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With the significant increase of available item listings in popular online auction houses nowadays, it
becomes nearly impossible to manually investigate the large amount of auctions and bidders for shill
bidding activities, which are a major type of auction fraud in online auctions.Automated mechanisms
such as data mining techniques were proved to be necessary to process this type of increasing
workload. In this paper, we first present a framework of Real-Time Self-Adaptive Classifier (RT-SAC)
for identifying suspicious bidders in online auctions using an incremental neural network approach.
Then, we introduce a clustering module that characterizes bidder behaviors in measurable attributes
and uses a hierarchical clustering mechanism to create training datasets. The neural network in RT-
SAC is initialized with the training datasets, which consist of labeled historical auction data. Once
initialized, the network can be trained incrementally to gradually adapt to new bidding data in real
time, and thus, it supports efficient detection of suspicious bidders in online auctions. Finally, we
utilize a case study to demonstrate how parameters in RT-SAC can be tuned for optimal operations

and how our approach can be used to effectively identify suspicious online bidders in real time.
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1. INTRODUCTION

Online auction houses, such as eBay, have recently experienced
a dramatic increase in their popularity. From 1 December 2009
to 1 July 2010, the number of listings hosted by eBay has
increased from ∼37.2 million to a staggering 110 million [1].
However, this significant increase in popularity also means
more chances for online auction fraud, such as shill bidding,
bid shading and user collusion, to be conducted [2–4]. Some
online auction houses (e.g. eBay) have recently instituted a
policy where bidders’ identities are obfuscated from other
users. Such a policy makes things even worse since it becomes
more difficult for users to carry out their own investigation
on suspicious bidders. To protect online business from auction
fraud, there is a pressing need to introduce effective mechanisms
for detecting online auction fraud in real time. Due to a
large amount of auction data that needs to be processed for
detection of auction fraud, automated mechanisms, such as

data mining techniques, have become more important than
ever [5–7].

Shill bidding is a type of auction fraud which refers to the
practice of sellers using a ‘fake’bidder account or asking another
bidder to place bids on their auctions for the purpose of raising
the final auction prices. This fraudulent activity causes honest
bidders to pay significantly more for winning an auction. In
addition to this undesirable effect, Dong et al. [2] discussed
the potential market failure that could result from excessive
shill bidding. In a faceless environment, such as the Internet,
a seller can easily create a secondary account or participate in
an organized group dedicated to shill bidding. Unlike blatantly
obvious forms of auction fraud, such as non-delivery fraud,
shill bidding typically goes undetected by those victimized,
especially by those who do not know how to recognize the subtle
signs of shill bidding. Existing approaches, such as Dempster–
Shafer (D–S) theory-based shill verification, are capable of
verifying shill bidding behavior using collected evidence [8].
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However, since such approaches require collecting a large
amount of evidence in addition to the auction bidding history,
they are not efficient for analyzing a large number of bidders
in real time. Therefore, it is important to define automated
mechanisms that can efficiently detect suspicious bidders, in
order to narrow down the number of bidders to be verified
for shill bidding. By reducing the workload for shill verifiers,
our approach supports efficient detection of shill bidders and
exposal of fraudulent sellers and colluding users in real time.

In this paper, we introduce a Real-Time Self-Adaptive
Classifier (RT-SAC) to identify suspicious bidders in online
auctions. The main component of RT-SAC is a feed-
forward backpropagation neural network that can be trained
incrementally in real time. When the network receives a set
of bidders, it automatically decides which ones are suspicious.
Once suspicious bidders are identified, they can be sent to
an external shill verifier for further investigation [8]. As time
progresses and the popularity of particular items changes,
bidding trends are sure to change. If a classifier is not constantly
reevaluating itself, it is likely that the classifier will become
outdated and unable to correctly classify new data. Therefore,
we use the classification and verification results to adapt the
network to new bidding data. Since reinitializing a network
is a computationally expensive process, to meet the real-time
requirements, we adjust the network incrementally by training
it only on recent data points each time. By doing so, our
classifier can accurately follow changing market trends without
decreasing its classification accuracy or throughput.

Before the classifier can function properly, it needs to be
initialized using a suitable training dataset. Although many
areas of research, such as cancer study [9] and computational
biology [10], benefit from the availability of a vast selection
of well-studied scientific data, there are no such existing
training datasets for our research due to a lack of study on
shilling behaviors.Therefore, we must collect, analyze and label
historical auction data in order to create a training dataset by
ourselves. In our approach, we first define a set of attributes,
in quantifiable terms, which can be used to describe behavior
related to shill bidding. Then, we characterize auction data using
these attributes and adopt a hierarchical clustering approach to
arrange bidders into numerous groups. Finally, we manually
examine each group and label each bidder as either normal or
suspicious. The labeled bidders are saved in a central data pool,
which is used to create a training dataset to initialize a supervised
neural network and generate test sets for evaluation purpose.

In our recent work, we demonstrated some preliminary
results on using data mining approaches for detecting suspicious
bidders in online auctions [11]. We developed a training dataset
using a hierarchical clustering algorithm and created decision
trees to classify online bidders. Our previous work demonstrated
that automated techniques such as the data mining approach are
feasible for detection of suspicious bidders. However, the error
rates of the resulting decision trees were generally over 5% and
could be up to 13%, which are not suitable for practical usage.

In addition to accuracy concerns, time performance is also an
important measure of the usefulness of our approach. Decision
trees cannot gradually adapt to new data points; thus, they need
to be reconstructed in order to learn new data.This is a very time-
consuming process.To address the above concerns, in this paper,
we adopt neural networks, which can be updated incrementally
when learning new examples and also support more accurate
classification than the existing decision tree-based approach.

The rest of the paper is organized as follows. Section
2 summarizes the related work to our approach. Section 3
presents the overall framework and the dataset creation process,
including attribute definitions and bidder labeling. The RT-SAC
framework and its various components are discussed in Section
4. To demonstrate the effectiveness of our approach, we present
a case study in Section 5. Section 6 concludes the paper and
mentions future work.

2. RELATED WORK

Previous work on categorizing groups of bidders using data
mining techniques is summarized as follows. Bapna et al. [12]
utilized k-means clustering to generate five distinct groups of
bidding behavior in online auctions. They demonstrated how
the taxonomy of bidder behavior can be used to enhance the
design of some types of information systems. Shah et al. [13]
analyzed collected auction data from eBay to generate four
distinct groups of bidding behavior. The analysis revealed that
there were certain bidding behaviors that appeared frequently
in online auctions. Hou and Rego [14] used hierarchical
clustering to generate four distinct groups of bidding behaviors
for standard eBay auctions, namely goal-driven bidders,
experiential bidders, playful bidders and opportunistic bidders.
They concluded that online bidders were a heterogeneous
group rather than a homogenous one. Although the above
approaches are closely related to our approach, they focus
on creating clusters based on the assumption that bidders are
honest and have no malicious intentions. On the other hand,
Chau et al. [5] proposed a two-level fraud spotting method that
could detect fraudulent personalities at user and network levels.
The features defined in the user level and network level can be
used to establish the initial belief for spotting fraudsters and
capture the interactions between different users for detection
of auction fraudsters, respectively. Ku et al. [6] attempted to
detect Internet auction fraud using social network analysis and
decision trees. They demonstrated that their approach could
provide a feasible way of monitoring and protecting buyers from
auction fraudsters. Ochaeta [7] used a data mining approach for
fraud detection based on variables derived from auctioneers’
transaction history. The proposed approach employed two
learning algorithms, namely C4.5 and SupportVector Machines
(SVM), which could provide improved performance for fraud
detection. Although the above approaches demonstrated their
usefulness in detecting auction fraudsters using data mining
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techniques, they require analysis of large volumes of offline
auction data, thus they do not support detection of auction fraud
in real time. Unlike these methods, our approach aims to design
an on-the-fly classifier for detection of shill suspects using real-
time auction data, so suspicious bidders with abnormal bidding
behaviors can be discovered in a timely fashion.

