
1 
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

 

A Hierarchical Fine-Grained Deep Learning Model 

for Automated Medical Coding 
 

Joshua Carberry 

Computer and Information Science Department 

University of Massachusetts Dartmouth 

Dartmouth, MA 02747, USA 

jcarberry@umassd.edu 

Haiping Xu 

Computer and Information Science Department 

University of Massachusetts Dartmouth 

Dartmouth, MA 02747, USA 

hxu@umassd.edu

   

Abstract—During a patient’s visit, hospital staff record the 
patient’s condition, including measurements, observations, 
diagnoses, and treatment. These records, known as doctor’s 
notes, are usually kept in natural language and must be 
standardized for consistent communication during treatment 
and billing. Medical coding is the procedure of applying 
standardized, universal codes to doctor’s notes for efficient and 
effective record keeping. Due to the complexity of healthcare 
and the breadth of natural languages, this has been a difficult 
task requiring significant training and resources. In this paper, 
we present a fine-grained, evidence-based hierarchical deep 
learning model for automated medical coding. Instead of 
treating the doctor’s notes as a whole, the proposed method 
processes the coding of each diagnosis separately. For each 
diagnosis, the knowledge encoded in ontologies is used to extract 
semantically related sentences from the doctor’s notes. Then, a 
hierarchical deep learning classifier processes the diagnosis and 
its semantically related sentences and generates the medical code 
prediction. This approach not only achieved promising results 
in our experiments, but also provided a high degree of 
explainability and trustworthiness in the results, which is a key 
factor in the adoption of medical solutions. 

Keywords—Hierarchical deep learning models, automated 
medical coding, natural language processing, ontologies 

I. INTRODUCTION  

In the healthcare industry, accurate and reliable record 
keeping is essential. Records such as doctor’s notes describe 
the details of a patient’s hospital visit, including observations, 
measurements, and procedures, and are key to the various 
steps in the healthcare process. For example, when treating a 
patient, it is important to review their medical history, 
including records of previous hospital visits. An accurate 
understanding of a patient’s medical history can determine 
whether treatment is effective, ineffective or even dangerous. 
On the financial side, doctor’s notes are used to identify a 
patient’s diagnoses and the procedures carried out, and these 
records are used for billing and insurance purposes. If an error 
is made, it can lead to improper charges or insurance billing. 

Doctor’s notes are handwritten or typed documents used 
by a doctor to describe a patient’s hospital visit. These 
documents are written in natural language and use specialized 
medical terminology. Since the doctor’s notes are usually 
recorded during a patient’s visit, they often contain 
abbreviations, shorthand, and even spelling errors. Therefore, 
doctor’s notes are only considered a preliminary record of a 
hospital visit. When the doctor’s notes are created, they must 
be annotated with a set of standardized diagnostic codes that 
indicate the precise medical diagnoses discussed in the notes. 
These standardized codes characterize patient visits more 
accurately than natural language and serve as a shared 
language that facilitates communications between doctors, 
hospitals, and financial institutions. In this study, we explore 
the use of the International Classification of Diseases (ICD) 
medical coding standards to annotate doctor’s notes. ICD 

codes are very specific international standards for classifying 
diseases and include thousands of unique codes for annotation 
[1]. The procedure of annotating doctor’s notes is known as 
medical coding and has traditionally been performed by 
doctors or trained medical coders. Automated solutions have 
the potential to reduce the workload associated with coding, 
allowing professionals to redirect their time and energy toward 
improving healthcare. They can also reduce human error in 
medical coding and prevent incorrect billing and treatment. 
Recent research efforts have approached medical coding as a 
classification task that returns a set of predicted medical codes 
given a doctor’s notes instance. This classification task is 
typically solved as a multi-label classification, whereby the 
doctor’s notes instance is processed by a deep learning 
classifier and all predicted medical codes are output at once. 
While these methods may exhibit good performance in 
classification tasks, they often lack proper emphasis on 
explainability and can be “black boxes” to users who are less 
familiar with deep learning. In an industry such as healthcare, 
which is built on trust, the lack of in-depth knowledge of such 
an important process can be a barrier to adoption.  

