

 Model Checking Bidding Behaviors in Internet Concurrent Auctions

Haiping Xu and Yi-Tsung Cheng

Computer and Information Science Department

University of Massachusetts Dartmouth

North Dartmouth, MA 02747, USA

Email: {hxu, g_ycheng}@umassd.edu

Abstract

Online auctions have become a quite popular and effective approach in the Internet-based

eMarketplace. However, in concurrent online auctions, where multiple auctions for identical items are

running simultaneously, bidding behaviors become very complicated and difficult to be verified.

Consequently, a shill bidder can easily disguise himself as a legitimate user in order to drive up the

bidding price. The goal of this paper is to propose an efficient formal approach to verifying certain

bidding behaviors, including shilling behaviors, in order to detect shill suspects in concurrent online

auctions. We develop a data-driven auction model based on a model template for concurrent auctions.

The auction model can be formally verified using a model checker according to a set of behavioral

properties specified in pattern-based linear temporal logic. To illustrate the feasibility and

effectiveness of our approach, we use a case study to demonstrate how shill suspects can be efficiently

detected.

Keywords: Concurrent online auctions, bidding behaviors, competitive shilling, shill suspects, model

checking, pattern-based linear temporal logic (LTL).

1. Introduction

In traditional economic theory, an auction can be used to determine the value of a commodity that is

difficult to tag a price. The commodity can be a physical product, such as artwork and antiques; or it

can be a virtual product, for example, spectrum licenses and procurement contracts. The most

commonly used types of auctions are increasing-price auction (English auction), decreasing-price

 1

auction (Dutch auction), first-price sealed-bid auction, and second-price sealed-bid auction (Vickrey

auction) [1, 2]. Among them, the English auction becomes the most popular one that is adopted in

online auction houses. In an English auction, participants can openly observe other people’s bids and

then bid against each other. The current bidding price must be higher than the previous one. The

auction ends when the auction reaches a point where no one wants to beat the current highest price.

Therefore, in an English auction, a bidder can bid multiple times while the bidding price ascends. The

seller of the auctioned item can also set a pre-determined reserve price. If the final bidding price is

lower than the reserve price, the seller can reserve the right of not selling the auctioned item [3].

The characteristics of multiple bids and ascending bidding price in English auctions have made this

type of auctions very popular in online auction houses, for example, eBay, but it also makes shilling

behaviors very common. Shill bidding occurs when the seller disguises himself as a legitimate bidder

by using a second identity or account solely for the purpose of pushing up the sale price [4].

Particularly, in concurrent online auctions, where multiple auctions for identical items are running

simultaneously, the shilling problem becomes even more severe. This is because users’ bidding

behaviors in concurrent auctions can be very complicated, and as a consequence, a shill bidder may

easily hide himself as a legitimate bidder, and put in fake bids once in a while in order to drive up the

bidding price.

There are two main kinds of shilling behaviors, namely, the reserve price shilling and the competitive

shilling [3]. In reserve price shilling, a seller sets a low reserve price and pretends to be a legitimate

bidder to put in bids, in order to drive up the bidding price to his own evaluation of the item. Usually,

the lower reserve price the seller sets the cheaper fee he has to pay to the auction house. Thus, the

seller can avoid paying higher reserve price fee. On the other hand, in competitive shilling, a seller

also pretends to be a legitimate bidder, and constantly monitors the bidding process and puts in fake

bids to drive up the bidding price; however, the objective of doing this is to make potential buyers pay

extra money to win their bids instead of paying less reserve price fee. In this case, the shill bidder

would try his best to avoid winning the auction by not bidding when the auction is close to the end.

Although the objectives of these two shilling behaviors are different, their distinction is not always

clear. For example, a reserve price shill bidder may still want to drive up the bidding price, even after

the bidding price has already reached his own evaluation of the item. Since a reserve price shill has to

pay a reserve-price fee, reserve price shills are not usual in real auction marketplaces, e.g., eBay.

Meanwhile, the reserve price shilling typically only affects the auction houses; while the competitive

 2

shilling may affect all the normal bidders in an auction market. Therefore, the competitive shilling

shall cause a greater harm to the auction market than the reserve price shilling. Furthermore, because

shilling behaviors involved in concurrent online auctions are more complicated and more difficult to

detect than those occurring in a standalone auction, in our research, we focus on studying competitive

shilling behaviors in concurrent online auctions.

In this paper, we propose to use model checking techniques [5, 6] to detect shilling behaviors in

concurrent online auctions. The model checking approach is a formal method for verifying if a finite

state system satisfies certain properties. Using formal methods, we can precisely describe a software

system, for example, a concurrent auction system, for the purpose of establishing that the system does

or does not exhibit some property, which is itself precisely defined [7]. Thus, a key property of our

approach is to derive a formal auction model based on auction data from two concurrent auctions,

which paves the way for formal analysis, as seen in earlier work [8]. The formal auction model, which

is derived from an auction model template presented in [9], can be verified using the SPIN model

checker [6] for certain behavioral properties, which are specified in pattern-based LTL (Linear

Temporal Logic) formulae [10, 11]. Since our formal approach is based on analyzing auction data

from a limited number of concurrent online auctions, it can be used to efficiently detect shill suspects.

The rest of this paper is organized as follows: Section 2 describes the related work and highlights the

relationships to our approach. Section 3 introduces the pattern-based model checking technique.

Section 4 first presents a motivating example for shill detection using model checking. Then it

introduces a model template, and shows how to build an auction model based on auction data from

two concurrent auctions. Section 5 summarizes a set of pattern-based temporal formulae for bidding

behavioral properties. Section 6 provides a case study for how to use our approach to detecting shill

suspects. Finally, in Section 7, we provide conclusions and our future work.

2. Related Work

There is very little previous work on shill prevention or shill detection for online auctions. Most of the

previous work related to shilling behaviors tried to get around the shilling problem by designing

sound mechanisms to decrease the incentives to shilling behaviors in online auctions. For example,

researchers have proposed reputation mechanisms in online auctions to deter opportunistic behaviors

[12, 13, 14]. Since malicious users can easily set up multiple accounts in online environments to

 3

disguise themselves as normal users, a good reputation system is necessary to facilitate trust in online

auctions, and help other users to identify the trustable and reputable accounts. However, this approach

suffers from a few problems. For example, acquainted users can put in good comments for each other,

and thus, the reputation system can be easily manipulated [15]. An improved reputation based

approach for online auctions is to develop models that characterize sellers according to statistical

metrics related to price inflation [16]. However, the proposed approach is based on analyzing large

volumes of auction data; thus, it is not efficient in detecting shill bidders.

Additional previous work on prevention or detection of shilling behaviors can be summarized as

follows. Wang, Zoltán and Whinston showed that private value English auctions with shill bidding

could result in a higher expected seller profit than other auction formats [4]. This explains why in

online auction houses like eBay, shilling behaviors have become a serious problem that cannot be

ignored. They proposed a commission fee mechanism that suggests the auctioneer charge the seller a

commission fee based on the difference between the winning bid and the seller’s reserve price. This

approach can make shill bidding un-profitable; however, it could also be unfair to sellers’ interests,

especially when they are not involved in any shill biddings at all.

