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Abstract—Despite the growing interest in blockchain 

technology, the scalability of blockchain storage has become a 

major issue for applications that require large amounts of on-

chain data. In this paper, we propose a novel scalable storage 

scheme for consortium networks to manage the storage capacity 

required by data-rich blockchain applications. We establish 

network nodes as super peers or regular peers, where super 

peers can maintain old blockchain data in the form of historical 

blockchains. Regular peers maintain only the latest blockchain 

data stored in the current blockchain, but they can access any 

data in the historical blockchains by making queries to the super 

peers. We present procedures to build a historical blockchain 

and retrieve data from the historical blockchains and the 

current blockchain in a concurrent manner. Experimental 

results show that our scalable storage scheme using historical 

blockchains is feasible and effective in accessing and sharing 

healthcare data with image files. 

Keywords-consortium blockchain; historical blockchain; on-

chain data; scalable storage; super peer; healthcare data 

I.  INTRODUCTION 

Blockchain technology is becoming very popular today as 
a decentralized distributed ledger used for securing data and 
transactions while providing users with a reliable and 
convenient way to access data. The technology allows peer-
to-peer networks to maintain “chains” of blocks that contain 
transaction records. Each block stores a hash value of its 
previous block, so that any attempted modification to a block 
affects all subsequent blocks in the chain. In addition, peers in 
the network maintain copies of the chain, so transactions and 
blocks can be verified. In a permissioned blockchain, all peers 
with the required permissions have access to the transactions 
recorded in the network, but the transaction records are secure 
and immutable, ensuring data integrity and transparency.  

The convenience offered by blockchain as a form of data 
storage has led to a rise in popularity over the past decade. 
Bitcoin, a digital currency that uses public blockchain 
technology, has over 100 million users in 2022. From January 
2012 to July 2022, the Bitcoin blockchain has grown by more 
than 400 gigabytes and has even doubled since February 2019. 
If this massive growth continues, the cost of being a full node 
in a blockchain network will become completely unrealistic 
for regular peers. Storage issues also pose problems for non-
public blockchain networks, such as private and consortium 
networks. While such networks do not have as many peers 
involved in as many transactions, storage issues can still arise, 

depending on the type of data being stored. Blockchain 
technology has been used in many different areas, including 
healthcare, real estate, insurance, and the Internet of Things 
(IoT). These types of applications often use consortium 
blockchain networks, but because they can be very data-rich, 
scalability of blockchain storage has been a major concern. 

In recent years, there have been many studies on 
consortium blockchain storage management [1][2]. However, 
most of these efforts involve the use of off-chain storage, 
employing solutions such as InterPlanetary File System 
(IPFS) or cloud storage. By using these methods, the storage 
problem can be mitigated, but since these methods store most 
of the data off-chain, the benefits of using blockchain 
technology to secure and maintain the data are lost. As the 
major contribution of this paper, we propose an on-chain 
method that reduces the storage burden on the majority of 
peers in a network by splitting a current blockchain (CB) into 
a historical blockchain (HB) and a new CB. An HB is an 
immutable blockchain that contains historical data of the 
blockchain, while a CB contains blockchain data from the last 
few years, which can grow until it needs to be split again. We 
establish the network nodes as either super peers or regular 
peers, with a reasonable number of super peers maintaining 
CB and multiple HBs. Most nodes are regular peers, 
maintaining only CB, but they can access any data in HBs by 
making queries to the super peers. Using a time-based 
partitioning method, when the CB reaches a certain age, say 
10 years, it can be split into an HB and a new CB, containing 
data from the earlier 5 years and the last 5 years, respectively. 
The group of super peers is responsible for maintaining the 
HBs and the latest CB, while the regular peers store only the 
CB, allowing for a greatly reduced storage burden. As the CB 
continues to grow, its size can be reduced again and more HBs 
can be created and maintained by the super peers. 

