

Timely Publication of Transaction Records in a
Private Blockchain

Rui Ming
Computer and Information Science Department

University of Massachusetts Dartmouth
Dartmouth, MA 02747, USA

rming@umassd.edu

Haiping Xu
Computer and Information Science Department

University of Massachusetts Dartmouth
Dartmouth, MA 02747, USA

hxu@umassd.edu

Abstract—Blockchain technology has been successfully applied
in many different application domains. However, in some time-
sensitive applications, e.g., a COVID-19 tracking system with case
and testing information recorded in blockchains, it is critical to
publish information or transactions in blockchains in a timely
manner. In this paper, we introduce an approach to timely
publishing transaction records in private blockchains, which are
small-scale permissioned ones with limited number of transactions
broadcast per unit of time. In our approach, when a transaction is
broadcast by a peer, it is published immediately in a temporary
block after being approved using a consensus mechanism. When a
predefined number of temporary blocks have been published, the
system will combine them into a permanent one and publish it
upon approval using the same consensus mechanism. The
experimental results show that our proposed approach is feasible
and effective for timely publication of transaction records in a
private blockchain.

Keywords— Private blockchain, timely publication, consensus
mechanism, temporary block, permanent block

I. INTRODUCTION
Blockchain is a decentralized and distributed digital ledger

technology, which was initially proposed as a key mechanism
for a peer-to-peer electronic cash system, called Bitcoin, in 2008
[1]. Due to its unique properties of immutability and
decentralization, blockchains have been widely used to record
transactions across many computers so that any stored record
cannot be altered retroactively without the update of all
subsequent blocks. Over the past decade, blockchain has
become a groundbreaking technology with applications in many
critical domains, such as virtual currencies, real estate title
transfers and registration, digital voting, immutable data backup
and so on. There are two types of blockchains, namely public
blockchain and private blockchain. In a public blockchain
network, peers can freely join, read, write, or participate in
blockchain activities. In contrast, a private blockchain system
places permission restrictions on the peers who can participate
in the network and in which transactions. A public blockchain
network may have a large number of peers; while the number of
peers involved in a private blockchain network could be very
limited. In most of the public blockchain systems, e.g., Bitcoin,
after a number of transactions have been broadcast by peers, a
new block that stores those transactions can be created and
validated by the system in just a few minutes. This is because

there is a massive amount of transactions generated per unit of
time. However, in a private blockchain system, it would take
much longer time if multiple transactions need to be included in
a single block because new transactions are not generated as
often as in a public blockchain system. Many time-sensitive
systems, such as a COVID-19 tracking system with case and
testing information recorded in blockchains, require that
information broadcast by a peer must be published in a new
block very quickly. One solution is to allow each block to record
only one transaction, which could effectively reduce the time to
publish a transaction; however, such an approach is not space
efficient, and it also requires much longer time to retrieve and
validate transactions in a blockchain that has a rapidly growing
size. Thus, there is a pressing need to develop a time and space-
efficient mechanism that not only allows efficient usage of space
but also ensures timely publication of new transaction records.
In this paper, we introduce an approach that facilitates timely
publication of a new transaction in a temporary block. Once a
predefined number of temporary blocks have been published,
they can be combined into a new permanent block, which
replaces the temporary ones in the blockchain.

Another challenging issue in our approach is to effectively
achieve the necessary agreement on a single recognized
blockchain by distributed peers. A consensus mechanism of the
blockchain technology is a protocol that allows all peers, who
maintain the blockchains, to be synchronized with each other to
agree on the legitimacy of transaction records to be added into a
blockchain. The Proof-of-Work (PoW) algorithm that has been
used in Bitcoin is one example of consensus algorithms, where
special peers, called miners, compete against each other to
generate new blocks and get rewarded [1]. The disadvantage of
PoW is the high energy consumption that is wasted and not
applicable anywhere else. Proof-of-Stake (PoS) algorithm was
developed as an alternative to the PoW algorithm to overcome
the high energy consumption [2]; however, both PoW and PoS
do not apply well to a private blockchain system that has a much
smaller scale than public blockchains such as Bitcoin. On the
other hand, practical Byzantine Fault Tolerance (pBFT)
algorithm is a universal solution for distributed systems that
tolerate Byzantine faults [3]. In our approach, we introduce a
variation of the pBFT algorithm as a consensus mechanism to
effectively validate the legitimacy of either a new temporary
block or a permanent one in a private blockchain that requires
timely publication of transaction records.

