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Abstract—Cloud computing relies on a set of service components 
running on a service provider datacenter to achieve specific 
tasks. A trusted cloud-based software system is a highly 
dependable, reliable, available and predictable advanced 
computing system with guaranteed Quality of Service (QoS). Due 
to well-established studies and practices on hardware reliability, 
software faults have become the major factor of system failures 
in cloud-based systems. In this paper, we introduce a scheme of 
developing dependable and reliable cloud-based systems using 
multiple software spare components. We address the software-
aging phenomenon in cloud computing, where the reliability of a 
software component decreases along the time. To counteract the 
software aging issue, we propose a mechanism to maintain the 
system reliability above a predefined safety threshold using 
software rejuvenation schedules. The calculation of system 
reliability is based on an extended Dynamic Fault Tree (DFT) 
model of cloud-based systems with Software SPare (SSP) gates. 
We verify our approach using Continuous Time Markov Chain 
(CTMC) for the case of constant failure rates, and provide a case 
study of a cloud-based system to show the detailed procedure as 
well as the feasibility of our approach.  

Keywords-Software aging; hot software spare; cold software 
spare; software spare gate; reliability analysis; dynamic fault tree; 
software rejuvenation schedule 

I. 0B0BINTRODUCTION 

As the cloud computing paradigm continues to grow along 
with the rapid computing technology advancement, cloud-
based services are increasingly being used in many different 
areas such as healthcare, public transportation, mobile cloud 
computing and many more. A trusted cloud-based system is a 
highly dependable, reliable, available and predictable 
advanced computing system with guaranteed Quality of 
Service (QoS). The QoS of a computer-based system has been 
widely researched to maintain fault-tolerant hardware, secure, 
available and reliable software resources for client 
consumption. However, system outage of cloud-based systems 
is still common despite the well-established fault-tolerant 
techniques for hardware [1]. Software related faults of cloud-
based systems due to the software-aging phenomenon [2] have 
become one of the major obstacles to achieving high fault 
tolerance and system reliability. Therefore, we were motivated 
to resolve the software aging related issues in cloud computing 
in order to maintain high dependability and reliability of 

cloud-based systems. In this work, we perform system 
reliability analysis from the perspective of Software 
Reliability Engineering (SRE). Early SRE focused on the 
analysis of software defects and bugs including Bohrbugs and 
Heisenbugs; while recently, the concept of software aging was 
introduced [3], taking into account the growing usage of cloud 
computing and the increasing workload that impacts the 
reliability of cloud-based systems. The software aging pheno-
menon is due to the degradation of system resources used by a 
software system until failure, which is caused by many factors 
such as memory bloating, memory leaks, data corruption, 
unreleased file-locks, unterminated threads, accumulation of 
round-off errors, and storage and space fragmentation [4]. To 
counteract the software aging problem, software rejuvenation 
has been proposed as a solution for achieving high fault 
tolerance in software-based systems [5]. Software rejuvenation 
can be done in many different ways, where the simplest one is 
to restart the application that causes the aging problem, or to 
reboot the whole system. 

Correctly measuring the reliability of a cloud-based system 
is critical to avoid software failures due to the software-aging 
phenomenon. In this paper, we extend our former analytical-
based approach to deriving the reliability function of a hot 
spare gate with a single hot standby spare [6]. In our new 
approach, multiple software spares are used for critical 
software components in cloud computing. The significance of 
our new approach is described as follows. First, as our former 
approach does not scale well for multiple hot spare parts, 
when a second hot spare is added into the system design, the 
analytical approach becomes non-trivial for the formalization 
of the analysis process. Second, it is useful and important to 
understand how a rejuvenation schedule may be affected by 
multiple hot software spares.  We show the technical details 
for deriving the reliability function for a Software SPare (SSP) 
gate with two hot spare components, and use Continuous Time 
Markov Chain (CTMC) to verify the correctness of our 
approach for constant failure rates. A practical case study of a 
cloud-based system with two hot spares for two critical 
software components has been provided. In the case study, we 
assume a reliability threshold for triggering the software 
rejuvenation process, and based on the cloud-based system 
reliability analysis, we derive a software rejuvenation schedule 
to improve system reliability, dependability and availability. 
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II. 1B1BRELATED WORK 

