

PAPER MANUSCRIPT SUBMITTED TO

INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE
THEORY AND PRACTICE

(Final Version)

Paper Title: Developing Role-Based Open Multi-Agent Software Systems1

Authors: Dr. Haiping Xu, Assistant Professor
 Computer and Information Science Department
 University of Massachusetts Dartmouth

Email: hxu@umassd.edu

Dr. Xiaoqin Zhang, Assistant Professor
Computer and Information Science Department

 University of Massachusetts Dartmouth
Email: x2zhang@umassd.edu

Rinkesh J. Patel, Graduate Student

 Computer and Information Science Department
 University of Massachusetts Dartmouth

Email: g_rpatel@umassd.edu

Corresponding Author:

Dr. Haiping Xu, Assistant Professor
Computer and Information Science Department
University of Massachusetts Dartmouth
285 Old Westport Rd.
North Dartmouth, MA 02747

Phone: (508) 910-6427
Fax: (508) 999-9144
Email: hxu@umassd.edu

1 Manuscript submitted 8 April 2006; Revised 20 March 2007; Accepted 9 May 2007.

mailto:hxu@umassd.edu
mailto:x2zhang@umassd.edu
mailto:g_rpatel@umassd.edu
mailto:hxu@umassd.edu

Developing Role-Based Open Multi-Agent Software Systems

Haiping Xu, Xiaoqin Zhang and Rinkesh J. Patel

Computer and Information Science Department

University of Massachusetts Dartmouth

North Dartmouth, MA 02747

Email: {hxu, x2zhang, g_rpatel}@umassd.edu

Abstract

An open multi-agent system (MAS) is a dynamic system in which agents can not only join or leave an

agent society at will, but also take or release roles at runtime. Traditional multi-agent system development

methodologies are not suitable for developing open multi-agent systems because they assume a fixed

number of agents that are specified during the system analysis phase. In this paper, we propose a formal

role-based modeling framework for open multi-agent software systems. We specify role organizations

and role spaces as containers of conceptual roles and role instances, respectively, where role instances can

be dynamically taken or released by agents from agent societies. To support rapid development of

role-based open multi-agent systems, we introduce a three-layered design model of open MAS, and

developed a prototype Role-based Agent Development Environment (RADE). Finally, we present a case

study to demonstrate how an open MAS application can be efficiently built on RADE.

Keywords: Role-based modeling, Open multi-agent systems, Object-Z formalism, Model-driven

development, Role-based Agent Development Environment (RADE).

1. Introduction

Multi-agent systems (MAS) are rapidly emerging as a powerful paradigm for modeling and developing

complex software systems. However, to specify and design multi-agent systems is not an easy task.

 1

Methodologies for developing multi-agent systems are therefore proposed to provide guidelines for

software engineers to develop multi-agent systems in a systematic manner. Among them, role-based

analysis and design is one of the most effective methodologies for agent-based system analysis and

design. Most of the existing work defines roles as conceptual units that only occur in the system analysis

phase. The roles abstracted from use cases are high-level constructs used to conceptualize and understand

the system. There are no realizations of agent roles in the implemented system beyond the analysis stage.

In most of the cases, roles are atomic constructs and cannot be defined in terms of other roles [1]. Such

approaches are feasible when developing small-scale and closed multi-agent systems, especially when an

agent only takes a single role. However, in an open multi-agent system, when an agent is allowed to take

more than one role, and also take or release roles at runtime, these approaches become not suitable. This

is because when role assignments are dynamic, the interaction relationships between agents become quite

complicated, and they usually cannot be determined at design time. To develop an open and dynamic

multi-agent system, it is vital for us to introduce the concept of role instance (a concrete implementation

of a conceptual role) into the design phase, and deduce agent interaction relationships from agent-role

mappings and role relationships dynamically. In this paper, we first propose a methodology for role-based

modeling of open multi-agent systems. We define a role organization that provides the ontology for

modeling roles and their relationships. As one of the most important role relationship types, inheritance is

explicitly modeled using Object-Z formalism [2]. A role space is then defined as a container for role

instances, and also as a server to provide services for software agents to access role instances from the

role space. Based on the concepts of role organization and role space, we define an agent society as an

agent community where agents may join or leave the agent society at will, and take or release roles from a

corresponding role space dynamically. The relationship between agents in an agent society can be

deduced through a mechanism called A-R mapping [3]. To support the software engineering principle of

“separation of concerns” and reuse of various design models, we propose a three-layered development

model, in which our formal role-based open MAS model serves as the first layer of the development

model that is independent of both the application and solution domains. Our approach provides a potential

solution for automated MAS development, which is illustrated by a prototype Role-based Agent

 2

Development Environment (RADE). Finally, we use a case study to show how a role-based open MAS

application can be developed efficient on RADE.

The rest of this paper is organized as follows. In Section 2, we describe the related work and highlight the

relationships to our research. In Section 3, we present a formal framework for role-based open MAS using

Object-Z formalism. Our formal framework consists three key concepts, namely role organization, role

space and agent society. In Section 4, we propose a three-layered development model for role-based open

MAS, and describe our RADE prototype. In Section 5, we provide an example of organizing a conference

to illustrate how role-based open MAS applications can be developed using our approach. Finally, In

Section 6, we provide conclusions and our future work.

2. Related Work

There are three main strands of work to which our research is related, i.e., work on formal modeling of

agent-based systems, work on role-based agent development methodologies, and work on model-driven

development of multi-agent systems. Previous work on formal modeling of agent systems has been

focused on designing formal specification languages or using existing formalisms, such as Z, temporal

logic, and Petri nets, to specify agent systems or agent behaviors. Brazier and his colleagues developed a

high-level modeling framework called DESIRE (framework for DEsign and Specification of Interacting

REasoning components), which enables specification of a system’s conceptual design [4]. The DESIRE

framework can explicitly support modeling the knowledge, interaction, and coordination of complex tasks

and reasoning capabilities in agent systems. Shapiroa and Lespérance proposed the Cognitive Agents

Specification Language (CASL) that can be used to model the negotiation process of personal agents in a

multi-agent system. The CASL also supports modeling an agent’s preferences with mental states (e.g.,

knowledge and goals) at an abstract level [5]. Bharadwaj presented an integrated formal framework for

the specification and analysis of multi-agent systems [6]. In his proposed approach, agents are specified in

a language called Secure Operations Language (SOL) that supports modular development of secure

agents. Luck and d’Inverno used the Z formalism to provide a framework for describing agent

 3

architectures at different levels of abstraction. They proposed a four-tiered hierarchy comprising entities,

objects, agents and autonomous agents [7]. The basic idea of their approach is that all components of the

world are entities with attributes. Of these entities, objects are entities with capabilities of actions, agents

are objects with goals, and autonomous agents are agents with motivations. Fisher’s work on Concurrent

METATEM used temporal logic to represent dynamic agent behaviors [8]. Such a temporal logic is more

powerful than the corresponding classic logic and is useful for the description of dynamic behaviors in

reactive systems. Fisher took the view that a multi-agent system is simply a system consisting of

concurrently executing objects. Xu and Shatz proposed a high-level Petri net, called agent-oriented