116

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00030

II. RELATED WORK
The scalability of blockchain systems has been a challenging

issue since the blockchain technology has been adopted in
various application domains. The challenge is mostly due to the
significant and growing size of the blockchains. There are some
existing approaches to changing or tweaking data structures to
deal with the blockchain size problem. For example, the original
Bitcoin system used the Simplified Payment Verification (SPV)
mechanism to verify transactions without running through the
full network nodes. Users can minimize storage space by only
storing the block headers of the longest blockchain rather than
the entire blockchain [1]. Cryptonite has been among the first
implementations of the lightweight mini-blockchain scheme [4].
It has been designed to eliminate the need for a full blockchain
by storing important block information locally for each node.
This approach can significantly reduce the need for long-term
data storage as old transactions are pruned but the account
balance value in the hash tree structure can still be maintained.
VerSum is an alternative proposed by Hooff et al. that allows
light nodes to outsource expensive computation securely over
large data structures such as Bitcoin blockchains to multiple
servers [5]. It can achieve low server-side overhead for both
incremental re-computation and conflict resolution, and easily
keep up with Bitcoin’s rate of new blocks with new transactions.
Different from the above approaches, our method can minimize
the storage overhead for published blocks in a private
blockchain by combining small-sized blocks, i.e., temporary
blocks, into a permanent one.

There is also previous work on using consensus algorithms
for peers to reach agreement on the state of certain data stored
on distributed nodes in a blockchain system. The most well-
known consensus method is the PoW algorithm used in Bitcoin
[1]. In this method, different nodes in a blockchain try to solve
a cryptographic hash function, SHA-256 in particular, which
generates a unique and fixed size 256-bit hash value. The
process of creating new blocks by first solving this hash problem
is called mining, and the users performing this task are called
miners. To counteract the great deal of energy waste in the PoW
algorithm, another consensus algorithm PoS was proposed [2].
The core idea of PoS is to attribute the mining power based on
the number of coins held by a miner. Therefore, a PoS miner is
allowed to mine only a limited number of blocks that reflects the
miner’s ownership stake. Proof-of-Authority (PoA) is a new
consensus method that provides high performance and fault
tolerance [6]. In PoA, a peer must first pass a preliminary
authentication, and is allowed to create a new block only if it has
proven its authority for the task. The most related consensus
algorithm to the one we used in this paper is pBFT, which could
be suitable for a private blockchain [3]. The pBFT mechanism
can work in asynchronous environments with improved
response time. In our approach, we have revised the pBFT
mechanism by utilizing a majority vote for approval of a new
temporary or permanent block after being verified.

Additional related work focuses on revising blockchain
architecture to improve blockchain performance. Traditional
blockchain uses a single chain to record transactions in a block.
Since blocks in a single chain structure cannot be generated
concurrently, the throughput of publishing new blocks in a
blockchain is limited. To deal with this issue, DAG-based
blockchain architectures are proposed, which enable concurrent

