2021 IEEE International Conference on Service-Oriented System Engineering (SOSE)

Cloud-Based Blockchains for Secure and Reliable
Big Data Storage Service in Healthcare Systems

Alvin Thamrin
Computer and Information Science Department
University of Massachusetts Dartmouth
Dartmouth, MA 02747, USA
athamrin@umassd.edu

Abstract—Due to regulations and policies enacted to protect
patients’ privacy, electronic health records (EHRs) must be kept
as sensitive information in a secure and reliable manner.
Maintaining EHRs by hospitals and safely sharing them with
others have proved to be challenging tasks. In this paper, we
introduce a cloud-based blockchain (CBC) approach to achieving
data accessibility, redundancy, and security for storing and
sharing EHRs. A lightweight CBC, called lite blockchain (LBC), is
designed to store EHRs’ metadata and text-based information
locally. Our approach allows for big data to be safely stored in
CBCs, and for information to be efficiently retrieved via LBCs. To
restrict and grant access of the data to authorized participants
only, we present our data security mechanism along with role-
based access control policies. The experimental results show that
our cloud-based blockchain approach is feasible and efficient for
accessing and sharing EHRs stored both locally and in clouds.

Keywords—Cloud-based blockchain, lite blockchain, electronic
health record (EHR), multimedia files, role-based access control

I. INTRODUCTION

Electronic health records (EHRSs) are defined as information
that is associated with regular patient data or as part of a clinical
trial program stored electronically in a digital format. These
records contain numerical data (e.g., heart rate and temperature),
diagnostic-related information (e.g., blood tests and genetic
tests), imagery (e.g., X-rays and CT scan), prescription data and
more. Such data are considered confidential, and thus must be
kept in a secure fashion. Accessibility must also be considered
when storing these data to avoid complications on future access
and data retrieval by authorized parties.

The blockchain technology provides a decentralized ledger
or storage scheme, where data can be stored and shared easily
among participants in a blockchain network. A blockchain
consists of a growing list of records, called blocks, which are
linked using cryptography and can record transactions between
two parties efficiently and in a verifiable and permanent way [1].
The blockchain technology can be adopted in healthcare
systems, where successful implementations ensure preservation
of medical history of patients, and would also allow doctors and
patients to easily share important medical data with each other
even in a cross-hospital setting [2]. Storing medical data in
blockchains, however, presents several problems related to
growth sustainability and data privacy.

A blockchain ledger generally only grows with data being
added to it and considered to be immutable. Reversing this
process to remove data in the blockchain is very difficult and
costly to all participants. Unfortunately, EHRs are typically

2642-6587/21/$31.00 ©2021 IEEE
DOI 10.1109/SOSE52839.2021.00015

81

Haiping Xu
Computer and Information Science Department
University of Massachusetts Dartmouth
Dartmouth, MA 02747, USA
hxu@umassd.edu

considered to be big data as some of them are recorded as
multimedia files including X-ray, CT scan, MRI, and ultrasound
videos. Placing such data into blockchains would generate bulky
block files, and disseminating these blocks to all participants in
the blockchain network is nontrivial due to the heavy strain on
participants’ bandwidth as well as memory and storage space on
their local machines. Thus, a common approach to this dilemma
usually involves the usage of an off-chain storage to store big
data, while using the blockchain to store metadata that is
significantly smaller in size to save space [3-4]. A more
challenging approach is to embrace the idea of putting big data
into the blockchain, so we can take advantage of the benefits of
using the blockchain technology such as immutability,
redundancy, and tamper resistance. However, issues related to
bulky blocks must be handled to ensure ease of synchronization
among participants in a blockchain network.

In this paper, we introduce a cloud-based blockchain (CBC)
approach along with a lightweight CBC, called lite blockchain
(LBC), to allow the storage of big data in blockchains for
healthcare systems. A CBC stores all EHRs including
multimedia files in the clouds, thus local memory and storage
space investment would not prove to be much of a challenge. On
the other hand, an LBC stores the same data as in a CBC except
the multimedia files. To make the multimedia files searchable,
their metadata are kept in the LBC. All regular peers of a
blockchain network incorporate the LBC locally, leading to a
better ease of synchronization and space upkeep on their local
machines. A regular peer can use the metadata stored in the LBC
to request the corresponding multimedia files stored in the CBC
via a super peer agent representing a healthcare organization.
Our approach involves multiple super peer agents, each of which
has a private cloud maintained by a cloud manager agent. This
results in multiple synchronized copies of the CBC stored in
multiple private clouds, leading to increased redundancy and
resilience against scenarios such as tampering and loss of data
that are ever present when data is stored in clouds [5].

Another challenge in this research is to ensure data security.
Since EHRs are sensitive information, it can only be accessed
by those with proper credentials. Therefore, storing EHRs in the
blockchain without any form of access control and encryption is
forbidden, as it violates patient privacy laws such as HIPAA. In
response to this concern, we utilize public and private key
schemes, alongside role-based access control (RBAC) policies
to restrict access to data stored in the blockchains either locally
or in the clouds. In this manner, we are able to achieve
accessibility, redundancy, and security for all EHRs stored in
blockchain-based healthcare systems.

II. RELATED WORK

The blockchain technology is one of the contemporary
innovations that have been growing in popularity in many
applications including secure storage of EHRs. In the healthcare
domain, there has been a pressing need to have an effective
framework to store and share these medical records online.
Oliveira et al. proposed a blockchain-based approach to storing
and sharing electronic medical records [6]. In their approach,
medical records are encrypted before they are stored in the
blockchain and the keys are shared between the patients and
their trusted healthcare workers. Alexaki et al. described a
similar approach to using blockchain to enable the sharing of
medical data between healthcare providers, while respecting the
patient privacy and preserving the data’s integrity [7]. They
presented a conceptual medical record access and sharing
mechanism and showed that their approach was suitable for
regulated healthcare jurisdictions. Zhao et al. proposed a key
management scheme using a body sensor network to secure data
in a health blockchain [8]. They utilized biosensor nodes to
collect physiological data for generating and recovering the keys
used to encrypt and decrypt medical data stored in the
blockchain. Rui and Xu recently introduced a novel blockchain
framework to publish time-sensitive healthcare information
such as COVID-19 cases and testing records [9]. They used
temporary blocks to facilitate timely publication of new medical
records, and then combined them into a permanently published
block. Although the above methods addressed the security
concerns or efficiency issues in storing medical data in
blockchains, they did not provide the needed solutions to storing
big data in blockchains in a reliable and secure manner. For
example, the work presented in [6] mentioned storing only the
hash values of large medical records into the blockchain without
detailing on how to effectively store the data themselves. It
should be noted that storing big data in blockchains would cause
maintenance and scalability issues due to the storage of
numerous large medical records. In our approach, we use CBCs
to store large medical records in private clouds, while utilizing
its lightweight counterparts, the LBCs, to maintain and store
text-based information and metadata of the medical records.

