
Towards Automated Development of Multi-Agent
Systems Using RADE

Xiaoqin Zhang and Haiping Xu
Department of Computer and Information Science

University of Massachusetts at Dartmouth
North Dartmouth, MA 02740

Email: x2zhang, hxu@umassd.edu

Abstract— To facilitate the development of multi-agent systems
and improve the reusability, robustness and feasibility of these
systems, we proposed a role-based agent development framework
(RADE). In this paper, we present more details on the design of
agents and motivations within such framework. We introduce a
practical approach to modeling agent’s motivation and specifying
agent’s goals, where a role-mapping mechanism is developed
based on this design. We also introduce the RTÆMS language
based on the extension of TÆMS to model the plan tree for each
goal. This representation is used to support the development
of general planning/scheduling and collaboration/cooperation
mechanisms.

Keywords: Role-Based Agent Development, Multi-Agent Sys-
tems, Motivations, RTÆMS Language, Role-Agent Mapping

I. INTRODUCTION

Multi-Agent System (MAS) has become a suitable pro-
gramming paradigm for distributed information systems and
applications, where the resources, data, control and services
are widely distributed. However, the implementation of MAS
is not a trivial job, it takes considerable time and requires
highly experienced programmers. It is also difficult to test and
maintain the multi-agent system because of its complexity. The
reusabilities of such systems are low, it is unlikely to use an
existing system for another application domain with little or
minor change.

We are working on a set of technologies and mechanisms
to ease and formalize the development of MAS, and to
increase its reliability and reuse-ability too. The basic idea is to
separate concerns. There are multiple issues in a multi-agent
systems, such as problem-solving issue, coordination issue,
organization issue, communication issue, security issue, etc.
Some of them are application-dependent, others are not. Some
of them are platform-dependent and others are not. We have
proposed a three-layered development process: the application-
independent, platform-independent model, the application-
specific, platform-independent model, and the application-
specific and platform-specific model are developed in the
three consecutive phases respectively. Another approach to
separating concern is to separate the domain knowledge and
the intelligent problem-solving capabilities. We adopt a role-
based modeling approach, conceptual roles are defined with
the domain related knowledge, such as goals, permissions,
organizational relationship, and coordination protocols, etc;
where agent is a concert entity equipped with motivations,

Fig. 1. A generic model of role-based open multi-agent systems (adapted
from [4])

resources and problem-solving capabilities. However, our role-
based approach is different from other proposed role-based
approaches ([1], [2], [3]). We introduce the concept of role
instance, which is a concrete implementation of a conceptual
role, and this approach provides a stronger support for system
openness and dynamics. Our approach supports the dynamic
creation of role instances, and agents can take a role instance
and then create more role instances according to the needs
to fulfill its goal. The basic idea of the role-based agent
development environment (RADE) is illustrated in Figure 1.

The three-layered development model and the role-based
design approach are presented in [4] and [5], in this paper we
focus on the design and implementation of agent, including
the mapping from role instances to agents and the interaction
among agents. This paper is organized as the follows. The
detailed description of agent is presented in Section II. The
definition and more details about role are described in Section
III. Section IV describes operation details of multi-agent
systems including the mapping mechanisms, the planning and
scheduling, and the collaboration and the cooperation among
agents. A case study is presented in Section V to illustrate
the previous ideas. Lastly, we will present the conclusion and
discuss the future work in Section VI.

