
Dependable and Reliable Cloud-Based Systems Using
Multiple Software Spare Components

Jean Rahme and Haiping Xu

Computer and Information Science Department
University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA

E-mail: {jrahme, hxu}@umassd.edu

Abstract—Cloud computing relies on a set of service components
running on a service provider datacenter to achieve specific
tasks. A trusted cloud-based software system is a highly
dependable, reliable, available and predictable advanced
computing system with guaranteed Quality of Service (QoS). Due
to well-established studies and practices on hardware reliability,
software faults have become the major factor of system failures
in cloud-based systems. In this paper, we introduce a scheme of
developing dependable and reliable cloud-based systems using
multiple software spare components. We address the software-
aging phenomenon in cloud computing, where the reliability of a
software component decreases along the time. To counteract the
software aging issue, we propose a mechanism to maintain the
system reliability above a predefined safety threshold using
software rejuvenation schedules. The calculation of system
reliability is based on an extended Dynamic Fault Tree (DFT)
model of cloud-based systems with Software SPare (SSP) gates.
We verify our approach using Continuous Time Markov Chain
(CTMC) for the case of constant failure rates, and provide a case
study of a cloud-based system to show the detailed procedure as
well as the feasibility of our approach.

Keywords-Software aging; hot software spare; cold software
spare; software spare gate; reliability analysis; dynamic fault tree;
software rejuvenation schedule

I. 0B0BINTRODUCTION

As the cloud computing paradigm continues to grow along
with the rapid computing technology advancement, cloud-
based services are increasingly being used in many different
areas such as healthcare, public transportation, mobile cloud
computing and many more. A trusted cloud-based system is a
highly dependable, reliable, available and predictable
advanced computing system with guaranteed Quality of
Service (QoS). The QoS of a computer-based system has been
widely researched to maintain fault-tolerant hardware, secure,
available and reliable software resources for client
consumption. However, system outage of cloud-based systems
is still common despite the well-established fault-tolerant
techniques for hardware [1]. Software related faults of cloud-
based systems due to the software-aging phenomenon [2] have
become one of the major obstacles to achieving high fault
tolerance and system reliability. Therefore, we were motivated
to resolve the software aging related issues in cloud computing
in order to maintain high dependability and reliability of

cloud-based systems. In this work, we perform system
reliability analysis from the perspective of Software
Reliability Engineering (SRE). Early SRE focused on the
analysis of software defects and bugs including Bohrbugs and
Heisenbugs; while recently, the concept of software aging was
introduced [3], taking into account the growing usage of cloud
computing and the increasing workload that impacts the
reliability of cloud-based systems. The software aging pheno-
menon is due to the degradation of system resources used by a
software system until failure, which is caused by many factors
such as memory bloating, memory leaks, data corruption,
unreleased file-locks, unterminated threads, accumulation of
round-off errors, and storage and space fragmentation [4]. To
counteract the software aging problem, software rejuvenation
has been proposed as a solution for achieving high fault
tolerance in software-based systems [5]. Software rejuvenation
can be done in many different ways, where the simplest one is
to restart the application that causes the aging problem, or to
reboot the whole system.

Correctly measuring the reliability of a cloud-based system
is critical to avoid software failures due to the software-aging
phenomenon. In this paper, we extend our former analytical-
based approach to deriving the reliability function of a hot
spare gate with a single hot standby spare [6]. In our new
approach, multiple software spares are used for critical
software components in cloud computing. The significance of
our new approach is described as follows. First, as our former
approach does not scale well for multiple hot spare parts,
when a second hot spare is added into the system design, the
analytical approach becomes non-trivial for the formalization
of the analysis process. Second, it is useful and important to
understand how a rejuvenation schedule may be affected by
multiple hot software spares. We show the technical details
for deriving the reliability function for a Software SPare (SSP)
gate with two hot spare components, and use Continuous Time
Markov Chain (CTMC) to verify the correctness of our
approach for constant failure rates. A practical case study of a
cloud-based system with two hot spares for two critical
software components has been provided. In the case study, we
assume a reliability threshold for triggering the software
rejuvenation process, and based on the cloud-based system
reliability analysis, we derive a software rejuvenation schedule
to improve system reliability, dependability and availability.

978-1-5386-0435-9/17/$31.00 ©2017 IEEE 1462

II. 1B1BRELATED WORK

Considerable research has been conducted on software
aging and software rejuvenation to achieve high fault tolerance
in software systems. There are mainly two categories of
approaches to predicting software rejuvenation schedules,
namely measurement-based and analytical-based approaches
[7]. Measurement-based approach uses statistical analysis for
the measured data of resource degradation that leads to
software aging faults. A monitoring program collects the data,
and analyzes them in order to estimate the degradation level.
The rejuvenation process is triggered based on a predefined
degradation threshold. Grottke et al. analyzed the resource
degradation in a web server subject to injected workload [8].
The existence of monotonic trends was tested in time series,
where these trends are indications of the software aging issues.
Machida et al. detected software aging by applying Mann-
Kendall test that is based on traces of computer system metrics
[9]. Guo et al. established a trend prediction method to
uncover software aging based on the quality of user requests
[10]. Measurement-based approaches are feasible ways of
predicting software aging, but they are quite inaccurate, and
expensive in computational requirements due to the processing
of large amounts of system data. Therefore, they are
inefficient approaches in practical usage. However, when we
use the time-to-failure distribution for data fitting and the
calculation of system reliability, the estimated distribution
from measurements can be useful in our proposed analytical-
based approach [11].

