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Medical coding involves the assignment of standardized codes like those of the International 

Classification of Diseases (ICD) to patient records such as doctor’s notes. Traditionally, medical 

coding has been performed by trained professionals and has incurred significant costs. Recent research 

efforts have produced good classification results, but often lack in explainability and trustability of the 

coding results. This paper introduces a novel fine-grained evidence-based approach for medical 

coding, which improves explainability and trustability by extracting text related to a given diagnosis 

based on existing ontologies. Then the given diagnosis along with the extracted sentences are treated 

as a fine-grained data point for deep training and prediction. Since the approach tracks verifiable 

human knowledge, the extracted sentences based on the knowledge can be used as evidence for ICD 

code classification. To demonstrate the effectiveness and efficiency of the approach, we used two 

subsets of the Medical Information Mart for Intensive Care III (MIMIC-III) dataset for case studies. 

The experimental results show that the classifier outperforms existing approaches and has a strong 

ability to distinguish between the different uses of similar terminologies. 
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1. Introduction 

Healthcare is an essential and constantly growing field that has a significant and direct 

impact on each of our lives. According to the Centers for Medicare & Medicaid Services 

(CMS), U.S. healthcare spending is projected to grow faster than average GDP growth 
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during the 2022-2031 period, resulting in an increase in healthcare spending as a 

percentage of GDP from 18.3% in 2021 to 19.6% in 2031 [1]. One important aspect of 

healthcare is medical coding, which involves the assignment of well-defined codes for 

healthcare diagnoses, procedures, and medical services. These well-defined codes 

eliminate ambiguity and help standardize communication between healthcare 

organizations and external billing agencies such as insurance companies. The most widely 

used standards for medical codes, and the standards we will use in this paper, come from 

the International Classification of Diseases (ICD) [2]. These codes are critical in the 

healthcare process as they ensure invoices are paid properly and may serve as a reference 

for patients’ future treatments. The assignment of these codes, however, can be a time-

consuming and resource-intensive process. Due to the free-form nature of patient records, 

direct methods like keyword matching are rarely sufficient for medical coding. Often, a 

deeper understanding of healthcare and the code sets themselves is required to accurately 

code patient records. This means that anyone involved in medical coding must be well-

educated and trained. Additionally, as the healthcare industry continues to grow, especially 

in the wake of global health crises such as the COVID-19 pandemic, the volume of patient 

records is staggering. For many hospitals, automating parts of the medical coding process 

could be an important step forward. 

In recent years, the healthcare industry has continued to shift to the use of electronic 

healthcare records (EHRs), supported by government-funded incentives such as the 

HITECH Act, which rewards hospitals for moving to electronic records [3]. As more and 

more records are in digital formats, automation of healthcare processes, including medical 

coding, has become more tractable. This is due in part to the fact that text-based patient 

records can now be used directly in digital format for natural language processing. The 

main advantage of digital records, however, is that they can be more easily de-identified 

and shared amongst communities of researchers and professionals. The volume and 

shareability of EHRs has led to the release of large-scale de-identified datasets such as the 

Medical Information Mart for Intensive Care III (MIMIC-III), which includes over 40,000 

patient records [4]. These datasets have enabled researchers to apply data-driven methods 

to dozens of healthcare-related tasks, including medical coding. Recently, deep-learning 

classifiers for medical coding have been successful and have produced state-of-the-art 

results in medical coding tasks [5, 6, 7]. However, these models, despite their high 

performance, tend to suffer in terms of explainability and trustability, because they often 

accept the entire text document of a given patient record and output one or more medical 

codes without further explanation. Clearly, this limited output is not conducive to trust 

between patients and healthcare providers using automated coding tools. In this paper, we 

propose a fine-grained, evidence-based approach that utilizes the loose structure of patient 

records to perform an intermediate evidence-gathering sentence extraction step prior to 

classification. Doctor’s notes typically contain two important sections: a main section 
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containing completely free and natural text, where the doctor describes the patient’s 

condition in plain language; and a discharge diagnosis section, where the doctor more 

systematically lists the diagnoses associated with the patient visit. Often, these 

systematically listed diagnoses contain valuable information but are not sufficient for 

medical coding. As a result, many approaches treat the diagnosis text as part of the 

document without giving special consideration [5, 6]. In our approach, we start with the 

listed diagnoses and the text semantically related to each diagnosis to form independent 

data points and classification tasks. For each diagnosis in a given patient record, we 

perform human knowledge-based sentence extraction to generate a unique view of the 

document that includes only the sentences discussing concepts related to the diagnosis. The 

extracted sentences are then passed to an attention-based deep learning classifier, which 

predicts the medical code for the diagnosis. This fine-grained evidence-based approach not 

only makes the classification task easier, but also allows us to trace the evidence used by 

the classifier through the extracted sentences, even further back to the original human 

knowledge used in extracting the sentences. 

This work significantly extends our previously proposed automated medical coding 

approach for fine-grained ICD code assignment. In our prior research, we conducted initial 

investigations leveraging domain expertise to extract semantically related sentences from 

doctor’s notes [8]. We utilized a Long Short-Term Memory (LSTM) artificial neural 

network to identify medical codes for diagnoses. In this paper, we present a formal 

framework for automated ICD code assignment using knowledge-based sentence 

extraction. Instead of using LSTM for classification, we adopted Bidirectional Encoder 

Representations from Transformers (BERT) to predict medical codes. We elucidate the 

process of fine-tuning a pretrained BERT model and thoroughly evaluate the classifier to 

demonstrate the effectiveness of our proposed approach. 

The rest of the paper is organized as follows. Section 2 discusses related work. Section 

3 presents a formal framework for explainable ICD code assignment and provides the 

procedures for extracting sentences from doctor’s notes that are semantically related to a 

diagnosis. Section 4 discusses the procedure of fine-tuning Med-BERT for automated 

medical coding. Section 5 presents the case studies and their analysis results. Section 6 

concludes the paper and mentions future work. 

2. Related Work 

Research on automated medical code assignment to doctor’s notes began with simple 

rule-based approaches. These systems make coding decisions based on rules specified by 

experts for ICD coding. For example, if a document contains a keyword, it is assigned the 

appropriate code, provided that some closely related keywords exist in its context. 

Goldstein et al. proposed a rule-based approach to automated medical coding that extracts 

lexical elements for further analysis in addition to searching for keywords [9]. In their 
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approach, lexical elements are used in rule-based systems to detect and represent negation, 

synonyms, and other linguistic features that help in decision making. Particularly in the 

early days of automatic coding research, rule-based systems allowed researchers to begin 

to address the problem without collecting large amounts of data. However, rule-based 

systems produce unsatisfactory results due to the rigidity of rules, which are insufficient to 

express complex natural language. With the addition and de-identification of electronic 

health records (EHRs), medical data becomes more widely available and the need to 

optimize and learn from training data becomes more feasible and popular. Researchers 

started to move from handmade rules to statistical methods. Farkas and Szarvas used 

decision tree models to supplement the expert-designed rules, thereby increasing the 

flexibility of the approach [10]. Medori and Fairon introduced a semi-automatic method 

for ICD coding using a Naïve Bayes classifier [11]. Later, in an influential paper, Perotte 

et al. demonstrated the potential of machine learning methods for this problem by applying 

SVM-based models to the problem of automatic coding [12]. While these methods 

provided the basis and rational for automatic ICD coding research, they have since been 

superseded by more sophisticated machine learning methods to provide higher 

performance. The approach presented in this paper incorporates some of the ideas from the 

original rule-based approach to improve comprehensibility while using deep learning 

models to improve performance. Fundamentally, a method based entirely on rules designed 

by experts and their results can be understood by humans, which is an advantage it has over 

deep learning methods. The proposed method adds human-understandable steps to deep 

learning classifiers, thereby refocusing on the explainability of the method results while 

gaining performance advantages of using more sophisticated classifiers. 