II. AGENT DEFINITION

Agent is an entity with attributes, motivations, sensors and
a set of reasoning mechanisms. Agent attributes include agent

Agent

attributes : P Attribute
motivations : P Motivation
utilityFunction : MQState → utility
sensor : Environment 7→ SensorData
reasoningMechanisms :

P SensorData× P Motivation → P ↓ Role
P SensorData× P Motivation× P ↓ Role
→ P CurrentGoal
P SensorData× P Motivation× P CurrentGoal
→ P CurrentSchedule
executionMechanisms :

P SensorData× P CurrentPlan → newEnvironment
rolesTaken : P ↓ Role

Fig. 2. Definition of Agent Class

names, user, identification and other descriptive characteristics,
the values of these attributes are set when an agent instance
is instantiated from the agent class. Different agent instances
have different attribute values. According to [6], motivation
is defined as “any desire or preference that can lead to
the generation and adoption of goals and which affects the
outcome of the reasoning or behavioral task intended to satisfy
those goals”. Motivation is the key for agent to decide which
goals it should pursue and how to pursue a goal.
A. Agent Motivation

We adopt a quantitative view of motivation in our prac-
tice. Motivation is defined as a set of motivation quantities
(MQs) [7] that the agent tracks and accumulates. Each MQ
is associated with a preference function1 Each MQ represents
progresses towards an abstract goal. An abstract goal is a long-
term commitment to make progress toward certain direction
but not a concrete task with a specified plan. For example, the
designed purpose of a personal assistant agent is to serve its
owner. With this purpose, the agent has motivation to manage
the owner’s address-book, organize daily appointment and
purchase items desired by the owner. Therefore, this agent’s
motivation is represented as a set of three types of MQ:

Motivation of Personal Assistant

= {MQmanageAddressbook, MQorganizeActivities, MQpurchaseItems} (1)

A concrete goal (task), i.e., schedule a meeting with the
family doctor, contributes the abstract goal organize daily
activity, which is represented by the generation of a certain
amount of MQorganizeActivities. Agent is able to determine which
role it should take by analyzing the (concrete) goal of the role
and to find if the goal generates a certain type of MQ that this
agent is interested in.

Each MQi is associated with a preference function Ufi ,
which maps a specific amount of MQi into some quantity of

1The concept of MQ is originated from the work on soft real-time agent
control by Wagner and Lesser. We extended the original MQ framework to
make it more suitable for general agent design in RADE process.

utility Ui: Ufi(MQi → Ui), where Ui is the utility associated
with MQi and it is not inter-exchangeable with other type of
utility. The overall utility of the agent Uagent depends on the
accumulation of the different types of MQs in its motivation:
{MQi, MQj, MQk, ...}. The function: Uagent = γ(Ui, Uj, Uk, ...)
describes how different types of utilities are contributed to the
agent’s overall utility.

B. Extended Definition of MQ to Support Automatic Develop-
ment and Dynamic Organizations

The original MQ framework is intended to support soft
real-time agent control, it is assumed that all MQ types are
designed by the user when the agent is created, and the types
of MQ are fixed in the runtime of the system. This assumption
works fine for small-scale multi-agent systems when all agents
are created by hand and the organization structure is fixed.

However, this original design does not fit the need of en-
gineering the development of multi-agent system and support
the dynamic organization structure. For example, it would be
nice to automatically create two personal assistant agents for
user A and user B, each agent has the motivations to manage
the owner’s address-book, organize daily appointment and
purchase items desired by the owner. If we use the original def-
inition as described in (1), confusion is unavoidable since the
agents cannot distinguish their goals to serve different users.
The confusion can be resolved by designing different types
of MQs with different names, such as: MQorganizeActivitiesForUserA

and MQorganizeActivitiesForUserB, however, this approach deviates
from the intention to use an unified class design for all personal
assistant agents. So, we extend the original MQ framework by
introducing a parameter, namely subject, into the definition
of MQ: every unique MQ type is defined by the MQ name
and the MQ subject. The subject is the entity who is being
served or benefited from the achievement of this MQ. For
example, MQorganizeActivities(A) represent the motivation to or-
ganize activities for user A (assume “A” is the identification for
this unique user). MQorganizeActivities(A) and MQorganizeActivities(B)
are different MQs and they are not inter-exchangeable. In the
design phase, a unique pattern MQorganizeActivities(User) can be
used for the personal assistant agent class, “User” refers to the
agent’s user, which is one of the attributes of the agent. When
the two personal assistance agent instances are instantiated for
user A and B, they have different values for their attributes
such as name, user and identification.

