
International Journal of Computational Intelligence Theory and Practice Vol. 2, No. 1, June 2007
© Serials Publications

Developing Role-Based Open Multi-Agent
Software Systems

Haiping Xu, Xiaoqin Zhang & Rinkesh J. Patel
Computer and Information Science Department, University of Massachusetts Dartmouth

North Dartmouth, MA 02747, Email: {hxu, x2zhang, g_rpatel}@umassd.edu

Abstract An open multi-agent system (MAS) is a dynamic system in which agents can not only join or leave an agent
society at will, but also take or release roles at runtime. Traditional multi-agent system development methodologies
are not suitable for developing open multi-agent systems because they assume a fixed number of agents that are
specified during the system analysis phase. In this paper, we propose a formal role-based modeling framework for
open multi-agent software systems. We specify role organizations and role spaces as containers of conceptual roles
and role instances, respectively, where role instances can be dynamically taken or released by agents from agent
societies. To support rapid development of role-based open multi-agent systems, we introduce a three-layered
design model of open MAS, and developed a prototype Role-based Agent Development Environment (RADE).
Finally, we present a case study to demonstrate how an open MAS application can be efficiently built on RADE.

Keywords: Role-based modeling, Open multi-agent systems, Object-Z formalism, Model-driven development,
Role-based Agent Development Environment (RADE).

1. INTRODUCTION
Multi-agent systems (MAS) are rapidly emerging as a
powerful paradigm for modeling and developing
complex software systems. However, to specify and
design multi-agent systems is not an easy task.
Methodologies for developing multi-agent systems are
therefore proposed to provide guidelines for software
engineers to develop multi-agent systems in a
systematic manner. Among them, role-based analysis
and design is one of the most effective methodologies
for agent-based system analysis and design. Most of
the existing work defines roles as conceptual units that
only occur in the system analysis phase. The roles
abstracted from use cases are high-level constructs
used to conceptualize and understand the system.
There are no realizations of agent roles in the
implemented system beyond the analysis stage. In most
of the cases, roles are atomic constructs and cannot be
defined in terms of other roles [1]. Such approaches are
feasible when developing small-scale and closed
multi-agent systems, especially when an agent only
takes a single role. However, in an open multi-agent
system, when an agent is allowed to take more than
one role, and also take or release roles at runtime, these
approaches become not suitable. This is because when

role assignments are dynamic, the interaction
relationships between agents become quite complicated,
and they usually cannot be determined at design time.
To develop an open and dynamic multi-agent system, it
is vital for us to introduce the concept of role instance
(a concrete implementation of a conceptual role) into
the design phase, and deduce agent interaction
relationships from agent-role mappings and role
relationships dynamically. In this paper, we first
propose a methodology for role-based modeling of
open multi-agent systems. We define a role
organization that provides the ontology for modeling
roles and their relationships. As one of the most
important role relationship types, inheritance is
explicitly modeled using Object-Z formalism [2]. A
role space is then defined as a container for role
instances, and also as a server to provide services for
software agents to access role instances from the role
space. Based on the concepts of role organization and
role space, we define an agent society as an agent
community where agents may join or leave the agent
society at will, and take or release roles from a
corresponding role space dynamically. The relationship
between agents in an agent society can be deduced
through a mechanism called A-R mapping [3]. To

 International Journal of Computational Intelligence Theory and Practice 40

support the software engineering principle of
“separation of concerns” and reuse of various design
models, we propose a three-layered development
model, in which our formal role-based open MAS
model serves as the first layer of the development
model that is independent of both the application and
solution domains. Our approach provides a potential
solution for automated MAS development, which is
illustrated by a prototype Role-based Agent
Development Environment (RADE). Finally, we use a
case study to show how a role-based open MAS
application can be developed efficiently on RADE.

The rest of this paper is organized as follows. In
Section 2, we describe the related work and highlight
the relationships to our research. In Section 3, we
present a formal framework for role-based open MAS
using Object-Z formalism. Our formal framework
consists three key concepts, namely role organization,
role space and agent society. In Section 4, we propose
a three-layered development model for role-based open
MAS, and describe our RADE prototype. In Section 5,
we provide an example of organizing a conference to
illustrate how role-based open MAS applications can
be developed using our approach. Finally, In Section 6,
we provide conclusions and our future work.

2. RELATED WORK
There are three main strands of work to which our
research is related, i.e., work on formal modeling of
agent-based systems, work on role-based agent
development methodologies, and work on
model-driven development of multi-agent systems.
Previous work on formal modeling of agent systems
has been focused on designing formal specification
languages or using existing formalisms, such as Z,
temporal logic, and Petri nets, to specify agent systems
or agent behaviors. Brazier and his colleagues
developed a high-level modeling framework called
DESIRE (framework for DEsign and Specification of
Interacting REasoning components), which enables
specification of a system’s conceptual design [4]. The
DESIRE framework can explicitly support modeling
the knowledge, interaction, and coordination of
complex tasks and reasoning capabilities in agent
systems. Shapiroa and Lespérance proposed the
Cognitive Agents Specification Language (CASL) that
can be used to model the negotiation process of
personal agents in a multi-agent system. The CASL
also supports modeling an agent’s preferences with
mental states (e.g., knowledge and goals) at an abstract
level [5]. Bharadwaj presented an integrated formal
framework for the specification and analysis of
multi-agent systems [6]. In his proposed approach,

agents are specified in a language called Secure
Operations Language (SOL) that supports modular
development of secure agents. Luck and d’Inverno
used the Z formalism to define a framework for
describing agent architectures at different levels of
abstraction. They proposed a four-tiered hierarchy
comprising entities, objects, agents and autonomous
agents [7]. The basic idea of their approach is that all
components of the world are entities with attributes. Of
these entities, objects are entities with capabilities of
actions, agents are objects with goals, and autonomous
agents are agents with motivations. Fisher’s work on
Concurrent METATEM used temporal logic to
represent dynamic agent behaviors [8]. Such a
temporal logic is more powerful than the
corresponding classic logic and is useful for the
description of dynamic behaviors in reactive systems.
Fisher took the view that a multi-agent system is
simply a system consisting of concurrently executing
objects. Xu and Shatz proposed a high-level Petri net,
called agent-oriented G-nets, to model and verify
behavioral properties of multi-agent systems [9]. Based
on the agent-oriented G-net model, certain properties
of a multi-agent system, e.g., concurrency and
deadlock freeness, can be verified using existing Petri
net tools [10]. Hilaire and his colleagues proposed a
mechanism for dynamic role playing specified in OZS
[11]. The OZS formalism combines Object-Z and
statecharts, and can be used to specify multi-agent
systems based upon role, interactions and organizations
[12]. In their approach, Object-Z is used to specify the
transformational aspects; while statecharts are used to
specify the reactive aspects of a multi-agent system.
Finally, a formal model of agency that is closely
related to our proposed work is the
Belief-Desire-Intention (BDI) agent model [13]. The
BDI agent architecture has come to be one of the
well-known and best studied models of practical
reasoning agents, which provides an explicit
representation for agent mental states, namely beliefs,
desires and intentions. Our specification for an agent
class follows the BDI agent model; however, we
separate domain knowledge (belief), domain goals
(desires), and domain plans (intentions) from the agent
class, and modularize them into corresponding role
classes. Thus, our specified agent class is application
independent, and as a consequence, our proposed
approach supports separation of concerns, which can
significantly simplify the MAS development process
due to our modular development methodology.