In this paper, we present a fine-grained, evidence-based 
hierarchical deep learning model for automated medical 
coding. Unlike the multi-label approaches, which we call 
coarse-grained methods, our approach performs medical 
coding by solving a series of fine-grained single-label 
classifications. While doctor’s notes are mostly unstructured, 
they usually contain a bulleted or numbered list of diagnoses. 
For each diagnosis in a doctor’s notes instance, we extract only 
the semantically related sentences from the doctor’s notes and 
generate a fine-grained data point for classification. Sentence 
extraction is performed semantically using medical ontologies 
that encode medical concepts and their various relationships. 
The resulting fine-grained data points are passed separately to 
a deep learning classifier, which outputs predicted medical 
codes corresponding to the fine-grained data points. Based on 
our preliminary research on automated medical coding [2], we 
introduce a hierarchical fine-grained deep learning model 
designed to improve the tractability of large label spaces, a key 
consideration in medical coding where thousands of unique 
codes can be used for medical code annotation. This 
hierarchical approach can not only improve medical coding 
performance, but also provides a human-understandable 
structure that reveals the classification path for a given input 
and contextualizes the model results. 

II. RELATED WORK 

A significant amount of research effort has been invested 
into the development of automated medical coding systems. 
Early research efforts had little data for training and testing, 
and thus focused on less data-intensive procedures such as 
rule-based classification. An early approach to automated ICD 
coding for radiology reports was proposed by Goldstein and 
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their colleagues [3]. Their approach is to break down sentences 
into “lexical elements” and apply rules to make predictions. 
These rules can be derived by humans from a small number of 
examples and applied generally without the need for large 
volumes of training data. With the rise of electronic healthcare 
records (EHR), the availability of such data has gradually 
increased, leading to an increasing number of approaches 
based on machine learning. For example, Farkas and Szarvas 
attempted to automatically construct ICD-9-CM coding 
systems for radiology reports [4]. They managed to achieve 
comparable results with purely hand-crafted ICD-9-CM 
expert rules. Medori and Fairon described the architecture of 
an encoding system using machine learning [5]. They 
implemented a Naïve Bayes classifier to perform medical 
coding and showed that the extracted information to be coded 
is essential in the classification process. Following the 
introduction of initial machine learning approaches, the 
release of EHR datasets such as the Medical Information Mart 
for Intensive Care III (MIMIC-III) has significantly improved 
data accessibility and stimulated greater research interest [6]. 
This increased data availability has motivated researchers to 
explore more resource-intensive approaches. Consequently, 
they have delved into the problem using deep learning 
techniques to improve the performance of automated ICD 
coding. However, the large amount of text in the doctor’s note 
data poses a challenge, as the large input can confuse a deep 
learning classifier, especially if it is biased toward a limited 
portion of the input. To address this challenge, some research 
efforts employing deep learning methods have focused on 
developing classifiers that can build representations at 
multiple levels of analysis, aiming to understand doctor’s 
notes in terms of overarching concepts or even sentence-level 
complexity [2][7][8]. Other research efforts have addressed 
this issue by introducing a labeling attention mechanism in 
their deep learning methods to produce a different document 
interpretation for each unique label [9][10]. While these 
methods were effective and resulted in improved classification 
performance, they have significant drawbacks. Specifically, 
these methods perform coarse-grained ICD code prediction, 
where the classifier accepts the entire document and outputs a 
set of predicted ICD codes. This not only increases the 
difficulty of classification, but also makes it difficult for users 
to interpret and understand individual code predictions. In 
contrast, our hierarchical fine-grained approach can trace not 
only the classification steps for each diagnosis, but also the 
evidence (in the form of extracted sentences) used in each step. 
Our approach collects sentences semantically related to a 
given diagnosis based on human knowledge, thus providing 
the user with an exhaustive explanation for the classification 
results. This represents a major advantage in terms of 
explainability and transparency, which are valuable in a field 
as important and sensitive as healthcare. 

