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Abstract—Marine visibility is a crucial factor for safe 
navigation and operational efficiency at sea, as poor visibility 
can lead to costly accidents and pose significant safety risks. 
While deep learning models, such as artificial neural networks 
(ANNs), have shown effectiveness in forecasting land visibility, 
predicting marine visibility presents unique challenges due to its 
complexity and variability. In this paper, we introduce self-
adaptive deep learning (SADL) models to enhance visibility 
prediction across varying time periods and distances from ships. 
Our approach employs real-time training models that 
continuously learn and adapt based on incoming data, enabling 
dynamic and comprehensive visibility forecasts. We present 
case studies to validate the effectiveness of the SADL models and 
demonstrate their accuracy across diverse locations, time 
frames, and scenarios. The results show the models’ capability 
to predict visibility accurately and in a timely manner, thereby 
effectively improving marine safety.  

Keywords—marine visibility, self-adaptive deep learning, 
visibility forecasting, real-time training, model fine-tuning  

I. INTRODUCTION 

Weather forecasting has become a cornerstone of modern 
society, with its scientific origins tracing back to the 
invention of measuring instruments, such as the mercury 
barometer, in the mid-17th century. Innovations like the 
establishing of weather stations in the early 19th century, the 
advent of radar in the 1940s, and the deployment of satellites 
in the 1960s have significantly advanced the field [1]. Despite 
these developments, weather forecasting remains an essential 
area of research, particularly in the context of climate change. 
The increasing frequency of extreme weather events, such as 
heatwaves, heavy precipitation, and tropical cyclones, has 
further complicated weather forecasting efforts [2]. 
Visibility, a key parameter in weather forecasting, refers to 
the maximum horizontal distance at which objects can be 
seen. Low visibility can have significant impacts, including 
reduced airport capacity, flight delays and disruptions, 
marine navigational hazards, impaired road traffic safety, and 
decreased search-and-rescue effectiveness. In marine 
environments, poor visibility can lead to costly accidents and 
pose significant safety risks, making it a crucial factor for safe 
navigation and operational efficiency. To address this 
challenge and the rapidly changing marine conditions, we 
introduce a forecasting approach for marine visibility.  

Deep learning models, such as artificial neural networks 
(ANN), have proven effective in predicting land-based 
visibility [3]. However, predicting marine visibility presents 
unique challenges due to its inherent complexity and 
variability. Traditional techniques like ANNs often lack the 
adaptability required for fast-paced applications, such as 
marine visibility forecasting, which needs to take into 

account rapidly changing environmental conditions and the 
absence of weather stations on the open ocean. To address 
these challenges, we propose a framework for real-time 
marine visibility forecasting. The framework employs a 
cluster of self-adaptive deep learning (SADL) models to 
make predictions at both current and remote locations over 
varying time periods. By providing accurate real-time 
visibility predictions, captains or navigators can proactively 
reroute ships or prepare for low visibility conditions, thereby 
reducing the risk of accidents. The effectiveness of the SADL 
models is demonstrated through diverse case studies, 
showcasing their accuracy and adaptability. These models are 
based on the multilayer perceptron (MLP) deep neural 
network architecture, comprising an input layer, hidden 
layers, and an output layer, with each layer containing a set 
of perception elements known as neurons. The SADL models 
utilize a stochastic gradient descent optimizer, employ 
backpropagation to iteratively refine weights, and incorporate 
real-time training to deliver timely and reliable predictions. 

The proposed real-time framework using SADL models 
consists of two model clusters: one for the current location 
and another for remote locations. This separation stems from 
the difference in available input features. The remote location 
models rely solely on satellite data, drone data, and simulated 
data derived from the current location, while the current 
location models utilize a wider range of on-board sensors, 
capturing local data such as temperature, wind direction and 
wind speed. The selected input features are traditional 
weather measurements and do not include variables such as 
latitude and longitude coordinates and seasonal information. 
This approach aims to demonstrate the effectiveness of a 
general visibility model with high adaptability, relying only 
on weather parameters. The current location model cluster 
makes predictions for four future time intervals: 15, 30, 45, 
and 60 minutes. Similarly, the remote location cluster 
predicts for the same time intervals, but also forecasts for four 
cardinal directions at distances of 5, 10, 15, and 20 miles from 
the ship. While this approach requires continuous training 
and predictions, the use of an adaptive training window with 
small-batch training ensures that predictions are generated 
with both reasonable speed and accuracy. This study 
highlights the advantages of using SADL model clusters to 
predict visibility across varying time intervals and locations 
in the ocean, demonstrating their adaptability and 
effectiveness in dynamic marine environments. 