In summary, formal methods are typically used for
specification of agent systems and agent behaviors.
Existing work in this direction either do not directly
use role modeling for agent design, or use role

Developing Role-Based Open Multi-Agent Software Systems 41

modeling only as conceptual guidelines for agent
development during the system analysis phase.
Furthermore, as stated by Cabri and his colleagues, a
common limitation of those approaches is the lack of
support for development of multi-agent systems during
all phases [14]. In this paper, we propose our formal
role-based open multi-agent system framework based
on three key notions, namely role organization, role
space and agent society, where role classes are defined
in a role organization and instantiated in a role space;
while role instances can be taken or released by agents
form an agent society dynamically. We overcome the
limitations of current role-based modeling approaches
by demonstrating how our formal model can be used in
a three-layered agent development framework.

A second strand of related work is to propose
role-based methodologies for development of
multi-agent systems. Typical examples of such efforts
include the Gaia methodology and Multiagent Systems
Engineering (MaSE) methodology [15, 16]. The Gaia
methodology models both the macro (social) aspect
and the micro (agent internals) aspect of a multi-agent
system [15]. The methodology covers the analysis
phase and the design phase. Specifically, in the
analysis phase, the role model and interaction model
are constructed. Based on the analysis models, in the
design phase, three models (i.e., the agent model,
service model and acquaintance model) are constructed
during the initial design of the system, and then are
refined during a detailed design phase using
conventional object-oriented methodology. Similarly,
the MaSE methodology is a specialization of
traditional software engineering methodologies [16].
During the analysis phase of the MaSE methodology, a
set of roles are produced, which describes entities that
perform some function within the system. In MaSE,
each role is responsible for achieving, or helping to
achieve specific system goals and subgoals. During the
design phase, agent classes are created from the roles
defined in the analysis phase. In other words, roles are
the foundation upon which agent classes are designed,
and thus, the design of agent and design of roles are
tightly coupled. More recently, Hameurlain and
Sibertin-Blanc proposed a formal specification model
of roles for complex interactions in multi-agent
systems [17]. Their approach is based on the RICO
(Role-based Interaction COmponents) specification
model, which is a role-based interaction abstract model
for specification of role components in agent-based
applications. Due to their formal specification of role
components in Petri nets, their approach supports
verification of certain safety properties such as mutual
exclusion and concurrency. Different from the above
methodologies, in our proposed approach, we

explicitly model conceptual roles and role instances for
role-based open MAS. The components of role
instances and agent instances are loosely coupled,
where agents can take or release role instances at
runtime. Furthermore, in our three-layered MAS
development model, role classes and agent classes can
be designed and implemented independently, which
significantly simplifies the development of open
role-based MAS.

Previous efforts on model-driven development of
multi-agent systems can be summarized as follows.
Bernon and his colleagues attempted to unify three
existing methodologies (i.e., ADELFE, Gaia, and
PASSI) by studying their meta-models and concepts
related to them. The unification would be useful to
build tools using the MDA (Model-Driven
Architecture) approach to automatically transform a
meta-model into a model depending on a target
platform [18]. Gracanin and his colleagues proposed a
model-driven architecture framework in extending the
Cognitive Agent Architecture (Cougaar), which is an
open source, distributed agent architecture [19]. The
proposed framework consists of two main parts:
General Cougaar Application Model (GCAM) and
General Domain Application Model (GDAM). The
GCAM provides model representation of the Cougaar
basic constructs; while the GDAM, which is built upon
the foundation of GCAM, defines the requirements and
the detailed design. In Amor and his colleagues’ work,
the authors showed how to use the MDA approach to
drive agent implementation from agent-oriented design,
which is independent of both the methodology used
and the concrete agent platform selected [20]. The
transformation process can be partially automated by
using a platform-neutral agent model, called Malaca.
More recently, Maria and her colleagues proposed an
MDA-based approach to developing MAS [21]. They
used MAS-ML, which was an MAS modeling
language, to model MAS by creating the platform
independent models (PIM), and then tried to transform
the MAS-ML models into UML models. Most of the
previous efforts emphasized on automatically
transforming a PIM into platform-specific models
(PSM). However, as some researcher suggested, it
could be distinctly nontrivial, and even impossible, to
support and evolve semantically correct PSM for
complex platform such as J2EE or .Net [22]. In
contrast to the above approaches, our approach
emphasizes on developing three levels of models,
namely AIPI (Application Independent Platform
Independent) model, ASPI (Application Specific
Platform Independent) model, and ASPS (Application
Specific Platform Specific) model. The development of
the three different levels of models can be viewed as

 International Journal of Computational Intelligence Theory and Practice 42

role_C role_D

role_E

Role Organization

Role Space

agent_1
agent_2

agent_3

Agent Society

roleInstance_1

roleInstance_2

roleInstance_n

role_B

role_A steps in a refinement process. In each level of the
development model, role components and agent
components are always separated and designed
independently. Role instances and agent instances
interact with each other only at runtime through the
A-R mapping mechanism. Therefore, our approach
follows the principle of component-based software
engineering (CBSE), where role entities and agent
entities can actually be developed by different software
development teams.

3. A FRAMEWORK FOR ROLE-BASED

MULTI-AGENT SYSTEM

3.1 An Organizational Approach
Most of the existing MAS development process
models do not support dynamic role assignment for
agents; however, many agent-based applications
require that agents can change their roles at runtime.
For example, when we use agent technology to
simulate a startup software company, the agent
representing the CEO of the company first creates a
number of positions, such as team leader roles and
programmer roles. During the hiring process, a newly
hired employee is only allowed to take those
predefined roles, but he may take more than one role at
the same time. While the company is running, existing
employees may leave the company, and drop the roles
that were previously taken; meanwhile, new employees
can be hired to replace the previous ones by taking the
available position roles. It is also possible that, under
certain conditions, an employee needs to change a role
at runtime. For example, an employee who previously
takes a programmer role can be promoted to take a
team leader role based on the employee’s excellent
performance. To model this kind of dynamic and open
systems, conventional multi-agent system development
methodologies become quite inappropriate. Therefore,
we propose our role-based methodology for open MAS
to separate the concepts of role and role instance,
where a role is defined as a conceptual role; while a
role instance is a concrete implementation of a
conceptual role. We define a role organization that
contains conceptual roles with one of the following
relationships among each other, namely inheritance,
aggregation, association and incompatibility. We also
introduce a concept called role space that consists of
role instances. Instead of simply using conceptual roles
during the system analysis phase, we explicitly create
role instances at runtime; thus, agents can take or
release role instances from a role space dynamically. A
generic model of role-based open multi-agent systems
is illustrated in Figure 1.

Figure 1. A Generic Model of Role-based Open Multi-
agent Systems (Adapted from [3])

As shown in Figure 1, a role organization contains

a set of conceptual roles (or role classes) with their
relationships. For example, role_B and role_C are
defined as subclasses of role_A. Role_D is defined as a
part of role_C. In other words, role_C views role_D’s
responsibilities and capabilities as part of its own.
Role_D and role_E have an association relationship,
for example, role_D is responsible to provide certain
information to role_E if there is such a request. In
addition, role_D has a reflective association
relationship to itself, for example, when role_D
represents a team member role, team members are
required to discuss on certain topics. A role space
containing a set of role instances is defined based on a
role organization. Each role instance must be of a role
type defined in its corresponding role organization. For
example, roleInstance_2 is of type role_D defined in
the role organization. Since the relationships between
role instances can be easily derived from their class
relationships, it is not necessary to explicitly show
their relationships at this layer. An agent society
contains a set of agent instances, where agents are free
to join or leave the agent society, and take role
instances from the role space. For example, agent_1
takes two role instances, i.e., roleInstance_1 and
roleInstance_2, which are of type role_B and role_D,
respectively. An agent can not only take roles at
runtime, but can also release them if the role instances
are not needed any more for achieving its goals. The
relationships between agents depend on the
relationships between roles that are taken. For example,
agent_1 and agent_3 have an interaction relationship
because role_D has a reflective association relationship
with itself; agent_2 and agent_3 have an interaction
relationship because role_D and role_E have an
association relationship. Note that relationships of

Developing Role-Based Open Multi-Agent Software Systems 43

inheritance and aggregation between roles are not
passed down as agent relationships.