block generation and allow multiple vertices to connect to a
previous vertex in a directed acyclic graph [7]. A cryptocurrency
for the Internet-of-Things (IoT), called IOTA, was among the
first approaches to implementing the “blockless blockchain,”
which uses a network of nodes to speed up the validation process
[8]. It uses a structure called tangle, which is a DAG for storing
transactions. In an early effort, Nicol and Xu developed a DAG-
based blockchainless approach for trusted public construction
bidding with cryptographic guarantees to enforce fairness in the
bidding process [9]. Instead of mining blocks of transactions as
in a traditional blockchain, a DAG links a transaction containing
a list of its parents, documents and transaction signatures, to
other transactions via a less complex validation process. A
recently proposed consensus protocol called SPECTRE can be
applied to a DAG-based blockchain structure to create and
publish blocks of transactions by extending local DAGs [10]. In
SPECTRE, peers can perform blockchain activities without
having to know other peers’ synchronization status. Similar,
PHANTOM also applies blockDAG to achieve faster block
generation and higher transaction throughput [11]. Moreover,
PHANTOM proposes a greedy algorithm to order transactions
embedded in blockDAG and supports smart contract. Our
approach differs from the above approaches by following the
traditional blockchain architecture; however, our approach is
flexible and efficient, which allows timely publication of
temporary blocks and simplification of a blockchain by
combining temporary blocks into a permanent one.

III. THE BLOCKCHAIN STRUCTURE
The block time is defined as the time required to create a new

block in a blockchain [12]. In most of the blockchain systems,
such as Bitcoin and Ethereum, an expected block time can be set
to require the systems to wait for a fixed amount of time before
a new block can be generated and published [1, 13]. However,
in many critical and time-sensitive situations, users would
request their transactions to be published in blockchains
immediately rather than have to wait for a fixed amount of time
for the transactions to be published. For example, in a
blockchain-based COVID-19 real-time updating and tracking
system, when infection cases are broadcast, such information
needs to be available immediately to all those who had contact
with the infected persons for emergency treatment. To avoid
waiting for a fixed amount of time for the cases to be published,
we define two types of blocks, namely the temporary block and
the permanent block. A temporary block contains only one
transaction, which can be generated in a timely manner and
published efficiently after being verified. On the other hand, a
permanent block is a traditional block that cannot be altered
retroactively without the alteration of all subsequent blocks. A
permanent block, generated by combining a predefined number
of temporary blocks in a blockchain, can record multiple
transactions and can effectively reduce the size of the blockchain
by eliminating the temporary ones.

A. The Blockchain Structure with Temporary Blocks
We first define a set of super peers as a group of trusted peers

who are responsible for creating new blocks and participating in
the consensus process. There is also a voted super peer called
the primary super peer or PSP, who serves as a leader for the
consensus process. On the other hand, a regular peer is one who

117

has the access to the latest blockchain and can broadcast a new
transaction to super peers for processing; however, it is not
allowed to create new blocks or get involved in the consensus
process. When a new transaction is generated, it can be
announced by the peer who generates the transaction in a request
message broadcast to all super peers. When the PSP receives the
request message, it creates a new temporary block containing the
transaction information and broadcast it to all super peers. In
addition to the transaction information, the new block also
contains the hash value of the last permanent block in the
blockchain, the digital signature of the transaction signed by the
peer who broadcast the message as well as other related
information. When the super peers receive the newly created
temporary block from the primary one, they use a consensus
algorithm to verify and agree on the validity of the new block. If
the new temporary block is verified to be correct, it will be
published in the blockchain and broadcast to all peers. Then the
transaction information recorded in the temporary block can be
readily accessed by all peers. Fig. 1 shows how a new temporary
block TBi is attached to a blockchain.

Fig. 1. The blockchain structure with temporary blocks.

For future transactions broadcast by peers, the system
repeats the above operations until there is a predefined number
Φ of temporary blocks published. At this time, PSP is
responsible for creating a new permanent block to include all
transactions recorded in the Φ temporary blocks. Once a new
permanent block is created and broadcast to all super peers, it
will be verified and approved by super peers using the same
consensus algorithm that has been applied to temporary blocks.
If the new permanent block is approved, the temporary blocks
will be removed, and the new permanent block will be added to
the blockchain by linking it to the last permanent block. This
change is then broadcast to all peers in the blockchain system
for blockchain updating.