G-nets, to model and verify behavioral properties of multi-agent systems [9]. Based on the agent-oriented

G-net model, certain properties of a multi-agent system, e.g., concurrency and deadlock freeness, can be

verified using existing Petri net tools [10]. Hilaire and his colleagues proposed a mechanism for dynamic

role playing specified in OZS [11]. The OZS formalism combines Object-Z and statecharts, and can be

used to specify multi-agent systems based upon role, interactions and organizations [12]. In their

approach, Object-Z is used to specify the transformational aspects; while statecharts are used to specify

the reactive aspects of a multi-agent system. Finally, a formal model of agency that is closely related to

our proposed work is the Belief-Desire-Intention (BDI) agent model [13]. The BDI agent architecture has

come to be one of the well-known and best studied models of practical reasoning agents, which provides

an explicit representation for agent mental states, namely beliefs, desires and intentions. Our specification

for an agent class follows the BDI agent model; however, we separate domain knowledge (belief),

domain goals (desires), and domain plans (intentions) from the agent class, and modularize them into

corresponding role classes. Thus, our specified agent class is application independent, and as a

consequence, our proposed approach supports separate of concerns, which can significantly simplify the

MAS development process due to our modular development methodology.

In summary, formal methods are typically used for specification of agent systems and agent behaviors.

Existing work in this direction either do not directly use role modeling for agent design, or use role

modeling only as conceptual guidelines for agent development during the system analysis phase.

 4

Furthermore, as stated by Cabri and his colleagues, a common limitation of those approaches is the lack

of support for development of multi-agent systems during all phases [14]. In this paper, we propose our

formal role-based open multi-agent system framework based on three key notions, namely role

organization, role space and agent society, where role classes are defined in a role organization and

instantiated in a role space; while role instances can be taken or released by agents form an agent society

dynamically. We overcome the limitations of current role-based modeling approaches by demonstrating

how our formal model can be used in a three-layered agent development framework.

A second strand of related work is to propose role-based methodologies for development of multi-agent

systems. Typical examples of such efforts include the Gaia methodology and Multiagent Systems

Engineering (MaSE) methodology [15, 16]. The Gaia methodology models both the macro (social) aspect

and the micro (agent internals) aspect of a multi-agent system [15]. The methodology covers the analysis

phase and the design phase. Specifically, in the analysis phase, the role model and interaction model are

constructed. Based on the analysis models, in the design phase, three models (i.e., the agent model,

service model and acquaintance model) are constructed during the initial design of the system, and then

are refined during a detailed design phase using conventional object-oriented methodology. Similarly, the

MaSE methodology is a specialization of traditional software engineering methodologies [16]. During the

analysis phase of the MaSE methodology, a set of roles are produced, which describes entities that

perform some function within the system. In MaSE, each role is responsible for achieving, or helping to

achieve specific system goals and subgoals. During the design phase, agent classes are created from the

roles defined in the analysis phase. In other words, roles are the foundation upon which agent classes are

designed, and thus, the design of agent and design of roles are tightly coupled. More recently, Hameurlain

and Sibertin-Blanc proposed a formal specification model of roles for complex interactions in multi-agent

systems [17]. Their approach is based on the RICO (Role-based Interaction COmponents) specification

model, which is a role-based interactions abstract model for specification of role components in

agent-based applications. Due to their formal specification of role components in Petri nets, their

approach supports verification of certain safety properties such as mutual exclusion and concurrency.

 5

Different from the above methodologies, in our proposed approach, we explicitly model conceptual roles

and role instances for role-based open MAS. The components of role instances and agent instances are

loosely coupled, where agents can take or release role instances at runtime. Furthermore, in our

three-layered MAS development model, role classes and agent classes can be designed and implemented

independently, which simplifies the development of open role-based MAS.

Previous efforts on model-driven development of multi-agent systems can be summarized as follows.

Bernon and his colleagues attempted to unify three existing methodologies (i.e., ADELFE, Gaia, and

PASSI) by studying their meta-models and concepts related to them. The unification would be useful to

build tools using the MDA (Model-Driven Architecture) approach to automatically transform a

meta-model into a model depending on a target platform [18]. Gracanin and his colleagues proposed a

model-driven architecture framework in extending the Cognitive Agent Architecture (Cougaar), which is

an open source, distributed agent architecture [19]. The proposed framework consists of two main parts:

General Cougaar Application Model (GCAM) and General Domain Application Model (GDAM). The

GCAM provides model representation of the Cougaar basic constructs; while the GDAM, which is built

upon the foundation of GCAM, defines the requirements and the detailed design. In Amor and his

colleagues’ work, the authors showed how to use the MDA approach to drive agent implementation from

agent-oriented design, which is independent of both the methodology used and the concrete agent

platform selected [20]. The transformation process can be partially automated by using a platform-neutral

agent model, called Malaca. More recently, Maria and her colleagues proposed an MDA-based approach

to developing MAS [21]. They used MAS-ML, which was an MAS modeling language, to model MAS

by creating the platform independent models (PIM), and then tried to transform the MAS-ML models into

UML models. Most of the previous efforts emphasized on automatically transforming a PIM into

platform-specific models (PSM). However, as some researcher suggested, it could be distinctly nontrivial,

and even impossible, to support and evolve semantically correct PSM for complex platform such as J2EE

or .Net [22]. In contrast to the above approaches, our approach emphasizes on developing three levels of

models, namely AIPI (Application Independent Platform Independent) model, ASPI (Application Specific

 6

Platform Independent) model, and ASPS (Application Specific Platform Specific) model. The

development of the three different levels of models can be viewed as steps in a refinement process. In

each level of the development model, role components and agent components are always separated and

designed independently. Role instances and agent instances interact with each other only at runtime

through the A-R mapping mechanism. Therefore, our approach follows the principle of component-based

software engineering (CBSE), where role entities and agent entities can actually be developed by different

software development teams.

3. A Framework for Role-Based Multi-Agent System

3.1 An Organizational Approach

Most of the existing MAS development process models do not support dynamic role assignment for

agents; however, many agent-based applications require that agents should be allowed to change their

roles at runtime. For example, when we use agent technology to simulate a startup software company, the

agent representing the CEO of the company first creates a number of positions, such as team leader roles

and programmer roles. During the process of hiring, a newly hired employee is only allowed to take the

roles predefined, but the employee may take more than one role at the same time. While the company is

running, existing employees may leave the company, and drop the roles that were previously taken;

meanwhile, new employees can be hired to replace the previous ones by taking the available position

roles. It is also possible that, under certain conditions, an employee needs to change a role at runtime. For

example, an employee who previously takes a programmer role can be promoted to take a team leader

role based on the employee’s excellent performance. To model this kind of dynamic and open system,

conventional agent development methodologies become quite inappropriate. Therefore, we propose our

role-based methodology for open MAS to separate the concepts of role and role instance, where a role is

defined as a conceptual role; while a role instance is a concrete implementation of a conceptual role. We

define a role organization that contains conceptual roles with one of the following relationships among

each other, namely inheritance, aggregation, association and incompatibility. We also introduce a

 7

concept called role space that consists of role instances. Instead of simply using conceptual roles during

the system analysis phase, we explicitly create role instances at runtime; thus, agents can take or release

role instances from a role space dynamically. A generic model of role-based open multi-agent systems is

illustrated in Figure 1.