There have been studies that address the challenges of using
blockchain approaches to storing big data including images and
videos. However, those studies generally utilize off-chain
methods to store big data instead of on-chain solutions. Kumar
and Tripathi proposed an InterPlanetary File System (IPFS)
based storage model to store large transactions using their hash
values to reduce the size of each block in a blockchain [10]. The
complete transactions that contain image files, are stored in the
IPFS, while the blocks in the blockchain only include the
returned IPFS hash of the transactions to save space. This work
is further expanded in [4], where the authors proposed a similar
approach using blockchain and IPFS to store and share patient
diagnostic reports. In their design, actual patient reports are
stored in a distributed off-chain storage using IPFS, while the
blockchain only stores hashes of reports. Wang and Song
proposed a secure EHR system using attribute-based crypto-
system and blockchain technology to secure medical data stored
in the cloud [11]. Similar to other off-chain approaches, large-
scale medical data are stored in the cloud and the blockchain
only stores the metadata of EHRs. Different from the above
methods, our approach stores all EHRs, with the inclusion of

82

multimedia files, in CBCs. The LBCs, which contain the
metadata of these EHRs, can be used to search for all EHRs
including the multimedia files stored in CBCs. Thus, unlike the
existing off-chain approaches, our approach preserves the
benefits of data immutability, integrity, and availability that
come with the blockchain structure for all medical data.

Additionally, there are studies that discuss how to use the
access control mechanism in a blockchain framework to restrict
access of sensitive information to authorized parties only. Guo
et al. proposed a hybrid architecture of using both blockchain
and edge nodes to facilitate attribute-based access control of
EHR data [12]. They used smart contracts provided by the
Hyperledger Composer Fabric framework to enforce access
control of EHR data stored in the off-chain edge nodes. Their
work has been further developed to make up the lack of
encryption for data stored in the edge nodes [13]. The authors
utilized multi-authority attribute-based encryption (ABE)
scheme to encrypt EHR data stored in the edge nodes and
attribute-based multi-signature (ABMS) scheme to authenticate
user signatures that are integrated with the smart contracts used
to enforce the access control policies. Nguyen et al. utilized a
smart contract on an Ethereum blockchain to design an access
control mechanism on managing user access to ensure efficient
and secure EHRs sharing on mobile devices [14]. Similar to the
above approaches, the access control mechanism adopted in the
proposed design is too general and broad to handle different
medical providers. This proved to be problematic as hospitals
may have their own access control policies to follow. In contrast,
our approach specifies hospital-wide RBAC policies, restricting
the access permissions of users registered with different
healthcare providers, on information stored in the blockchains.
The RBAC polices are enforced by multiple super peer agents
and cloud manager agents, who represent different healthcare
organizations. Note that in our approach, the RBAC polices are
stored in the blockchain and can be updated by storing new
policies in a new block of the blockchain. Thus, our RBAC-
based approach is a more comprehensive and reliable one that
enforces access control based on different hospital-wide policies
stored and accessed in the blockchains.

III. A FRAMEWORK FOR CLOUD-BASED BLOCKCHAINS

Let the length of a CBC and its lightweight version LBC be
h. A cloud-based block CB; and a lite block LB;, where 1 <i<h,
contain identical core healthcare information such as medical
data, user information, and access control policies. The main
difference between them is the exclusion of multimedia files,
such as MRI scan image and ultrasound video, in LB; for the
purpose of saving storage space on local machines. This allows
end users to retrieve any contents stored in a CBC via a LBC on
their local machines.

The participants of the blockchain network include regular
peer agents [Sreps, super peer agents fsups, and cloud manager
agents Scrus. In the context of the healthcare domain, Sreps are
software agents representing doctors, nurses, and patients, who
are end users of the blockchain network. Participants fSsups are
defined as software agents with the authority to create and vote
on a new block. An agent fSsup represents a hospital, and only
one fsup per hospital is allowed in the network. A participant
Py is a software agent, who maintains a private cloud owned
by a hospital represented by a Bsup. Agents Brers and Bsups are

permitted to have a copy of the LBC, while each ¢z manages
a copy of the CBC. Fig. 1 shows an example of their
relationships in a blockchain network. In the figure, hospital 4
is represented by super peer agent Ssup 4, Who communicates
with regular peer agents Srep 1 and Srep 2, representing doctors,
nurses or patients employed or enrolled in hospital 4. Software
agents frep 1, Prep 2 and Psup 4 are also connected to their
hospital’s private cloud, i.e., PrivateCloud A, managed by
cloud manager agent fcry 4. Agent Sy 4 enables access to any
EHRs, with proper permission, that are stored in its CBC.
Agents fsups, representing different hospitals, can directly
communicate with each other in a consensus process to decide
whether a new block can be added to the blockchain. During the
consensus process, a new cloud-based block CB;+1 containing
selected records needs to gain a majority approval from the
agents fsups. If CBy+1 is approved, the new block is broadcast to
all fcrus to be added to their CBCs. Meanwhile, a lite block
LBy derived from CB+1 is broadcast to all Sreps and Ssups to be
added to their LBCs.