Chakraborty and Kosmopoulou studied the effect of shill bidding in a common value auction [17].

They described the possible outcomes of an auction where a seller may be able to bid without being

detected. They showed that although a seller can increase the price in an auction by shill bidding, he

could not benefit from it. This result was based on the assumption that the seller could submit only

one bid in the auction. However, in reality, their auction model is not appropriate because a seller may

submit multiple bids simultaneously, especially in concurrent online auctions.

Kauffman and Wood used a statistical approach to detecting shilling behaviors and showed how the

statistic data of a market would look like if opportunistic behaviors do exist [18]. They also showed

how to use an empirical model to test for questionable behaviors. However, their approach suffered

from a few problems, such as the need to review multiple auctions over a long period of time [19].

Furthermore, since the statistical approach was based on analyzing large volumes of historical auction

data, it was not applicable to directly analyzing any particular auctions where shilling behaviors might

be involved. Therefore, their approach is not suitable for detecting new shill bidders or shill bidders

who put in fake bids occasionally.

 4

Trevathan and Read designed an algorithm to detect the presence of shill bidding in online auctions

[20]. Their approach was based on a set of bidding patterns over a series of auctions held by a

particular seller, which can be used to calculate a score to indicate the likelihood that a bidder is a shill.

The authors summarized a set of patterns for shilling behaviors, which is useful in detecting shill

bidders. However, their approach is not convenient for specifying complex bidding behaviors, such as

shilling behaviors occurring in concurrent online auctions, which are more difficult to detect than

shilling behaviors appearing in standalone auctions.

There is also some previous work on using model checking techniques to verify certain properties of

electronic auction systems in the context of multi-agent systems [21, 22, 23]. Their approaches differ

from our approach because they either aimed to verify properties of multi-agent system specification

models using agent-based electronic auction systems as examples [21, 22], or attempted to use model

checking approach to verifying auction protocols [23]. In contrast, our approach is to automatically

generate formal auction models from existing auction data in concurrent online auctions, and verify if

an auction bidder has certain bidding behaviors. It is worth noting that some of our ongoing work

also involves development of trustworthy agent-based online auction systems [24], and we have

attempted to use our model checking approach to detecting malicious agents with shilling behaviors.

We used model checking approach for verifying bidding behavioral properties in concurrent online

auctions due to the expressive power of LTL in specifying complex bidding behaviors and the

efficiency of our approach in detecting shill suspects. In contrast to other formal methods, such as

theorem proving, model checking is completely automatic and fast [25]. Since our formal approach is

based on analyzing only a limited number of concurrent auctions, our approach supports efficient

search of shill suspects from a large amount of users. In this sense, our approach complements to

existing approaches such as statistical approaches that requires analyzing large volume of historical

auction data, which is time consuming but may lead to more accurate results [18].

3. Pattern-Based Modeling Checking Technique

3.1 The SPIN Model Checker

There is a wide variety of model checking tools available, such as the SPIN [6], the NuSMV2 [26],

Java Pathfinder [27], and the MARIA [28]. Among them, the SPIN model checker represents the most

 5

popular one that provides a friendly user interface and accepts model specifications written in

PROMELA (PROcess MEta LAnguage) [6, 29]. PROMELA is a language for building verification

models that represent an abstract of a system, which contains only those aspects that are relevant to

the properties one wants to verify [29]. A PROMELA program consists of processes, message channels,

and variables. Processes are defined globally; while message channels and variables can be declared

either globally or locally within a process. Processes are used to specify system behaviors, and

channels and global variables are used to define the environment in which the processes run.

Examples and further details about the PROMELA language can be found in references [6, 29].

There are two basic ways to use the SPIN model checking tool in system verification [29]. The first

approach is to use the tool to construct verification models that can be shown to have all the required

system properties. Such verification models can serve as specification models or high-level design

models of a system to be implemented. The second approach is to start from an existing system, and

based on the existing system, we build verification models that preserve the system behaviors to be

verified. In this case, if the verification models satisfy the required system properties, we can be

assured that the existing system also has the required system properties. The approach we proposed in

this paper belongs to the second category. Starting from existing online auction systems (i.e., English

auction systems) and auction data from specific concurrent auctions, we can automatically generate a

formal auction model. Since our generated formal auction model preserves the information about

users’ bidding activities extracted from the auction data, if the formal auction model can be shown to

have certain bidding behavioral properties, the users who participate in the concurrent online auctions

must also have such properties.

3.2 LTL and Composition Patterns

The two main types of temporal logic used in model checking are Computation Tree Logic (CTL) and

Linear Temporal Logic (LTL). CTL is a branching time logic that is most suitable for applications in

hardware verification; while LTL is a linear time logic that is typically used for applications in

software verification [29]. The SPIN model checker supports specification of system properties using

LTL, which has been proven to have good expressivity and more natural language like statements for

verification [30, 31]. LTL consists of only a few logic operators, such as [] (always), <> (eventually),

U (until), W (unless, or weak until) and O (next). Combining with Boolean operators, i.e., && (and), ||

 6

(or), ! (negation), → (logical implication) and ↔ (logical equivalence), LTL is capable of describing

many key properties of a concurrent software system.

On the other hand, like many other formal specification and verification methods, writing a LTL

formula is not easy and error prone. Even a person who has expertise in using LTL may still have a

difficult time in understanding the semantics of a LTL formula, such as []((Q && !R &&

<>R)→(P→ (!R U (S && !R))) U R). To solve this problem, Dwyer and his colleagues

proposed a pattern-based approach to help software engineers to specify requirements properties

without having to worry about the complexity and potential traps [10].

There are quite a few patterns proposed in previous work [10, 11]. Before we present some of the

patterns that we use in this paper, we first introduce a notation called pattern scope, which represents

the extent of a program execution over which the pattern must hold.

Q

Q

Q

R R

Q

Global

Before Q

After Q

Between Q and R

After Q until R

Q

R R Q

Q

Figure 1: Pattern scopes for pattern-based LTL

Figure 1 is an illustration of pattern scopes for pattern-based LTL adapted from [11]. The capital

letters Q and R stand for events. Every pattern can be assigned with one of the five scopes, in which

during the extent of the specified scope, a pattern must hold. It should be clarified that all these

pattern scopes be defined as closed-left and open-right. For example, if the scope is “Between Q and

R,” then Q is included in the scope, but R is excluded.

In Table 1, 2 and 3, we list three patterns with different pattern scopes that are used in this paper. For

example, in Table 1, we define the Absence pattern in pattern scope “Before R” as the LTL formula

<>R → (!P U R). The formula specifies that during the extent of the starting state and event R,

 7

event P does not occur. Similarly, in Table 2, we define the Existence pattern in pattern scope

“Between Q and R” as the LTL formula [](Q && !R→(!R W (P && !R)). The formula specifies

that during the extent of event Q and event R, event P must occur. For more LTL pattern definitions,

refer to previous work [11].