On the other hand, in analytical-based approaches, we first
have to assume failure time distributions for the components
or the systems subject to software aging, and then schedule
software rejuvenation processes at fixed interval based on the
analytical results of the system reliability and availability.
Bobbio et al. suggested a fine-grained software degradation
model for optimal rejuvenation scheduling [12], by identifying
the system current degradation level that outlines two different
strategies of rejuvenation policies. Vaidyanathan et al. worked
on an analytical model for software systems that uses
inspection-based software rejuvenation [13]. They showed the
advantages of inspection-based maintenance over non-
inspection-based maintenance using Semi-Markov modeling.
Koutras and Platis addressed a software rejuvenation
technique for cluster systems, where rejuvenation can be
carried out when node-deployed software starts to experience
degradation, and thus an unscheduled reboot may be avoided
[14]. Despite the fact that the above approaches introduced
different models for software rejuvenation, they cannot be
used to model dynamic behaviors such as sparing and dynamic
relationships. Unlike the existing analytical-based approaches,
our method studies the dynamic behaviors of software
components in cloud-based software systems, namely, the
standby software sparing components, and provides a novel
analytical approach for reliability analysis.

Moreover, in the context of standby systems, there are four
categories of evaluation methods for analyzing standby
systems, namely simulations, state-space based methods,
analytical/combinatorial approach, and numerical approach.
As mentioned previously, simulation methods are expensive in
terms of computations, and can only lead to approximate

results [15]. Markov-based methods are state-space oriented
[16], while non-Markovian models [17] are powerful in
dynamic modeling. However, Markov-based models are
limited to exponential failure distributions, and both of the
approaches experience the state-space explosion problem
when modeling large systems. Analytical approaches, such as
minimal cut sets or sequences [18], and sequential decision
diagrams [19] are limited to modeling complex behaviors with
various time-to-failure distribution types. In our approach, we
propose an extended DFT to model the reliability of cloud-
based systems. We introduce an analytical-based approach to
analyzing the extended DFT model for reliability calculation.
Our approach does not suffer from the state-space explosion
problem as it is compositional, where a DFT is decomposed
into subtrees, and the system reliability is calculated by joining
the reliabilities of the subtrees. Finally, numerical methods
have been used as an iterative way for analyzing various
designs of standby systems with a discrete approximation of
time-to-failure distributions [20]. It is potential that a
numerical method as demonstrated in previous work could be
useful in our proposed analytical-based approach for
estimating the time-to-failure distribution.

Finally, there is also some previous work on virtualized
datacenter and cloud-based systems. Machida et al. proposed
an availability model for virtualized systems with time-based
rejuvenation using Petri-nets and a gradient search method
[21]. Thein et al. modeled the availability of application
servers, and they showed the high-availability cluster failover,
combining virtualization and software rejuvenation [22].
However, none of the above approaches addressed explicitly
the reliability analysis for software rejuvenation scheduling. In
our approach, we analyze system reliability using an extended
DFT model and use the proposed analytical approach to
estimate rejuvenation schedules that satisfy predefined
reliability requirements for cloud-based systems.

III.
2B2BREJUVENATION IN THE CLOUD USING SOFTWARE SPARES

Virtualization allows multiple clients to share a physical
machine’s resources using virtual machines (VM). To
maintain high fault tolerance of a cloud-based system subject
to software aging, we employ software rejuvenation and
standby sparing for software redundancy to ensure service
continuity. Different from physical machines, VMs are stored
as images, which can be easily created, managed, and
destroyed, making them very suitable for disaster recovery and
disaster prevention. Comparing to hardware spares, using
sparing VMs for disaster prevention and software rejuvenation
could be a very inexpensive and effective way to restore the
high performance of a cloud-based software system.

To achieve a reliable and zero-downtime rejuvenation, we
define two types of VM spares, namely Hot Software Spare
(HSS) and Cold Software Spare (CSS). In the context of
cloud-based systems, an HSS is a hot standby VM instance
that can be instantly available when a primary component
fails. Despite the fact that an HSS is running alongside a
primary component, it is not sharing any workload or
processing any requests. Therefore, an HSS is operated using
much less CPU power, but can be scaled automatically to meet
the workload requirements when a primary component fails.

1463

Critical data in an HSS is mirrored in near real time from the
primary VM instance, e.g., in the range of 200 µs, to ensure
high fault tolerance. The failure rate of an HSS is much less
than that of a primary component as an HSS is not subject to
aging-related bugs. This makes a software-defined HSS differ
significantly from a hardware-based Hot SPare (HSP) because,
with physical wearout, an HSP may have the same failure rate
as a primary hardware component. On the other hand, a CSS
refers to a software component that is available as an image of
a VM, and can be replicated and deployed as a primary
component or a HSS component. As an inactive VM instance,
a CSS is mirrored for its critical data based on a specified
schedule with most of the time being cold standby. Therefore,
the reliability of a CSS is nearly perfect, which can be
reasonably assumed never to fail. The recovery time using a
CSS is usually in the range of minutes up to two hours; while
the cost of a CSS is its storage and very little CPU resource
consumption. A CSS can be rapidly deployed, which makes it
quite different from a hardware-based Cold SPare (CSP) that
is much expensive and requires manual configuration when a
primary one fails.

Software rejuvenation techniques have been used to
prevent the occurrence of aging-related software failures by
proactively resetting a system’s internal state to its initial
condition. In this work, we adopt an easy way of software
rejuvenation by rebooting the system according to a defined
schedule. In cloud computing, we can start a new VM to
replace an old one that has demonstrated unsatisfactory system
performance. To render the fault tolerant of the critical
components and minimize the frequency of the rejuvenation
events, each critical primary component is equipped by at least
two HSSs and one CSS. The only CSS is needed for the
rejuvenation process – it can be replicated for all currently
deployed software components including the primary one and
the HSSs. A newly deployed component must wait until the
old ones have finished processing their remaining requests
before they can be destroyed.