> Hospital A_ | {TT Hospital 8
PrivateCloud_A)¢—» LBC LBC <«—»(PrivateCloud_B
Bery a Berv e
CBC CcBC

. i .
BrEP_2 ' 5-’*"-:/'

BREP 5 / Bsup_ : Bsup_o I
PrivateCloud_C)€ YC_D'8BC

: LBC € > PrivateCioud_D
Benn o Bupn's : Ber o !
cBC Hospital C~ “Hospital D CBC

Fig. 1. Relationship between participants in the blockchain network

In our approach, regular peer agents Srzps communicate with
their respective fsup and fciyv to access data stored in the
blockchains as well as to submit new records. An agent Srep is
required to get permission from its fsyp to access a patient’s
information. The Ssyp will either approve or reject said
permission based on the established access control policies. If
approved, frep is granted access to view and retrieve any stored
EHRs regarding said patient. If the information in question is
text-based, frep can retrieve it directly from its LBC. Otherwise,
if the information includes multimedia files, Ssup sends the
metadata of the multimedia files to fciu, then Seras extracts the
files from its CBC and sends fSrep the links to download the files.
Note that any sensitive data, including EHRs, stored in the
blockchains are in ciphertext form and can only be accessed by
authorized parties. In addition, while not shown in Fig. 1, Sreps
can also communicate with each other to synchronize their
LBCs via the peer-to-peer (P2P) network.

As examples of some general rules, patients are only allowed
to access their own EHRs, while doctors can access multiple
patients’ EHRs within the same hospital. Super peer agents Ssups
implement and enforce access control policies, which dictate the

83

data that each regular peer is allowed to access. An agent Ssup
also manages EHRs submitted by fSreps and places them into a
new block. The new block then undergoes a consensus process
to determine whether it can be added to the blockchain. Data
stored in the blockchain are considered immutable and serve as
permanent records for patients, who may registered with one or
more hospitals in the blockchain network.

IV. BLOCK STRUCTURE IN A CLOUD-BASED BLOCKCHAIN

In this section, we define the structure of a block in a CBC.
Since an LBC is a lightweight CBC, a lite block shares the
similar structure of a cloud-based block.

A. Block Record Types

There are three different types of block records that can be
stored in a CBC or LBC block, namely a user profile Rupz, a set
of access control policies R4cp, and a medical record Rugr
resulting from a doctor’s visit. An Rypg contains the user account
information of a regular peer agent Srep that participates in the
network, which is defined as a 6-tuple (ID, NM, PRK, PUK,
SEK, TS), where ID is a unique user identification in the
blockchain network; NM is the full name of the end user
represented by Srep; PRK and PEK are a pair of frep’s
asymmetric keys; SEK is a symmetric key of frep; and TS is the
time when the record is created. The key SEK is stored in
ciphertext E(SEK, PUKsup), encrypted using the public key
PUK;up of agent Bsup, who represents the hospital that frzp has
registered with. An Rypr is created when a new participant joins
the network or when an existing user profile is updated.
Therefore, an agent Srzp may have multiple Rypg records in the
blockchain, but only the most recent one is valid.

An R4cp contains a set of access control policies that must be
followed by participants in the network. R4cp is defined as a
triple (PO, HO, TS), where PO is a set of access control policies;
HO is the name of the hospital where the policies need to be
enforced; and 7 is the time when the policies are created. An
Rucp 1s created when a hospital establishes its access control
policies or when the policies are updated. Therefore, each
hospital may have multiple R4cp records in the blockchain, but
only the most recent one is valid.

An Ryzr contains the text-based medical reports of a patient
and the metadata of the associated multimedia files resulting
from a doctor’s visit. Ruyzr is defined as 6-tuple (IDS, HO, TXD,
MMD, TS, INL), where IDS are the identifications of the patient,
nurse, and the doctor who are involved with the doctor’s visit;
HO is the name of the hospital where the doctor’s visit occurs;
TXD includes a short summary of the visit and the text-based
medical reports; MMD is the metadata of the multimedia files,
which includes a description of the multimedia files, the starting
location of the actual multimedia file stored, and the sizes of the
multimedia files; 7S is the time when the record is created; and
INL is the index link that points to the nearest previous block
that contains an Ryzr of the same patient. Using the index link,
all medical records of a patient are linked together as a singly
linked list to facilitate efficient information retrieval of the
patient’s EHRs. To ensure data security, Ryzr must be encrypted
using the patient’s symmetric key SEK stored in the patient’s
latest Rypr, where SEK is managed by a corresponding Ssup.
Note that it is possible the MMD section in an Rygr is empty if
the record Ryzr only contains text-based information.

B. Block Structure and Block Generation

A cloud-based block consists of three components, namely
the regular component 4, the multimedia component B, and the
verification component C. Fig. 2 shows an example of a new
cloud-based block CBj+1, where £ is the length of the current
blockchain. Component A4 contains the block header and the
block records; component B holds the actual multimedia files
compressed together with their metadata recorded in component
A; and component C contains the hash value of component 4,
i.e., hash(LBy+1), the hash value of component 4 and B, i.e.,
hash(CBy+1), and a list of digital signatures ds[CBj+1], , where
each peer v is an agent fsup Who approves CBy+1 during the
consensus process. The block header in component A4 contains
the hash value of its previous block CBj, namely hash(CB;), as
well as hash(LB;) of the last lite block in a LBC, the timestamp
when the new block is created, the block ID, and the length 4 of
the current blockchain. The block records section contains any
number of block records including user profile Rypr, access
control policies R4cp, and medical records Ryer.

hash(CB,) | | hash(LB) ||T1meStamp| | Block ID | |CBC Length: h

Component A

Block Header

Block Records

User Profiles Medical Records

l’?yFP_mlfl Race 1 | = IR,:cc_n :|

| Ruer_1

Ruer 1 | | Ryer | |

Multimedia File 1 Multimedia File k

Component B

V:omponent c

Fig. 2. The structure of a cloud-based block CB)+;

hash(CBp+1) || hash(LBp+1) ||ds[CS,,,,j,hst|

Algorithm 1 shows how a new cloud-based block CBj-+1is
generated by super peer agent fSsup ¥. According to the
algorithm, agent ¥ first creates an empty cloud-based block
CBj+1. It then adds the hash values hash(CB)) and hash(LB), the
time stamp, the block ID, and the current blockchain length % to
the block header of component 4 in CBy.+1. After that, it encrypts
each multimedia file x using the patient’s symmetric key and
adds them to component B of CBy+1. The location and the size
of each encrypted multimedia file x are recorded and added to
the metadata of the multimedia files in medical record Ryr. For
each block record ¢ in the record list E, ¥ processes it according
to its record type and adds it to the block records section in
component 4 of CBj+1. The symmetric key SEK of a regular peer
is used to encrypt the block record ¢ that belongs to the regular
peer. Note that items in Rypr must be encrypted individually, so
SEK can be encrypted differently using the public key of ¥ to
make it available to ¥. Finally, ¥ calculates the hash values
hash(CBy+1) and hash(LBj+1), uses hash(CBy+1) to create the
digital signature ds[CBj+1]w, and adds all these elements to
component C of CBj+1.