Table 1: Absence pattern (event P does not occur)

Pattern Scope Formula
Globally [](!P)

Before R <>R → (!P U R)
After Q [](Q → [](!P))
Between Q and R []((Q && !R && <>R) → (!P U R))
After Q until R [](Q && !R → (!P W R))

Table 2: Existence pattern (event P must occur)

Pattern Scope Formula
Globally <>(P)

Before R !R W (P && !R)

After Q [](!Q) || <>(Q && <>P))

Between Q and R [](Q && !R→(!R W (P && !R)))
After Q until R [](Q && !R → (!R U (P && !R)))

Table 3: Precedence pattern (event S precedes event P)

Pattern Scope Formula
Globally !P W S

Before R <>R → (!P U (S || R))
After Q []!Q || <>(Q && (!P W S))

Between Q and R []((Q && !R & <>R) → (!P U (S || R)))
After Q until R [](Q && !R → (!P W (S || R)))

4. Modeling Internet Concurrent Auctions

4.1 A Motivating Example

The basic idea of our approach is to automatically generate an auction model based on auction data

from two concurrent auctions, and verify if the auction model satisfies certain bidding behavioral

properties. We now formally define the concept of concurrent auctions as follows.

Definition 4.1 Concurrent Auctions

Let Auction 0 and Auction 1 be two auctions running in an online auction system during the time

periods of [Tstart0, Tend0] and [Tstart1, Tend1], respectively. Auction 0 and Auction 1 are called two

 8

concurrent auctions if they satisfy the following two conditions: (1) the auctioned items are of the

same type and are indistinguishable; (2) the Boolean formula (Tstart0 ≥ Tend1) ∨ (Tstart1 ≥ Tend0) evaluates

to false. Concurrent online auctions Auction 0 and Auction 1 are denoted as Auction 0 || Auction 1.

It is easy to show that the operator || for concurrent auctions is symmetric, but not transitive, i.e., (1)

Auction 0 || Auction 1 implies Auction 1 || Auction 0; and (2) Auction 0 || Auction 1 and Auction 1 ||

Auction 2 do not imply Auction 0 || Auction 2.

$0
$10
$20
$30
$40
$50
$60
$70
$80
$90

$100

1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00

Time

B
id

in
g

P
ric

e

Auction 0 Auction 1

S0 S1

E0

E1

Figure 2: The bidding activities of user A in two concurrent auctions

Figure 2 shows an example of two concurrent auctions Auction 0 and Auction 1 that are running

during the time periods of [1:00, 11:00] and [2:00, 12:00], respectively. To simplify matters, for the

rest of the paper, we assume that the auction that starts first is Auction 0, and the one that starts later is

Auction 1. The two curves show the changes of the bidding price over time for the two auctions. The

square marks represent user A’s bidding activities during the time period [1:00, 12:00]. Now we

define two predicates for each of the two auctions, i.e., “Price is lower” and “User A bids”. If any

predicate becomes true at a certain point of time in any of the two auctions, it means the event

happens at that time. For example, according to Figure 2, at time 4:00, the bidding price is lower in

Auction 1. Thus, at that time, the predicate “Price is lower” is true for Auction 1, but it is false for

Auction 0. Similarly, at the same time, since user A puts in his bid in Auction 1, “User A bids” is true

in Auction 1, but it is false in Auction 0.

To illustrate the basic idea of our approach, we use an example to show how to write a pattern-based

LTL formula for a certain bidding behavioral property. For instance, we want to detect the following

shilling behavior:

 9

While two auctions with the same type of auctioned items are running concurrently, a shill

bidder might put bids in the auction with higher bidding price rather than the one with

lower bidding price in order to drive up the price in one auction.

Since Auction 0 starts first and also ends first (as shown in Figure 2), we need to verify the following

property: after “start of Auction 1” until “end of Auction 0”, does “(User A bids in Auction 0 && Price

is lower in Auction 1) or (User A bids in Auction 1 && Price is lower in Auction 0) become true?”

The formula can be composed using the Existence pattern with “After Q until R” scope. If we use

“S1” to represent “start of Auction 1”, “E0” to represent “end of Auction 0,” “P” to represent “User A

bids in Auction 0 && Price is lower in Auction 1”, and “S” to represent “User A bids in Auction 1 &&

Price is lower in Auction 0”, the LTL formula can be written as ([](S1 && !E0 -> (!E0 U(P &&

!E0)))) || ([](S1 && !E0 -> (!E0 U(S && !E0)))). From Figure 2, we can see that the

shilling behavior specified above has occurred four times (at time 2:00, 6:00, 8:00 and 9:00). Thus,

the verification result for this LTL formula must be valid.

4.2 Preprocessing the Auction Data

The first step to generate an auction model is to preprocess the auction data. As shown in Figure 3,

this task is accomplished by a module component called Preprocessor, which extracts numeric data

from two concurrent auctions and preprocess the auction data through the following three steps.

Model Template
(template.txt)

Auction Data
(data.xls) Auction Model

Code (pan_in)

Symbol
Definitions

(definitions.txt)

Auction
 Model

 Model Generator
 Preprocessor

Calculate Data Size

Parse User List

Re-arrange Data

Generator
Code Generator

Definition Generator

Figure 3: The generation of an auction model

 10

1. Calculate Data Size: Calculate the number of bidding actions in each of the two auctions.

2. Parse User List: Parse the user names and store them in a file.

3. Re-arrange Data: According to the bidding time, interleave the bidding activities happened in the

two concurrent auctions.

After the auction data has been preprocessed, it is passed to a module component called Generator.

As shown in Figure 3, the model generator takes the auction model template and the preprocessed

auction data to produce a specific auction model that consists of an auction model coded in PROMELA

and an LTL symbol definition file. The auction model coded in PROMELA and the LTL symbol

definition file will be passed to the SPIN model checker for property verifications.

4.3 The Auction Model Template

The auction model template we developed is based on English auctions, which is written in PROMELA

language. The template allows us to generate different auction models according to different extracted

numeric auction data from concurrent online English auctions systems, for example, the eBay auction

house.

As shown in Table 4, in the auction model template, we first define the global variables (line 1~19),

which are initialized using values extracted from the auction data in the init procedure (line 56~67).

These global variables can be used to define symbols to compose LTL formulae. The symbols for

composition of LTL formulae are defined in the symbol definition file, which is described in Section

4.4. In line 27~28, we define the local variables that can only be used by the model checker (we do

not show the definitions of local variables in Table 4 due to space limitation).

The code between line 25~54 specifies the state transitions of the bidding process. When each auction

round starts, all flags are cleared (line 33). Then according to different bidding cases, the model runs

differently. For example, if the bidding case is “1”, it means that a bidder placed a bid in Auction 0,

and at the same time, no one was bidding in Auction 1. To handle this case, we first set up the flags

for Auction 0, and then we update all the old values of the relevant variables from the previous bid in

Auction 0 to the new values that represent the current bid (line 36~44). Similarly, if the bidding case is

“2”, which means a bidder placed a bid in Auction 1, and at the same time, no one was bidding in

Auction 0, we should set up the flags and update the relevant variables defined for Auction 1

accordingly.

