
54

A Scalable Storage Scheme for On-Chain Big Data Using Historical Blockchains

Marcos Felipe and Haiping Xu*
Computer and Information Science Department

University of Massachusetts Dartmouth

Dartmouth, MA, 02747, USA
mfelipe1@umassd.edu, hxu@umassd.edu

*corresponding author

Abstract—Despite the growing interest in blockchain

technology, the scalability of blockchain storage has become a

major issue for applications that require large amounts of on-

chain data. In this paper, we propose a novel scalable storage

scheme for consortium networks to manage the storage capacity

required by data-rich blockchain applications. We establish

network nodes as super peers or regular peers, where super

peers can maintain old blockchain data in the form of historical

blockchains. Regular peers maintain only the latest blockchain

data stored in the current blockchain, but they can access any

data in the historical blockchains by making queries to the super

peers. We present procedures to build a historical blockchain

and retrieve data from the historical blockchains and the

current blockchain in a concurrent manner. Experimental

results show that our scalable storage scheme using historical

blockchains is feasible and effective in accessing and sharing

healthcare data with image files.

Keywords-consortium blockchain; historical blockchain; on-

chain data; scalable storage; super peer; healthcare data

I. INTRODUCTION

Blockchain technology is becoming very popular today as
a decentralized distributed ledger used for securing data and
transactions while providing users with a reliable and
convenient way to access data. The technology allows peer-
to-peer networks to maintain “chains” of blocks that contain
transaction records. Each block stores a hash value of its
previous block, so that any attempted modification to a block
affects all subsequent blocks in the chain. In addition, peers in
the network maintain copies of the chain, so transactions and
blocks can be verified. In a permissioned blockchain, all peers
with the required permissions have access to the transactions
recorded in the network, but the transaction records are secure
and immutable, ensuring data integrity and transparency.

The convenience offered by blockchain as a form of data
storage has led to a rise in popularity over the past decade.
Bitcoin, a digital currency that uses public blockchain
technology, has over 100 million users in 2022. From January
2012 to July 2022, the Bitcoin blockchain has grown by more
than 400 gigabytes and has even doubled since February 2019.
If this massive growth continues, the cost of being a full node
in a blockchain network will become completely unrealistic
for regular peers. Storage issues also pose problems for non-
public blockchain networks, such as private and consortium
networks. While such networks do not have as many peers
involved in as many transactions, storage issues can still arise,

depending on the type of data being stored. Blockchain
technology has been used in many different areas, including
healthcare, real estate, insurance, and the Internet of Things
(IoT). These types of applications often use consortium
blockchain networks, but because they can be very data-rich,
scalability of blockchain storage has been a major concern.

In recent years, there have been many studies on
consortium blockchain storage management [1][2]. However,
most of these efforts involve the use of off-chain storage,
employing solutions such as InterPlanetary File System
(IPFS) or cloud storage. By using these methods, the storage
problem can be mitigated, but since these methods store most
of the data off-chain, the benefits of using blockchain
technology to secure and maintain the data are lost. As the
major contribution of this paper, we propose an on-chain
method that reduces the storage burden on the majority of
peers in a network by splitting a current blockchain (CB) into
a historical blockchain (HB) and a new CB. An HB is an
immutable blockchain that contains historical data of the
blockchain, while a CB contains blockchain data from the last
few years, which can grow until it needs to be split again. We
establish the network nodes as either super peers or regular
peers, with a reasonable number of super peers maintaining
CB and multiple HBs. Most nodes are regular peers,
maintaining only CB, but they can access any data in HBs by
making queries to the super peers. Using a time-based
partitioning method, when the CB reaches a certain age, say
10 years, it can be split into an HB and a new CB, containing
data from the earlier 5 years and the last 5 years, respectively.
The group of super peers is responsible for maintaining the
HBs and the latest CB, while the regular peers store only the
CB, allowing for a greatly reduced storage burden. As the CB
continues to grow, its size can be reduced again and more HBs
can be created and maintained by the super peers.

Although not required, regular peers can still store HBs;
however, they are not responsible for handling queries to
retrieve historical data made by other regular peers. When a
regular peer maintains only the CB, it can access the HBs by
querying a super peer in the network. Once the super peer
retrieves the requested data from the HBs, it notifies the
requesting regular peer and allows it to download the data. To
ensure that retrieving historical data remains an efficient task
for fairly large blockchains with many years of data, we also
introduce a meta-block for the CB and each HB. The meta-
block contains an index of user transaction records stored in
the CB or an HB to speed up the data retrieval process.