There has been some recent work on estimating the outcomes
of an online auction based on users’ behaviors. Gelenbe and
Gyorfi developed an automated auction model that can be used
to predict the outcomes of users’decision mechanisms [15, 16].
In their approach, the final auction price and the resulting
income per unit time are defined as a function of two inputs,
namely, the rate at which bidders provide the bids and the
time taken by the seller to decide whether to accept a bid.
Dong et al. [17] employed χ2 test of independence and logistic
regression to examine whether the difference between the final
auction price and the expected auction price implies shill
bidding, where the expected auction price can be predicted
based on users’ bidding behaviors. Gelenbe and Velan [18]
proposed a probabilistic auction model that can be used to
study the interaction of bidders and sellers in sequential
automated auctions. Such model also allows us to compute the
probabilistic outcomes of the auctions and to examine the bidder
performance [19]. On the other hand, the topics of detecting and
verifying shilling behavior in online auctions based on users’
behaviors have attracted much research attention. Kauffman
and Wood [20] attempted to detect shilling behaviors in online
auctions using a statistical approach and demonstrated how
the statistical data of an online market would look when
opportunistic behaviors exist. They also defined an empirical
model for detecting questionable behaviors. However, their
approach requires review of multiple auctions over a long
period of time, thus it is not suitable for real-time usage. Xu
et al. [21] applied a real-time model checking approach to
calculating bidders’ shilling scores in ongoing online auctions.
The approach monitors a bidder’s behavior in the auction and
updates the bidder’s shilling score if any shilling behavior is
detected. Although this approach can be used to efficiently
detect shilling behavior in online auctions, it assumes predefined
shill patterns. Thus, it is inflexible to changes in bidding trends.
In contrast, since our proposed neural network-based approach
can continuously adapt to new bidding data, it is able to account
for changes in bidding trends without a significant loss in
accuracy or efficiency. Dong et al. proposed a formal approach
to verifying shill bidders using D–S theory [8]. The verification
approach utilizes additional evidence, such as various bidding
histories and statistics regarding bidder and seller interactions,
to verify if an online bidder is a shill. The belief of whether
a bidder is a shill is calculated using the D–S theory, which
allows the verifier to reason under uncertainty. If the belief of a
bidder for being a shill exceeds a certain threshold, the bidder
is marked as a shill bidder. Goel et al. [22] used a multi-state
Bayesian network to verify detected shill suspects. Similar to
the D–S theory-based approach, Bayesian networks are capable

of reasoning under uncertainty and can be used to calculate the
probability of a bidder being a shill. These techniques, however,
suffer from being time consuming in their investigation of
bidders. Since most bidders do not behave suspiciously, a
verifier that processes every bidder will find that most of its
execution time is spent on investigating normal bidders. By
detecting suspicious bidders before being verified, our approach
can significantly reduce the workload for shill verification. As
such, this work is complementary to other research efforts that
precisely verify shill bidders using additional evidence [8, 22].

Artificial neural networks (ANN) are used in a wide variety of
fields due to their ability to automatically learn the underlying
complexities of a dataset, given sufficient training data. Kamo
and Dagli presented two models, namely a committee machine
with simple generalized regression neural networks experts and
a similar committee machine along with a hybrid type gating
network that contains fuzzy logic, to forecast stock market [23].
Both models use the same simple candlestick patterns to provide
a basis for comparison, and their experimental study show
that the performance of the models was satisfactory based
on the mean squared error. Järvelin et al. [24] used ANN
to computationally model word production and its disorders.
They developed an algorithm to generate distributed semantic
coding from a given semantic tree-structure classification of
words, which can account for a variety of performance patterns
observed in four Finnish aphasia patients suffering from word-
finding difficulties. There has also been previous work to use
ANN to analyze online auctions. For example, Wang and
Chiu [25] applied a neural network and statistical models to
identify instances of artificially inflated feedback scores. Dong
et al. [26] used the large memory storage and retrieval neural
network to predict the final auction prices. However, to the best
of our knowledge, there have been no existing efforts on using
ANN for detection of shill suspects in real time. In this paper,
we propose an approach to using ANN for detection of shill
suspects on-the-fly. Since there are readily available datasets
that can be collected from existing online auction houses, such
as eBay, ANN has been a natural choice for our research.

In addition to domain flexibility, ANN can adapt to changes
in data quickly enough to be used in situations requiring a
significant amount of time efficiency.Yin et al. [27] developed a
model that combined a fuzzy clustering approach and a standard
neural network approach to predict urban traffic flow. Instead
of training the neural network on a single large batch of data,
they incrementally trained the network as the system received
data so that the network could quickly adapt to changing traffic
trends. Yang et al. [28] used a neural network to control the
speed of a complex permanent-magnet motor. They trained
the neural network with a large batch of data and used an
incremental training approach to adapting the neural network
to changing environmental conditions and demands without
taking the motor offline. On the other hand, self-adaptive
software has also been proposed for efficient operations in
real-time environments such as avionics, air traffic control and
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medical monitoring systems [29]. For example, Sztipanovits
et al. [30] showed how to implement self-adaptive system for
large-scale applications such as turbine engine testing. They
proposed a two-layered architecture, which supports efficient
computations and reconfiguration management. Hou et al. [31]
introduced a conceptual framework for agent interaction in
intelligent adaptive interface (IAI) design. The framework
and its associated IAI models can be used to develop high-
performance knowledge-based systems, such as a unmanned
aerial vehicle control station interface. Inspired by the above
approaches, in this paper, we introduce a neural network-
based RT-SAC with an incremental training mechanism that can
provide a viable way to detection of suspicious online bidders
and can also quickly adapt to changing bidding trends.

3. IDENTIFYING SUSPICIOUS ONLINE BIDDERS

3.1. A Framework for identifying suspicious bidders

A user’s bidding behavior in an online auction can be described
using a variety of measurable attributes or features. According
to statistics we observed for typical datasets of online auctions,
many bidders exhibit similar bidding behavior. For example,
in a collected dataset of ‘Used Playstation 3’ auctions, 57% of
bidders only bid once during an auction, 19% of bidders bid
twice and 8% of bidders bid three times. Furthermore, 11%
of bidders only bid in the early hours of an auction, whereas
46% of bidders only bid in the final hours of an auction. In
addition to measuring these behaviors, we specifically define
attributes that describe behaviors related to shill bidding. For
example, bid unmasking refers to the practice of placing many
small bids to uncover the true valuation of the current high
bidder [13]. An attribute that measures the average time span
between two bids from the same user is useful for identifying bid
unmaskers. By using techniques such as hierarchical clustering
to organize bidders into groups, bidders can be grouped with
those who exhibit similar behavior [11, 32]. Since most bidders
exhibit bidding behavior similar to that of others, bidders that
do not appear in the large groups deviate from the norm
and are possibly suspicious. Further investigation into the
characteristics of a group of bidders may reveal whether or not
those bidders are shill suspects.

The framework for identifying suspicious online bidders in
real time is illustrated in Fig. 1.We first retrieve real auction data
from an auction house (e.g. eBay), and store it as historical data
for creating training datasets. The clustering module then parses
the bidding history of each auction, and uses the parsed bidding
histories to calculate and normalize values for a collection of
well-defined attributes related to shill bidding. Each bidder in
the dataset has its own values for such attributes (e.g. a bidder’s
feedback rating). Once all of the bidders are described using
these attributes, a hierarchical clustering algorithm is applied to
the dataset to create sets of grouped bidders. By looking into the
characteristics of each cluster, we manually label the clusters

Real-Time
Auction Data

Historical
Auction Data

Auction Data
Preprocessing

Hierarchical
Clustering

Real-Time Self-Adaptive
Classifier (RT-SAC)

Cluster Labeling

External Verifier
for Shill Bidders

results

suspicious

Clustering Module

Auction Data
Preprocessing

normal
classify

Training
Dataset

initialize

Additional
Evidence

Decision

FIGURE 1. A framework for identifying suspicious online bidders in
real time.

of bidders as either normal or suspicious. For example, if a
cluster’s average number of bids (NB) in the beginning of an
auction is 9, we label this cluster as suspicious, since very few
bidders place more than three bids in the beginning of an auction.
On the other hand, if a cluster does not exhibit any suspicious
behavior, it is labeled as normal. In a case when there is an
outlier, who is a bidder that exists in its own group that does
not exhibit similar behavior to bidders from any other groups,
we consider it as a suspicious bidder. When all clusters have
been labeled, the cluster labels are applied to their bidders. The
resulting labeled bidders constitute a training dataset, which can
be used to initialize the RT-SAC.

