and session layer, rather than the application layer and
within the data packet or content (Wrenn, 2004); therefore,
security holes can be left to allow an unauthorized person to
attack a service provider by accessing web services without
needed permissions.

To protect web services from being attacked, we develop a
compositional formal model, called XML firewall security
model, which enforces access restrictions for web service
invocations. Our security model is derived from a general
XML firewall model presented in (Ayachit and Xu, 2006).
In our proposed model, the access to web services is only
granted to those users, who are authenticated and authorized
to have access to the services. The model is formally
defined using the Petri net formalism, which is a mature
formalism with existing theory and tool support (Murata,

1989). There are two key components in the XML firewall
security model, namely, the application model and the XML
firewall model. In the XML firewall model, we adopt the
role-based access control (RBAC) mechanism (Feinstein et
al., 1996) in order to effectively deploy user authorization
and access rights. The role-based access control mechanism
we use in our model is stateful. In other words, role
assignment and permission granting in XML firewall
depend not only on a user’s identity, but also on the current
state of the system.

The rest of the paper is organized as follows. Section 2
summarizes the related work. Section 3 presents an
architectural design of XML firewall protected service-
oriented systems. Section 4 introduces the compositional
Petri net based XML firewall security model, including the
application model and the XML firewall model. Section 5
performs some formal analysis of the Petri net models using
an existing Petri net tool. Section 6 gives the conclusions
and future work.

2 RELATED WORK

A closely related work to our proposed XML firewall
approach is the role-based access control (RBAC)
mechanism. The role-based access control model has been
used as one of the most attractive solutions to providing
security features in different distributed computing
infrastructure (Feinstein et al., 1996). In an RBAC model,
users are assigned roles with permissions, which ensure that
only authorized users are given access to certain data or
resources. A principle motivation behind RBAC is the
ability to specify and enforce enterprise specific security
policies such that it can map naturally to an organization’s
structure. Since in a typical organization, user and role
associations change more frequently than role and
permission associations, RBAC results in reduced
administrative costs as compared to associating users
directly with permissions. In an RBAC model, a user is a
human being or a process within a system; while a role
defines a collection of permissions associated with a certain
job function within an organization. A permission of a role
is an access mode that can be exercised on a particular
object or a resource in the system. A user can be related to
possibly many roles using sessions, which specify the
durations of valid role assignments. Most of the RBAC
models follow the same basic structure of subject, role and
privilege. However, in a more sophisticated role-based
access control model, access decisions for an application
will depend on the combination of the required credentials
of users and the context and state of the system, as well as
other factors such as relationship, time and location (Zhang
and Parashar, 2004). Giuri and Iglio proposed a role-based
access control model that provided special mechanisms for
the definition of content-based access control policies (Giuri
and Iglio, 1997). By extending the notion of permission,
they allowed the specification of security policies, in which
the permission of an object may depend on the content of

FORMAL MODELING AND ANALSYIS OF XML FIREWALL FOR SERVICE-ORIENTED SYSTEMS 3

the object itself. Although much work has been done in the
area of access control, most of the work is user-centric,
where only credentials of the user are considered when
granting access permissions. Very little work has been done
to combine context information with credentials while
access control decisions are being made. In our XML
firewall model, we combine the traditional RBAC with the
state information to determine access control; thus, our
approach can be more flexible and effective in dynamic
permission assignments.

Previous work on how to protect web service providers
from being attacked is rare. Fernandez and his colleagues
proposed to protect web services from unauthorized access
by developing a pattern-based language for XML firewall
(Fernandez, 2004; Fernandez et al., 2005). They designed
two patterns for XML firewall, namely the security
assertion coordination pattern using role-based access
control (RBAC) for access to distributed resources, and a
filter pattern for filtering XML messages or documents
according to institution policies. Although their approach
provides useful insights about implementation of XML
firewalls, the XML firewall model they proposed is not
formally defined. Cremonini and his colleagues proposed an
XML-based approach to combining firewalls and web
services security specification (Cremonini et al., 2003).
They discussed about the security requirements of web
service architecture (WSA), and presented some possible
design guidelines for semantics-aware firewalls that can be
fully integrated within the WSA. However, technical details
about implementation of their approach are still missing.
More recently, Moradian and Håkansson summarized
possible attacks on XML web services, including SQL
injection, IP spoofing, and denial of service attacks
(Moradian and Håkansson, 2006). But no solutions are
proposed to protect the service providers from service-based
attacks. Different from the above approaches, we propose a
stateful XML firewall security model that supports dynamic
role assignment and permission granting. Furthermore, since
an XML firewall represents one of the critical components
in a business application, to ensure a correct design, we
develop a formal model using colored Petri nets (Jensen,
1992), and demonstrate how existing Petri net tools can be
used to verify the key properties of our net model.

Some XML firewall related products are currently
available on the market for securing web services
applications. For example, the Forum Systems Company
developed an XML security appliance, called XWall, which
resides in front of servers that contain sensitive XML tagged
information (Allen, 2006). The appliance encrypts XML
fields in real time, as the data goes into the server. It then
decrypts it when the data exits the server. The appliance is
unique as it examines data on a tag-by-tag basis, and
therefore does not encrypt the unnecessary or non-critical
fields. Another implementation of the XML firewall is the
DataPowerXS40 XML Security Gateway (DataPower,
2006). This firewall requires the creation of a virtual
firewall for every service exposed to the outside world,
which then forms a path through the firewall to the back-end

server supplying the web services. Each virtual firewall is
configured with a custom firewall policy of actions on each
XML message passing through the firewall. Policy actions
are implemented through XSL style sheets and may include
XML filtering, digital signatures, signature verification,
schema validation, encryption, decryption, transformation
and routing. XML firewall vendors, as a whole, are a mix of
startup companies and older security companies looking to
enter the market.

Although the above implementations contain certain XML
firewall features and can help to protect web services, their
functionalities are still very limited. For example, they do
not support verification of user authorization, and thus,
unauthorized user may access web services with insufficient
permissions. In addition, existing XML firewall approaches
are usually not state-based, so they cannot protect web
services from certain threats such as a denial of service
attack. In contrast, we propose a general solution to
implementing XML firewalls that supports state-based user
authentication and authorization. More importantly, our
XML firewall model is formally defined using the Petri net
formalism, so it supports formal verification for ensuring a
correct design (e.g., deadlock-freeness), as done in our
previous work (Xu and Shatz, 2003a; Xu et al., 2005). Some
additional related work along this direction includes Xu and
Nygard’s work, where a threat-driven model is developed
using aspect-oriented Petri nets (Xu and Nygard, 2005; Xu
and Nygard, 2006). Their approach supports incremental
modeling of security features to improve trustworthy of
software design. Different form the above threat-oriented
approach, we take a property-oriented approach to security
where security features are explicitly defined in our model.
Furthermore, our proposed formal model can serve as a
high-level design for XML firewall implementation, and
may provide a potential solution to automated software
development as illustrated in (Xu and Shatz, 2003b).