Machine learning methods are receiving increasing attention as large EHR datasets 

have become publicly available. MIMIC-III, a public dataset containing the records of 

more than 40,000 inpatients at Beth Israel Deaconess Medical Center, provides a valuable 

source of labeled data for the research community to address the problem of automated 

ICD coding [4]. Utilizing this dataset and others that provide large amounts of training 

data, researchers have begun to explore deep learning methods to drive automatic coding 

performance to current levels. There has been a strong interest in designing a deep learning 

model with optimal performance on coding problems. Li et al. extended a straightforward 

convolutional neural network (CNN) for processing the doctor’s notes text using a 

document-to-vector technique [5]. This technique allowed their approach to supplement 

the local features (words, phrases) of given doctor’s notes with vectors representing global 

features (topics, main ideas). Other researchers have extensively explored the benefits of 

incorporating attention into coding performance. One popular form of attention is labeled 

attention, which allows a model to pay attention to differently labeled text. Shi et al. devised 

a model to achieve high performance using this kind of attention [6]. In addition, their 

model builds a representation from characters to words and word sequences, which makes 
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the method more robust to spelling errors and abbreviations in real doctor’s notes. Baumel 

et al. first encoded sentences using a model based on gated recurrent units; they then use 

the sentence encodings as inputs to a deep learning classifier that utilizes attention to 

improve performance [13]. Wu et al. incorporated joint attention in their approach to 

provide attention at the word level and label level [7]. Following the original attention-

based designs, large-scale language models have also been used and succeeded in ICD 

auto-coding problem. For example, many successful approaches have used Google’s 

attention-based transformer model BERT, sometimes supplemented with labeled attention 

[14]. The strength of BERT lies not only in its self-attention-based architecture, but also in 

its pre-trained knowledge-based model. Biseda et al. used a version of BERT, called 

Clinical BERT, which was pre-trained on EHR data to perform ICD auto-coding [15]. To 

circumvent the issue of small input size in Clinical BERT, their approach produces 

encodings for one sentence at a time, and then use these sentence encodings as input to a 

CNN that generates code assignments. Heo et al. used a similar method, first generating 

encodings for sentences and then using them as elements in an input sequence for a 

sequential attention-based classifier [16]. Mayya et al. introduced labeled attention in a 

BERT-based model, demonstrating the potential of combining a large-scale language 

model, such as BERT, with new components or procedures [17]. While these approaches 

are key to improving performance in ICD automated coding tasks, they lack an appropriate 

emphasis on the understandability and interpretability of the classification results. In 

contrast, our fine-grained, evidence-based approach supports the ability to interpret the 

classification results, bridging the gap in human comprehensibility in healthcare settings. 

Most existing approaches treat the task of automatic ICD code assignment as a multi-

label classification problem. That is, given an instance of doctor’s notes, these approaches 

view the doctor’s notes as a single text input and output the ICD code assignments for the 

entire text. We refer to these approaches as “coarse-grained” because they deal with the 

classification problem at a higher level. Multi-label classification is generally more 

difficult than single-label classification. This is especially true as far as the ICD coding 

problem is concerned. That is, due to the extremely large number of labels (more than 1000 

unique codes), the label space (2n, where n is the number of labels) for multi-label 

classification quickly grows to be intractable when using larger code sets. The large 

imbalances found in medical diagnoses also make some codes grossly underrepresented. 

To make matters worse, many ICD codes are extremely similar, which further complicates 

the classification process. To address these difficulties, coarse-grained approaches often 

constitute highly complex deep learning models, whose main purpose is to improve 

classification performance. These are known as black-box methods that abstract important 

details of the coding process from users. Many of these approaches output only their 

coarse-grained ICD code predictions with no further explanations [5, 6, 15, 16]. Along with 

model complexity, this lack of explanations can hinder users’ ability to contextualize and 
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understand the model’s prediction behavior and the resulting codes. Ultimately, this can 

compromise the user’s interpretation and usage of the results, potentially leading to 

incorrect coding. In addition to incorrect coding, this lack of explainability may also raise 

general concerns about the trustworthiness of the coding process. This is particularly 

important in the healthcare industry, where the use of any tool can have a significant impact 

on patient health and safety of patients, and must therefore be based on trust. In this paper, 

we outline a fine-grained approach that assigns ICD codes at the level of diagnoses, rather 

than at the level of the entire doctor’s notes. This allows code prediction to be performed 

as a series of single-label classifications rather than a single multi-label classification, thus 

reducing the difficulty of classification and providing an opportunity to improve 

performance. Furthermore, our fine-grained evidence-based approach establishes a direct 

link between each automated ICD code assignment and the original diagnosis text, and 

gathers additional evidence from the free text of doctor’s notes to support predictions. The 

collected evidence can also be returned to the user to provide context for automated code 

assignments and to clarify doubts or correct errors. 

In addition to efforts to improve the classification performance of automated ICD 

coding tasks, much attention has been directed toward the usability and explainability of 

real-world coding applications. Montalvo et al. designed a user interface that provides a 

convenient way to interact with the underlying classification methods [18]. Some of the 

features implemented in this interface include selecting or modifying code assignments and 

allowing the user to highlight text to show its correspondence to the code. Siangchin and 

Samanchuen proposed to improve querying or browsing ICD database through the use of 

an interactive Chatbot [19]. The proposed system allows users to request code descriptions 

and explanations in plain language, which would greatly facilitate the work of medical 

coders. Besides ease of use, the incorporation of human knowledge can provide a human-

understandable basis for the approach, thereby increasing its comprehensibility and 

credibility. Not only that, but the use of knowledge is often helpful for labels with low 

training data frequency (which is often the case with medical coding), as it can supplement 

the limited learning during training with some external knowledge. Lui et al. generated 

vector representations of ICD codes using the official ICD ontology [20]. These vector 

representations account for the groupings and relationships of ICD codes and represent 

their meaning in a vector space. Such work can complement our approach, especially in 

terms of matching text to ontology concepts. Teng et al. used the written English 

descriptions accompanying each ICD code to attend differently to doctor’s notes as they 

passed through a deep learning classifier [21]. Almagro et al. used the SNOMED-CT 

clinical terminology as the knowledge base for their approach, which encodes doctor’s 

notes and then matches them within SNOMED-CT using similarity in vector representation 

[22, 23]. Bai et al. utilized additional knowledge mined from Wikipedia to support model 

performance [24]. After conventional classification, their approach scores the similarity of 
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doctor’s notes to various diagnostic descriptions on Wikipedia. Sonabend et al. mined text 

from five web sources to identify “concept-unique identifiers” that strongly indicates the 

presence of a specific ICD code [25]. Vector representations of these identifiers are 

compared to vector representations of doctor’s notes and matched on the basis of similarity. 

Teng et al. extracted relevant concepts from the general knowledge graph Freebase, which 

were then used to apply attention to the output of a CNN [26]. Zeng et al. supplemented 

the code assignment task by learning on the relevant Medical Subject Heading (MeSH) 

task [27]. As with assigning ICD codes to doctor’s notes, the MeSH task involves tagging 

documents with appropriate labels. That is, scientific articles must be labeled with medical 

topics and keywords to make them easier to organize and navigate. There is an overlap 

between the MeSH and ICD autocoding domains, so learning one task can help to improve 

the performance of the other. While more and more ICD coding datasets are being released 

as research progresses, there are still not enough training examples to learn thousands of 

codes. Techniques that incorporate external knowledge could be an important step in 

supplementing limited training data as we test our approach with more realistic and larger 

sets of codes. Our approach uses external knowledge in the form of ontologies; however, 

transfer learning techniques or other knowledge sources, such as some of the methods 

described above, can complement our approach and increase the efficiency of future work. 

3. Fine-Grained Explainable ICD Code Assignment 

3.1. A Framework for Explainable ICD Code Assignment 

In this paper, we present a fine-grained evidence-based approach for assigning ICD codes 

to diagnoses in doctors’ notes. In addition to the subject and admission identifier, doctors’ 

notes contain two key elements for ICD code assignment. Namely, they include a list of 

diagnoses showing the main visit findings and a free text section that describes in more 

detail the doctor’s impressions of the patient’s condition. Several key definitions of ICD 

code assignment are now given as follows. 

 

Definition 3.1 Doctor’s Notes. Doctor’s notes Θ is a 4-tuple (SID, AID, SS, SD), where 

SID is the subject identifier of the given patient; AID is the hospital admissions identifier 

of the hospital visit associated with the patient; SS is the list of sentences contained in the 

free text of the doctor’s notes Θ; and SD is the set of diagnoses provided with the notes.  

 

Definition 3.2 Coarse-Grained Data Point. A coarse-grained data point Dcoarse associated 

with doctor’s notes Θ is a 2-tuple (SD, SS), where SD and SS are Θ.SD and Θ.SS, 

respectively. The coarse-grained data point treats the diagnosis and free text in the doctor’s 

notes as a complete string required for machine learning. 
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Definition 3.3 ICD Code Set. An ICD code set Ω is a set of standardized medical codes 

that represent diseases or procedures along with their descriptions. A subset of Ω can be 

assigned to doctor’s notes for medical coders and billers to report healthcare diagnoses and 

procedures.  