After the RT-SAC is initialized, it can be used to classify
and adapt to new auction data in real time. If a bidder from the
real-time auction data is classified as normal, the classification
result is returned to the RT-SAC, and the result can be directly
used for incremental training. On the other hand, if a bidder
is classified as suspicious, it must be sent to an external shill
verifier for further investigation. The verifier uses additional
evidence to thoroughly inspect each of the suspicious bidders.
When the verification procedure completes, the classifier makes
a decision as to whether the bidder is a shill, based on the
verification results, and then the suspicious bidder is labeled
either as normal or suspicious. More specifically, if a suspicious
bidder is verified as a normal one, it should be re-labeled as
normal; otherwise, if a suspicious bidder is verified as a shill
bidder, the label of suspicious is not changed. As such, any
false-positive classifications (i.e. normal bidders classified as
suspicious) by the RT-SAC can be corrected by the external
verifier. Note that the above scheme does not handle the presence
of false negatives (i.e. suspicious bidders classified as normal)
because such handling requires verifying a large number of
normal bidders. Although we do not use a verifier to correct any
false negatives, we can adjust the classifier in such a way that
it could classify more bidders as suspicious and significantly
decrease the number of false negatives. For example, if the
classifier displays some uncertainty in deciding whether a
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bidder is normal or suspicious, we can adjust the classifier so
that it can always classify such bidders as suspicious. The details
about the adjustment process are discussed in Section 4.2. Note
that the design of an external shill verifier is beyond the scope of
this paper. For more details on shill verification, refer to previous
work [8, 22].

3.2. Definitions of attributes related to shill bidding

In order to identify suspicious bidders, we define a set of
attributes that can be measured based on the bidding history of
an auction [11]. These attributes effectively describe a bidder’s
behavior over the course of an entire auction or in a particular
auction stage, as well as an auction’s potential to be involved
with shill bidders.We categorize the attributes into three groups,
namely user attributes, stage attributes and auction attributes.
Figure 2 illustrates the organization of these three groups, with
the major attributes defined in each group. In the following
sections, we give detailed descriptions of the major attributes in
each group.

3.2.1. User attributes
User attributes are specific for each bidder, which examine
immutable information about a user during an auction. Three
examples of user attributes are described as follows.

Elapsed time before first bid (ETFB) is the time that elapses
from the start of an auction to a bidder’s first bid. A large value
of ETFB indicates that the bidder started participating late in the
auction, whereas a small value of ETFB indicates that the bidder
participated very early in the auction.Although it is possible for
a normal bidder to place bids early in an auction, placing bids
extremely close to the start of the auction implies the bidder’s
possible prior knowledge about the auction. Thus, a bidder with
a very small value of ETFB is suspicious.

Average Bid
Increment (ABI)

Attribute Definition

Average Increment
Difference (AID)

Average Time between
User Bids (ATUB)

Average Outbid Time
(AOT)

Number of Bids (NB)

Elapsed Time before
First Bid (ETFB)

Bidder Feedback
Rating (BFR)

Remaining Time after
Last Bid (RTLB)

Auction Starting
Price (ASP)

Seller Feedback
Rating (SFR)

User Attributes Stage Attributes Auction Attributes

FIGURE 2. Three groups of attributes for identifying suspicious
bidders.

Bidder feedback rating (BFR) is useful in describing a
bidder’s experience level and established trustworthiness [8,
14]. However, we should also notice the potential for fabricating
feedback rating through collusion between misbehaving users
and fraudulent bidding rings [2, 4]. Thus, a feedback rating
should not be considered as a primary factor for describing the
trustworthiness of a user.

Remaining time after last bid (RTLB) is the time left in an
auction after the bidder places his last bid. A small value of
RTLB indicates that the bidder has been actively participating
in the final stage of the auction, likely with the intent of winning
the auction. On the other hand, a large value of RTLB indicates
that a bidder stopped bidding early before the auction ended.
Note that shill bidders typically do not place bids late in an
auction to avoid winning the auction [21].

3.2.2. Stage attributes
The mutable attributes for each bidder are specified as stage
attributes. Following the definitions in [21], we divide the
auction duration into three stages, namely early stage, middle
stage and final stage. The early stage refers to the first quarter of
the auction duration; the middle stage refers to [0.25, 0.9] of the
auction duration; and the final stage refers to the last 10% of the
auction duration. Thus, each stage attribute of a bidder has three
values that correspond to the three stages, respectively. Since
a bidder can choose to participate in any number of stages, we
set the bidder’s stage attribute value of a certain stage to 0 if the
bidder does not participate in that stage. Five major examples
of stage attributes are described as follows.

Average bid increment (ABI) refers to the average amount
that a bidder outbids the current high bidder during a certain
auction stage. For example, if the current high bid is $30.00
and a bidder places a new bid for $40.00, the bidder’s bidding
increment is $10.00. A very high value of ABI indicates a
bidder’s suspicious bidding behavior. Although a high value
may be due to a bidder’s significant interest in an item, this is
unlikely for auctioned items that are in relatively high supply.
Furthermore, a high ABI value at the early stage or middle
stage is more suspicious than a high ABI value at the final stage
because most shill bidders would not risk placing a significantly
high bid in the final stage that results in a high possibility of
winning the auction. The ABI value in a certain stage can be
calculated as in (1).

ABI =
⎧⎨
⎩

∑n
i=1 Xi − Y i

n
if n ≥ 1,

0 otherwise,
(1)

where Xi is the user’s new bid, Yi is the previous bid of Xi and
n is the total NB placed by the user in this stage.

Average increment difference (AID) is the average difference
of a bidder’s bidding increments. For example, if a bidder’s
previous bidding increment is $20.00 and his current bidding
increment is $30.00, the increment difference is $10.00. The
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AID takes the average of the computed differences. The AID
value in a certain stage can be calculated as in (2).

AID =
⎧⎨
⎩

∑n
i=1(Xi − Yi) − (Xi−1 − Yi−1)

n − 1
if n > 1,

0 otherwise,
(2)

where Xi is the user’s new high bid, Yi is the previous bid of Xi ,
X0 − Y0 = 0, n is the total NB placed by the user in this stage.
We divide the sum by n - 1 because there are n − 1 changes of
bidding increment for n bids. Note that if n equals 1, AID is set
to 0 since a change in bidding increment requires at least two
bids placed by the user.

A significant increment difference indicates a change in a
user’s bidding behavior or valuation of the auctioned item. If
a bid fight is occurring, where bidders are rapidly outbidding
each other to be the high bidder, a large increment difference
is likely to occur. If the difference is negative, it may indicate
that the bidder does not want to raise auction price too much
but is willing to increase his valuation slightly to win the item.
On the other hand, if the difference is positive, it may indicate
that the bidder intends to stop the bid fight by placing a bid for
his true valuation of the item, possibly deterring others from
rapidly placing bids to be the high bidder.

A substantial positive AID in the early or middle stage could
indicate efforts to raise the price of the auction, after seeing
initial bidder interest. A negative AID in the early or middle
stage, combined with a NB placed close together, may indicate
that a suspicious bidder does not want to scare off the currently
active bidders and is possibly participating in bid unmasking.
However, if the negative increment difference occurs in the final
stage, it could indicate a desire of a normal bidder to stop raising
the price of the auction too much.

Average time between user bids (ATUB) refers to the average
time that elapses between two bids placed by the same bidder.
Since we try to identify aggressive bidders with this attribute, we
defineATUB as the inverse of the average elapsed time between
bids as in (3).

ATUB =
⎧⎨
⎩

n − 1∑n
i=2 Ti − Ti−1

if n > 1,

0 otherwise,
(3)

where Ti is the time of the user’s bid and n is the total NB placed
by the user in this stage. Note that if n equals 0 or 1, ATUB is
set to 0 because the calculation of ATUB requires at least two
bids placed by the user.