Figure 1. A generic model of role-based open multi-agent systems (adapted from [3])

As shown in Figure 1, a role organization contains a set of conceptual roles (or role classes) with their

relationships. For example, role_B and role_C are defined as subclasses of role_A. Role_D is defined as a

part of role_C. In other words, role_C views role_D’s responsibilities and capabilities as part of its own.

Role_D and role_E have an association relationship, for example, role_D is responsible to provide certain

information to role_E if there is such a request. In addition, role_D has a reflective association

relationship to itself, for example, when role_D represents a team member role, team members are

required to discuss on certain topics. A role space containing a set of role instances is defined based on a

role organization. Each role instance must be of a role type defined in its corresponding role organization.

For example, roleInstance_2 is of type role_D defined in the role organization. Since the relationships

between role instances can be easily derived from their class relationships, it is not necessary to explicitly

show their relationships at this layer. An agent society contains a set of agent instances, where agents are

 role_A

 role_C role_D

role_E

Role Organization

roleInstance_2
Role Space

roleInstance_1

roleInstance_n

agent_2

agent_1
agent_3

Agent Society

 role_B

 8

free to join or leave the agent society, and take role instances from the role space. For example, agent_1

takes two role instances, i.e., roleInstance_1 and roleInstance_2, which are of type role_B and role_D,

respectively. An agent can not only take roles at runtime, but can also release them if the role instances

are not needed any more for achieving its goals. The relationships between agents depend on the

relationships between roles that are taken. For example, agent_1 and agent_3 have an interaction

relationship because role_D has a reflective association relationship with itself; agent_2 and agent_3 have

an interaction relationship because role_D and role_E have an association relationship. Note that

relationships of inheritance and aggregation between roles are not passed down as agent relationships.

3.2 Role-Based Agent Model

To formally specify our proposed role-based model of open multi-agent systems, we use Object-Z

formalism, which is an extension to the Z formal specification language for modular design of complex

systems [2]. Our framework is composed of a set of classes that define the basic constructs in the

role-based open MAS model. We now provide some key definitions of the basic constructs in our formal

role-based agent model as adapted from [3].

Definition 3.1 Role Class

A role class, or a conceptual role, is defined as a template of role instances that has attributes, domain

knowledge, domain goals, domain plans, domain actions, permissions and protocols. A role instance is a

fully instantiated role entity.

The class schema Role can be formally specified in Object-Z based on its state and operation schemas as

shown in Figure 2. The Role class consists of a state variable attributes, which represents a set of role

attributes that describe the characteristic properties of a role, including a role name and a role

identification. A Role is defined to have a set of domain knowledge, domain goals, domain plans, and

domain actions. The state variable domainKnowledge specifies a set of domain knowledge that a role

must possess to achieve its domain goals. The state variable domainGoals describes the current goal states

 9

and a set of domain goals that a role may achieve. The state variable domainPlans represents a set of plan

trees that are used to achieve a goal or subgoal by executing several actions in a specified order. Each

plan tree is associated with a goal or a subgoal; however, a goal or subgoal may associate with more than

one plan tree, and the most suitable one will be selected to achieve that goal or subgoal. To carry out a

certain plan, a role needs the capability to perform certain associated actions. The state variable

domainActions refer to a set of actions that will be trigged to execute when an associated plan tree is

selected to carry out. The state variable permissions describes the resources that are available to that role

in order to achieve a goal or subgoal. The permissions are accessing rights of a role for information

related resources. For example, a role may have the right to read a particular piece of information, to

modify it, or even to generate new information. The state variable protocols defines the way how role

instances may interact with each other, e.g., the contract net protocol [23]. Finally, the Boolean state

variable beTaken defines if a role instance has already been taken by an agent. A true value indicates that

a role instance has already been taken, thus it is not available for other agents.

Role

attributes : P Attribute
domainKnowledge : P Knowledge
domainGoals : P Goal
domainPlans : P Plan
domainActions : P Action
permissions : P Permission
protocols : P Protocol
beTaken : B

INIT

permissions = ∅

protocols = ∅

beTaken = false

setPermission
∆permissions
perm? : Permission

permissions ′ = permissions ∪ {perm?}

addProtocol
∆protocols
prot? : Protocol

procotols ′ = protocols ∪ {prot?}

Figure 2. Formal specification of the Role class in Object-Z

 10

The concept of role instance, i.e., an instantiated role, is similar to the concept of object, which is an

instantiated entity of a class. Note that, although a role instance has certain goals, plan trees, and actions,

it cannot start to execute until it is taken by an agent. It is an agent’s responsibility to choose the most

appropriate plan and the corresponding actions to achieve a certain goal or a subgoal. Furthermore, we

may modify or update role permissions and add new communication protocols to a role instance. This is

achieved by providing the operations of setPermission and addProtocol defined as operation schemas in

the Role class schema.

Definition 3.2 Role Organization

A role organization is defined as 2-tuple RO = (SR, REL), where SR is a set of conceptual roles, and REL

is the relationship function maps two conceptual roles to a role relationship λ ∈ {inheritance,

aggregation, association, incompatibility}.

In order to define the class schema RoleOrganization, we need to define the type of RoleMetaClass first.

A metaclass is a class whose instances are classes. Every class has a metaclass, of which it is the sole

instance. The RoleMetaClass specifies the Role class in terms of its attributes and behaviors. Therefore,

an instance of type RoleMetaClass is the Role class. Based on the concept of RoleMetaClass, we formally

define the class schema RoleOrganization as shown in Figure 3. By defining the state variable roles as a

set of elements of type RoleMetaClass or its derivatives, roles refers to a set of classes including

subclasses of the Role class and the Role class itself. Accordingly, the function relationship is defined for

relationships between classes (roles) instead of objects (role instances). Such relationships include

inheritance relationship, aggregation relationship, association relationship and incompatibility

relationship, which will be described in Section 4.2. The Role class is the root class of all its descendents,

which exists initially when a role organization is created. New role classes can be added into the role

organization. When a new class role? is added, the inheritance relationship between role? and its

superclass r must also be specified. This can be done automatically by updating the function relationship

 11

with a new mapping of {(r, role?) inheritance}. However, other relationships between role

classes must be set up manually by applying the operation setRelationship.

a

RoleOrganization

roles : P ↓ RoleMetaClass
relationship : ↓ RoleMetaClass × ↓ RoleMetaClass �→ Relationship

∀ r1, r2 ∈ roles, r1 �= r2 • (r1, r2) ∈ dom relationship

INIT

roles = {Role}

addRole
∆roles, relationship
role? : ↓ RoleMetaClass

role? �∈ roles ∧ roles ′ = roles ∪ {role?}
∃ r ∈ roles • r .subclass = role? ∧

relationship′ = relationship ∪ {(r , role?) �→ Inheritance}

setRelationship
∆relationship
r1?, r2? : ↓ Role
rela? : Relationship

rela? �= Inheritance ∧
relationship′ = relationships ∪ {(r1?, r2?) �→ rela?}

Figure 3. Formal specification of the RoleOrganization class in Object-Z

Definition 3.3 Role Space

A role space is a container of a set of role instances of types defined in a role organization. Each role

space corresponds to a single role organization; however, a role organization can be mapped to more than

one role space. Role instances can be added into or deleted from a role space dynamically. A role space

provides services for software agents to access role instances created in the role space.

