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Abstract—Assigning International Classification of Diseases 

(ICD) codes based on doctors’ clinical diagnoses has historically 

been a difficult task performed by highly trained clinical coding 

experts. Recently, attempts have been made to use machine 

learning techniques at a coarse-grained level to automatically 

generate lists of medical codes from doctors’ notes; however, the 

results are often difficult to interpret and validate. In this paper, 

we propose a fine-grained approach that focuses on one diagnosis 

at a time. We use ontology-based human knowledge to extract 

semantically related sentences from doctor’s notes to support the 

use of deep learning for reliable training and classification. This 

fine-grained deep learning approach significantly reduces training 

load and improves scalability while providing users with a 

rationale for ICD code prediction. To demonstrate the 

effectiveness and advantages of our approach, we apply it to the 

MIMIC-III dataset and show how ICD-9 codes can be 

automatically assigned to clinical diagnoses.  

Keywords—doctor’s notes, ICD code, ontology, deep learning, 

fine-grained code assignment  

I. INTRODUCTION 

Healthcare is one of the most important and fastest growing 
industries, and many data-rich problems related to healthcare 
have been actively studied in recent years. One such problem is 
medical coding, or the assignment of standardized medical 
codes to healthcare diagnoses, procedures, medical services and 
equipment. In a worldwide industry like healthcare, it is crucial 
to reduce facts to standardized codes that benefit not only 
communication between hospitals, but also financial 
institutions. Some of the most important uses of medical 
diagnosis codes are related to billing and insurance [1]. There 
are many coding standards; in this research, we focus on the 
standard presented by the International Classification of 
Diseases, Ninth Revision (ICD-9), a robust system of 16 
chapters, each with many sections for disease diagnoses [2]. Due 
to the complexity of the healthcare industry and its interaction 
with financial institutions, medical coding is a non-trivial issue 
that has historically been performed only by highly trained 
clinical coding experts. When performed manually, medical 
coding can be a time-consuming, error-prone and expensive 
task. For this reason, there is a great deal of interest in 
developing automated solutions for medical coding and, more 
specifically, for the automatic assignment of medical codes from 
electronic medical records, such as doctors’ notes, that have 
been generated during the medical procedures.  

In this paper, we specifically examine the problem of coding 
diagnoses using doctor’s notes associated with a patient’s 
hospital visit. When patients are discharged from hospital visits, 
they are typically given diagnoses that describe their condition 
at the time of the visit. For example, a patient with high blood 
pressure might receive a diagnosis of “hypertension.” In 
addition, during a given patient’s hospitalization, doctors also 
make extensive notes about their condition, their experience, 
and any procedures or interventions performed. These notes are 
written in natural language and are usually  unstructured. Often, 
they contain many details that are not directly useful for 
diagnoses, such as descriptions of peripheral events, superfluous 
tracking of dates and times, and so on. A trained medical coding 
expert is tasked with reading these notes and assigning the 
appropriate diagnosis codes. Due to the sheer volume of text and 
specialized language usage, this manual approach may lead to 
significant time expenditures. In this paper, we attempt to 
mitigate these issues by introducing a method that can assist the 
diagnosis code assignment process by predicting medical codes 
for the diagnoses in the doctor’s notes.  

In recent years, with the adoption of electronic medical 
records and the release of large-scale medical datasets such as 
MIMIC-III (Medical Information Mart for Intensive Care), 
research has shifted from more explicit solutions (e.g., rule-
based systems) to deep learning-based approaches. Existing 
methods have achieved reasonable accuracy in assigning ICD-9 
diagnosis codes to clinical doctors’ notes; however, coarse-
grained approaches that apply deep learning across entire 
doctor’s notes raise concerns in the medical field because the 
results are typically not justifiable. In this paper, we present an 
evidence-based, fine-grained approach that automatically 
assigns an ICD code to each individual diagnosis. The proposed 
approach first uses human knowledge from existing ontologies 
to extract semantically related sentences from doctor’s notes to 
support the code assignment for a given diagnosis. These 
semantically related sentences are combined with the diagnosis 
and then fed into a trained deep learning classifier to predict the 
medical code for the given diagnosis. With this fine-grained 
classification, the extracted semantically related sentences can 
be seen as evidence to justify the classification process, and help 
the user understand the information used in the prediction or 
resolve any doubts before a code is finally assigned. In addition, 
the method uses only one diagnosis and its semantically related 
sentences as input; therefore, it can significantly reduce the 
training load and improve the scalability of the classifier. 
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II. RELATED WORK 