The formal definition of MQ type is:
MQ

name : String
subject : P entity

A brief representation is: MQname(MQsubject). The subject of
MQ is a set of entities, which can be defined in one of the
following ways or a combination of them:

1) List the identification of the entities that belongs to this
set, {id1, id2, ...idn}, idi is the identification of entity or
a function that returns an entity identification, such as
Owner(id).

2) Specify the conditions for an entity to belong to this
set, {x | condition(x)}. For example, {x | x ∈ groupA}
is a set of all members that belong to groupA, which is
another entity.

With this extension, it becomes possible to support dynamic
organization structure. For example, agent x has a motivation
MQserveGroup({y | x ∈ y}) to serve the groups it belongs to,
this motivation is created for the agent class in the design
phase, agent x is an instance of such agent class. In the system
runtime, agent x joins a group A and also forms a group B
with other agents, according to this motivation to serve the
groups it belongs, agent x will work on goals that serve the
benefit of group A or B.

Under this extended definition, we have the following
definition on the relationships of MQs.

Definition 2.1: Two MQ types MQi and MQj are identical
(inter-exchangeable) (MQi == MQj) if and only if:

1) name(MQi) == name(MQj) and
2) subject(MQi) ⊃ subject(MQj) and

subject(MQi) ⊂ subject(MQj).
Definition 2.2: MQ type MQi is a special case of MQj

(MQi ⊂ MQj) if and only if:
1) name(MQi) == name(MQj) and
2) subject(MQi) ⊂ subject(MQj).

C. Sensor Data

Sensor data refers to the input for the agent. For robot
agents, the sensor data is collected by different sensors, like
camera, speedometer, etc. For software agents, sensor data
refers to the messages and information the agent receives from
the environment including other agents.

D. Reasoning Mechanisms

Each agent is equipped with a set of reasoning mechanisms,
the reasoning mechanisms are used for the following purposes:

1) Decide what roles the agent should take or release at
this moment, given the agent’s motivation, current roles
it is taking, the resource and time constraints.

2) Decide what goals the agent should pursue at this
moment. The agent may take multiple roles and each
role may have multiple goals, so the agent needs to
decide which goals it need to focus on at this moment
based on how the goals contributed to its motivations,
how each goal could be achieved and the resource and
time constraints.This issue is related to the next issue.

3) Decide how to achieve a goal given the available alter-
natives, resources and time constraints. Some planning
and scheduling mechanisms are needed for this decision.

Given the formal definition of motivations, goals and the
detailed description of alternatives to achieve a goal, it is
possible to build some general, domain-independent reasoning
mechanisms/toolkits, from which the user can select appropri-
ate components and add them to the agents, the user can also
customize these general mechanisms/toolkits by setting some
parameters. These general mechanisms/toolkits are reusable
for agents in different applications.

role
instance

1

role
instance

i

role
instance

j

role
instance

n

role-agent mapping mechanism

role
instance

j
Gj1 Gj2

Gj3

role
instance

i
Gi1 Gi2

Gi3

goal selecting mechanism

approach selecting mechanism

Gi1-step1, Gi1-step2, Gj2-step1, Gi1-step3, Gj2-step2,

Linear Schedule of Actions

Fig. 3. Agent’s Reasoning Mechanisms

Figure 3 shows the agent’s reasoning mechanisms. In gen-
eral, agents decide what to do using the reasoning mechanisms.
The decision is to be made at different levels: selection of
roles, selection of goals, and selection of the approach to fulfill
the goals. The first issue is resolved by role-agent mapping
mechanisms, and the later two issues are inter-related, which
are solved by planning-scheduling mechanisms. More details
of these two types of mechanisms are described in Section IV-
A and IV-B after the detailed description of role is presented.