3.2 Role-Based Agent Model
To formally specify our proposed role-based model of
open multi-agent systems, we use Object-Z formalism,
which is an extension to the Z formal specification
language for modular design of complex systems [2].
Our framework is composed of a set of classes that
define the basic constructs in the role-based open MAS
model. We now provide some key definitions of the
basic constructs in our formal role-based agent model
as adapted from [3].

Definition 3.1 Role Class
A role class, or a conceptual role, is defined as a

template of role instances that has attributes, domain
knowledge, domain goals, domain plans, domain
actions, permissions and protocols. A role instance is a
fully instantiated role entity.

The class schema Role can be formally specified
in Object-Z based on its state and operation schemas as
shown in Figure 2. The Role class consists of a state
variable attributes, which represents a set of role
attributes that describe the characteristic properties of a
role, including a role name and a role identification. A
Role is defined to have a set of domain knowledge,
domain goals, domain plans, and domain actions. The
state variable domainKnowledge specifies a set of
domain knowledge that a role must possess to achieve
its domain goals. The state variable domainGoals
describes the current goal states and a set of domain
goals that a role may achieve. The state variable
domainPlans represents a set of plan trees that are used
to achieve a goal or subgoal by executing several
actions in a specified order. Each plan tree is
associated with a goal or a subgoal; however, a goal or
subgoal may associate with more than one plan tree,
and the most suitable one will be selected to achieve
that goal or subgoal. To carry out a certain plan, a role
needs the capability to perform certain associated
actions. The state variable domainActions refer to a set
of actions that will be trigged to execute when an
associated plan tree is selected to carry out. The state
variable permissions describes the resources that are
available to that role in order to achieve a goal or
subgoal. The permissions are accessing rights of a role
for information related resources. For example, a role
may have the right to read a particular piece of
information, to modify it, or even to generate new
information. The state variable protocols defines the
way how role instances may interact with each other,
e.g., the contract net protocol [23]. Finally, the Boolean
state variable beTaken defines if a role instance has

already been taken by an agent. A true value indicates
that a role instance has already been taken, thus it is
not available for other agents.

Figure 2. Formal Specification of the Role Class in Object-Z

The concept of role instance, i.e., an instantiated
role, is similar to the concept of object, which is an
instantiated entity of a class. Note that, although a role
instance has certain goals, plan trees, and actions, it
cannot start to execute until it is taken by an agent. It is
an agent’s responsibility to choose the most
appropriate plan and the corresponding actions to
achieve a certain goal or a subgoal. Furthermore, we
may modify or update role permissions and add new
communication protocols to a role instance. This is
achieved by providing the operations of setPermission
and addProtocol defined as operation schemas in the
Role class schema.

Definition 3.2 Role Organization
A role organization is defined as 2-tuple RO = (SR,

REL), where SR is a set of conceptual roles, and REL is
the relationship function maps two conceptual roles to
a role relationship λ ∈ {inheritance, aggregation,
association, incompatibility}.

To define the class schema RoleOrganization, we
need to define RoleMetaClass type first. A metaclass is
a class whose instances are classes. Every class has a
metaclass, of which it is the sole instance. The
RoleMetaClass specifies the Role class in terms of its
attributes and behaviors. Therefore, an instance of type

Role

attributes : P Attribute
domainKnowledge : P Knowledge
domainGoals : P Goal
domainPlans : P Plan
domainActions : P Action
permissions : P Permission
protocols : P Protocol
beTaken : B

INIT

permissions = ∅

protocols = ∅

beTaken = false

setPermission
∆permissions
perm? : Permission

permissions ′ = permissions ∪ {perm?}

addProtocol
∆protocols
prot? : Protocol

procotols ′ = protocols ∪ {prot?}

 International Journal of Computational Intelligence Theory and Practice 44

RoleMetaClass is the Role class. Based on the concept
of RoleMetaClass, we formally define the class schema
RoleOrganization as shown in Figure 3. By defining
the state variable roles as a set of elements of type
RoleMetaClass or its derivatives, roles refers to a set of
classes including subclasses of the Role class and the
Role class itself. Accordingly, the function relationship
is defined for relationships between classes (roles)
instead of objects (role instances). Such relationships
include inheritance relationship, aggregation
relationship, association relationship and
incompatibility relationship, which will be described in
Section 4.2. The Role class is the root class of all its
descendents, which exists initially when a role
organization is created. New role classes can be added
into the role organization. When a new class role? is
added, the inheritance relationship between role? and
its superclass r must also be specified. This is done
automatically by updating the function relationship
with mapping {(r, role?) inheritance}.
However, other relationships between role classes must
be set up manually using operation setRelationship.

a

Figure 3. Formal Specification of the RoleOrganization
 Class in Object-Z

Definition 3.3 Role Space
A role space is a container of a set of role

instances of types defined in a role organization. Each
role space corresponds to a single role organization;
however, a role organization can be mapped to more
than one role space. Role instances can be added into
or deleted from a role space dynamically. A role space
provides services for software agents to access role
instances created in the role space.

The class schema RoleSpace is formally defined in
Object-Z as shown in Figure 4. In the class schema

RoleSpace, we define roleOrganization as a global
variable of type RoleOrganization, in which the
number of role classes must be more than one. If the
role organization is modified, the role space must be
updated accordingly in order to be consistent with the
conceptual roles and role relationships defined in the
role organization. For example, when a certain
conceptual role cr is deleted from the role
organization (for simplicity, the operation schema of
deleteRole is not defined in the class schema
RoleOrganization), any role instances of type cr must
also be deleted. The dependency between role space
and role organization is important because it ensures
that the types of role instances in a role space are
always consistent with that of role instances an agent
may take.

Figure 4. Formal Specification of the RoleSpace Class in
Object-Z

As shown in the class schema RoleSpace, the state
variable roleInstances refers to a set of role instances
of type Role or its derivatives, which must have
already been defined in the roleOrganization. Initially,
the role space contains zero role instances. Role
instances can be added into or deleted from a role
space dynamically, which are specified by the
operation schema createRoleInstance and
deleteRoleInstance, respectively. In addition, a role
space should also provide services for software agents
to search for appropriate role instances according to
certain criteria. An example of such services is defined

RoleOrganization

roles : P ↓ RoleMetaClass
relationship : ↓ RoleMetaClass × ↓ RoleMetaClass �→ Relationship

∀ r1, r2 ∈ roles, r1 �= r2 • (r1, r2) ∈ dom relationship

INIT

roles = {Role}

addRole
∆roles, relationship
role? : ↓ RoleMetaClass

role? �∈ roles ∧ roles ′ = roles ∪ {role?}
∃ r ∈ roles • r .subclass = role? ∧

relationship′ = relationship ∪ {(r , role?) �→ Inheritance}

setRelationship
∆relationship
r1?, r2? : ↓ Role
rela? : Relationship

rela? �= Inheritance ∧
relationship′ = relationships ∪ {(r1?, r2?) �→ rela?}

RoleSpace

roleOrganization : RoleOrganization

#roleOrganization.roles > 1

roleInstances : P ↓ Role

∀ ri ∈ roleInstances • ri .getClass ∈ roleOrganization.roles

INIT

roleInstances = ∅

createRoleInstance
∆roleInstances
ri? : ↓ Role

roleInstances ′ = roleInstances ∪ {ri?}
ri?.getClass ∈ roleOrganization.roles
∀ r ∈ roleInstances, r �= ri? • relationship(r .getClass, ri?.getClass)

∈ roleOrganization.relationship

deleteRoleInstance
∆roleInstances
ri? : ↓ Role

ri? ∈ roleInstances ∧ roleInstances ′ = roleInstances − {ri?}

findRoleInstance
ΞroleInstances
ra? : Role.Attributes
ri ! : ↓ Role

NotFound ∨ (∃ ri ∈ roleInstances • ri .attributes = ra? ∧ ri ! = ri)

Developing Role-Based Open Multi-Agent Software Systems 45

by the operation schema findRoleInstance for
retrieving a role instance by role attributes.