In our approach, a rejuvenation process is triggered when
the reliability of a system component or the whole system
reaches a predefined threshold. Similar to [6], we assume the
rejuvenation process (Phase 1) takes about 30 minutes, with
sufficient time to start a CSS and complete all remaining
requests before Phase 2 starts. As a CSS never fails, we only
consider the primary component and its HSSs when
calculating the system reliability. In addition, two scenarios
are investigated for the rejuvenation procedure. One scenario,
called system-specific rejuvenation, is to rejuvenate the whole
system when the system reliability reaches a threshold. The
second scenario is a component-specific one, in which the
critical component with the lowest reliability is rejuvenated
when the system reliability reaches a threshold. As shown in a
case study, the component-specific rejuvenation demonstrates
certain advantages over the system-specific approach.

IV. 3B3BRELIABILITY MODELING AND ANALYSIS

Dynamic Fault Tree (DFT) extends the concept of static
fault tree and introduces new modeling capabilities for spare
components, functional dependency, and failure sequence
dependency. In this paper, we further extend DFT for

modeling software spare components in cloud-based systems
with software aging phenomenon.

A. 6B6BSSP Gate for Cloud-Based Systems with Two Hot Spares

Figure 1 shows a SSP gate with one primary component P
and two HSS components H1 and H2. The primary component
is initially powered on, but when it fails, it is replaced by an
alternate spare following an enumeration sequence. Therefore,
a SSP gate fails only when the primary component and all the
alternate HSS components fail. Suppose the constant failure
rates of components P, H1, and H2 are λP, λH1, and λH2,
respectively. When P fails, H1 takes the lead to replace P as
H1*, with λH1* ≥ λH1 due to the software aging phenomenon,
when it takes the full workload. The same thing happens to H2
when H1* fails – H2 replaces H1* as H2* with λH2* ≥ λH2. Note
that λH* and λP do not have to be equal because P and H may
have different configurations. In addition, we designate τ1, τ2,
and τ3 as the time to failure of P, H1 and H2, respectively.

Fig. 1. An SSP gate with a primary component and two HSSs

To derive the reliability function of a SSP gate with two
hot spares, we identify all the possible events when a SSP gate
fails according to component failure sequence. We denote the
event “component X fails before component Y” as YX , and
summarize six disjoint events ei where 1 ≤ i ≤ 6, as in Fig. 2.

Fig. 2. Six events for the failure of an SSP gate with two HSSs

τ2 τ3 τ1 t

 τ3 τ2 τ1 t

λ

λ

λ
λP

λH1

λH1*

λH2

λH2*

τ1 τ2 τ3 t

τ3 τ1 τ2 t

τ2 τ1 τ3 t

λP

λH1 & λH2

λH1*

 λP

λH2 λH1

λH1*

 λH1 λH2

 λP

λH1 λH2

λH2*

λP

λH2 λH1

λP

Event e1
21 HHP

Event e2

12 HHP

Event e3

12 HPH
Event e4

PHH 21

Event e5
21 HPH

Event e6
PHH 12

λ

λ

λ

τ1 τ3 τ2 t

P

SSP

H1 H2

1464

Let event A be the failure of an SSP gate at time t. We can
calculate the probability of event A as in Eq. (1):

)Pr()Pr(*)|Pr()Pr(
6

1

6

1
i

i
i

i
i eAeeAA ∩==

==

 (1)

It is worth noting that when event ei happens, the SSP gate
also fails. Therefore, event A always happens with some event
ei. Thus, Eq. (1) can be simplified as in Eq. (2).

)Pr()Pr(
6

1
i

i

eA
=

= (2)

Event e1: P fails before H1, and H1 fails before H2, denoted
as

21 HHP . In this case, it is guaranteed that H1 does not
fail during (0, τ1], and H2 does not fail during (0, τ2]. After P
fails, H1 takes over the workload and becomes H1*, also after
H1* fails, H2 takes over the workload and becomes H2*.
Intuitively, the unreliability function U(t) of the SSP gate, i.e.,
the probability that the SSP gate fails during (0, t], can be
calculated as in Eq. (3).

123*H*H

t

0

t t

p
HHP

dddeeetT 3*H2*H

1 2

p τττ)λ)(λ()λ()(Pr
τλτλ

τ τ

τλ
2

2

1

1

1

21

−−−
 =≤

 (3)

However, Eq. (3) only works when HH λλ =* . As shown in
previous work [6], when HH λλ >* , the integration of the
probability density function (pdf) of H1* from τ1 to t does not
give the correct unreliability of the component at time t, as it
incorrectly assumes that component H1 behaves as H1* starting
from time 0. Since the component actually behaves as H1
during (0, τ1], the unreliability of H1* at time τ1 equals the
unreliability of H1 at τ1 rather than the unreliability calculated
by the integration of the pdf of H1* from 0 to τ1. This is to
ensure the unreliability continuity for H1 before and after it
serves as a primary component H1*. By calculating a new
starting integration time τH1* for H1*, we take into
consideration that τ2, originally the failure of component H1, is
shifted to the left by (τ1–τH1*). As a result, when we consider
the failure of H1*, we must add (τ1–τH1*) to τ2 since H2* is
activated based on the original non-shifted failure time
variable τ2 of H1. Therefore, the value of τ2 after the adjustment
is given as τ2|actual = τ2|shifted + (τ1– τH1*) = τ2+(τ1– τH1*), as shown
in Fig. 3. As a rule of thumb, in the case of PH1H2…Hi,
where i >1 (τ1 does not get shifted since it is the failure time of
P, and P always acts as a primary component), when a
component Hi* acts as a primary one, its actual time to failure
equals τ(i+1)+(τi–τHi*). This observation and adjustment is
critical for yielding the correct reliability function.