E. Execution Mechanisms

Execution mechanisms are used to generate the output,
which changes the environment. For robot agents, their actors
such as their motors, are the execution mechanisms, which
are used to execute some actions to change the environment
states. For software agents, the execution mechanisms are
the primitive actions to change the outside environment state.
Some of these execution mechanisms are domain-dependent.
For example, the personal assistant agent is build with exe-
cution mechanism to perform an online purchase, which is
not built in a mathematics theorem proven agent. Other exe-
cution mechanisms are application-independent but platform-
dependent, such as sending a message. Some common ex-
ecution mechanisms can be built as toolkits and reused for
different applications.

The major difference between the reasoning mechanisms
and execution mechanisms is: the reasoning mechanisms only
changes the agent’s inside state, and has no effect on the
outside environment directly, while the execution mechanisms
changes the outside environment directly.

In summary, Figure 4 shows the general architecture of an
agent. Each agent has a set of attributes, and its motivation is a
set of MQs it accumulates and tracks, which are mapped into
its overall utility through specified utility functions. An agent

name owner id

MQ1 MQ2 MQn

overall utility

......

Motivations

Attribute

Events Messages

Sensor Data

planning
tool 1

planning
tool 2

goal
selection

tool

role
selection

tool

Reasoning Mechanisms

commun
ication

tool

learning
tool

shopping
tool

finicial
tool

Execution Mechanisms

Agent

Fig. 4. An General Agent Architecture

also receives sensor data from outside environment including
events and messages. An agent has a set of reasoning mech-
anisms including role/goal selection, and planning/scheduling
mechanisms. The designer of the agent decides what reasoning
tool should be built in for this agent, the designer also selects
the appropriate execution tools for this agent according to the
designed purpose of this agent. It is assumed there are a set
of reasoning and execution mechanisms available as toolkit,
which can be selected and plug into the agent seamlessly.

III. ROLE DEFINITION

Same as agent, a role is defined with a set of attributes, such
as role name and identification. A role is also defined with a
set of goals, each goal is associated with a plan tree, which
is a hierarchal description of the alternatives to accomplish a
goal.

A. Goal Definition

The definition of a goal contains the name of the goal name
and a MQ Production Set (MQPS):

MQPS = {(MQi, qi), (MQj, qj), (MQk, qk)...},
which represents the success accomplishment of this goal

will generate qi amount of MQi, qj amount of MQj, qk

amount of MQk, etc. The MQPS describes how this goal
contribute quantitatively to some higher-level goals (abstract
goals), which are build in agents’ motivations. For example,
there is a meeting coordinator role, which has a goal defined
as:

goal name: schedule group meeting

MQPS : {MQ organizeActivity(x|x ∈ meeting group),
MQ serveGroup(meeting group)}

This goal generates two type of MQs, meaning that the
achievement of this goal contributes to two abstract goals:
organize activity (for any member belongs to this meeting
group) and serve this meeting group. It should be noticed that

 role: meeting coordinator
 goal: schedule group meeting
 MQPS: { MQorganizeActivity(x|
x∈meeting-group)
 MQserveGroup(meeting-group)}

CA CB

group A
group B

role class

role instances

agents

Fig. 5. Meeting Coordinator Role Example

the meeting group is an abstract concept when this role is
defined as a role class, this concept can represent any group
who would like to hold meetings. When an role instance is
instantiated from this class, this abstract concept is instantiated
as a concrete group too. Depending on the context when the
meeting coordinator role instance is created, a specific group
will replace this abstract meeting group in the goal definition.
Assume that two meeting coordinator role instances CA and
CB have been created (Figure 5), one for group A, and another
for group B. Both of them have the goal of the same name
but not the same MQPS. All agents who belong to group A
are motivated to take the role CA, those agents who belong to
group B are motivated to take the role CB, those agents belong
to both groups are motivated to take both role instances.