There has also been previous work on the use of a 
hierarchical classifier in machine learning, which moves down 
the label hierarchy to individual class labels in a series of steps. 
A typical hierarchical classifier architecture uses the per-node 
local classifier approach, where each node represents a unique 
classification step performed by a classifier independent of 
other nodes. Based on the decision made by a particular node, 
further evaluations are carried out in the hierarchy using its 
child nodes until a label representing the decision of the entire 
hierarchical classifier is derived. The hierarchical classifier 
approach has been successful in a variety of classification 
tasks. Wang et al. proposed a hierarchical classification 
method for real-world document classification [11]. Their 
approach consists of a hierarchy of local rule-based classifiers 
that work together to produce document classifications. Marin 

et al. introduced a hierarchical model for classifying galaxy 
morphology based on geometric moments [12]. They used 
local classifiers to determine galaxy types, and the hierarchical 
design showed good performance improvement in the face of 
data imbalance and growing label space. Ramírez-Corona et 
al. proposed an approach called  hierarchical multi-label 
classification (HMC) based on path evaluation [13]. They used 
a local classifier design to carry out multilabel classification 
on genomic data and showed that their approach works better 
when dealing with deep and populated hierarchies. Secker et 
al. implemented a hierarchy of local classifiers to categorize 
proteins by their unique functions [14]. Taking advantage of 
the modularity of the local classifier design, they investigated 
a hierarchy in which each local classifier is implemented using 
various machine learning methods, depending on which 
method provides the best performance. Daisey and Brown 
studied the effect of hierarchy design on the performance of 
multi-label classification tasks [15]. They noted that the 
improvement or degradation of the method depends heavily 
on the particular design pattern, evaluation strategy and 
training parameters. While these efforts do not approach the 
task of automated medical coding, they provide a basis for the 
general validity of hierarchical classification. As demonstrated 
in this paper, our approach utilizes a hierarchical fine-grained 
deep learning model to achieve automated medical coding that 
can be effectively interpreted. 

An alternative to organizing local classifiers is to use a 
global classifier directly. Instead of arranging multiple local 
classifiers into a hierarchical structure, the hierarchical 
components can be built into a single classifier and trained as 
a single unit. Silla and Freitas introduced a global Naïve Bayes 
classifier for the protein function classification task [16]. 
Unlike the hierarchical classifiers, their global approach does 
not propagate the error to subsequent classification steps when 
one step goes wrong. Lawrence et al. proposed a hybrid neural 
network for human face recognition by combining local image 
sampling, self-organizing map (SOM) neural network and 
convolutional neural network [17]. They built hierarchical 
layers into a single convolutional neural network (CNN) to 
make it a global classifier. Although global classifier methods 
can streamline training and testing, and sometimes improve 
performance, they have some drawbacks compared to the 
hierarchical classifier approaches. In a hierarchical classifier 
approach, each local classifier can be individually designed, 
parameterized, tested, and trained, whereas this is not possible 
for a global classifier, which represents an entire hierarchy that 
cannot be disassembled and reassembled in the same way as 
the hierarchical classifiers. Local classifiers can be removed 
or reused in another hierarchy without retraining, whereas 
global classifiers must be retrained due to any architectural 
change, no matter how subtle. While our approach differs from 
the global classifier methods by using a hierarchical deep 
learning model for automated medical coding, we envision 
that in future work, parallel algorithms can be designed to 
support efficient training of hierarchical deep learning models. 
In this sense, our approach complements existing global 
classifier methods by providing a simple and efficient solution 
for supporting explainable automated medical coding. 