Although not required, regular peers can still store HBs; 
however, they are not responsible for handling queries to 
retrieve historical data made by other regular peers. When a 
regular peer maintains only the CB, it can access the HBs by 
querying a super peer in the network. Once the super peer 
retrieves the requested data from the HBs, it notifies the 
requesting regular peer and allows it to download the data. To 
ensure that retrieving historical data remains an efficient task 
for fairly large blockchains with many years of data, we also 
introduce a meta-block for the CB and each HB. The meta-
block contains an index of user transaction records stored in 
the CB or an HB to speed up the data retrieval process. 
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II. RELATED WORK 

The issue of scalability in blockchain applications has 
been an ongoing concern, especially in public blockchain 
applications. Poon and Dryja introduced the Bitcoin Lightning 
Network, which is a decentralized system where transactions 
are sent through channels for off-chain value transfer [3]. The 
use of the Bitcoin Lightning Network, which includes micro-
payments sent continuously between two parties, significantly 
reduces global Bitcoin blockchain transaction broadcasts and 
makes the Bitcoin network scalable. Further research on 
blockchain scalability facilitated by off-chain strategies is 
more applicable to private and consortium blockchain 
applications. To reduce the high computation and storage 
costs in blockchain-based applications, Eberhardt and Tai 
investigated different off-chain computation and storage 
methods [4]. They presented five off-chain patterns for 
moving computation and data off the blockchain without 
violating the trustless property. Wang et al. proposed 
ChainSplitter, an off-chain scalability solution for Industrial 
Internet of Things (IIoT) blockchain applications [5]. The 
proposed approach featured a hierarchical storage structure 
that stores recent blocks in an overlay network, with most of 
the blockchain data stored in the cloud. Although the cloud is 
organized as a distributed cloud storage, the blockchain data 
in the cloud is not maintained by peers; therefore, the cloud 
acts as an off-chain storage for the blockchain data. IPFS is a 
decentralized, verifiable, blockchain-compatible distributed 
storage system. IPFS used with blockchain networks as an off-
chain approach also provides a scalable solution for 
blockchains. Li et al. were able to reduce the asset size of 
transactions and increase the transaction throughput of an 
experimental consortium blockchain network by storing hash 
values of encrypted data on-chain and storing the encrypted 
data itself off-chain in an associated IPFS [6]. They provided 
a solution for secure storage and access to a task-scheduling 
scheme by integrating Hyperledger Fabric with IPFS services. 
Although the off-chain approaches provide feasible ways to 
mitigate the scalability issue of blockchains, as noted in [4], 
the fundamental properties of blockchains and blockchain 
applications can be compromised to varying degrees when 
using off-chain approaches. In contrast, our approach stores 
the big data in historical blockchains and does not use off-
chain storage; thus, all the essential blockchain properties of 
the stored data are maintained in our proposed approach.  

Attempts to use on-chain storage to address the scalability 
issue are very rare. Xu proposed the section-blockchain, an 
on-chain method to reduce storage cost of blockchain 
networks for devices with insufficient storage [7]. In their 
approach, instead of implementing lightweight nodes, all 
nodes store parts of the complete blockchain equally and are 
incentivized to change their local storage to receive more 
payoffs. In a further attempt, segmented blockchains were 
proposed to enable nodes to store a copy of one blockchain 
segment [8]. They showed that their approach can reduce the 
storage cost of a blockchain system while maintaining 
decentralization without compromising the security of the 
blockchain. Thamrin and Xu proposed a framework for cloud-
based blockchains to store multimedia files securely and 

reliably [9]. They used the cloud-based blockchain as a 
complete blockchain for data accessibility, redundancy, and 
security, while a lite blockchain allows local storage of text-
based information and metadata for multimedia files. 
Although the above methods allow big data storage, data 
retrieval can be inefficient due to the incomplete data stored 
in some blockchains. Unlike them, we divide a complete 
blockchain into a current blockchain and multiple historical 
blockchains, maintained by super peers. A regular peer can 
access its local current blockchain and request historical 
blockchain data from a super peer in a concurrent manner. 

Blockchain technology has been extensively used in 
healthcare systems. Jayabalan and Jeyanthi introduced a 
blockchain-based application using IPFS specifically for 
healthcare systems [10]. Focusing on storage of electronic 
health records (EHRs), the IPFS service was used to move 
data off-chain while retaining hashes of the data on the 
blockchain. Im et al. proposed a consortium blockchain for 
patient access and management of personal health records 
(PHRs), implemented using Hyperledger Fabric [11]. By 
comparing with the public blockchain Ethereum, they 
concluded that Hyperledger Fabric was a viable approach to 
ensure the privacy of PHRs. Recently, Thamrin and Xu 
proposed a hierarchical cloud-based consortium blockchain 
for the storage of EHRs [12]. In their approach, big data such 
as multimedia files can be stored in a cloud-based hospital 
blockchain network within a local area and shared with 
hospitals outside the networks through high-level blockchain 
networks, called city and state blockchain networks. Due to 
the hierarchical structure of the blockchain networks, which 
supports concurrent search and retrieval of EHRs, this could 
be an efficient way to access and share EHRs nationwide. 
Although the above approaches provide feasible ways for the 
application of blockchain technology in healthcare systems, 
the scalability issue remains a major concern. In our approach, 
since the current blockchain and each historical blockchain 
contain only a certain number of years of blockchain data, 
each blockchain is easier to manage and the blockchain 
scalability problem can be significantly alleviated. 