The class schema RoleSpace is formally defined in Object-Z as shown in Figure 4. In the class schema

RoleSpace, we define roleOrganization as a global variable of type RoleOrganization, in which the

number of role classes must be more than one. If the role organization is modified, the role space must be

updated accordingly in order to be consistent with the conceptual roles and role relationships defined in

the role organization. For example, when a certain conceptual role cr is deleted from the role

 12

organization (for simplicity, the operation schema of deleteRole is not defined in the class schema

RoleOrganization), any role instances of type cr must also be deleted. The dependency between role

space and role organization is important because it ensures that the types of role instances in a role space

are always consistent with that of role instances an agent may take.

RoleSpace

roleOrganization : RoleOrganization

#roleOrganization.roles > 1

roleInstances : P ↓ Role

∀ ri ∈ roleInstances • ri .getClass ∈ roleOrganization.roles

INIT

roleInstances = ∅

createRoleInstance
∆roleInstances
ri? : ↓ Role

roleInstances ′ = roleInstances ∪ {ri?}
ri?.getClass ∈ roleOrganization.roles
∀ r ∈ roleInstances, r �= ri? •

relationship(r .getClass, ri?.getClass) ∈ roleOrganization.relationship

deleteRoleInstance
∆roleInstances
ri? : ↓ Role

ri? ∈ roleInstances
roleInstances ′ = roleInstances − {ri?}

findRoleInstance
ΞroleInstances
ra? : Role.Attributes
ri ! : ↓ Role

NotFound ∨ (∃ ri ∈ roleInstances • ri .attributes = ra? ∧ ri ! = ri)

Figure 4. Formal specification of the RoleSpace class in Object-Z

As shown in the class schema RoleSpace, the state variable roleInstances refers to a set of role instances

of type Role or its derivatives, which must have already been defined in the roleOrganization. Initially,

the role space contains zero role instances. Role instances can be added into or deleted from a role space

dynamically, which are specified by the operation schema createRoleInstance and deleteRoleInstance,

respectively. In addition, a role space should also provide services for software agents to search for

 13

appropriate role instances according to certain criteria. An example of such services is defined by the

operation schema findRoleInstance for retrieving a role instance by role attributes.

Definition 3.4 Agent

An agent or an agent class is defined as a template of agent instances that has attributes, knowledge,

motivations, sensor, reasoningMechanism, roleMatchingMechanism, committedPlan, and a reference

variable rolesTaken that refers to a set of role instances. An agent instance is a fully instantiated agent.

The class schema Agent can be formally specified based on its state schemas and operation schemas as

shown in Figure 5. An agent is identified by its attributes such as the agent name, agent owner and agent

identification. As shown in the Agent class scheme, an agent has motivations, which is defined as any

desire or preference that can lead to the generation and adoption of goals, and also affect the outcome of

the reasoning or behavioral task intended to satisfy those goals [7]. The sensor of an agent perceives

related environment changes and transforms the inputs into a set of sensor data. The reasoningMechanism

is defined as a function that takes a set of sensor data and a set of motivations as arguments and maps

them to a set of goals and subgoals. Based on the goals and subgoals, the function

roleMatchingMechanism further derives a set of needed roles with certain attributes. The agent then

searches the role space for any available role instances that satisfies the role properties, and takes each

needed available role instance from the role space to achieve its goals. To realize an agent’s goal, a

committed plan is derived according to the role instances and the knowledge possessed by the agent,

which includes the agent knowledge and the domain knowledge of each role instance taken by the agent.

This mechanism is defined as a function committedPlan in the Agent class. The state variable rolesTaken

refers to a set of roles that are currently taken by the agent. The Agent class schema also defines two

fundamental operations: takeRole and releaseRole. The takeRole operation takes an available role

instance from a role space, and set it as unavailable to other agents. On the other hand, the releaseRole

operation releases a role instance and set it to be available for other agents.

 14

Agent

attributes : P Attribute
knowledge : P Knowledge
motivations : P Motivation
sensor : Environment �→ SensorData
reasoningMechanism : P SensorData × P Motivation → P Goal
roleMatchingMechanism : P Goal → P ↓ Role
committedPlan : P Knowledge × P ↓ Role → P Plan
rolesTaken : P ↓ Role

INIT

rolesTaken = ∅

takeRole
∆rolesTaken
ri? : ↓ Role

ri?.beTaken = false ∧ ri?.beTaken ′ = true
rolesTaken ′ = rolesTaken ∪ {ri?}

releaseRole
∆roleTaken
ri? : ↓ Role

ri?.beTaken = true ∧ ri?.beTaken ′ = false
rolesTaken ′ = rolesTaken − {ri?}

Figure 5. Formal specification of the Agent class in Object-Z

Definition 3.5 Agent Society

An agent society defined upon a role organization consists of a set of agent instances of type Agent. An

agent society provides services for agent instances to join or leave the agent society dynamically.

The structure of an agent society is often determined by organizational design that is independent of the

agents themselves [24]. The class scheme of AgentSociety is formally defined in Object-Z as shown in

Figure 6. Since both role spaces and agent societies are defined on role organizations, a correspondence

exists between a role space and an agent society when they share the same role organization. This implies

that a role instance created in a role space can only be taken by an agent from an agent society with the

same role organization; meanwhile, any agent belongs to an agent society must take at least one role

instance from a role space with the same role organization. Those agents who do not take any role

instances from a corresponding role space shall leave the agent society eventually. Note that the

correspondence between a role space and an agent society does not imply that an agent can take roles only

 15

from one role space. In contrast, an agent may join multiple agent societies and take role instances from

different role spaces.

AgentSociety

roleOrganization : RoleOrganization

#roleOrganization.roles > 1

agentInstances : P Agent
interaction : Agent × Agent �→ Message

∀ a ∈ agentInstances,∃ r ∈ a.rolesTaken • r .getClass ∈ roleOrganization.roles
∀ a1, a2 ∈ agentInstances, a1 �= a2,

∃ r1 ∈ a1.rolesTaken,∃ r2 ∈ a2.rolesTaken,
roleOrganization.relationship(r1.getClass, r2.getClass) = Association •
(a1, a2) ∈ dom interaction

INIT

agentInstances = ∅

join
∆agentInstances
agent? : Agent

∀ a ∈ agentInstances • a �= agent?
agentInstances ′ = agentInstances ∪ {agent?}

leave
∆agentInstances
agent? : Agent

agent? ∈ agentInstances
∀ r ∈ agent?.rolesTaken • agent?.releaseRole(r)
agentInstances ′ = agentInstances − {agent?}

Figure 6. Formal specification of the AgentSociety class in Object-Z

As shown in the AgentSociety class scheme, an agent society defines a state variable agentInstances that

refers to a set of agent instances of type Agent. The state variable interaction is defined as a function,

which applies to a source agent and a destination agent, and may generate a message. An agent instance

belonging to an agent society takes role instances of types defined in the role organization, upon which

the agent society is defined. When two agents have an association relationship between their role

instances, they may have interactions by sending messages to each other. In an agent society, agent

instances can join or leave the agent society dynamically, which are specified by the operation schema

join and leave, respectively.