3 ARCHITECTURAL DESIGN

An XML firewall protected service-oriented system consists
of three major types of components, namely application,
XML firewall, and web service. The system architecture of
a service-oriented system with a single XML firewall
installed is illustrated in Figure 1. As shown in the figure, a
service provider may deploy a group of web services on a
web server, which is protected by an XML firewall. The
web services can be invoked by various applications at
runtime, so the web services shall be able to interact with
different applications concurrently. Meanwhile, an
application is allowed to make multiple requests to web
services that are protected by the same XML firewall at the
same time. Therefore, the XML firewall must support
processing of various web service invocation requests
concurrently.

In Figure 1, we illustrate two applications that may
interact with the same group of web services concurrently. It
is worth to be noted that an application can also interact

4 H. XU ET AL

with different groups of web services, which are deployed
by different service providers protected by their own XML
firewalls (this scenario is not shown in Figure 1). At the
application side, a user interacts with an application through
its user interface. The application logic is the business logic
of an application, which varies from application to
application. The application logic processes the requests
from the user, and initiates service calls that may invoke a
single web service or a group of web services at the same
time. The request from the application is checked by the
XML firewall for authenticity and access limitations
depending on state information stored in the StateDB
database. If the request is valid, the XML firewall will pass
the request to the corresponding web service; otherwise, the
request is rejected. The administrator of an XML firewall
can change the policies stored in a policy database through
an administration module at runtime. Activities of changing
policies include adding a new policy, modifying an existing
policy, and deleting a policy that is no longer needed. Each
web service has its own logic to process the corresponding
method request, and returns the result to the XML firewall.
Upon receiving the result from a web service, the XML
firewall then passes the result to the application. When the
application receives the result from the XML firewall, the
application logic processes the result for further
computation, and will send appropriate messages to the user
through its user interface. The refinement of the XML
firewall module in a service-oriented system is illustrated in
Figure 2, which describes the important components inside
an XML firewall module.

As shown in Figure 2, to start an application, a user first
needs to log into the application. If the user is a valid one,
the application logic will process the user’s access requests,
and based on the user’s requests, the application logic
initiates the needed service calls. A service call with the
user’s information is intercepted by the XML firewall for
authentication and authorization. The user is authenticated
by checking against certified user information stored in a
database, called UserInfoDB, as shown in Figure 2. If the
user’s identification is valid, he is assigned a role defined in
the Role database (i.e., RoleDB); otherwise, an access
denied message is sent to the application. The role
assignment is based on the system state including the user’s
current state, which is determined by the status of the

incoming message as well as the information stored in the
StateDB database. After the role assignment process is
completed, a user space, which contains a session and
access permissions of the user, is created based on policies
from the PolicyDB database. The user space is then
compared with the service request to determine whether the
incoming request from the user has permissions to invoke a
web service; meanwhile, the incoming message is inspected
for any malicious contents within the user space. If the user
has the needed permissions, and the XML-based message
does not contain any malicious contents, the web service
request will be dispatched to the corresponding web service
by the XML firewall; otherwise, an access denied message
will be sent to the application. If the web service request is a
valid one, the web service will process the request, and
return the result to the XML firewall, which is then passed
back to the application.

Figure 2 Refinement of the XML firewall module in Figure 1

4 CPN-BASED COMPOSITIONAL XML FIREWALL
SECURITY MODEL

Petri nets are a well-founded process modeling technique
that has formal semantics to allow specification, design,
verification, and simulation of a system (Murata, 1989).
Petri nets have been widely used to model and analyze
various types of processes and systems including security

 XML
Firewall

 Response

 Application
 Logic

User A

Figure 1 XML firewall protected service-oriented system

Application_1 (Service Consumer)

 Web Service 1

 Web Service n

Admin
Update
 Policy

 …

 Request

 StateDB

Service Provider

 Response

 Request

Administration

 User
Interface

 Application
 Logic

Application_2 (Service Consumer)

 User
Interface

User B

Internet
(SOAP,
HTTP, etc.)

User Login

Application
Logic

 [valid user]

authentication

[valid]
[invalid]

Assign
Role

 UserInfoDB

Create User
Space

StateDB

 Access
 Request

Invoke
Service

Web Service 1 Web Service n

Return
Results

message
inspection

[access
passed]

RoleDB

[access
denied]

…

XML Firewall Application
PolicyDB

FORMAL MODELING AND ANALSYIS OF XML FIREWALL FOR SERVICE-ORIENTED SYSTEMS 5

protocols (Bouroulet et al., 2004), web services (Hamadi
and Benatallah, 2003; Liu and Chen, 2005), manufacturing
systems (Toumodge, 1995; Jalilvand and Khanmohammadi,
2004), and business processes (Aalst, 2002). A Petri net is a
directed, connected, and bipartite graph, in which each node
is either a place or a transition. In a Petri net model, tokens
are used to specify information or conditions in the places.
When there is at least one token in every input place of a
transition, the transition is enabled. An enabled transition
can be fired by removing one token from every input place,
and depositing one token in each output place of the
transition. Colored Petri nets (CPN or CP-net) are an
extension of ordinary Petri nets, which allow different
values (represented by different colors) for the tokens
(Jensen, 1992; Jensen and Rozenberg, 1991). Colored Petri
nets have a formal syntax and semantics that leads to
compact models of rather complex systems for modular
design and analysis (Christensen and Petrucci, 1992; Jensen,
1998). In addition, a CPN allows associating guards and
executable code written in a high-level programming
language – the ML language (Clack et al., 1993) – with a
transition. The modeling and analysis of CPN models are
supported by powerful Petri net tools, such as the CPN
Tools (Ratzer et al., 2003).

Petri nets are a graphical and mathematical modeling tool
applicable to many systems. In this section, we develop a
compositional XML firewall security model for web
services invocation using CPN. As mentioned previously,
we design our XML firewall protected service oriented
system modularly with the basic components, i.e., the
application module and the XML firewall module, where
the interfaces between these modules are well defined. In

our CPN models, we introduce a few types of tokens that
denote the different types of inputs and outputs of
transitions. For example, if a transition results in a Boolean
decision, a BOOL token will be placed at the output place of
the transition. In addition, we associate guards with some
transitions to model the decision making processes.