Automated medical coding has been actively investigated 
due to the high cost of using doctors’ notes to assign ICD 
diagnosis codes. Traditional methods were initially employed 
due to the scarcity of domain data.  Farkas and Szarvas used an 
enhanced rule-based approach to predict ICD-9 codes [3]. They 
enriched existing expert rules and used decision trees and a max 
entropy classifier to detect and address the false negatives they 
produced. Medori and Fairon used a naïve Bayes classifier to 
make predictions for ICD coding [4]. In a comparison between 
different methods based on naïve Bayes, they found that 
stemming and information encoding could greatly increase 
recall. Perotte et al. introduced several metrics for ICD code 
prediction and used them to rate the effectiveness of support 
vector machines (SVM) [5]. They introduced a hierarchical 
SVM that leveraged the hierarchical organization of ICD codes 
to improve performance. As large-scale deidentified datasets 
were gradually made available, deep learning approaches 
became more feasible beyond these earlier approaches. The 
public release of MIMIC-III in 2016 was a turning point for the 
application of deep learning to the ICD coding problem [6].  

In general, deep learning has been used as a multi-label 
classification method to classify doctors’ notes at a coarse-
grained level into one or more matching ICD codes. Baumel et 
al. presented a case study on ICD code assignment using multi-
label classification [7]. They investigated four models for 
assigning multiple ICD codes to discharge summaries and 
introduced a hierarchical attention mechanism to tag a document 
by identifying the relevant sentences. Falis et al. employed a 
hierarchical classifier incorporating parent and grandparent 
codes in addition to child code classification [8]. Their classifier 
starts with a multi-view convolution module whose output is 
pooled and fed into an ensemble of attention-based classifiers 
that output the code predictions. Recently, Biseda et al. 
introduced an approach using clinical BERT embeddings to 
improve classifications [9]. They used a hierarchical classifier 
that first predicts in 16 ICD code chapters and then in 50 selected 
ICD codes contained in each particular chapter. Although the 
above approaches employ hierarchical classifiers to break the 
classification into multiple steps, the number of final output 
nodes may still be high. When multi-label classification is used, 
the high number of label combinations can become potentially 
intractable due to high training costs and data scarcity, especially 
given the continued growth of medical knowledge and data. In 
addition, the above methods all predict ICD codes at a coarse-
grained level by viewing doctors’ notes in their entirety. Since 
doctors’ notes can be very lengthy (e.g., thousands of words), 
the data points used to train their classifiers can become very 
large, leading to a significant increase in training costs. In 
contrast to existing work, we propose an approach that avoids 
multi-label classification and reduces scalability issues by 
treating each diagnosis separately. The processing of individual 
diagnoses also provides users with specific evidence in each 
prediction, improving human understanding and allowing quick 
resolution of doubts about code recommendations. Since this 
evidence is extracted using existing human knowledge, our 
approach does not require the use of an additional attention 
mechanism on the training data. 

Healthcare is an extremely large and widespread industry. 
Ontologies are often used in healthcare to unify knowledge and 