 

Definition 3.4 Coarse-Grained Classification Model. A coarse-grained classification 

model 𝑀𝑐𝑜𝑎𝑟𝑠𝑒 is defined as the following mapping function, where 2Ω is the power set of 

the ICD code set Ω. 

𝑀coarse: 𝐷coarse → 2Ω. 

 

The objective of assigning ICD codes is to generate a list of medical codes that 

accurately reflect the doctor’s findings following a patient visit. In our context, these ICD 

codes serve as precise identifiers for specific illnesses. They are organized according to 

standards and have a higher degree of specificity than typical natural language. These codes 

are organized hierarchically by category, and to find a specific code, one needs to traverse 

from one category to another, progressively narrowing down the classification. For 

instance, to obtain the code “487.0: Influenza with pneumonia,” one must navigate from 

the broader category “460-519: Diseases of the Respiratory System” to the more specific 

category “480-488: Pneumonia and Influenza,” where code 487.0 is located. In the coarse-

grained approach, the training and prediction data points consist of the entire text of 

diagnoses and the doctor’s free text notes, as defined in Definition 3.2. A coarse-grained 

data point serves as an input to a multi-label classifier that can output all code predictions 

simultaneously. However, this machine learning approach can be considered as a “black-

box” as it obscures important details of the classification process. This lack of transparency 

hinders its adoption in sensitive areas such as healthcare and medicine. Without being fully 

explained to and trusted by physicians, patients and billers, these tools are unlikely to be 

successfully adopted. 

To address the challenges posed by black-box methods and to enhance explainability 

of the classification process, we present a fine-grained code assignment approach that 

utilizes fine-grained data points for training and prediction. A few key definitions of our 

proposed explainable fine-grained approach are now given as follows. 

 

Definition 3.5 Fine-Grained Data Point. A fine-grained data point Dfine associated with 

doctor’s notes Θ is a 2-tuple (DIAG, SRS), where DIAG Θ.SD is a single diagnosis and 

SRS ⸦ Θ.SS is a set of sentences that are semantically related to the diagnosis DIAG based 

on the given domain knowledge.  

 



9     Joshua Carberry and Haiping Xu 

 

Definition 3.6 Fine-Grained Classification Model. A fine-grained classification model 

𝑀𝑓𝑖𝑛𝑒 is defined as the following mapping function, which takes a fine-grained data point 

and outputs a single ICD code prediction from the ICD code set Ω. 

𝑀𝑓𝑖𝑛𝑒: 𝐷𝑓𝑖𝑛𝑒 → Ω. 

Figure 1 shows a general overview of the fine-grained explainable ICD code 

assignment method. Under the fine-grained approach, a coarse-grained data point 

associated with doctor’s notes Θ is processed into 𝑘  separate fine-grained data points, 

where k is the number of diagnoses in the coarse-grained data point. For each diagnosis 

diagi, where 1 ≤ i ≤ k, we extract a set of related sentences srsi from the free text of doctor’s 

notes, which contain only sentences that are semantically related to diagi based on the 

domain knowledge. The 2-tuple (diagi. srsi) is used as a fine-grained data point as an input 

to the fine-grained classifier. Note that the classifier can be run sequentially on each fine-

grained data point di and generate an ICD code codei for di. Alternatively, we can run k 

fine-grained classifiers in parallel and generate the ICD codes in a more efficient manner. 

Note that it is possible for two fine-grained data points to map to the same medical code. 

The combined set of codes {code1}  {code2}   …  {codek} constitute the ICD code 

prediction results for the doctor’s notes Θ.  

 

 

Fig. 1. A general overview of fine-grained explainable ICD code assignment.  

 

Semantically extracted sentences serve two main purposes. Firstly, they provide vital 

information needed for accurate classification. Secondly, they serve as a pool of “evidence” 

for assigning a specific code to a diagnosis. Thus, the fine-grained explainable ICD code 

assignment methodology is firmly rooted in evidence-based principles. When necessary, 
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the set of semantically related sentences extracted for a particular diagnosis can be 

reviewed manually to gain insight into the information that contributes to the ICD code 

prediction process. This enhanced explainability gives users the ability to resolve any 

uncertainties or make manual adjustments as needed to ensure clarity and accuracy. 

Note that the number of diagnoses k included in doctor’s notes may not necessarily 

match the number of ICD codes required to fully code the doctor’s notes. In other words, 

there are special situations where an ICD code is not represented in the given set of 

diagnoses, or a particular diagnosis may correspond to multiple codes. Consequently, 

manual intervention becomes necessary to ensure comprehensive code assignment in such 

cases. Given that the primary objective of the proposed research is to improve the accuracy 

and explainability of medical coding, special cases such as these are beyond the scope of 

this study. 

3.2. Knowledge-Based Sentence Extraction 

Knowledge-based sentence extraction is one fundamental step of the proposed fine-grained 

approach. In this step, we process doctor’s notes separately for each diagnosis. Once an 

individual diagnosis is selected, the first task is to extract semantically related sentences to 

that diagnosis to form a fine-grained data point for fine-grained classification. We now 

provide a few key definitions for extraction of semantically related sentences.  

 

Definition 3.7 Concept. A concept Λ is a 2-tuple (CID, DES), where CID is a concept 

identifier and DES is a description of the concept. The semantics of a concept must be 

unambiguously defined. 

 

Definition 3.8 Ontology. An ontology Ф is a 2-tuple (CON, REL) representing domain 

knowledge as a directed graph. Ф.CON is a set of concepts, which are the vertices of the 

graph and Ф.REL is a set of relations encoded as a triple in the form <concept, relation, 

concept>, which are the edges of the graph. 

 

Definition 3.9 Semantically Related Sentence. Given a domain ontology Ф, let Cs be a 

set of concepts defined in Ф related to sentence s, and Cdiag be a set of concepts defined in 

Ф related to diagnosis diag. Sentence s is semantically related to diag under Ф if the two 

sets of concepts Cs and Cdiag overlap, i.e., |Cs  Cdiag| > 0. 

 

In order to determine whether a sentence is semantically related to a diagnosis, we 

need some existing source of knowledge to encode medical concepts and their relations. 

Our approach utilizes ontologies as formal representations of human knowledge, from 

which we can identify the set of concepts Cs and Cdiag. According to Definition 3.8, an 

ontology represents knowledge in the form of a directed graph of concepts and relations. 
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The relations in a given ontology follow a strict internal logic and can be used to reason 

about the related concepts. In the case of the medical ontologies suitable for this 

methodology, concepts can be diagnosable diseases, symptoms or treatments. 

Due to the open-ended nature of ontology design, the implementation details of the 

related concept identification step vary for each ontology. In this paper, we use an example 

of a healthcare ontology Ф to demonstrate the related concept identification process. Fig. 

2 shows a small portion of the ontology Ф used in this paper. The boxes represent concepts 

in Ф.CON of the following types: <disease>, <symptom>, <treatment>, and <body part>. 

Note that many concepts and their synonyms are omitted from the figure for simplicity. 

The example ontology features structural relations such as <superclass of> and some 

property relations such as <has symptom>, <has treatment>, and <affects body part>. 

 

Fig. 2. An example medical ontology that can be used to generate related terms for the diagnosis “pneumonia”. 

 

We use the relations defined in Ф.REL to reason about which concepts are related to 

a given diagnosis. Referring to Fig. 2, suppose our target diagnosis is “pneumonia.” 

Following the design of the ontology, we identify the concept “pneumonia” and then 

extend outward through the association relations of the concept "pneumonia" to get other 

related concepts. The first step is to find the diseases’ superclass “respiratory system 

disease” through the “superclass of” relation. In this example, we search all the 

superclasses up to the root class "disease" because it no longer contains any useful 

information. Let the set of concept “pneumonia” and all of its superclasses be Csuper. Then, 

for each concept λ in Csuper, we add λ and its related concepts that are associated with λ to 

Cdiag. For example, the concept “cough” is added to Cdiag because it is immediately related 

to the concept “pneumonia” by the property relation “has symptom.” We further identify 

concepts that have an “affects body part” relation with each identified symptom concept 
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and add them to Cdiag. Finally, we identify all concepts that have “has treatment” relation 

with each concept in Csuper and add them to Cdiag. Algorithm 1 formalizes the procedure for 

generating semantic concepts related to a diagnosis. 