 11

Table 4: Auction model template code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
54
55
56
57
58
59
60
61
62
63
64
65
66
67

/* definitions of global variables */
int finalRound = ...; // total number of rounds
byte biddingCase[...]; // sequence of bidding cases
byte flag0[...]; // flag for special events in auction0
int reservePrice0 = ...; // reserve price set by seller
int currentHighestBid0 = ...; // current highest bid in auction0
int previousHighestBid0 = ...; // previous highest bid in auction0
int increment0[...]; // increment of the bidding price
bit startPoint0 = 0; // auction0 has not yet started
bit reservePoint0 = 0; // reserve price has not yet reached
bit endPoint0 = 0; // auction0 has not yet ended
...

typedef Auction {
int dataSize; // number of bids in the auction
int timeInterval[...]; // time interval between two bids
byte userIDs[...]; // user who places the bid
int bidAmount[...]; // the amount of the bid

};

Auction auction0, auction1;
int timeElapse0, timeElapse1;
int roundCount = 0;

proctype ModelChecker() {

 /* definitions of local variables */
 ...
 chec
 do

kingState:

 ::(roundCount < finalRound)-> // auctions not completed
 d_step{ // indivisibly code fragment
 ... // clear all flags
 if
 ::(biddingCase[roundCount]==1)-> // bidding case 1
 if
 ::(flag0[roundCount]==1)-> startPoint0 = 1;
 ::(flag0[roundCount]==2)-> reservePoint0 = 1;
 ::else -> skip;
 fi;
 increment0[userID0] = auction0.bidAmount[index0] –
 currentHighestBid0; // increment of bidding price
 ...

 /* code for bidding case 2-9 */
 ...
 fi;
 roundCount++;
 }
 :: else -> goto endState;
 od;
 endState: skip;
}

init {
 bidSeq[0] = ...; // set bidding cases
 ...
 auction0.dataSize = ...; // set number of bids in auction0
 auction0.timeInterval[0] = ...; // set time interval for two bids
 auction0.userIDs[0] = ...; // set user who places the bid
 auction0.bidAmount[0] = ...; // set the amount of the bid
 ...
 flag0[0] = ...; // set flag for special events
 ...
 run ModelChecker(); // run the model checking process
}

 12

Since each auction can be in a state of “bidding”, “not biding” and “end”, we have nine combinations

for two concurrent online auctions. In Table 5, we list nine different biding cases, and each case

represents a combined state for two concurrent online auctions. Note that if an auction is in the “not

bidding” state, then no one is bidding in that auction while the auction has either not started or not yet

finished.

Table 5: List of nine bidding cases

 Auction
Bidding Case Auction 0 Auction 1

Case 1 Bidding Not Bidding
Case 2 Not Bidding Bidding
Case 3 Not Bidding Not Bidding
Case 4 Bidding Bidding
Case 5 Bidding End
Case 6 Not Bidding End
Case 7 End Not Bidding
Case 8 End Bidding
Case 9 End End

4.4 Symbol Definitions for LTL

In order to verify properties specified in LTL formulae, we need to define symbols that can be used in

formula composition. Before we show the symbol definitions, we first define a few key notions as

follows.

Definition 4.2 Reserve Price

Although sellers are not required to place reserve prices for auctioned items, the reserve price can be

generalized as a parameterized value that is close to the final auction price. For our model checking

purpose, we define the reserve price in an auction as a value that equals to 80 percent of the final

auction price.

Definition 4.3 Overbid

In an auction, a bid is called an overbid if the price difference between the current bid and the

previous bid is big enough, which is defined as 2 percent of the final auction price with a minimum of

10 dollars. An overbid in an auction is considered as a bid in large increment from the previous bid.

 13

Definition 4.4 Deliberate Bid

In an auction, a bid is called a deliberate bid if the time gap between the current bid and the previous

bid is long enough, which is defined as over 7200 seconds or 2 hours. A deliberate bid implies a

deliberate decision made by a bidder.

Definition 4.5 Underbid

In an auction, a bid is called an underbid if the price difference between the current bid and the

previous bid is small enough, which is defined as less than 3 dollars. An underbid in an auction is

considered as a bid in small increment from the previous bid.

Definition 4.6 Aggressive Bid

In an auction, a bid is called an aggressive bid if the time gap between the current bid and the

previous bid is small enough, which is defined as less than 60 seconds. An aggressive bid implies a

quick response in driving up the bidding price.

Table 6 lists a few symbol definitions that are used for formula composition described in Section 5.

We define most of the terms to be self-explanatory. For example, start0 (start1) denotes the start

of Auction 0 (Auction 1); while end0 (end1) denotes the end of Auction 0 (Auction 1). Similarly, the

symbol reserve0 (reserve1) denotes that the reserve price of Auction 0 (Auction 1) is reached.

However, for a term like bid0_0, the first “0” denotes Auction 0, and the second “0” denotes the

bidding behavior of User 0. Thus, if a user numbered 16 bids in Auction 0, then this event should be

represented by the symbol bid0_16.

Table 6: Symbol definitions for LTL formulae

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// the bidding activities of the users
#define bid0_0 (increment0[0] > 0)
#define bid0_1 (increment0[1] > 0)
...
// users’ bidding in large increments
#define overBid0_0 (increment0[0] > ...)
#define overBid0_1 (increment0[1] > ...)
...
// users’ bidding in small increments
#define underBid0_0 (increment0[0] < ...)
#define underBid0_1 (increment0[1] < ...)
...
// definition of deliberate bids
#define deliBid0 (timeElapse0 > ...)
#define deliBid1 (timeElapse1 > ...)
// definition of aggressive bids

 14

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

#define aggrBid0 (timeElapse0 < ...)
#define aggrBid1 (timeElapse1 < ...)
// start of auctions
#define start0 (startPoint0==1)
#define start1 (startPoint1==1)
// the events that the reserve price has been reached
#define reserve0 (reservePoint0==1)
#define reserve1 (reservePoint1==1)
// end of auctions
#define end0 (endPoint0==1)
#define end1 (endPoint1==1)
// the condition that the bidding price in one auction
// is lower than that in another one
#define p0Lower
 ((currentHighestBid0-previousHighestBid1) < 0)
#define p1Lower
 ((currentHighestBid1-previousHighestBid0) < 0)

Symbol definitions can be used to ease the task of writing LTL formulae. For example, the predicate

“User 5 bids in Auction 0 && Price is lower in Auction 1” can be written as (bid0_5 && p1Lower).

Note that based on Definition 4.2-4.6, the set of symbol definitions can be automatically generated.

4.5 The Model Checking Process

After the auction model has been created and the LTL formulae have been designed, the model

checking process becomes straightforward. The model checking process can be automated using the

SPIN model checker. As shown in Figure 4, the SPIN formula translator first translates the LTL

formula into a never claim, which is used to match behaviors that should never occur. With the never

claim, the verification system could flag it as an error if the full behavior specified in the claim could

be matched by any feasible system execution [29]. The never claim is written in PROMELA code, so it

can be appended to the system definition file in the SPIN verifier generator. When the model is

running, the claim process is executed at each step of the system. As soon as the property specified in

the claim is violated, the system terminates and indicates that the error behavior occurred; otherwise,

the LTL formula will evaluate to valid.