II. RELATED WORK 

There have been several research efforts focused on the 
effects of low-visibility conditions and visibility prediction. 
For example, Abdel-Aty et al. highlighted the dangers of low-
visibility conditions such as fog or smoke (FS) while driving, 
particularly during the night [4]. They performed a temporal * This material is based on work supported by Office of Naval Research 
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distribution analysis on the available data, concluding that the 
early morning hours from 5 a.m. to 8 a.m., from December to 
February, are the most likely times for FS-related crashes. 
Jonnalagadda and Hashemi introduced an Auto-Regressive 
Recurrent Neural Network (ARRNN) model for land-based 
visibility prediction [3]. They demonstrated the validity of 
their approach compared to other types of RNNs, such as 
LSTM and basic RNNs. Niu et al. attempted to predict land-
based visibility with three decision tree-based models: 
XGBoost, LightGBM, and Random Forest [5]. Using these 
models, they performed visibility predictions for future hours 
at five selected weather stations. The approaches mentioned 
above demonstrate how land-based visibility predictions can 
be achieved using weather data from weather stations. In 
contrast, our approach addresses the challenges posed by 
limited data on the open ocean and applies real-time training 
techniques to predict marine visibility, where traditional 
approaches fall short in terms of adaptability.  

In recent years, significant research has been conducted 
in the field of marine weather and environments. Muttil and 
Chau presented two machine learning (ML) techniques, ANN 
and genetic programming (GP), for predicting algal blooms 
[6]. By focusing on feature ranking, they concluded that an 
auto-regressive nature or persistence in the algal bloom 
dynamics may be related to the long flushing time in semi-
enclosed coastal waters. Kim et al. presented a convolutional 
LSTM model for predicting weather parameters [7]. This 
convolutional LSTM uses time-series images as inputs to 
predict eight different ocean weather parameters: surface 
temperature, wave height, wave period, wave direction, wind 
speed, and current ship speed. Krestenitis et al. used deep 
convolutional neural networks (DCNN) to identify oil spills 
from satellite images [8]. Their results suggest that DCNN 
segmentation models, trained and evaluated on the provided 
dataset, can be used to implement efficient oil spill detectors. 
The approaches mentioned above focus on predicting marine 
weather and environmental conditions for a fixed location. In 
contrast, our approach aims to predict weather conditions, 
particularly marine visibility, not only for the current location 
but also for remote locations on a moving vessel. 

There have also been research efforts that employ real-
time techniques in deep learning. Singhal and Ahmad 
introduced a deep learning facial recognition system for 
university attendance [9]. They utilized CNNs with real-time 
video processing to improve model accuracy. Ford et al. 
introduced a real-time self-adaptive classifier (RT-SAC) to 
classify suspicious online bidders [10]. Given the real-time 
nature of the online auction environment, they employed a 
moving window approach, achieving reasonable detection 
accuracy. Girard et al. developed a deep learning model 
trained on a moving window of data to predict hydropower 
generation [11]. By utilizing real-time ANNs, the models 
accurately predict hydropower generation on a daily, weekly, 
and monthly basis. In this paper, we extend the real-time 
training architecture discussed above and develop clusters of 
deep learning models to predict marine visibility in real time 
across multiple time periods and remote locations. 