 

Algorithm 1: Generating Semantically Related Concepts to a Diagnosis 

Input: A diagnosis diag; a medical ontology Φ 

Output: A set of related concepts Cdiag 

1. Identify concept c_diag in Φ.CON for diag and its synonyms 

2. Initialize Csuper and Cremaining to a set of concepts { c_diag } 

3. while Cremaining ≠  

4.     remove a concept λ from Cremaining 

5.     for each relation of type <superclass, “superclass of”, λ> in Φ.REL 

6.         if superclass is not the root class of Φ 

7.             add superclass to Csuper and Cremaining 

8. Initialize Cdiag =  

9. for each concept λ in Csuper 

10.     add λ to Cdiag 

11.     for each relation of type < λ, “has symptom”, symptom> in Φ.REL 

12.         add symptom to Cdiag 

13.         for each relation of type <symptom, “affects body part”, part> in Φ.REL 

14.             add part to Cdiag 

15.     for each relation of type < λ, “has treatment”, treatment> in Φ.REL 

16.         add treatment to Cdiag 

17. return Cdiag 

 

Once all related concepts to diagnosis diag under ontology Φ are obtained, Cdiag can 

be used to extract semantically related sentences from Θ.SS, i.e., the list of sentences 

contained in the free text of doctor’s notes Θ. For each sentence s in Θ.SS, we use a similar 

algorithm as defined in Algorithm 1 to generate the set of concepts Cs in Φ. According to 

Definition 3.9, sentence s is extracted as a semantically related sentence if there is an 

overlap of concepts in Cs and Cdiag. Fig. 3 shows examples of sentences that are extracted 

to be used as evidence for the diagnosis “pneumonia” during the code assignment.  

 

Detected pleural cavity effusion. 

Visible shivering and dyspnea complicated speech. 

Patient was put on bipap and retained overnight… 

 
Fig. 3. Example sentences extracted for “pneumonia” using the related concepts under an ontology. 
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3.3. Prioritization of Extracted Sentences by Sample Statistics 

The classifier used in this paper is based on the BERT architecture with an input limit of 

512 tokens. This limit restricts the number of sentences that can be accommodated since 

many words occupy more than one token. When the input sequence exceeds 512 tokens, 

tokens beyond the 512th position are truncated and discarded. Thus, the accuracy of the 

classification depends heavily on which parts of the input are retained. To address this 

challenge, we use Z-scores to determine the most relevant concepts to be retained. Firstly, 

we compare the Z-scores of different samples with distinct concepts against a predefined 

threshold to identify and eliminate insignificant concepts. Secondly, we arrange the 

sentences in descending order based on their Z-scores. This reordering ensures that the 

most related sentences fit within the 512-token limit without being truncated. 

In our approach, we count the number of occurrences of a concept 𝑐  in random 

samples of the doctor’s notes, deriving statistics that describe its frequency distribution in 

random samples. We then select the subset of notes associated with a particular diagnosis 

diag. We compare the occurrence of 𝑐 within this special subset to its occurrence in random 

samples. If the special subset shows a much higher number of occurrences of 𝑐, it indicates 

that there is a relationship between c and the selection criteria using diagnosis diag. In this 

case,  c may be more related to the diagnosis and therefore more useful for identifying diag.  

Let xc be a random variable denoting the number of occurrences of concept c in a 

doctor’s notes. Let xc,i be the number of occurrences of concept c in doctor’s notes Θi, 

where 0 ≤ i ≤ N and N is the total number of doctor’s notes in a training dataset. The mean 

𝜇𝑥𝑐
 and standard deviation 𝜎𝑥𝑐

 for 𝑥𝑐 can be derived as in Eq. (1) and Eq. (2). 

𝜇𝑥𝑐
=

∑ 𝑥𝑐,𝑖
𝑁
𝑖=1

𝑁
,                                                            (1) 

𝜎𝑥𝑐
= √∑ (𝑥𝑐,𝑖−𝜇𝑥𝑐)

2
 𝑁

𝑖=1

𝑁−1
 ,                                                 (2) 

 With 𝜇𝑥𝑐
 and 𝜎𝑥𝑐

 established across the entire training data set, we can now start to 

reason about subsets or samples of the training data. Let 𝑥̅𝑐,𝑛  be a random variable 

representing the mean of 𝑥𝑐 in a random sample of a given size 𝑛. According to the Central 

Limit Theorem, sample means 𝑥̅𝑐,𝑛  should be normally distributed given a sufficiently 

large sample size 𝑛. Under the assumption that a given 𝑥̅𝑐,𝑛 is normally distributed, the 

mean of sample means 𝜇𝑥̅𝑐,𝑛
 and the standard deviation of sample means 𝜎𝑥̅𝑐,𝑛

 in the 

training data set are defined as in Eq. (3) and Eq. (4).  

𝜇𝑥̅𝑐,𝑛
= 𝜇𝑥𝑐

                                                             (3) 

𝜎𝑥̅𝑐,𝑛
=

𝜎𝑥𝑐

√𝑛
                                                              (4) 



14     Joshua Carberry and Haiping Xu 

 

These sample statistics show what a typical random sample set of size n looks like in 

terms of 𝑥𝑐 (i.e., the number of occurrences of related concept c in a doctor’s notes). Based 

on these sample statistics, we can check whether a particular sample set S of size n is also 

typical, or whether it is unlikely to be typical, or whether it is an outlier of the distribution. 

To do this, we can generate a Z-score for sample set S as in Eq. (5).  

𝑧𝑛 =
𝑥̅𝑐,𝑛−𝜇𝑥̅𝑐,𝑛

𝜎𝑥̅𝑐,𝑛

                                                              (5) 

where  𝑥̅𝑐,𝑛 is the mean of 𝑥𝑐 in sample set S. 

Given a normal distribution, a Z-score gives a measure of an observation’s distance 

from the mean, in terms of the distribution’s standard deviation. This distance also 

corresponds to the unlikeliness of the observation: a Z-score with a high magnitude 

indicates an observed value far away from the mean, an unlikely outcome; while a Z-score 

close to zero indicates a value close to the mean, a likely outcome. Note that in our case, a 

single observation refers to the mean occurrences of a given concept across a sample of 

doctor’s notes, not one individual instance. Thus, the higher the Z-score for a given sample, 

the more frequently the particular concept is used in that sample. With this in mind, we 

select a group of doctor’s notes related to a particular concept and check if the usage of the 

concept is higher than normal. More specifically, we select all the notes related to a given 

diagnosis diag and generate a Z-score for each concept c  Cdiag. The generated Z-scores 

are stored in a HashMap Z such that Z(<diag, c>) gives the Z-score of concept c in the 

subset of doctor’s notes containing diag, where <diag, c> is the encoding of diagnosis diag 

and concept c. Algorithm 2 formally describes the steps of this process. We first generate 

a list of all unique diagnoses and their associated concepts in the training dataset. Then, we 

count all related concepts in all doctor’s notes to establish the population statistics 𝜇𝑥𝑐
 and 

𝜎𝑥𝑐
. Finally, we select the set of doctor’s notes containing each diagnosis and compute a 

Z-score for each concept associated with the diagnosis. These scores are stored in a 

HashMap Z so that we can reorder the extracted sentences and eliminate unrelated ones for 

a diagnosis by looking up the Z-scores of the related concepts in a training or test data 

point. Note that if the Z-score for a diagnosis-concept pair (diag, c) is less than 0, this 

indicates that the concept typically occurs infrequently in doctor’s notes containing diag; 

therefore, there is no need to record its Z-score, and only non-negative Z-scores are 

included in the HashMap. If new training data is introduced after the initial generation of 

HashMap Z, it can be easily updated to reflect the new language usage. Individual scores 

for existing related concepts can be recalculated following the same procedure as described 

above. In addition, if new concepts are introduced into the medical ontology used to derive 

the related concepts, new scores can also be computed and stored as new key-value pairs 

in the HashMap Z. 
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Algorithm 2: Generating HashMap Z 

Input: Training set of doctor’s notes TS, a medical ontology Φ 

Output: HashMap Z, where  Z(<diag, c>) is the Z-score of concept c in the subset of 

doctor’s notes containing diag. 