2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)

2693-9371/22/$31.00 ©2022 IEEE

DOI 10.1109/QRS-C57518.2022.00017

55

II. RELATED WORK

The issue of scalability in blockchain applications has
been an ongoing concern, especially in public blockchain
applications. Poon and Dryja introduced the Bitcoin Lightning
Network, which is a decentralized system where transactions
are sent through channels for off-chain value transfer [3]. The
use of the Bitcoin Lightning Network, which includes micro-
payments sent continuously between two parties, significantly
reduces global Bitcoin blockchain transaction broadcasts and
makes the Bitcoin network scalable. Further research on
blockchain scalability facilitated by off-chain strategies is
more applicable to private and consortium blockchain
applications. To reduce the high computation and storage
costs in blockchain-based applications, Eberhardt and Tai
investigated different off-chain computation and storage
methods [4]. They presented five off-chain patterns for
moving computation and data off the blockchain without
violating the trustless property. Wang et al. proposed
ChainSplitter, an off-chain scalability solution for Industrial
Internet of Things (IIoT) blockchain applications [5]. The
proposed approach featured a hierarchical storage structure
that stores recent blocks in an overlay network, with most of
the blockchain data stored in the cloud. Although the cloud is
organized as a distributed cloud storage, the blockchain data
in the cloud is not maintained by peers; therefore, the cloud
acts as an off-chain storage for the blockchain data. IPFS is a
decentralized, verifiable, blockchain-compatible distributed
storage system. IPFS used with blockchain networks as an off-
chain approach also provides a scalable solution for
blockchains. Li et al. were able to reduce the asset size of
transactions and increase the transaction throughput of an
experimental consortium blockchain network by storing hash
values of encrypted data on-chain and storing the encrypted
data itself off-chain in an associated IPFS [6]. They provided
a solution for secure storage and access to a task-scheduling
scheme by integrating Hyperledger Fabric with IPFS services.
Although the off-chain approaches provide feasible ways to
mitigate the scalability issue of blockchains, as noted in [4],
the fundamental properties of blockchains and blockchain
applications can be compromised to varying degrees when
using off-chain approaches. In contrast, our approach stores
the big data in historical blockchains and does not use off-
chain storage; thus, all the essential blockchain properties of
the stored data are maintained in our proposed approach.

Attempts to use on-chain storage to address the scalability
issue are very rare. Xu proposed the section-blockchain, an
on-chain method to reduce storage cost of blockchain
networks for devices with insufficient storage [7]. In their
approach, instead of implementing lightweight nodes, all
nodes store parts of the complete blockchain equally and are
incentivized to change their local storage to receive more
payoffs. In a further attempt, segmented blockchains were
proposed to enable nodes to store a copy of one blockchain
segment [8]. They showed that their approach can reduce the
storage cost of a blockchain system while maintaining
decentralization without compromising the security of the
blockchain. Thamrin and Xu proposed a framework for cloud-
based blockchains to store multimedia files securely and

reliably [9]. They used the cloud-based blockchain as a
complete blockchain for data accessibility, redundancy, and
security, while a lite blockchain allows local storage of text-
based information and metadata for multimedia files.
Although the above methods allow big data storage, data
retrieval can be inefficient due to the incomplete data stored
in some blockchains. Unlike them, we divide a complete
blockchain into a current blockchain and multiple historical
blockchains, maintained by super peers. A regular peer can
access its local current blockchain and request historical
blockchain data from a super peer in a concurrent manner.

Blockchain technology has been extensively used in
healthcare systems. Jayabalan and Jeyanthi introduced a
blockchain-based application using IPFS specifically for
healthcare systems [10]. Focusing on storage of electronic
health records (EHRs), the IPFS service was used to move
data off-chain while retaining hashes of the data on the
blockchain. Im et al. proposed a consortium blockchain for
patient access and management of personal health records
(PHRs), implemented using Hyperledger Fabric [11]. By
comparing with the public blockchain Ethereum, they
concluded that Hyperledger Fabric was a viable approach to
ensure the privacy of PHRs. Recently, Thamrin and Xu
proposed a hierarchical cloud-based consortium blockchain
for the storage of EHRs [12]. In their approach, big data such
as multimedia files can be stored in a cloud-based hospital
blockchain network within a local area and shared with
hospitals outside the networks through high-level blockchain
networks, called city and state blockchain networks. Due to
the hierarchical structure of the blockchain networks, which
supports concurrent search and retrieval of EHRs, this could
be an efficient way to access and share EHRs nationwide.
Although the above approaches provide feasible ways for the
application of blockchain technology in healthcare systems,
the scalability issue remains a major concern. In our approach,
since the current blockchain and each historical blockchain
contain only a certain number of years of blockchain data,
each blockchain is easier to manage and the blockchain
scalability problem can be significantly alleviated.