Considerable research has been conducted on software 
aging and software rejuvenation to achieve high fault tolerance 
in software systems. There are mainly two categories of 
approaches to predicting software rejuvenation schedules, 
namely measurement-based and analytical-based approaches 
[7]. Measurement-based approach uses statistical analysis for 
the measured data of resource degradation that leads to 
software aging faults. A monitoring program collects the data, 
and analyzes them in order to estimate the degradation level. 
The rejuvenation process is triggered based on a predefined 
degradation threshold. Grottke et al. analyzed the resource 
degradation in a web server subject to injected workload [8]. 
The existence of monotonic trends was tested in time series, 
where these trends are indications of the software aging issues. 
Machida et al. detected software aging by applying Mann-
Kendall test that is based on traces of computer system metrics 
[9]. Guo et al. established a trend prediction method to 
uncover software aging based on the quality of user requests 
[10]. Measurement-based approaches are feasible ways of 
predicting software aging, but they are quite inaccurate, and 
expensive in computational requirements due to the processing 
of large amounts of system data. Therefore, they are 
inefficient approaches in practical usage. However, when we 
use the time-to-failure distribution for data fitting and the 
calculation of system reliability, the estimated distribution 
from measurements can be useful in our proposed analytical-
based approach [11].  

On the other hand, in analytical-based approaches, we first 
have to assume failure time distributions for the components 
or the systems subject to software aging, and then schedule 
software rejuvenation processes at fixed interval based on the 
analytical results of the system reliability and availability. 
Bobbio et al. suggested a fine-grained software degradation 
model for optimal rejuvenation scheduling [12], by identifying 
the system current degradation level that outlines two different 
strategies of rejuvenation policies. Vaidyanathan et al. worked 
on an analytical model for software systems that uses 
inspection-based software rejuvenation [13]. They showed the 
advantages of inspection-based maintenance over non-
inspection-based maintenance using Semi-Markov modeling. 
Koutras and Platis addressed a software rejuvenation 
technique for cluster systems, where rejuvenation can be 
carried out when node-deployed software starts to experience 
degradation, and thus an unscheduled reboot may be avoided 
[14]. Despite the fact that the above approaches introduced 
different models for software rejuvenation, they cannot be 
used to model dynamic behaviors such as sparing and dynamic 
relationships. Unlike the existing analytical-based approaches, 
our method studies the dynamic behaviors of software 
components in cloud-based software systems, namely, the 
standby software sparing components, and provides a novel 
analytical approach for reliability analysis.  

Moreover, in the context of standby systems, there are four 
categories of evaluation methods for analyzing standby 
systems, namely simulations, state-space based methods, 
analytical/combinatorial approach, and numerical approach. 
As mentioned previously, simulation methods are expensive in 
terms of computations, and can only lead to approximate 

results [15]. Markov-based methods are state-space oriented 
[16], while non-Markovian models [17] are powerful in 
dynamic modeling. However, Markov-based models are 
limited to exponential failure distributions, and both of the 
approaches experience the state-space explosion problem 
when modeling large systems. Analytical approaches, such as 
minimal cut sets or sequences [18], and sequential decision 
diagrams [19] are limited to modeling complex behaviors with 
various time-to-failure distribution types. In our approach, we 
propose an extended DFT to model the reliability of cloud-
based systems. We introduce an analytical-based approach to 
analyzing the extended DFT model for reliability calculation. 
Our approach does not suffer from the state-space explosion 
problem as it is compositional, where a DFT is decomposed 
into subtrees, and the system reliability is calculated by joining 
the reliabilities of the subtrees. Finally, numerical methods 
have been used as an iterative way for analyzing various 
designs of standby systems with a discrete approximation of 
time-to-failure distributions [20]. It is potential that a 
numerical method as demonstrated in previous work could be 
useful in our proposed analytical-based approach for 
estimating the time-to-failure distribution. 