1. Initialize Call =  and Dall =  

2. for each doctor’s notes Θ in TS 

3.     for each diagnosis diag in Θ.SD 

4.         Dall = Dall ∪ {diag} 

5.         Invoke Algorithm 1 with inputs (diag, Φ) and return Cdiag 

6.         for each concept c in Cdiag 

7.             Call = Call ∪ {c} 

8. for each c in Call 

9.     for each Θ in TS 

10.         Count the number of occurrences of c in Θ.SS 

11.     Calculate 𝜇𝑥𝑐
 as in Eq. (1) 

12.     Calculate 𝜎𝑥𝑐
 as in Eq. (2) 

13. Initialize a HashMap Z with null <key, value> pair 

14. for each diag in Dall 

15.     for each c in Cdiag 

16.         Create a sample set Sdiag of doctor’s notes containing diag 

17.         Let n be the size of the sample set Sdiag 

18.         Calculate 𝜇𝑥̅𝑐,𝑛
 as in Eq. (3) 

19.         Calculate 𝜎𝑥̅𝑐,𝑛
as in Eq. (4) 

20.         Calculate 𝑧𝑛 for sample set Sdiag as in Eq. (5) 

21.         if  𝑧𝑛 ≥ 0 

22.             Encode diag and c into key <diag, c> 

23.             Add (<diag, c>, zn) to the HashMap Z 

24. return Z 

 

Concepts with higher Zn scores appear more frequently in the subset of doctor’s notes 

containing diag and can be more closely related to diag. Thus, we can now threshold and 

reorder the extracted sentences based on the Z-scores of the various concepts to ensure that 

the most closely related and useful words are emphasized within the constraints of the 

classifier. We score sentences based on the included concepts with the highest Z-scores 

and reorder all extracted sentences based on the sentence scores, with the highest scoring 

sentences coming first. Algorithm 3 provides a formal description of the sentence 

reordering process, provided that Z-scores for various diagnosis-concept pairs have been 

generated using Algorithm 2. 
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Algorithm 3: Reordering Extracted Sentences Based on their Z-scores 

Input: A list of extracted sentences SRS that are semantically related to diagnosis 

diag, HashMap Z, acceptable Z-score threshold t, where t > 0 

Output: A list of reordered semantically related sentences SRS’ 

1. Initialize QSRS to an empty priority queue 

2. for each sentence s in SRS 

3.     Let Cs be a set of concepts mentioned in sentence s 

4.     Let zmax = -1 

5.     for each concept c in Cs 

6.         if  Z(<diag, c>) returns null, let zdiag = 0   

7.         else zdiag = Z(<diag, c>)       

8.         zmax = max(zmax, zdiag) 

9.     if zmax > t 

10.         Insert sentence s into QSRS with priority zmax 

11. Convert QSRS to a list of sentences QRS’ 

12. return SRS’ 

 

By extracting the list of sentences that are semantically related to diagnosis diag and 

reordering them according to importance, we can now form the fine-grained data point dfine 

defined in Definition 3.5. The data point dfine can be passed on to the classifier Mfine to 

predict the specific ICD code for diag. Meanwhile, the extracted semantically related 

sentences are provided to the user to resolve any doubts and address any concerns if they 

may have. In healthcare, where the stakes are very high not only from a financial 

perspective, but also from a health and safety perspective, this additional explainability in 

medical coding is crucial. 

4. Fine-Tuning Med-BERT for Automated Medical Coding 

To support automated medical coding, we developed a single-label classifier using Med-

BERT, a pre-trained contextual embedding model on a structured electronic medical record 

dataset. Med-BERT is based on BERT, an attention-based encoding model with state-of-

the-art performance in several areas of natural language processing. In traditional methods, 

words are separated and converted into word embeddings, which are then mapped into a 

space based on their meanings. However, traditional embedding methods can only map 

one representation for each word. In real languages, a word often has multiple meanings, 

and the appropriate meaning is determined by the context. This means that traditional word 

embedding methods create ambiguity in phrases such as “river bank” and “bank 

statement”, where the bank is given the same embedding despite having a different 

meaning in each phrase. BERT contains a series of attention-based encoders that allow 

words to “focus” on other words in the sequence, meaning that the interpretation of a word 
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is influenced by the context provided by other words in the sequence. This allows for a 

more flexible and human-like interpretation of text sequences.  

Pre-trained models like Med-BERT incorporate existing knowledge generated during 

the pre-training phase, where tasks are designed to drive model learning. For example, 

Med-BERT was pretrained on 28 million patient records extracted from the Cerner Health 

Facts database. After the pre-training phase, these models can be “fine-tuned” in a 

downstream task to quickly learn specific problems using their existing general knowledge. 

In our case, the downstream task is the ICD code classification task described in Section 

3.1. Given a data point consisting of a diagnosis and its semantically related sentences, our 

model must produce an ICD code assignment prediction. Although Med-BERT already 

knows a lot about medicine and healthcare, it must still learn how to apply this knowledge 

to any new task through this fine-tuning process, which is much faster than training from 

scratch. To generate single-label classifications, a classification head (a dense layer with 

one output for each ICD code to be predicted) needs to be attached to the end of the network 

and take advantage of Med-BERT’s rich understanding of the input data.  

During the fine-tuning process, the Med-BERT-based classifier is trained like a regular 

neural network, with losses calculated for predictions and backpropagated through the 

classification head into Med-BERT’s transformers. As a result, the weights of the entire 

model are updated. Due to the severe data imbalance present among diagnoses and their 

corresponding codes, we use stratified random sampling to select the training/testing 

partition. In stratified random sampling, the number of samples chosen for each class is 

proportionate to the frequency of that class. Thus, smaller classes are not randomly 

underrepresented or excluded. During training, we use 5-fold cross-validation to diagnose 

model performance, with folds selected using stratified random sampling. We use focal 

loss as the loss function, which is a special type of loss function derived from the object 

detection problem in computer vision, where data imbalance is a central issue. The focal 

loss for multi-class single-label classification is formulated as (7).  

𝐿𝐹 = − ∑ 𝑡𝑖(1 − 𝑝𝑖)
𝛾 log(𝑝𝑖)

𝑛

𝑖=1

, (7) 

where 𝑛 is the number of classes (ICD codes) in the classification task, 𝑡𝑖 is the truth value 

of class 𝑖 (1 if the example belongs to class i and 0 if the example does not belong to class 

i), 𝑝𝑖 is the predicted probability of the model for class 𝑖, and 𝛾 is a nonnegative focusing 

parameter that determines the degree of weight reduction for easy examples [28]. Focal 

loss underweights these well-classified “background” examples and places more emphasis 

on the poorly classified examples, allowing the learning to center around less frequent 

classes and improving results on imbalanced data.  

For the BERT-based models, the ADAM optimizer was used with an initial learning 

rate of 5e-5 as suggested by the original work [14]. These models were fully trained after 
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3-5 epochs, as further training causes degradation of model performance due to overfitting, 

which includes “catastrophic forgetting” of applicable pre-trained knowledge [29]. After 5 

training epochs, the models with the best validation performance were selected. Fig. 4 

provides an overview of the classifier used for one diagnosis. Note that to simplify the 

diagram, the corresponding discharge diagnosis is not shown as part of the fine-grained 

data point dfine. 

 

 

Fig. 4. A full procedure for classifying a fine-grained data point. 

 

As shown in Fig. 4, the original input sequence is tokenized and passed through Med-

BERT. The final encodings of all tokens are discarded except for the special “[CLS]” 

token. The embedding of the special “[CLS]” token is then used as input to the 

classification head, which outputs a single label, i.e., the ICD code prediction pdiag for the 

data point dfine. While it is not shown in the figure, before tokenization, we need to 

preprocess the natural language in the input dfine. In traditional natural language processing, 

the first step is to remove words with little or no information (i.e., removing stop words), 

and to reduce word inflections that unnecessarily increase vocabulary size (stemming or 

lemmatization). Unlike traditional models, BERT-based models are often able to strongly 

characterize and encode seemingly meaningless words based on context, thus making 

“useless word removal” unnecessary or even detrimental. In addition, BERT operates on 

“word pieces” rather than entire words. Whereas lemmatization reduces “cough” and 

“coughing” to the same lemma “cough”, BERT’s word-piece approach preserves the 

inflection of the second word by splitting it into two tokens “cough” and “#ing”. Therefore, 

lemmatization is also not necessary with BERT. However, some traditional preprocessing 

methods still apply. For example, we remove weak punctuation marks such as commas, 

semicolons, and hyphens, and group numerical identifiers such as those for dates, hospitals, 

and patients. 
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Once the initial preprocessing is complete, we can tokenize the input text for use with 

Med-BERT. We split different words into different tokens based on spaces and punctuation 

marks. As mentioned earlier, inflected words are split into multiple tokens (e.g., “healthy” 

is split into “health” and “#y”). BERT also makes use of several special tokens that must 

be inserted. Firstly, the special “[CLS]” classification token is placed at the beginning of 

the sequence. The “[SEP]” sentence separator token is placed wherever strong punctuation 

marks (“.”, “!”, “?”) appear in the original sequence. Different BERT models take 

sequences of varying lengths as input. To accommodate Med-BERT’s fixed input size of 

512 tokens, we add “[PAD]” tokens at the end of the sequence. Fig. 5 shows an example 

of the necessary tokenization. The example input is tokenized and assigned the 

aforementioned special tokens where necessary. Once this is done, the sequence of tokens 

can be fed into the model for prediction. 