4.1 Application model

An application invokes web services according to its
application logic, which may involve concurrency. Figure 3
shows a CPN model for an application that invokes two web
services concurrently. We assume the web services are
deployed on different web hosts, so they must be protected
by different XML firewalls. The two web services are
represented by two abstract transitions WS_Logic1 and
WS_Logic2 (denoted by boxes with thicker border line in
Figure 3). An abstract transition is a high-level transition
that represents an activity, which can be refined in a more
detailed design. The refinement of an abstract transition into
a new Petri net is beyond the scope of this paper, but it can
be modeled as a substitution transition that stands for a CPN
module in a hierarchical net structure supported by the CPN
Tools (Ratzer et al., 2003; Jensen et al., 2006). In Figure 3,
the XML firewall module is abstracted into a subnet with a
few places and transitions (enclosed in a dashed line box in
Figure 3), which will be refined into a more detailed design
in Section 4.2.

An XML firewall can be used to protect one or a group of
web services deployed on a web server (only one web
service is shown in Figure 3 behind each XML firewall).
Web services are invoked by various applications according

XML Firewall 2XML Firewall 1

colorset UNIT = unit with e;
colorset BOOL = bool;
colorset INT = int;
var x : INT;
var u : UNIT;
var b : BOOL;

x

x

x

x

x

x

x

xx

x

x

x

x

xx

x

bbbb

bb

xx

x

x

xx

x

x

x

b

x

x

b

x

b

x

b

b

b
b

b

b

u

u

x

x

x

Accept_Result

WS_Logic2WS_Logic1

Access_Denied2

[b=false]

output(x);
action(1);

Req_for_WS2

[b=true]

output(x);
action(1);

Access_Denied1

[b=false]

output(x);
action(1);

Req_for_WS1

[b=true]

output(x);
action(1);

XML_FW2XML_FW1

Application_Logic

Create_Request

Accept_Request

Logout

Access_Denied

[b=false]

output (x);
action (1);

Get_User_Details

[b=true]

output (x);
action(1);

Valid
[b=true]

Not_Valid

[b=false]

Check_UserDB

Get_Login_Request

Init_Result

1`1

INT

FW_Result2

INT

WS_Req2

INT

FW_Result1

INT

WS_Req1

INT

Done_Checking2 BOOLDone_Checking1 BOOL

WS_Request2

INT

WS_Request1

INT

Request_Details

INT

Dispatch_Request

INT

User_Request

1`1

INT

BOOL

User_Details

INT

User_DB

1`e

UNIT

N2

BOOL

Failure

BOOL

N1

BOOL

Username_Pass

INT

Login_Request

1`1

INT

bReady_To_
Accept_Req

1 1`1

1 1`1

1 1`e

1 1`1

Figure 3 CPN model of an application that invokes two web services

6 H. XU ET AL

to users’ access requests. To protect both the application and
the web services, a user is required to provide his
credentials (e.g., user name and password) when he logs
into the application. This is represented by a token (denoted
as 1`1 in Figure 3, meaning one token with value 1) placed
in the Login_Request place. The token is passed to the
Username_Pass place when the Get_Login_Request
transition fires. The checking of the username and password
is done by firing the transition Check_UserDB, which
verifies a user’s identity with the information of certified
users stored in a database called User_DB. Note that the
information stored in the database User_DB is represented
by a unit token denoted as 1`e in Figure 3. A failure result
from the authentication process indicates that the user is not
a valid one, so a Boolean token “false” will be deposited
into place N1, which enables the transition Not_Valid. Note
that the guard [b=false] associated with the transition
Not_Valid evaluates to true when a “false” token is present
in place N1. The firings of the transitions Not_Valid and
Access_Denied sequentially will inform the user that the
access to the application was denied, and a token will be
returned to the Login_Request place. On the other hand, if
the user is verified as a valid one after firing the transition
Check_UserDB, a Boolean token “true” will be deposited
into place N1, which enables the transition Valid. The firing
of transition Valid deposits a token in both of the places N2
and Ready_To_Accept_Req. A token in place N2 enables the
transition Get_User_Details that can fetch a user’s detailed
information from the User_DB database, and deposit a
token into place User_Details. Meanwhile, a token in place
Ready_To_Accept_Req enables both of the transitions
Accept_Request and Logout to allow an access request to
web services and a logout request, respectively. Note that
although there is an initial token in place User_Request that
represents a request from the user, the transition
Accept_Request cannot fire until a token is present in place
Ready_To_Accept_Req, which indicates that the user’s
authentication check has been passed, and thus, any requests
from the user can now be processed. As a result of firing the
Accept_Request transition, a token is deposited into the
Dispatch_Request place for further processing. If the user
request is a logout request, then the Logout transition will
fire. If the Logout transition fires, the tokens in the three
places Ready_To_Accept_Req, User_Details, and
Dispatch_Request are removed, and a new token is returned
to the initial place Login_Request and the place
User_Request. Since there is no token in the
Ready_To_Accept_Req place now, a user must login again
before he can make any further requests.

If the request made by the user is an access request to web
services, the Create_Request transition can fire, and a token
will be deposited into the Request_Details place. A token in
the Request_Details place contains the information retrieved
from the User_Details place combined with the information
from the incoming user request. This enables the
Application_Logic transition representing the business logic
of the application. Note that the Application_Logic
transition is defined as an abstract transition that can be

refined into a detailed design according to the actual
functionalities of the application. When the transition
Application_Logic fires, the application applies its business
logic to the incoming request, and generates requests for
web services invocation. To illustrate concurrent
invocations of two web services, the CPN model contains
two web services that are protected by two different XML
firewalls. To simplify matters, we assume that the user has
to wait for both of the results returned from the web service
invocations before any further requests can be processed.
The goal of the XML firewall is to perform the
authentication and authorization activities for incoming user
requests from an application. If the user is authorized and
has the needed permissions to access a web service, then the
web service is invoked. This logic is shown in Figure 3
using the XML_FW1 and XML_FW2 transition for XML
Firewall 1 and XML Firewall 2, respectively. If the user
request is authentic, and the user has all the necessary
permissions to invoke a web service protected by an XML
firewall, a “true” token will be deposited into its
Done_Checking place (Done_Checking1 or
Done_Checking2), which enables the corresponding
Req_for_WS transition (representing the action of request
for web services). If the transition Req_for_WS fires, a
token representing this request will be deposited into place
WS_Req (Web Service Request), and enables the
corresponding WS_Logic transition that is defined as an
abstract transition for the web service logic. After
processing the request by a web service, a token
representing the result will be placed in the corresponding
FW_Result place. On the other hand, if the web service
access is denied, the corresponding Access_Denied
transition fires, and a token representing an access denied
message is placed in the FW_Result place.