Definition 3.4 Agent
An agent or an agent class is defined as a template

of agent instances that has attributes, knowledge,
motivations, sensor, reasoningMechanism, role-
MatchingMechanism, committedPlan, and a reference
variable rolesTaken that refers to a set of role instances.
An agent instance is a fully instantiated agent.

The class schema Agent can be formally specified
based on its state schemas and operation schemas as
shown in Figure 5. An agent is identified by its
attributes such as the agent name, agent owner and
agent identification. As shown in the Agent class
scheme, an agent has motivations, which is defined as
any desire or preference that can lead to the generation
and adoption of goals, and also affect the outcome of
the reasoning or behavioral task intended to satisfy
those goals [7]. The sensor of an agent perceives
related environment changes and transforms the inputs
into a set of sensor data. The reasoningMechanism is
defined as a function that takes a set of sensor data and
a set of motivations as arguments and maps them to a
set of goals and subgoals. Based on the goals and
subgoals, the function roleMatchingMechanism further
derives a set of needed roles with certain attributes.
The agent then searches the role space for any
available role instances that satisfies the role properties,
and takes each needed available role instance from the
role space to achieve its goals. To realize an agent’s
goal, a committed plan is derived according to the role
instances and the knowledge possessed by the agent,
which includes the agent knowledge and the domain
knowledge of each role instance taken by the agent.
This mechanism is defined as a function
committedPlan in the Agent class. The state variable
rolesTaken refers to a set of roles that are currently
taken by the agent. The Agent class schema also
defines two fundamental operations: takeRole and
releaseRole. The takeRole operation takes an available
role instance from a role space, and set it as
unavailable to other agents. On the other hand, the
releaseRole operation releases a role instance and set it
to be available for other agents.

Definition 3.5 Agent Society
An agent society defined upon a role organization

consists of a set of agent instances of type Agent. An
agent society provides services for agent instances to
join or leave the agent society dynamically.

The structure of an agent society is often
determined by organizational design that is
independent of the agents themselves [24]. The class
scheme of AgentSociety is formally defined in
Object-Z as shown in Figure 6. Since both role spaces

and agent societies are defined on role organizations, a
correspondence exists between a role space and an
agent society when they share the same role
organization. This implies that a role instance created
in a role space can only be taken by an agent from an
agent society with the same role organization;
meanwhile, any agent belongs to an agent society must
take at least one role instance from a role space with
the same role organization. Those agents who do not
take any role instances from a corresponding role space
shall leave the agent society eventually. Note that the
correspondence between a role space and an agent
society does not imply that an agent can take roles only
from one role space. In contrast, an agent may join
multiple agent societies and take role instances from
different role spaces.

Figure 5. Formal Specification of the Agent Class in
 Object-Z

As shown in the AgentSociety class scheme, an
agent society defines a state variable agentInstances
that refers to a set of agent instances of type Agent. The
state variable interaction is defined as a function,
which applies to a source agent and a destination agent,
and may generate a message. An agent instance
belonging to an agent society takes role instances of
types defined in the role organization, upon which the
agent society is defined. When two agents have an
association relationship between their role instances,
they may have interactions by sending messages to
each other. In an agent society, agent instances can join
or leave the agent society dynamically, which are

Agent

attributes : P Attribute
knowledge : P Knowledge
motivations : P Motivation
sensor : Environment �→ SensorData
reasoningMechanism : P SensorData × P Motivation → P Goal
roleMatchingMechanism : P Goal → P ↓ Role
committedPlan : P Knowledge × P ↓ Role → P Plan
rolesTaken : P ↓ Role

INIT

rolesTaken = ∅

takeRole
∆rolesTaken
ri? : ↓ Role

ri?.beTaken = false ∧ ri?.beTaken ′ = true
rolesTaken ′ = rolesTaken ∪ {ri?}

releaseRole
∆roleTaken
ri? : ↓ Role

ri?.beTaken = true ∧ ri?.beTaken ′ = false
rolesTaken ′ = rolesTaken − {ri?}

specified by the operation schema join and leave,
respectively.

 International Journal of Computational Intelligence Theory and Practice 46

Figure 6. Formal Specification of the Agen

sRelationship in more details in Section 4.2. A
RoleSpace contains any number of Role instances, but
a role instance can belong to only one role space. Note
that a Role class (including its subclasses) can be
associated with more than one role organizations. An
AgentSociety contains any number of agent instances,
and an agent can join more than one agent society. As
an example for such a scenario, a company may have
any number of employees; while an employee may
work for two different companies at the same time. In
addition, an agent can take any number of role
instances; however, any role instance can only be taken
by one agent.

agentInstances : P Agent
interaction : Agent × Agent �→

• r .getClass ∈ roleOrganization.roles
∀ a1, a2 ∈ agentInstances, a1 �= a2,

∃ r1 ∈ a1.rolesTaken,∃ r2 ∈ a2.rolesTaken,
roleOrganization.relationship(r1.getClass, r2.getClass) =
Association • (a1, a2) ∈ dom interaction

INIT

ntInstances = ∅

∆agentInstances
agent? : Agent

∀ a ∈ agentInstances • a �= agent?
agentInstances ′ = agentInstances ∪ {agent?}

leave
∆agentInstances
agent? : Agent

agent? ∈ agentInstances
∀ r ∈ agent?.rolesTaken • agent?.releaseRole(r)
agentInstances ′ = agentInstances − {agent?}

AIPI Model
Application Independent Platform Independent Model

tSociety Class in
Object-Z

RO D OPEN MAS
p ure
D ent

ered development model consists of three
Application

development model is defined in three steps. The first

ole-based development
met

We will describe
Clas

4. MODEL-DRIVEN DEVELOPMENT OF
LE-BASE

Ins ired by OMG’s Model-Driven Architect
(M A) [25], we propose a three-layered developm

el for developing role-basedmod open MAS. Our
approach supports separation of concerns such that the
architecture domain, the application domain and the
solution domain can be considered separately. Similar
to the MDA approach, our approach provides a
potential solution to automated development of
role-based open MAS. In other words, it is possible to
build a MAS development tool to automatically
generate partial code for a role-based open MAS
application.

4.1 Three-Layered Development Model

ur three-layO
relatively independent models, namely
Independent Platform Independent (AIPI) model,
Application Specific Platform Independent (ASPI)
model, and Application Specific Platform Specific
(ASPS) model. The purpose of this approach is to
separate software architecture from an application
domain and to separate application logic from the
underlying technologies to support reusability in an
agent development process.