 

 

Fig. 5. An example showing the tokenization process required by BERT. 

 

5. Case Studies 

5.1 Typical Use Cases for Training and Classification 

In this section, we first examine typical use cases of the method for training and 

classification. The data points generated following the steps described in Section 3.2 and 

their ICD code labels will be used to train the Med-BERT classifier to predict ICD codes. 

To demonstrate the efficacy of our approach on a variety of data, we present its 

performance on two datasets corresponding to different subsets of the ICD codes in the 

MIMIC-III dataset. We chose the set of doctor’s notes for cardiovascular diseases as the 

first dataset and the set of doctor’s notes for respiratory diseases as the second dataset. 

Tables 1 and 2 summarize the closely related codes used in the two datasets and the 

frequency of each code. Both datasets are severely imbalanced, containing one or more 

classes with extremely low frequencies. Furthermore, both datasets contain similar and 

related ICD codes, which can complicate classification even for human experts. For 

example, the respiratory disease dataset contains doctor’s notes that can be mapped to 

codes for two separate but similar asthma diagnoses: Code 493.90, for unspecified asthma 

and code 493.20, for chronic obstructive asthma. 
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Table 1. Frequencies of the cardiovascular disease ICD diagnosis codes. 

ICD Code Diagnosis Name Frequency 

401.9 Unspecified essential hypertension 19.117 

427.31 Atrial fibrillation 12,122 

428.0 Congestive heart failure, unspecified 11,689 

414.01 Coronary atherosclerosis of native coronary artery 11,392 

427.1 Paroxysmal ventricular tachycardia 1,635 

426.0 Atrioventricular block 492 

401.1 Benign hypertension 444 

 

Table 2. Frequencies of the respiratory disease ICD diagnosis codes. 

ICD Code Diagnosis Name Frequency 

518.81 Acute respiratory failure 7,714 

486 Pneumonia, organism unspecified 4,747 

507.0 Pneumonitis due to inhalation of food or vomitus 3,845 

511.9 Unspecified pleural effusion 2,746 

496 Chronic airway obstruction 2,348 

518.0 Pulmonary collapse 2,058 

493.90 Asthma, unspecified type, unspecified 2,023 

491.21 Obstructive chronic bronchitis with (acute) exacerbation 1,323 

482.41 Methicillin susceptible pneumonia due to staphylococcus aureus 990 

512.1 Iatrogenic pneumothorax 859 

493.20 Chronic obstructive asthma, unspecified 752 

 

All the training and testing tasks in the following sections were performed on the same 

machine configured with an NVIDIA GeForce RTX 2060 SUPER with 8 GB of VRAM, 

an Intel Core i7-9700 CPU, and 16 GB of main memory. The results of the test data were 

promising for both datasets, as shown in Table 3. Both models achieved accuracies in the 

mid-nineties. Precision and recall (denoting false-positive and false-negative rates, 

respectively) exceeded 90% on each dataset. This is especially important in healthcare, 

where false positives or false negatives can lead to incorrect billing or even inappropriate 

treatment. Based on precision and recall, both models have F1-scores in the mid-nineties. 

The F1-scores given are macro-averaged (all classes are equally weighted). We believe 

these metrics strongly suggest that the proposed approach achieves reliable coding 

performance even in the presence of real-world problems such as data imbalance and 

ambiguities arising from the classification of closely related codes. In the next section, we 

take a closer look at the classification of closely related codes using our approach. 

Table 3. Performance of ICD code classifier on two datasets. 

Data Set F1-score Recall Precision Accuracy 

Cardiovascular 0.958 0.948 0.969 0.968 

Respiratory 0.933  0.926 0.940 0.942 
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5.2 Closely Related Medical Codes 

One of the common difficulties with medical coding is that a vague discharge diagnosis 

can result in a wrong code among a series of related codes. Even a neatly listed diagnosis 

may not be sufficiently specific and precise to achieve the level of specificity required to 

assign an ICD code. The main advantage of our approach is that it provides additional 

details to the classifier by extracting sentences that are semantically related to the 

diagnosis. With these added details, the classifier is more likely to make a correct 

classification, even if the original diagnosis is vague and inadequate. 

Asthma is one of the diseases where we find this difficulty exists. Although there are 

variants of asthma with their own separate symptoms and etiology, and each has its own 

separate ICD code, doctors often use a simple “Asthma” diagnosis for these variants. This 

means that medical coders receive many “Asthma” diagnoses that correspond to different 

ICD codes. To effectively assist in coding, our approach should be able to cope with this 

situation. Fig. 6 illustrates an example of sentence extraction for two “Asthma” diagnoses 

that actually refer to two different ICD codes: 493.20 “Chronic obstructive asthma, 

unspecified” and 493.90 “Asthma, unspecified type, unspecified.”  

 

Fig. 6. Examples of sentences extraction for the vague diagnosis “Asthma”, leading to different code assignments. 

 
 

As shown in the figure, more details of the “Asthma” diagnoses are retrieved during 

the sentence extraction process and the classifier can differentiate between the same 

diagnoses to predict the corresponding ICD codes. There are two main differences between 

unspecified asthma and chronic obstructive asthma. That is, chronic obstructive asthma is 

persistent over a long period of time, whereas unspecified asthma may be intermittent 

short-term episodes; chronic obstructive asthma is caused by airway obstruction, whereas 

unspecified asthma may have other causes. Patient A’s records report a “history of severe 

asthma,” which suggests that asthma is chronic. Patient A’s record also reports an 
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“obstructive pulmonary pathology”, which suggests that there is an obstruction in the 

lungs. Combining this information, the classifier strongly suggests code 493.20 “Chronic 

obstructive asthma, unspecified.” On the other hand, Patient B’s record shows a “flare” or 

acute episode of asthma with no mention of obstruction, suggesting that the classifier’s 

prediction of code 493.90 “Asthma, unspecified type, unspecified” is the correct one. 

Clearly, this distinction is made possible by the extracted sentences that added additional 

information to the unclear “Asthma” diagnoses. However, the classification task remains 

challenging because both sets of extracted sentences contain the same terminologies (e.g., 

“asthma,” “mild”, and other respiratory terms, not shown in the figure). The experimental 

results show that BERT’s attention architecture is advantageous in this case, where the 

same terms must be interpreted differently depending on the context. 

5.3 Comparisons with Related Approaches 

5.3.1 Comparison with Black-Box Approaches 

The existing literature on automated ICD code assignment primarily features “black-box” 

approaches, which differ from the approach presented in this paper in two main ways. First, 

they treat the code assignment task as a multi-label classification task, where each data 

point is associated with one or more labels. The second difference is that these methods 

typically accept the entire text of a document (without sentence pruning/extraction) as 

input. To simulate a black-box classifier, we employ Med-BERT with a multi-label head 

to perform the classification, predicting all codes at once. Although the black-box classifier 

does not include sentence extraction, due to the 512-token input length limit of BERT, we 

discard sentences that are not related to any of the medical codes to be classified in order 

to fit a reasonable amount of useful information within the limited 512-token window. 

Given the extremely lengthy nature of the full documents, this was found to be necessary 

to achieve decent results without significant modifications to the basic classifier. Table 4 

summarizes the performance of the model on the respiratory disease dataset described in 

Table 2. 

Table 4. Performance metrics for the black-box classifier. 