Hot spare H1 or the first HSS has been studied in previous
work [6] yielding () 1** 111

τλλτ HHH = . In regards to the second
HSS H2, it is guaranteed that H2 does not fail during (0, τ2].
After H1* fails, H2 takes over the workload and becomes H2*.
Since the component actually behaves as H2 during (0, τ2], the
unreliability of H2* at time τ2 equals the unreliability of H2 at
τ2 rather than the unreliability calculated by the integration of
the pdf of H2* from 0 to τ2. This requires us to calculate a new
starting integration time τH2* for H2* such that the unreliability
of H2* at τH2* is equal to the unreliability of H2 at τ2. As the
pdfs of H2 and H2* are

τλλτ 2

2
)(Hef H

−
= and

τλλτ *2

2*)(Hef H

−
= ,

respectively, such a relationship between H2 and H2* can be
described as in Eq. (4), taking into account the adjustment of
τ2, i.e., the time to failure of H1*.

=
−+

−−
)ττ(τ

τλ
τ

τλ 1
2

2

2
22

2
τλτλ

*H12

2H
*H

*H

0
2H

0
2*H dede (4)

Solving Eq. (4), we have))τ((ττ
12 λ

λ

*H12*Η τ
*2H

2H −+= . Since

H2* fails during a period of time (t-τ2), the integration range
for H2* now becomes [τH2*, t–(τ2+(τ1-τH1*))+τH2*], as illustrated
in Fig. 3. The probability of the event PH1H2, i.e., Pr(e1),
can be calculated as in Eq. (5).

123*H*H

t

0

t t

p
HHP

dddeeetT 3*2H2*1H
1H1

1H

2H1H12

2H

1p τττ)λ)(λ()λ()(Pr
τλτλ

)ττ(

τ

)τ]τττ[(

τ

τλ

21

*

*

**

*21

−−
+− +−+−

−
 =≤

(5)

 Fig. 3. Failure time of H1 and H2 for reliability analysis in event e1

Eq. (5) can be simplified with two substitutions
w(τ2) = τ2 + τ1 – τH1* and z(τ3) = τ3 + w – τH2*, which results in
Eq. (6), where z and w can be replaced by τ2 and τ3,
respectively.

1

wwz

*H

w

*H

t

0

t t

p
HHP

dzdwdeeetT p

2H
*H2

1H1*1H

1 2

1p τ)λ)(λ()λ()(Pr
]

λ

λ
[λ

]ττ[λ

τ τ

τλ

2

*

1
21

+−−
+−−−

 =≤

(6)

 Event e2: PH2H1, this is where P fails first then H2
fails as a spare before H1* fails. The failure of H2 is
independent of H1*, and the failure of H1* depends on P
failure but not on H2’s failure. The integration of H1* requires
computing τH1*, which is based on τ1 by moving the integration
limit from τH1* to τH1* + (τ3–τ1), resulting in Eq. (7).

132H*H

t

0

t t

p
HHP

dddeeetT 3H22*H1

1

1H1

131

1H

1H

1p τττ)λ)(λ()λ()(Pr
τλτλ

τ

)ττ(

)ττ(τ
λ

τλ

21

*

*

λ12

−−
−−

−+

−
 =≤

 (7)

Event e3: H2 P H1, this is where H2 fails first as a
spare, then P fails, and finally H1 fails as H1*. Note that the
complexity is similar to one spare SSP gate P H. The
probability that the SSP gate fails is calculated as in Eq. (8).

312H*H

t

0

t t

p
HPH

dddeeetT 3H2*H

3

1H1

1

1H

1H

1p τττ)λ)(λ()λ()(Pr
τλτλ

τ

)ττ(

τ
λ

τλ
2

2

1

1

*

*

λ12

−−
−−

−
 =≤

 (8)

Event e4: H1H2 P, H1 and H2 fail as spares before P
fails, similar to one spare SSP gate, where it is guaranteed that
P does not fail during (0, τ3]. The probability that the SSP gate
fails during (0, t] can be calculated as in Eq. (9).

231HH

t

0

t t

p
PHH

dddeeetT 3H2H

2 3

1p τττ)λ)(λ()λ()(Pr
τλτλ

τ τ

τλ
2

2

1

1
21

−−−
 =≤

 (9)

Event e5: H1 PH2 , similar to event e3, this is where H1
fails first as a spare, then P and H2 as H2*. Note that the
complexity is similar to one spare SSP gate P H. The
probability that the SSP gate fails is calculated as in Eq. (10).

213*HH

t

0

t t

p
HPH

dddeeetT 3*H2H

2

H2

2
H

H

1p τττ)λ)(λ()λ()(Pr
τλτλ

τ

)ττ(

τ
λ

τλ
2

2

1

1

2*

*2

2λ21

−−
−−

−
 =≤

 (10)

Event e6: H2H1 P, similar to event e4, H2 and H1 fail
as spares before P fails, similar to one spare SSP gate, where it
is guaranteed that P does not fail during (0, τ2]. The

0 τH1* τ1 τH2* τ2|shifted τ2|actual t-(τ2|actual - τH2*) t

 t - τ2|actual

 τ1 - τH1*

1465

probability that the SSP gate fails during (0, t] can be
calculated as in Eq. (11).