A large value of ATUB indicates the bidder is actively
participating in the auction by placing bids soon after he is
outbid. On the other hand, a small value of ATUB implies
that the bidder is not participating heavily in the auction and
is cautious before placing a new bid. A large value of ATUB
in the early or middle stage indicates possible bid unmasking
behavior. For example, the proxy bidding system used at eBay
facilitates the practice of bid unmasking because a new bid is

immediately outbid if another user’s maximum bid is higher
than the new bid. Therefore, a shill bidder can bait a proxy
bidding system with small manual bids over the current high
bid, and let the auction price quickly climb to other bidders’
true valuations [33]. A large value of ATUB in the final stage
indicates a bidder’s strong desire to win the auction, because a
bidder participating heavily in the final stage will likely win. In
contrast, a shill bidder usually does not have a large value of
ATUB in the final stage due to the risk of winning the auction.

Average outbid time (AOT) is the average time that elapses
when a user places a new high bid since another user placed the
previous high bid. For example, if a bidder placed a bid 20 s
after another bidder placed a bid, the outbid time would be 20 s.
The AOT value in a certain stage can be calculated as in (4).

AOT =
⎧⎨
⎩

∑n
i=1 Ti − Ui

n
if n ≥ 1,

0 otherwise,
(4)

where Ti is the time of the user’s bid, Ui is the time of the
previous high bid and n is the total NB placed by the user in
this stage.

A small value of AOT indicates the user’s strong interest in
the auction and possible participation in a bid fight if n is large
enough, whereas a large value of AOT typically indicates the
user’s passing interest in the auction or the bidder is evaluating
the status of the auction before placing a new bid.A substantially
small value of AOT in the early stage may indicate a suspicious
bidder’s desire to raise the price of the auction and uncover
the true valuations of other bidders. On the other hand, a
substantially small value of AOT along with many bids in the
final stage typically indicates a bidder’s strong desire to win
the auction, as it is very likely that a bidder who participate
frequently and respond timely in this auction stage will win.

NB refers to the number of bids placed by a bidder in a
particular auction stage. A large value of NB at the early
stage typically indicates a suspicious bidder’s desire to raise
the auction price quickly. A large value of NB at the middle
stage might also be suspicious since the bidder might attempt
to uncover the true valuations of other bidders; however, it is
not considered as a strong indicator because a normal bidder
may legally participate in a bid fight in the middle stage. A
large value of NB at the final stage typically indicates a bidder’s
strong desire to win the auction. Note that due to the risk of
winning the item, shill bidders typically has a very small value
of NB in the final stage of an auction.

3.2.3. Auction attributes
Various properties of an auction may influence a bidder’s
decision to participate in the auction, and particular values
of auction attributes may cast more suspicion on the
trustworthiness of an auction as well as the likelihood of shill
bidding taking place. We now give two examples of auction
attributes as follows.
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Auction starting price (ASP) may have an impact on a
bidder’s decision to participate in the auction. A high ASP can
deter many bidders from participating in the auction, especially
if they are bargain hunters. A low ASP combined with very
early bids may indicate a seller’s attempt to avoid the additional
reserve price fee. Dong et al. [8] discussed the effects ofASP on
the possibility of an auction involving shills. It was concluded
that an auction with a low ASP is more likely to involve reserve
price shilling, where a seller sets a low ASP and uses a ‘fake’
bidder ID to place shill bids to raise the price up to an acceptable
level in order to avoid paying additional fees associated with a
high reserve price. Thus, bidders who participate in auctions
with a low ASP are more likely to be suspicious.

Seller feedback rating (SFR) is another important factor that
influences bidding behaviors in an auction since most bidders
are more likely to bid in an auction if the seller has significant
positive feedback [34, 35]. However, as described by other
researchers, SFR can also be fabricated through collusive users
and fraudulent bidding rings, and thus cannot be entirely trusted
to be accurate [2, 4].

3.3. Generation of training dataset

We adopt hierarchical clustering techniques to cluster collected
data points. Hierarchical clustering is known to have significant
advantages over flat clustering techniques such as k-means [32].
Flat clustering algorithms require the number of clusters to be
defined prior to execution, which may significantly affect the
clustering results. However, determining the proper number
of clusters is not a trivial and arbitrary task. Flat clustering
algorithms may also lead to non-deterministic results. For
example, given an input, the algorithm generates many different
sets of results, but it is impossible to know whether the set of
results is complete or if the optimal result has been generated.
Thus, justifying a set of results generated using a flat algorithm is
very difficult. Although hierarchical clustering algorithms are
quadratic in time complexity, this does not matter since the
cluster analysis is performed offline and not constrained by time.

As shown in Algorithm 1, an important aspect of hierarchical
clustering is the similarity measure, which determines when
elements shall be added into a cluster. At a given point in a
clustering process, two clusters deemed to be the most similar
are the ones to be combined into a single cluster. As shown
in (5), the similarity between two clusters is determined by
the similarity between the centers, called centroids, of the two
clusters. The centroid of a cluster is equivalent to the vector
average of the cluster’s members, as defined in (6).

SIM(Ca, Cb) = �x · �y =
n∑

i=1

xi
∗yi, (5)

�x = 1

Na

Na∑
i=1

�ai �y = 1

Nb

Nb∑
i=1

�bi, (6)

where �x and �y refer to the vector average of the members in
cluster Ca and Cb, respectively; Na and Nb are sizes of the
cluster Ca and Cb, respectively.

Algorithm 1 Cluster generation.

Input: A set of data points and a predefined minimal
similarity
Output: a set of clusters that meet the minimal similarity
requirement
1. GenerateClusters (DataSet dPoints, ClusterSet

clusters, double minSimilarity)
2. if size (clusters) == 0 // initially, there are zero

clusters
3. for each element e in dPoints
4. create a new cluster c for e and add c into

clusters
5. return GenerateClusters (dPoints, clusters,

minSimilarity)
6. else if size (clusters) == 1 // there is only one

cluster
7. return clusters
8. else // there are at least two clusters in set clusters
9. initialize maxSimilarity to 0
10. initialize mergeClusters to false
11. for each pair of clusters c1 and c2 in clusters
12. calculate the similarity between c1 and c2
13. if similarity > maxSimilarity && similarity ≥

minSimilarity
14. maxSimilarity = similarity
15. set mergeClusters to true
16. if mergeClusters == true
17. merge c1 and c2 into a new cluster c3
18. replace c1 and c2 by c3 in clusters
19. return GenerateClusters (dPoints, clusters,

minSimilarity)
20. else // no more clusters can be merged
21. return clusters

Clustering using centroids is known to be not as heavily
affected by outliers as single-link or complete-link similarity
measures [32]. Since bidding behavior can vary significantly,
any auction dataset will contain outliers. Thus, it is important
to adopt a clustering approach that can perform effectively
with the presence of outliers. In addition to the similarity
measure, it is also important to specify a minimum similarity
cutoff. The cutoff value determines when the clustering process
should terminate. If two clusters’ similarity value does not
exceed this cutoff value, they are not combined. Note that if
the similarity cutoff is not specified, the clustering algorithm
eventually outputs a single cluster containing all of the elements.

To fully utilize the available domain knowledge, we make use
of weighted attribute values. We noticed that certain attributes
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should be more important in determining cluster membership
than others. For instance, bidders with low feedback rating
might be simply new users, who are not necessary suspicious;
while bidders who place a lot of bids in an early auction
stage are more likely to be suspicious bidders. By weighting
the normalized values, our clustering method provides a more
accurate solution to clustering bidders in terms of suspicious
bidding behaviors. Once the auction data have been analyzed,
normalized and weighted, it is passed as a parameter dPoints
to the cluster generation algorithm for hierarchical clustering
(as defined recursively in Algorithm 1). Note that the cluster set
clusters initially contains no clusters, but as a starting point for
the clustering process, the algorithm creates a set of clusters in
which each cluster consists of a single data point. The basic idea
of the hierarchical clustering approach is to repeatedly merge
the two closest clusters until there is only one cluster left or the
similarity measures of all pairs of clusters become less than a
predefined minimum similarity minSimilarity.

The set of clusters generated using the cluster generation
algorithm are merely numbered without any semantic meaning
associated with membership in a particular cluster. In order
to give each cluster and its members a semantic meaning, we
need to properly label the clusters. This is done by manually
inspecting each cluster and assigning a label (i.e. normal or
suspicious) based on its most prevalent features. In Section 5
(case study), we give examples to show how such labeling can
be done.