Once CBj+ has been created, a new lite block LBj+; can be
generated from CBj+1 by removing its component B. In other
words, LB+ is simply a copy of CBy+1’s components 4 and C

84

as illustrated in Fig. 2. This allows a regular or super peer agent
to store its own copy of LBC without having the need to store
the multimedia files. Since component B is not included in lite
blockchains, validation of a lite block LB only requires the
calculation of LB’s hash value and comparing it with the stored
hash value hash(LB). As each lite block records the hash value
of its previous lite block, the lite blockchain is a self-contained
blockchain for verification and information retrieval.

Algorithm 1: Generating a New Cloud-Based Block by fsup ¥

Input: A list of block records = containing records Rurr, Racp and
RuEr, a list of multimedia files @, and the most recent cloud-based
block CB in the blockchain.

Output: A new cloud-based block CBp+1 digitally signed by ¥

1. Create an empty cloud-based block CBi+1

2. Verify and add hash(CBx), hash(LBn), time stamp, block ID, and
current blockchain length / to the block header of CBp+1

3. for each multimedia file « in the list @

4 Encrypt « and add it to component B of CBx+1

5. Calculate the location and size info of k in B of CBi+1

6. Add the above info to the corresponding Ruer. MMD

7. for each block record ¢ in the list of records =

8. if g is an Ruer

9. if .SEK is null // a new user

10. Generate ¢.SEK and encrypt it using the public key of ¥
11. Encrypt other elements of ¢ and add them to 4 of CBi+1

12. elseif ¢ is an Racp

13. Add it to component 4 of CBi+1

14. elseif ¢ is an Ruzr

15. Encrypt ¢ and add it to component 4 of CBi+1

16. Calculate hash(CBn+1) and hash(LBn+1), add them to C of CB+1
17. Create digital signature ds[CBui+1]w using hash(CBn+1)

18. Add ds[CBu+1]¥ to the ds[CBn+1]v list in C of CBi+1

19. return CBp+i

V. DATA SECURITY AND THE CONSENSUS MECHANISM

A. Role-Based Access Control Policies

There are numerous regular peers participating in the
blockchain network, who take different roles such as doctors,
nurses and patients. It is critical to specify the appropriate
permissions for each role to access the health records stored in
blockchains and protect them from being exposed to
unauthorized access [15]. In this paper, we define RBAC
policies to enforce what data that regular peers, based on their
credentials, can access. A regular peer agent frer, Who
represents an end user, must seek permission from a super peer
agent fsyp for access to sensitive data, as a regular peer agent
cannot be trusted to always follow the established policy on its
own. Hence, an agent Ssup is responsible for the implementation
and enforcement of access control policies for its represented
hospital. Note that an agent fsyp enforces the access control
policies for both EHRs’ text-based information stored in its LBC
and multimedia files that can be found in the CBC. A regular
peer agent receives permission in the form of a token that is
necessary to have in order to access a patient’s EHRs stored in
the blockchains.

Since there are multiple hospitals in the blockchain network,
and each policy record R4cp is a hospital-wide one, a policy
record that is applicable to a certain hospital may not be
applicable to another one unless it is otherwise specified. Hence,

a policy record for a hospital would typically apply to doctors,
nurses and patients who are registered with the hospital. Each
policy written in a policy record R4cp consists of the following
required fields:

= Hospital: One or more hospitals that the policy applies to. All
involved peers who take the roles in the policy must be
registered ones with the specified hospitals.

= Role: The roles that one or more regular peers can take.

= Summary: A short description of an access control policy.

= Type: A policy of operation type specifies a permission of a

regular peer to perform a task, while a policy of relationship

type specifies the relationship among multiple regular peers.

Condition: The requirements for a permission to be approved

or a relationship to be established.

= Conclusion: The permission to be granted or the relationship
to be established when all conditions are met.

In the following, we show a few examples of RBAC policies
that are specified for hospitals H; and H,.

policy PL1 {
hospital: H1
role: patient (Patient P)
summary: Peer with a patient role can access its own medical information
type: operation
condition: [Patient P is a registered patient in hospital H1]
conclusion: Patient P is allowed to access Patient P’s information in Hx.
}
policy PL2 {
hospital: H1
role: doctor (Doctor D), patient (Patient P)
summary: Peer with a doctor role can access its patients' medical information
type: operation
condition: [Doctor D is a registered doctor in Hi1] && [Patient P is a registered
patient in H1] && [Doctor D is recognized as Patient P’s doctor]
conclusion: Doctor D is allowed to access Patient P’s information; Doctor D is
allowed to submit Patient P’s new medical information.
}
policy PL3 {
hospital: H1
role: doctor (Doctor D), patient (Patient P)
summary: Doctor D is the family doctor of patient P in hospital H1
type: relationship
condition: [Doctor D is a registered doctor in Hi] && [Patient P is a registered
patient in H1]
conclusion: Doctor D is recognized as Patient P’s family doctor
1
policy PL4 {
hospital: H1, H2
role: doctor (Doctor D), patient (Patient P)
summary: Doctor D (in Hi) is the referral doctor of patient P (in Hz)
type: relationship
condition: [Doctor D is a registered doctor in Hi1] && [Patient P is a registered
patient in H>] && [Expiration date is 01/02/2023]
conclusion: Doctor D is recognized as patient P’s referral doctor

}

Policy PL1 dictates that a peer with a patient role can access
a patient’s information only if the peer agent is requesting the
peer’s own information. This policy involves only a single
patient as stated by the role component. Policy PL2 dictates that
a peer with a doctor role can access a patient’s information only
if the peer is recognized as a family doctor of the patient and if
the peer is the current family doctor of the patient. This policy
involves a single patient and a single doctor as stated in the role
entry. Policy PL3 establishes the relationship between patient P
and doctor D in hospital Hi. Doctor D is recognized as a family

85

doctor of patient P, and this relationship is a necessary
requirement for other policies that involve doctor D and patient
P, i.e., doctor D accessing patient P’s information. Policy PL4
establishes another type of relationship between doctor D from
hospital H; and patient P from hospital H>. This policy
establishes doctor D as a referral doctor of patient P with a
specified expiration date. The policy is considered invalid once
the time has passed the expiration date, and this in effect gives
doctor D a temporary status as patient P’s doctor.