III. A HIERARCHICAL DEEP LEARNING MODEL 

A. Fine-Grained Medical Coding 

In the medical coding task, we use a doctor’s notes 
instance as input and output appropriate medical codes 
corresponding to the diagnoses listed in the doctor’s notes. The 
doctor’s notes instance contains the doctor’s observations of a 
particular hospital visit, written in unstructured natural 
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language. Fig. 1 shows an example excerpted from a doctor’s 
notes instance. In a typical coarse-grained approach, the entire 
document of the doctor’s notes is fed into a multi-label 
classifier, which then outputs all predicted medical codes at 
once. In contrast to the multi-label coarse-grained approach, 
we use a fine-grained approach that decomposes the document 
and performs a series of single-label classifications to solve 
the medical coding problem. 

 

Fig. 1. An example excerpted from a doctor’s notes instance. 

 In our fine-grained approach, we treat each diagnosis in a 
doctor’s notes instance individually. Despite their mostly 
unstructured nature, a doctor’s notes instance usually contains 
a bulleted list of discharge diagnoses. While these diagnoses 
are often not sufficient for medical coding, they provide a 
suitable starting point for further investigation. As shown in 
Fig. 2, for each listed diagnosis, we select and extract the 
sentences from the free text notes that are semantically related 
to the diagnosis. This resulted in a list of fine-grained data 
points containing a diagnosis and their semantically related 
sentences. Each fine-grained data point is then passed to the 
hierarchical classifier, which outputs a medical code 
prediction for that diagnosis. Note that the fine-grained data 
points can be processed sequentially or potentially in parallel. 
Once all fine-grained data points have been classified, we 
collect the predicted medical codes for different diagnoses into 
a single set and return them to the user.  

 

Fig. 2. An overview of the fine-grained approach for medical coding. 

Compared to the coarse-grained approach, the fine-grained 
approach presents simpler single-label classification tasks. 
This is particularly important for medical coding problems, 
where thousands of unique codes can be applied. Fine-grained 
methods also expose key elements of the decision-making 
process to human understanding. In cases where the classifier 
outputs unexpected results, each predicted medical code can 
be traced back to the diagnosis as well as the relevant text 
extracted from the doctor’s notes, which may help explain and 
contextualize the prediction or diagnose a model failure.  

B. Knowledge-Based Sentence Extraction 

In many machine learning scenarios, it is often necessary 
to prune the raw data so that the classifier accesses only the 
key information that is essential for classification. This 
pruning process serves a dual purpose. Firstly, it compresses 
the length of each data point, making the machine learning 
process more efficient. In our case, shortening data points not 
only improves the efficiency of the process, but also becomes 
necessary due to the use of a BERT-based classifier [18]. 
Given the architectural limitation that each data point can only 

consist of a maximum of 512 input tokens (including words, 
punctuation marks, and symbols), data reduction becomes 
crucial in order to accommodate more critical data elements 
within this threshold. Secondly, if we can identify the key 
elements of the input information that are used for 
classification, then compressing the input information into 
these key segments improves the reliability of the 
classification by eliminating more useless or even noisy 
information in a raw data point. In our fine-grained approach, 
data is reduced by extracting only the related sentences from 
doctor’s notes. Specifically, for a given diagnosis, we focus on 
only the free text notes sentences that are semantically related 
to that diagnosis. With this approach, we can effectively 
minimize the size of input for automated medical coding. To 
determine which sentences may be relevant to a diagnosis, we 
rely on established knowledge of medical concepts and their 
interconnections. This knowledge allows us to scrutinize the 
relationship between the diagnosis and the concepts discussed 
in a given sentence to identify any concept overlap. Such an 
overlap indicates that the sentence has something in common 
with the diagnosis, suggesting that it contains information 
valuable for the classification task. 