We define height h of a blockchain as the number of
permanent blocks in the blockchain. As in a traditional
blockchain, each permanent block PBi, where 1 < i � h, includes
the hash value of its prior permanent block PBi-1; therefore, any
changes to PBi-1 can be easily detected by checking the hash
value of PBi-1 included in PBi. On the other hand, since all
temporary blocks are linked to the last permanent block PBh as
shown in Fig. 1, they all include the hash value of PBh.

B. Temporary Block Structure and Generation
As a temporary block can contain only one transaction, it

can be published in a blockchain immediately upon approval
without the need to wait for new transactions to be broadcast.
As shown in Fig. 2, a temporary block TBi, contains four major
components, namely the block header, the data, the hash value
of TBi, denoted as ha(TBi), and a list of digital signatures
ds[TBi]v, where v is a super peer in the consensus group, and
each ds[TBi]v is the digital signature of super peer v for

temporary block TBi. In the block header, ha(PBh) is the hash
value of the last permanent block PBh, h is the height of the
blockchain without counting temporary blocks, t is the
timestamp when the transaction was made, and p is the
identification number of the peer who broadcasts the
transaction. In the data portion, TX is a transaction with its
required information to be recorded in the blockchain and ds[t,
p, TX]p is the digital signature of peer p for transaction TX. The
hash value of the temporary block TBi, denoted as ha(TBi), is
defined as in (1).

ha(TBi)=H(ha(PBh), h, t, p, TX, ds[t, p, TX]p) (1)

where H is a hash function. The list of ds[TBi]v are digital
signatures signed by super peers during the consensus process,
which is used to check the validity of the temporary block TBi.
Note that in the blockchain, we use digital signature to
guarantee that the contents of a message have not been altered
in transit [14]. Each peer has a pair of keys. One key is called
the private key, which is only known to the peer itself; while
the other key is called the public key, which is known to the
public. In the digital signature process, peer p1 uses its private
key to encrypt the hash value of message m into a digital
signature ds[m]P1, and then sends ds[m]P1 along with message
m to peer p2. Peer p2 can decrypt ds[m]p1 using p1’s public key
to verify the authenticity of message m, i.e., the hash value of
message m, decrypted using p1’s public key, exactly matches
with the hash value of the original message m.

Fig. 2. The structure of temporary block TBi.

 When peer p in the blockchain system generates a
transaction TX, it broadcasts it to super peers as a request
message <TB-request, [t, p, TX], ds[t, p, TX]p> with all required
information defined in a temporary block except the height of
the blockchain, the hash value of the temporary block to be
created, and the list of digital signatures of super peers for the
temporary block. When PSP receives the request message for
creating a temporary block to publish the transaction, it verifies
the message for its hash value and the digital signature. If the
message is valid, PSP generates a temporary block (as shown in
Fig. 2) based on the information provided in peer p’s request
message, and initiates a consensus process by broadcasting the
new temporary block with its own digital signature ds[TBi]primary
to all other super peers for approval. Algorithm 1 shows the
procedure how PSP creates a temporary block when receiving a
TB-request message. Note that in Algorithm 1, PSP needs to
check if transaction TX sent by peer p has already been published
in the blockchain. If TX has been recorded in an existing
temporary block, a null value is returned; otherwise, PSP uses
the sender’s public key to verify the authenticity of the request

null hash hash …

Permanent Block
PB1

Permanent Block
PB2

Permanent Block
PBh

hash

hash

hash

…

Temporary
Block TB2

Temporary
Block TB1

Temporary
Block TBi

ha(PBh) h t p

TX ds[t, p, TX]p

Data

ha(TBi)

ds[TBi]v list

Block Header

118

message. If the message has been altered, a null value is
returned; otherwise, PSP generates all components including the
hash value ha(TBk+1) and its digital signature ds[TB k+1]primary of
the new temporary block TBk+1, and returns the newly
constructed block temporary block TBk+1.