III. REAL-TIME FORECASTING OF MARINE VISIBILITY  

A. A Framework for Real-Time Visibility Prediction 

Traditional deep learning methods typically focus on 
predicting static outcomes, such as gross domestic product 
estimates, facial recognition results, or disease diagnoses 

based on patient data. In contrast, sea travel occurs in highly 
dynamic environments where weather conditions can change 
rapidly within minutes. Furthermore, the scarcity of weather 
stations in oceanic regions limits the availability of input data 
for weather prediction. To address these challenges, we 
propose a framework for real-time marine visibility 
forecasting that incorporates two types of models: current 
location models and remote location models. By predicting 
visibility at both the current location and across various 
remote locations, the approach provides ship captains and 
navigators with a highly accurate visibility “picture” of the 
surrounding area. This supports real-time decision-making 
and helps reduce the risk of accidents. As mentioned earlier, 
the current location model cluster consists of four deep 
learning models, each forecasting visibility 15, 30, 45, and 60 
minutes into the future. Similarly, the remote location model 
cluster includes four models that predict visibility over the 
same time intervals. However, each model also generates 
predictions for four cardinal directions (north, east, south, and 
west) at distances of 5, 10, 15, and 20 miles from the vessel. 
This results in 16 predictions per time step for each remote 
model. Collectively, these predictions create a 
comprehensive visibility “radar” map around the vessel. 
Since the sea-based vessel may continuously move through 
the water, it is critical to use deep learning models that can 
adapt to changes in both location and time. Figure 1 presents 
a high-level framework for real-time visibility prediction. 

 

Fig. 1. A framework for real-time visibility prediction 

 As shown in Fig. 1, the SADL models must first be pre-
trained using historical visibility data to ensure high testing 
accuracy [10], [11]. In our real-time approach, the visibility 
data consists of satellite and on-ship sensor or drone data. 
This real-time data is then preprocessed and sent to either the 
current or remote location models. It is important to note that 
the current location models can leverage more input features 
than the remote location models, as on-ship sensor data is 
unavailable for remote locations. All SADL models are then 
trained in real time to make the necessary marine visibility 
predictions. Finally, these real-time predictions are collected, 
visualized as a time series, evaluated for accuracy, and in 
future work, displayed on a live “radar” map. 

B. Feature Selection 

In our approach, the output feature, or label, is visibility, 
defined as the farthest horizontal distance at which objects 
remain visible. For instance, on a dense foggy day, visibility 
can drop to as low as 0.03 miles, while on a clear day, it can 
extend up to 12 miles [12]. The features used in the model 
were selected for their strong correlation with visibility, 
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including temperature, wind speed, and humidity levels, all 
of which are known to impact visibility. Relevant input 
features are critical for making accurate predictions using 
deep learning, as irrelevant or harmful features can lead to 
bias and poor predictions [13], [14]. Table I lists several 
examples of input features that can be captured by satellites, 
on-ship sensors, or drones.  

TABLE I.  EXAMPLES OF INPUT FEATURES 

Parameter Unit Source Short Description 

Precipitation Millimeter Satellite 
Gridded rainfall 
measurement 

Cloud Cover Percentage Satellite 
Percentage of unit grid 
covered by clouds 

Dry-Bulb 
Temperature 

Fahrenheit 
Satellite/ On-ship 

sensor/drone 
Gridded temperature 
measurement 

Relative 
Humidity 

Percentage 
On-ship 

sensor/drone 

Ratio of absolute 
humidity to maximum 
possible humidity 

Surface 
Pressure 

Inch of 
Mercury 

On-ship 
sensor/drone 

Proportional to the mass 
of air over the location 

Wind Speed Mile/hour 
On-ship 

sensor/drone 
Wind speed for current 
or remote locations 

Wind 
Direction 

Degree 
On-ship 

sensor/drone 

Wind direction for 
current or remote 
locations  

Satellite features are typically simpler in complexity and 
more widely available compared to on-ship sensor features; 
therefore, they are key features in remote location datasets. 
On-ship sensor and drone feature data are obtained from 
instruments on the sea-faring vessel. These features are more 
complex and require specialized equipment. As a result, on-
ship sensor data is only available in current location datasets, 
while drone data is obtained by deploying drones to nearby 
remote locations, such as within a mile. 

IV. SELF-ADAPTIVE DEEP LEARNING MODELS 

SADL models are designed for dynamic, fast-paced 
applications, especially where the learning environment may 
evolve with each prediction. Training a model solely on a 
historical dataset for real-time visibility predictions would 
significantly reduce accuracy. Instead, our approach employs 
small batch training and evaluation to ensure that the SADL 
models adapt to the learning environment in real time. 