In recent years, graph-based knowledge representations 
such as ontologies have become increasingly popularity for a 
variety of applications. Graph-based representations treat 
concepts as nodes connected by edges representing 
relationships. In our approach, we use medical ontologies as a 
knowledge base for sentence extraction. Fig. 3 shows a partial 
medical ontology for the concept “congestive heart failure.” 
As shown in the figure, the ontology can be encoded using 
ordered triples, e.g., the triple <congestive heart failure, 
has_symptom, fatigue> indicates that there is a relationship 
named “has_symptom” between the concept “congestive heart 
failure” and another concept “fatigue”. We use such 
relationships to determine which medical concepts might be 
semantically related to a diagnosis. 

 

Fig. 3. Part of the medical ontology for concept “congestive heart failure”. 

Algorithm 1 presents the steps for generating a fine-
grained data point δ, which consists of tokens selected from 
the diagnosis and semantically related sentences extracted 
from a doctor’s notes instance Ξ. 

Algorithm 1: Generate a Fine-Grained Data Point 

Input: A diagnosis α from a doctor’s notes instance Ξ, the free 

text notes Π in Ξ, a set of concepts Cα related to α, where Cα ⸦ 

medical ontology Φ 

Output: fine-grained data point δ 

1. Create a fine-grained data point δ with 512 token slots 

2. Let string text be diagnosis α 

3. for each sentence σ in Π: 

4.     Let Cσ be the set of concepts in Φ that are used in σ 

5.     Let overlap be the intersection of Cα and Cσξ 

6.     if |overlap| > 0: 

7.         Add sentence σ to text 

8. Select tokens from text and add them to δ 

9. return δ 
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C. Hierarchical Classification 

Popular classification methods in machine learning are 
usually monolithic, with a single classifier performing the 
entire classification process. This approach is suitable for 
simple classification tasks where the classifier is sufficiently 
robust. However, as the complexity of classification increases, 
it becomes useful to decompose the classification process into 
multiple stages managed by specialized classifiers. For 
example, when identifying a specific breed of animal (e.g., a 
dog or cat breed), it is useful to first predict whether it is a dog 
or a cat. If the prediction favors the dog, we can rule out all 
feline possibilities, thus simplifying subsequent classification 
steps. Assuming the initial “dog” prediction holds, we can 
direct the partially classified animal to a specialized dog breed 
classifier for optimal accuracy. Partitioning the classification 
process into multiple subclassifiers reduces the local 
complexity of each classification stage. This division allows 
each subclassifier to focus on its specific, limited scope and 
thus deal more accurately with the reduced complexity. 

Drawing on these concepts, we introduce a hierarchical 
fine-grained classifier designed to predict ICD codes for a 
given diagnosis by combining the results of multiple 
subclassifiers. Once we have generated a fine-grained data 
point based on the procedure described in Algorithm 1, we can 
pass that data point through our hierarchical classifier to 
predict a medical code. Unlike our previous approach using a 
monolithic classifier [2], we organize the individual classifiers 
into a hierarchy that progressively refines the fine-grained data 
point and improves specificity until a final medical code 
prediction is made. Similar to the practice of categorizing 
animal species (“dog” or “cat”) before delving into animal 
breeds, it has proven advantageous to first classify diseases 
into their types or families. For example, a diagnosis of 
“influenza” might first be categorized as a respiratory disease 
and then further refined to a respiratory virus, ultimately 
resulting in a medical code prediction. As previously 
mentioned, the discrete subclassifiers assigned to each step 
focus on only a portion of their classification process, thereby 
reducing processing complexity. Fig. 4 illustrates the model 
architecture using an example of a hierarchical classifier with 
three subclassifiers. To predict the ICD code labels, the TOP 
classifier first determines whether the data point belongs to 
class A or class B, then it is sent to the appropriate subclassifier 
(Type A or B classifier) for further classification. 

 

Fig. 4. An example hierarchical classifier with three subclassifiers. 