 16

4. Model-Driven Development of Role-Based Open MAS

Inspired by OMG’s Model-Driven Architecture (MDA) [25], we propose a three-layered development

model for developing role-based open MAS. Our approach supports separation of concerns such that the

architecture domain, the application domain and the solution domain can be considered separately.

Similar to the MDA approach, our approach provides a potential solution to automated development of

role-based open MAS. In other words, it is possible to build a MAS development tool to automatically

generate partial code for a role-based open MAS application.

4.1 Three-Layered Development Model

Our three-layered development model consists of three relatively independent models, namely

Application Independent Platform Independent (AIPI) model, Application Specific Platform Independent

(ASPI) model, and Application Specific Platform Specific (ASPS) model. The purpose of this approach is

to separate software architecture from an application domain and to separate application logic from the

underlying technologies to support reusability in an agent development process.

As shown in Figure 7, the three-layered development model is defined in three steps. The first step is to

define the AIPI model, which is a generic model that matches our role-based development methodology

for open MAS. The second step is to define the ASPI model that is based on the AIPI model and

knowledge from the application domain. In the third step, based on the ASPI model, we define the ASPS

model that further incorporates information from the solution domain. There is a one-to-one mapping

between the classes defined in the role-based formal MAS model described in Section 3 and the classes

defined in the AIPI model for role-based open MAS. For example, the Role class and the RoleSpace class

defined in Object-Z are also defined as a Role class and RoleSpace class in the AIPI model, which are

illustrated in a simplified AIPI model in UML class diagram as shown in Figure 8.

 17

AIPI Model
Application Independent Platform Independent Model

Defitintion of Role, Role Organization, Role Space,
Agent, Agent Society

ASPI Model
Application Specific Platform Independent Model

Defitintion of specific role classes, role organization
class, agent class, agent society class, and A-R maping

ASPS Model
Application Specific Platform Specific Model

Defitintion of software platform, middleware and
communication mechanisms

Figure 7. Three-layered development model for developing role-based open MAS

Figure 8. The AIPI model of role-based open MAS in UML class diagram

 18

From Figure 8, we can see that a RoleOrganization contains instances of ClassRelationship and instances

of RoleMetaClass, which are Role classes. We will describe ClassRelationship in more details in Section

4.2. A RoleSpace contains any number of Role instances, but a role instance can belong to only one role

space. Note that a Role class (including its subclasses) can be associated with more than one role

organizations. An AgentSociety contains any number of agent instances, and an agent can join more than

one agent society. As an example for such a scenario, a company may have any number of employees;

while an employee may work for two different companies at the same time. In addition, an agent can take

any number of role instances; however, any role instance can only be taken by one agent.

The ASPI model defines a high-level abstraction that is specific to a particular application; but the model

is independent of any implementation technology. In other words, the ASPI model describes an open

multi-agent software system that supports the application logic, but whether the system will be

implemented on a main frame with J2EE or Microsoft .NET platform is not considered in such a model.

One advantage of using role-based agent development is to simplify the definition of an Agent class such

that certain capabilities for achieving a goal, including domain knowledge and domain plans, can be

encapsulated into a role component. Two key issues in defining the ASPI model are to define the role

organization and to define the mapping from agent instances to role instances. We discuss these two

issues in more details in Section 4.2 and Section 4.3, respectively.

The third model is called ASPS model, which defines the multi-agent system that is specific to a

particular application as well as the implementation technologies. Based on the ASPI model, the ASPS

model incorporates knowledge from the solution domain, and specifies the open MAS in terms of specific

implementation technologies. For example, the open MAS can be implemented using EJB and Java

servlets on a J2EE platform, or it can be developed using Microsoft .Net techniques. Alternatively, we can

use web services techniques, such as IBM WebSphere and Sun JWSDP [26] for agent communications.

In Section 5, we use a case study to show how to develop the ASPS model based on the communication

mechanism that is supported by ADK (Agent Development Kit) [27].

 19

4.2 Class Relationships in a Role Organization

When designing an open MAS application using role-based modeling, we first need to design the Role

classes and their relationships in a role organization. In a role organization, role hierarchy defines the

relationships among different role classes. The relationship types between two role classes consist of the

following: inheritance relationship, aggregation relationship, association relationship and incompatibility

relationship. We now give definitions to these relationships as well as some related key concepts such as a

leading role and a composite role.

Definition 4.1 Inheritance Relationship

An inheritance relationship between two role classes represents the generalization or specialization

relationship between two role classes, where one class is a specialized version of another. Inheritance is a

mechanism for incremental specification and design, whereby new classes may be derived from one or

more existing classes. Inheritance therefore is particularly significant in the effective reuse of existing

specifications [28].

Definition 4.2 Leading Role

A leading role is responsible for hiring other roles in achieving its goal. For example, a company CEO is

a leading role, which is responsible for hiring new employees. The LeadingRole class is defined as a

subclass of the Role class [3]. Therefore, a leading role inherits all the data fields, e.g., attributes,

domaingoals and domainplans, as well as all operations defined in the Role class. In addition, a leading

role records the number of role instances that are required to achieve its goals. This functionality can be

defined by an operation called updateHiringNumber, which updates the needed number of role instances

for a certain type of roles.

Definition 4.3 Composite Role

A composite role is defined by the CompositeRole class, which is a subclass of the Role class. In the

CompositeRole class, the state variable subRoles describes a set of role instances of type Role or its

 20

derivatives. Subroles can be added into or deleted from the subRoles set by applying the operation

addSubRole or deleteSubRole.

Definition 4.4 Aggregation Relationship

In an aggregation relationship between two role classes, one of the role classes must be a subclass of the

CompositeRole class. The aggregation relationship between role classes is most suitable for defining the

hierarchy of a role organization. For instance, we can use a composite role to represent a team, a group or

even a role organization.

Definition 4.5 Association Relationship

The association relationship is one of the most common relationships between classes [29]. Associations

may have an association name, role names and multiplicity. The association name indicates an action that

an instance of one role may perform on an instance of another role. The multiplicity of an association

denotes the number of instances of the role classes that can participate in their relationship. To describe

such a relationship in a more precise manner, we add a condition [cond] in front of the association

name. The association relationship only exists between instances of role classes when cond is true.

Definition 4.6 Incompatibility Relationship

Under certain conditions, when two roles cannot be taken by an agent at the same time, we say these two

roles have an incompatibility relationship. An example of such a relationship between a BankerRole and a

LoanBorrowerRole (denoted as a dotted arc with a small circle) is illustrated in Figure 9. In this example,

a banker who works for a bank is not allowed to borrow loan from the same bank.