B. Plan Tree Definition

For each goal associated with a role, there is a plan tree
to describe the possible alternatives to achieve this goal. This
plan tree is part of the domain knowledge and needed to be
defined by the user. To represent this domain knowledge, we
introduce RTÆMS (Role-Based Task Analyzing, environment
Modeling, and Simulation) language based on the extension
of the TÆMS language [8]. TÆMS is a hierarchical task
representation language, which support the representation of
the relationships among goals and subgoals, the quantitative
description of the atomic approaches and uncertainties, and
resources. We extend the TÆMS language by introducing a
role attribute for task nodes that represent goals and subgoals.
The attribute role specifies which roles are possible to carry
this task.

For example, Figure 6 shows the plan tree for the goal Orga-
nize Conference. The goal OrganizeConference belongs to the
role ConferenceChair, it consists of three sub-goals: Program-
Preparation, , BusinessPreparation and ConferenceExecution.
The min quality accumulative function (qaf) associated with
the goal OrganizeConference specifies the following relation-
ship:

Quality(OrganizeConference) = min(Quality(ProgramPreparation),
Quality(BusinesPreparation), Quality(ConferecenExecution))

Organize Conference
(Conference Chair)

Business
Preparation

Program
Preparation

Conference
Execution

Workshop
Preparation

(workshop chair)

Main Program
Preparation

(program chair)

Local Preparation
(local organization chair)

Publication
(publication chair)

Registration
(local organization chair)

Workshop
(workshop chair)

Main Program
(program chair)

Banquet
(local organization chair)

enables

enables

enables

enables

enables

enables

min

sum min sum

Fig. 6. Plan Tree for Goal Organize Conference in RTÆMS Representation

In other words, the success of this goal depends on the
success of all of its sub-goals. Other available quality accu-
mulation functions include max, sum, seq sum, etc.

Each sub-goal can be divided into more detailed sub-goals.
For instance, ProgramPreparation is divided into two sub-
goals: WorkshopPreparation and MainProgramPreparation,
which belongs to the role WorkshopChair and ProgramChair
respectively.

The dash lines represent the interrelationship between
goals/sub-goals. For example, LocalPreparation enables Con-
ferenceExecution describes the fact that the first goal Lo-
calPreparation has to be achieved successfully before it is
possible to implement the second goal ConferenceExecution.
Other types of interrelationships defined in TÆMS include:
facilitates, disables and hinders.

The primitive goal (lowest-level goal) in the RTÆMS rep-
resentation can be specified with more details in a plan tree
associated with another role. For example, the plan tree for
the goal ProgramPreparation is described in Figure 7, this in-
formation belongs to the role ProgramChair. In this example,
there is an instance of the use of max quality function: there
are two alternatives to achieve the goal AssignPaper, either
the papers are assigned by ProgramChairs or the papers are
assigned based on the biddings from PCMembers.

The RTÆMS shows all possibility to achieve a goal and
the interrelationship among goals/subgoals. It provides funda-
mental knowledge for agents to plan and schedule its local
activities, and it also supports the collaboration and coopera-
tion among agents. More details are presented in Section IV.

IV. OPERATION OF THE MULTI-AGENT SYSTEMS

In this Section, we will discuss more details on how the
multi-agent systems will be developed and operated based on
the RADE framework we have presented in [4] and earlier in
this paper.

A. Mapping From Role Instance to Agent

One important feature of the RADE framework is that
the agent can dynamically choose the role instances. In the
development phases, roles and agents are designed separately.