The SPIN verifier generator generates the model verifier source code based on the auction model in

PROMELA code and the system definition file appended by the never claim. The verification source

code is then compiled into an executable file using a gcc compiler. By running the executable model

verifier, we can get the model checking result, which is either valid or invalid. An invalid result

indicates that during the verification process, the model verifier encountered errors. In other words,

 15

the auction model we developed violates the property specified in the LTL formula. In contrast, if the

result is valid, it indicates that the behavioral property we specified is satisfied by the auction model.

Model Checking Process

Symbol Definitions
(definitions.txt)

Promela Model
Code (pan_in)

LTL Formula

SPIN Verifier
Generator

Gcc Compiler

SPIN Formula
Translator Verifier

(pan.exe)

Verifier Souce
Code (pan.c)

Never Claim

SPIN Model Checker

Result
(valid/invalid)

Figure 4: Model checking process

5. Bidding Behavior Predicates

To facilitate the process of model checking bidding behaviors and detecting shill suspects in

concurrent online auctions, we developed a toolkit that can be used to calculate a user’s accumulated

points for being a shill bidder, called S-Points. The toolkit is based on our previous implementation of

the pattern-based model checking tool that can help to automate the model checking process for data

processing, LTL formula design and invocation of the SPIN model checker [32]. The calculation of S-

Points is according to a set of bidding behavior predicates that denote either positive or negative

indications for shill bidders. A positive indication of shilling behaviors is a bidding pattern that

indicates a user is likely a shill; while a negative indication of shilling behaviors is a bidding pattern

that indicates a user is not likely a shill.

Most of the previous work only checks positive indication of shilling behaviors in detecting shill

bidders. We argued that negative indications of shilling behaviors are equally important in

determining the likelihood of a shill bidder by providing evidence that the user is not likely a shill. In

 16

the following, we summarize the bidding behavior predicates for both positive and negative

indications of shilling behaviors, and their associated temporal formulae that are used in our toolkit.

Predicate 1: User bids in an auction only after the reserve price in that auction is reached.

Pattern Used: Precedence, globally.

Formula 1.1 User bids in Auction 0 only after the reserve price in Auction 0 is reached.

(!bid0_i W reserve0) i.e., (!bid0_i U reserve0)||([]!bid0_i)

Formula 1.2 User bids in Auction 1 only after the reserve price in Auction 1 is reached.

(!bid1_i W reserve1) i.e., (!bid1_i U reserve1)||([]!bid1_i)

Explanation: A user bids only after the reserve price is reached in an auction is most likely a last-

minute bidder or called a bid sniper, who only cares about if he can win the auction. Thus, a user with

this kind of behavior (when the formula evaluates to be valid) is not likely a shill bidder. The

predicate bid0_i in Formula 1.1 refers to the bidding activities of the user numbered i in Auction 0,

which is defined in the symbol definition file. Similarly, the predicate bid1_i in Formula 1.2 refers

to the bidding activities of the user numbered i in Auction 1. Since the SPIN does not directly support

the temporal operator W (unless) in a LTL formula, the resulting formula needs to be converted to a

LTL formula without using the W operator. The conversion can be automatically done in our toolkit

according to the valid formula of “p W q <=> (p U q || []p).” Thus, for the following temporal

formulae, we always use the W operator directly when needed.

Predicate 2: User bids in one auction only after another auction ends.

Pattern Used: (1) Existence, after Q; (2) Precedence, globally.

Formula 2.1: User bids in Auction 0 only after Auction 1 ends.
([](!end1) || <>(end1 && <>bid0_i))) && (!bid0_i U end1)||([]!bid0_i)

Formula 2.2: User bids in Auction 1 only after Auction 0 ends.
([](!end0) || <>(end0 && <>bid1_i))) && (!bid1_i U end0)||([]!bid1_i)

Explanation: Each of the above formula consists of two parts. For example, in Formula 2.1, the first

part of the formula ([](!end1) || <>(end1 && <>bid0_i))) is used to test if a user bids in

Auction 0 after Auction 1 ends, i.e., the event of the user’s bidding activity in Auction 0 exists after

Auction 1 ends (denoted by end1). The second part of the Formula 2.1 (!bid0_i U

end1)||([]!bid0_i) is used to test if the user bids in Auction 0 only after Auction 1 ends, i.e., the

event of end1 precedes any event of the user’s bidding activity in Auction 0. A user with such

behavior only bids when an auction is close to the end, and focuses on bidding one auction at a time.

 17

This kind of bidding behavior is very normal, though the bidder may have to bid on an item with

higher price using his bidding strategy.

Predicate 3: User places a deliberate overbid before the reserve price in that auction is reached, but

does not bid at all thereafter.

Pattern Used: (1) Existence, before R; (2) Absence, after Q.

Formula 3.1: User places a deliberate overbid before the reserve price in Auction 0 is reached, but

does not bid at all thereafter.
((!reserve0 W ((overBid0_i && deliBid0) && !reserve0))) && ([](reserve0 ->

[](!bid0_i)))

Formula 3.2: User places a deliberate overbid before the reserve price in Auction 1 is reached, but

does not bid at all thereafter.
((!reserve1 W ((overBid1_i && deliBid1) && !reserve1))) && ([](reserve1 ->

[](!bid1_i)))

Explanation: This property implies that a user places an overbid to stimulate the bidding when he

notices that it has been a while since the previous bid was placed, and he stops bidding after the bid

reaches the reserve price. This behavior is highly suspicious for shill biddings. Note that a true value

of deliBid0 means that in Auction 0, the time interval between the currently placed bid and the

previous bid is longer than the limit we have set, so the bid is considered as a deliberate bid. The

formula (overBid0_i && deliBid0) specifies that user i places a deliberate overbid in Auction 0.

Predicate 4: User always places aggressive underbids in either of the concurrent auctions.

Pattern Used: Universality, Between Q and R.

Formula 4.1: User always places aggressive underbids in Auction 0.

[]((start0 && !end0 && <>end0) → ((underBid0_i && aggrBid0) U end0))

Formula 4.2: User always places aggressive underbids in Auction 1.

[]((start1 && !end1 && <>end1) → ((underBid1_i && aggrBid1) U end1))

Explanation: This property implies that a user always places small bids aggressively to outbid

legitimate bids in order to drive up the final auction price, which is also a typical shilling strategy.

This formula uses the Universality pattern, which can be derived from the Absence pattern by

substituting !P with P in each of the formulae in Table 1.

 18

Predicate 5: User wins either of the auctions in two concurrent auctions.

Pattern Used: Existence, Before R.

Formula 5.1: User wins Auction 0.
!end0 W ((winningBid0 && bid0_i) && !end0)

Formula 5.2: User wins Auction 1.
!end1 W ((winningBid1 && bid1_i) && !end1)

Explanation: If a shill accidentally wins an auction, the auction will have to be repeated with cost to

the seller [20]. Thus, a typical shill will try his best to avoid winning an auction, and a bidder who

actually wins an auction is not likely a shill.

Predicate 6: During the overlapping of two concurrent auctions, user bids in an auction that has

higher bidding price.