Algorithm 1: Generation of a Temporary Block

Input: Request message <TB-request, [t, p, TX], ds[t, p, TX]p>
Output: A temporary block TBk+1 signed by PSP

1. Let h be the height of the current blockchain
2. Let k be the number of temporary blocks linked to PBh
3. Let TBk+1 be the temporary block to be created
4. if k == Φ // the predefined number of temporary blocks
5. return null // a permanent block shall be generated first
6. Compute the hash value of the last permanent block ha(PBh)
7. Extract t, p, TX from the TB-request message
8. for i = 1 to k
9. if [t, p, TX] matches with TBi
10. return null
11. Use the public key of peer p to verify message [t, p, TX]
12. if message [t, p, TX] has been altered
13. return null
14. else
15. Calculate the hash value of temporary block ha(TBk+1)
16. Add ha(PBh), h, t, p, TX and ds[t, p, TX]p into TBk+1
17. Calculate hash value for TBk+1, i.e., ha(TBk+1) as in (1), and
 add it into TBk+1 structure
18. Calculate the digital signature ds[TB k+1]primary, and add it
 into the list of digital signatures of super peers for TBk+1.
19. return TBk+1

C. Temporary Block Structure and Generation
Different from a temporary block, a permanent block is one

that cannot be removed from a blockchain. Similar to the
structure of a temporary block, a permanent block also consists
of four major components. As shown in Fig. 3, if the height of a
blockchain is h, a new permanent block PBh+1 contains the block
header, the data, the hash value of PBh+1, denoted as ha(PBh+1),
and a list of digital signatures ds[PBh+1]v, where v is a super peer
in the consensus group, and each ds[PBh+1]v is the digital
signature of super peer v for permanent block PBh+1.

Fig. 3. The structure of permanent block PBh+1.

In the block header, ha(PBh) is the hash value of the last
permanent block, t is the timestamp when the permanent block

was created, and primary is the identification number of PSP
who broadcasts the permanent block for verification. The data
portion � consists of a list of Φ transactions tx1, tx2, … txΦ, each
of which records the transaction information published in a
temporary block. For example, the information recorded in the
first transaction tx1 of � is extracted by PSP from temporary
block TB1. This is illustrated in a box labeled as “Transaction
tx1” that includes the timestamp t when the transaction was
made, the identification number p of the peer who broadcasts
the transaction, transaction TX, and peer p’s digital signature
ds[t, p, TX]p. The hash value of the permanent block PBh+1,
denoted as ha(PBh+1), is defined as in (2).

ha(PBh+1)=H(ha(PBh), h, t, primary, �) (2)

where H is a hash function and � is a list of Φ transactions. The
list of ds[PBh+1]v are digital signatures signed by super peers
during the consensus process, which is used to check the
validity of the new permanent block PBh+1.

To make a blockchain space and time efficient, we need to
combine the temporary blocks into a permanent one when there
have been Φ temporary blocks published in the blockchain.
Algorithm 2 shows the process how PSP generates a permanent
block PBh+1 by combining a list of temporary blocks.

Algorithm 2: Generation of a permanent block by combining a list
of temporary blocks

Input: A list of temporary blocks <TB1, TB2, …, TBΦ>
Output: A permanent block PBh+1 signed by PSP

1. Let h be the height of the current blockchain
2. Let Φ be the number of temporary blocks linked to PBh

3. Let PBh+1 be the permanent block to be created
4. Compute the hash value ha(PBh) of the last permanent block
5. Set current timestamp t and identification number primary
6. Add [ha(PBh), h, t, primary] into PBh+1 as its block header
7. for i = 1 to Φ
8. extract [t, p, TX] and ds[t, p, TX]p from TBi, and add them
 into data � of PBh+1 structure as transaction record txi
9. Calculate hash value for PBh+1, i.e., ha(PBh+1) as in (2), and
 add it into PBh+1 structure
10. Calculate the digital signature ds[PBh+1]primary, and add it into
 the list of digital signatures of super peers for PBh+1
11. return PBh+1