Main Program
Preparation

(program chair)

Select Program
Committee

(program chair)
Call For Paper
(program chair)

Select Paper for
Publication

(program chair)

Advertise on
Paper

(program chair)

Advertise on
Internet

(program chair)

Assign Paper
(program chair)

Review Paper
(program chair)

Make Decision
(program chair)

Authorized
Assignement

(program chair)

Assignment
By Bid

(PC members)

Select Program
Committee Members

(program chair)

Select Program
Committee Chairs

(program chair)

max

min

min sum min

enables

enables

enables
enables

Fig. 7. Plan Tree for Goal Main Program Preparation in RTÆMS
Representation

When the system execution starts, one or more leading role
instances are created by the human user. Those agents who are
interested in taking a particular role instance send messages to
the creator of this role instance (in this case, the creator is the
human user). The creator then checks the qualification of the
agents. If an agent is qualified for this role instance, the request
will be granted. When an agent takes a role instance, it checks
the goals that belong to this role instance and decides if more
role instances need to be created to carry the subgoals. If this
is the case, more role instances will be created and posted in
the role spaces. The process described above is repeated until
no more role instances are created.

Now we describe the answer to the following two questions:
1) How does an agent select the role instances it wants to

take? An agent is interested in a role instance if some of
the goals belong to the role instance match the agent’s
motivation. A goal G matches agent A’s motivation if
and only if:
∃MQx ∈ MQPS(G),∃MQy ∈ Motivations(A), MQx ⊂
MQy or MQx == MQy.
According to the above definition, there may be mul-
tiple role instances an agent is interested at the same
time. The agent may send request for all of them or
some of them. When more than one requests have
been granted, the agent may confirm some of them or
all of them depending on its resource and capability,
and its preference on different MQs given its current
MQ accumulations. [7] has presented a heuristic search
algorithm to select the most appropriated tasks based
on agent’s MQ preference, MQ states and resource
limitation. Similar mechanisms can be adopted here for
agent to select the appropriated role instances.

2) How to verify the qualification of an agent for a role
instance? The verification process is executed by the
creator of the role instance (which could be the human
user or another agent), this process is based on two
criteria:

a) Whether the agent (A) has the capability to take
this role instance (R). The following condition is

checked: Actions(R) ⊂ ExecutionMechanism(A)
b) Whether this role instance is consist with other role

instances the agent currently has. This condition is
checked based on the incompatibility relationships
defined in the role organization.

B. Planning and Scheduling

The planning and scheduling mechanisms are used to gen-
erate a linear schedule of activities for the agent to execute.
The plan tree associated with each goal consists of all possible
alternatives to achieve a goal, it is not a linear schedule. The
agent needs to make decisions on how to achieve a goal based
on this plan tree and the time/resource constraints. A general,
domain-independent planner/scheduler for TÆMS task struc-
ture has been developed [9]. Similar toolkits can be developed
for RTÆMS plan tree too. We propose to build multiple
planning/scheduling toolkits using different technologies with
varying complexities from heavy-duty contingency planner to
quick and easy one-step-look-ahead planner. The agent builder
can choose from them and the agent also can choose which one
to use at that time if multiple planner/scheduler components
are build in.

C. Collaboration and Cooperation

In an open agent society with distributed information,
resources and tasks, agents need to collaborate and cooper-
ate on their actions. Efficient collaboration and cooperation
mechanisms are important to the performance of the system.
Large amount of effort has been spend on the development
of mechanisms for collaboration and cooperation in multi-
agent systems. Our intention is to develop a set of domain-
independent mechanisms for collaboration and cooperation, so
they can be re-used in different applications. This need is also
recognized by other researchers [10]. In ROPE project [11],
cooperation process is build as separated component from the
concrete agents, the ROPE engine provides execution of the
cooperation process, which is described as a high-level petri-
net class. However, the implementation of ROPE Engine is
based on a shared memory, which is not always feasible for
agents widely distributed on different machines. Additionally,
the cooperation process in ROPE project is based on token
and transition firing, which is not feasible enough to support
more proactive cooperation and collaboration, i.e. agents are
able to consider the cooperation and collaboration needs when
they are planning their own activities.

The RTÆMS language supports collaborations and coopera-
tion by specifying interrelationship among goals and subgoals,
so agents know why they need collaboration and cooperation,
when and with whom. A set of domain-independent general
collaboration mechanisms (GPGP) based on TÆMS language
has been developed [12]. we propose to develop (or reuse some
of GPGP) similar mechanisms in RADE framework based
on RTÆMS language. Agents collaborate and cooperate with
each other using this set of mechanisms and also according
to the protocols defined in the role, which specify how the
interaction between roles should be proceeded.