Pattern Used: Existence, Between Q and R.

Formula 6.1: During the overlapping of Auction 0 and Auction 1, user bids in Auction 0 that has

higher bidding price. Since we assume the auction that starts first is always Auction 0, start1

always does not precede start0. Therefore, we only need to consider two cases, i.e., end1 does not

precede end0 (F6_1_1) and end0 does not precede end0 (F6_1_2).
F6_1_1: !(!end0 W end1) -> ([](start1 && !end0 -> (!end0 W ((bid0_i &&

p1Lower) && !end0))))
F6_1_2: !(!end1 W end0) -> ([](start1 && !end1 -> (!end1 W ((bid0_i &&

p1Lower) && !end1))))

The complete Formula 6.1 is (F6_1_1 || F6_1_2).

Formula 6.2: During the overlapping of Auction 0 and Auction 1, user bids in Auction 1 that has

higher bidding price. Similarly, we have two cases for formula 6.2: end1 does not precede end0

(F6_2_1) and end1 does not precede end0 (F6_2_2).
F6_2_1: !(!end0 W end1) -> ([](start1 && !end0 -> (!end0 W ((bid1_i &&

p0Lower) && !end0))))
F6_2_2: !(!end1 W end0) -> ([](start1 && !end1 -> (!end1 W ((bid1_i &&

p0Lower) && !end1))))

The complete Formula 6.2 is (F6_2_1 || F6_2_2).

Explanation: During the overlapping time of the two auctions, any user who does not bid in the

auction that has lower bidding price could be suspicious. The purpose of bidder’s such bidding

behavior could be simply to drive up the auction price without caring about winning the auction with

a good price. Since a shill bidder would try to avoid bidding after the reserve price is reached in order

 19

to avoid winning the auction, we can further narrow down the pattern scope to make the result more

accurate. The new scope is during the overlapping of two concurrent auctions, but before the earlier

reserve price has been reached. This case is described in Predicate 7.

Predicate 7: During the overlapping of two concurrent auctions, but before the earlier reserve price

has been reached, user bids in auctions that has higher bidding prices.

Pattern Used: (1) Existence, Between Q and R; (2) Precedence, globally.

Formulae 7.1: During the overlapping of Auction 0 and Auction 1, but before the earlier reserve price

has been reached, user bids in Auction 0 that has higher bidding price. Similar to Formula 6.1, here we

need to consider two cases: reserve1 does not precede reserve0 (F7_1_1) and reserve0 does

not precede reserve1 (F7_1_2).
F7_1_1: !(!reserve0 W reserve1) -> ([](start1 && !reserve0 -> (!reserve0 W

((bid0_i && p1Lower) && !reserve0))))
F7_1_2: !(!reserve1 W reserve0) -> ([](start1 && !reserve1 -> (!reserve1 W

((bid0_i && p1Lower) && !reserve1))))

The complete Formula 7.1 is: (F7_1_1 || F7_1_2).

Formula 7.2: During the overlapping of Auction 0 and Auction 1, but before the earlier reserve price

has been reached, user bids in Auction 1 that has higher bidding price. Similarly, we have two cases:

reserve1 does not precede reserve0 (F7_2_1) and reserve0 does not precede reserve1

(F7_2_2).
F7_2_1: !(!reserve0 W reserve1) -> ([](start1 && !reserve0 -> (!reserve0 W

((bid1_i && p0Lower) && !reserve0))))
F7_2_2: !(!reserve1 W reserve0) -> ([](start1 && !reserve1 -> (!reserve1 W

((bid1_i && p0Lower) && !reserve1))))

The complete Formula 7.2 is: (F7_2_1 || F7_2_2).

Explanation: This property is similar to Property 6, but with narrowed pattern scope. It should be

noted that any user who satisfies Property 7 must also satisfy Property 6. In this case, the user with

such bidding behavior will actually receive points twice towards his S-Points. However, this is

reasonable because a user who satisfies Property 7 is highly suspicious for being a shill bidder.

To calculate the S-Points of a user, we define the following formulae to accumulate the user’s S-

Points according to various temporal formulae that specify either positive or negative indications of

shilling behaviors.

 20

 point(U, 0).

 point(U, P+1) :- positive-indication(U, PF), point(U, P).

 point(U, P-1) :- negative-indication(U, NF), point(U, P).

Here, positive-indication(U, PF) is a predicate that denotes user U is a possible shill according to

temporal formula PF, negative-indication(U, NF) is a predicate that denotes user U is not likely a shill

according to temporal formula NF, and point(U, P) is a predicate that denotes user U’s accumulated

S-Points is P. User U has initially 0 S-Points. The corresponding S-Point of each temporal formula

described above is listed in Table 7. Note that in Table 7, a “P” or “N” indication of a temporal

formula denotes that the formula is positive or negative indication of shilling behaviors, respectively.

Table 7: Usage of temporal formulae in calculating user’s S-Points

Formula 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2
Indication N N N N P P P P N N P P P P
S-Point -1 -1 -1 -1 1 1 1 1 -1 -1 1 1 1 1

According to Table 7, a user’s S-Points can be calculated by accumulating the S-Point based on the

verification results of the aforementioned temporal formulae. A user receive an S-Point (either -1 or 1)

associated with a temporal formula if and only if the temporal formula is evaluated to be valid for the

user. The higher S-Points a user has, the higher possibility the user is a shill bidder.

6. Case Study: Detection of Shill Bidders

The purpose of model checking bidding behaviors in Internet concurrent auctions is to gain a better

understanding of online auctions, and more importantly, it can be used to efficiently detect shill

suspects in concurrent online auctions. In this section, we use a case study to show how potential

shills can be detected using our model checking approach.

We collected some recent auction data of two concurrent auctions from eBay with the title of

auctioned items as “HP/COMPAQ PRESARIO LAPTOP CD-RW BURNER DVD WIRELESS.”1

Both auctions are held by the same seller and the detailed descriptions of the auctioned items are

shown in Table 8.

1 We have applied our approach on various real auction data collected from eBay. The reason we chose this
example as our case study is that it represents a typical concurrent auction with potential shill bidders.

 21

Table 8: Descriptions of the auctioned items

Item Specifics – PC Laptops
Brand: Compaq Hard Drive Cap: 60 GB
Chip Type: -- Screen Size: 15 inches
Model: -- OS Included: Yes
Processor Speed: 1.4 GHz Primary Drive: CD-RW/DVD Combo
Memory 512 MB Condition: --

Some of the auction data for the two concurrent auctions is listed in Figure 5. To protect the privacy

of the users, we have changed all user IDs. In addition, we have made the following adjustments on

the raw auction data. We erased all currency symbols and time zone abbreviations to make them

appear simpler. We also rounded up all bidding prices that have decimals because the SPIN tool

cannot handle decimals. Note that each user name is associated with a numeric value in parentheses,

such as paperchen(5). The number represents the user’s feedback score, and usually, a higher

feedback score is a good sign for better comments and higher rating for the user.

Figure 5: Auction data from two concurrent auctions before preprocessing

 22

Since the winning bids of the two concurrent auctions (Auction 0 and Auction 1) are $630 and $620,

according to Definition 4.2, the reserve prices for the two auctions are $504 and $496, respectively.