Accuracy F1-score Recall Precision 

0.450 0.509 0.417 0.697 

 

Note that since the black-box classifier presented in this section treats ICD code 

assignment as a multi-label classification task, whereas our approach treats the problem as 

multiple single-label classifications, the metrics in Table 4 are fundamentally different 

from the metrics used in our approach and should not be directly compared. For example, 

in a single-label classification task, each prediction can be simply considered as correct or 
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incorrect for the purpose of calculating the accuracy. On the other hand, the predictions in 

a multi-label classification task may be partially correct, predicting the presence of some 

labels but not all the needed labels. Let L be the set of all labels in a multi-label 

classification task. Let Ltrue and Lpred be the sets of true and predicted labels, respectively, 

for a given problem example. To score the accuracy of this problem example, we first 

generate |L|-dimensional Boolean vectors Ytrue and Ypred, where each element indicates the 

presence or absence of a particular label. We then generate a third Boolean vector, Ydiff = 

Ytrue XOR Ypred, where each element in Ydiff is true if the corresponding elements in Ytrue and 

Ypred are different, and false if they are the same. This allows us to calculate the number of 

false predictions by counting the true elements in Ydiff. Finally, we divide the number of 

false predictions by the total number of labels |L| to get the accuracy for the problem 

example. Figure 7 shows an example of calculating Ydiff when L = {A, B, C}, Ltrue = {A, C} 

and Lpred = {A, B}. 

 

 
Fig. 7. An example of generating vector Ydiff to determine model performance for a given multi-label prediction. 

 

Although a direct comparison between the two approaches is not possible, our analysis 

of the black-box models indicates that they generally have poor performance. While the 

state-of-the-art multi-label classifiers applied to ICD coding may perform better, the lower 

performance we observed suggests that the difficulty of the problem increases when using 

coarse-grained multi-label classification. Using the same model (Med-BERT) and training 

parameters, our proposed fine-grained single-label classification approach shows much 

better performance, which leads us to believe that fine-grained approach is a more efficient 

means of solving the ICD coding problem. In addition to the performance difference, our 

method provides additional outputs that are important for the coding process. Black-box 

methods only return code predictions. However, our approach produces not only code 

predictions, but also the diagnosis text and semantically related sentences extracted for 

each individual code. Thus, our approach provides the user with additional explainability, 

which is particularly important in the healthcare domain. Note that important distinction 

that enables our approach to improve explainability is the intermediate human knowledge-

driven and human-understandable sentence extraction step. 
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5.3.2 Comparison to LSTM-Based Classifier 

In our previous work, we performed the classification step using LSTM [8]. In order to 

quantify and analyze the advantages of the Med-BERT classifier in our approach, we 

compared the performance of Med-BERT and LSTM on a reduced version of the 

respiratory disease dataset shown in Table 1. That is, the number of examples per medical 

code is reduced to 25% of the original to highlight the advantage of Med-BERT with 

limited training data. Furthermore, since we previously observed that the performance of 

LSTM degrades rapidly with the introduction of new codes (especially closely related 

codes), we decided to test each model in a given trial with n medical codes, where 1 ≤ n ≤ 

11. The 11 codes were added in the order shown in Table 5, with some codes marked in 

bold. These bold codes are closely related to some codes introduced previously. For 

example, code 5, 482.41 Methicillin susceptible pneumonia, is closely related to previous 

code 2, 486 Pneumonia, organism unspecified. The order of codes generally follows the 

original frequency order, but with some closely related codes switched into more 

demonstrative positions. 
 

Table 5. Frequency and order of addition of the 11 respiratory codes used to compare the 

Med-BERT and LSTM classifiers. 

# ICD Code Diagnosis Name Frequency 

1 518.81 Acute respiratory failure 1,928 

2 486 Pneumonia, organism unspecified 1186 

3 507.0 Pneumonitis due to inhalation of food or vomitus 961 

4 511.9 Unspecified pleural effusion 686 

5 482.41 Methicillin susceptible pneumonia due to staphylococcus aureus 221 

6 496 Chronic airway obstruction 587 

7 518.0 Pulmonary collapse 514 

8 493.90 Asthma, unspecified type, unspecified 505 

9 493.20 Chronic obstructive asthma, unspecified 185 

10 491.21 Obstructive chronic bronchitis with (acute) exacerbation 315 

11 512.1 Iatrogenic pneumothorax 213 

 

For any number of codes n, where 1 ≤ n ≤ 11, the LSTM was trained and tested for 10 

trials. Due to time constraints, the Med-BERT classifier was only trained and tested for 5 

trials in each case. Fig. 9 shows the macro-F1-score and accuracy metrics for each classifier 

on different number of codes n.  
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Fig 9. Accuracies and macro-F1 scores of LSTM and Med-BERT using different number of codes n. 

The pre-trained knowledge packaged with BERT-based models like Med-BERT 

allows it to excel even when training examples are scarce [14, 29]. As shown in Fog. 9, 

despite the reduced dataset size, the Med-BERT classifier still exhibits strong performance, 

with accuracy and F1-scores mostly above 90%. On the other hand, once the classification 

becomes more complex, LSTM suffers immediately. Since an LSTM must be trained from 

scratch, it relies heavily on a rich set of training examples that are not always available in 

the real world. We observe that the performance of LSTM especially suffers when closely 

related codes are introduced. As shown in the figure, closely related codes pose challenges 

to the good performance of the LSTM, and only the addition of easily categorizable codes 

may bring the overall performance back up. Unsurprisingly, we do not observe this pattern 

in Med-BERT’s metrics, as BERT’s attention-based transformer architecture is much 

stronger at separating these linguistically similar, but slightly different related codes. 

Meanwhile, LSTM more often confuses these less frequent codes with the dominant related 

codes. Figs. 10 and 11 show examples of obfuscated codes whose inputs were correctly 

classified by the BERT-based classifier and misclassified by LSTM. 

The patient is a 75-year-old male with a history of COPD, 

asthma… who presented… with increased shortness of 

breath, expectoration of sputum, and wheezing. 

Asthma. 

Fig. 10. Except from an example input labelled with code 493.20 Chronic obstructive asthma. 

 

Vancomycin was started as her catheter tip revealed 

staph on culture. Ceftriaxone was started for 

pneumonia. Ceftriaxone and clindamycin were 

continued for pneumonia… 

Fig. 11. Excerpt from an example input labeled with code 482.41 Methicillin susceptible pneumonia due to 
staphylococcus aureus. 
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Fig. 10 illustrates the case of a patient suffering from chronic obstructive asthma with 

code 493.20. The Med-BERT classifier was able to contextualize the various mentions of 

“asthma” with specific symptoms “wheezing” and “expectoration of sputum” (indicating 

that the patient has been coughing up substances that obstruct the airways), which are two 

specific symptoms that are more closely related to chronic obstructive asthma. On the other 

hand, the LSTM seems to focus on the repeated use of the word “asthma” that always uses 

the same word embedding. It is likely that because this word occurs more frequently with 

the dominant class 493.90 Unspecified asthma (simply due to its high frequency in the 

dataset), the LSTM incorrectly predicts this code. 

Fig. 11 shows an example of LSTM’s failure in predicting code 482.41 Methicillin 

susceptible pneumonia due to staph aureus. Note that “staph” is mentioned just before the 

sentences where “pneumonia” is mentioned. BERT classifies this data point correctly, 

where the mention of the staph virus is clearly a hint for code 482.41. However, perhaps 

due to the LSTM’s limited short-term memory when processing full text, it was unable to 

utilize this information to correctly classify pneumonia caused by staph, and instead 

predicted the generic code 486, Pneumonia, organism unspecified, that is highly frequent. 

This example once again demonstrates the strength of BERT in contextualizing generic 

and shared terms such as “pneumonia” with surrounding information that may significantly 

alter the interpretation of these terms.  

6. Conclusions and Future Work 

In this paper, we introduced a fine-grained evidence-based approach for automatically 

assigning ICD codes to patient discharge summary records. This approach differs from 

traditional “black-box” methods by including an intermediate human-understandable 

sentence extraction step, which improves the explainability and simplicity of the 

classification process. This approach starts with the diagnoses listed in the documents and 

extracts sentences semantically related to each diagnosis using a body of human knowledge 

such as an ontology. As a result, code assignments can be traced back not only to the 

evidence in the document, but also to the human knowledge used to extract the evidence. 

This additional information helps to improve the credibility of predictions, a key factor in 

healthcare where liability is always a concern and tends to complicate the adoption of AI 

tools. In addition to increased explainability, the proposed approach offers significant 

performance advantages over the “black-box” methods and the classifier used in our 

previous work. 