III. SCALABLE STORAGE USING HISTORICAL BLOCKCHAINS

A. A Framework for Scalable Blockchain Networks

Data storage technology has long been studied and
improved, whether it is physical storage, cloud storage, or now
blockchain networks. Due to the many benefits of using
blockchain networks, including decentralization, security,
immutability, transparency and traceability, blockchain
technology has been widely used in many areas beyond
cryptocurrency. Many blockchain-enabled applications
require the storage of large amounts of data; therefore,
managing the size of the blockchain is critical to maintaining
its viability for nodes and networks. For example, in the
healthcare domain, a single patient visit to a hospital can result
in a great deal of data, and when that data scales to multiple
visits, the storage load can become quite large. For a hospital
with many patients, and then expanding to a local area or city
network of hospitals that share information, the data problem
only proliferates. If a local or a city network of hospitals is

56

going to consider using a consortium blockchain for data
storage and sharing, they must address this scalability issue.
Techniques that store medical data separately from the
blockchain do provide viable solutions, but the benefits of
using blockchain storage are compromised for any data that is
stored off the blockchain. In this paper, we propose a method
to maintain medical data on-chain with the burden shouldered
by a smaller group of well-equipped super peers, representing
large hospitals within a local area. In the group of large
hospitals, each hospital can dedicate the necessary resources
to maintain older on-chain data in the form of historical
blockchains, relieving the rest of the network from the burden
of this data while retaining the benefits and convenience
provided by the blockchain technology. Figure 1 shows the
framework for a scalable blockchain network.

Figure 1. A framework for a scalable blockchain network

As shown in the figure, there are n+1 super peers within a
blockchain network who are responsible for maintaining the
current blockchain CB and all historical blockchains HBs.
Super peers are also responsible for creating a new block and
using a consensus process to verify and approve the new
block, which makes regular peers highly lightweight. We
define a Primary Super Peer, or PSP, an elected super peer
who plays a role in efficiently facilitating access to data in HBs
by regular peers. Regular peers maintain only the CB and can
make queries to the PSP to retrieve historical data stored in
HBs. The PSP can assign a query from a regular peer to a
super peer, and the super peer can return the retrieved
historical data directly to the requesting regular peer. More
importantly, as described in Section III.D, when a current
block reaches a certain age, a super peer can split it into a
historical blockchain and a reduced current blockchain.

B. Block and Transaction Structures

The structure of a block is the foundation of the blockchain
and is an integral part of its functionality. As shown in Fig. 2,
a block contains a block header, which is defined as a 4-tuple
(B, T, S, H), where B is the block ID, T is the timestamp when
the block is created, S is the size of the list of transactions
recorded in the block, and H is the hash value of the previous
block. A block also contains a list of transactions, which are
defined as a 4-tuple (TI, TS, PI, TD), where TI is the
transaction ID, TS is the timestamp when the transaction is
created, PI is the patient ID, and TD is the transaction data,
including text-based information and images files. In addition,
a block with block ID bID contains a list of digital signatures,

ds[bID]v, where v is a super peer who approves it as a new
block in the consensus process. When a block has been
approved as a new block by the majority of super peers, the
hash value of the block is calculated by applying a hash
function to the block file containing all the aforementioned
components, and the hash value hash(cur-Block) is attached
to the end of the block file.

Figure 2. The structure of a block and a transaction

Note that to limit the block size, each block contains no
more than 500 transactions and only contains transactions
created during the same day. Thus, the last block created at the
end of a day may contain less than 500 transactions.

C. The Structure of a Meta-Block

To support efficient data retrieval in blockchains, a meta-
block is defined as a special block that stores metadata for each
historical blockchain or the current blockchain. The meta-
block is the only mutable block that is attached to the
beginning of a blockchain. As shown in Fig. 3, a meta-block
is defined as a 5-tuple (SD, ED, SB, EB, HM), where SD is the
timestamp of the first transaction in the first block of the
blockchain; ED is the timestamp of the last transaction in the
last block of the blockchain; SB and EB are the block IDs of
the first block and the last block in the blockchain,
respectively; and HM is a HashMap containing a list of <key,
value> pairs, where the key is a patient ID and the value is a
list of locations that store transactions of the patient. Each
location is defined as a triple (B, A, O), where B is the block
ID, A is the address of the transaction in the block, and O is
the offset of the transaction size.

Figure 3. The structure of a meta-block

Note that the integrity of the metadata in a meta-block can
be trusted, as the information can be reviewed, validated and

57

refreshed at any point in time by reading data from the
relevant portion of the blockchain. The introduction of the
meta-block reduces the search space and, therefore, it
minimizes the search time for any query against the historical
blockchains. With this metadata, queries for information on
historical blockchains can be accomplished by finding the
appropriate historical blockchain containing the information
and extracting the relevant data from the blocks involved.