In Algorithm 2, PSP first calculates the hash value ha(PBh)

of the last permanent block PBh. It then sets t to the current
timestamp and primary to its identification number. The four
items [ha(PBh), h, t, primary] are added into PBh+1 as its block
header. Next, PSP extracts the transaction information from
each temporary block and adds them into PBh+1 as data � of the
block. The hash value ha(PBh+1), the third component of PBh+1,
is calculated according to (2). Finally, PSP signs PBh+1, adds its
digital signature ds[PBh+1]primary into the ds[PBh+1]v list, and
returns the newly constructed permanent block PBh+1. Once
PBh+1 has been generated by PSP, it sends it to all other super
peers to start the consensus process. If PBh+1 is approved by a
major vote from the super peers, PSP deletes all temporary
blocks in the blockchain and adds the new permanent block
PBh+1 right after PBh. The changes are then broadcast to all
peers including regular peers for blockchain updating.

ha(PBh) h t primary
ha(PBh+1)

ds[PBh+1]v list

Block Header

tx1 tx3

t p ds[t, p, TX]p TX

Data �

Transaction tx1

tx2 txΦ …

119

IV. A VARIATION OF THE PBFT CONSENSUS MECHANISM

We revised the pBFT consensus algorithm [3] to make it a
suitable consensus mechanism for the private blockchain
system we introduced in this paper. Some major revisions of the
algorithm include a combination of the “Prepare” and
“Commit” phases of the original pBFT algorithm into a
“Verification & Approval” phase, called V&A. We further
revised the “Reply” phase of the original pBFT algorithm into
a majority “Voting” phase. The revised pBFT consensus
algorithm can be used to approve either a temporary block or a
permanent one, announced by PSP, for timely publication in a
private blockchain. The only differences for the two usages are
the ways to verify a new block. For a temporary block, the
transaction recorded in the temporary block needs to be
verified; while in the case of a permanent block, a list of
recorded transactions must be verified to ensure they have been
published in temporary blocks. In the following, we use the
approval process of a permanent block as an example to show
how the revised pBFT consensus algorithm works.

Let � be the total number of super peers including PSP, who
are involved in the consensus process. Fig. 4 shows an example
of the consensus group with 5 super peers, i.e., � = 5, where PSP
is the primary one, SP1, SP2 and SP3 are super peers that are all
up and running but SP4 is currently down and not available. The
consensus algorithm can be divided into four phases, which are
the Announcement phase, the V&A phase, the Voting phase, and
the Notification phase. In the Announcement phase, PSP
broadcasts a message that contains a newly generated permanent
block PBh+1 signed by PSP. Upon receiving PBh+1, super peers
SP1, SP2 and SP3 start to verify the block to make sure all
information included in PBh+1 is correct. This would include the
verification of each transaction record txi, where 1 � i � Φ, has
been published in temporary block TBi. Note that the verification
steps (denoted as shaded bars in Fig. 4) can be performed by the
super peers concurrently, but would take different amount of
time depending on the performance of the machines on which
the super peers are running.

Fig. 4. A variation of the pBFT consensus mechanism.

Once a super peer SPk completes its verification step and if
there is no error in PBh+1, SPk signs PBh+1 and add its digital
signature ds[PBh+1]k to the list of digital signatures of super

peers for PBh+1. The new permanent block PBh+1 with SPk’s
digital signature is broadcast by SPk to all super peers except
PSP. Then SPk waits for signed PBh+1 from other super peers
before it approves or rejects PBh+1. Super peer SPk approves
PBh+1 only when the following conditions are satisfied:

1. PBh+1 contains digital signature of PSP
2. SPk has verified PBh+1 and added its digital signature
3. SPk has received (��/2�-1) messages from other super

peers with signed PBh+1
This would require a total number of ��/2�+1 digital

signatures for SPk to approve PBh+1. If the new block is approved
by SPk, SPk enters the “Voting” phase and sends its approval
vote to PSP. When PSP receives at least ��/2� approval votes
from other super peers, the total number of votes (��/2�+1)
including its own vote represents a major vote; thus PBh+1 is
officially approved. In this case, PSP replaces all temporary
blocks by PBh+1 in the blockchain, enters the “Notification”
phase, and notifies all super peers and regular peers to update
their blockchains. Algorithm 3 summarizes the process how
super peer SPk approves a new permanent block PBh+1.