Hierarchical classification provides two major advantages 
for automated medical coding tasks. First of all, it simplifies 
the classification problem by decomposing the label space into 
distinct subspaces. For example, in Fig. 4, we use only binary 
classification to deal with the medical coding task with 4 
unique labels. As mentioned earlier, the growing label space 
is a particular concern for medical coding problems, and 
hierarchical classification can ensure that the label space for 
each subclassifier remains manageable. As more medical 
codes are considered, the hierarchical structure can be 
modularly extended to accommodate these codes, while the 
performance of a monolithic classifier may begin to suffer. In 
addition to performance issue, hierarchical classification 
enhances the explainability of the often “black box” deep 

learning aspect of the method by providing a human-
understandable decision framework. A given prediction can be 
traced up the hierarchy to determine which classification path 
a data point was sent through, revealing the different steps that 
led to the final result. These details can help users understand 
the behavior of the model and provide additional insights on 
potential classification errors. 

A hierarchical classifier can be formally defined as a tree 
of nodes, each of which is defined as a 3-tuple (SC, CN, LA), 
where SC is a subclassifier defined as a function that receives 
a fine-grained data point and outputs a list of classification 
confidences that represent the possibilities of belonging to the 
classes; CN is a list of child nodes that contain subclassifiers; 
and LA is the label associated with the input of the node. The 
leaf nodes at the bottom of the tree have no child nodes and 
contain the labels of the final output of the hierarchical 
classifier. Based on this definition, we can start from the TOP 
root node and progressively predict a given fine-grained data 
point through its child nodes, as shown in Algorithm 2. 

Algorithm 2: Hierarchically Classify a Fine-Grained Data Point 

Input: Fine-grained data point δ; a hierarchical classifier with 

root node TOP 

Output: ICD code label β of data point δ 

1. Let the current node ξ be the TOP root node 

2. Initialize the ICD code label β of data point δ to null 

3. while ξ.CN ≠ ∅:  // ξ  is not a leaf node 

4.     Let confidences be an array of size |ξ.CN| 

5.     confidences = ξ.SC(δ) // i.e., the classification process 

6.     Let type be the child node ID with max(confidences)  

7.     ξ = ξ.CN[type] // select the corresponding child node 

8.     Let ICD code label β be ξ.LA  

9. return ICD code label β 

 
Note that in the algorithm, the appropriate child node is 

selected based on the highest confidence of the classification 
results at each level of the classification hierarchy. The final 
ICD code label β of the given data point δ is determined by a 
leaf node that predicts a class with the highest confidence.  

IV. CASE STUDIES AND EXPERIMENTAL RESULTS 

To demonstrate the feasibility of our new approach, we 
conducted experiments using MIMIC-III, a publicly available 
healthcare dataset that offers a large volume of deidentified 
patient records including doctor’s notes and associated 
medical code labels. Training and testing for the following 
experiments were carried out on a workstation equipped with 
a NVIDIA GeForce RTX 2060 SUPER (8 GB VRAM), an 
Intel Core i7-9700 CPU, and 16 GB of main memory.  

A. Experiments with a Small Code Set 

As the label space expands, the performance gain from our 
previous monolithic approach to the current hierarchical 
approach shall become apparent. Essentially, the hierarchical 
classifier would exhibit greater resilience when handling 
classification tasks involving a larger number of unique ICD 
codes. However, when dealing with a reduced number of 
codes, the performance gain offered by the hierarchical 
classifier might not be significant. In this section, we 
substantiate this claim through our initial experiment on a 
small set of ICD codes. Specifically, we perform fine-grained 
evidence-based ICD coding for a subset of 7 heart-disease 
related ICD codes using both monolithic and hierarchical 
classification strategies. We expect the performance of the 
hierarchical approach to meet or exceed the performance of 
the monolithic method, which in our previous work has 
demonstrated exceptional performance when dealing with a 
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limited number of distinct labels or ICD codes [2]. As shown 
in Fig. 5 (a), in our experiments, the monolithic strategy uses 
a flat Long Short-Term Memory (LSTM) classifier, which 
predicts one of the 7 labels in just one step. On the other hand, 
the hierarchical classifier uses a series of subclassifiers for 
classification, each of which is responsible for a local decision 
that becomes part of the final prediction. In this particular 
example, the hierarchical design has only a marginal 
advantage due to the small size and low complexity of the 7-
code set. Specifically, we added a subclassifier responsible for 
distinguishing between two highly similar codes C1: 401.1 
Benign hypertension and C2: 401.9 Unspecified essential 
hypertension. The resulting hierarchy is shown in Fig. 5 (b). 
For each subclassifier in the hierarchy, we used a separate 
instance of BERT classifier [18]. 