B. Data Encryption and Decryption

Medical records, especially those stored in plain text form in
the blockchains run a high risk of having their confidentiality
compromised [2]. Thus, all EHRs must be properly secured
before they are stored in the blockchains. To this end, we adopt
asymmetrical keys and symmetrical keys for user identification
as well as data encryption and decryption. Every participating
regular peer agent is assigned a pair of public and private keys
stored in its Rypg, as described in Section IV.A. These keys are
responsible for providing identification via digital signature to
other peers in the blockchain network. Every regular peer has a
symmetric key SEK stored in its Rypg. This key is considered as
the secret key used to encrypt and decrypt any data owned or
generated from said peer. As mentioned earlier, this key is
encrypted by a super peer agent’s public key. A regular peer
agent must make a request to its super peer agent for the
permission to unlock and use this key.

Note that to keep the symmetric key as a secret, it can only
be handled by a software agent, who shall never present the key
to any end user. Fig. 3 shows the procedure where software
agent Srep 1 (e.g., a doctor’s agent) requests the symmetric key
SEKrep 2 of Prer 2 (e.g., a patient’s agent) and any optional
multimedia files from super peer agent fSsup 4.

% A

Agent Brep 1 Local agent Bsyp_a Agent Beru 4
......... Roquesh SEMRER2. ..o
Checks R4cp for access permission
‘," If yes, retrieves E(SEKgep 2. PUKsyp 4
.. Reconfigures E(SEKgep . PUKsyp
10 E(SEKgep 2 5
P y E(SEKrep 2, PUKgep)
Returns the token i Passes e key rep_2 PUKRep_
B LT LLEETERE R EEEREEE to a token
‘\.Decr,'pls E(SEKgep 2. PUKgep 1+
and obtains SEKgep 2
T | | Muttimedia file is needed]
~—/ Requests multimedia file
s, Checks Rycp for access permission
‘.‘ If yes, retrieves the relevant metadata
Passes the metadata of multimedia file
Locates and extracts the file -~
from the specified block
Passes a temporary download link of the extracted file
@-creeeremcecccscccccnccseneeneefedieeci e cereceeecceecneeecneeaaaand
» Decrypts the file using SEKgep »
»

Fig. 3. Retrieval of SEKgp > and multimedia files by agent frep 1

The process starts when regular peer REP_1 needs to access
regular peer REP_2’s medical information. This results in frzp 1
making a request to Ssyp 4 for the permission to use SEKrzp ».

Agent fsup 4 consults the access control policy written in Rycp
from Bsup 4’s LBC. If approved, fSsup 4 retrieves the encrypted
key E(SEKrep 2, PUKsup 4) from REP 2’s Rypr stored in the
LBC. This key is then decrypted and re-encrypted using frep 1S
public key PUKgep 1| into E(SEKrep 2, PUKgep 1) and is passed
into a token. This token is returned to frep 1, where the
encrypted key is then decrypted into SEKgep 2. In a case when
Prep 1 also requests to access frep 2’s multimedia file, Ssup 4
retrieves the metadata of the multimedia file from its LBC and
sends it to the cloud manager agent Scra 4. Agent Bcry 4 eXtracts
the multimedia file from its CBC and sends a temporary
download link of the multimedia file to Srep 1 for access. Note
that the multimedia file is encrypted using symmetric key
SEKgep 2. Since frep 1 has already received SEKgep 2 from
Psup 4, Prep 1 can immediately decrypt the multimedia file and
present it to the end user represented by agent Srep 1.

To showcase how we use these key schemes and the access
control policies, we now discuss several typical scenarios.

Scenario 1: Patient REP 2 (represented by regular peer
agent frep 2) visits doctor REP 1 (represented by regular peer
agent frep 1) for a yearly medical checkup at hospital 4
(represented by super peer agent Ssup 4). This results in several
medical data being generated, such as MRI, X-ray, CT scan,
ultrasound video, and a doctor’s report. Doctor REP 1 and
patient REP 2 both verify all the generated data before sending
them to fsup 4. When agent Ssup 4 receives the data, it creates
medical record Raer, and places Ruyzr and the multimedia files
into a list of block records and a list of multimedia files,
respectively, for being included in a new cloud-based block.
Note that according to Algorithm 1 (lines 3-15), when the new
cloud-based block is generated, both the multimedia files and
Ruer need to be encrypted using SEKgep o, retrieved from the
encrypted key E(SEKrzp 2, PUKsup 4) stored in fSsup 4’s LBC.

Scenario 2: Doctor REP 1 is a family doctor of patient
REP 2 at hospital A, who needs to retrieve a medical report of
REP 2 stored in the LBC. Agent frep 1 first sends its credential
to super peer agent fsup 4 for the permission to retrieve REP_2’s
symmetric key SEKgep 2. A similar process shown in Fig. 3 up
until the opt section then occurs. A token containing SEKggp » is
sent to agent frep 1 allowing it to decrypt and access the medical
report of REP_2 stored in the LBC.

Scenario 3: Doctor REP_1 from hospital 4 needs to access
a multimedia file that are generated during patient REP_2’s visit
at hospital 4. Similar to Scenario 2, fgrep 1 first sends its
credential to super peer agent Ssup 4 for the permission to view
REP 2’s medical information. If REP 1 has the needed
permission, it receives symmetric key SEKgzgp 2 allowing it to
retrieve REP 2’s medical records in LBC. However, since the
multimedia file is stored in CBC rather than LBC, fsup 4
retrieves the metadata of the multimedia file from its LBC, and
sends it to the cloud manager agent fciy 4. As shown in Fig. 3,
Pcum 4 extracts the file from its CBC based on the given
metadata. A temporary link is then created and passed back to
Prep 1. Agent Prep 1 can then use the link to download the
multimedia file from the cloud, and decrypt it using SEKzep ».

Scenario 4: Doctor REP 1 from hospital 4 refers patient
REP 2 to doctor REP 3 from hospital B. Agent Srep 1 makes a
request to its local agent fSsup 4 to allow doctor REP 3 from
hospital B to access patient REP 2’s medical records. This
involves Srep 1 sending a new access control policy to Ssup .