Figure 9. An example of incompatibility relationship

 LoanBorrowerRole BankerRole
[same bank]

 21

4.3 A-R Mapping Mechanism

Multi-agent systems have been proposed as one of the most promising approaches to creating open

systems due to their capabilities of dynamically reorganizing themselves as the system goals and

constituent agents change [24]. In our approach, the openness of a multi-agent system is specified by the

openness of both the role space and the agent society. The openness of a role space refers to a space

where role instances can be added into or deleted from a role space dynamically; while the openness of an

agent society implies that agents can not only join or leave the system at will, but more importantly, they

can take or release role instances from a role space at runtime. The procedure of taking or releasing role

instances in a role space is a mapping process from agents in an agent society to role instances in a role

space. We call this mapping process the A-R mapping.

Definition 4.7 A-R Mapping

An A-R mapping is a process for agents from an agent society Θ defined upon role organization Φ to take

or release role instances in a role space Γ. Both Θ and Γ are defined upon the same role organization Φ.

Formally, the A-R mapping is defined by the following function:

A-R mapping =̂ f : Agent �→ P ↓ Role

where f is a partial function that maps from each agent instance to a set of role instances.

The process of A-R mapping is a dynamic process of role assignment, which involves the following steps:

1. Initialization: A user creates a leading agent α in agent society Θ. The leading agent α is responsible

for initializing and managing the agent society Θ. Ordinary agents representing different users may

join the agent society Θ, and are ready to take role instances from the role space Γ.

2. Creating role instances: The leading agent α makes a request to the role space Γ to instantiate the

major leading role class that is defined as a subclass of the LeadingRole class in the role organization

Φ. The leading agent α takes the major leading role instance as soon as it is available. The leading

agent α further makes requests to the role space Γ to create all the role instances that are needed to

achieve its goal.

 22

3. Role assignment: The role space Γ waits for requests from an ordinary agent β in agent society Θ, and

do the following:

3.1 If the request is to query about a role instance, then

a. Search the role space Γ for any available role instances with the requested role attributes.

b. If there is a match, reserve the role instance and notify agent β to take that role instance.

 Else notify agent β that there is no available role instances, go to Stage 3.

 Else if the request is to take a role instance, then

 Assign the requested role instance to agent β, and check its role incompatibility as follows:

 For any role instances r1, r2 ∈ β.rolesTaken,

 If Φ.relationship(r1.getClass, r2.getClass) == incompatibility, and the condition for that

 relationship is true, then

 Suspend any activities of role instances r1, r2 until the conflict is resolved.

 Else if the request is to release a role instance, then

 Release the role instance from agent β.

3.2 Setting up agent interaction relationships: The role space Γ notifies the agent society about the

updated role assignment and updates the interaction relationships between agent β and other

agents from agent society Θ as follows: for any agent instance γ ∈ Θ.agentInstances, where β ≠

γ, if ∃ r1 ∈ β.rolesTaken, r2 ∈ γ.rolesTaken such that Φ.relationship(r1.getClass, r2.getClass) ==

association, then (β, γ) ∈ dom Θ.interaction.

3.3 Goto stage 3.

As shown in the above algorithm, the condition for role incompatibility of an agent β is checked at

runtime. Whenever the condition is satisfied, agent β must negotiate with other agents to resolve the

conflicts. In case that the condition cannot be turned into false, one of the role instances in conflict must

be released by agent β.

 23

4.4 Tool Support for Design of ASPI Model

To facilitate rapid development of the ASPI model, we developed a prototype Role-based Agent

Development Environment (RADE). The major tasks of the current version of the RADE system are to

provide tool supports for design of role organization, visualization of role space and agent society, and

enable automatic role assignment using A-R mapping. The toolkit for design of a role-organization is

similar to the Rational Rose toolkit [30], but it is specific to support design of role classes and their

relationships. Figure 10 shows the user interface of the RADE prototype for design of a role organization.

When the high-level design of the role organization is complete, the system will prompt the user to fill out

the attributes and operations defined in the Role class (i.e., the root class) according to the class schema

defined in Section 3. Then the system prompts the user to define additional attributes and operations for

each role classes in the role organization. Finally, the code for the RoleOrganization package can be

automatically generated by clicking on the “CodeGen” menu on the top of the window.

Figure 10. User Interface of the RADE prototype for design of role organization

 24

The RADE prototype also supports generation of code for the role space and agent society. The role space

works as a server that receives requests for querying about the availability of role instances, taking role

instances and releasing role instances. In the RADE prototype, the system can graphically show the

available role instances as well as related objects in the role space. Similarly, an agent society also works

as a server that receives requests from agents to join or leave the agent society. Note that the agent society

contains a proxy of each registered agent; while the real agent can run on a remote machine. The RADE

prototype can dynamically show currently registered agents and keep track of each agent’s behaviors.

When various agents joins the agent society and starts to request roles instances, the automatic A-R

mapping mechanism is invoked. According to the algorithm for the A-R mapping mechanism as shown in

Section 4.3, the role space works reactively to process requests from ordinary agents for querying, taking

or releasing role instances from the role space. During the A-R mapping process, possible conflicts of role

instances taken by an agent are marked on that agent. If the condition for such a conflict is true and the

conflict cannot be resolved, the agent must make a request to the role space to release any role instances

in conflict, and adjust its goals or motivations accordingly before making new requests to take role

instances from the role space.

4.5 Design of the ASPS Model

A role-based open multi-agent system is defined as a distributed system, in which each agent runs on a

different machine. An agent society is essentially a virtual society that contains only the proxy of each

registered agent running on a remote machine. Furthermore, the role space server and the agent society

server do not have to be residing on the same host. When an agent running on a remote machine wants to

use role instances to achieve its goals, it should be able to invoke methods defined on the role instances

from the role space on a different machine. An agent in an agent society should also be able to find the

other agents in the same society, and communicate with them asynchronously. This facilitation can be

supported by a middleware associated with the agent society server. Figure 11 shows the ASPS model

architecture of a role-based open MAS.

 25

Middleware (RMI, CORBA, Sun Jini or Web Services)

Role Database

Role Space

Agent Society

Ordinary Agents Leading Agent

LeadingRoleRole_A Role_B

Role_C

Agent Database

...

Figure 11. The ASPS model architecture of role-based open MAS

Since each agent works on behalf of a human user, the system provides a user interface for initial

instructions to agents. Note that an agent running on a remote machine, so the ordinary agents and the

leading agent shown in Figure 11 are all proxies of real agents. The leading agent in an agent society

manages the agent society. All other agents called ordinary agents represent ordinary users who can join

or leave agent society freely, and can also take or release roles from the role space at runtime. Both the

role space and the agent society are associated with a database, namely the Role Database and the Agent

Database, which record information about role instances and role assignments, and information about

agents currently in the society, respectively. For security purpose, both the agent society and role space

should ensure that only trustable agents and roles can be recorded in the agent database and the role

database, respectively. Furthermore, the agent society should also be responsible for agents to take

appropriate role instances from the role space by exerting certain amount of control over role assignment

and enforcing related security policies. Detailed descriptions about security related issues in role-based

open MAS is beyond the scope of this paper; however, some preliminary work on agent security can be

found in our previous work [31].