231HH

t

0

t t

p
PHH

dddeeetT 3H

2

2H

3 2

1p τττ)λ)(λ()λ()(Pr
τλτλ

τ τ

τλ
21

1
21

−−−
 =≤

 (11)

Based on Eq. (2), the unreliability function of the SSP gate
with two HSSs is given in Eq. (12) given that the reliability
function is R(t) = 1–U(t).

)(Pr)(Pr)(Pr)(Pr)(Pr(Pr)(
122121121221

tTtTtTtTtTtT=t U
PHHHPHPHHHPHHHPHHP

≤+≤+≤+≤+≤+≤

) (12)

B. 7B7BReliability Function Verification Using CTMC

We use a CTMC model to formally verify the correctness
of the reliability function R(t) derived in the previous section.
Fig. 4 shows the CTMC model corresponding to the SSP gate
with two HSSs illustrated in Fig. 1.

Fig. 4. The CTMC model of the SSP gate in Fig. 1

There are 8 states in the model, denoted as PH1H2, H1*H2,
PH1, PH2, H1*, H2*, P, and Failure. Each state holds the name
of the surviving components, except the Failure state, which is
the unavailability state. The reliability of the SSP gate is the
sum of the probability of being in all available states, namely
State 1 to State 7. Let Pi(t) be the probability of the system in
state i at time t, where 1 ≤ i ≤ 8, and Pij(dt) = P[X(t+dt) = j |
X(t) = i] be the incremental transition probability with random
variable X(t). The matrix [Pij(dt)] defined in Eq. (13), where 1
≤ i, j ≤ 8, is the incremental one-step transition matrix of the
CTMC defined in Fig. 4.

−
−

−
+−

+−
+−

++−

10000000

 1000000

 0 100000

 00 10000

0 0)(1000

0 0 0)(100

00 00)(10

0000)(1

**

**

**

22

11

22

11

1221

1221

dtdt

dtdt

dtdt

dtdtdt

dtdtdt

dtdtdt

dtdtdtdt

PP

HH

HH

HPHP

HPHP

HHHH

HHPHHP

λλ
λλ
λλ

λλλλ
λλλλ

λλλλ
λλλλλλ

(13)

The transition matrix is a stochastic matrix with each row
sums to 1, and it defines the probability for each state either
remaining (when i = j) or transiting to a different state (when i
≠ j) during the time interval dt. Given the initial probabilities
of the states, the matrix can be used to describe the state
transition process completely. From Eq. (13), we can derive
the following relations as in Eqs. (14.1-14.7).

)())(1(=)+(11 21
tPdtdttP HHP λλλ ++− (14.1)

)())(1()(=)(2*12 21
tPdtλλtPdtλt+dtP HHP +−+ (14.2)

)())(-1()(=)(313 12
tPdttPdtt+dtP HPH λλλ ++ (14.3)

)())(-1()(=)(414 21
tPdttPdtt+dtP HPH λλλ ++ (14.4)

)() (1)t()(=)(5325 12
tPdtλPdtλtPdtλt+dtP *HPH −++ (14.5)

)() (1)()(=)(6426 21
tPdtλtPdtλtPdtλt+dtP *HP*H −++ (14.6)

)() (1)()(=)(7437 21
tPdtλtPdtλtPdtλt+dtP PHH −++ (14.7)

We derive a set of linear first-order differential equations
as in Eqs. (15.1-15.7), which are state equations of the CTMC
model assuming the initial probabilities P1(0) = 1, and P2(0) =
P3(0) = P4(0) = P5(0) = P6(0) = P7(0) = 0.

)()()('
)()(

11
11

21
tPtP

dt

tPdttP
HHP λλλ ++−==−+ (15.1)

)()()()('
)()(

2*12
22

21
tPtPtP

dt

tPdttP
HHP λλλ +−==−+ (15.2)

)()()()('
)()(

3P13
33

12
tPtPtP

dt

tPdttP
HH λλλ +−==

−+ (15.3)

)()()()('
)()(

414
44

21
tPtPtP

dt

tPdttP
HPH λλλ +−==−+ (15.4)

)()()()('
)()(

5325
55

12
tPtPtPtP

dt

tPdttP
*HPH λλλ −+==−+ (15.5)

)()()()('
)()(

642*6
66

21
tPtPtPtP

dt

tPdttP
*HPH λλλ −+==−+ (15.6)

)()()()('
)()(

7437
77

21
tPtPtPtP

dt

tPdttP
PHH λλλ −+==−+ (15.7)

Using Laplace transformation to both sides of Eqs. (15.1-
15.7) to derive Eqs. (16.1-16.7).

)()()0()(111 21
sPPssP HHP λλλ ++−=− (16.1)

)()()()0()(2*122 21
sPsPPssP HHP λλλ +−=− (16.2)

)()()()0()(3133 12
sPsPPssP HPH λλλ +−=− (16.3)

)()()()0()(4P144 21
sPsPPssP HH λλλ +−=− (16.4)

)()()()()0()(5*3255 12
sPsPsPPssP HPH λλλ −+=− (16.5)

)()()()()()0()(6*4P2*66 21
sPsPsPPssP HH λλλ −+=− (16.6)

)()()()0()(74377 21
sPsPsPPssP PHH λλλ −+=− (16.7)

Substituting the initial probabilities Pi(0), where 1 ≤ i ≤ 7,
into Eqs. (16.1-16.7), we can derive the equations for P1(s),
P2(s), P3(s), P4(s), P5(s), P6(s) and P7(s). By applying inverse
Laplace transformation, we can solve the original linear first-
order differential equations as follows.