In future work, we plan to demonstrate of how the proposed approach can be used for 

larger ICD code sets. To accommodate these larger code sets, we will incorporate our 

proposed method in a hierarchical classifier that can classify diagnoses with increasing 

specificity. In the hierarchical classifier, the top classifiers may determine the general type 

of disease, the intermediate classifiers may determine the families of diseases, and the final 
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classifiers determine the individual ICD codes. In addition to demonstrations on larger code 

sets, future work will continue to improve the classifier by incorporating some of the more 

sophisticated mechanisms that make black-box approaches effective [7], [15-17], [21-23], 

and by improving the sentence extraction step with enhanced extraction methods including 

new approaches for concept identification and the creation of a completely new knowledge 

base that better match the hierarchy of ICD codes. 

Acknowledgements 

We thank the editors and all anonymous referees for their valuable time in reviewing this 

paper. We also thank UMass Dartmouth for their financial support to the first author of this 

paper in completing this work. 

References 

[1] CMS, National Health Expenditure (NHE) Fact Sheet, Centers for Medicare & Medicaid 

Services (CMS), 2023. Retrieved from https://www.cms.gov/research-statistics-data-and-

systems/statistics-trends-and- reports/nationalhealthexpenddata/nhe-fact-sheet. [Accessed: 01-

Mar-2023].  

[2] WHO, International Classification of Diseases (ICD), World Health Organization (WHO), 

2023. Retrieved from https://www.who.int/standards/classifications/classification-of-diseases. 

[Accessed: 01-Mar-2023].  

[3] HIPAA, What is the HITECH Act? The HIPAA Journal, January 2023. Retrieved from 

https://www.hipaajournal.com/what-is-the-hitech-act/. [Accessed: 01-Mar-2023].  

[4] A. E. W. Johnson, T. J. Pollard, L. Shen, L. H. Lehman, M. Feng, M. Ghassemi, B. Moody, P. 

Szolovits, L. Anthony Celi, and R. G. Mark, MIMIC-III, a freely accessible critical care 

database, Scientific Data, 3 (1) 160035 (2016).  

[5] M. Li, Z. Fei, F. Wu, Y. Li, Y. Pan and J. Wang, Automated ICD-9 coding via a deep learning 

approach, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16 (4) 

(2019) 1193-1202, doi: 10.1109/TCBB.2018.2817488. 

[6] H. Shi, P. Xie, Z. Hu, M. Zhang and E. Xing, Towards automated ICD coding using deep 

learning, arXiv preprint, arXiv:2008.10492, 2017. 

[7] Y. Wu, Z. Chen, X. Yao, X. Chen, Z. Zhou and J. Xue, JAN: Joint attention networks for 

automatic ICD coding, IEEE Journal of Biomedical and Health Informatics, 26 (10) (2022) 

5235-5246, doi: 10.1109/JBHI.2022.3189404. 

[8] J. Carberry and H. Xu, Fine-grained ICD code assignment using ontology-based 

classification, in Proc. 2022 IEEE 23rd International Conference on Information Reuse and 

Integration for Data Science (IRI’22), San Diego, CA, USA, 2022, pp. 228-233, doi: 

10.1109/IRI54793.2022.00058. 

[9] I. Goldstein, A. Arzumtsyan and O. Uzuner, Three approaches to automatic assignment of ICD-

9-CM codes to radiology reports, AMIA Annual Symposium Proceedings, 2007 (1) (2007) 279-

283. 

[10] R. Farkas and G. Szarvas, Automatic construction of rule-based ICD-9-CM coding systems, 

BMC Bioinformatics, 9 (Suppl 3) S10, 2008. 



28     Joshua Carberry and Haiping Xu 

 

[11] J. Medori and C. Fairon, Machine learning and features selection for semi-automatic ICD-9-CM 

encoding, in Proc. NAACL HLT 2nd Louhi Workshop Text Data Mining Health Documents, Los 

Angeles, June 2010, pp. 84-89. 

[12] A. Perotte, R. Pivovarov, K. Natarajan, N. Weiskopf, F. Wood and N. Elhadad, Diagnosis code 

assignment: models and evaluation metrics, Journal of the American Medical Informatics 

Association, 21 (2) (2014) 231-237. 

[13] T. Baumel, J. Nassour-Kassis, R. Cohen, M. Elhadad and N. Elhadad, Multi-label classification 

of patient notes a case study on ICD code assignment, arXiv preprint, arXiv:1709.09587, 2017. 

[14] J. Devlin, M. Chang, K. Lee and K. Toutanova, BERT: pre-training of deep bidirectional 

transformers for language understanding, arXiv preprint, arXiv: 1810.04805, 2018. 

[15] B. Biseda, G. Desai, H. Lin and A. Philip, Prediction of ICD codes with clinical BERT 

embeddings and text augmentation with label balancing using MIMIC-III, arXiv preprint, 

arXiv:2008.10492, 2020. 

[16] T. S. Heo, Y. Yoo, Y. Park, B. Jo, K. Lee and K. Kim, Medical code prediction from discharge 

summary: document to sequence BERT using sequence attention," in Proc. 2021 20th IEEE 

International Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, 

USA, 2021, pp. 1239-1244, doi: 10.1109/ICMLA52953.2021.00201. 

[17] V. Mayya, S. S. Kamath and V. Sugumaran, LATA - label attention transformer architectures 

for ICD-10 coding of unstructured clinical notes, in Proc. 2021 IEEE Conference on 

Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Melbourne, 

Australia, 2021, pp. 1-7, doi: 10.1109/CIBCB49929.2021.9562815. 

[18] S. Montalvo, M. Almagro, R. Martínez, V. Fresno, S. Lorenzo, M. C. Morales, B. González, J. 

Álamo and A. García-Caro, Graphical user interface for assistance with ICD-10 coding of 

hospital discharge records, in Proc. 2018 IEEE International Conference on Bioinformatics and 

Biomedicine (BIBM), Madrid, Spain, 2018, pp. 2786-2788, doi: 10.1109/BIBM.2018.8621420. 

[19] N. Siangchin and T. Samanchuen, Chatbot implementation for ICD-10 recommendation 

system, in Proc. 2019 International Conference on Engineering, Science, and Industrial 

Applications (ICESI), Tokyo, Japan, 2019, pp. 1-6, doi: 10.1109/ICESI.2019.8863009. 

[20] S. J. Lui, X. Cheng and S. Krishnaswamy, Inductive representation learning of multiple ICD 

codes for healthcare, in Proc. 2022 IEEE 17th International Conference on Control & 

Automation (ICCA), Naples, Italy, 2022, pp. 498-503, doi: 10.1109/ICCA54724.2022.9831933. 

[21] F. Teng, Z. Ma, J. Chen, M. Xiao and L. Huang, Automatic medical code assignment via deep 

learning approach for intelligent healthcare, IEEE Journal of Biomedical and Health 

Informatics, 24 (9) (2020) 2506-2515, doi: 10.1109/JBHI.2020.2996937. 

[22] M. Almagro, R. Martínez-Unanue, V. Fresno, S. Montalvo and H. Tissot, ICD-10 coding based 

on semantic distance: LSI_UNED at CLEF eHealth 2020 Task 1, CLEF (Working Notes), 2020.  

[23] SNOMED, SNOMED International Leading Healthcare Terminology, Worldwode, 2023. 

Retrieved from https://www.snomed.org/. [Accessed: 15-Feb-2023].  

[24] T. Bai and S. Vucetic, Improving medical code prediction from clinical text via incorporating 

online knowledge sources, in Proc. World Wide Web Conference, San Francisco, CA, USA, 

2019, pp. 72-82. 

[25] A. Sonabend W, W. Cai, Y. Ahuja, A. Ananthakrishnan, Z. Xia, S. Yu and C. Hong, Automated 

ICD coding via unsupervised knowledge integration (unite), International Journal of Medical 

Informatics, 139 (2020) 104135.  



29     Joshua Carberry and Haiping Xu 

 

[26] F. Teng, W. Yang, L. Chen, L. F. Huang and Q. Xu, Explainable prediction of medical codes 

with knowledge graphs, Frontiers in Bioengineering and Biotechnology,  8 (867) (2020) 1-11.  

[27] M. Zeng, M. Li, Z. Fei, Y. Yu, Y. Pan and J. Wang, Automatic ICD-9 coding via deep transfer 

learning, Neurocomputing, 324 (2019) 43-50.  

[28] T. Lin, P. Goyal, R. Girschick, K. He and P. Dollár, Focal loss for dense object detection, arXiv 

preprint, arXiv:1708.02002, 2018 

[29] C. Sun, X. Qui, Y. Xu and X. Huang, How to fine-tune BERT for text classification? arXiv 

preprint, arXiv:1905.05583, 2019. 