4. NEURAL NETWORK-BASED RT-SAC

4.1. Architectural design of RT-SAC

The architectural design of RT-SAC is illustrated in Fig. 3.
When real-time auction data comes in, the attributes related

to shill bidding are preprocessed. The preprocessed real-time
auction data are then sent to two modules, namely the Adaptive
Neural Network (version k) and the Outlier Detection module
for concurrent processing. The reason for outlier detection is
that outliers typically have significant negative effects on a
classifier’s training performance [36, 37]. By removing outliers,
the performance of the classifier can be improved. During the
outlier detection process, each bidder is compared with the
groups of normal bidders and suspicious bidders from the data
pool. If a bidder is detected as an outlier, it is marked as
such. Note that the outlier detection process is supported by
reasoning Prolog rules stored in the Knowledge Base using a
Prolog engine.

While the classifier checks for outliers, it concurrently
classifies new bidders using the Adaptive Neural Network
(version k). If a bidder is classified as normal, it is labeled
as such. Otherwise, if the bidder is classified as suspicious, it
is sent to an External Shill Verifier (e.g. a D–S theory-based
shill verifier [8]) for further investigation. Depending on the
verification results, the suspicious bidder will be labeled as
either normal or suspicious. All labeled bidders are combined
with the outlier detection results, so outliers among the labeled
bidders are properly marked. The Selection and Replacement
(SR) module then uses the labeled bidders with marked outliers
to update the data pool according to predefined Prolog rules.
After replacing data points in the data pool, the SR module uses
the most recent data points that are not marked as outliers from
the current data pool to create the training and validation set.
The generated training and validation set is then sent to the Real-
Time Training (RTT) module for incremental training. After the
training is completed, a new Adaptive Neural Network (version
k+1) is created, which is used to update the existing network
(version k) for the next classification and incremental training
phase.
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FIGURE 4. Illustration of data selection with a window size of 9.

The most recent data points are selected by the SR module
using the window concept.As shown in Fig. 4, when the window
size is defined as 9, the SR module uses the latest 9 bidders
(excluding those marked as outliers) to create a training set and
a validation set. The nine bidders include three new bidders
recently processed by RT-SAC and six other recent data points
from the data pool. The window speed refers to how many
bidders RT-SAC processes before it adapts the network to the
current window. In this example, since RT-SAC processes three
bidders at a time, the window speed is 3. When new bidders
are added into the data pool, the oldest bidders in the current
window are pushed out of the window to make room for new
bidders. Although the SR module should not use any bidders
marked as outliers when creating the training set and validation
set, outliers are still kept in the data pool because they are useful
as test data to evaluate the performance of the network.

Note that when the window size is 9 and the window speed is
3, the three newest bidders will be used for training or validation
three times before they are phased out of the window. This
reintroduction of data to the network causes the network to adapt
to new data in a smoother and more predictable manner than if
the network was trained on a dataset only once. However, it is
important not to set the window’s moving speed too fast or too
slow. A window speed that is too slow may cause overfitting,
since bidders may be reused for training too many times. On
the other hand, a speed that is too fast may cause underfitting
because the network will not have sufficient time to learn the
bidding behaviors of new bidders from the window.

4.2. A neural network for classification of bidders

One of the major components of RT-SAC is a neural
network, which is used to classify participating bidders of a
recently completed auction. Different from other classification
approaches such as decision trees [11], neural networks are
typically a black-box approach that uses a set of nodes, called
neurons, to process an input signal and produce an appropriate
output signal. A neuron in the network can have multiple input
and output links to send and receive signals, respectively. A
neural network processes its input by sending the input signals
through those connecting input and output links. If a particular
neuron’s input exceeds a threshold, the neuron ‘fires’ and sends

a signal through its output links; otherwise, the neuron drops
the signal. A feed-forward neural network transmits signals in
one direction, from the input layer to the output layer. Each link
in a neural network is associated with a weight that determines
the relative importance of signals being sent. In addition, each
neuron is associated with a bias term that determines the relative
importance of the neuron for classifying data. For example, if a
neuron has a higher bias, it ‘fires’ more often than a node with
a lower bias.

Basic neural networks, such as perceptrons, can be used to
effectively classify data that is linearly separable. However, due
to the changing nature of bidding behavior and the subtleties of
shill bidding, it is difficult to justify bidding data as linearly
separable. As a result, we looked into classifiers that are
capable of classifying linearly inseparable data. Feed-forward
backpropagating neural networks are known to possess enough
complexity to effectively classify linearly inseparable data [38].
In addition, most types of neural networks do not require
a complete reconstruction when new training data becomes
available; instead, they can adapt to new data by training them
on new datasets. The incremental nature of the neural network
approach brings the distinct advantage of using a smaller new
training set for a faster training time, while still retaining the
network’s ability to correctly classify old data points. Although
this approach can be prone to overfitting on the current training
data, our process overcomes this disadvantage by utilizing the
previously described window concept and various stopping
conditions discussed in Section 4.5.

The neural network we adopted in RT-SAC consists of three
layers.The first layer, called the input layer, contains neurons for
each of the input attributes related to shill bidding. The second
layer, called the hidden layer, contains a reasonable number
of neurons for computation. Note that an improper number
of hidden neurons may lead to very poor performance of the
classifier. For example, too few hidden neurons may result in
fast but inaccurate training, whereas too many hidden neurons
may lead to unnecessarily long processing times. Since there
is no general approach to determining the optimal number of
neurons in the hidden layer, this number is typically found
by experimentation [38]. The last layer, called the output
layer, consists of two neurons, one for each possible bidder
class assignment, namely normal or suspicious. The activation
function defined for a layer determines the firing rules for its
residing neurons. In our approach, we adopted the commonly
used sigmoid function as the activation function for the hidden
layer and the output layer.

To handle the issue of false negatives we discussed earlier, we
define an adjustable decision function that interprets the outputs
of the neural network. When the neural network produces
outputs at its output neurons, the outputs are in the form of
real numbers from −1 to +1. A decision function can interpret
the outputs of all output neurons and classify the input example.
For our approach, we require that the decision function classifies
a bidder as normal only if it is fairly certain of the bidder’s
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innocence. For example, if the ‘normal’ neuron outputs 0.9
and the ‘suspicious’ neuron outputs −0.6, the decision function
should interpret the classification as normal with a large degree
of certainty. On the other hand, if both neurons output a value
of 0.6, the decision function should interpret it as being unsure
whether the bidder is normal or suspicious. In the case of
uncertainty, the outputs of the classifier are interpreted as a
suspicious classification. By doing so, we can reduce the number
of potentially harmful false negatives in favor of insignificantly
increasing the number of harmless false positives.The algorithm
for the decision function is defined as in Algorithm 2.

Algorithm 2 Decision making.

Input: The outputs from the “normal” neuron and the
“suspicious” neuron, and a threshold
Output: Suspicious / Normal
1. DecisionFunction (NormalOutput out1,

SuspiciousOutput out2, float threshold)
2. if (out1 and out2 are both negative)
3. return Suspicious
4. else if (out1 <= out2)
5. return Suspicious
6. else if (the difference between out1 and out2 is

less than threshold)
7. return Suspicious
8. else
9. return Normal

Note that the parameter threshold represents the similarity
tolerance that allows for dynamic adjustments to the
classification process. It is initially set to 0.8; however, if we
notice that the network is not classifying enough bidders as
suspicious, we should set the parameter to a larger value to
increase the likelihood of suspicious classifications.

In our approach, we adopt a resilient backpropagation
(Rprop) algorithm to train the network [39]. Rprop is a
supervised learning technique that has shown promising
classification accuracy and time performance results compared
with other popular training techniques such as standard
backpropagation and the SuperSAB algorithm. Rprop is similar
to the standard backpropagation algorithm for training a
network, but it updates the weights and biases of a network in a
slightly different manner. For every training example, Rprop
classifies the example and calculates the error, which is the
difference between the network’s output and the expected value
of the output attribute. Instead of calculating a gradient descent
term from the error using a derivative function and applying it
directly to the weights and biases, Rprop calculates this term
and only uses its sign in determining how it should modify
the weights and biases. The algorithm interprets a positive sign
as an increase of error, so it decreases a weight or bias by an
update value; on the other hand, a negative sign is considered

as a decrease of error, so the weight or bias is increased by
an update value. At the end of a training iteration, when all
training examples have been processed once, the validation set is
classified. If the data points in the validation set are not classified
accurately enough, another training iteration takes place and
more modifications to the weights and biases need to be done.
This process stops when the network classifies the validation
set well enough or any stopping condition is met. Refer to [39]
for more detailed description of the Rprop algorithm.