etP
s

sP t

HHP

HHP)λλ(λ
11

21

21

)(
)λλλ(

1
)(++−=

+++
=

)(
λλ

λ
)(

)λ(

)(λ
)()λλ(λ)λ(λ

2
1

2
21

1121

ee
λ

tP
λs

sP
sP tt

*HHP

P

H*H

P HHP2H*1H ++−+− −
−+

=
++

⋅
=

eetP
s

sP
sP tt

HP

H HHPHP)λλ(λ)λ(λ
3

12
3

211

1

)(
)λλ(

)(λ
)(++−+− −=

++
⋅=

eetP
s

sP
sP tt

HP

H
HHPHP)λλ(λ)λ(λ

4
1

4
212

2

1)(
)λλ(

)(λ
)(++−+− −=

++
⋅

=

1466

]
)λλ)(λλλλ(λ

)λλλ(λλ
[

)](
λλλ

λ
[

](
λλλ

λ
[)(

)λ(

)(λ

)λ(

)(λ
)(

)λλ(λ

**

*

)λ(λ)λ(λ

*

)(λ

*
5

*

3

*

2
5

21

11121

121

12*1

11

*1

11

11

2

e

ee

etP

s

sP

s

sP
sP

t

HHPHHHP

HHHPP

tt

HHP

P

t

HHP

P

H

P

H

H

HHP

HPHH

H

++−

+−+−

−

−+−++
−−+

+

+
−+

−−

−+
=

+
⋅+

+
⋅

=

]
)λλ)(λλλλ(λ

)λ(λλ
[

](
λλλ

λ
[

](
)λλ)(λλλ(λ

λλ
[

]e
)λλ)(λλλ)(λλλλ(λ

)λλ)(λλ(λ)λλ)(λλ(λ
[)(

)λ(

)(λ

)λ(

)(λ
)(

)λλ(λ

**

)λ(λ

*

)λ(λ

*

)(λ

*P***

6

*

4

*

2*
6

21

11221

1

2

22

*12

1
2

211

1

*2

22212221

2121221

22

1

e

e

e

tP

s

sP

s

sP
sP

t

HHPHHHP

HPP

t

HHP

P

t

HHHHHP

HP

t

HHHHHHHHP

HHHHPHHPHP

H

P

H

H

HHP

HP

HH

H

++−

+−

+−

−

−+−++
+

+

+−−
+

−−−+
⋅

+

−+−+−++
−+⋅+−+⋅

=

+
⋅+

+
⋅

=

eeeetP

s

sP

s

sP
sP

HHPPHPP tt

P

H

P

H

t)λλ(λt)λ(λ)λ(λ)(λ
7

43
7

212H1

21

)(

)λ(

)(λ

)λ(

)(λ
)(

++−+−+−− +−−=

+
⋅

+
+
⋅

=

The reliability function R(t) from CTMC analysis is given
as in Eq. (17).

 R(t) = P1(t)+ P2(t)+ P3(t)+ P4(t)+ P5(t)+ P6(t)+ P7(t) (17)

We compute the system reliabilities using the reliability
function R(t) from both the proposed approach and the CTMC
approach presented in Eq. (12) and Eq. (17), respectively, in
Table 1. The results show they are perfectly matched.

Table 1. R(t) analysis results - proposed method vs. CTMC

Time (days) R(t) - proposed method R(t) - CTMC

90 0.9815 0.9815
180 0.9019 0.9019
300 0.7299 0.7299

1000 0.031 0.031

V. 4B4BCASE STUDY

In this case study, we show how to model and analyze the
reliability of a cloud-based system with two HSSs for each
critical component using extended DFT, and then estimate
rejuvenation schedules based on reliability quantitative
analysis generated by our proposed approach in Section 4.

Figure 5 shows a cloud-based system that consists of an
application server PA and a database server PB. To enhance
the system reliability, four hot spare components HA1, HA2 are
set up for PA, and HB1 and HB2 are set up for PB. The four
HSSs are ready to take over the workload if the primary ones
fail. The case study shows the reliability analysis applicable to
SSP gate with two HSSs for each primary component. We set
the reliability threshold to 0.99 as a minimum requirement for
system reliability. For this case study, we assume constant
failure rates for the servers, where λPA = 0.004/day, λHA1= λHA2

= 0.0025/day, λPB = 0.005/day, λHB1 = λHB2 = 0.003/day, using
the same failure rates as in previous work [6], so the obtained
results can be readily compared.

Fig. 5. A cloud-based system with software spares

 As stated earlier, the failure rates of the HSS servers are
lower than those of their corresponding primary ones because
HSSs are not subject to the same workload; thus they have no
software aging issues, and less likely to fail. Yet, when a
primary server fails, the failure rate of a substituting HSS
increases since it assumes the primary component workload,
i.e., λPA = λHA1* = λHA2* = 0.004, and λPB = λHB1* = λHB2* = 0.005.

The case study also involves CSS components, namely
CSA and CSB, which are used in the rejuvenation process.
Note that a CSS is a stored image of a deployed VM instance
that can be easily duplicated, thus only one CSS is needed for
each of the primary and HSS components. In addition, since a
CSS is stored as an image, its failure rate is considered to be 0.
However, once a CSS component is duplicated and deployed,
it will assume the failure rate of its corresponding role, either
as a running primary component or as an HSS. The DFT
model of the cloud-based software system for Phase 1 is
shown in Fig. 6.

Fig. 6. DFT model of the cloud-based system - Phase 1

Since the system fails when either the application server or
the database server fails, the two SSP gates are connected by
an OR-gate. The reliability function of the OR-gate is derived
using sum of disjoint product as in Eq. (18).

))(*))(1()((1)(1)(211 tUtUtUtUtR SSSOR −+−=−= (18)

where US1(t) and US2(t) are the unreliability functions of the
subtrees S1 and S2 that can be calculated using Eq. (12). We
consider both scenarios mentioned in Section 3 for Phase 2
analysis. Fig. 7 represents the DFT model of the cloud-based
system in Phase 2 for Scenario 1.