 26

5. A Case Study: Organizing a Conference

Consider an example of organizing a conference, which requires different roles such as program

committee (PC) chair, program committee member, primary PC member and author. Program committee

chair is responsible for assigning papers to program committee members for reviewing. Each paper will

be reviewed by at least n reviewers. A reviewer cannot review his/her own papers. For each paper, there

is a primary PC member assigned by the program committee chair, who is responsible for reading the

reviewers’ comments, solving conflicts among different reviewers, and making decisions on whether to

accept or reject the paper. The ASPI model of the agent-based conference organizer application is

illustrated in Figure 12. As shown in the figure, the PCChairRole class is defined as a subclass of the

LeadingRole class; while the AuthorRole and PCMemberRole classes are defined as subclasses of the

Role class. The PrimaryPCMemberRole is a special PCMemberRole that makes decisions on paper

acceptance; therefore, it is defined as a subclass of the PCMemberRole class. A PCChairRole is

responsible for assigning papers to a PCMemberRole, thus an “assign papers” association relationship is

defined between these two classes. A PrimaryPCMemberRole makes decisions on accepting a paper;

therefore, it has an association relationship with the paper’s author for notification of the result. In

addition, the AuthorRole has an incompatibility relationship with both the PCMemberRole and the

PrimaryPCMemberRole. This implies that at any time a PCMemberRole or a PrimaryPCMemberRole

cannot review his/her own paper.

When we design the ASPS model, we use Sun Jini as a middleware for agents to communicate with agent

societies and role spaces, and also for agents to communicate with each other. The Jini architecture is

intended to resolve the problem of network administration by providing an interface where different

components of the network can join or leave the network at any time [32]. The heart of the Jini system is

a trio of protocols called discovery, join, and lookup. Discovery occurs when a service is searching for a

lookup service with which to register. Join occurs when a service has located a lookup service and wishes

to join it. And lookup occurs when a client or user needs to locate and invoke a service described by its

interface type and possibly, other attributes. Our ASPS model for the agent-based conference organizer

 27

application is supported by the ADK (Agent Development Kit) toolkit that we developed previously [27].

More specifically, both role space and agent society registered the services they provide with the Jini

community, so agents can look up a certain service and invoke it as needed. Meanwhile, each agent also

registers itself as a proxy in the Jini community, so agents can find each other and communicate with each

other using asynchronous message passing. For a detailed description of this approach, refer to previous

work [27] for how agents can communicate with each other asynchronously.

Figure 12. The ASPI model of the agent-based conference organizer application

The open multi-agent system application developed based on the ASPS model provides a user interface

for a user to submit a paper or apply for a PC member role. An agent represents an author who can take

an author role from the role space; while a user who wants to be a PC member may take a PC member

role. During the process, role assignment is automatically done by the role space server. When the

submission deadline is reached, the paper assignment process starts. The PC chair agent matches the area

of interests of each agent who takes a PC member role with the keywords of each paper, and generates an

initial paper assignment table. A simulation result for such a table is illustrated in Figure 13.

 28

Figure 13. Simulation results for paper assignment (initial result)

As we can see from this table, the initial paper assignment is not balanced: some paper has been assigned

to as many as 7 reviewers (e.g., Paper_4); while some paper only has one reviewer (e.g., Paper_12). To

balance the number of reviewers for each paper, the PC chair needs to find additional reviewers for those

papers that do not have enough reviewers, and may drop some reviewers for those papers that have too

many reviewers. It is possible that a reviewer who is requested to review a new paper is not willing to do

so. This requires that the PC chair negotiate with the requested PC member to achieve its goal. A

simplified interaction protocol for such negotiation is shown in Figure 14 (a). As the figure shows, the PC

chair first makes a request to a PC member for reviewing a paper. The PC member has the choice either

to accept or reject the request. If the request is accepted, the PC chair should notify the PC member about

the due date. If the PC member’s reply is negative, the conversation ends; otherwise, the PC chair

confirms with the PC member for the new paper assignment. Similarly, for each paper, the PC chair needs

to appoint a primary PC member to be in charge of that paper. A simplified interaction protocol for such

communications is illustrated in Figure 14 (b).

The user interface of the PC chair agent is illustrated in Figure 15. From the screenshot, we can see that

the PC chair communicates with two agents, i.e., Agent_4 and Agent_6, and finally appoints Agent_6 as

the primary PC member for Paper_8.

 29

 (a) (b)

Figure 14. Examples of interaction protocols between a PC chair and a PC member

Figure 15. User interface of the PC chair agent

 30

After the paper assignment become balanced and each paper has been assigned to a primary PC member,

the system generates the final paper assignment table. Figure 16 shows the simulation results for the final

paper assignment.

Figure 16. Simulation of paper assignment (final decision)

6. Conclusions and Future Work

This paper proposes a role-based methodology for development of open multi-agent software systems.

The proposed concept of role organization, role space and agent society separates the design of roles and

agents, which simplifies the agent development process. A three-layered development model for

developing open MAS is presented and illustrated by a case study. The simulation result shows that our

approach is feasible and effective for developing open MAS. In addition, our approach supports rapid

development of open MAS application on RADE prototype. For future work, we will formalize the

design process of the ASPI model and ASPS model, and based on the formal definitions of these models,

we will partially automate the model transformation process from AIPI model to ASPI model, ASPI

model to ASPS model, and ASPS model to Java code. In future versions of the RADE project, we will

incorporate these transformation tools into RADE, and also define security mechanisms to ensure the

trustworthiness of role-based open multi-agent systems.

 31

Acknowledgments: This material is based upon work supported by the Research Seed Initiative Grant,

College of Engineering, UMass Dartmouth. We thank Prof. Nabil Hameurlain and Dr. Vincent Hilaire for

providing some valuable references related to the RADE project. We also thank all anonymous referees

for the careful review of this paper and the many suggestions for improvements they provided.

References

[1] T. Juan, A. Pearce, and L. Sterling, “ROADMAP: Extending the Gaia Methodology for Complex

Open Systems,” In Proceedings of the First International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS2002), Bolognia, Italy, 2002, pp. 3-10.

[2] R. Duke, G. Rose and G. Smith, “Object-Z: a Specification Language Advocated for the Description

of Standards,” Computer Standards and Interfaces, Vol. 17, Issues 5-6, 1995, pp. 511-533.

[3] H. Xu and X. Zhang, “A Methodology for Role-Based Modeling of Open Multi-Agent Software

Systems,” In Proceedings of the 7th International Conference on Enterprise Information Systems

(ICEIS 2005), May 24-28, 2005, Miami, Florida, USA, pp. 246-253.

[4] F. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and J. Treur, “DESIRE: Modeling Multi-Agent

Systems in a Compositional Formal Framework,” International. Journal of Cooperative Information

Systems, Vol. 6, No. 1, 1997, pp. 67-94.