 

Fig. 5. (a) Monolithic classifier vs. b) hierarchical classifier for a 7-code set. 

The classifiers were trained using a 5-fold cross validation 
method with 5 epochs and a learning rate of 1e-5. The cross-
validation method was used to select the highest performing 
model training checkpoints. The results of the small code set 
experiments are shown in Table I, where precision, recall, and 
F1 score were calculated using macro-averages that consider 
all classes equally regardless of their sizes. 

TABLE I.  PERFORMANCE METRICS COMPARISON USING 7 CODES 

Method Accuracy F1 Score Precision Recall 

Monolithic 0.935 0.912 0.904 0.923 

Hierarchical 0.961 0.937 0.964 0.921 

As shown in the table, the performance of the former 
monolithic approach remains reasonable with a small code set, 
while the performance of the hierarchical classifier improves 
slightly or comes very close to that of the monolithic classifier. 

B. Experiments with a Large Code Set 

A major challenge in medical coding arises from the large 
label spaces involved in classifying a large number of unique 
codes. As with many classification tasks, automated medical 
coding becomes increasingly difficult as more and more labels 
are introduced. In this experiment, we have selected 40 
common medical codes used in the MIMIC-III dataset. As in 
Section IV.A, we compared the previous monolithic 
classification method with our newly introduced hierarchical 
classification approach to show the advantages of our new 
approach when more unique ICD codes are involved in the 
classification task. The structure of our hierarchical classifier 
is shown in Fig. 6. This hierarchy, largely inspired by the 
existing hierarchy of ICD codes, subdivides the classification 
into several steps. First, the top-level classifier identifies the 
type of disease (e.g., cardiovascular and respiratory) that the 
diagnosis may involve. For cardiovascular, mental, and 
digestive disorders, this leads to a leaf node, which means that 
this is the final step in the classification; whereas for 
respiratory and endocrine disorders, the classification may go 
directly to the leaf node, which completes the classification, or 
it may continue on to the chronic or fluid classifiers. Each 
subclassifier is a BERT instance trained for its particular 
classification step. For subclassifiers with higher hierarchical 
levels such as TOP, the data sampling rate is reduced to 

minimize training time while maintaining performance. All 
subclassifiers were fine-tuned 5 epochs at a learning rate of 1e-
5. We again use an 80/20 training split and the 5-fold cross 
validation method to diagnose model performance and select 
optimal training checkpoints. For the monolithic classifier, we 
used a single instance of BERT trained on all available data 
with the same training hyperparameters as described above.  

 

Fig. 6. Hierarchical classifier organization for a 40-code set. 

Table II lists the performance metrics of the two classifiers. 
The main finding of this experiment is the improved 
performance of the hierarchical method, which significantly 
outperforms the monolithic classifier in all performance 
metrics. While the high accuracy reflects good overall 
classification performance, the F1 score is of particular 
interest in the performance analysis for two reasons. As 
macro-averaged values, the F1 scores consider all categories 
equally, regardless of the frequency of the categories (even the 
smallest categories are fairly reflected in the metric). Second, 
F1 score quantifies the incidence of false positives and false 
negatives, which is particularly important in medical coding 
tasks where false positives can lead to incorrect billing and 
false negatives can lead to incomplete documentation. The 
superiority of the hierarchical classifier in these respects is a 
good indication that the new model ensures greater robustness 
in classifying a large code set. Considering the high number of 
unique codes in the latest standards such as ICD-9, ICD-10, 
and ICD-11, our hierarchical approach is scalable and its 
advantage becomes critical in real coding situations, where a 
rational ICD coding procedure is especially important. 