Finally, there is also some previous work on virtualized 
datacenter and cloud-based systems. Machida et al. proposed 
an availability model for virtualized systems with time-based 
rejuvenation using Petri-nets and a gradient search method 
[21]. Thein et al. modeled the availability of application 
servers, and they showed the high-availability cluster failover, 
combining virtualization and software rejuvenation [22].  
However, none of the above approaches addressed explicitly 
the reliability analysis for software rejuvenation scheduling. In 
our approach, we analyze system reliability using an extended 
DFT model and use the proposed analytical approach to 
estimate rejuvenation schedules that satisfy predefined 
reliability requirements for cloud-based systems.  

III. 
2B2BREJUVENATION IN THE CLOUD USING SOFTWARE SPARES  

Virtualization allows multiple clients to share a physical 
machine’s resources using virtual machines (VM). To 
maintain high fault tolerance of a cloud-based system subject 
to software aging, we employ software rejuvenation and 
standby sparing for software redundancy to ensure service 
continuity. Different from physical machines, VMs are stored 
as images, which can be easily created, managed, and 
destroyed, making them very suitable for disaster recovery and 
disaster prevention. Comparing to hardware spares, using 
sparing VMs for disaster prevention and software rejuvenation 
could be a very inexpensive and effective way to restore the 
high performance of a cloud-based software system.  

To achieve a reliable and zero-downtime rejuvenation, we 
define two types of VM spares, namely Hot Software Spare 
(HSS) and Cold Software Spare (CSS). In the context of 
cloud-based systems, an HSS is a hot standby VM instance 
that can be instantly available when a primary component 
fails. Despite the fact that an HSS is running alongside a 
primary component, it is not sharing any workload or 
processing any requests. Therefore, an HSS is operated using 
much less CPU power, but can be scaled automatically to meet 
the workload requirements when a primary component fails. 
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Critical data in an HSS is mirrored in near real time from the 
primary VM instance, e.g., in the range of 200 µs, to ensure 
high fault tolerance. The failure rate of an HSS is much less 
than that of a primary component as an HSS is not subject to 
aging-related bugs. This makes a software-defined HSS differ 
significantly from a hardware-based Hot SPare (HSP) because, 
with physical wearout, an HSP may have the same failure rate 
as a primary hardware component. On the other hand, a CSS 
refers to a software component that is available as an image of 
a VM, and can be replicated and deployed as a primary 
component or a HSS component. As an inactive VM instance, 
a CSS is mirrored for its critical data based on a specified 
schedule with most of the time being cold standby. Therefore, 
the reliability of a CSS is nearly perfect, which can be 
reasonably assumed never to fail. The recovery time using a 
CSS is usually in the range of minutes up to two hours; while 
the cost of a CSS is its storage and very little CPU resource 
consumption. A CSS can be rapidly deployed, which makes it 
quite different from a hardware-based Cold SPare (CSP) that 
is much expensive and requires manual configuration when a 
primary one fails.  

Software rejuvenation techniques have been used to 
prevent the occurrence of aging-related software failures by 
proactively resetting a system’s internal state to its initial 
condition. In this work, we adopt an easy way of software 
rejuvenation by rebooting the system according to a defined 
schedule. In cloud computing, we can start a new VM to 
replace an old one that has demonstrated unsatisfactory system 
performance. To render the fault tolerant of the critical 
components and minimize the frequency of the rejuvenation 
events, each critical primary component is equipped by at least 
two HSSs and one CSS. The only CSS is needed for the 
rejuvenation process – it can be replicated for all currently 
deployed software components including the primary one and 
the HSSs. A newly deployed component must wait until the 
old ones have finished processing their remaining requests 
before they can be destroyed.  