PA

S1 S2

SSP

HA1 HA2 PB

SSP

HB1 HB2

1467

Fig. 7. DFT model of the cloud-based system - Phase 2 (Scenario1)

Similar to Phase 1, we can analyze the DFT model for
Phase 2 Scenario 1 by splitting it into subtree sections.
Starting from bottom to top, the unreliabilities US1(t), US1’(t),
US2(t) and US2’(t) can be derived using Eq. (12). US3(t) and

US4(t) can be calculated using the sum of disjoint product
method for AND-gate shown in Eqs. (19-20). Finally, the
system reliability for the OR-gate is derived as in Eq. (18) for
Phase 1.

)(*)()('113 tUtUtU SSS = (19)

)(*)()('224 tUtUtU SSS = (20)

Moving to Phase 2 Scenario 2, the DFT model of the
system is illustrated in Fig. 8 for the subsystem rejuvenation of
the application servers.

Fig. 8. DFT model of the cloud-based system - Phase 2 (Scenario2)

Using the same methodology for DFT analysis, we have
the following subtrees US1(t), US1’(t), US2(t) and US3(t) in the
DFT model. The unreliabilities US1(t), US1’(t) and US2(t) can be
derived using Eq. (12). US3(t) is calculated using the sum of
disjoint product method for AND-gate shown in Eq. (19).

As we have shown how to derive the sytem reliability in
both Phase 1 and Phase 2, including the two different
scenarios, the next step is to show the difference and the
impact of employing 2-HSSs vs. 1-HSS [6] in terms of
reliability and rejuvenation scheduling in a cloud-based
system. In addition, we study the impacts of using Scenario 1
vs. Scenario 2 for rejuvenation scheduling for a cloud-based
system with multiple HSSs subject to software aging.

Figure 9 illustrates the details of the difference between the
two cases based on Scenario 1. Note that 1-HSS results are
formerly provided in [6]. From the figure, we can see that the
system reliability is kept very high during the transition.
According to Fig. 9, the reliability threshold for 2-HSSs is
reached at 48 days, hence it is suggested that the system
should be rejuvenated every 48 days under Scenario 1. On the
other hand, we can also see that the system needs to be
rejuvenated every 18 days with a single HSS usage.
Comparing rejuvenation scheduling based on reliability
analysis for both cases over the period of 120 days, we notice
that the system with 2-HSSs only needs two rejuvenations (at
48 and 96 days), but it requires six rejuvenations with a single
HSS for its critical component. Therefore, Scenario 1 with 2-
HSSs results in (6*2–6*2)/(6*2) = 66% reduction in cost and
management for software rejuvenation, while keeping the
system above the same reliability threshold (0.99).

Fig. 9. Rejuvenation scheduling: 2-HSS vs. 1-HSS (Scenario1)

Figure 10 shows Scenario 2 for component-specific
software rejuvenation. According to the figure, when the
system reliability reaches the threshold in 48 days, the
components with the lowest reliability, i.e., the database
servers, are scheduled for rejuvenation first.

Fig. 10. Rejuvenation scheduling: 2-HSS vs. 1-HSS (Secnario2)

 The rejuvenation induces a partial spike in the reliability
curve, and then the system reliability is continuously
monitored until it reaches the threshold again at the 69th day.
At this point, the application server components become the
ones with the lowest reliability. As a result, there will be an
alternation in rejuvenation process for the two subsystems. We
can see three rejuvenations for Scenario 2 with 2-HSSs vs.
nine rejuvenations for 1-HSS design. Therefore, Scenario 2
with 2-HSSs results in (9–3)/(9) = 66% reduction in cost and

PA

S3

S1 S1’

SSP

HA1 HA2 PA’

SSP

HA1’ HA2’

PB

S2

SSP

HB1 HB2

PA

S3 S4

S1

SSP

HA1 HA2 PA’

SSP

HA1’ HA2’ PB

S2 S2’

SSP

HB1 HB2 PB’

SSP

HB1’ HB2’

S1’

1468

management for software rejuvenation, while keeping the
system above the same reliability threshold (0.99).

Figure 11 compares the two scenarios with two HSSs in
120 days. Scenario 1 has two rejuvenations that require us to
rejuvenate both of the application and database servers. On the
other hand, Scenario 2 has three rejuvenations that only
require us to rejuvenate either the application servers or the
database servers each time. Thus, by using Scenario 2, we can
reduce the rejuvenation cost and management by (2*2–3)/4 =
25% compared to the case of Scenario 1.

Fig. 11. Rejuvenation scheduling for 2-HSS: Scenario 1 vs. Secnario2

VI. 5B5BCONCLUSIONS AND FUTURE WORK

In this paper, we introduced a reliability-based approach
using two HSSs for critical components during normal running
time in cloud-based software systems. We defined an
extension of DFT, called SSP gate, which can be used to
evaluate the reliability of a cloud-based system with multiple
software spares for its critical components. Our approach has
been verified using CTMC for constant failure rates. The case
study showed that using the proposed approach, a rejuvenation
schedule can be derived to maintain the system reliablity of a
trusted cloud-based software system with multiple software
spare components above a certain level.

For future work, a measurement-based approach can be
adopted for collecting empirical data relative to the software
aging phenomenon, and then we can use data fitting technique
to obtain the pdfs of the critical software components. Once
the pdfs become available, they can be plugged into our
proposed analytical approach to evaluate the system reliability
and estimate the rejuvenation schedules based on the collected
data. Finally, we envision modeling and analyzing cloud-
based systems with active standby spare components, which
can share workload with the primary ones, as a future, and
more ambitious research direction.