A. Adaptive SADL Models 

The SADL model update process is shown in Figure 2. As 
illustrated, recent visibility data is processed and added to the 
adaptive training window, enabling small-batch real-time 
training with a manageable number of training data points. 
Simultaneously, older, less relevant data is removed from the 
adaptive training window and moved to the historical data 
pool for future model pre-training. Note that small-batch real-
time training ensures fast computation times. Once the real-
time training is complete, the SADL model is updated and 
used to make visibility predictions for visual display. 

 
Fig. 2. The SADL model update process 

B. SADL Model Pre-Training 

 The SADL models are ANNs created using the Keras API 
from TensorFlow, which provides high-level functions for 
building sequential models, commonly known as feedforward 
neural networks (FNNs). Previous research has shown that 
pre-training on a large subset of historical data is essential for 
accurate predictions [10], [11]. In this implementation, the 
SADL models are compiled with mean squared error (MSE) 
as the loss function and mean absolute error (MAE) as an 
additional metric. These metrics are used solely during the 
pre-training phase. The SADL models are pre-trained using 
Keras’s fit function with a standardized 20 percent validation 
split. The selected epochs and batch size are 250 and 128, 
respectively. Figure 3 shows the pre-training results for one 
of the tested models, the 15-minute current location model.  

 
Fig. 3. Pre-training MAE and loss graphs for an SADL model 

 In Fig. 3, the top graph plots the loss (MSE) against the 
training epochs, while the bottom graph plots the MAE 
against the epochs. As shown, the training and validation lines 
are well-fitted in both graphs, with the validation line slightly 
higher than the training line once the number of epochs 
reaches 250. These graphs demonstrate effective pre-training, 
indicating that the model is ready for real-time training. 

C. Real-Time Training of SADL Models 

 In fast-paced environments such as weather forecasting 
and online auctions, traditional deep learning approaches are 
often not viable. By training a deep learning model on only 
the most recent data points, it can be fine-tuned over time, 
leading to improved model performance. In this section, we 
describe the real-time (or incremental) training process. The 
adaptive training window is a small collection of data points 
consisting of both recent data that the model has already 
trained on and new data that the model has not yet seen. The 
SADL model trains on the entire window, which is defined 
by a suitable window size. The real-time training approach 
using a moving training window has proven successful in 
previous work [10][11]. In this paper, we expand the 
approach to include predictions across multiple time scales 
and locations. Figure 4 shows an example of the adaptive 
training window with a window size of 6. 

 

Fig. 4. An example of adaptive training window with a window size of 6 
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 Both the current and remote SADL models predict 
visibility, with the former focusing on four future time 
intervals (15, 30, 45, and 60 minutes) and the latter extending 
to 16 remote locations across four directions. To evaluate the 
accuracy of these predictions, we define the prediction 
accuracy for a single visibility prediction as (1 - |va – vp| / 
max(va, vp))*100, where va is the actual visibility value, and 
vp is the predicted visibility value. The prediction accuracy 
of a remote SADL model is calculated as the average 
accuracy across the different remote locations. Algorithm 1 
outlines the real-time training logic and visibility prediction 
for a list of SADL models. Since each SADL model has its 
own adaptive training window and incoming data, all models 
can be trained and make predictions concurrently. 

Algorithm 1 Concurrent Real-Time Training and Prediction 

Input: A list of n SADL models Фi for xi-minutes predictions, 
each with an adaptive training window Wi of size τi, where 1≤ i ≤ 
n; a prediction interval y, a sampling interval z, and a number of 
remote locations nr 
Output: A list of new SADL models Фi and predicted visibility vi 

1. Initialize data collection time t = 0  
2. while t < y  
3.    obtain a new labeled data point for the current location     

   and a new labeled data point for each remote location 
4.     t = t + z 
5. Number of new data points (current location) mc = y / z 
6. Number of new data points (remote locations) mr = nr * (y / z) 
7. for each model Фi in the list of SADL models, where 1≤ i ≤ n 
8.    Create a new thread and do the following: 
9.       Let m be mc or mr based on model type (current/remote) 
10.      if m ≥ τi, replace all data in Wi by τi most recent data  
11.      else add m new data to Wi and remove m old data from Wi 
12.      Fine-tune SADL model Фi using all data points in Wi and 

         obtain fine-tuned model Фi’ 
13.      Let current SADL model Фi be Фi’ 
14.      if model Фi is for the current location: 
15.         Use the most recently collected new data point to predict  

             visibility vi of the current location in xi -minute 
16.      else if model Фi is for remote locations: 
17.         Use the most recently collected nr new data points to  

             predict visibility vi of all remote locations in xi -minute 
18. wait until all threads have completed 
19. return a list of new SADL models Фi and predicted visibility vi 