We set the price difference for overbid as $13 and $12 for Auction 0 and Auction 1, respectively,

which are 2% of the final auction prices by Definition 4.3. We also set the price difference for

underbid as $3 according to Definition 4.5. By Definition 4.4 and 4.6, the time gap for deliberate bid

and aggressive bid are 7200 seconds and 60 seconds, respectively. In practice, the above parameters

can be further adjusted according to auction administrator’s experiences and observations.

In the two concurrent online auctions, there are totally 35 users, among which we selected to

investigate the following four users: “paperchen”, “benniten23”, “andy293” and “yass3d”. This is

because these four users are the only bidders who are involved in both of the two concurrent auctions,

and thus, they are more likely to be shill bidders.

Figure 6: Auction data from two concurrent auctions after preprocessing

 23

After the auction data is preprocessed using our model checking tool, the auction data is re-arranged

as shown in Figure 6. Notice that the data from the two concurrent auctions is interleaved according

to the bidding time. Based on the interleaved auction data, we can draw the price-time diagram and

show the overlapping style of the two concurrent auctions. As shown in Figure 7, S0/S1 represents

the event of “Auction 0/Auction 1 starts” and E0/E1 represents the event of “Auction 0/Auction 1

ends,” thus the two concurrent auctions overlap in time period [S1, E0]. Since we set $504 and $496

as the reserve prices for Auction 0 and Auction 1, respectively, the small filled circles (denoted as R0

and R1 in Figure 7) represent the events of “Auction 0 reaches the reserve price” and “Auction 1

reaches the reserve price.”

$0

$100

$200

$300

$400

$500

$600

$700

Ju
l-2

8-0
5 1

9:0
1:23

Ju
l-2

8-0
5 1

9:4
2:28

Ju
l-2

8-0
5 2

0:1
4:55

Ju
l-2

8-0
5 2

0:5
7:52

Ju
l-2

8-0
5 2

1:1
1:23

Ju
l-2

9-0
5 0

4:5
2:18

Ju
l-2

9-0
5 0

6:4
9:06

Ju
l-2

9-0
5 0

7:1
0:01

Ju
l-2

9-0
5 0

7:1
1:05

Ju
l-2

9-0
5 0

7:4
3:29

Ju
l-2

9-0
5 1

1:3
4:14

Ju
l-2

9-0
5 1

3:0
3:22

Ju
l-3

0-0
5 1

3:5
2:25

Ju
l-3

0-0
5 2

0:2
3:35

Ju
l-3

1-0
5 0

2:5
1:23

Ju
l-3

1-0
5 0

7:2
6:11

Ju
l-3

1-0
5 1

0:0
5:00

Ju
l-3

1-0
5 1

7:1
8:07

Ju
l-3

1-0
5 1

8:3
2:19

Ju
l-3

1-0
5 1

8:4
6:06

Ju
l-3

1-0
5 1

9:1
0:28

Ju
l-3

1-0
5 1

9:1
5:47

Time

B
id

di
ng

 P
ric

e

Auction 0 Auction 1

R0 R1

S0
S1

E0 E1

Figure 7: Overlapping style of the two concurrent auctions

We now use our model checking tool to verify the bidding behavioral properties of the four users

according to the temporal formulae described in Section 4. The computation only took a few

seconds, which is quite efficient for any reasonable sizes of auction data as shown in this case study.

The model checking results for all four users are shown in Table 9. Note that the number listed in the

brackets immediately following each verification results represents the S-Point. The total S-Points of

a user is the sum of the S-Point for each LTL formula.

 24

Table 9: Model checking results for 4 users

 User
Formula paperchen (5) benniten23 (1) andy293 (12) yass3d (12)
Formula 1.1 invalid [0] invalid [0] valid [-1] valid [-1]
Formula 1.2 invalid [0] invalid [0] valid [-1] invalid [0]
Formula 2.1 invalid [0] invalid [0] invalid [0] invalid [0]
Formula 2.2 invalid [0] invalid [0] valid [-1] invalid [0]
Formula 3.1 valid [1] invalid [0] invalid [0] invalid [0]
Formula 3.2 valid [1] invalid [0] invalid [0] invalid [0]
Formula 4.1 invalid [0] invalid [0] invalid [0] invalid [0]
Formula 4.2 invalid [0] invalid [0] invalid [0] invalid [0]
Formula 5.1 invalid [0] invalid [0] invalid [0] invalid [0]
Formula 5.2 invalid [0] invalid [0] invalid [0] invalid [0]
Formula 6.1 invalid [0] valid [1] valid [1] valid [1]
Formula 6.2 valid [1] valid [1] invalid [0] invalid [0]
Formula 7.1 invalid [0] valid [1] invalid [0] invalid [0]
Formula 7.2 valid [1] valid [1] invalid [0] invalid [0]
Total S-Points 4 4 -2 0

Based on the above model checking results, we may draw our conclusions as follows:

1. User “paperchen” has S-Points of 4. This user is most likely a shill bidder due to the following

two major reasons: (1) user “paperchen” attempts to drive up the bidding price, and stops bidding

after the price reached the reserve price. When a certain time has passed after the last bid was

placed, the user would try to create a competitive bidding atmosphere by placing overbids

(according to the verification results of Formula 3.1 and 3.2); (2) during the time period [S1, R0]

(refer to Figure 7), the user places bids in Auction 1 that has higher bidding price (according to

the verification results of Formula 6.2 and 7.2).

2. User “benniten23” also has S-Points of 4. The user is very likely a shill bidder because he puts in

bids on an item that has higher bidding price in both Auction 0 and Auction 1 (according to the

verification results of Formula 6.1, 6.2, 7.1 and 7.2). The user has such bidding behavior during

the overlapping of the two auctions, especially before R0 has been reached (refer to Figure 7).

Thus, the purpose of such activities is very likely to drive up the bidding price.

3. User “andy293” and “yass3d” have S-Points of -2 and 0, respectively. Both of the users are not

likely shills because their bidding behaviors look very normal. Both of them like to bid when the

auctions are close to the ends (according to the verification results of Formula 1.1, 1.2). In

addition, user “andy293” likes to bid in one auction at a time (according to the verification result

of Formula 2.2).

 25

The aim of our approach is to detect shill suspects efficiently based on auction data from a number of

concurrent auctions, where analysis of large volumes of historical auction data is not required. The

model checking results provide us evidences for detecting shill suspects in concurrent online

auctions, and our case study shows that shill suspects can be efficiently detected. However, the above

analysis is not sufficient for drawing a conclusion that both “paperchen” and “benniten23” must be

shills. To collect more evidences for a more accurate result, we may further verify additional

properties that combine with other evidences such as users’ IP addresses, ratings and trading

histories. Details on verifying additional evidence of users are outside the scope of focus for this

paper, but can be found in earlier work [16, 18, 20].