8B8BREFERENCES

[1] K. V. Vishwanath and N. Nagappan, “Characterizing cloud computing
hardware reliability,” in Proc. of the 1st ACM symposium on Cloud
Computing (SoCC’10), Indianapolis, IN, USA, June 10-11, 2010, pp.
193-204.

[2] M. Grotte, R. Matias, and K. S. Trivedi, “The fundamentals of software
aging,” in Proc. of the 1st Int’l Workshop on Software Aging and
Rejuvenation (WoSAR 2008), ISSRE, Seattle, WA, USA, November 11-
14, 2008, pp. 1-6.

[3] H. Pham, System Software Reliability, Springer Series in Reliability
Engineering, SpringerVerlag, London, 2006.

[4] M. Grotte, R. Matias, and K. S. Trivedi, “The fundamentals of software
aging,” in Proc. of the 1st International Workshop on Software Aging
and Rejuvenation (WoSAR 2008), ISSRE, Seattle, WA, USA, November
11-14, 2008, pp. 1-6.

[5] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software
rejuvenation: analysis, module and applications,” in Proc. of the Twenty-
Fifth International Symposium on Fault-Tolerant Computing (FTCS
’95), Pasadena, CA, USA, June 27-30, 1995, pp. 381-390.

[6] J. Rahme and H. Xu, “A software reliability model for cloud-based
software rejuvenation using dynamic fault trees,” Int’l Journal of
Software Engineering and Knowledge Engineering (IJSEKE), vol. 25,
nos. 9 & 10, 2015, pp. 1491-1513.

[7] V. Castelli, R. E. Harper, and P. Heidelberger, et al., “Proactive
management of software aging,” IBM Journal of Research and
Development, vol. 45, no. 2, 2001, pp. 311-332.

[8] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi, “Analysis of
software aging in a web server,” IEEE Trans. on Reliability, vol. 55, no.
3, 2006, pp. 411-420.

[9] F. Machida, A. Andrzejak, R. Matias and E. Vicente, “On the
effectiveness of Mann-Kendall test for detection of software aging,” in
Proc. of the IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), Pasadena, CA, USA, November 4-7,
2013, pp. 269-274.

[10] J. Guo, Y. Ju, Y. Wang, and X. Li, “The prediction of software aging
trend based on user intention,” in Proc. of the IEEE Youth Conference
on Information Computing and Telecommunications (YC-ICT), Beijing,
China, November 28-30, 2010, pp. 206-209.

[11] D. Cotroneo, R. Natella, and R. Pietrantuono, “Is software aging related
to software metrics?” in Proc. of the IEEE Second Int’l Workshop on
Software Aging and Rejuvenation (WoSAR), San Jose, CA, USA,
November 2, 2010, pp. 1-6.

[12] A. Bobbio, M. Sereno, and C. Anglano, “Fine grained software
degradation models for optimal rejuvenation policies,” Performance
Evaluation, vol. 46, no. 1, 2001, pp. 45-62.

[13] K. Vaidyanathan, D. Selvamuthu, and K. S. Trivedi, “Analysis of
inspection-based preventive maintenance in operational software
systems,” in Proc. of the 21st IEEE Symp. on Reliable Distributed
Systems (SRDS 2002), Suita, Japan, October 13-16, 2002, pp. 286-295.

[14] V. P. Koutras and A. N. Platis, “Applying software rejuvenation in a two
node cluster system for high availability,” in Proc. of the Int’l
Conference on Dependability of Computer Systems, Szklarska, Poreba,
May 25-27, 2006, pp. 175-182.

[15] J. Ke, Z. Su, K. Wang, and Y. Hsu, “Simulation inferences for an
availability system with general repair distribution and imperfect fault
coverage,” Simulation Modelling Practice and Theory, vol. 18, no. 3,
2010, pp. 338-347.

[16] T. Zhang, M. Xie, and M. Horigome, “Availability and reliability of k-
out-of-(M+N):G warm standby systems,” Reliability Engineering and
System Safety, vol. 91, no. 4, 2006, pp. 381-387.

[17] S. Distefano, F. Longo, and M. Scarpa, “Availability assessment of HA
standby redundant clusters,” in Proc. 29th IEEE Int’l Symp. Reliable
Distributed Systems, 2010, pp. 265-274.

[18] D. Liu, C. Zhang, W. Xing, R. Li, and H. Li, “Quantification of cut
sequence set for fault tree analysis,” in HPCC2007, Lecture Notes in
Computer Science, 2007, Springer-Verlag, no. 4782, pp. 755-765.

[19] A. B. Rauzy, “Sequence algebra, sequence decision diagrams and
dynamic fault trees,” Reliability Engineering and System Safety, vol. 96,
no. 7, Jul. 2011, pp. 785-792.

[20] G. Levitin, L. Xing, and Y. Dai, “Cold vs. hot standby mission operation
cost minimization for 1-out-of-N systems,” European Journal of
Operational Research, vol. 234, no. 1, Apr. 2014, pp. 155-162.

[21] F. Machida, D. Kim, and K. Trivedi, “Modeling and analysis of software
rejuvenation in a server virtualized system,” in Proc. of the IEEE Second
Int’l Workshop Software Aging and Rejuvenation (WoSAR), San Jose,
CA, USA, Nov. 2, 2010, pp. 1-6.

[22] T. Thein, S.-D. Chi, and J. S. Park, “Availability modeling and analysis
on virtualized clustering with rejuvenation,” Int’l Journal of Computer
Science and Network Security (IJCNS), vol. 8, no. 9, 2008, pp. 72-80.

1469