As shown in Figure 7, the three-layered

step is to define the AIPI model, which is a generic
model that matches our r

hodology for open MAS. The second step is to
define the ASPI model that is based on the AIPI model
and knowledge from the application domain. In the
third step, based on the ASPI model, we define the
ASPS model that further incorporates information from
the solution domain. There is a one-to-one mapping
between the classes defined in the role-based formal
MAS model described in Section 3 and the classes
defined in the AIPI model for role-based open MAS.
For example, the Role class and the RoleSpace class
defined in Object-Z are also defined as a Role class and
RoleSpace class in the AIPI model, which are
illustrated in a simplified AIPI model in UML class
diagram as shown in Figure 8.

From Figure 8, we can see that an object of
RoleOrganization contains instances of
ClassRelationship and instances of RoleMetaClass,
which are Role classes.

AgentSociety

roleOrganization : RoleOrganization

#roleOrganization.roles > 1

Message

∀ a ∈ agentInstances,∃ r ∈ a.rolesTaken

age

join

Definition of Role, Role Organization, Role Space,
Agent, Agent Society

ASPI Model
Application Specific Platform Independent Model

Definition of specific role classes, role organization
class, agent class, agent society class, and A-R maping

ASPS Model
Application Specific Platform Specific Model

Definition of software platform, middleware and
communication mechanisms

Figure 7. Three-layered Development Model for Developing
 Role-based Open MAS

Developing Role-Based Open Multi-Agent Software Systems 47

e
d
o
i
i
r

d

Figure 8. The AIPI Model of Role-based Open MAS in UML Class Diagram

The ASPI m particular application as well as the implementation
ies. Based on the ASPI model, the ASPS

ncorporates knowledge from the solution
domain, and specifies the open MAS in terms of
specific implementation technologies. For example, the
open MAS can be implemented using EJB and Java
servlets on a J2EE platform, or it can be developed
using Microsoft .Net techniques. Alternatively, we can
use web services techniques, such as IBM WebSphere
and Sun JWSDP [26] for agent communications. In
Section 5, we use a case study to show how to develop
the ASPS model based on the communication
mechanism that is supported by ADK (Agent
Development Kit) [27].

4.2 Class Relationships in a Role Organization
When designing an open MAS application using
role-based modeling, we first need to design the Role
classes and their relationships in a role organization. In
a role organization, role hierarchy defines the

odel defines a high-level abstraction
that is specific to a particular application; but the

odel is independent of any implementation
technolog
model im

technology. In other words, the ASPI model describes
an open multi-agent software system that supports the
application logic, but whether the system will be
implemented on a main frame with J2EE or
Microsoft .NET platform is not considered in such a
model. One advantage of using role-based agent
development is to simplify the definition of an Agent
class such that certain capabilities for achieving a goal,
including domain knowledge and domain plans, can be
ncapsulated into a role component. Two key issues in
efining the ASPI model are to define the role
rganization and to define the mapping from agent
nstances to role instances. We discuss these two issues
n more details in Section 4.2 and Section 4.3,
espectively.

The third model is called ASPS model, which
efines the multi-agent system that is specific to a

 International Journal of Computational Intelligence Theory and Practice 48

relationships among different role classes. The
relationship types between two role classes consist of
the following: inheritance relationship, aggregation
relationship, association relationship and
incompatibility relationship. We now give definitions
to these relationships as well as some related key
concepts such as a leading role and a composite role.

Definition 4.1 Inheritance Relationship
An inheritance relationship between two role

classes represents the generalization or specialization
relationship between two role classes, where one class
is a specialized version of another. Inheritance is a
mechanism for incremental specification and design,
whereby new classes may be derived from one or more
xisting classes. Inheritance therefore is particularly

sting

da

s
goal by an
oper

 be added into or deleted from
the peration addSubRole
or d

ons may have an association name, role
nam ion name indicates

 on
an i f an

asso

p

rks for a bank is not allowed
to b

 of a
mul

n a role space is a
apping process from agents in an agent society to

 We call this mapping
pr R ma

Definition 4.7 A-R Mapping
m an
Φ to

pace Γ. Both Θ
e role organization Φ.

e
significant in the effective reuse of exi
specifications [28].

Definition 4.2 Leading Role
A leading role is responsible for hiring other roles

in achieving its goal. For example, a company CEO is
a leading role, which is responsible for hiring new
employees. The LeadingRole class is defined as a
subclass of the Role class [3]. Therefore, a leading role
inherits all the ta fields, e.g., attributes, domaingoals
and domainplans, as well as all operations defined in
the Role class. In addition, a leading role records the
number of role instances that are required to achieve it

s. This functionality can be defined
ation called updateHiringNumber, which updates

the needed number of role instances for a certain type
of roles.

Definition 4.3 Composite Role
A composite role is defined by the CompositeRole

class, which is a subclass of the Role class. In the
CompositeRole class, the state variable subRoles
describes a set of role instances of type Role or its
derivatives. Subroles can

subRoles set by applying the o
eleteSubRole.
Definition 4.4 Aggregation Relationship
In an aggregation relationship between two role

classes, one of the role classes must be a subclass of
the CompositeRole class. The aggregation relationship
between role classes is most suitable for defining the
hierarchy of a role organization. For instance, we can
use a composite role to represent a team, a group or
even a role organization.

Definition 4.5 Association Relationship
The association relationship is one of the most

common relationships between classes [29].
Associati

es and multiplicity. The associat

ciation denotes the number of instances of the role
classes that can participate in their relationship. To
describe such a relationship in a more precise manner,
we add a condition [cond] in front of the association
name. The association relationship only exists between
instances of role classes when the associated condition
cond is true.

Definition 4.6 Incompatibility Relationshi
Under certain conditions, when two roles cannot

be taken by an agent at the same time, we say these
two roles have an incompatibility relationship. An
example of such a relationship between a BankerRole
and a LoanBorrowerRole (denoted as a dotted arc with
a small circle) is illustrated in Figure 9. In this
example, a banker who wo

orrow loan from the same bank.

Figure 9. An Example of Incompatibility Relationship

4.3 A-R Mapping Mechanism
Multi-agent systems have been proposed as one of the
most promising approaches to creating open systems
due to their capabilities of dynamically reorganizing
themselves as the system goals and constituent agents
change [24].

LoanBorrowerRole BankerRole
[same bank]

In our approach, the openness
ti-agent system is specified by the openness of both

the role space and the agent society. The openness of a
role space refers to a space where role instances can be
added into or deleted from a role space dynamically;
while the openness of an agent society implies that
agents can not only join or leave the system at will, but
more importantly, they can take or release role
instances from a role space at runtime. The procedure
of taking or releasing role instances i
m
role instances in a role space.

pping. ocess the A-

An A-R mapping is a process for agents fro
agent society Θ defined upon role organization
take or release role instanc in a role s
and Γ are defined upon the sam

es

Formally, the A-R mapping is defined as a function as
shown in the following:

where f is a partial function that maps from each agent
instance to a set of role instances.

A-R mapping =̂ f : Agent �→ P ↓ Role

an action that an instance of one role may perform
nstance of another role. The multiplicity o

Developing Role-Based Open Multi-Agent Software Systems 49

The process of A-R mapping is a dynamic process
of role assignment, which involves the following steps:

1. Initialization: A user creates a leading agent α in
agent society Θ. The leading agent α is
responsible for initializing and managing the agent
society Θ. Ordinary agents representing different
users may join the agent society Θ, and are ready
to take role instances from the role space Γ.