When there is a token in both of the FW_Result1 and
FW_Result2 place, the Accept_Result transition in the
application module can fire. Once the result is accepted, a
token is deposited into the Init_Result place, which implies
the availability of the return results from the web services.
This enables the Application_logic transition, and the return
results can now be used by the Application_Logic transition
for further processing. When the Application_Logic
transition fires, any needed computations are performed,
and a token is returned to the User_Request place, which
enables a new user access request.

4.2 XML firewall model

In Figure 3, the XML firewalls are designed as
compositional modules (displayed inside the dashed line
boxes) that have well-defined interfaces with both of
applications and web services. The XML firewall module in
Figure 3 can now be refined into a more detailed design as
shown in Figure 4. To make the CPN model of an XML
firewall self-contained, we have shown an abstraction of the
application module with two places (i.e., User_Request and
Init_Result_1) and two transitions (i.e., Application_Logic
and Accept_Result) in Figure 4. In addition, we also include

FORMAL MODELING AND ANALSYIS OF XML FIREWALL FOR SERVICE-ORIENTED SYSTEMS 7

an abstract web service module that is represented by the
abstract transition WS_Logic. Note that different from
Figure 3, we only show one XML firewall in Figure 4;
however, due to the compositional modular design of our
net model, it is straightforward to extend the CPN model in
Figure 4 into a system that includes two XML firewalls as
shown in Figure 3.

As we discussed earlier, the application logic in an
application handles all the incoming requests coming from
the user and invokes the corresponding web services. In
Figure 4, when the Application_Logic generates a web
service invocation request, a token is placed into the
WS_Request place indicating a web service invocation. The
Check_If_Existing transition is enabled, and can fire to
check if the user, who makes the request, is an existing user
or a new one. If the user’s identity is not found in the
database UserInfo_DB, then the user is recognized as a first
time user, and a “false” token is deposited into place N1,
which enables the transition First_Time_User. For each first
time user, the PerformBG_Check transition is fired, and a
background check is performed according to users’
background information stored in database BG_DB. A user
becomes a valid member if the background check is passed,
and a token is deposited into place Valid_User. Then the
Update_DBs transition must fire to update the user
information database UserInfo_DB as well as the role
information database Role_DB. Meanwhile, a token is
deposited into place Valid_User_Req indicating the current
request is from a valid user. On the other hand, if the user

authentication fails, the Check_Failed transition is fired, and
a token indicating access denied is deposited into the
FW_Result_1 place.

A user is identified as a regular user if his user profile
exists in the UserInfo_DB database. For a regular user, the
Existing_User transition is fired, and a token is deposited
into the Valid_User_Req place. Once a token is present in
the Valid_User_Req place, the authorization process can
start by firing the Start_Authorization transition. The state
information for the incoming request is generated by firing
the Fetch_State_Info transition, which uses state
information that is already stored in the database State_DB,
as well as information extracted from the incoming request
message (e.g., the time of the request). After the state
information is generated, a token indicating the current state
of the request is placed into the State_Info place. The
Assign_Role transition is now enabled and can fire to assign
roles to the user according to information stored in the
databases UserInfo_DB and Role_DB. In addition, a user
session is created by firing the Create_Session transition.
The user session defines the period of time during which, a
user can interact with an application when invoking a web
service. If the session expires during an invocation (the
session information will be passed along with a user space
token to the WS_Logic transition as described later), the
WS_Logic transition returns a timeout result to the XML
firewall, so a new web service invocation request needs to
be placed. The next task is to fetch a policy from the
Policy_DB. The Fetch_Policy transition can fire when there

 Application

Administration

colorset UNIT = unit with e;
colorset BOOL = bool;
colorset INT = int;
var x : INT;
var u : UNIT;
var b : BOOL;

u

u

x

x

u

xxbb

b

u

x

u

uxx

x

x

u

u

u

x

x

xx

x

x x x x

x

x x

x

b

x
x

x x

xx

u

u

x

xx

x

x

x

x

u

u

x

b

u

xb

x

x

x

b

b

x

x

b

b

x

x

x

x

x

Update_PolicyAccept_Policy

[b=true]

output (x);
action (1);

Reject_Policy

[b=false]

output (x);
action (1);

Comp_Logic Check_Conflict

Fetch_State_Info

Update_StateDB WS_Logic Pass

[b=true]

Access_Denied Fail

[b=false]

output (x);
action (1);

Fetch_PolicyCreate_Session

Assign_Role

Start_Authorization

Update_DBs

Check_Passed
[b=true]

output (x);
action (1);

Existing_User

[b=true] output (x);
action (1);

Accept_Result

Check_Failed

[b=false]

output (x);
action (1);

PerformBG_Check

First_Time_User

[b=false]

output (x);
action (1);

Check_If_Existing

Appication_Logic

New_Policy_1

INT

Decision

BOOL

Init_Result_2

1`1

INT

Add_Policy_Req

1`1

INT

New_Policy

INT

Sync

1`e

UNIT

State_DB

1`e

UNIT

Policy_DB

1`e

UNIT

State_Info

INT

N4

INT

FW_Result

INT

WS_Req

INT

Acess_Failed

INT

Access_Req

BOOL

User_Space

INT

User_PermSession

INT

Role_DB

1`e

UNIT

User_RoleUser_Info

INT

N5

INT

UserInfo_DB

1`e

UNIT

Valid_User

INT

BG_DB

1`e

UNIT

Valid_User_Req

INT

FW_Result_1

INT

N3

BOOL

N2

INT

N1

BOOL

WS_Request

INT

Init_Result_1

2`1

INT

User_Request

1`1

INT

Mesg_Inspection

b

INT

xx INT

Create_UserSpace

Insp_Result

INT

output (x);
action (1);

bx

1 1`1

1 1`1

1 1`e

1 1`e

1 1`e

1 1`e

1 1`e

1 1`e

2 2`1

1 1`1

Figure 4 CPN model of an XML firewall with one application and one web service

8 H. XU ET AL

is a token in the User_Role place, the State_Info place, and
the Sync place. A policy is fetched from the Policy_DB
database based on the user’s role and user’s current state.
After a policy is fetched and a session is created, a user
space is created, which contains the user information,
permissions and the session information. A token
representing a user space will be deposited into the
UserSpace place. Note that ideally, both the session token
and the user space token should be defined as colored
tokens that contain the needed information; however, to
simplify our CPN model, we use tokens of type INT to
represent both sessions and user spaces.