III. SCALABLE STORAGE USING HISTORICAL BLOCKCHAINS 

A. A Framework for Scalable Blockchain Networks 

Data storage technology has long been studied and 
improved, whether it is physical storage, cloud storage, or now 
blockchain networks. Due to the many benefits of using 
blockchain networks, including decentralization, security, 
immutability, transparency and traceability, blockchain 
technology has been widely used in many areas beyond 
cryptocurrency. Many blockchain-enabled applications 
require the storage of large amounts of data; therefore, 
managing the size of the blockchain is critical to maintaining 
its viability for nodes and networks. For example, in the 
healthcare domain, a single patient visit to a hospital can result 
in a great deal of data, and when that data scales to multiple 
visits, the storage load can become quite large. For a hospital 
with many patients, and then expanding to a local area or city 
network of hospitals that share information, the data problem 
only proliferates. If a local or a city network of hospitals is 
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going to consider using a consortium blockchain for data 
storage and sharing, they must address this scalability issue. 
Techniques that store medical data separately from the 
blockchain do provide viable solutions, but the benefits of 
using blockchain storage are compromised for any data that is 
stored off the blockchain. In this paper, we propose a method 
to maintain medical data on-chain with the burden shouldered 
by a smaller group of well-equipped super peers, representing 
large hospitals within a local area. In the group of large 
hospitals, each hospital can dedicate the necessary resources 
to maintain older on-chain data in the form of historical 
blockchains, relieving the rest of the network from the burden 
of this data while retaining the benefits and convenience 
provided by the blockchain technology. Figure 1 shows the 
framework for  a scalable blockchain network.  

 

Figure 1. A framework for a scalable blockchain network 

As shown in the figure, there are n+1 super peers within a 
blockchain network who are responsible for maintaining the 
current blockchain CB and all historical blockchains HBs. 
Super peers are also responsible for creating a new block and 
using a consensus process to verify and approve the new 
block, which makes regular peers highly lightweight. We 
define a Primary Super Peer, or PSP, an elected super peer 
who plays a role in efficiently facilitating access to data in HBs 
by regular peers. Regular peers maintain only the CB and can 
make queries to the PSP to retrieve historical data stored in 
HBs. The PSP can assign a query from a regular peer to a 
super peer, and the super peer can return the retrieved 
historical data directly to the requesting regular peer. More 
importantly, as described in Section III.D, when a current 
block reaches a certain age, a super peer can split it into a 
historical blockchain and a reduced current blockchain. 

B. Block and Transaction Structures 

The structure of a block is the foundation of the blockchain 
and is an integral part of its functionality. As shown in Fig. 2, 
a block contains a block header, which is defined as a 4-tuple 
(B, T, S, H), where B is the block ID, T is the timestamp when 
the block is created, S is the size of the list of transactions 
recorded in the block, and H is the hash value of the previous 
block. A block also contains a list of transactions, which are 
defined as a 4-tuple (TI, TS, PI, TD), where TI is the 
transaction ID, TS is the timestamp when the transaction is 
created, PI is the patient ID, and TD is the transaction data, 
including text-based information and images files. In addition, 
a block with block ID bID contains a list of digital signatures, 

ds[bID]v, where v is a super peer who approves it as a new 
block in the consensus process. When a block has been 
approved as a new block by the majority of super peers, the 
hash value of the block is calculated by applying a hash 
function to the block file containing all the aforementioned 
components, and the hash value hash(cur-Block) is attached 
to the end of the block file. 

 

Figure 2. The structure of a block and a transaction 

Note that to limit the block size, each block contains no 
more than 500 transactions and only contains transactions 
created during the same day. Thus, the last block created at the 
end of a day may contain less than 500 transactions. 