7. Conclusions and Future Work

In this paper, we introduced a model checking approach to verifying bidding behaviors including

shilling behaviors and normal bidding behaviors in concurrent online auctions. We proposed an

auction model template that supports automatic generation of auction models based on auction data

from two concurrent online auctions. We also summarized a set of LTL formulae that specify bidding

behaviors of users for detection of shill suspects in concurrent online auctions. The case study, which

is based on auction data from an existing auction house – eBay, shows that our approach is feasible

and efficient. Our approach can be easily extended to support model checking bidding behaviors in

more than two concurrent online auctions. For our future work, we will try to combine our approach

with other approaches, such as the statistical approaches, to develop a more accurate method for

detection, prevention, and prediction of shill bidders.

Acknowledgments: This material is based upon work supported by the Chancellor’s Research Fund

and UMass Joseph P. Healey Endowment Grants. We thank Jarrod Trevathan for proof-reading our

paper and providing some valuable references. We also thank all anonymous referees for the careful

review of this paper and the many suggestions for improvements they provided.

References

1. M. Harkavy, J. D. Tygar, and H. Kikuchi. Electronic Auctions with Private Bids. Proceedings of

the 3rd USENIX Workshop on Electronic Commerce, September 1998, pp. 61-73.

 26

2. A. Vakali, L. Angelis, D. Pournara. Internet Based Auctions: A Survey on Models and

Applications. ACM SIG on E-commerce Exchanges, Vol. 2, No. 2, Jun 2001, pp. 5-13.

3. R. J. Kauffman and C. A. Wood. Running up the Bid: Detecting, Predicting, and Preventing

Reserve Price Shilling in Online Auctions. Proceedings of the 5th International Conference on

Electronic Commerce, Pittsburgh, Pennsylvania, 2003, pp. 259-265.

4. W. Wang, H. Zoltán, and A. B. Whinston. Shill Bidding in Multi-Round Online Auctions.

Proceedings of the 35th Hawaii International Conference on System Sciences (HICSS’02),

Hawaii, 2002.

5. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 2000.

6. G. J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engineering, Vol.

23, No. 5, 1997, pp. 279-295.

7. L. K. Dillon and S. Sanka. Introduction to the Special Issue. IEEE Transactions on Software

Engineering, Special Issue on Formal Methods in Software Practice, Vol. 23, No. 5, May, 1997,

pp. 265-266.

8. H. Xu and S. M. Shatz. A Framework for Model-Based Design of Agent-Oriented Software.

IEEE Transactions on Software Engineering, January 2003, Vol. 29, No. 1, pp. 15-30.

9. Y. Cheng and H. Xu. A Formal Approach to Detecting Shilling Behaviors in Concurrent Online

Auctions. Proceedings of the 8th International Conference on Enterprise Information Systems

(ICEIS 2006), May 2006, Paphos, Cyprus, pp. 375-381.

10. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property Specification Patterns for Finite-state

Verification. Proceedings of the 2nd Workshop on Formal Methods in Software Practice, March

1998.

11. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in Property Specifications for Finite-

State Verification. Proceedings of the 21st International Conference on Software Engineering,

Los Angeles, 1999, pp. 16-22.

12. C. Dellarocas and P. Resnick. Online Reputation Mechanisms: A Roadmap for Future Research.

Summary Report of the First Interdisciplinary Symposium on Online Reputation Mechanisms,

April 26-27, 2003.

13. C. A. Wood, M. Fan, and Y. Tan. An Examination of the Reputation Systems for Online

Auctions. Proceedings of the Workshop for Information Systems and Economics (WISE 2002),

Barcelona, Spain, Dec. 2002.

14. P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara. Reputation Systems.

Communications of the ACM, Vol. 43, No. 12, December 2000, pp. 45-48.

 27

15. J. H. Dobrzynski. In Online Auctions, Rings of Bidders. The New York Times, June 2, 2000.

16. S. Rubin, M. Christodorescu, V. Ganapathy, J. Giffin, et al. An Auctioning Reputation System

Based on Anomaly Detection. Proceedings of the 12nd ACM Conference on Computer and

Communication Security, Alexandria, 2005.

17. I. Chakraborty and G. Kosmopoulou. Auctions with Shill Bidding. Economic Theory, Springer,

Vol. 24, Issue 2, 2004, pp. 271-287.

18. R. J. Kauffman and C. A. Wood. Running up the Bid: Modeling Seller Opportunism in Internet

Auctions. Proceedings of the Sixth Americas Conference on Information Systems (AMCIS 2000),

M. Chung (ed.), Long Beach, CA, 2000, pp. 929-935.

19. R. Bapna and A. Gupta. Online Auctions: A Closer Look. The E-Business Handbook, P. B.

Lowry, R. J. Watson, and J. O. Cherrington (eds.), St. Lucie Press, Boca Raton, FL, 2002, pp. 85-

98.

20. J. Trevathan and W. Read. Detecting Shill Bidding in Online English Auctions. Technical Report,

James Cook University, May 2006.

21. M. Huget, M. Esteva, S. Phelps, C. Sierra, et al. Model Checking Electronic Institutions. ECAI

Workshop on Model Checking and Artificial Intelligence (MoChart-2002), Lyon, 2002.

22. R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model Checking AgentSpeak.

Proceedings of the Second International Joint Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS-2003), Melbourne, Australia, July 2003.

23. C. Walton. Model Checking Multi-Agent Web Services. Proceedings of the 2004 Spring

Symposium on Semantic Web Services, Stanford, California, USA, March 2004.

24. R. J. Patel and H. Xu. A Trustworthy Agent Based Online Auction System. Technical Report,

Computer and Information Science Department, University of Massachusetts Dartmouth, May

2006.

25. E. Clarke and J. Wing. Formal Methods: State of the Art and Future Directions. ACM Computing

Surveys, Vol. 28, No. 4, December 1996, pp. 626-643.

26. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, et al. NuSMV2: An OpenSource Tool

for Symbolic Model Checking. Proceeding of International Conference on Computer-Aided

Verification (CAV 2002), Copenhagen, Denmark, July 27-31, 2002.

27. K. Havelund. Java PathFinder: A Translator from Java to PROMELA. Proceedings of the 5th and

6th International SPIN Workshops on Theoretical and Practical Aspects of SPIN Model

Checking, Springer-Verlag, 1999, pp. 152.

 28

28. M. Makela. Maria: Modular Reachability Analyser for Algebraic System Nets. In J. Esparza and

C. Lakos, editors, Application and Theory of Petri Nets 2002, 23rd International Conference,

ICATPN 2002, Vol. 2360, LNCS, June 2002, pp. 434-444.

29. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison Wesley,

2003.

30. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification.

Springer-Verlag, 1992.

31. E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another Look at LTL Model Checking. Formal

Methods in System Design, Vol. 10, Issue 1, February 1997, pp. 47-71.

32. Y. Cheng. A Formal Approach to Detecting Shilling Behaviors in Concurrent Online Auctions.

Master’s Thesis, Computer and Information Science Department, University of Massachusetts

Dartmouth, September 2005.

 29

	Introduction
	Related Work
	3. Pattern-Based Modeling Checking Technique
	Modeling Internet Concurrent Auctions
	Bidding Behavior Predicates
	Case Study: Detection of Shill Bidders
	Conclusions and Future Work
	References