information from heterogeneous sources [10]. Much of the 
previous work on medical ontologies has revolved around the 
construction of unified ontologies from these heterogeneous 
information sources, and they are usually evaluated by expert 
examination or by performance in applications. One example 
comes from a researcher group that rated the performance of the 
Gene Ontology in an enrichment analysis task [11]. Essentially, 
the goal of this task is to identify genomes that are associated 
with diseases, which could be very important in real medicine. 
Ong et al. used medical ontologies to model kidney diseases’ 
underlying pathology and locate potential treatments [12]. They 
showed that the KPMP (Kidney Precision Medicine Project) 
ontologies can improve the concepts used to annotate kidney 
data and revise existing definitions of kidney disease to support 
precision medicine. Jusoh et al. tackled the task of information 
extraction from medical natural language texts [13]. They 
proposed a method to generate ontologies from mined texts by 
extracting key entities and relations from natural language. In 
this paper, we propose an approach using existing ontologies to 
address the medical coding issue. That is, we use existing 
disease ontologies to identify terms that are semantically related 
to a given diagnosis. Then the identified terms are used to extract 
content from a free text that can be used as evidence for the 
prediction of a diagnosis’s ICD code. In this sense, our approach 
complements existing ontology-based approaches in medical 
fields and provides a practical solution to automated medical 
coding using well-developed disease ontologies. 

III. ONTOLOGY-BASED CLASSIFICATION FOR ICD CODING 

A. A Framework for Ontology-Based Classification 

The ontology-based ICD code assignment process begins 
with the discharge diagnoses listed at the end of doctor’s notes. 
Unlike existing approaches that treat the entire doctor’s notes, 
including the discharge diagnoses, as a single entity, our 
approach takes a more granular view of these notes, generating 
a different view for each discharge diagnosis by extracting a set 
of semantically related sentences from the doctor’s notes. Since 
the text fragments related to individual diagnosis are much 
shorter than the full text, this increased granularity improves 
scalability by significantly reducing the size of the input 
sequence. It also allows us to avoid performing multi-label 
classification, as each discharge diagnosis is assumed to 
correspond to exactly one ICD code label. In addition, the 
semantically related sentences extracted for each diagnosis 
provide users with context for final decisions on medical coding 
and help them resolve any issues in code assignment.  

Fig. 1 shows a framework for ontology-based classification 
of ICD codes. As shown in the figure, the automatic code 
assignment process involves several steps. In the first step, for 
each discharge diagnosis, the semantically related sentences are 
extracted from the doctor’s notes using ontology-based domain 
knowledge, i.e., a medical ontology. The extracted semantically 
related sentences are then appended to the corresponding 
diagnosis to constitute a new data point. Prior to classification, 
the natural language in the new data points is preprocessed, 
including the removal of useless words and stemming of words. 
Words in a data point are assigned word embeddings as an input 
to a trained classifier using a deep neural network such as a 
recurrent neural network (RNN). In this paper, we use long 
short-term memory (LSTM) artificial neural networks, which 
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are a type of RNN. In LSTM, each cell contains additional 
components to alleviate the vanishing gradient problem and 
improve the classifier’s ability to exploit context during the 
classification process. After a prediction is generated, the user is 
able to see the assigned ICD code for a diagnosis as well as the 
semantically related sentences used in the classification process. 
Note that as shown in Fig. 1, the predictions of multiple data 
points can be performed in parallel using multiple processes.  

 

Fig. 1. A framework for ontology-based classification of ICD codes.  

B. Training and Test Dataset 

In this study, we use the MIMIC-III clinical database as the 
training and test dataset. The MIMIC-III database contains 
deidentified information for over 40,000 patients, including the 
free-text doctors’ notes and ICD-9 diagnosis codes associated 
with unique hospital visits. For this research, only the free-text 
notes, including discharge diagnoses, and ICD-9 diagnosis 
codes are used. The other fields associated with a patient such 
as lab events and procedures are not considered in this approach. 

Fig. 2 shows an example of the free-text doctor’s notes 
including the discharge diagnoses. The doctor’s notes are a text 
document ranging from a few paragraphs to dozens of pages in 
length, with some information expressed in natural language and 
some expressed in, for example, bulleted lists. 

 
Fig. 2. Example of free-text doctor’s notes with discharge diagnoses. 