4.3. Outlier detection

Outliers are elements of a set that have significantly different
values from the majority of the set. Osborne and Overbay [40]
discussed the potential causes of outliers and the adverse effects
of including outliers for training on error rates. Regardless of
whether the outliers are legitimate members of the sampled
population or they are due to sampling errors, in most scenarios,
removal of outliers for training leads to improvements in
error rate [36, 37]. In our approach, we consider a bidder to
be an outlier if it possesses a value of an attribute that is
significantly different from that of other bidders (e.g. more
than 5 standard deviations away from the mean). Since we use
Prolog rules to define parameters such as the number of required
standard deviations, such parameters are adjustable at runtime.
An example of such a rule is listed as follows:

isOutlier(B) :- standardDeviationThreshold

Exceeded(B).

standardDeviationThresholdExceeded(B) :-

dataConnect(B, V1), dataConnect(B,V2),

analyzeThresholdResult(V1, V2, 5.0).

dataConnect(B,V1) :-

class(’io.DatasetManager’) <-

getSDAwayFromNormalMean(B) returns V1.

dataConnect(B,V2) :-

class(’io.DatasetManager’) <-

getSDAwayFromSuspiciousMean(B) returns V2.

analyzeThresholdResult(V1,V2,X):-

V1 > X, V2 > X.

The SR module evaluates the isOutlier predicate
with the parameter of the bidder’s ID B. A Prolog
engine then analyzes if there is a solution to
standardDeviationThresholdExceeded for the
bidder. To determine this, the Prolog engine needs to access
an external Java class called DatasetManager by invoking
two methods, namely getSDAwayFromNormalMean and
getSDAwayFromSuspiciousMean, to calculate the number of
standard deviations that the bidder is away from the mean of the
groups of normal bidders and suspicious bidders, respectively.
Once the methods return the results V1 and V2, the engine
compares them with a predefined threshold, i.e. 5.0. If a bidder
has an attribute value that is more than 5 standard deviations
away from the means of that attribute for both the groups of
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normal and suspicious bidders, the predicate isOutlier
evaluates to true, signaling the SR module that the bidder is an
outlier.

4.4. SR of data points

The SR module makes decisions on replacement of data points
in the data pool, and creates training, validation and test sets.
Since the size of the data pool may become oppressively large
over time, it is necessary to continuously remove old data
points from the data pool. In Fig. 4, we demonstrated our basic
strategy for replacing data points. However, since the majority
of bidders in online auctions are normal, if we simply replace
the oldest data points with the newest ones, the data pool may
eventually contain too few suspicious bidders. In this case, when
we generate a test set from the data pool to evaluate the network
performance, it will likely retrieve a test set comprised solely of
normal bidders, so it would not have an accurate representation
of how well the network classifies suspicious bidders. Thus, it is
necessary that our replacement policy ensures that the data pool
contains enough normal and suspicious bidders no matter the
distribution of arriving data. The current replacement policy
considers the oldest bidders with matching classifications for
replacement when adding new bidders into the data pool. For
example, if six normal bidders and one suspicious bidder are
added into the data pool, the oldest six normal bidders and the
oldest suspicious bidder will be removed from the data pool.The
following rules show an example of the replacement policies.

replaceBidder(B,C,R):-

replaceOldDataWithMatchingClassification(C,R).

replaceOldDataWithMatching

Classification(C,R):-

class(’io.DatasetManager’) <-

retrieveOldestBidder(C)

returns R.

In the above example, the SR module evaluates the predicate
replaceBidder with the parameters of the bidder’s ID B
and the bidder’s classification C. The variable R is a return
variable that is used by the SR module to receive a bidder ID
for replacement if the Prolog engine finds the oldest bidder with
the matching classification C in the data pool.

To create training and validation sets is not a trivial process,
and it greatly affects the training performance of a neural
network. Based on the window concept, we further define that
the training set and the validation set contain 75 and 25% of
eligible bidders, respectively. For example, if the window size
is defined as 9, the training set and the validation set contain
seven and two data points, respectively. Note that there is no
overlapping between the two datasets. Thus, a validation set
can be evaluated as an unbiased indicator of the network’s
true performance. The corresponding policies can be defined
as Prolog facts as follows:

trainingProportion(T):- T is 75.

validationProportion(V):- V is 25.

windowSize(W):- W is 9. windowSpeed(S)

:- S is 3.

Ideally, the SR module should be able to automatically
determine the optimal size of the created sets, and maintain
proper percentages of old and new, as well as normal and
suspicious bidders, within the sets. A more sophisticated SR
module with the above advanced features is envisioned as a
future, and more ambitious research direction.

4.5. Real-time incremental training

The RTT module trains the classifier incrementally and ensures
that each phase of the network training and validation does
not degrade the classifier’s performance. Since the sizes of
the training set and validation set are quite small due to the
small window size, the incremental training process typically
takes very little time. Furthermore, by utilizing proper stopping
conditions to determine whether the current training phase is
complete, the module ensures that each training cycle leads
to the network’s gradual, yet timely, adaptation to new data.
Note that if the stopping conditions are improperly defined, the
training cycle may finish very quickly or never finish at all.There
are many common stopping rules in use by other researchers
for neural networks. For example, Zhou and Si defined a
wide variety of stopping conditions, including a minimum and
maximum number of training iterations (epochs), an acceptable
training error threshold, and an acceptable validation error
threshold [41]. Examples of the stopping conditions adopted
in our approach are defined as Prolog rules as follows:

// 1st stopping condition

isFinishedTraining(E,V,I):-

maxEpochExceeded(E).

// 2nd stopping condition

isFinishedTraining(E,V,I):-

minEpochExceeded(E),

validationPerformanceAcceptable(V).

// 3rd stopping condition

isFinishedTraining(E,V,I):-

validationImprovementLimitReached(I).

maxEpochExceeded(E):- E >= 5000.

minEpochExceeded(E):- E >= 100.

validationPerformanceAcceptable(V):-

V >= 90.

validationImprovementLimitReached(I):-

I >= 100.

Because network training may potentially never end, it is
required to define a maximum number of epochs that are
allowed to take place. As shown in the above Prolog rules,
for the first stopping condition, we define the maximum
number of epochs as 5000 since they can complete in a
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reasonable amount of time without significantly sacrificing
performance. In reality, due to other stopping conditions,
this number is rarely reached. Note that too many epochs
may lead to overfitting because the training process will
continually present the same examples to the network. On
the other hand, too few epochs can lead to underfitting
since the network does not have sufficient time to learn the
training data. Thus, we define the second stopping condition
as a minimum number of epochs along with a satisfactory
classification for the validation set. As shown in the Prolog
rules, we impose a minimum of 100 training epochs, which
is typically sufficient to change a network’s weights and biases
reasonably, and we also require 90% of the data points from
the validation set be classified correctly before the training
process can stop. Note that when the window size is small
(e.g. a window size of 9), the second stopping condition
essentially requires all data points in the validation set be
correctly classified.

Since the validation set is not overlapped with the training set,
it is possible that the validation performance stops improving
too early, so the requirement of correctly classifying 90% of
the data points from the validation set cannot be satisfied with
continued iterations on the training set. In this case, it is likely
that the network has been overfitted to the training data, and
the performance on the validation data will become worse
if the training process continues. Thus, as a third stopping
condition, if the network’s performance on the validation set
does not improve after 100 consecutive iterations, the RTT
module discontinues training before the network become too
heavily overfitted on the training data. Note that 100 consecutive
iterations are sufficient for determining whether the network’s
performance on the validation set is improving; meanwhile, 100
consecutive iterations would not result in dramatic performance
downgrading due to overfitting.