Role

chair

workshop
Chair

program
Chair

conference
Chair

AuthorPCMember

local
Organization

Chair

Fig. 8. Relationships among Role Classes

V. A CASE STUDY

In this section, we use the conference organization ap-
plication as an example to illustrate how our proposed ap-
proach works. In this application, we first define the following
roles: Chair, ConferenceChair, WorkshopChair, ProgramChair,
LocalOrganizationChair, ProgramCommitteeMember, and Au-
thor. All of these roles are subclasses of the Role class,
and the ConferenceChair, WorkshopChair, ProgramChair and
LocalOrganizationChair inherit the Chair role class. Figure 8
represents the inheritance relationships among these roles.

The Chair role is defined as a role that has permission to
create new role instances according to its need, and it also
equips with a protocol that specifies how to coordinate with
others as a leader.

ChairRole

permissions : {createNewRoleInstances}
protocols : {coordinationAsLeader}

The ConferenceChair role inherits the permissions and
protocols defined in the Chair role, and it has a goal Orga-
nizeConference, which produces 10 units MQprofessionalService.
There is a RTÆMS plan tree associated with this goal, which
is shown in Figure 6. The ProgramChair, WorkshopChiar and
LocalOrganizationChair are defined in a similar way.

ConferenceChairRole

goals : {organizeConference,
MQPS = {(MQprofessionalService, 10)}}
planTrees : {RTÆMS specification}

PCMemberRole

goals : {reviewPaper,
MQPS = {(MQprofessionalService, 1)}}
planTrees : {RTÆMS specification}

The PCMember has a goal to review paper, which generates
1 units MQprofessionalService. Since this role does not inherit the
Chair role, so it does not have the permission to create new
role instances, and does not perform as leader in coordination.

AuthorRole

goals : {publishPaper,
MQPS = {(MQresearchAccomplishment, 5)}}
planTrees : {RTÆMS specification}

The Author role is equipped with a goal to publish pa-
per, the accomplishment of this goal will produce 5 units
MQresearchAccomplishment.

ProfessionalAgent

name : String
motivations : {MQresearchAccomplishment, MQprofessionalService}
rolesTaken : P ↓ Role
reasoningMechanisms : {planning, scheduling,

roleSelection}
executionMechanisms : {communication, coordination}

The ProfessionalAgent has motivations to make research
accomplishment and contribute to professional services, which
are represented by two special types of MQs. Any goals that
generated such MQs would be attractive to the agent, hence
the agent would be interested in taking any role defined above.
However, the agent cannot take all of these roles given its
limited capability and the constrains among those roles, so the
agent’s reasoning mechanisms and the consistence checking
mechanisms will be used to determine which roles should be
taken by the agent.

The system works as the following. First, all the roles and
agent classes are defined by the user in AIPI model, the
domain related knowledge is also represented as the plan trees
and the protocols in ASPI model. Next, multiple professional
agent instances are created, each represents a human user
who is a professional. The user customizes his/her agent by
specifying some personal constrains, availability and utility
preferences. A role instance of ConferenceChair is created
by a human user who is conference chair. This role instance
is assigned to the professional agent who represents this
chairperson. This professional agent then analyzes the plan tree
of this OrganizeConference goal, and decides to create more
role instances including the WorkshopChair, ProgramChair,
and LocalOrganizationChair. Those agents who are interested
in these role instances will send requests to the agent who
is taking the ConferenceChair role, the agent decides the
mapping of these role instances to the agents. After these role
instances are taken by agents, each agent analyzes its plan
trees and more role instances are posted in the role space,
such as PCMember roles and Author roles. More agents take
these roles and perform the tasks as defined in the role, the
goal of the system to run a conference hence is achieved.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a general design of agent architec-
ture for RADE framework. We define the agent’s motivation
based on the extension of MQ framework, we also define
the goal with MQ production set and develop RTÆMS lan-
guage to represent the plan trees for goals. Based on these

definitions, we describe the role-agent mapping mechanisms
and criteria. we also discuss the ideas to develop general
planning/scheduling and collaboration/cooperation toolkits.