D. Generation of a Historical Blockchain

Initially, the current blockchain is the only blockchain.
When a certain number of years is reached, say 10 years, the
blockchain is split, with the last 5 years of data remaining in
the current blockchain and the previous 5 years of data stored
in a new historical blockchain. A new meta-block, containing
the metadata of the historical blockchain, is attached to the
beginning of the blockchain, and the meta-block of the current
blockchain is refreshed. This process can be repeated when
the current blockchain again contains 10 years of data.

Figure 4 shows how the current blockchain CB is split into
a historical blockchain and a new current blockchain. Let the
block IDs of the first and last block in CB be m and n,
respectively. Note that m = 1 if the current blockchain has
never been split before. Let block k be the most recent block
in CB, which is at least 6 years old. We establish blocks m
through k as a historical blockchain HB and generate a new
meta-block MBHB for it. Blocks k+1 through n persist as the
updated current blockchain, while blocks m through k are
deleted. The meta-block MBCB associated with the current
blockchain is refreshed by scanning the data in the new current
blockchain (i.e., blocks k+1 through n). We now have an
updated current blockchain and a historical blockchain, each
containing 5 years of data.

Figure 4. A blockchain split into a historical and a current blockchain

Algorithm 1 shows the process of splitting the current

blockchain into a historical blockchain and an updated current
blockchain. As shown in the algorithm, the meta-block of HB
MBHB contains the date of the first transaction in the first block
of HB, the date of the last transaction in the last block of HB,
and the block IDs of the first and the last blocks in HB. To
create a HashMap that contains all <key, value> pairs, each
block in HB is scanned, and each triple (B, A, O) associated
with patient ID α is added to a list LTα. Once the scanning
process is completed, all pairs of <α, LTα> are added to the
HashMap in MBHB. Now in CB, all blocks that have been
recorded in HB are removed, and the meta-block of the
updated CB must be refreshed by removing all triples that
reference transactions that have been transferred to HB.
Finally, the new HB and the updated CB are returned.

Algorithm 1: Splitting a Current Blockchain

Input: A current blockchain CB containing 10 years of data
Output: Historical blockchain HB with 5 years of earlier data and

an updated CB with the last 5 years of data

1. Let m and n be the IDs of the first and the last block in CB

2. Let k be the most recent block at least 6 years old, where n > k

3. Extract blocks m through k from CB and create a new historical

 blockchain HB with the k-m+1 blocks

4. Create an empty meta-block MBHB associated with HB

5. Set SD in MBHB as the date of the first transaction in block m

6. Set ED in MBHB as the date of the last transaction in block n

7. Set SB and EB in MBHB to m and k, respectively

8. for each block β in HB

9. Scan block β and add each triple (B, A, O) associated with

 patientID α to a list LTα

10. Create a HashMap in MBHB and add all pairs of <α, LTα> to it

11. Attach MBHB to the beginning of HB

12. Remove blocks m through k from CB

13. Update CB’s meta-block MBCB accordingly, as with MBHB

14. return HB and CB

IV. RETRIEVAL OF HISTORICAL BLOCKCHAIN DATA

A. Load Balancing Data Retrieval Requests

Assume a regular peer queries the past 5x years of data

from the blockchains, where x  [1, 5]. When x equals 1, the
regular peer can search patient information directly from its
local blockchain, which must be at least 5 years old. When x
is equal to 2 or more, it must make a query to the PSP to search
for data from the historical blockchains. The request for such
a query involves a patient ID (for which data is collected) and
the number of years of data being search (i.e., the search
length). As shown in Fig. 5, when the PSP receives a query
from a regular peer, it acts as a director, balancing the load of
the queries, and distributing them evenly based on the weights
of queries fulfilled by super peers. Each query receives a
weight that estimates the time to complete it. The weight is
assigned based on the number of historical blockchains
involved in each query. For a 10-year query, only 1 historical
blockchain needs to be searched; therefore, the assigned
weight is 1. Similarly, the weights are 2, 3, and 4 for 15-year,
20-year and 25-year queries, respectively.

Figure 5. Querying process for accessing historical blockchain data

New queries are always first assigned to the super peer
with the lowest total weight assigned. The queries sent to
super peers are stored in their query queues, and the total
weight of the queries assigned to each super peer must be

58

approximately equal. When a super peer’s query queue is not
empty, it performs a search to retrieve relevant historical data.
A response is then returned to the querying regular peer,
including a summary report of the relevant transactions, and
links to associated files that the regular peer can download.
Since the PSP is also a super peer, it assigns query requests to
itself as well, and returns the query results directly to the
requesting regular peers. Note that each super peer maintains
its own copy of the historical blockchains; therefore, searches
performed by all super peers can be completed concurrently.