86

The super peer agent Ssup 4 verifies the new policy and submits
a new block record R4cp for approval by the consensus process.
Once the new access control policy is approved and added to the
blockchains, agent Srzp 3 has the necessary credential to make a
request to Ssup 4 to access REP_2’s information. Note that Szep 3
must make a request to fsup 4 instead of its own super peer agent
Bsup s to retrieve the symmetric key SEKgep 2 as the symmetric
key is encrypted using PUKsup 4.

C. The Consensus Process

The consensus process in our approach requires a majority
approval from the super peer agents participating in the
blockchain network. Let 4 be the total number of super peer
agents participating in the network, and the number of super peer
agents required to approve a new block is 4/2, excluding the
block announcer — the super peer agent who initiates the
consensus process by broadcasting a new block to the rest of the
super peer agents. We call the block announcer the primary
super peer agent or Ssup p (denoted as ¥0). Fig. 4 shows an
example of the consensus process with three super peer agents,
PBsup p (P0), fsur 1 (P1), and fsup 2 (P2). In this example, each
super peer agent represents a hospital, which has a private cloud
managed by a cloud manager agent, and a regular peer agent
registered with the hospital. The three hospitals are Hospital 0
(Y0, Bcimo, Prepo), Hospital 1 (Y1, Bcim 1, Prep 1), and
Hospital 2 (¥2, ﬁCLMJr ﬁREPfZ)-

Verification & Collection &

: Block
Initial Verification . . .
’ : : Approval (V&A) : verification (C&V):

. Announcement

BN

Notification
Bsup_p
(¥0)

BeLm_o

Brer_0

Bsup_1
¥1)

Beim_1

Brer_1

Bsup_2
(¥2)

Bewm 2

Brer_2

Fig. 4. An illustration of the consensus process

According to Fig. 4, the consensus process is divided into
five phases, namely Initial Verification, Block Announcement,
Verification & Approval (V&A), Collection & Verification
(C&YV), and Notification. Initially, a primary super peer agent
Bsup p (P0) creates a new cloud-based block CBj+1 and signs the
block with its digital signature ds[CBj+1]w. This block is sent
first to the cloud manager agent Scu o for verification purposes
in the Initial Verification phase. During this stage, fcru o checks
CB+1’s integrity by verifying the signature ds[CBj+1]wo. If any
fault is found, fciy o informs Y0 of the error and aborts the
process. Otherwise, fciy o informs P0 to proceed. Agent ¥0
then generates a lite block LBj+1 from CBj+1 and checks its
validity. Agent Y0 announces CBj+1 and LBj+1 to Ssup 1 (1) and
Bsup 2 (P2) for downloading during the Block Announcement
phase. In the V&4 phase, agents ¥1 and ¥2 send CBy+ to their

own private cloud manager agents, fciy 1 and Scra 2, where a
similar process in the Initial Verification phase occurs. If no
error is detected, Y1 and Y2 create their digital signatures,
ds[CBy+1]y and ds[CBj+1], respectively, and send them back
to P0. Inthe C&V phase, Y0 waits for digital signatures sent by
?1 and ¥2 and verifies them when received. If a digital signature
is valid, Y0 adds it to the list of digital signatures ds[CBj+1]iist.
When Y0 has collected at least A/2 valid digital signatures, it
sends them to ¥1 and %2 in the Notification phase. Upon
receiving the list of digital signatures, all super peer agents add
it to their copies of CBy+ and LBy+1. The completed CBj+1 and
LBj+1 can now be added to their CBCs and LBCs, respectively.
Afterwards, all super peer agents broadcast the completed LB+
to their respective regular peer agents Srer o, frep 1, and Srep 3
for LBC updating.

VI. CASE STUDY

To demonstrate the feasibility and efficiency of our proposed
approach, we conduct experiments to simulate cloud and lite
blockchains and evaluate their performance. The experiment
environment consists of multiple identical computers connected
under the same domain network. The computer specifications
are Intel® Core™ i7-6700k CPU @ 3.40GHz (4 CPU Cores);
16 GB RAM, Windows 10 OS (64-bit, x64-based processor);
and 512GB SSD Hard Drive. The domain network used in this
case study has a recorded speed of 680 Mbps.

A. Block Sizes of CBCs

Large sizes of cloud-based blocks present major challenges
for maintaining CBCs in the clouds. In this experiment, we
generate dynamic numbers of blocks per day based on the
number of patient visits to a simulated hospital during that day.
The frequencies of such visits are randomly generated with a
range of [1, 1000]. A patient’s visit results in generating EHR
that contains text-based information and optionally multimedia
files such as images and videos. We assume for each patient’s
visit, in addition to text-based reports, there is less than 10%
probability of producing 1 to 10 image files (e.g., X-ray images)
and less than 10% probability of producing 1 to 4 video files
(e.g., ultrasound videos). We also assume that the size of a high-
quality image file is about 1-4 MB, a high-quality video file is
about 10-50 MB, and a text-based report is about 3-7 KB. Fig. 5
shows the sizes of cloud-based blocks that can be generated
during a day under the above settings. In the figure, we compare
our dynamic approach with two simple approaches, namely
“One Block” approach that stores all data generated by patients
during a day in a single block, and “Two Blocks” approach that
divides generated patients’ data into two blocks. Only one single
consensus process per day is required for each hospital under the
“One Block” approach; however, the size of the resulting block
may go over 6GB when the number of patient visits reaches
1000. Similarly, under the “Two Blocks” approach, two
consensus processes per day are required for each hospital;
however, the size of the resulting block may still go over 3GB
when the number of patient visits reaches 1000. To further
reduce the sizes of cloud-based blocks, in the third approach, we
generate dynamic numbers of blocks per day based on the
predicted number of daily patient visits. When the number of
patient visits is less than 200, we create one block, and we create
two blocks when the number of patient visits is between 201 to

87

400, and so on. When the number of patient visits reaches 1000,
we generate up to 5 blocks per day. From the figure, we can see
that we are able to keep a consistent block size of around 1 GB
with the cost of increased number of blocks per day when the
number of patient visits is high. However, this is well worth the
tradeoff as the cloud-based blocks become much easier to be
maintained in the clouds and accessed by the regular peers
within the blockchain network.