TABLE II.  PERFORMANCE METRICS COMPARISON USING 40 CODES 

Method Accuracy F1 Score Precision Recall 

Monolithic 0.740 0.597 0.639 0.594 

Hierarchical 0.927 0.893 0.932 0.866 

C. An Example of Classification Path 

In order to demonstrate the various steps of our new 

hierarchical approach using an example, we now trace the 

behavior of the method in predicting the ICD code for a single 

diagnosis. As shown in Fig. 7, we select the diagnosis 

“Metabolic acidosis” for the demonstration of automated ICD 

code prediction using our hierarchical approach. 

 

Fig. 7. Selected dignosis “Metabolic acidosis” for ICD code prediction. 

To reason which sentences may be semantically related to 

the selected diagnosis, we must first derive a set of related 

concepts using the medical ontology as described in Section 

III.B. In this case, we derive a set of concepts related to 

“Metabolic acidosis” and extract sentences that discuss these 
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concepts in the free text of the doctor’s notes, as shown in Fig. 

8. The extracted sentences are then combined with the 

original diagnosis text “Metabolic acidosis” to form a fine-

grained data point that is ready for classification.  

 

Fig. 8. Semantically related sentences extracted for “Metabolic acidosis”. 

Fig. 9 shows the classification path for the data point to 

arrive at the correctly predicted ICD code 276.2 Lactic 

Acidosis. The TOP subclassifier first determines that the data 

point must belong to the category of endocrine diseases, and 

then the Endocrine subclassifier determines that it must 

belong to the subcategory of fluid-related endocrine diseases. 

Finally, the Fluid subclassifier predicts the final code 276.2. 

 

Fig. 9. An example classification path for predicting medical code. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we introduce a fine-grained, evidence-based 
hierarchical classification methodology customized for the 
task of automated ICD coding. Our approach involves 
assigning highly specific, standardized medical codes to 
patient diagnoses listed in a doctor’s notes instance. Unlike 
other methods, we classify each diagnosis in a doctor’s notes 
instance separately, forming a unique classification path for 
each. For each diagnosis, our approach uses medical 
knowledge to extract semantically related sentences from the 
free text of the doctor’s notes to augment the input data, 
providing additional context for decision-making and human 
review. This data is passed through a hierarchical classifier 
that produces an ICD code prediction. Unlike a monolithic 
classifier that performs classification in a single step, our 
hierarchical classifier consists of subclassifiers, each of which 
is responsible for only one step in the classification process. 
The data point moves down through the hierarchy, receiving 
more detailed predictions, until a unique ICD code prediction 
is obtained. Through a number of comparative experiments, 
we demonstrate the improvement that the hierarchical 
classification approach brings over the monolithic approach 
used in previous work [2]. The experimental results show that 
the hierarchical classifier makes automated coding more 
robust to datasets containing a large number of unique ICD 
codes, which is an important consideration since real-world 
data may involve dozens, hundreds, or even thousands of 
unique codes, depending on the desired coverage.  

In future work, we will explore more complex classifier 
designs to pursue higher performance and investigate general 
principles for effective hierarchical design in the context of 
automated ICD coding. The ultimate goal of this work is to 
design and implement larger classifiers for realistic ICD 
coding environments where very high code coverage may be 
required. In addition, we may consider different design 
architectures for different subclassifiers in the hierarchy. This 
may be necessary because the subclassifiers responsible for 
easier classification can be implemented using simpler but 

effective architectures to keep the computational cost more 
reasonable. Finally, the hyperparameters and training sets 
could also potentially be tuned across different subclassifiers 
to further increase the flexibility of our approach. 
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