B. Retrieval of Historical Blockchain Data

We now define the procedure how a super peer retrieves
historical data for a query. Each query in the super peer’s
queue contains a patient ID and a search length in years as two
input parameters. Let the current blockchain be one containing
y years of data, where 5 ≤ y < 10. The first y years of each
query can be done locally by the regular peer, since this data
is stored in the current blockchain. When the search length is
10 years or more, at least one historical blockchain will need
to be searched. This search will be facilitated by looking for
indexes in the meta-blocks of the historical blockchains.
Algorithm 2 shows how historical data can be retrieved from
historical blockchains by a super peer.

Algorithm 2: Retrieving Historical Blockchain Data

Input: Patient ID pID and search length sLen in 5x years, x  [1, 5]
Output: A summary report with all retrieved historical data

1. Create an empty summary report SR

2. Let cDate be the current date

3. if sLen == 5 return SR // search current blockchain only

4. for each historical blockchain Π

5. Examine MBΠ.ED of meta-block MBΠ

6. if MBΠ.ED < cDate – sLen // outside of the search period

7. continue // search the next historical blockchain

8. Get a list of triples LTX from MBΠ.HM with pID as the key

9. for each triple (B, A, O) in LTX

10 Read transaction tx from block B at address [A, A + O]

11. if tx.TS ≥ cDate – sLen

12. Add retrieved tx and links to relevant files to SR

13. return summary report SR

As shown in the algorithm, by examining the ED in each

meta-block, it will be known whether the associated historical

blockchain should be included in the search. In each relevant

meta-block, the patient ID in the query is used as the key to

identify the relevant transactions and their exact locations in

the historical blockchains. For each transaction, the super

peer reads the transaction and adds the retrieved transaction

to a summary report along with links to relevant files. Once

completed, the summary report is returned to the requesting

regular peer. Note that a regular peer can perform a local

search for y years (5 ≤ y < 10) in a similar manner, but only

one meta-block of the current blockchain needs to be

examined. For search lengths of 10 years or longer, the local

search from the current blockchain and the remote search

from the historical blockchain(s) are performed concurrently.

Once the historical data is returned from a super peer, it is

merged into the local search results by the regular peer.

V. CASE STUDY

To illustrate the feasibility and the effectiveness of our
approach, we conducted experiments and evaluated the
performance of our scalable blockchain storage scheme based
on the settings and results of each simulation. In our
experiments, we assume that 10 large hospitals participate in
a consortium blockchain network. One of the large hospitals
is elected as a primary super peer, while the other 9 large
hospitals serve as super peers. There are also 30 small and
medium medical facilities in the network. We consider the
lifetime of the blockchains to be at most 50 years because after
50 years, due to expected advances in computer technology,
blockchain technology may be replaced by more advanced
methods. We limit the total number of transactions in each
block to 500, where each transaction may contain medical
data in the form of image and text files. For simulation
purposes, the number of visits per day is between [200, 500]
and [50, 200] for large hospitals and small/medium-sized
medical facilities, respectively.

A. Blockchain Size with an Annual Growth Rate

To determine the effects of the historical blockchain

model, we used a time-based partitioning method to generate

historical blockchains. In the model, super peers retain all

historical blockchains as well as the current blockchain, while

regular peers only need to store the current blockchain. Table

1 lists the parameters used in our experiments.

Table 1. Parameters used for blockchain size estimation

Probability

of having

images

Image size Image count

Lower

bound

Upper

bound

Lower

bound

Upper

bound

5% 1 MB* 3 MB* 1 5

Probability

of having

text

Text Size File size

annual growth

rate (%)

Time

split
Lower

bound

Upper

Bound

100%
0.003

MB*

0.007

MB*
0, 1, 3, 5 10 yr**

* Initial values of bounds; all bounds are subject to increase by an annual file

size growth rate.

** A time-based split occurs at 10 years; the earliest 5 years of data make an

HB, while the latest 5 years of data are retained by the CB.

As shown in the table, we assume that for a hospital visit,

the probability of having images, such as x-rays, attached to

a doctor’s notes is 5%. The size of the images is typically in

the range of [1MB, 3MB] and the number of attached images

is limited to 5. The sizes of text-based medical records are

also listed in Table 1. Note that in our experiments, we

consider annual file size growth rates of 0%, 1%, 3% and 5%.

For example, when growth rate is 3%, the maximum image

size can reach 13.15MB in 50 years, which is typically large

enough for a medical image file.

We now simulate the creation of 50-year blockchains to

estimate the sizes of blockchains. For each day, each large

hospital or small/medium-sized medical facility in the

59

network generates a random number of visits within a given

range. Each visit generates one transaction and is stored in a

block that can store up to 500 transactions, regardless of

transaction size. Each transaction has a 5% chance of

including image file(s). If a transaction does include image

file(s), the number of image files is chosen randomly within

a given range. In addition, the size of each image file or text

file is also randomly generated within a given range.