5. CASE STUDY

In the following case study, we present a series of
experiments designed to demonstrate the feasibility and real-
time performance of our RT-SAC approach. We first discuss
the datasets used in the experiments and summarize the results
of using hierarchical clustering for creation of the training
and simulation datasets. Then, we demonstrate how certain
parameters can be tuned for optimal operations in RT-SAC
based on experimental results. Finally, we present two real-time
simulations to show how RT-SAC can effectively classify new
data points and how it can adapt itself when there is a market
change for the auctioned item.

5.1. Data collection and preprocessing

In order to demonstrate the classifier’s ability to adapt to new
auction data, we collected two separate datasets from eBay.

Both datasets consist of completed 1-day eBay auctions for
‘Used Playstation 3’ auctioned items. Dataset 1 contains 153
auctions with a total of 1845 bidders, which was collected in
October and November 2009 for over 30 days. Dataset 2 was
collected after 6 months for 2 days and contains 23 auctions with
a total of 180 bidders. Although the two datasets are auction
data for the same auction type, during the 6 month period,
the number of 1-day auction listings for ‘Used Playstation 3’
dropped drastically, as most of the auctions available at that
time were for 3- or 5-day auctions. In addition, there is a
slight difference concerning the NB placed by the bidders in
the datasets. For example, 57% of bidders in dataset 1 placed
only one bid in an auction, while in dataset 2, the percentage
of bidders who placed only one bid in an auction dropped
to 48%.

Before applying the cluster generation algorithm to the
collected auction data to generate training datasets, we first
assign weights to the various attributes. We deem the attributes
NB (early, middle), ETFB and ATUB (early, middle) to be the
most important evidence for suspicious bidding behavior, so we
assign these attributes a weight of 3. The attribute ABI (early,
middle) is useful in describing how aggressive a bidder is, but it
is not as strong as the above ones. Thus, we assign this attribute
a weight of 2. Other attributes are assigned the default weight of
1.After running the cluster generation algorithm and examining
the clustering results, we found that a minimum similarity cutoff
point of 89.6% led to a reasonable number of clusters. Note
that a more restrictive cutoff value results in more clusters
with similar behavior and a less restrictive cutoff value leads
to fewer clusters with combinations of normal and suspicious
behaviors.

After the clusters are generated, we label them with either
normal or suspicious based on the common bidder behaviors
in each cluster. Table 1 lists the manual labeling results for
dataset 1. As an example for manual labeling, cluster 1 is the
largest cluster of bidders, in which most bidders placed their
bids very late in their auctions. Since shill bidders will not
risk placing bids late in an auction for fear of winning, cluster
1 is considered to contain bidders with normal behavior. On
the other hand, cluster 17 contains bidders that start bidding
very early (during the first 45 min of the auction). Since such
behavior denotes possible prior knowledge of the auction, we
consider the bidders in this cluster to be suspicious. Note
that most of the suspicious activity listed in the table can be
directly linked to a certain type of shilling behavior described
in [21, 42]. To ensure correct labeling, we further utilize the
D–S-based shill verifier described in [8] to verify the results
of the labeling process. This verification process is necessary
especially for bidders that are difficult to classify when they are
near the boundaries of two or more differently labeled clusters.
By verifying the clustering results using the shill verifier, we
ensure that the boundary bidders can be correctly classified as
suspicious ones if additional evidence supports their shilling
behaviors.

The Computer Journal, Vol. 56 No. 5, 2013

http://comjnl.oxfordjournals.org/


658 B.J. Ford et al.

TABLE 1. Cluster labeling for dataset 1.

Cluster Size (%) Class Description of major bidding behaviors

1 62 Normal Bids placed very late in auction (later middle or final stage)
2 <1 Suspicious Very high bidding amounts in middle stage
3 3 Suspicious Bids placed close together in middle stage. Possible bid unmasking
4 <1 Suspicious Large NB placed only in middle stage
5 <1 Suspicious Bids placed in quick succession in middle stage. Possible bid unmasking
6 8 Normal Few bids placed only in middle stage
7 1 Normal Only one bid placed in middle stage
8 <1 Suspicious Bids with moderate bidding amounts placed only in middle stage
9 <1 Suspicious Moderate NB placed only in middle stage

10 <1 Suspicious Moderate NB placed only at the end of middle stage
11 8 Normal Few bids placed only in middle of auction
12 1 Normal Very few bids placed moderately early (within 3 h) in auction
13 <1 Suspicious Bids placed moderately early (within 3 h) with moderate amounts
14 <1 Suspicious Bids placed early and in quick succession in early stage
15 2 Suspicious Bids placed in quick succession in middle stage. Possible bid unmasking
16 <1 Suspicious Very large bidding amount in middle stage
17 9 Suspicious Bids placed very early (within 45 min) in auction
18 1 Suspicious Bids placed early with moderate amounts in early stage
19 <1 Normal Very few bids placed in early stage
20 1 Suspicious Moderate NB placed only in early stage
21 <1 Suspicious Bids placed in quick succession in early stage
22 <1 Suspicious Large NB placed in early stage

5.2. Experimental results and analysis

We developed a prototype RT-SAC based on the Encog neural
network and machine learning framework [43], which provides
efficient multi-threaded implementations of various neural
network learning algorithms including Rprop. By utilizing
the Encog implementation of the neural networks, RT-SAC
can complete a whole phase of classification and incremental
training typically in <1 s on a machine with a 2.1 GHz dual-
core processor and 3.0 GB of RAM. Before we perform
the experiments and simulations, we first sort dataset 1 by
auction end time and divide it into two subsets: an initialization
set that contains the first 135 auctions with a total of 1656
bidders and a simulation set that contains the last 18 auctions
with a total of 189 bidders. Since the initialization set is
used to initialize the neural network, it should be large and
representative enough so that the network has a sufficient
baseline to correctly classify future data points. After the
network has been initialized, the simulation set can be used by
the classifier to simulate classification and incremental training
in real time. The classifier utilizes the workflow described in
Section 4.1 and processes each auction in the sorted simulation
set in sequential order.

In order to evaluate the real-time performance of the classifier
for both recent and old data, we create two dynamic test sets
with a combined size of 500. The first set is created from all

previously processed data points from the simulation set except
those belong to the current window. For example, if the window
size is 9 and 50 bidders from the simulation dataset have been
processed; the 41 data points outside of the window are used to
create a test set for recent data. Note that the test set for recent
data grows as the simulation goes on, which should lead to more
accurate evaluation results for the performance of the classifier
when the test set for recent data are getting sufficiently large. On
the other hand, the test set for old data are created by randomly
selecting data points from the initialization set. Since we define
a fixed total size of 500 for the test sets of recent and old data,
the test set for old data initially equals 500, and then shrinks as
the simulation goes on. However, this does not matter because
there are only 189 data points in the simulation set, the test set
for old data will still be large enough towards the end of the
simulation. Thus, the test set for old data can always be used to
perform accurate evaluations for the old data. In addition to the
error rates for recent and old data, we further define a combined
error rate for both recent and old data as follows:

CombinedErrorRate = (so∗eo) + (sr∗er)

so + sr
, (7)

where ‘so’ is the size of the test set for old data, eo is the error
rate for old data points, sr is the size of the test set for recent
data and er is the error rate for recent data points. Note that in
our case study so + sr equals 500.
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Since we introduced a number of parameters in RT-SAC,
such as the window size, the outlier threshold and the number
of hidden neurons, which may affect the performance of the
classifier, we are interested to know whether these parameters
can be tuned for better performance of the classifier. Based on
our experiments and observation, the parameters in question
are relatively independent of each other. While tuning the
parameters, we noticed that by optimizing one parameter,
the previous optimal values for the other parameters are not
necessary to change. For example, based on our experiments,
an outlier threshold of 5.0 is an optimal threshold for RT-
SAC regarding outlier removal. Similarly, a reasonable change
from the optimal number of hidden neurons (based on our
experimental results, the optimal number of hidden neurons is
5 for RT-SAC) also does not affect the optimal values of the
window size and the outlier threshold. On the other hand, the
window size turns out to be a critical parameter to be adjusted.A
window size that is too small may cause significant fluctuations
in the error rate because the network adjusts its weights and
biases too fast due to the small size of the training and validation
set. However, a window size that is too large may slow down the
process that the network adapts to new data points and increase
the time required to complete the training and validation phase.
We now use the window size as an example to demonstrate
how to tune parameters for optimal operations in RT-SAC. For
the experiments of tuning window size, we ran the prototype
RT-SAC for window sizes of 3, 6, 9 and 12 with a constant
window speed of 3. Figure 5 shows the combined error rates
with different window sizes.