In our approach, a rejuvenation process is triggered when 
the reliability of a system component or the whole system 
reaches a predefined threshold. Similar to [6], we assume the 
rejuvenation process (Phase 1) takes about 30 minutes, with 
sufficient time to start a CSS and complete all remaining 
requests before Phase 2 starts. As a CSS never fails, we only 
consider the primary component and its HSSs when 
calculating the system reliability. In addition, two scenarios 
are investigated for the rejuvenation procedure. One scenario, 
called system-specific rejuvenation, is to rejuvenate the whole 
system when the system reliability reaches a threshold. The 
second scenario is a component-specific one, in which the 
critical component with the lowest reliability is rejuvenated 
when the system reliability reaches a threshold. As shown in a 
case study, the component-specific rejuvenation demonstrates 
certain advantages over the system-specific approach.  

IV. 3B3BRELIABILITY MODELING AND ANALYSIS 

Dynamic Fault Tree (DFT) extends the concept of static 
fault tree and introduces new modeling capabilities for spare 
components, functional dependency, and failure sequence 
dependency. In this paper, we further extend DFT for 

modeling software spare components in cloud-based systems 
with software aging phenomenon.  

A. 6B6BSSP Gate for Cloud-Based Systems with Two Hot Spares 

Figure 1 shows a SSP gate with one primary component P 
and two HSS components H1 and H2. The primary component 
is initially powered on, but when it fails, it is replaced by an 
alternate spare following an enumeration sequence. Therefore, 
a SSP gate fails only when the primary component and all the 
alternate HSS components fail. Suppose the constant failure 
rates of components P, H1, and H2 are λP, λH1, and λH2, 
respectively. When P fails, H1 takes the lead to replace P as 
H1*, with λH1* ≥ λH1 due to the software aging phenomenon, 
when it takes the full workload. The same thing happens to H2 
when H1* fails – H2 replaces H1* as H2* with λH2* ≥ λH2. Note 
that λH* and λP do not have to be equal because P and H may 
have different configurations. In addition, we designate τ1, τ2, 
and τ3 as the time to failure of P, H1 and H2, respectively.  

 
Fig. 1. An SSP gate with a primary component and two HSSs  

To derive the reliability function of a SSP gate with two 
hot spares, we identify all the possible events when a SSP gate 
fails according to component failure sequence. We denote the 
event “component X fails before component Y” as YX  , and 
summarize six disjoint events ei where 1 ≤ i ≤ 6, as in Fig. 2.  

 
Fig. 2. Six events for the failure of an SSP gate with two HSSs 
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Let event A be the failure of an SSP gate at time t. We can 
calculate the probability of event A as in Eq. (1): 

)Pr()Pr(*)|Pr()Pr(
6
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6

1
i

i
i

i
i eAeeAA ∩== 

==

                     (1) 

It is worth noting that when event ei happens, the SSP gate 
also fails. Therefore, event A always happens with some event 
ei. Thus, Eq. (1) can be simplified as in Eq. (2). 
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Event e1: P fails before H1, and H1 fails before H2, denoted 
as

21 HHP  . In this case, it is guaranteed that H1 does not 
fail during (0, τ1], and H2 does not fail during (0, τ2]. After P 
fails, H1 takes over the workload and becomes H1*, also after 
H1* fails, H2 takes over the workload and becomes H2*. 
Intuitively, the unreliability function U(t) of the SSP gate, i.e., 
the probability that the SSP gate fails during (0, t], can be 
calculated as in Eq. (3).  
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However, Eq. (3) only works when HH λλ =* . As shown in 
previous work [6], when HH λλ >* , the integration of the 
probability density function (pdf) of H1* from τ1 to t does not 
give the correct unreliability of the component at time t, as it 
incorrectly assumes that component H1 behaves as H1* starting 
from time 0. Since the component actually behaves as H1 
during (0, τ1], the unreliability of H1* at time τ1 equals the 
unreliability of H1 at τ1 rather than the unreliability calculated 
by the integration of the pdf of H1* from 0 to τ1. This is to 
ensure the unreliability continuity for H1 before and after it 
serves as a primary component H1*. By calculating a new 
starting integration time τH1* for H1*, we take into 
consideration that τ2, originally the failure of component H1, is 
shifted to the left by (τ1–τH1*). As a result, when we consider 
the failure of H1*, we must add (τ1–τH1*) to τ2 since H2* is 
activated based on the original non-shifted failure time 
variable τ2 of H1. Therefore, the value of τ2 after the adjustment 
is given as τ2|actual = τ2|shifted + (τ1– τH1*) = τ2+(τ1– τH1*), as shown 
in Fig. 3. As a rule of thumb, in the case of PH1H2…Hi, 
where i >1 (τ1 does not get shifted since it is the failure time of 
P, and P always acts as a primary component), when a 
component Hi* acts as a primary one, its actual time to failure 
equals τ(i+1)+(τi–τHi*). This observation and adjustment is 
critical for yielding the correct reliability function. 