At the end of many instances of doctor’s notes, there is a 
numbered, bulleted, or comma-separated list indicating the 
major diagnoses associated with the doctor’s visit. In our 
approach, the discharge diagnoses are split into separated 
diagnoses and processed independently. While not shown in Fig. 
2, the database also contains a set of diagnosis codes matched to 
each visit. These diagnosis codes are helpful for labeling the data 
points, but they are often not sufficient. To build the training and 

test dataset, we matched each diagnosis and the extracted 
semantically related sentences with a medical code from a 
selected set. These matched codes serve as the labels of the data 
points. If a diagnosis does not have a matched medical code from 
the selected set, it is eliminated from the training and test dataset. 
Note that the diagnoses can be difficult to read, especially for 
non-experts, and often contain misspellings or abbreviations. 
Therefore, it is essential to use additional context from the 
natural language notes that precede the discharge diagnosis as 
supporting evidence during the labeling process. 

C. Extracting Semantically Related Sentences 

Since most of the doctors’ notes are usually not related to the 
assignment of a specific diagnosis code, we extract only 
sentences that are semantically related to a particular diagnosis. 
In the sentence extraction procedure, we divide the doctors’ 
notes into individual sentences and scan the sentences for terms 
that are semantically related to a diagnosis. Sentences with no 
related terms are skipped, while sentences containing one or 
more related terms are then extracted. Note that the detection of 
semantically related terms cannot be achieved without prior 
knowledge of the underlying relations between these terms and 
the targeted diagnosis. To detect semantically related terms, we 
use existing human knowledge in the form of an ontology.  

Ontologies, as semantic data models, can be used to encode 
knowledge in a graph where the vertices represent entities 
(objects or abstract concepts) and the edges represent relations. 
The entities and relations can be encoded as lists of triples in the 
form <head, relation, tail>, where head is the first entity, tail is 
the second, and relation is the type of relationship that associates 
the two. For example, a piece of knowledge about the influenza 
virus could be encoded as the triple <influenza, has_symptom, 
fever>. In this paper, we used the Institute of Genome Science’s 
Disease Ontology (DO), which contains knowledge on a wide 
range of diseases including classifications, symptoms, and 
synonyms [14]. Although DO is an ontology in which each link 
and entity type has a strong formal definition and meaning for 
semantic computing, we treat the ontology as a directed graph 
and use a simple neighborhood search algorithm that considers 
all entities and relations indiscriminately in searching for a set 
of semantically related terms. 

Using ontologies, we can generate a set of semantically 
related terms within a certain number of relations to a specific 
entity. We first find the entity corresponding to a given 
diagnosis, then we recursively explore the graph within the 
desired number of links from the original diagnosis entity. 
Depending on the knowledge used, the ideal number of links to 
explore may vary. To simplify matters, in this study we only 
consider entities that are within one link of our target diagnosis 
entity, because information related to a specific disease entity is 
usually stored within one link and going further would involve 
unrelated diseases and unnecessarily reduce the effectiveness of 
sentence extraction. Fig. 3 shows an example of semantically 
related terms to “influenza” based on DO. Note that in our 
approach, it is necessary to consider both outgoing and incoming 
links in order to produce the best set of semantically related 
terms. As shown in the figure, “viral infectious disease” is not a 
symptom of “influenza”; however, the discussion of “viral 
infectious disease” in the doctor’s notes can provide support for 
the identification of medical code for an influenza diagnosis. 
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Fig. 3. An example of semantically related terms to “influenza.” 

Algorithm 1 shows how to generate unlabeled data points 
from doctor’s notes using an ontology. As shown in the 
algorithm, for each diagnosis, semantically related terms 
identified using the ontology are added to set s2. The terms in s2 
are then used to extract semantically related sentences from the 
doctor’s notes. Finally, each diagnosis together with the list of 
extracted semantically related sentences constitutes a new 
unlabeled data point.  