2. Creating role instances: The leading agent α
makes a request to the role space Γ to instantiate

d to achieve its goal.
3. Rol Γ for

req society
Θ, and do the following:

re
o

3.3 Goto

As s e condition for
le at

runtime. Whenever the condition is satisfied, agent β

must ne
conflicts
into fals
release

SPI Model
To facilit

nv

role
assi
of a
tool
clas
user
role f

mpt
he attributes and operations defined

in th

ype also supports generation of
he role

the major leading role class that is defined as a
subclass of the LeadingRole class in the role
organization Φ. The leading agent α takes the
major leading role instance as soon as it is
available. The leading agent α further makes
requests to the role space Γ to create all the role
instances that are neede

e assignment: The role space waits
uests from an ordinary agent β in agent

nflict
cannot be resolved, the agent must make a request to
the role space to release any role instances that are in

3.1 If the request is to query about a role instance,
then
a. Search the role space Γ for any available role

instances with the requested role attributes.
b. If there is a match, reserve the role instance

and notify agent β to take that role instance.
Else notify agent β that there is no available
role instances, go to Stage 3.

Else if the request is to take a role instance, then
Assign the requested role instance to agent β,
and check its role incompatibility as follows:
For any role instances r1, r2 ∈ β.rolesTaken,

 If Φ.relationship(r1.getClass, r2.getClass) ==
incompatibility, and the condition for that

 relationship is true, then
 Suspend any activities of role instances r1,

r2 until the conflict is resolved.
Else if the request is to release a role instance, then

Release the role instance from agent β.
interaction relationships:3.2 Setting up agent The

role space Γ notifies the agent society about the
updated role assignment and updates the
interaction relationships between agent β and other
agents from agent society Θ as follows: for any
agent instance γ ∈ Θ.agentInstances, where β ≠ γ,
if ∃ r1 ∈ β.rolesTaken, r2 ∈ γ.rolesTaken such that

lationship r .getClass, r .getClass Φ. (1 2) ==
ass ciation, then (β, γ) ∈ dom Θ.interaction.

 stage 3.

hown in the above algorithm, th
ro incompatibility of an agent β is checked

gotiate with other agents to resolve the
. In case that the condition cannot be turned
e, one of the role instances in conflict must be

d by agent β.

4.4 Tool Support for Design of A
ate rapid development of the ASPI model, we
d a prototype Role-based Agentdevelope Development

E ironment (RADE). The major tasks of the current
v of the RADE system are to providersion e tool
support for design of role organization, visualization of

 space and agent society, and enable automatic role
gnment using A-R mapping. The toolkit for design
 role-organization is similar to the Rational Rose
kit [30], but it is specific to support design of role
ses and their relationships. Figure 10 shows the
 interface of the RADE prototype for design of a
 organization. When the high-level design o the
organization is complete, the system will prorole

the user to fill out t
e Role class (i.e., the root class) according to the

class schema defined in Section 3. Then the system
prompts the user to define additional attributes and
operations for each role classes in the role organization.
Finally, the code for the RoleOrganization package can
be automatically generated by clicking on the
“CodeGen” menu on the top of the window.

The RADE protot
code for the role space and agent society. T
space works as a server that receives requests for
querying about the availability of role instances, taking
role instances and releasing role instances. In the
RADE prototype, the system can graphically show the
available role instances as well as related objects in the
role space. Similarly, an agent society also works as a
server that receives requests from agents to join or
leave the agent society. Note that the agent society
contains a proxy of each registered agent; while the
real agent can run on a remote machine. The RADE
prototype can dynamically show currently registered
agents and keep track of each agent’s behaviors.

When various agents joins the agent society and
starts to request roles instances, the automatic A-R
mapping mechanism is invoked. According to the
algorithm for the A-R mapping mechanism as shown in
Section 4.3, the role space works reactively to process
requests from ordinary agents for querying, taking or
releasing role instances from the role space. During the
A-R mapping process, possible conflicts of role
instances taken by an agent are marked on that agent. If
the condition for such a conflict is true and the co

 International Journal of Computational Intelligence Theory and Practice 50

t
i

Figure 10. User Interface of the RADE Prototype for Design of Role Organization
conflict, an
before ma
the role sp

4.5 Design
A role-b
distributed sys
different m
virtual so
registered
Furtherm
society ser
host. When
wants to
should be
instances
An agent
the other ag
with them
supported

Since each agent works on behalf of a human user,
he system provides a user interface for initial
nstructions to agents. Note that an agent running on a

remote machine, so the ordinary agents and the leading
agent shown in Figure 11 are all proxies of real agents.
The leading agent in an agent society manages the
agent society. All other agents called ordinary agents
represent ordinary users who can join or leave agent
society freely, and can also take or release roles from
the role space at runtime. Both the role space and the
agent society are associated with a database, namely
the Role Database and the Agent Database, which

d adjust its goals or motivations accordingly

king new requests to take role instances from
ace.

 of the ASPS Model
ased open multi-agent system is defined as a

tem, in which each agent runs on a
achine. An agent society is essentially a

ciety that contains only the proxy of each
 agent running on a remote machine.
ore, the role space server and the agent

ver do not have to be residing on the same
 an agent running on a remote machine

use role instances to achieve its goals, it
 able to invoke methods defined on the role
from the role space on a different machine.

 in an agent society should also be able to find
ents in the same society, and communicate

 asynchronously. This facilitation can be
by a middleware associated with the agent

Middleware (RMI, CORBA, Sun Jini or Web Services)

Role Database

Role Space

Agent Society

Ordinary Agents Leading Agent

LeadingRoleRole_A Role_B

Role_C

Agent Database

...society server. Figure 11 shows the ASPS model
rchitecture of a role-based open MAS. a

Figure 11. The ASPS Model Architecture of Role-based
 Open MAS

Developing Role-Based Open Multi-Agent Software Systems 51

reco

ry PC member assigned by the program

i ts among
diffe ions on whether

societies and role spaces, and also for agents to
 is

e the problem of network
administration by providing an interface where
different components of the network can join or leave
the network at any time [32]. The heart of the Jini

rd information about role instances and role
assignments, and information about agents currently in
the society, respectively. For security purpose, both the
agent society and role space should ensure that only
trustable agents and roles can be recorded in the agent
database and the role database, respectively.
Furthermore, the agent society should also be
responsible for agents to take appropriate role instances
from the role space by exerting certain amount of
control over role assignment and enforcing related
security policies. Detailed descriptions about security
related issues in role-based open MAS is beyond the
scope of this paper; however, some preliminary work
on agent security can be found in our previous work
[31].

5. A CASE STUDY: AGENT-BASED

CONFERENCE ORGANIZER
Consider an example of organizing a conference,
which requires different roles such as program
committee (PC) chair, program committee member,
primary PC member and author. Program committee
chair is responsible for assigning papers to program
committee members for reviewing. Each paper will be
reviewed by at least n reviewers. A reviewer cannot
review his/her own papers. For each paper, there is a
prima

communicate with each other. The Jini architecture
intended to resolv

committee chair, who is responsible for reading the
rev ewers’ comments, solving conflic

rent reviewers, and making decis
to accept or reject the paper. The ASPI model of the
agent-based conference organizer application is
illustrated in Figure 12. As shown in the figure, the
PCChairRole class is defined as a subclass of the
LeadingRole class; while the AuthorRole and
PCMemberRole classes are defined as subclasses of the
Role class. The PrimaryPCMemberRole is a special
PCMemberRole that makes decisions on paper
acceptance; therefore, it is defined as a subclass of the
PCMemberRole class. A PCChairRole is responsible
for assigning papers to a PCMemberRole, thus an
“assign papers” association relationship is defined
between these two classes. A PrimaryPCMemberRole
makes decisions on accepting a paper; therefore, it has
an association relationship with the paper’s author for
notification of the result. In addition, the AuthorRole
has an incompatibility relationship with both the
PCMemberRole and the PrimaryPCMemberRole. This
implies that at any time an agent who takes a
PCMemberRole or a PrimaryPCMemberRole cannot
review a paper of his own.