A token in the Access_Req place represents a web service
invocation request in XML format. The Mesg_Inspection
transition can fire in order to check the following two
aspects: (1) the entire XML message is scanned in order to
discover whether the message contains any malicious
contents; (2) the web service invocation request is verified if
it can be granted within the user space created according to
the user’s role and permissions. A Boolean token
representing the result will be deposited into the place
Insp_Result. If the message does not contain any malicious
contents, and the user has the needed permissions to invoke
the web service, the Pass transition can fire, and a web
service request will be dispatched to the corresponding web
service. After the web service request is processed (i.e., the
firing of the WS_Logic transition), a token representing the
result of the web service invocation is deposited into the
FW_Result place. This token enables the Update_StateDB
transition, which updates the state information in the
database State_DB, and also deposits a token in place
FW_Result_1. On the other hand, if the XML message
contains any malicious contents, or the user does not have
sufficient permissions to invoke a web service, the Fail
transition fires, and a token is placed into the Access_Failed
place. When the transition Access_Denied fires, a token that
indicates the web service access is denied is deposited into
the FW_Result_1 place. From the above description, we can
see that the FW_Result_1 place may hold two types of
tokens: one representing an access denied message, and
another one representing the result from web service
invocation. With a token in the FW_Result_1 place, the
transition Accept_Result defined in the simplified
application module can fire. As a result, a token will be
deposited into the Init_Result_1 place, and the
Application_Logic transition determines the next step of
actions. When the Application_Logic transition fires, a
token will be returned to the place User_Request, and the
CPN model for the XML firewall will go back to its initial
state. Note that in the Init_Result_1 place, initially there are
two tokens denoted by 2`1. This allows a user to make two
concurrent requests to web services protected by the same
XML firewall, and it requires that the XML firewall have
the capability of processing more than one web service
request at the same time.

At the bottom of Figure 4, we introduce an Administration
subnet that models the administration process of adding new
policies into the database policyDB. The abstract transition

Comp_Logic in Figure 4 represents the computation logic to
capture a user’s request for adding a new policy into
plicyDB. When the transition Comp_Logic fires, a token
representing a new policy is deposited into place
New_Policy. Then the transition Check_Conflict must fire to
ensure the new policy is consistent with existing policies
stored in the policyDB. If there is no conflict between the
new policy and the existing policies, the new policy will be
accepted by firing the transition Accept_Policy, and the
PolicyDB is updated when the transition Update_Policy
fires. Otherwise, the Reject_Policy transition fires, and the
PolicyDB shall remain unchanged. Notice that we have
introduced a synchronization place Sync that initially
contains a unit token to synchronize the processes of
fetching a policy and updating the policyDB. When the
Check_Conflict transition fires, the unit token in place Sync
is removed, so the transition Fetch_Policy cannot fire even
if there is a token in each of the places User_Role and
State_Info. The Fetch_Policy transition can become enabled
again once the unit token returns to the Sync place when the
PolicyDB has been properly updated (i.e., when the
transition Update_Policy fires). Due to the modular design
of our CPN models, our CPN models can be easily extended
to support modelling the activity of modifying or deleting
an existing policy from the PolicyDB.

5 ANALYSIS OF APPLICATION MODEL AND XML
FIREWALL MODEL

One of the advantages of using CPN to model XML firewall
protected service-oriented systems is due to its support for
formal analysis using existing Petri net analysis tools. In this
section, we show how to use the CPN Tools (Ratzer et al.,
2003) to analyze some key properties of our CPN models.

The CPN Tools is a program that supports editing,
simulating, and analyzing colored Petri Nets (Jensen et al.,
2006). In CPN Tools, a fast simulator is available for
handling both timed and untimed Petri nets efficiently. The
CPN Tools include a state space analysis engine that can
generate a full or partial state space, and produce a standard
state space report containing information such as
boundedness, liveness, and deadlock-freeness properties.
The functionality of the simulation engine and the state
space facilities are developed based on a previous version of
the tool, called Design/CPN (Albert et al., 1989), which is a
widespread tool for colored Petri Nets. To verify the
correctness of our XML firewall security models, we utilize
some key definitions for Petri net behavior properties as
adapted from (Murata, 1989).

Definition 5.1 Reachability: In a Petri net N with initial
marking M0, denoted as (N, M0), a marking Mn is said to be
reachable from the marking M0 if there exists a sequence of
firings that transforms M0 to Mn. A firing or occurrence
sequence is denoted by σ = M0 t1 M1 t2 M2 … tn Mn or
simply σ = t1 t2 … tn. In this case, Mn is reachable from M0
by σ, and we write M0 [σ > Mn.

FORMAL MODELING AND ANALSYIS OF XML FIREWALL FOR SERVICE-ORIENTED SYSTEMS 9

Definition 5.2 Boundedness: A Petri net (N, M0), is said to
be k-bounded or simply bounded if the number of tokens in
each place does not exceed a finite number k for any
marking reachable from M0. A Petri net (N, M0) is said to be
safe if it is 1-bounded.

Definition 5.3 Liveness: A Petri net (N, M0), is said to be
live if for any marking M that is reachable from M0, it is
possible to ultimately fire any transition of the net by
progressing some further firing sequence.

Definition 5.4 Reversibility: A Petri net (N, M0) is said to
be reversible if, for each marking M that is reachable from
the initial marking M0, M0 is reachable from M.

Definition 5.5 Home Marking: A marking Mhome of a Petri
net (N, M0) is said to be a home marking if Mhome can be
reached from any reachable marking Mn.

Definition 5.6 Dead Marking: A marking Mdead of a Petri
net (N, M0) is said to be a dead marking if, in marking Mdead,
no transition is enabled in the net.

We first input our application net model defined in Figure
3 into the CPN Tools. The state space analysis tool produces
the results as listed in Table 1.

The analysis results in Table 1 show that the full state
space has been calculated, and the net has an upper bound of
1 (due to space limitation, we only list the boundedness
properties of some key places of the application model in
the right column of Table 1). This implies that any place in
the application net model can contain at most one token at
any time, and the net is bounded and safe. The reason why
the application net model is bounded and safe is because
there is only one token in the Init_Result place initially (as
shown in Figure 3). Therefore, after the Application_Logic
transition fires for the first time, it cannot fire again until the
result of the previous web services invocation returns.

Similarly, the lower bound of a place is the number of
tokens that the place must contain at any time. For example,
the lower bound of place User_DB is 1, thus the place
User_DB must contain at least one token at any time.