To deal with the possible year-to-year increase in image

and text file size, we consider annual file size growth rate of

0%, 1%, 3% and 5% in our experiments. For each growth

rate, data is collected from a sample of 10 simulations to

establish average values for evaluation. A 0% growth rate is

included as a baseline; while not a realistic assumption, this

establishes the minimum size of the blockchain against which

the other growth rates can be considered. Figure 6 and 7 show

the changes in total blockchain size (including current and all

historical blockchains) and the changes in current blockchain

size along the years, respectively.

Figure 6. Total blockchain size by year with varying annual growth rates

Figure 7. Current blockchain size by year with varying annual growth rates

Based on the experimental results, the effectiveness of

using a historical blockchain structure is evident. After 50

years, the total blockchain size exceeds 33 TB at 0% growth,

43 TB at 1%, 76 TB at 3%, and 140 TB at 5%. For regular

peers, storing the entirety of this data would become

infeasible because the resources required would not make

using a blockchain a practical storage solution for them. On

the other hand, the storage load of regular peers can be greatly

reduced if the historical blockchain structure is employed.

The size of the current blockchain is far less than the size of

the total blockchain data. At a 0% growth rate, the current

blockchain size is at most 6 TB; at 1%, it is below 10 TB; at

3%, it is below 23 TB; and at 5% it is below 53 TB. Since

these represent the maximum size of the current blockchain

in 50 years, at all other times, the current blockchain is much

smaller. We also note that the image file size is capped at

nearly 34MB at 5% annual growth rate, which may be an

overestimate. A 53 TB current blockchain is still larger than

we would expect for the storage size of a regular peer, but we

consider this outcome to be a worst-case scenario and

unlikely to happen. Moreover, we can always limit the image

size to ensure a reasonable size of the current blockchain that

is maintained by regular peers. Meanwhile, with larger

resource support, super peers can continue to store all

blockchain data. Thus, by using the historical blockchain

structure, we establish the use of blockchains as a viable

storage solution for continuously growing data.

Note that we also considered a size-based partitioning

strategy, where the size of the current blockchain is limited

by a predefined parameter. For example, we allow splitting

to occur when the current blockchain reaches 10 TB in size.

In this case, the earliest 5 TB of data becomes a historical

blockchain, while the most recent 5 TB of data remains in the

current blockchain. However, our experimental results show

that very few years of data can be stored in the current

blockchain at a reasonable annual growth rate, which makes

the current blockchain not useful enough for regular peers.

B. Data Retrieval Time for an Individual Request

In this experiment, we measure the data retrieval time for

a regular peer to perform a query on the blockchain historical

data. The data retrieval request is to search for a patient’s

medical records within a certain number of years. For any

search within the current blockchain age, the data can be

readily retrieved from the current blockchain; however, when

the search time is greater than the current blockchain age, a

query needs to be sent to a super peer to identify relevant data

and retrieve it from the historical blockchain(s).

For each blockchain age, we simulate searches of a given

length of years, which are 5, 10, 15, 20 and 25. If the search

length is greater than the blockchain age, the search will stop

at the end of the blockchain. For example, if 25 years of data

is requested for a patient, but the blockchain is only 10 years

old, only 10 years of data will be retrieved. In addition, for

any search length of 10 years or longer, the first y years of

data, where y is the current blockchain age, 5 ≤ y < 10, will

be retrieved by the regular peer, and only the portion of the

search greater than y years will be retrieved by a super peer.

We choose the maximum number of years to be searched

locally by the regular peer, because otherwise, a super peer

must also search its current blockchain unnecessarily.

We use the same parameters listed in Table 1 for the

image size bounds, image count bounds, text size bounds, and

60

probability of image occurrence in a medical record.

However, we set the file size annual growth rate to 3%, which

is more realistic than 5% as described in Section V.A. For

search length of 10 years or more, measuring data retrieval

time requires consideration of the network latency time for

searching in the historical blockchain(s), extraction time for

extracting index information from the relevant meta-blocks

and the data from relevant blocks, and data export time for

writing the extracted historical transaction data to a summary

file. As outlined in Algorithm 2, the exact location of a

transaction in a historical blockchain can be determined in

constant time from the index information stored in the meta-

blocks. However, it takes time to open a meta-block file and

read data from it. Based on the average size of the meta-

blocks, retrieving index information from a meta-block can

take several seconds. Extracting transaction data involves

reading the transactions from their locations, depending on

the different sizes of randomly generated transactions.

Finally, a super peer needs to create a summary file and send

it to the requesting regular peer. Table 2 lists the additional

parameters used for the data retrieval simulations.