When we design the ASPS model, we use Sun Jini
as a middleware for agents to communicate with agent

system is a trio of protocols called discovery, join, and
lookup. Discovery occurs when a service is searching
for a lookup service with which to register. Join occurs
when a service has located a lookup service and wishes
to join it. And lookup occurs when a client or user
needs to locate and invoke a service described by its
interface type and possibly, other attributes. Our ASPS
model for the agent-based conference organizer
application is supported by the ADK (Agent
Development Kit) toolkit that we developed previously
[27]. More specifically, both role space and agent
society registered the services they provide with the
Jini community, so agents can look up a certain service
and invoke it as needed. Meanwhile, each agent also
registers itself as a proxy in the Jini community, so
agents can find each other and communicate with each
other using asynchronous message passing. For a
detailed description of this approach, refer to previous
work [27] for how agents can communicate with each
other asynchronously.

The open multi-agent system application
developed based on the ASPS model provides a user
interface for a user to submit a paper or apply for a PC
member role. An agent represents an author who can
take an author role from the role space; while a user
who wants to be a PC member may take a PC member
role. During the process, role assignment is
automatically done by the role space server. When the
submission deadline is reached, the paper assignment
process starts. The PC chair agent matches the area of
interests of each agent who takes a PC member role
with the keywords of each paper, and generates an
initial paper assignment table. A simulation result for
such a table is illustrated in Figure 13.

As we can see from this table, the initial paper
assignment is not balanced: some paper has been
assigned to as many as 7 reviewers (e.g., Paper_4);
while some paper only has one reviewer (e.g.,
Paper_12). To balance the number of reviewers for
each paper, the PC chair needs to find additional
reviewers for those papers that do not have enough
reviewers, and may drop some reviewers for those
papers that have too many reviewers. It is possible that
a reviewer who is requested to review a new paper is
not willing to provide review comments. This requires
that the PC chair negotiate with the requested PC
member to achieve its goal.

 International Journal of Computational Intelligence Theory and Practice 52

Figure 12. The ASPI Model of the Agent-based Conference Organizer Application
ulation Results for Paper Assignment (Initial Result) Figure 13. Sim
A simplified interaction protocol for agent
shown in Figure 14 (a). As the figure

 the PC chair first makes a request to a PC
viewing a paper. The PC member has the
to accept or reject the request. If the
pted, the PC chair should notify the PC
 the due date. If the PC member’s reply

is negative, the conversation ends; otherwise, th
chair confirms with the PC member for the new
assignment. Similarly, for each paper, the
needs to appoint a primary PC member to be in
of that paper. A simplified interaction protocol
type of communications between a
member is illustrated in Figure 14 (b).

negotiation is
shows,
member for re
choice either
request is acce
member about

e PC
paper

 PC chair
 charge
 for this

PC chair and a PC

Developing Role-Based Open Multi-Agent Software Systems 53

 (a) (b)

Figure 14. Examples of Interaction Protocols between a PC Chair and a PC Member

Figure 15. User Interface of the PC Chair Agent

The user interface of the PC chair agent is
illustrated in Figure 15. From the screenshot, we can
see that the PC chair communicates with two agents,
i.e., Agent_4 and Agent_6, and finally appoints
Agent_6 as the primary PC member for Paper_8.

After the paper assignment become balanced and
each paper has been assigned to a primary PC member,
the system generates the final paper assignment table.
Figure 16 shows the simulation results for the final
paper assignment.

 International Journal of Computational Intelligence Theory and Practice 54

6. CONCLUSIONS AND FUTURE WORK

Figure 16. Simulation of Paper Assignment (Final Decision)

This paper proposes a role-based methodology for
development of open multi-agent software systems.
The proposed concept of role organization, role space
and agent society separates the design of roles and
agents, which simplifies the agent development
process. A three-layered development model for
developing open MAS is presented and illustrated by a
case study of agent-based conference organizer. The
simulation result shows that our approach is feasible
and effective for developing open MAS. In addition,
our approach supports rapid development of open
MAS application on RADE prototype. For future
work, we will formalize the design process of the ASPI
model and ASPS model, and based on the formal
definitions of these models, we will partially automate
the model transformation process from AIPI model to
ASPI model, ASPI model to ASPS model, and ASPS
model to Java code. In future versions of the RADE
project, we will incorporate these transformation tools
into RADE, and also define security mechanisms to
ensure the trustworthiness of role-based open
multi-agent systems.

ACKNOWLEDGMENTS
This material is based upon work supported by the
Research Seed Initiative Grant, College of Engineering,
University of Massachusetts Dartmouth. We thank
Prof. Nabil Hameurlain and Dr. Vincent Hilaire for
providing some valuable references related to the
RADE project. We also thank all anonymous referees
for the careful review of this paper and the many
suggestions for improvements they provided.

REFERENCES
[1] T. Juan, A. Pearce, and L. Sterling, “ROADMAP:

Extending the Gaia Methodology for Complex Open
Systems,” In Proceedings of the First International
Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS2002), Bolognia, Italy,
2002, pp. 3-10.

[2] R. Duke, G. Rose and G. Smith, “Object-Z: a
Specification Language Advocated for the
Description of Standards,” Computer Standards and
Interfaces, Vol. 17, Issues 5-6, 1995, pp. 511-533.

[3] H. Xu and X. Zhang, “A Methodology for
Role-Based Modeling of Open Multi-Agent
Software Systems,” In Proceedings of the 7th
International Conference on Enterprise Information
Systems (ICEIS 2005), May 24-28, 2005, Miami,
Florida, USA, pp. 246-253.

[4] F. Brazier, B. M. Dunin-Keplicz, N. R. Jennings,
and J. Treur, “DESIRE: Modeling Multi-Agent
Systems in a Compositional Formal Framework,”
International. Journal of Cooperative Information
Systems, Vol. 6, No. 1, 1997, pp. 67-94.

[5] S. Shapiro and Y. Lespérance, “Modeling
Multiagent Systems with CASL - A Feature
Interaction Resolution Application,” In
Castelfranchi, C. and Lespérance, Y., editors,
Intelligent Agents Volume VII - Proceedings of the
2000 Workshop on Agent Theories, Architectures,
and Languages (ATAL-2000), LNAI, vol. 1986,
244-259, Springer-Verlag, Berlin, 2001.

[6] R. Bharadwaj, “A Framework for the Formal
Analysis of Multi-Agent Systems,” In Proceedings
of the Conference on Formal Approaches to

Developing Role-Based Open Multi-Agent Software Systems 55

Multi-Agent Systems (FAMAS), affiliated with
ETAPS 2003, April 12, 2003, Warsaw, Poland.

[7] M. Luck and M. d'Inverno, “A Formal Framework
for Agency and Autonomy,” In Proceedings of the
First International Conference on Multi-Agent
Systems (ICMAS-95), AAAI Press / MIT Press,
1995, pp. 254-260.

[8] M. Fisher, “Representing and Executing
Agent-Based Systems,” In Proceedings of the
International Workshop on Agent Theories,
Architectures, and Languages, M. Wooldridge and
N. Jennings (eds.), Lecture Notes in Computer
Science, Vol. 890, Springer-Verlag, 1995, pp.
307-323.