The home properties in Table 1 shows that all markings,
including the initial marking M0, are home markings.
According to Definition 5.5, a home marking Mhome can be
reached from any reachable marking; thus, at any time, the
initial marking M0 can be reached by progressing some
further firing sequence. This proves that the application
CPN model is reversible, and the net can always return to its
initial state without leaving residual tokens in the net. Since
the initial marking M0 represents that there are no web
service requests being processed at the net, the reversibility
property indicates that every web service request can be
processed successfully.

The analysis results tell us that there are no dead markings
in our net model, and all transitions are live. Since a live
transition means, from any reachable marking, we can
always find a firing sequence containing the transition,
according to Definition 5.3, our net model is live. Thus, for
any marking M that is reachable from M0, it is possible to
ultimately fire any transition of the net. As a consequence,
as long as there are valid user requests with the needed
permissions, both the WS_Logic1 and WS_Logic2 transition
can fire eventually.

The analysis results also show that there are no dead
transitions. A transition is dead if, in all reachable markings,
the transition is not enabled. Dead transitions correspond to
parts of the model that can never be activated, and they can
be removed from the model without changing the model
behaviors (Jensen et al., 2006). Therefore, our analysis
result proves that all transitions in our net model can be
activated eventually.

Similarly, we input our XML firewall net model defined
in Figure 4 into the CPN Tools, the state space analysis tool
produces the results as listed in Table 2. The analysis results

Table 1 Analysis results of the CPN application model in Figure 3

Statistics
--
 State Space
 Nodes: 260
 Arcs: 823
 Secs: 0
 Status: Full

 Home Properties
--
 Home Markings
 All

Liveness Properties
--
 Dead Markings
 None

 Dead Transition Instances
 None

 Live Transition Instances
 All

Boundedness Properties
--
Best Integer Bounds Upper Lower
Dispatch_Request 1 0
Done_Checking1 1 0
Done_Checking2 1 0
FW_Result1 1 0
FW_Result2 1 0
Failure 1 0
Init_Result 1 0
Login_Request 1 0
Ready_To_Accept_Req 1 0
Request_Details 1 0
User_DB 1 1
User_Details 1 0
User_Request 1 0
Username_Pass 1 0
WS_Req1 1 0
WS_Req2 1 0
WS_Request1 1 0
WS_Request2 1 0

10 H. XU ET AL

show that our net model is 2-bounded. Since there are two
tokens in the Init_Result_1 place of the application model
initially, we expect that there can be at most two tokens in
the WS_Request place, which represent two concurrent web
service requests. This is proved by the upper bound of 2 in
the WS_Request place as shown in Table 2. Similarly, the
upper bound of 2 in the WS_Req place shows that two

concurrent web service requests can actually be made if the
user has passed the authentication, and has the needed
permissions.

From the home properties of the net model as shown in
Table 2, we find that there is only one home making, which
has the node number 1604. Since the node number of the
initial marking M0 is always 1, the result shows that the

Table 2 Analysis results of the CPN model in Figure 4

Statistics
--
 State Space
 Nodes: 2065
 Arcs: 6740
 Secs: 2
 Status: Full

 Home Properties
--
 Home Markings
 [1604]

 Liveness Properties
--
 Dead Markings
 [1604]

 Dead Transition Instances
 None

 Live Transition Instances
 None

Boundedness Properties
--
Best Integer Bounds Upper Lower
Access_Req 2 0
Acess_Failed 2 0
Add_Policy_Req 1 1
Decision 1 0
FW_Result 2 0
FW_Result_1 2 0
Init_Result_1 2 0
Init_Result_2 1 0
Insp_Result 2 0
New_Policy 1 0
New_Policy_1 1 0
Session 2 0
State_Info 2 0
Sync 1 0
User_Info 2 0
User_Perm 2 0
User_Request 1 1
User_Role 2 0
User_Space 2 0
Valid_User 2 0
Valid_User_Req 2 0
WS_Req 2 0
WS_Request 2 0

Figure 5 State space tracing of the dead marking state M1603 (i.e., Node 1604)

FORMAL MODELING AND ANALSYIS OF XML FIREWALL FOR SERVICE-ORIENTED SYSTEMS 11

initial marking is not a home marking; thus, the XML
firewall net model is not reversible. Furthermore, from the
liveness properties, the single home marking (node 1604) is
a dead marking. From Definition 5.6, we know that, in a
dead marking, no transition is enabled. Therefore, when the
net model reaches the dead marking, the net becomes dead,
and cannot process further by firing any transitions. This
indicates a deadlock error in our net model, and the net
model is not live. To find out the cause of the deadlock error,
we again use the state space analysis tool provided by the
CPN Tools to trace the dead marking. As shown in Figure 5,
we find the following firing sequence σ that leads to the
dead marking, i.e., M0 [σ > M1603, where the initial marking
M0 is numbered as node N1, and the dead marking M1603 is
numbered as node N1604.
σ = N1, Application_Logic, N2, Application_Logic, N4,

Checking_If_Existing, N10, Checking_If_Existing, N21,
Existing_User, N42, Existing_User, N76, Start_Authorization,
N129, Start_Authorization, N204, Assign_Role, N303,
Assign_Role, N423, Fetch_State_Info, N563, Fetch_State_Info,
N715, Comp_Logic, N876, Check_Conflict, N1038,
Create_Session, N1186, Reject_Policy, N1341, Create_Session,
N1466, Comp_Logic, N1604.

 By simulating the XML firewall net model according to
the firing sequence σ, it is easy to see that the existence of
the dead marking M1603 (N1604) is due to the firing of the
transition Check_Conflict, which takes away the unit token
in place Sync. If the new policy is accepted and the policy
database has been properly updated (i.e., when the transition
Update_Policy fires), the unit token will be returned to the
Sync place. In this case, the Fetch_Policy transition can fire
as long as there are tokens in place State_Info and
User_Role. However, if the new policy is rejected (as
illustrated in the firing sequence σ), there will be no token
returned to the Sync place; in this case, the transition

Fetch_Policy becomes disabled forever, and thus, a
deadlock situation occurs. The deadlock error can be
corrected by adding a new arc from the transition
Reject_Policy to place Sync, so a unit token can be returned
to the Sync place when the new policy is rejected. Now we
input our revised net model into the CPN Tools again, and
we get the analysis results as listed in Table 3.

From the analysis results in Table 3, we can see that all
markings including the initial marking are home markings.
Thus, our revised XML firewall net model is reversible.
Furthermore, there are no dead markings, and all transitions
are live. This proves that our revised net model is live. As a
result, as long as there are valid user requests with needed
permissions, the WS_Logic transition can fire eventually.