C. The Structure of a Meta-Block 

To support efficient data retrieval in blockchains, a meta-
block is defined as a special block that stores metadata for each 
historical blockchain or the current blockchain. The meta-
block is the only mutable block that is attached to the 
beginning of a blockchain. As shown in Fig. 3, a meta-block 
is defined as a 5-tuple (SD, ED, SB, EB, HM), where SD is the 
timestamp of the first transaction in the first block of the 
blockchain; ED is the timestamp of the last transaction in the 
last block of the blockchain; SB and EB are the block IDs of 
the first block and the last block in the blockchain, 
respectively; and HM is a HashMap containing a list of <key, 
value> pairs, where the key is a patient ID and the value is a 
list of locations that store transactions of the patient. Each 
location is defined as a triple (B, A, O), where B is the block 
ID, A is the address of the transaction in the block, and O is 
the offset of the transaction size.  

 

Figure 3. The structure of a meta-block 

Note that the integrity of the metadata in a meta-block can 
be trusted, as the information can be reviewed, validated and 
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refreshed at any point in time by reading data from the 
relevant portion of the blockchain. The introduction of the 
meta-block reduces the search space and, therefore, it 
minimizes the search time for any query against the historical 
blockchains. With this metadata, queries for information on 
historical blockchains can be accomplished by finding the 
appropriate historical blockchain containing the information 
and extracting the relevant data from the blocks involved.  

D. Generation of a Historical Blockchain 

Initially, the current blockchain is the only blockchain. 
When a certain number of years is reached, say 10 years, the 
blockchain is split, with the last 5 years of data remaining in 
the current blockchain and the previous 5 years of data stored 
in a new historical blockchain. A new meta-block, containing 
the metadata of the historical blockchain, is attached to the 
beginning of the blockchain, and the meta-block of the current 
blockchain is refreshed. This process can be repeated when 
the current blockchain again contains 10 years of data.  

Figure 4 shows how the current blockchain CB is split into 
a historical blockchain and a new current blockchain. Let the 
block IDs of the first and last block in CB be m and n, 
respectively. Note that m = 1 if the current blockchain has 
never been split before. Let block k be the most recent block 
in CB, which is at least 6 years old. We establish blocks m 
through k as a historical blockchain HB and generate a new 
meta-block MBHB for it. Blocks k+1 through n persist as the 
updated current blockchain, while blocks m through k are 
deleted. The meta-block MBCB associated with the current 
blockchain is refreshed by scanning the data in the new current 
blockchain (i.e., blocks k+1 through n). We now have an 
updated current blockchain and a historical blockchain, each 
containing 5 years of data. 

 

Figure 4. A blockchain split into a historical and a current blockchain 

 
Algorithm 1 shows the process of splitting the current 

blockchain into a historical blockchain and an updated current 
blockchain. As shown in the algorithm,  the meta-block of HB 
MBHB contains the date of the first transaction in the first block 
of HB, the date of the last transaction in the last block of HB, 
and the block IDs of the first and the last blocks in HB. To 
create a HashMap that contains all <key, value> pairs, each 
block in HB is scanned, and each triple (B, A, O) associated 
with patient ID α is added to a list LTα. Once the scanning 
process is completed, all pairs of <α, LTα> are added to the 
HashMap in MBHB. Now in CB, all blocks that have been 
recorded in HB are removed, and the meta-block of the 
updated CB must be refreshed by removing all triples that 
reference transactions that have been transferred to HB. 
Finally, the new HB and the updated CB are returned. 

Algorithm 1:  Splitting a Current Blockchain 

Input: A current blockchain CB containing 10 years of data 
Output: Historical blockchain HB with 5 years of earlier data and 