Algorithm 1: Generate Unlabeled Data Points Using Ontology 

Input: Doctor’s notes Ξ and medical ontology Ф 
Output: A list of data points ldata 

1.   split the notes prior to diagnoses in Ξ into a list of sentences Σ 
2.   for each diagnosis ρ in Ξ 
3.      identify a set of key terms s1 in ρ 
4.      initialize a set of terms s2 = s1 
5.      for each term in s1 

6.      identify all entities in Ф that are semantically related to term 
7.      add entities to s2 
8.      create a new data point ndp 
9.      let extracted be an empty list of sentences 
10.    for each sentence σ in Σ 
11.       if σ does not contain any term in s2 then continue 
12.       append σ to extracted 
13.     add ρ and extracted to ndp, and add ndp to ldata  
14.  return ldata 

An unlabeled data point, after pre-processing, can be used as 
an input to a trained classifier for predicting a matching medical 
code. However, with supervised deep learning, the generated 
data points used for training and testing must be labeled. As 
shown in the case studies in Section IV, in this research, we 
select a small set of medical codes for demonstration purposes. 
We keep only data points where the discharge diagnosis can be 
mapped to a medical code from the selected set and discard all 
others that do not have a matched medical code.  

D. Preprocessing Data Points for Training a Classifier 

Typical preprocessing procedures are applied to reduce the 
length of the text and size of data points without altering the 
meaning of the text. For example, stop word removal is applied 
to remove common and less useful words like “a” and “the.” 
Stemming is applied to group families of words into one word 
by removing inflections. For example, “coughs,” “coughing,” 
and “coughed” are all reduced to the root word “cough.” Then, 
we assign word embeddings, a reduced dimensionality vector 
representation of word meanings, to each remaining word. To 
achieve this task, we generate word embeddings using a popular 
and established approach called word2vec. Word2vec is an 
unsupervised learning method that takes a large collection of 
text and generates embeddings for the words contained in it. 

Essentially, the word2vec method works by associating words 
with their contexts, which are composed of the surrounding 
words. Words that frequently occur in similar contexts produce 
embeddings with some similarity. Word2vec has been shown to 
reasonably encode semantic similarities and relationships in 
generated embeddings and is used successfully in many natural 
language processing applications.  

We adopt LSTM as a deep learning classifier for training, 
validation and prediction. In an LSTM, each cell contains 
additional components to mitigate the vanishing gradient 
problem and improve the classifier’s ability to utilize context in 
classification. More specifically, each cell of an LSTM contains 
a number of gates that control the information entering and 
leaving the cell. Input gates and forget gates work together to 
control which information is passed into a given cell by its 
predecessors, while an output gate controls which information is 
passed to the next cell. LSTM has been shown effective on a 
number of natural language processing tasks, particularly where 
input sequences are longer and earlier context tends to be 
forgotten by traditional RNNs. In our approach, we reduce each 
data point to contain only sentences related to a diagnosis, but 
the extracted sentences are long enough to demonstrate the 
improvement in long- and short-term memory of the LSTM.  

IV. EXPERIMENTAL RESULTS AND CASE STUDIES 

A.  Ontology-Based Classifier 

To obtain experimental results, the methodology described 
in Section III was applied to seven medical codes all contained 
in Chapter 7 of ICD-9, as listed in Table I. The codes selected 
were closely related to highlight the potential use of the method 
and to emphasize the ability of the classifier to distinguish 
between similar codes, which makes classification more 
difficult. The selection of diagnosis codes was limited to those 
codes that were adequately represented in the knowledge base 
DO. In addition, codes were selected on a frequency basis to 
ensure that sufficient data points were available to properly train 
the classifier. Finally, 56,891 data points were generated from 
the MIMIC-III dataset for the experiments. 