 

 The algorithm begins by collecting newly labeled data 
points based on the prediction interval y and the sampling 
interval z. The variables mc and mr represent the number of 
new data points obtained for the current location and the 
remote locations, respectively. These new data points are 
added to the adaptive training window, while an equal 
number of older data points are removed. All SADL models, 
each with their own adaptive training window, are fine-tuned 
in parallel, significantly improving computation time. The 
most recent features are used to make the necessary visibility 
predictions. A current location SADL model performs a 
single prediction, while a remote location model performs 
predictions for each remote location. Finally, a list of SADL 
models and their predicted visibility is returned.  

V. FINE-TUNING MODEL HYPERPARAMETERS 

A. Dataset Preprocessing and Creation 

 As shown in Table I, we identified relevant weather-
related  features for the task of sea-based visibility prediction. 
Some of the data, such as visibility, were obtained from the 
ICOADS dataset, provided through NOAA’s data portal [15]. 
Cloud cover and precipitation data, derived from satellite 

observations, were obtained from the Copernicus data portal, 
providing global gridded monthly and daily datasets from 
1979 to the present [16]. All datasets were properly cleaned 
using the Pandas library from Python. For demonstration 
purposes, the data must be simulated into small time intervals, 
such as five-minute intervals. Every five-minutes, a new 
training data point is collected and added to the adaptive 
training window. 

 To simulate marine weather conditions and demonstrate 
the effectiveness of our real-time approach, we developed four 
current location datasets, one for each of the following 
prediction intervals: 15, 30, 45, and 60 minutes. When 
creating the datasets, the label (i.e., visibility) must be time-
shifted. For example, in a training dataset for the 15-minute 
prediction model, the label for a data point observed at time t 
refers to the visibility observed at time t+15. The current 
location datasets were created from existing data and contain 
a total of 8,188 rows, spanning from January 1, 2019, to 
January 15, 2019. Similarly, we developed four remote 
location datasets corresponding to 15, 30, 45, and 60-minute 
predictions. However, since each remote location model 
predicts visibility across 16 remote locations, the remote 
location datasets are much larger. These datasets are based on 
existing data and contain a total of 131,008 rows, spanning 
from January 1, 2019, to January 15, 2019, and cover four 
directions (north, east, south, and west), each with four 
different distances. 

B. Manual Tuning of Hyperparameters 

Hyperparameters are crucial for fine-tuning models to 
achieve accurate predictions. For the SADL models, the 
hyperparameters include the number of neurons per hidden 
layer, dropout rate, batch size, learning rate, optimizer, 
epochs for small batch training, and the activation function. 
These hyperparameters were tested using the GridSearchCV 
function from scikit-learn. This function evaluates many 
possible combinations of hyperparameters to find the optimal 
set. Only selected individual tests were conducted, as testing 
an extensive range of hyperparameters with GridSearchCV is 
highly time intensive. The number of epochs was also 
manually tested. Table II shows examples of the tested values 
and the chosen values for hyperparameter tuning. 