an updated CB with the last 5 years of data 

1.   Let m and n be the IDs of the first and the last block in CB 

2.   Let k be the most recent block at least 6 years old, where n > k 

3.   Extract blocks m through k from CB and create a new historical  

         blockchain HB with the k-m+1 blocks 

4.   Create an empty meta-block MBHB associated with HB 

5.   Set SD in MBHB as the date of the first transaction in block m 

6.   Set ED in MBHB as the date of the last transaction in block n 

7.   Set SB and EB in MBHB to m and k, respectively 

8.   for each block β in HB 

9.       Scan block β and add each triple (B, A, O) associated with  

           patientID α to a list LTα 

10. Create a HashMap in MBHB and add all pairs of <α, LTα> to it 

11. Attach MBHB to the beginning of HB 

12. Remove blocks m through k from CB 

13. Update CB’s meta-block MBCB accordingly, as with MBHB  

14. return HB and CB 
 

IV. RETRIEVAL OF HISTORICAL BLOCKCHAIN DATA 

A. Load Balancing Data Retrieval Requests 

Assume a regular peer queries the past 5x years of data 

from the blockchains, where x  [1, 5]. When x equals 1, the 
regular peer can search patient information directly from its 
local blockchain, which must be at least 5 years old. When x 
is equal to 2 or more, it must make a query to the PSP to search 
for data from the historical blockchains. The request for such 
a query involves a patient ID (for which data is collected) and 
the number of years of data being search (i.e., the search 
length). As shown in Fig. 5, when the PSP receives a query 
from a regular peer, it acts as a director, balancing the load of 
the queries, and distributing them evenly based on the weights 
of queries fulfilled by super peers. Each query receives a 
weight that estimates the time to complete it. The weight is 
assigned based on the number of historical blockchains 
involved in each query. For a 10-year query, only 1 historical 
blockchain needs to be searched; therefore, the assigned 
weight is 1. Similarly, the weights are 2, 3, and 4 for 15-year, 
20-year and 25-year queries, respectively.  

 

Figure 5. Querying process for accessing historical blockchain data 

New queries are always first assigned to the super peer 
with the lowest total weight assigned. The queries sent to 
super peers are stored in their query queues, and the total 
weight of the queries assigned to each super peer must be 
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approximately equal. When a super peer’s query queue is not 
empty, it performs a search to retrieve relevant historical data. 
A response is then returned to the querying regular peer, 
including a summary report of the relevant transactions, and 
links to associated files that the regular peer can download. 
Since the PSP is also a super peer, it assigns query requests to 
itself as well, and returns the query results directly to the 
requesting regular peers. Note that each super peer maintains 
its own copy of the historical blockchains; therefore, searches 
performed by all super peers can be completed concurrently. 

B. Retrieval of Historical Blockchain Data 

We now define the procedure how a super peer retrieves 
historical data for a query. Each query in the super peer’s 
queue contains a patient ID and a search length in years as two 
input parameters. Let the current blockchain be one containing 
y years of data, where 5 ≤ y < 10. The first y years of each 
query can be done locally by the regular peer, since this data 
is stored in the current blockchain. When the search length is 
10 years or more, at least one historical blockchain will need 
to be searched. This search will be facilitated by looking for 
indexes in the meta-blocks of the historical blockchains. 
Algorithm 2 shows how historical data can be retrieved from 
historical blockchains by a super peer.  

Algorithm 2:  Retrieving Historical Blockchain Data 

Input: Patient ID pID and search length sLen in 5x years, x  [1, 5] 
Output: A summary report with all retrieved historical data 

1.   Create an empty summary report SR  

2.   Let cDate be the current date  

3.   if sLen == 5 return SR // search current blockchain only 

4.   for each historical blockchain Π 

5.      Examine MBΠ.ED of meta-block MBΠ 

6.      if MBΠ.ED < cDate – sLen // outside of the search period 

7.         continue // search the next historical blockchain 

8.      Get a list of triples LTX from MBΠ.HM with pID as the key 

9.      for each triple (B, A, O) in LTX 

10        Read transaction tx from block B at address [A, A + O] 

11.       if tx.TS ≥ cDate – sLen 

12.          Add retrieved tx and links to relevant files to SR 

13. return summary report SR 
 

As shown in the algorithm, by examining the ED in each 

meta-block, it will be known whether the associated historical 

blockchain should be included in the search. In each relevant 

meta-block, the patient ID in the query is used as the key to 

identify the relevant transactions and their exact locations in 

the historical blockchains. For each transaction, the super 

peer reads the transaction and adds the retrieved transaction 

to a summary report along with links to relevant files. Once 

completed, the summary report is returned to the requesting 

regular peer. Note that a regular peer can perform a local 

search for y years (5 ≤ y < 10) in a similar manner, but only 

one meta-block of the current blockchain needs to be 

examined. For search lengths of 10 years or longer, the local 

search from the current blockchain and the remote search 

from the historical blockchain(s) are performed concurrently. 

Once the historical data is returned from a super peer, it is 

merged into the local search results by the regular peer. 