[5] S. Shapiro and Y. Lespérance, “Modeling Multiagent Systems with CASL - A Feature Interaction

Resolution Application,” In Castelfranchi, C. and Lespérance, Y., editors, Intelligent Agents Volume

VII - Proceedings of the 2000 Workshop on Agent Theories, Architectures, and Languages

(ATAL-2000), LNAI, vol. 1986, 244-259, Springer-Verlag, Berlin, 2001.

[6] R. Bharadwaj, “A Framework for the Formal Analysis of Multi-Agent Systems,” In Proceedings of

the Conference on Formal Approaches to Multi-Agent Systems (FAMAS), affiliated with ETAPS

2003, April 12, 2003, Warsaw, Poland.

 32

[7] M. Luck and M. d'Inverno, “A Formal Framework for Agency and Autonomy,” In Proceedings of

the First International Conference on Multi-Agent Systems (ICMAS-95), AAAI Press / MIT Press,

1995, pp. 254-260.

[8] M. Fisher, “Representing and Executing Agent-Based Systems,” In Proceedings of the International

Workshop on Agent Theories, Architectures, and Languages, M. Wooldridge and N. Jennings (eds.),

Lecture Notes in Computer Science, vol. 890, Springer-Verlag, 1995, pp. 307-323.

[9] H. Xu and S. M. Shatz, “A Framework for Modeling Agent-Oriented Software,” In Proceedings of

the 21st International Conference on Distributed Computing Systems (ICDCS), April 2001, Phoenix,

Arizona, pp. 57-64.

[10] H. Xu and S. M. Shatz, “A Framework for Model-Based Design of Agent-Oriented Software,” IEEE

Transactions on Software Engineering (IEEE TSE), January 2003, Vol. 29, No. 1, pp. 15-30.

[11] V. Hilaire, A. Koukam, and P. Gruer, “A Mechanism for Dynamic Role Playing,” In Agent

Technologies, Infrastructures, Tools and Applications for E-Services, LNAI 2592, Springer Verlag,

2002.

[12] V. Hilaire, O. Simonin, A. Koukam, and J. Ferber, “A Formal Approach to Design and Reuse of

Agent and Multiagent Models,” In Proceeding of the Fifth International Workshop on

Agent-Oriented Software Engineering (AOSE-2004), AAMAS 2004, New York, July 2004.

[13] D. Kinny, M. Georgeff, and A. Rao, “A Methodology and Modeling Technique for Systems of BDI

Agents,” In Proceedings of the Seventh European Workshop on Modeling Autonomous Agents in a

Multi-Agent World, W. Van de Velde and J. W. Perram, eds., LNAI Vol. 1038, Springer-Verlag:

Berlin, Germany, 1996, pp. 56-71.

[14] G. Cabri, L. Ferrari, and L. Leonardi, “Agent Role-Based Collaboration and Coordination: a Survey

about Existing Approaches,” In Proceedings of the IEEE International Conference on Systems, Man

and Cybernetics, Oct. 2004, pp. 5473-5478.

 33

[15] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia Methodology for Agent-Oriented Analysis

and Design,” International Journal of Autonomous Agents and Multi-Agent Systems, Vol. 3, No.3,

2000, pp. 285-312.

[16] S. A. DeLoach, M. F. Wood and C. H. Sparkman, “Multiagent Systems Engineering,” International

Journal of Software Engineering and Knowledge Engineering, Vol. 11, No. 3, June 2001.

[17] N. Hameurlain and C. Sibertin-Blanc, “Specification of Role-based Interactions Components in

Multi-Agent Systems,” Software Engineering for Multi-Agents System III: Research Issues and

Practical Applications, Lecture Notes in Computer Science, LNAI/LNCS, pp 180-197, Vol. 3390,

Springer-Verlag, 2005.

[18] C. Bernon, M. Cossentino, M. Gleizes, P. Turci, and F. Zambonelli, “A Study of Some Multi-Agent

Meta-Models,” In Proceedings of the Fifth International Workshop on Agent-Oriented Software

Engineering (AOSE-2004), The Third International Joint Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS 2004), New York, USA, July 2004.

[19] D. Gracanin, S. A. Bohner, and M. Hinchey, “Towards a Model-Driven Architecture for Autonomic

Systems,” In Proceedings of 11th IEEE International Conference and Workshop on the Engineering

of Computer-Based Systems (ECBS’04), 2004, pp. 500-505.

[20] M. Amor, L. Fuentes, A. Vallecillo, “Bridging the Gap Between Agent-Oriented Design and

Implementation using MDA,” In Proceedings of the Fifth International Workshop on

Agent-Oriented Software Engineering (AOSE 2004), LNCS 3382, pp.93-108, New York, 2004.

[21] B. A. De Maria, V. T. Silva, and C. J. P. Lucena, “Developing Multi-Agent Systems Based on

MDA,” In Proceedings of the 17th Conference on Advanced Information Systems Engineering

(CAiSE’05), Porto, Portugal, June 13-17, 2005.

[22] D. Thomas, “MDA: Revenge of the Modelers or UML Utopia?” IEEE Software,

Vol. 21, No. 3, May/June, 2004, pp. 15-17.

 34

[23] R. G. Smith, “The Contract Net Protocol: High-Level Communication and Control in a Distributed

Problem Solver,” IEEE Transactions on Computer, Vol. C-29, 1980, pp. 1104-1113.

[24] M. Dastani, V. Dignum and F. Dignum, “Role-Assignment in Open Agent Societies,” In

Proceedings of the Second International Joint Conference on Autonomous Agents & Multiagent

Systems (AAMAS 2003), Melbourne, Australia, ACM Press, 2003, pp. 489-496.

[25] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven Architecture: Practice and

Promise, Addison-Wesley, 2003.

[26] R. Nagappan, R. Skoczylas, R. Sriganesh, Developing Java Web Services: Architecting and

Developing Secure Web Services Using Java, Wiley, 2002.

[27] H. Xu and S. M. Shatz, “ADK: An Agent Development Kit Based on a Formal Model for

Multi-Agent Systems,” Journal of Automated Software Engineering (AUSE), October 2003, Vol. 10,

No. 4, pp. 337-365.

[28] S. Stepney, R. Barden, D. Cooper, editors, Object Orientation in Z. Workshops in Computing.

Springer, 1992, pp. 59-77.

[29] J. Arlow, I. Neustadt, UML and the Unified Process: Practical Object-Oriented Analysis and

Design, Addison-Wesley, 2002, pp.142-169.

[30] T. Quatrani, Visual Modeling with Rational Rose 2002 and UML, 3rd Edition, Addison-Wesley

Professional, 2002.

[31] H. Xu, Z. Zhang, and S M. Shatz, “A Security Based Model for Mobile Agent Software Systems,”

International Journal of Software Engineering and Knowledge Engineering (IJSEKE), August 2005,

Vol. 15, No. 4, pp. 719-746.

[32] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and A. Wollrath, The Jini Specification,

Addison-Wesley, 1999.

 35