Table 2. Parameters used for data retrieval simulations

Blockchain

age (years)

Search

length (years)

Patient visits

(annual)

File size

growth

rate

(annual)

Lower

bound

Upper

bound

10, 20, 30, 40, 50 5, 10, 15, 20, 25 1 7 3%

Network

latency time
Extraction

time

Data export

time

Average meta-

block size

0.5 seconds 0.02 s/MB 0.017 s/MB 200 MB

Note that access control policies will be utilized on the

application level to ensure data privacy; a patient can only

access their own data, while a healthcare provider can access

any patient’s data. Figure 9 shows the average of 1000

simulations for each search length and each blockchain age.

Figure 8. Data retrieval time for varying search length and blockchain age

From the figure, we can see that for the anticipated most

common search lengths, i.e., 5 and 10 years, the search time

averages less than 6 seconds for all blockchain ages. As the

search length increases, the data retrieval time increases

accordingly, with a maximum of about 18 seconds for a 25-

year search length in a 50-year blockchain. Note that the 10-

year search time does not increase significantly compared to

the 5-year search time because the 10-year search consists of

a local search by a regular peer in the current blockchain and

a remote search of the remaining data by a super peer, both

of which are performed concurrently. The insignificant

increase in the average data retrieval time in the 10-year

search is due to the search of historical data that results in the

additional network latency time and data export time.

C. Data Retrieval Time for Concurrent Requests

Queries to historical blockchain data are handled by a

group of super peers. In a group of 10 super peers, queries are

assigned by the PSP to ensure even load balancing among the

super peers. In this way, simultaneous historical blockchain

data retrieval requests can be completed concurrently by the

super peers. In our experiment, we expect most data retrieval

requests in a network to be within 5 years, since the most

relevant data in patient medical history is the most recent

data. These retrievals can be completed by regular peers

locally. To examine the search time of concurrent data

retrieval requests, only requests from regular peers for 10 to

25 years of data are measured.

Concurrent search requests may occur within 5-minute

intervals in a standard 8-hour workday. Since shorter

searches are expected to be more common, we assign

probabilities of 40%, 30%, 20% and 10% to the search

lengths of a 10-year search, a 15-year search, a 20-year search

and a 25-year search, respectively. We simulate 10, 20, 30,

40, and 50 concurrent searches at 5-minute intervals and

calculate the total data retrieval times. While 50 concurrent

requests represent a very high volume of requests in a 5-

minute interval, this may occur at certain times of the year,

such as flu season.

We calculate the average data retrieval time for a super

peer to complete all the concurrent requests in its queue. For

example, with 20 concurrent requests, each super peer is

required to process about 2 concurrent requests in its request

queue. Figure 10 shows the average data retrieval times for

the specified numbers of concurrent requests and blockchain

ages by running 1000 simulations.

Figure 9. Average data retrieval time for concurrent data retrieval requests

61

From the figure, we can see that the average data retrieval

time for 10-year blockchains is considerably lower than that

for higher age blockchains. This is because a 10-year

blockchain is unable to facilitate data retrieval beyond 10

years. On the other hand, the average data retrieval time for a

20-year blockchain is not considerably lower than those older

blockchains, as 25-year searches only represent 10% of the

total searches. For blockchains older than 20 years,

increasing the number of concurrent searches by 10 results in

approximately only 1 additional request per super peer in the

query queue. Therefore, the corresponding increase in data

retrieval time is equal to the average time to process one

additional query request in a super peer’s query queue.

Overall, the average data retrieval time stays below 50

seconds, which shows that our concurrent search algorithm is

feasible, even during periods of high accesses.

VI. CONCLUSIONS AND FUTURE WORK

Scalability of blockchain has been a pervasive issue, and

recent solutions have focused on moving data or computation

off-chain by using IPFS and cloud-based storage structures.

In this paper, we propose a novel approach to improve

blockchain scalability while keeping all data on-chain. We

introduce the concept of historical blockchain, where older

sections of the current blockchain are separated after a

specified time interval. This time-based partitioning strategy

allows the current blockchain to contain a useful amount of

relevant data, while freeing regular peers with short

resource/storage from maintaining the entire data-intensive

blockchain. The historical blockchains are maintained by a

group of super peers with greater resources and computing

power. In addition, we introduce a meta-block, attached to a

historical or current blockchain, that serves as an index file

and is used to facilitate efficient data retrieval. This block is

not part of the blockchain and can be refreshed at any point

in time by scanning the associated blockchain. Access to

historical blockchain data is accomplished by regular peers

through data retrieval queries sent to the primary super peer.

These queries are then assigned to super peers using a

predefined load balancing mechanism. The super peer

collects the relevant data for the query by identifying the

exact transaction locations found using the meta-blocks.

Finally, a response containing a summary of the retrieved

data is returned to the regular peer. Experimental results show

that this approach can effectively reduce the storage burden

of data-intensive blockchain applications on regular peers,

while providing efficient access to historical data.