TABLE I.  ICD-9 CODES USED IN EXPERIMENTS 

ID Code Description Frequency 

1 4011 Benign hypertension 444 

2 4019 Unspecified essential hypertension 19,117 

3 41401 
Coronary atherosclerosis of native 
coronary artery 

11,392 

4 4260 Atrioventricular block, complete 492 

5 42731 Atrial fibrillation 12,122 

6 4271 Paroxysmal ventricular tachycardia 1,635 

7 4280 Congestive heart failure, unspecified 11,689 

A training/testing ratio of 80/20 is used to train and evaluate 
the classifier. During training, one-fifth of the training data was 
used for validation. Due to the highly imbalanced nature of the 
data (with code 4011 or code 4260 represents less than 1% of 
the dataset), stratified sampling was used to ensure that each 
code was represented in the training and validation sets. The 
sigmoid focal loss function was used during training, which 
prioritizes a small subset of difficult examples while 
downplaying the majority of well-classified examples [15]. 
Focal loss, originally developed for the object detection 
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problem, is highly effective for classification problems with 
imbalanced data, such as the problem that occurs in our dataset. 
Furthermore, weights were applied to the loss function to 
incentivize the classifier to perform well on the less frequent 
codes as well as the dominant codes. Tables II shows the 
classifier’s overall precision, recall, and F1-score calculated as 
in (1), (2) and (3), respectively. In the table, the weighted 
averages are calculated by weighting the metrics for each class 
with their relative frequencies; while the macro averages are 
unweighted averages that treat all classes the same regardless of 
size. We can see that the classifier achieved a high accuracy 
(number of correct predictions over all cases) of 0.935, as well 
as a macro average F1-score of 0.912, with similarly favorable 
results for macro average precision and recall. This indicates that 
the classifier performed well and successfully predicted both 
large and small classes despite the unbalanced data. 

Precision 	 
true positives� /
true positives � false positives�         (1)   

Recall 	 
true positives� / 
true positives � false negatives�           (2) 

F1 � score 	 2 ∗ 
Precision ∗ Recall� / 
Precision � Recall�                (3) 

TABLE II. OVERALL CLASSIFIER PERFORMANCE METRICS 

 Precision Recall F1-score 

Weighted Average 0.937 0.935 0.935 

Macro Average 0.904 0.923 0.912 

Accuracy 0.935 

Tables III shows the classifier’s precision, recall, and F1-
score for individual codes. From the table we can see that the 
classifier performed best on the most frequent classes (with 
10,000+ data points). Despite the high data imbalance and 
general data scarcity of the less frequent classes, the classifier 
was able to classify them with F1-scores of 0.834 or higher. The 
classifier performed worst on code 4011 (Benign hypertension), 
which in addition to being the least frequent code, shares many 
characteristics with the dominant code 4019 (Unspecified 
essential hypertension), creating ambiguities and complicating 
classification results. 

TABLE III. CLASSIFIER PERFORMANCE METRICS ON INDIVIDUAL CODES 

ID Code Precision Recall F1-score 

1 4011 0.807 0.863 0.834 

2 4019 0.921 0.949 0.935 

3 41401 0.921 0.985 0.952 

4 4260 0.873 0.899 0.886 

5 42731 0.978 0.949 0.963 

6 4271 0.875 0.965 0.918 

7 4280 0.950 0.853 0.899 

B. Case Study 1: Typical Usage 

An instance of doctor’s notes usually contains several 
diagnoses, some of which are from the same ICD chapter, as in 
our experiment. One important aspect of medical coding is the 
ability to detect and distinguish between multiple diagnoses, 
especially when they are closely related. Because our approach 
uses different knowledge for each diagnosis code, a different set 
of sentences is extracted for each diagnosis. Fig. 4 shows an 
example of discharge diagnoses from doctor’s notes. We start 
with the first diagnosis, “Complete heart block.” This term is 
located in DO, which is used to generate a set of semantically 
related terms such as “AV”, “AV block”, “atrioventricular 

block”, “dizziness”, “chest pain”. These semantically related 
terms are then used to extract related sentences from the entire 
text of the doctors’ notes.  

 
Fig. 4. Discharge diagnoses present in Case Study 1. 

Fig. 5 shows a sample of text found to be semantically 
related and extracted from the notes. Note that the extracted 
sentences contain information related to the type of block that 
can serve as evidence for classification. Furthermore, it contains 
supporting information regarding the symptoms experienced by 
the patient which are related to atrioventricular block. The 
extracted sentences are then fed into the trained classifier along 
with the original diagnosis. The classifier predicts ICD-9 code 
4260, Atrioventricular block, complete for the first diagnosis. 