 Note that the CPN models we have developed in this
paper are compositional. This means we can easily develop
a CPN model that consists of multiple applications, multiple
firewalls, and multiple web services. Since both of the
application model and the revised XML firewall model have
been proved to be reversible, bounded, and live, due to the
modular design of our formal approach, a compositional
model with multiple applications, firewalls and web services
is also reversible, bounded, and live.

6 CONCLUSIONS AND FUTURE WORK

The security issues in service-oriented systems have become
more and more important. Effective security mechanisms
are critical for ensuring the successful deployment of web
services. In this paper, we introduced a compositional CPN
model for XML firewall protected service-oriented systems.
We used the colored Petri net formalism because it has a
distinct advantage of being easy to understand and use due
to its graphical notations and powerful rules for defining

Table 3 Analysis results of the revised CPN model in Figure 4

Statistics
--
 State Space
 Nodes: 1475
 Arcs: 5135
 Secs: 1
 Status: Full

 Home Properties
--
 Home Markings
 All

 Liveness Properties
--
 Dead Markings
 None

 Dead Transition Instances
 None

 Live Transition Instances
 All

Boundedness Properties
--
Best Integer Bounds Upper Lower
Access_Req 2 0
Acess_Failed 2 0
Add_Policy_Req 1 1
Decision 1 0
FW_Result 2 0
FW_Result_1 2 0
Init_Result_1 2 0
Init_Result_2 1 0
Insp_Result 2 0
New_Policy 1 0
New_Policy_1 1 0
Session 2 0
State_Info 2 0
Sync 1 0
User_Info 2 0
User_Perm 2 0
User_Request 1 1
User_Role 2 0
User_Space 2 0
Valid_User 2 0
Valid_User_Req 2 0
WS_Req 2 0
WS_Request 2 0

12 H. XU ET AL

system structure and dynamic behaviors (Murata, 1989,
Jensen 1992). A colored Petri net provides an executable
model that directly defines the concept of a system’s state
space. Although most research on automated analysis of
concurrent and distributed systems uses some type of state-
space exploration approach and cannot avoid the associated
state-space explosion problem, based on our significant
experience with Petri nets for many years, the Petri net
formalism is capable of achieving an effective balance
between theoretical concepts and practical techniques.

Our proposed model supports secured web services
invocation, which only allows user requests with needed
permissions. The effectiveness of our approach is due to the
incorporation of the role-based access control (RBAC)
mechanism into our security model, so user roles and
permissions for web services invocation can be assigned
dynamically. Although there are some existing
implementations of XML firewall with limited
functionality, our proposed approach provides a better
solution to protecting service providers, where state-based
user authentication and authorization are supported
explicitly for web services invocation. More importantly,
our XML firewall security model is formally defined using
CPN, thus certain behavioral properties such as deadlock-
freeness can be formally verified. The compositional CPN
model we proposed consists of the application model and
the XML firewall model, which can be analyzed separately;
therefore the state-space explosion problem in our formal
approach is not significant. To demonstrate the advantages
of our formal approach, we used the CPN Tools to verify
some key properties of our net model. Our analysis results
show that our proposed net model (the revised model) is live
and bounded, which indicate that our net model is deadlock
free and only requires bounded resources. Different from
other existing work, our approach ensures a correct design
of XML firewall, which can serve as a reliable high-level
software design for implementation. In our future work, we
plan to refine our CPN models into a more detailed design
using colored tokens with more semantics such as users,
their roles, access permissions, and constraints, and show
how to implement XML firewalls based on our proposed
formal CPN models.

ACKNOWLEDGEMENT

This material is based upon work supported by the
Chancellor’s Research Fund and UMass Joseph P. Healey
Endowment Grants, and the Research Seed Initiative Grant,
College of Engineering, UMass Dartmouth. We thank all
anonymous referees for the careful review of this paper and
the many suggestions for improvements they provided.

REFERENCES

Aalst, W. M. P. van der (2002) ‘Making work flow: on the
application of Petri nets to business process management’, In

J. Esparza and C. Lakos, editors, Application and Theory of
Petri Nets 2002, Vol. 2360, Lecture Notes in Computer
Science, pages 1-22. Springer-Verlag, Berlin, 2002.

Albert, Ken, Jensen, K., and Shapiro, R. (1989) ‘DESIGN/CPN: a
tool package supporting the use of colored nets’, Petri Net
Newsletter, No. 32, pp. 22-35. Bonn, Germany: Gesellschaft
für Informatik (GI), Special Interest Group on Petri Nets and
Related System Models, April 1989.

Allen, D. (2006) Forum Systems’ XWall Web Services Firewall.
Retrieved on February 29, 2006, from
http://www.networkmagazine.com/shared/article/showArticle.j
html?articleId=18900090

Ayachit, M. and Xu, H. (2006) ‘A Petri net based XML firewall
security model for web services invocation’, Proceedings of
the International Conference on Communication, Network,
and Information Security (CNIS 2006), October 2006, MIT,
Cambridge, Massachusetts, USA, pp. 61-67.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, I. M.,
Ferris, C., and Orchard, D. (2004) ‘Web services architecture’,
W3C Working Group Note, February 11, 2004. Retrieved on
January 18, 2007, from http://www.w3.org/TR/2004/NOTE-
ws-arch-20040211/

Bouroulet, R., Klaudel, H., and Pelz, E. (2004) ‘A semantics of
security protocol language (SPL) using a class of composable
high-level Petri nets’, Proceedings of the Fourth International
Conference on Application of Concurrency to System Design
(ACSD’04), 2004.

Christensen, S. and Petrucci, L. (1992) ‘Towards a modular
analysis of colored Petri nets’, Proceedings of the 13th
International Conference on Application and Theory of Petri
Nets (ICATPN-92), In: Jensen, K.: Lecture Notes in Computer
Science, Vol. 616, Sheffield, UK, pp. 113-133. Springer-
Verlag, June 1992.

Clack, C., Myers, C., and Poon, E. (1993) Programming with
Standard ML. Prentice-Hall, 1993.

Cremonini, M., Vimercati, S. D. C., Damiani, E., Samarati, P.
(2003) ‘An XML-based approach to combine firewalls and
web services security specifications,’ Proceedings of the 2003
ACM Workshop on XML Security, pp. 69-78.

DataPower (2006) WebSphere DataPower SOA Appliances: XS40
XML Security Gateway. Retrieved on March 15, 2006, from
http://www.datapower.com/products/xs40.html

Feinstein, H., Sandhu, R., Coyne, E., and Youman, C. (1996)
‘Role-based access control models’, IEEE Computer,
29(2):38–47, 1996.