TABLE II.  EXAMPLES OF HYPERPARAMETER TUNING 

Hyperparameter Tested Values Chosen Value 

HL #1 Neurons 32, 64, 128, 256 64 

HL #2 Neurons 16, 32, 64, 128 32 

HL #3 Neurons 8, 16, 32, 64 16 

Dropout Rate 0%, 10%, 20% 10% 

Learning Rate 0.01, 0.005, 0.001, 0.0005 0.005 

Optimizer Adam, SGD, RMSProp SGD 

Activation Function Leaky ReLu, Relu, Sigmoid Leaky ReLu 

Epochs (small batch) 20, 25, 30, 35, 40, 45, 50 20 

C. Window Size Selection 

A small window size can fit the model well to recent data 
points but may struggle to capture long-term trends. In 
contrast, a large window size allows for capturing long-term 
patterns but can be detrimental to the model, especially in 
volatile environments like marine visibility, which is highly 
influenced by dynamic and unpredictable factors. Based on 
previous work that performed detailed analysis to select the 
optimal window size [11], we conducted experiments on 
various datasets to determine the most suitable window sizes 
for different models. Table III shows the selected window 
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sizes and the corresponding prediction accuracy for both 
current location and remote location models. Note that, since 
more data is available for remote locations, the window sizes 
for remote location models are larger than those for current 
location models. 

TABLE III.  WINDOW SIZES FOR CURRENT/REMOTE LOCATIONS 

Time Interval  
Current Location Remote Locations 

Window Size Accuracy Window Size Accuracy 

15 minutes 12 96.25% 128 96.49% 

30 minutes 12 93.07% 128 95.12% 

45 minutes 12 96.19% 64 96.39% 

60 minutes 12 91.01% 72 95.94% 

VI. CASE STUDY 

To demonstrate the feasibility and effectiveness of our 
approach, we present several case studies. We first examine 
general cases of marine weather during the daytime for both 
current location and remote location visibility predictions. 
We then test on the day-night cycle and adapt the model to 
account for lower visibility conditions at night. Finally, we 
simulate a mock storm to assess the models’ adaptability. 

A. Daytime Accuracy Analysis 

The SADL current location and remote location models 
were tested upon daytime data points from the current 
location and remote location datasets, respectively. Daytime 
data points were specifically chosen to assess the models’ 
ability to accurately track trends, such as foggy or rainy 
weather. Table IV shows the observed testing accuracy for all 
four current location models and all four remote location 
models. Since daytime visibility tends to be relatively 
consistent, we have set the training interval to 30 minutes and 
the sampling interval to 5 minutes. 

TABLE IV.  DAY-TIME ACCURACY FOR CURRENT/REMOTE LOCATIONS 

Time Interval 
Daytime Accuracy 

 Current Location Remote Location 

15 minutes 96.25% 96.49% 

30 minutes 93.07% 95.12% 

45 minutes 96.19% 96.39% 

60 minutes 91.01% 95.94% 

 As observed from Table IV, all models achieve a 
prediction accuracy of over 90 percent. The 15-minute 
models are the most accurate, though the other models also 
show similar performance. Figure 5 presents a breakdown of 
the prediction accuracy for the 15-minute current location and 
15-minute remote location models on a per-point basis. 

  

                (a) Current location                                (b) Remote locations 

Fig. 5. Daytime prediction accuracy of the 15-minute models    

 As shown in Fig. 5, the accuracy of visibility predictions 
is plotted over a period of 10,000 minutes of daytime, with 
each prediction occurring every five minutes. The 15-minute 
models are chosen for illustration due to their relatively 
higher accuracy. As observed, most predictions from the 

current location model fall within the 93-100 percent range, 
with an average accuracy of 96.25 percent. While there are a 
few notable misses, no individual predictions fall below 75 
percent accuracy. This consistency over the 10,000 minutes 
of daytime data indicates that the current location model is 
well-trained and can provide reliable real-time visibility 
predictions. For the 15-minute remote location model, 
prediction accuracy is averaged across the 16 remote 
locations. Despite some inaccuracies, only around 10 
predictions fall outside the expected range over 10,000-
minute daytime, and none drop below 40 percent. Overall, the 
remote location model demonstrates reliable performance in 
predicting real-time visibility across various distances over 
an extended period.  

B. Simulations of Day-Night Cycle 

In this case study, we demonstrate how a remote location 
15-minute model accurately predicts the day-night cycle over 
a two-day period. Lower visibility is typically observed at 
dawn, night, and dusk, and the model should be capable of 
predicting these conditions. Since the SADL models are feed-
forward ANNs, they may not effectively learn long-term 
patterns. Instead, they learn the complex relationship between 
the input features and the output feature over shorter periods 
of time. To address this issue, we introduce an additional 
feature, called time indicator. During dawn, night, or dusk, a 
lower value is generated for this feature, while during the day, 
a higher value is assigned. This feature interacts with the 
other input features, ensuring that even if the time parameter 
indicates daytime, the model can still predict low visibility in 
the presence of factors such as rain or clouds. Figure 6 shows 
the prediction results from the 15-minute remote location 
model for a distance of 5 miles to the north. 