 
Fig. 5. Sample of text extracted for the first diagnosis “Complete heart block”. 

Similarly, for the second diagnosis, “Heart failure,” we 
generate a set of semantically related terms and gather evidence 
using the sentence extraction procedure on the full text. In this 
case, the evidence is helpful for disambiguating the general term 
“Heart failure” used to describe the failure, which may 
potentially indicate several different types of heart failure and 
therefore diagnosis codes. Sentences containing congestive 
heart failure symptoms like “fatigue” are also extracted and 
provide further support. Fig. 6 shows a sample of the text 
extracted for this diagnosis. The classifier predicts code 4280, 
Congestive heart failure, unspecified, and this code is assigned 
to the diagnosis. 

 
Fig. 6. Sample of text extracted for the second diagnosis “Heart failure”. 

We follow the same procedure for the other diagnoses to 
assign medical codes. Fig. 7 shows the full ICD code assignment 
for the diagnoses listed in Fig. 4. This full code assignment along 
with the evidence used for each prediction are provided to the 
user to help justify them. 

 
Fig. 7. The completed ICD code assignment for the diagnoses listed in Fig. 4.  

Note that for the third diagnosis, “Acute on chronic renal 
failure,” when we follow the regular procedure, the classifier 
outputs low probability for all of the possible classifications and 
does not lead to a valid prediction. As the actual code is outside 
of the set of selected codes used to train the classifier, it is thus 
skipped with no matching code.  
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C. Case Study 2: Ambiguous Diagnoses 

We now look into two instances of doctors’ notes with the 
same diagnosis as shown in Fig. 8. Both of the instances contain 
a “Hypertension” diagnosis that may be associated with either 
one of the hypertension variant codes selected for our 
demonstration. In order to disambiguate which code is indicated 
by each diagnosis, semantically related sentences from the notes 
preceding the discharge diagnoses must be utilized. 

 
Fig. 8. The discharge diagnoses of the two separate discharge summaries.  

As in Case Study 1, a set of semantically related terms is 
generated and used to extract semantically related sentences 
from the doctor’s notes. The additional context collected as 
evidence during the sentence extraction phase can be used to 
disambiguate the two different ICD codes indicated by the 
diagnoses. Fig. 9 shows two examples of sentences extracted 
from two separate doctors’ notes that can be useful in making 
the correct code assignment decisions.  

 
Fig. 9. Samples of text extracted from two separate doctors’ notes. 

 Note that the text extracted from doctor’ notes A contains 
the key term “uncontrolled hypertension,” which is a synonym 
of unspecified hypertension. Meanwhile, the text extracted 
from doctor’ notes B contains the key term “benign 
hypertension,” which obviously contributes to a prediction of 
the code for benign hypertension. As shown in Fig. 10, the 
common diagnosis “Hypertension” in doctor’ notes A is 
assigned code 4019 (Unspecified essential hypertension), while 
the same diagnosis in doctor’ notes B is assigned code 4010 
(Benign hypertension). 

 

Fig. 10. ICD code assignments for two ambiguous diagnoses.  

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we introduced an ontology-based approach to 
assigning ICD diagnosis codes to diagnoses contained in 
doctors’ notes. Unlike others, this approach is fine-grained, 
which focuses on one diagnosis at a time, increasing scalability 
and human understandability. Using domain knowledge 
encoded in ontologies, we can extract semantically related 
sentences from doctor’s notes, seek further evidence for the 
predictions, and supply users with justification for decisions on 
code assignment. The experiments show that our approach is 

feasible and works accurately with the MIMIC-III dataset. 
Further case studies show that our approach can not only handle 
typical cases, but also special cases with ambiguous diagnoses. 

In future work, we will consider using more efficient models 
for text classification, as we did in our earlier work [16], and 
perform a comparative analysis with existing coarse-grained 
methods. We will explore the possibility of using more robust 
classifiers, such as a hierarchical classifier that follows the 
hierarchical structure of the ICD code books. The improved 
classifier will be scalable to include more medical codes and can 
be applied to predict a wider range of disease cases. 
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