Hot spare H1 or the first HSS has been studied in previous 
work [6] yielding ( ) 1** 111

τλλτ HHH = . In regards to the second 
HSS H2, it is guaranteed that H2 does not fail during (0, τ2]. 
After H1* fails, H2 takes over the workload and becomes H2*. 
Since the component actually behaves as H2 during (0, τ2], the 
unreliability of H2* at time τ2 equals the unreliability of H2 at 
τ2 rather than the unreliability calculated by the integration of 
the pdf of H2* from 0 to τ2. This requires us to calculate a new 
starting integration time τH2* for H2* such that the unreliability 
of H2* at τH2* is equal to the unreliability of H2 at τ2. As the 
pdfs of H2 and H2* are
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respectively, such a relationship between H2 and H2* can be 
described as in Eq. (4), taking into account the adjustment of 
τ2, i.e., the time to failure of H1*. 
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Solving Eq. (4), we have ))τ((ττ
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H2* fails during a period of time (t-τ2), the integration range 
for H2* now becomes [τH2*, t–(τ2+(τ1-τH1*))+τH2*], as illustrated 
in   Fig. 3. The probability of the event PH1H2, i.e., Pr(e1), 
can be calculated as in Eq. (5). 
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 Fig. 3. Failure time of H1 and H2 for reliability analysis in event e1 

Eq. (5) can be simplified with two substitutions            
w(τ2) = τ2 + τ1 – τH1*  and z(τ3) = τ3 + w – τH2*, which results in      
Eq. (6), where z and w can be replaced by τ2 and τ3, 
respectively. 
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 Event e2: PH2H1, this is where P fails first then H2 
fails as a spare before H1* fails. The failure of H2 is 
independent of H1*, and the failure of H1* depends on P 
failure but not on H2’s failure. The integration of H1* requires 
computing τH1*, which is based on τ1 by moving the integration 
limit from τH1* to τH1* + (τ3–τ1), resulting in Eq. (7). 
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Event e3: H2  P  H1, this is where H2 fails first as a 
spare, then P fails, and finally H1 fails as H1*. Note that the 
complexity is similar to one spare SSP gate P  H. The 
probability that the SSP gate fails is calculated as in Eq. (8). 
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Event e4: H1H2 P, H1 and H2 fail as spares before P 
fails, similar to one spare SSP gate, where it is guaranteed that 
P does not fail during (0, τ3]. The probability that the SSP gate 
fails during (0, t] can be calculated as in Eq. (9). 
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Event e5: H1 PH2 , similar to event e3, this is where H1 
fails first as a spare, then P and H2 as H2*. Note that the 
complexity is similar to one spare SSP gate P  H. The 
probability that the SSP gate fails is calculated as in Eq. (10). 
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Event e6: H2H1 P, similar to event e4, H2 and H1 fail 
as spares before P fails, similar to one spare SSP gate, where it 
is guaranteed that P does not fail during (0, τ2]. The 
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probability that the SSP gate fails during (0, t] can be 
calculated as in Eq. (11). 
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Based on Eq. (2), the unreliability function of the SSP gate 
with two HSSs is given in Eq. (12) given that the reliability 
function is R(t) = 1–U(t). 
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B. 7B7BReliability Function Verification Using CTMC 

We use a CTMC model to formally verify the correctness 
of the reliability function R(t) derived in the previous section. 
Fig. 4 shows the CTMC model corresponding to the SSP gate 
with two HSSs illustrated in Fig. 1. 