From the figure, we can see that when the window size is 3,
the experimental result indicates that the system performance
in terms of error rate is very poor. This is because when the
window size is 3, the training and validation set only consist of
two and one data points, respectively. This leads to significant
fluctuations in error due to insufficient number of elements in
the training and validation datasets. The window size of 9 turns
out to be the best case, where the training and validation sets are
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FIGURE 5. Experimental results for tuning of window size.

balanced out nicely by previously processed simulation data and
newly processed auction data, causing the network to smoothly
adapt to the new data. Note that a window size of 9 with a
window speed of 3 allows each bidder to be used three times
for incremental training, so the network has sufficient time to
learn the new data effectively. The error rates for a window
size of 6 and 12 are a little bit higher but do not appear to
differ significantly from the error rates for a window size of 9.
Bidders in the smaller window size of 6 with a window speed
of 3 are used twice for incremental training, leading to slight
underfitting since the network does not have sufficient time to
learn the new data. On the other hand, bidders in the larger
window size of 12 with a window speed of 3 are used four
times for incremental training, potentially leading to overfitting
since bidders are reused too often. As a result, we choose a
window size of 9 as the optimal window size for the classifier.

Note that in the experiments, the outlier threshold and the
number of hidden neurons are set to the optimal values of
5.0 and 5, respectively. Based on our further experiments,
when we used reasonable values for the above two parameters,
the experimental results lead to the same conclusion that the
window size of 9 is the optimal one. However, it is worth
noting that if we increase the window speed, the optimal window
size increases accordingly due to the issues of underfitting and
overfitting, which also results in more computation time for each
training and validation phase. Due to the real-time requirement
for RT-SAT, we choose a window speed of 3 as the optimal value.

In order to evaluate the performance of RT-SAC, we designed
two simulations. We are primarily concerned with whether or
not the classifier can maintain a relatively low error rate and
perform its classification and incremental training procedures
quickly enough for use in a real-time environment. The goal of
the first simulation is to demonstrate how the classifier performs
when there is no time gap between the historical dataset and the
simulation dataset. Figure 6 shows the simulation results for the
combined error rate as well as error rate for old and recent data
points during the simulation period.

Simulation Results - 1
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FIGURE 6. Simulation results for recent data collected without a time
gap.
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FIGURE 7. Time performance for recent data collected without a
time gap.

From the figure, we can see that at the beginning of the
simulation, there is a very high error rate for recent data. This
is because the test set for recent data starts very small due to
insufficient data points, although it gradually increases in size
as more simulation data are processed. Once there are enough
new data points (around 40) included in the test set, the error
rate for recent data drops significantly. On the other hand, the
error rate for old data remains stable when the classifier adapts
to the new data points. The results are as expected because the
simulation dataset contains auction data collected in the same
month as when the initialization dataset was collected, so the
bidders contained in these two datasets should exhibit similar,
if not nearly identical, bidding behaviors. Note that during the
simulation, the combined error rate, as defined in (7), does
not fluctuate significantly and remains stable. Thus, the results
demonstrate that the network can successfully learn new data in
a stable and controlled manner when there is no major market
change.

Figure 7 shows the time performance of the entire simulation
process, including all phases of classification and incremental
training on new data points from the simulation dataset. The
relatively stable time performance demonstrates that the neural
network can quickly classify and adapt to new data points. The
few spikes in time performance could be due to validation sets
that are difficult to classify, resulting in more iterations being
performed in the incremental training processes.Although some
validation sets might be difficult to classify, the accuracy results
indicate that the network’s performance was not significantly
impacted.

In the second simulation, we demonstrate how the classifier
performs when adapting to new data points that might involve
a market change. In this experiment, we initialize the neural
network with data points from dataset 1. Then, we use the
entire dataset 2 as the simulation dataset to perform the
experiment. Note that there is a time gap of ∼6 months
between the collection times of the two datasets. Similar to
the first simulation, the new simulation set, namely dataset 2,
is also sorted by auction end time, and during the period of
simulation, the classifier processes each auction in the sorted
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FIGURE 8. Simulation results for recent data collected with a time
gap.

simulation set in sequential order. In order to evaluate the
real-time performance of the classifier for both recent and old
data, we create two dynamic test sets with a combined size of
500, where the test set for new data are created from previously
processed data points from the simulation set (i.e. dataset 2)
and the test set for old data are created from the initialization
set (i.e. dataset 1). Figure 8 shows the simulation results for
the combined error rate as well as error rates for old and recent
data during the simulation period. As shown in the figure, there
is a slight increase in the error rate for old data when around
110 bidders have been processed. The increase in error rates for
old date indicates that the classifier has been changed during
the simulation period due to a possible market change. On
the other hand, the increase in the error rate for recent data
turns out to be more significant. Although the error rate for
recent data appears low in the beginning, the initial limited
size of the test set for recent data prevents us from making
any meaningful conclusions about the network’s performance
on new data. When ∼90 bidders are processed, the classifier
experiences an apparent increase in error for recent data, which
represents the actual performance of the network on recent data.
As the simulation continues, the network adapts smoothly to
the recent data, without increases further in error rate for the
old data points. During the simulation, the combined error rate
also starts to reflect the actual performance of the network on
both old and recent data when there are ∼90 bidders processed.
After that, the combined error rate becomes stable (below 4%),
which indicates the classifier’s satisfactory performance.

Figure 9 shows that the time performance of the second
simulation is stable throughout the simulation process. The
predictable efficiency of the classification and incremental
training phases indicate that our process can be effectively
applied in a real-time environment.

It is worth noting that we chose the auction type of ‘Used
Playstation 3’for our case study because its popularity and price
range make it a good target for shilling. When a different type of
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FIGURE 9. Time performance results for recent data collected with
a time gap.

auctioned item is selected, users’bidding behaviors may change
accordingly. In this case, the values of the system parameters
will certainly be affected. To ensure good performance of RT-
SAC, each classifier should undergo a tuning phase based on
the selected type of auctions, in which the participating bidders
are to be classified.

6. CONCLUSIONS AND FUTURE WORK

The increasing popularity of online auctions is almost sure to
lead to an increase in auction fraud activities, either obvious or
covert. Detecting covert shill bidding in this rapidly growing
space requires the use of advanced automated techniques
that can adapt to changes in bidding trends. In this paper,
we introduced a series of attributes that effectively describe
important aspects of bidders’bidding behavior as well as useful
information about auctions in which the bidders participate.
These attributes allow us to take advantage of automated
data mining techniques to cluster and classify auction data.
We presented a RT-SAC, called RT-SAC, which is capable
of accurately classifying and smoothly adapting to new data.
In addition, it performs fast enough to be utilized in a real-
time environment. By utilizing a Prolog engine and a separate
classification module, the classifier can be easily configured
at runtime. When used in conjunction with existing shill
verification techniques [8, 22], our RT-SAC approach can
greatly increase the efficiency and effectiveness for real-time
shill detection in online auctions.

For future work, we will apply our RT-SAC approach to
more data sets from online auctions, especially for different
types of auctioned items to further verify the effectiveness
of our approach. We will consider introducing more input
attributes such as the average final price of an auction, and using
feature selection techniques to select the most significant input
attributes for classification, thereby reducing the complexity
of the neural network and improving the time performance of
the classifier. We notice that it is important to study different
ways of clustering such as the one proposed in Li et al.’s [44]

work to improve our clustering results. Furthermore, we plan
to utilize machine learning techniques to improve RT-SAC,
so it could automatically determine the optimal values of
various parameters such as the sizes of the training set and
validation set, as well as the proper percentages of normal
and suspicious bidders within these datasets. As an alternative
to neural networks, we will also investigate the usage of
SVM [45] in our RT-SAC approach. Due to the more accurate
and faster performance of SVM comparing to traditional neural
networks, an SVM-based RT-SAC could potentially outperform
our current neural network-based classification and incremental
training method.
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