 
Fig. 6. Real-time visibilty prediction of day-night cycle at a remote location 

As shown in Fig. 6, the 15-minute prediction at a 5-mile 
distance in the north closely follows the actual visibility. The 
first segment shows low visibility during nighttime, followed 
by a slight increase at dawn, and then a rise in daytime 
visibility. The visibility decreases again during dusk, and the 
entire cycle repeats. This graph demonstrates the ability of 
our real-time prediction models to capture visibility trends, 
such as the day-night cycle. 

C. Storm Simulation Analysis 

While overall accuracy is a valid metric for model 
evaluation, it is also important to examine special cases. In 
this study, we focus on predicting the visibility of a 
developing storm using the remote location models. The 
simulated storm is located in the north direction, 5 miles away 
from the vessel. Storm weather is characterized by high wind 
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speeds, rainfall, cloud cover, and low pressure. We simulated 
a 360-minute storm scenario to challenge the SADL models, 
as storms often present unusual conditions with rapidly 
changing visibility. To address this challenge, we adjusted the 
prediction interval to 5 minutes and the sampling interval to 
30 seconds, allowing the model to train on more storm data 
in real time. Additionally, we incorporated simulated storm 
data into the training datasets to help the model better learn 
the storm scenario. Figure 7 shows the real-time prediction 
results for the simulated storm, located 5 miles to the north, 
using the 15-minute remote location model. 

 
Fig. 7. Real-time prediction of a simulated storm at a remote location 

Similar to the 15-minute remote location model, the 30, 
45, and 60-minute models also closely track the actual 
visibility, though with slight delays. This suggests that the 
models have sufficiently learned to predict future visibility, 
especially with sufficient storm data, along with much shorter 
prediction and sampling intervals. As shown in Fig. 7, the 
storm begins with a drop in visibility, reaching its lowest 
point at 160 minutes. The storm continues until it fades, and 
visibility gradually increases. There are more missed 
predictions for the storm when visibility starts to increase. 
Since the storm remains at very low visibility for less than an 
hour, we believe the models tend to overfit to this data and 
are slightly slow to adapt. Nevertheless, the vast majority of 
predictions align closely with the actual visibility, even in this 
special scenario. 

VII. CONCLUSIONS AND FUTURE RESEARCH 

 This research aims to address the challenging field of 
dynamic weather prediction at sea. The lack of traditional 
equipment in ocean and the rapidly changing environments 
necessitates real-time training and prediction. Traditional 
approaches, where a deep learning model is trained on a large 
dataset and then used for prediction, fail to perform accurately 
in such dynamic environments. In contrast, in our SADL 
approach, both training and prediction are conducted in real 
time, enabling the model to remain up-to-date and responsive. 
After presenting the optimized hyperparameters, including 
window sizes, we evaluated our approach in various scenarios. 
The current and remote location models performed well in 
typical cases including daytime and day-night cycles, with all 
models achieving reasonable accuracy. Predicting storms, 
however, remains a difficult challenge, with noticeable delays 
in accuracy. Despite this, we believe our approach serves as a 
strong starting point for future research in this area.  

Future work will involve the implementation of a 
dynamic “radar” map and a demonstration of a mock ship 
journey. We also aim to incorporate artificial intelligence 

(AI) technology to select the optimal ship path, based on the 
most recently predicted visibility, assisting the captain with 
navigation. Additionally, we plan to experiment with datasets 
from different seasons, such as the monsoon period. This may 
require additional training on storm data, potentially even 
during the real-time training loop. If storms are less frequent, 
the model may need to focus more on storm datasets to retain 
the storm pattern. Conversely, if storms are more frequent, 
the model can update this knowledge less often. Finally, we 
plan to automate the process of dynamically determining 
model parameters, including prediction and sampling 
intervals, to enhance model performance in pattern learning. 
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