In future work, we will investigate how to improve the

performance of concurrent data retrieval. One way is to

analyze the effectiveness of parallel searches across multiple

historical blockchains. This parallelization should allow a

super peer to reduce search time if the historical blockchains

are stored on different hard disks. We will also investigate

effective methods for selecting the primary super peer based

on feedback from regular peers. Alternatively, requests for

historical data from regular peers can be broadcast to all super

peers and a dynamic load-balancing algorithm can be

developed to distribute concurrent query requests from

regular peers evenly among the super peers. Finally, to ensure

strong data privacy, it is necessary to design access control

policies for users with different roles to access blockchain

data with the required permissions [13]. This is particularly

necessary in healthcare blockchain applications.

REFERENCES

[1] S. Liu and H. Tang, “A Consortium Medical Blockchain Data Storage
and Sharing Model Based on IPFS,” In Proceedings of the 4th
International Conference on Computers in Management and Business
(ICCMB 2021), January 2021, pp. 147-153.

[2] X. Chen, K. Zhang, X. Liang, W. Qiu, Z. Zhang, and D. Tuee,
“HyperBSA: A High-Performance Consortium Blockchain Storage
Architecture for Massive Data,” IEEE Access, Vol. 8, September 2020,
pp. 178402-178413.

[3] J. Poon and T. Dryja, “The Bitcoin Lightning Network: Scalable Off-
Chain Instant Payments,” White Paper, 2016. Retrived on September
1, 2022 from https://lightning.network/lightning-network-paper.pdf

[4] J. Eberhardt and S. Tai, “On or Off the Blockchain? Insights on Off-
Chaining Computation and Data,” In: De Paoli, F., Schulte, S., Broch
Johnsen, E. (eds) Service-Oriented and Cloud Computing, ESOCC
2017, Lecture Notes in Computer Science, Vol. 10465. Springer,
Cham, pp. 3-15.

[5] G. Wang, Z. Shi, M. Nixon, and S. Han, “ChainSplitter: Towards
Blockchain-Based Industrial IoT Architecture for Supporting
Hierarchical Storage,” In Proceedings of the 2019 IEEE International
Conference on Blockchain (Blockchain), July 14-17, 2019, Atlanta,
GA, USA, pp. 166-175.

[6] D. Li, W. E. Wong, M. Zhao, and Q. Hou, “Secure Storage and Access
for Task-Scheduling Schemes on Consortium Blockchain and
Interplanetary File System,” IEEE 20th International Conference on
Software Quality, Reliability and Security Companion (QRS-C), IEEE
BSC 2020, Macau, China, December 11-14, 2020, pp. 153-159.

[7] Y. Xu, “Section-Blockchain: A Storage Reduced Blockchain Protocol,
the Foundation of an Autotrophic Decentralized Storage Architecture,”
In Proceddings of the 23rd International Conference on Engineering
of Complex Computer Systems (ICECCS), 2018, pp. 115-125.

[8] Y. Xu and Y. Huang, “Segment Blockchain: A Size Reduced Storage
Mechanism for Blockchain,” IEEE Access, Vol. 8, January 2020, pp.
17434-17441.

[9] A. Thamrin and H. Xu, “Cloud-Based Blockchains for Secure and
Reliable Big Data Storage Service in Healthcare Systems,” In
Proceedings of the 15th IEEE International Conference on Service-
Oriented System Engineering (IEEE SOSE 2021), Oxford Brookes
University, UK, August 23-26, 2021, pp. 81-89.

[10] J. Jayabalan and N.Jeyanthi, “Scalable Blockchain Model Using Off-
chain IPFS Storage for Healthcare Data Security and Privacy,” Journal
of Parallel and Distributed Computing, Vol. 164, 2022, pp. 152-167.

[11] H. Im, K. H. Kim, and J. H. Kim, “Privacy and Ledger Size Analysis
for Healthcare Blockchain,” In Proceedings of the 2020 International
Conference on Information Networking (ICOIN), 2020, pp. 825-829.

[12] A. Thamrin, H. Xu, and R. Ming, “Cloud-Based Hierarchical
Consortium Blockchain Networks for Timely Publication and Efficient
Retrieval of Electronic Health Records,” Advances in Science,
Technology and Engineering Systems Journal (ASTESJ), Special Issue
on Multidisciplinary Sciences and Engineering, Vol. 7, No. 2, April
2022, pp. 179-190.

[13] H. Guo, W. Li, M. Nejad, and C. Shen, “Access Control for Electronic
Health Records with Hybrid Blockchain-Edge Architecture,” In
Proceedings of the 2019 IEEE International Conference on Blockchain
(Blockchain), July 14-17, 2019, Atlanta, GA, USA, pp. 44-51.