V. CASE STUDY 

To illustrate the feasibility and the effectiveness of our 
approach, we conducted experiments and evaluated the 
performance of our scalable blockchain storage scheme based 
on the settings and results of each simulation. In our 
experiments, we assume that 10 large hospitals participate in 
a consortium blockchain network. One of the large hospitals 
is elected as a primary super peer, while the other 9 large 
hospitals serve as super peers. There are also 30 small and 
medium medical facilities in the network. We consider the 
lifetime of the blockchains to be at most 50 years because after 
50 years, due to expected advances in computer technology, 
blockchain technology may be replaced by more advanced 
methods. We limit the total number of transactions in each 
block to 500, where each transaction may contain medical 
data in the form of image and text files. For simulation 
purposes, the number of visits per day is between [200, 500] 
and [50, 200] for large hospitals and small/medium-sized 
medical facilities, respectively. 

A. Blockchain Size with an Annual Growth Rate 

To determine the effects of the historical blockchain 

model, we used a time-based partitioning method to generate 

historical blockchains. In the model, super peers retain all 

historical blockchains as well as the current blockchain, while 

regular peers only need to store the current blockchain. Table 

1 lists the parameters used in our experiments.  

Table 1. Parameters used for blockchain size estimation 

Probability 

of having 

images 

Image size Image count 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

5% 1 MB* 3 MB* 1 5 
 

Probability 

of having 

text 

Text Size File size 

annual growth 

rate (%) 

Time 

split 
Lower 

bound 

Upper 

Bound 

100% 
0.003 

MB* 

0.007 

MB*  
0, 1, 3, 5 10 yr** 

* Initial values of bounds; all bounds are subject to increase by an annual file 

size growth rate.  

** A time-based split occurs at 10 years; the earliest 5 years of data make an 

HB, while the latest 5 years of data are retained by the CB. 

As shown in the table, we assume that for a hospital visit, 

the probability of having images, such as x-rays, attached to 

a doctor’s notes is 5%. The size of the images is typically in 

the range of [1MB, 3MB] and the number of attached images 

is limited to 5. The sizes of text-based medical records are 

also listed in Table 1. Note that in our experiments, we 

consider annual file size growth rates of 0%, 1%, 3% and 5%. 

For example, when growth rate is 3%, the maximum image 

size can reach 13.15MB in 50 years, which is typically large 

enough for a medical image file.  

We now simulate the creation of 50-year blockchains to 

estimate the sizes of blockchains. For each day, each large 

hospital or small/medium-sized medical facility in the 
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network generates a random number of visits within a given 

range. Each visit generates one transaction and is stored in a 

block that can store up to 500 transactions, regardless of 

transaction size. Each transaction has a 5% chance of 

including image file(s). If a transaction does include image 

file(s), the number of image files is chosen randomly within 

a given range. In addition, the size of each image file or text 

file is also randomly generated within a given range. 

To deal with the possible year-to-year increase in image 

and text file size, we consider annual file size growth rate of 

0%, 1%, 3% and 5% in our experiments. For each growth 

rate, data is collected from a sample of 10 simulations to 

establish average values for evaluation. A 0% growth rate is 

included as a baseline; while not a realistic assumption, this 

establishes the minimum size of the blockchain against which 

the other growth rates can be considered. Figure 6 and 7 show 

the changes in total blockchain size (including current and all 

historical blockchains) and the changes in current blockchain 

size along the years, respectively. 

 

 

Figure 6. Total blockchain size by year with varying annual growth rates 
 

 

Figure 7. Current blockchain size by year with varying annual growth rates 

Based on the experimental results, the effectiveness of 

using a historical blockchain structure is evident. After 50 

years, the total blockchain size exceeds 33 TB at 0% growth, 

43 TB at 1%, 76 TB at 3%, and 140 TB at 5%. For regular 

peers, storing the entirety of this data would become 

infeasible because the resources required would not make 

using a blockchain a practical storage solution for them. On 

the other hand, the storage load of regular peers can be greatly 

reduced if the historical blockchain structure is employed. 

The size of the current blockchain is far less than the size of 

the total blockchain data. At a 0% growth rate, the current 

blockchain size is at most 6 TB; at 1%, it is below 10 TB; at 

3%, it is below 23 TB; and at 5% it is below 53 TB. Since 

these represent the maximum size of the current blockchain 

in 50 years, at all other times, the current blockchain is much 

smaller. We also note that the image file size is capped at 

nearly 34MB at 5% annual growth rate, which may be an 

overestimate. A 53 TB current blockchain is still larger than 

we would expect for the storage size of a regular peer, but we 

consider this outcome to be a worst-case scenario and 

unlikely to happen. Moreover, we can always limit the image 

size to ensure a reasonable size of the current blockchain that 

is maintained by regular peers. Meanwhile, with larger 

resource support, super peers can continue to store all 

blockchain data. Thus, by using the historical blockchain 

structure, we establish the use of blockchains as a viable 

storage solution for continuously growing data. 