 
Fig. 4. The CTMC model of the SSP gate in Fig. 1 

There are 8 states in the model, denoted as PH1H2, H1*H2, 
PH1, PH2, H1*, H2*, P, and Failure. Each state holds the name 
of the surviving components, except the Failure state, which is 
the unavailability state. The reliability of the SSP gate is the 
sum of the probability of being in all available states, namely 
State 1 to State 7. Let Pi(t) be the probability of the system in 
state i at time t, where 1 ≤ i ≤ 8, and Pij(dt) = P[X(t+dt) = j | 
X(t) = i] be the incremental transition probability with random 
variable X(t). The matrix [Pij(dt)] defined in Eq. (13), where 1 
≤ i, j ≤ 8, is the incremental one-step transition matrix of the 
CTMC defined in Fig. 4.  
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The transition matrix is a stochastic matrix with each row 
sums to 1, and it defines the probability for each state either 
remaining (when i = j) or transiting to a different state (when i 
≠ j) during the time interval dt. Given the initial probabilities 
of the states, the matrix can be used to describe the state 
transition process completely. From Eq. (13), we can derive 
the following relations as in Eqs. (14.1-14.7). 
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tPdttPdtt+dtP HPH λλλ ++                  (14.3) 

)( ) )(-1()(  =)( 414 21
tPdttPdtt+dtP HPH λλλ ++                  (14.4) 

)() (1)t(  )(  =)( 5325 12
tPdtλPdtλtPdtλt+dtP *HPH −++        (14.5) 

)( ) (1)(  )(   =)( 6426 21
tPdtλtPdtλtPdtλt+dtP *HP*H −++      (14.6) 

)( ) (1)(  )(  =)( 7437 21
tPdtλtPdtλtPdtλt+dtP PHH −++        (14.7) 

We derive a set of linear first-order differential equations 
as in Eqs. (15.1-15.7), which are state equations of the CTMC 
model assuming the initial probabilities P1(0) = 1, and P2(0) = 
P3(0) = P4(0) = P5(0) = P6(0) = P7(0) = 0. 
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21
tPtPtPtP
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tPdttP
PHH λλλ −+==−+          (15.7) 

Using Laplace transformation to both sides of Eqs. (15.1-
15.7) to derive Eqs. (16.1-16.7). 

)()()0()( 111 21
sPPssP HHP λλλ ++−=−                           (16.1) 

)()()()0()( 2*122 21
sPsPPssP HHP λλλ +−=−                              (16.2) 

)()()()0()( 3133 12
sPsPPssP HPH λλλ +−=−                  (16.3) 

)()()()0()( 4P144 21
sPsPPssP HH λλλ +−=−                    (16.4) 

)()()()()0()( 5*3255 12
sPsPsPPssP HPH λλλ −+=−                 (16.5) 

)()()()()()0()( 6*4P2*66 21
sPsPsPPssP HH λλλ −+=−       (16.6) 

)()()()0()( 74377 21
sPsPsPPssP PHH λλλ −+=−              (16.7) 

Substituting the initial probabilities Pi(0), where 1 ≤ i ≤ 7, 
into Eqs. (16.1-16.7), we can derive the equations for P1(s), 
P2(s), P3(s), P4(s), P5(s), P6(s) and P7(s). By applying inverse 
Laplace transformation, we can solve the original linear first-
order differential equations as follows. 
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The reliability function R(t) from CTMC analysis is given 
as in Eq. (17). 

 R(t) = P1(t)+ P2(t)+ P3(t)+ P4(t)+ P5(t)+ P6(t)+ P7(t)     (17) 

We compute the system reliabilities using the reliability 
function R(t) from both the proposed approach and the CTMC 
approach presented in Eq. (12) and Eq. (17), respectively, in 
Table 1. The results show they are perfectly matched. 

Table 1. R(t) analysis results - proposed method vs. CTMC 

Time (days) R(t) - proposed method R(t) - CTMC 

90 0.9815 0.9815 
180 0.9019 0.9019 
300 0.7299 0.7299 

1000 0.031 0.031 

V. 4B4BCASE STUDY 

In this case study, we show how to model and analyze  the 
reliability of a cloud-based system with two HSSs for each 
critical component using extended DFT, and then estimate 
rejuvenation schedules based on reliability quantitative 
analysis generated by our proposed approach in Section 4.  