8
*+ One Block

- Average (One Block)

« Two Blocks « Dynamic Blocks

—— Average (Two Blocks) —— Average (Dynamic Blocks)

7

6

Block Size (GB)
IS

400

500 600 900 1000

Patient Visits During a Day

Fig. 5. Cloud-based blocks generated during a day

B. Search Time in an LBC

As defined in Section IV.A, index link Ryer.INL allows all
Ruer that belong to the same patient to be linked together. In this
experiment, we show the index links greatly shorten the search
time for a particular patient’s EHRs in an LBC when multiple
years EHRs are searched. This experiments are designed to
search for patient’s text-based information in a simulated LBC
containing 10 years’ worth of patient’s information. We conduct
multiple experiments, with each having 10 super peer agents
participating in the blockchain network. Each super peer agent
represents a small, medium, or large hospital in the network,
which has a range of [1, 100], [1, 500], and [1, 1000] daily
patient visits, respectively. We record the average search time
vs. the maximum number of years searched in each experiment.
To compare our index-link-based approach with multi-threaded
sequential searches, we show the experimental results together
as in Fig. 6. The figure shows the average search time for all
EHRs of a random patient in respect to the number of most
recent years to be searched. From the figure, we can see our
index-link-based approach outperforms the sequential search
approaches for average search time. The sequential search
approaches use 4, 8, and 16 multiple threads to allow faster
search time; however, the average search time of those
approaches increases dramatically when the number of search
years increases due to the limited number of available CPU
cores on each computer and the usage of the same hard disk to
store all blocks of a LBC. In contrast, the index-link-based
approach uses only a few seconds to search for all relevant EHRs
that belong to a patient. To achieve this high performance, we
also conduct a one-time full pre-scan to build a separate index
file that records the ID of the block that contains a patient’s latest
Ruyer. Note that the full pre-scan only needs to be performed
once, and after that, an update can be done when a new block is
added to the blockchain.

4 Threads 8 Threads 16 Threads ® Index Link

Average Search Time (s)

|
1
- ‘ = « J - -

10 | ‘

0 —— - o
15 2 3 5 7 10

Maximum Number of Years Searched
Fig. 6. Average search time for patient's information in an LBC

C. Retrieval Time of Multimedia Files in a CBC

In this experiment, we record and analyze the retrieval time
of multimedia files from a CBC. The retrieval time includes the
time needed to extract multimedia files from a CBC, download
the files from the cloud, and decrypt the files by a regular peer
agent. We adopt the same experiment settings as in Section
VIL.B. Table I shows the average number of blocks where
multimedia files are found for a typical patient during a certain
number of years. The table also shows the upper range of the
number of blocks containing multimedia files with 95% of the
patients within the range, as well as the average total size of all
multimedia files for one patient during a number of years.

TABLE I. NUMBER OF BLOCKS AND AVERAGE SIZES VS. NUMBER OF YEARS

Average num‘_bgr of nﬂggg?ﬁ%&iﬁt&ih Average total size

Max years | blocks containing S of multimedia files
multimedia files multimedia ﬁ les for (GB)

95% patients

! 1.17 3 0.192
2 2.38 5 0.302
3 3.71 7 0.437
4 4.76 8 0.537
5 6.02 10 0.685
6 7.20 11 0.767
7 8.50 12 0815
8 9.56 14 0.899
9 10.84 15 0.973
10 12.12 17 1.088

Fig. 7 shows the average time needed to retrieve a patient’s
multimedia files from the cloud based on the upper range of the
number of blocks containing multimedia files with 95% of the
patients within the range, as shown in Table I. In the experiment,
a super peer agent fsyp first collects the metadata of the
multimedia files from a varying number of patient REP 2’s
Ruers stored in the respective blocks. It then sends the set of
metadata along with the credential of the requesting agent Srep 1
(e.g., an agent representing a doctor) to the cloud manager agent
Pcrm. If permission is granted by agent Scra, Perm extracts all
requested multimedia files from its CBC and sends the
temporary download links of the files to frep 1 for file
downloading. Finally, the downloaded multimedia files are
decrypted by frep 1 and presented to the end user REP_1. The

88

above processes are timed under the “Extract”, “Download”,
and “Decode” sections in Fig. 7. We can see that with a typical
worst case with 20 blocks containing multimedia files, the
average retrieval time is 22 seconds, which is acceptable. In
addition, we notice that the most significant portion of the
retrieval time is to download the multimedia files, which can be
improved by having a better network bandwidth.

25

—@—Total =@ Extract

Download Decode

10

Average Retrieval Time (s)

0 ———a————a————————a—4 —

0 2 4 6 8 10 12 14 20

Number of Blocks Containing Multimedia Files
Fig. 7. Average time to retrieve a patient’s multimedia files from the cloud

D. Consensus Latency

In our last experiment, we measure the performance of the
consensus process based on the number of super peer agents
participating in the blockchain network. The timing of this
consensus process begins when the primary super peer agent ¥0
verifies and digitally signs a new block in the Initial Verification
phase, and ends after Y0 sends the list of digital signatures to all
other super peer agents as well as P0’s regular peer agents in the
Notification phase. To simplify matters, the timing does not
include the amount of time used by other super peer agents to
notify their respective regular peer agents to update their
blockchains. As shown in Fig. 8, we test the consensus process
using fixed block sizes of 0.5GB, 1GB, 1.5GB, and 2GB. We
can see that the average consensus time increases faster for a
new block with a larger size. This is due to more disseminating
time required to share a larger block with other participants in
the blockchain network. Furthermore, in all cases, the average
consensus time increases significantly when the number of
participating super peer agents also increases. While not shown
in Fig. 8, the timing of the consensus process includes the time
for broadcast, file downloading, and block verification. The
broadcast part involves the time for the exchange of notifications
and digital signatures between ¥0 and other super peer agents.
The file downloading part involves the time needed for all super
peer agents to retrieve the new cloud-based block from ¥0’s
private cloud to their own respective private clouds. The block
verification part involves the average time taken for a super peer
agent to verify the validity of a new block. The main reason as
to why the consensus time seems to increase dramatically with
the increased number of super peer agents is mainly due to the
time needed to download the new block. The consensus process
requires various super peer agents to download the new cloud-
based block from ¥0’s private cloud. Increasing the number of
super peer agents inevitably leads to an increase of network
congestion, and consequently, an overall longer time is required
for the acquisition of the new block for all participating super

peer agents. On the other hand, the time required for broadcast
and block verification is not significantly impacted by the total
number of super peer agents as those tasks are performed
concurrently. Based on the experimental results, we can
conclude that although our approach might not work well with a
large number of participating super peer agents, it demonstrates
reasonable average consensus time for a limited number of super
peer agents located within a local area, such as a city and urban
areas with no more than 30 participating hospitals.