Note that we also considered a size-based partitioning 

strategy, where the size of the current blockchain is limited 

by a predefined parameter. For example, we allow splitting 

to occur when the current blockchain reaches 10 TB in size. 

In this case, the earliest 5 TB of data becomes a historical 

blockchain, while the most recent 5 TB of data remains in the 

current blockchain. However, our experimental results show 

that very few years of data can be stored in the current 

blockchain at a reasonable annual growth rate, which makes 

the current blockchain not useful enough for regular peers. 

B. Data Retrieval Time for an Individual Request 

In this experiment, we measure the data retrieval time for 

a regular peer to perform a query on the blockchain historical 

data. The data retrieval request is to search for a patient’s 

medical records within a certain number of years. For any 

search within the current blockchain age, the data can be 

readily retrieved from the current blockchain; however, when 

the search time is greater than the current blockchain age, a 

query needs to be sent to a super peer to identify relevant data 

and retrieve it from the historical blockchain(s).  

For each blockchain age, we simulate searches of a given 

length of years, which are 5, 10, 15, 20 and 25. If the search 

length is greater than the blockchain age, the search will stop 

at the end of the blockchain. For example, if 25 years of data 

is requested for a patient, but the blockchain is only 10 years 

old, only 10 years of data will be retrieved. In addition, for 

any search length of 10 years or longer, the first y years of 

data, where y is the current blockchain age, 5 ≤ y < 10, will 

be retrieved by the regular peer, and only the portion of the 

search greater than y years will be retrieved by a super peer. 

We choose the maximum number of years to be searched  

locally by the regular peer, because otherwise, a super peer 

must also search its current blockchain unnecessarily. 

We use the same parameters listed in Table 1 for the 

image size bounds, image count bounds, text size bounds, and 
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probability of image occurrence in a medical record. 

However, we set the file size annual growth rate to 3%, which 

is more realistic than 5% as described in Section V.A. For 

search length of 10 years or more, measuring data retrieval 

time requires consideration of the network latency time for 

searching in the historical blockchain(s), extraction time for 

extracting index information from the relevant meta-blocks 

and the data from relevant blocks, and data export time for 

writing the extracted historical transaction data to a summary 

file. As outlined in Algorithm 2, the exact location of a 

transaction in a historical blockchain can be determined in 

constant time from the index information stored in the meta-

blocks. However, it takes time to open a meta-block file and 

read data from it. Based on the average size of the meta-

blocks, retrieving index information from a meta-block can 

take several seconds. Extracting transaction data involves 

reading the transactions from their locations, depending on 

the different sizes of randomly generated transactions. 

Finally, a super peer needs to create a summary file and send 

it to the requesting regular peer. Table 2 lists the additional 

parameters used for the data retrieval simulations.  

Table 2. Parameters used for data retrieval simulations 

Blockchain 

age (years) 

Search 

length (years) 

Patient visits 

(annual) 

File size 

growth 

rate 

(annual) 

Lower 

bound 

Upper 

bound 

10, 20, 30, 40, 50 5, 10, 15, 20, 25 1 7 3% 
 

Network 

latency time 
Extraction 

time 

Data export 

time 

Average meta- 

block size 

0.5 seconds 0.02 s/MB 0.017 s/MB 200 MB 

Note that access control policies will be utilized on the 

application level to ensure data privacy; a patient can only 

access their own data, while a healthcare provider can access 

any patient’s data. Figure 9 shows the average of 1000 

simulations for each search length and each blockchain age. 

 

Figure 8. Data retrieval time for varying search length and blockchain age 

From the figure, we can see that for the anticipated most 

common search lengths, i.e., 5 and 10 years, the search time 

averages less than 6 seconds for all blockchain ages. As the 

search length increases, the data retrieval time increases 

accordingly, with a maximum of about 18 seconds for a 25-

year search length in a 50-year blockchain. Note that the 10-

year search time does not increase significantly compared to 

the 5-year search time because the 10-year search consists of 

a local search by a regular peer in the current blockchain and 

a remote search of the remaining data by a super peer, both 

of which are performed concurrently. The insignificant 

increase in the average data retrieval time in the 10-year 

search is due to the search of historical data that results in the 

additional network latency time and data export time. 