Fernandez, E. B. (2004) ‘Two patterns for web services security’,
Proceedings of the 2004 International Symposium on Web
Services and Applications (ISWS'04), Las Vegas, NV, 2004.

Fernandez, E. B., Larrondo-Petrie, M. M., Seliya, N., Delessy-
Gassant, N., and Schumacher, M. (2005) ‘A pattern language
for firewalls’, In M. Schumacher, E. B. Fernandez, D.
Hybertson, F. Buschmann, and P. Sommerlad (Eds.), Security
Patterns, Wiley 2005.

Giuri, L. and Iglio, P. (1997) ‘Role templates for content-based
access control’, Proceedings of the Second ACM Workshop on
Role Based Access Control, Virginia, USA, 1997.

Gralla, P. (2007) XML Firewalls, The Web Services Advisor,
January 7, 2007. Retrieved on January 9, 2007, from
http://searchwebservices.techtarget.com/tip/1,289483,sid26_gc
i855052,00.html

Hamadi, R. and Benatallah, B. (2003) ‘A Petri net-based model for
web service composition’, Database Technologies 2003, Eds.
K. D. Schewe, X. Zhou, Australian Computer Science Society
Inc., Sydney, Australia, 2003, pp. 191-200.

Jalilvand, A. and Khanmohammadi, S. (2004) ‘Modeling of
flexible manufacturing systems by timed Petri net’,
Proceedings of the International Conference on
Computational Intelligence, 2004, pp. 141-144.

Jensen, K. and Rozenberg, G. (eds.) (1991) High-level Petri Nets:
Theory and Application, New York: Springer-Verlag.

FORMAL MODELING AND ANALSYIS OF XML FIREWALL FOR SERVICE-ORIENTED SYSTEMS 13

Jensen, K. (1992) Coloured Petri Nets: Basic Concepts, Analysis
Methods and Practical Use, Vol. I : Basic Concepts, EATCS
Monographs on Theoretical Computer Science, New York
Springer-Verlag.

Jensen, K. (1998) ‘An introduction to the practical use of coloured
Petri nets’, In W. Reisig and G. Rozenberg (Editors): Lectures
on Petri Nets II: Applications, Lecture Notes in Computer
Science, Vol. 1492, Springer-Verlag 1998, pp. 237-292.

Jensen, K., Kristensen, L. M., and Wells, L. (2006) ‘Coloured Petri
nets and CPN Tools for modelling and validation of concurrent
systems’, International Journal on Software Tools for
Technology Transfer. Springer-Verlag, 2006.

Juric, M. B. (2006) ‘Extending BPEL with WSIF for enterprise
application integration’, BPEL Cookbook: Best Practices for
SOA-Based Integration and Composite Applications
Development, Packt Publishing, July 2006.

Liu, B. and Chen, H. (2005) ‘Web service composition and
analysis: a Petri-net based approach’, Proceeding of the First
International Conference on Semantics, Knowledge and Grid
(SKG'05), 2005.

Moradian, E. and Håkansson, A. (2006) ‘Possible attacks on XML
web services’, IJCSNS International Journal of Computer
Science and Network Security, Vol.6, No.1B, January 2006,
pp. 154-170.

Murata, T. (1989) ‘Petri nets: properties, analysis and
applications’, Proceedings of the IEEE, 77(4): 541-580, April
1989.

Mysore, S. (2003) ‘Securing web services - concepts, standards,
and requirements’, White Paper, Sun Microsystems, 2003.

Nagappan, R., Skoczylas, R., and Sriganesh, R. P. (2003)
Developing Java Web Services, Wiley, 2003.

Pfleeger, C. P. and Pfleeger, S. L. (2003) Security in Computing,
3/e Prentice Hall, 2003.

Ratzer, A.V., Wells, L., Lassen, H. M., Laursen, M., Qvortrup, J.
F., Stissing, M. S., Westergaard, M., Christensen, S., and
Jensen, K. (2003) ‘CPN Tools for editing, simulating, and
analysing coloured Petri nets’, Proceedings of the 24th
International Conference on the Application and Theory of
Petri Nets, Eindhoven, Netherlands, June 2003.

Toumodge, S. (1995) ‘Applications of Petri nets in manufacturing
systems: modeling, control, and performance analysis’, IEEE
Control Systems Magazine, Vol. 15, Issue 6, December 1995.

Vorobiev, A. and Han, J. (2006) ‘Security attack ontology for web
services’, Proceedings of the Second International Conference
on Semantics, Knowledge, and Grid (SKG'06), 2006, pp. 42.

Windley, P. J. (2003) ‘Closing the XML security gap’, InfoWorld,
October 17, 2003. Retrieved on December 22, 2006, from
http://www.infoworld.com/

Wrenn, G. (2004) ‘Securing web services: a job for the XML
firewall’, Web Services Tips for XML Developers, March 8,
2004. Retrieved on January 18, 2007, from
http://searchwebservices.techtarget.com/tip/1,289483,sid26_gc
i955191,00.html

Xu, D. and Nygard, K. E. (2005) ‘A threat-driven approach to
modeling and verifying secure software’, Proceedings of the
2005 IEEE/ACM International Conference on Automated
Software Engineering (ASE’05), November 2005, pp. 342-346.

Xu, D. and Nygard, K. E. (2006) ‘Threat-driven modeling and
verification of secure software using aspect-oriented Petri
nets’, IEEE Transactions on Software Engineering (IEEE
TSE), April 2006, Vol. 32, No. 4, pp. 265-278.

Xu, H. and Shatz, S. M. (2003a) ‘A framework for model-based
design of agent-oriented software’, IEEE Transactions on
Software Engineering (IEEE TSE), January 2003, Vol. 29, No.
1, pp. 15-30.

Xu, H. and Shatz, S. M. (2003b) ‘ADK: an agent development kit
based on a formal model for multi-agent systems’, Journal of
Automated Software Engineering (AUSE), October 2003, Vol.
10, No. 4, pp. 337-365.

Xu, H., Zhang, Z., and Shatz, S. M. (2005) ‘A security based
model for mobile agent software systems’, International
Journal of Software Engineering and Knowledge Engineering
(IJSEKE), August 2005, Vol. 15, No. 4, pp. 719-746.

Zhang, G. and Parashar, M. (2004) ‘Context-aware dynamic access
control for pervasive applications’, Proceedings of the
Communication Networks and Distributed Systems Modeling
and Simulation Conference (CNDS 2004), 2004 Western
MultiConference (WMC), San Diego, CA, USA, 2004.