300

(0.5 GB 1GB

1.5 GB 2GB

200 S

100 e

Average Consensus Time (s)
\

40 45 50

Number of Super Peer Agents Participating in the Consensus Process
(excluding W0)

Fig. 8. Consensus time needed for varying numbers of super peer agents

VII. CONCLUSIONS AND FUTURE WORK

Blockchain technology is a promising field of research with
many potential applications for real world scenarios, particularly
for data storage and sharing of sensitive information among
multiple entities. In this paper, we explore on a novel approach
to storing and sharing EHRs in a cross-hospital setting using the
blockchain technology. We introduce a cloud-based blockchain
(CBC) along with a lightweight version called lite blockchain
(LBC). Both CBCs and LBCs are synchronized to be identical,
except for big data that are stored exclusively in CBCs. The use
of CBCs to handle storage and sharing of big data allows regular
peers, e.g., doctors and patients, to participate in the blockchain
network via their LBCs without the need for significant
investment in network bandwidth, and memory and storage
space. The experimental results show that our cloud-based
blockchain approach has reasonable performance for secure and
reliable big data storage service designed for a healthcare system
within a local area.

In our current approach, we assume all super peer agents can
be trusted in the blockchain network as they represent healthcare
organizations; meanwhile, the consensus process heavily relies
on their responsible collaborations on verifying new blocks as
well as ensuring the validity of the digital signatures provided
by super peer agents. In future work, we plan to design a more
advanced consensus mechanism that also takes malicious
organizations into consideration. Furthermore, we plan to
improve our current approach using a hierarchical architecture
for better scalability with more healthcare organizations
involved, and conduct performance comparison with existing
off-chain methods such as IPFS [10]. This would allow further
applications of our approach to a wider range of areas such as

89

statewide and countrywide. Finally, we will explore different
domains including smart contracts for real estates and electronic
student records (ESR) management, with more efficient and
effective encryption procedures in our cloud-based blockchain
approach. Such an improved approach will lead to a more secure
and reliable way to store and share sensitive big data in various
cloud-based applications.

REFERENCES

S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2009.
Retrieved on March 5, 2021 from https://bitcoin.org/bitcoin.pdf

T. Kumar, V. Ramani, I. Ahmad, et al., “Blockchain Utilization in
Healthcare: Key Requirements and Challenges,” In Proceedings of the
2018 IEEE 20th International Conference on e-Health Networking,
Applications and Services (Healthcom), Ostrava, Czech Republic, Sept.
17-20, 2018, pp. 1-7.

IBM, “Why New Off-Chain Storage is Required for Blockchains,”
Document Version 4.1, IBM Storage Reprot, 2018. Retrieved on March
8,2021 from https://www.ibm.com/downloads/cas/RXOVXAPM

R. Kumar, N. Marchang and R. Tripathi, “Distributed Off-Chain Storage
of Patient Diagnostic Reports in Healthcare System Using IPFS and
Blockchain,” In Proceedings of the 2020 International Conference on
COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India,
Jan. 7-11, 2020, pp. 1-5.

E. AbuKhousa, N. Mohamed and J. Al-Jaroodi, ‘‘E-Health Cloud:
Opportunities and Challenges,”” Future Internet, Special Issue: Future e-
Health, Vol. 4, No. 3, 2012, pp. 621-645.

M. T. de Oliveira, L. H. A. Reis, R. C. Carrano et al., “Towards a
Blockchain-Based Secure Electronic Medical Record for Healthcare
Applications,” In Proceedings of the 2019 IEEE International Conference
on Communications (ICC), Shanghai, China, May 2019, pp. 1-6.

S. Alexaki, G. Alexandris, V. Katos et al., “Blockchain-Based Electronic
Patient Records for Regulated Circular Healthcare Jurisdictions,” In
Proceedings of the 23rd IEEE International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks
(CAMAD), Barcelona, Sept. 2018, pp. 1-6.

H. Zhao, P. Bai, Y. Peng and R. Xu, “Efficient Key Management Scheme
for Health Blockchain,” CAAI Transactions on Intelligence Technology,
Vol. 3, No. 2, June 2018, pp. 114-118.

R. Ming and H. Xu, “Timely Publication of Transaction Records in a
Private Blockchain,” In 2020 IEEE 20th International Conference on
Software Quality, Reliability and Security Companion (QRS-C), IEEE
BSC 2020, Macau, China, December 11-14, 2020, pp. 116-123.

R. Kumar and R. Tripathi, “Implementation of Distributed File Storage
and Access Framework Using IPFS and Blockchain,” In Proceedings of
the Fifth International Conference on Image Information Processing
(ICIIP), Shimla, India, Nov. 2019, pp. 246-251.

H. Wang and Y. Song, “Secure Cloud-Based EHR System Using
Attribute-Based Cryptosystem and Blockchain,” Journal of Medical
Systems, Vol. 42, Article number: 152, August 2018, pp. 1-9.

H. Guo, W. Li, M. Nejad and C. Shen, “Access Control for Electronic
Health Records with Hybrid Blockchain-Edge Architecture,” In
Proceedings of the 2019 IEEE International Conference on Blockchain
(Blockchain), Atlanta, GA, USA, 2019, pp. 44-51.

H. Guo, W. Li, E. Meamari, C. Shen and M. Nejad, “Attribute-Based
Multi-Signature and Encryption for EHR Management: A Blockchain-
Based Solution,” In Proceedings of the 2020 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), Toronto, ON,
Canada, may 2020, pp. 1-5.

D. C. Nguyen, P. N. Pathirana, M. Ding and A. Seneviratne, “Blockchain
for Secure EHRs Sharing of Mobile Cloud Based E-Health Systems,”
IEEE Access, Vol. 7, 2019, pp. 66792-66806.

M. Meingast, T. Roosta and S. Sastry, ‘“Security and Privacy Issues with
Health Care Information Technology,”” In Proceedings of the
International Conference of the IEEE Engineering in Medicine and
Biology Society, New York, NY, USA, Aug. 2006, pp. 5453-5458.

(1
[2]

B3]

[4]

(7

(8]

91

[10]

(1]

[12]

[13]

[14]

[15]