C. Data Retrieval Time for Concurrent Requests 

Queries to historical blockchain data are handled by a 

group of super peers. In a group of 10 super peers, queries are 

assigned by the PSP to ensure even load balancing among the 

super peers. In this way, simultaneous historical blockchain 

data retrieval requests can be completed concurrently by the 

super peers. In our experiment, we expect most data retrieval 

requests in a network to be within 5 years, since the most 

relevant data in patient medical history is the most recent 

data. These retrievals can be completed by regular peers 

locally. To examine the search time of concurrent data 

retrieval requests, only requests from regular peers for 10 to 

25 years of data are measured. 

Concurrent search requests may occur within 5-minute 

intervals in a standard 8-hour workday. Since shorter 

searches are expected to be more common, we assign 

probabilities of 40%, 30%, 20% and 10% to the search 

lengths of a 10-year search, a 15-year search, a 20-year search 

and a 25-year search, respectively. We simulate 10, 20, 30, 

40, and 50 concurrent searches at 5-minute intervals and 

calculate the total data retrieval times. While 50 concurrent 

requests represent a very high volume of requests in a 5-

minute interval, this may occur at certain times of the year, 

such as flu season. 

We calculate the average data retrieval time for a super 

peer to complete all the concurrent requests in its queue. For 

example, with 20 concurrent requests, each super peer is 

required to process about 2 concurrent requests in its request 

queue. Figure 10 shows the average data retrieval times for 

the specified numbers of concurrent requests and blockchain 

ages by running 1000 simulations. 

 

Figure 9. Average data retrieval time for concurrent data retrieval requests 
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From the figure, we can see that the average data retrieval 

time for 10-year blockchains is considerably lower than that 

for higher age blockchains. This is because a 10-year 

blockchain is unable to facilitate data retrieval beyond 10 

years. On the other hand, the average data retrieval time for a 

20-year blockchain is not considerably lower than those older 

blockchains, as 25-year searches only represent 10% of the 

total searches. For blockchains older than 20 years, 

increasing the number of concurrent searches by 10 results in 

approximately only 1 additional request per super peer in the 

query queue. Therefore, the corresponding increase in data 

retrieval time is equal to the average time to process one 

additional query request in a super peer’s query queue. 

Overall, the average data retrieval time stays below 50 

seconds, which shows that our concurrent search algorithm is 

feasible, even during periods of high accesses. 

VI. CONCLUSIONS AND FUTURE WORK 

Scalability of blockchain has been a pervasive issue, and 

recent solutions have focused on moving data or computation 

off-chain by using IPFS and cloud-based storage structures. 

In this paper, we propose a novel approach to improve 

blockchain scalability while keeping all data on-chain. We 

introduce the concept of historical blockchain, where older 

sections of the current blockchain are separated after a 

specified time interval. This time-based partitioning strategy 

allows the current blockchain to contain a useful amount of 

relevant data, while freeing regular peers with short 

resource/storage from maintaining the entire data-intensive 

blockchain. The historical blockchains are maintained by a 

group of super peers with greater resources and computing 

power. In addition, we introduce a meta-block, attached to a 

historical or current blockchain, that serves as an index file 

and is used to facilitate efficient data retrieval. This block is 

not part of the blockchain and can be refreshed at any point 

in time by scanning the associated blockchain. Access to 

historical blockchain data is accomplished by regular peers 

through data retrieval queries sent to the primary super peer. 

These queries are then assigned to super peers using a 

predefined load balancing mechanism. The super peer 

collects the relevant data for the query by identifying the 

exact transaction locations found using the meta-blocks. 

Finally, a response containing a summary of the retrieved 

data is returned to the regular peer. Experimental results show 

that this approach can effectively reduce the storage burden 

of data-intensive blockchain applications on regular peers, 

while providing efficient access to historical data. 

In future work, we will investigate how to improve the 

performance of concurrent data retrieval. One way is to 

analyze the effectiveness of parallel searches across multiple 

historical blockchains. This parallelization should allow a 

super peer to reduce search time if the historical blockchains 

are stored on different hard disks. We will also investigate 

effective methods for selecting the primary super peer based 

on feedback from regular peers. Alternatively, requests for 

historical data from regular peers can be broadcast to all super 

peers and a dynamic load-balancing algorithm can be 

developed to distribute concurrent query requests from 

regular peers evenly among the super peers. Finally, to ensure 

strong data privacy, it is necessary to design access control 

policies for users with different roles to access blockchain 

data with the required permissions [13]. This is particularly 

necessary in healthcare blockchain applications. 
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