Our future work include the implementation of an extened
RADE framework including an interface for agent design,
a set of plug-in toolkits for agent reasoning, execution and
collaboration, and an demo of an automated generated multi-
agent system and its operation on one application domain.

REFERENCES

[1] Elizabeth A. Kendall. Role modeling for agent system analysis, design,
and implementation. In ASA/MA, pages 204–218. IEEE Computer
Society, 1999.

[2] Vincent Hilaire, Abder Koukam, Pablo Gruer, and Jean-Pierre
Müller. Formal specification and prototyping of multi-agent
systems. In ESAW ’00: Proceedings of the First International Workshop
on Engineering Societies in the Agent World, pages 114–127, London,
UK, 2000. Springer-Verlag.

[3] Sen Cao, Richard A. Volz, Thomas R. Ioerger, and Yu Zhang. Role-
based and agent-oriental teamwork modeling. In Hamid R. Arabnia and
Youngsong Mun, editors, IC-AI, pages 1190–. CSREA Press, 2002.

[4] Haiping Xu and Xiaoqin Zhang. A methodology for role-based modeling
of open multi-agent software systems. In Chin-Sheng Chen, Joaquim
Filipe, Isabel Seruca, and José Cordeiro, editors, ICEIS (3), pages 246–
253, 2005.

[5] Haiping Xu, Xiaoqin Zhang, and Rinkesh J. Patel. Developing role-
based open multi-agent software systems. Technical report, Computer
and Information Science Department, University of Massachusetts Dart-
mouth, 2006.

[6] Michael Luck and Mark d’Inverno. A formal framework for agency
and autonomy. In Victor Lesser and Les Gasser, editors, Proceedings of
the First International Conference on Multi-Agent Systems (ICMAS-95),
pages 254–260, San Francisco, CA, USA, 1995. AAAI Press.

[7] Thomas Wagner and Victor Lesser. Evolving real-time local agent
control for large-scale mas. In J.J. Meyer and M. Tambe, editors,
Intelligent Agents VIII (Proceedings of ATAL-01), Lecture Notes in
Artificial Intelligence. Springer-Verlag, Berlin, 2002.

[8] Keith Decker. TAEMS: A Framework for Environment Centered
Analysis & Design of Coordination Mechanisms. In Foundations
of Distributed Artificial Intelligence, Chapter 16, pages 429–448. G.
O’Hare and N. Jennings (eds.), Wiley Inter-Science, January 1996.

[9] Thomas A. Wagner, Alan J. Garvey, and Victor R. Lesser. Criteria
Directed Task Scheduling. Journal for Approximate Reasoning (Special
Scheduling Issue); a version is also available as UMass Computer
Science Technical Report 1997-59, 19:91–118, January 1998.

[10] Giacomo Cabri, Luca Ferrari, and Letizia Leonardi. Agent role-based
collaboration and coordination: a survey about existing approaches. In
SMC (6), pages 5473–5478. IEEE, 2004.

[11] Michael Becht, T. Gurzki, Jurgen Klarmann, and Matthias Muscholl.
ROPE: Role oriented programming environment for multiagent systems.
In Conference on Cooperative Information Systems, pages 325–333,
1999.

[12] V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling,
D. Neiman, R. Podorozhny, M. NagendraPrasad, A. Raja, R. Vincent,
P. Xuan, and X.Q. Zhang. Evolution of t he GPGP/TAEMS Domain-
Independent Coordination Framework. Autonomous Agents and Multi-
Agent Systems, 9(1):87–143, July 2004.