Figure 5 shows a cloud-based system that consists of an 
application server PA and a database server PB. To enhance 
the system reliability, four hot spare components HA1, HA2 are 
set up for PA, and HB1 and HB2 are set up for PB. The four 
HSSs are ready to take over the workload if the primary ones 
fail. The case study shows the reliability analysis applicable to 
SSP gate with two HSSs for each primary component. We set 
the reliability threshold to 0.99 as a minimum requirement for 
system reliability. For this case study, we assume constant 
failure rates for the servers, where λPA = 0.004/day, λHA1= λHA2 

= 0.0025/day, λPB = 0.005/day, λHB1 = λHB2 = 0.003/day, using 
the same failure rates as in previous work [6], so the obtained 
results can be readily compared. 

 
Fig. 5.  A cloud-based system with software spares  

 As stated earlier, the failure rates of the HSS servers are 
lower than those of their corresponding primary ones because 
HSSs are not subject to the same workload; thus they have no 
software aging issues, and less likely to fail. Yet, when a 
primary server fails, the failure rate of a substituting HSS 
increases since it assumes the primary component workload, 
i.e., λPA = λHA1* = λHA2* = 0.004, and λPB = λHB1* = λHB2* = 0.005. 

The case study also involves CSS components, namely 
CSA and CSB, which are used in the rejuvenation process. 
Note that a CSS is a stored image of a deployed VM instance 
that can be easily duplicated, thus only one CSS is needed for 
each of the primary and HSS components. In addition, since a 
CSS is stored as an image, its failure rate is considered to be 0. 
However, once a CSS component is duplicated and deployed, 
it will assume the failure rate of its corresponding role, either 
as a running primary component or as an HSS. The DFT 
model of the cloud-based software system for Phase 1 is 
shown in Fig. 6. 

 
Fig. 6.  DFT model of the cloud-based system - Phase 1 

Since the system fails when either the application server or 
the database server fails, the two SSP gates are connected by 
an OR-gate. The reliability function of the OR-gate is derived 
using sum of disjoint product as in Eq. (18). 

))(*))(1()((1)(1)( 211 tUtUtUtUtR SSSOR −+−=−=               (18) 

where US1(t) and US2(t) are the unreliability functions of the 
subtrees S1 and S2 that can be calculated using Eq. (12). We 
consider both scenarios mentioned in Section 3 for Phase 2 
analysis. Fig. 7 represents the DFT model of the cloud-based 
system in Phase 2 for Scenario 1. 
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HA1 HA2 PB 
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Fig. 7.  DFT model of the cloud-based system - Phase 2 (Scenario1) 

Similar to Phase 1, we can analyze the DFT model for 
Phase 2 Scenario 1 by splitting it into subtree sections. 
Starting from bottom to top, the unreliabilities US1(t), US1’(t), 
US2(t) and US2’(t) can be derived using Eq. (12). US3(t) and 

US4(t) can be calculated using the sum of disjoint product 
method for AND-gate shown in Eqs. (19-20). Finally, the 
system reliability for the OR-gate is derived as in Eq. (18) for 
Phase 1.  

)(*)()( '113 tUtUtU SSS =                                      (19) 

)(*)()( '224 tUtUtU SSS =                                      (20) 

Moving to Phase 2 Scenario 2, the DFT model of the 
system is illustrated in Fig. 8 for the subsystem rejuvenation of 
the application servers.  

 
Fig. 8.  DFT model of the cloud-based system - Phase 2 (Scenario2) 

Using the same methodology for DFT analysis, we have 
the following subtrees US1(t), US1’(t), US2(t) and US3(t) in the 
DFT model. The unreliabilities US1(t), US1’(t) and US2(t) can be 
derived using Eq. (12). US3(t) is calculated using the sum of 
disjoint product method for AND-gate shown in Eq. (19).  