[9] H. Xu and S. M. Shatz, “A Framework for Modeling
Agent-Oriented Software,” In Proceedings of the
21st International Conference on Distributed
Computing Systems (ICDCS), April 2001, Phoenix,
Arizona, pp. 57-64.

[10] H. Xu and S. M. Shatz, “A Framework for
Model-Based Design of Agent-Oriented Software,”
IEEE Transactions on Software Engineering (IEEE
TSE), January 2003, Vol. 29, No. 1, pp. 15-30.

[11] V. Hilaire, A. Koukam, and P. Gruer, “A
Mechanism for Dynamic Role Playing,” In Agent
Technologies, Infrastructures, Tools and
Applications for E-Services, LNAI 2592, Springer
Verlag, 2002.

[12] V. Hilaire, O. Simonin, A. Koukam, and J. Ferber,
“A Formal Approach to Design and Reuse of Agent
and Multiagent Models,” In Proceeding of the Fifth
International Workshop on Agent-Oriented Software
Engineering (AOSE-2004), AAMAS, New York,
July 2004.

[13] D. Kinny, M. Georgeff, and A. Rao, “A
Methodology and Modeling Technique for Systems
of BDI Agents,” In Proceedings of the Seventh
European Workshop on Modeling Autonomous
Agents in a Multi-Agent World, LNAI Vol. 1038,
Springer-Verlag: Berlin, Germany, 1996, pp. 56-71.

[14] G. Cabri, L. Ferrari, and L. Leonardi, “Agent
Role-Based Collaboration and Coordination: a
Survey about Existing Approaches,” In Proceedings
of the IEEE International Conference on Systems,
Man and Cybernetics, Oct. 2004, pp. 5473-5478.

[15] M. Wooldridge, N. R. Jennings, and D. Kinny, “The
Gaia Methodology for Agent-Oriented Analysis and
Design,” International Journal of Autonomous
Agents and Multi-Agent Systems, Vol. 3, No.3,
2000, pp. 285-312.

[16] S. A. DeLoach, M. F. Wood and C. H. Sparkman,
“Multiagent Systems Engineering,” International
Journal of Software Engineering and Knowledge
Engineering, Vol. 11, No. 3, June 2001.

[17] N. Hameurlain and C. Sibertin-Blanc, “Specification
of Role-based Interactions Components in
Multi-Agent Systems,” Software Engineering for
Multi-Agents System III: Research Issues and
Practical Applications, Lecture Notes in Computer
Science, LNAI/LNCS, pp 180-197, Vol. 3390,
Springer-Verlag, 2005.

[18] C. Bernon, M. Cossentino, M. Gleizes, P. Turci, and
F. Zambonelli, “A Study of Some Multi-Agent
Meta-Models,” In Proceedings of the Fifth
International Workshop on Agent-Oriented Software
Engineering (AOSE-2004), The Third International
Joint Conference on AAMAS 2004, New York,
USA, July 2004.

[19] D. Gracanin, S. A. Bohner, and M. Hinchey,
“Towards a Model-Driven Architecture for
Autonomic Systems,” In Proceedings of 11th IEEE
International Conference and Workshop on the
Engineering of Computer-Based Systems
(ECBS’04), 2004, pp. 500-505.

[20] M. Amor, L. Fuentes, A. Vallecillo, “Bridging the
Gap Between Agent-Oriented Design and
Implementation using MDA,” In Proceedings of the
Fifth International Workshop on Agent-Oriented
Software Engineering (AOSE 2004), LNCS 3382,
pp.93-108, New York, 2004.

[21] B. A. De Maria, V. T. Silva, and C. J. P. Lucena,
“Developing Multi-Agent Systems Based on
MDA,” In Proceedings of the 17th Conference on
Advanced Information Systems Engineering
(CAiSE’05), Porto, Portugal, June 13-17, 2005.

[22] D. Thomas, “MDA: Revenge of the Modelers or
UML Utopia?” IEEE Software, Vol. 21, No. 3,
May/June, 2004, pp. 15-17.

[23] R. G. Smith, “The Contract Net Protocol:
High-Level Communication and Control in a
Distributed Problem Solver,” IEEE Transactions on
Computer, Vol. C-29, 1980, pp. 1104-1113.

[24] M. Dastani, V. Dignum and F. Dignum,
“Role-Assignment in Open Agent Societies,” In
Proceedings of the Second International Joint
Conference on Autonomous Agents & Multiagent
Systems (AAMAS 2003), Melbourne, Australia,
ACM Press, 2003, pp. 489-496.

[25] A. Kleppe, J. Warmer, and W. Bast, MDA
Explained: The Model Driven Architecture:
Practice and Promise, Addison-Wesley, 2003.

[26] R. Nagappan, R. Skoczylas, R. Sriganesh,
Developing Java Web Services: Architecting and
Developing Secure Web Services Using Java,
Wiley, 2002.

[27] H. Xu and S. M. Shatz, “ADK: An Agent
Development Kit Based on a Formal Model for
Multi-Agent Systems,” Journal of Automated

 International Journal of Computational Intelligence Theory and Practice 56

Software Engineering (AUSE), October 2003, Vol.
10, No. 4, pp. 337-365.

[28] S. Stepney, R. Barden, D. Cooper, editors, Object
Orientation in Z. Workshops in Computing.
Springer, 1992, pp. 59-77.

[29] J. Arlow, I. Neustadt, UML and the Unified
Process: Practical Object-Oriented Analysis and
Design, Addison-Wesley, 2002, pp.142-169.

[30] T. Quatrani, Visual Modeling with Rational Rose
2002 and UML, 3rd Edition, Addison-Wesley
Professional, 2002.

[31] H. Xu, Z. Zhang, and S M. Shatz, “A Security
Based Model for Mobile Agent Software Systems,”
International Journal of Software Engineering and
Knowledge Engineering (IJSEKE), August 2005,
Vol. 15, No. 4, pp. 719-746.

[32] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo,
and A. Wollrath, The Jini Specification,
Addison-Wesley, 1999.

BIOGRAPHIES
Haiping Xu received the BS degree (1989) in Electrical
Engineering from Zhejiang University, Hangzhou, China,
the MS degree (1998) in Computer Science from Wright
State University, Dayton, Ohio and the PhD degree
(2003) in Computer Science from the University of
Illinois at Chicago. From 1992 to 1996, he successively
worked with the Ministry of Electronics Industry,
Shen-Yan Systems Technology, Inc. and Hewlett-Packard
Co., as a software engineer, in Beijing, China. Since 2003,

he has been an assistant professor in the Computer and
Information Science Department at the University of
Massachusetts Dartmouth, where he is a co-director of the
Concurrent Software Systems Laboratory. His research
interests include distributed software engineering, formal
methods, Internet security, multi-agent systems, and
service-oriented systems. He is a member of the ACM
and the IEEE Computer Society.

Xiaoqin Zhang received the BS degree from University
of Science and Technology of China, in 1995, and the
PhD degree from University of Massachusetts, Amherst,
in 2002, both in computer science. She is currently an
assistant professor in Computer and Information Science
Department of University of Massachusetts, Dartmouth.
She has been working on sophisticated negotiation
techniques in multi-agent systems. Her research interests
also include intelligent agent architecture designing, agent
control and reasoning under uncertainty, learning in
multi-agent systems, information gathering, e-commerce,
distributed systems, and artificial intelligence.

Rinkesh J. Patel received the BE degree in Information
Technology from Sardar Patel University, India, in 2004,
and the MS degree in Computer Science from University
of Massachusetts Dartmouth, in 2007. He is currently a
software engineer at Kronos Inc. His research interests
include role-based open multi-agent systems, trustworthy
agent-based online auction systems, and model-based
software development.