As we have shown how to derive the sytem reliability in 
both Phase 1 and Phase 2, including the two different 
scenarios, the next step is to show the difference and the 
impact of employing 2-HSSs vs. 1-HSS [6] in terms of 
reliability and rejuvenation scheduling in a cloud-based 
system. In addition, we study the impacts of using Scenario 1 
vs. Scenario 2 for rejuvenation scheduling for a cloud-based 
system with multiple HSSs subject to software aging. 

Figure 9 illustrates the details of the difference between the 
two cases based on Scenario 1. Note that 1-HSS results are 
formerly provided in [6]. From the figure, we can see that the 
system reliability is kept very high during the transition. 
According to Fig. 9, the reliability threshold for 2-HSSs is 
reached at 48 days, hence it is suggested that the system 
should be rejuvenated every 48 days under Scenario 1. On the 
other hand, we can also see that the system needs to be 
rejuvenated every 18 days with a single HSS usage. 
Comparing rejuvenation scheduling based on reliability 
analysis for both cases over the period of 120 days, we notice 
that the system with 2-HSSs only needs two rejuvenations (at 
48 and 96 days), but it requires six rejuvenations with a single 
HSS for its critical component. Therefore, Scenario 1 with 2-
HSSs results in (6*2–6*2)/(6*2) = 66% reduction in cost and 
management for software rejuvenation, while keeping the 
system above the same reliability threshold (0.99).  

 
Fig. 9. Rejuvenation scheduling: 2-HSS vs. 1-HSS (Scenario1) 

Figure 10 shows Scenario 2 for component-specific 
software rejuvenation. According to the figure, when the 
system reliability reaches the threshold in 48 days, the 
components with the lowest reliability, i.e., the database 
servers, are scheduled for rejuvenation first.  

 
Fig. 10. Rejuvenation scheduling: 2-HSS vs. 1-HSS (Secnario2) 

 The rejuvenation induces a partial spike in the reliability 
curve, and then the system reliability is continuously 
monitored until it reaches the threshold again at the 69th day. 
At this point, the application server components become the 
ones with the lowest reliability. As a result, there will be an 
alternation in rejuvenation process for the two subsystems. We 
can see three rejuvenations for Scenario 2 with 2-HSSs vs. 
nine rejuvenations for 1-HSS design. Therefore, Scenario 2 
with 2-HSSs results in (9–3)/(9) = 66% reduction in cost and 
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management for software rejuvenation, while keeping the 
system above the same reliability threshold (0.99).  

Figure 11 compares the two scenarios with two HSSs in 
120 days. Scenario 1 has two rejuvenations that require us to 
rejuvenate both of the application and database servers. On the 
other hand, Scenario 2 has three rejuvenations that only 
require us to rejuvenate either the application servers or the 
database servers each time. Thus, by using Scenario 2, we can 
reduce the rejuvenation cost and management by (2*2–3)/4 = 
25% compared to the case of Scenario 1.  

 
Fig. 11. Rejuvenation scheduling for 2-HSS: Scenario 1 vs. Secnario2 

VI. 5B5BCONCLUSIONS AND FUTURE WORK 

In this paper, we introduced a reliability-based approach 
using two HSSs for critical components during normal running 
time in cloud-based software systems. We defined an 
extension of DFT, called SSP gate, which can be used to 
evaluate the reliability of a cloud-based system with multiple 
software spares for its critical components. Our approach has 
been verified using CTMC for constant failure rates. The case 
study showed that using the proposed approach, a rejuvenation 
schedule can be derived to maintain the system reliablity of a 
trusted cloud-based software system with multiple software 
spare components above a certain level. 

For future work, a measurement-based approach can be 
adopted for collecting empirical data relative to the software 
aging phenomenon, and then we can use data fitting technique 
to obtain the pdfs of the critical software components.  Once 
the pdfs become available, they can be plugged into our 
proposed analytical approach to evaluate the system reliability 
and estimate the rejuvenation schedules based on the collected 
data. Finally, we envision modeling and analyzing cloud-
based systems with active standby spare components, which 
can share workload with the primary ones, as a future, and 
more ambitious research direction. 
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