Algorithm 3: Verification and approval of a new permanent block
by super peer SPk

Input: A new permanent block PBh+1 announced by PSP
Output: approval or rejection
1. Let Φ be the number of transactions recorded in PBh+1

2. if ds[PBh+1]primary is not valid, return rejection
3. for i = 1 to Φ
4. if transaction record txi has not been published in TBi

5. return rejection
6. else if txi contains errors
7. return rejection
8. Calculate the digital signature ds[PBh+1]k, and add it into the
 list of digital signatures of super peers for PBh+1
9. Broadcast PBh+1 with digital signatures ds[PBh+1]primary and
 ds[PBh+1]k to all other super peers except PSP
10. while (not timeout)
11. if received signed PBh+1 from at least (��/2�-1) super peers
12. return approval
13. else return rejection

Note that in Algorithm 3, if super peer SPk approves the new
permanent block, it will send an approval vote to PSP along
with its digital signature ds[PBh+1]k; otherwise, a rejection vote
will be sent to PSP without the need for attaching any digital
signature. Upon receiving at least ��/2� approval votes from
other super peers, PSP is now responsible for adding all digital
sigatures into the list of digital signatures of super peers for
PBh+1 before publishing PBh+1 in the blockchain.

V. CASE STUDY
To illustrate the feasibility and the effectiveness of our

approach, we implemented a prototype COVID-19 tracking
system with case and testing information recorded in a private
blockchain. In the system, the results of every test case are
broadcast by a peer hospital and published in a blockchain. As
such, the published case information can be shared by local
hospitals and reliably maintained in the blockchain with no
risks of being forged or manipulated by attackers.

Announcement Verification &
Approval (V&A)

Voting Notification

Down

SP1

SP2

SP3

SP4

PSP PSP

SP1

SP2

SP3

SP4

PSP

SP1

SP2

SP3

SP4

120

A. Experimental Setup
The computers running in the private blockchain system are

connected with each other as a peer-to-peer (P2P) network. The
system automatically broadcasts the most recent version of the
blockchain over the network, and each peer can update its local
copy of the blockchain from the P2P network. As the prototype
blockchain-based COVID-19 tracking system was developed
as a private blockchain system, we limit the total number of
peers to no more than 300, and the total number of reported
cases to no more than 1,000 per day. In our experiments, we set
the number of super peers from 10 to 150. The number of
regular peers will not affect our experimental results because
only super peers are involved in the consensus process. When a
peer hospital, either a regular peer or a super one, broadcasts a
case (a transaction), PSP creates a temporary block and starts
the consensus process. If the temporary block is approved by a
majority vote, it will be published in the blockchain in a timely
manner. When there is a predefined number Φ of published
temporary blocks, PSP combines them into a permanent one.
Upon approval by a major vote for the the permanent block,
PSP removes all temporary blocks from the blockchain and
replace them by the new permanent block. In the following
experiments, we consider different scenarios when Φ is 10, 20
and 30. The P2P system is running on a network with 10
machines, each of which runs Windows 10, configured with
16GB of RAM and a 512G hard drive. To conduct the
experiments, each machine runs no more than 30 peers.

To simulate a real P2P network, we assume the network
latency for communications between peers is randomly
distributed over range [10, 300] milliseconds (ms). The time for
checking a digital signature signed by a peer follows the normal
distribution N(�1, �1

2), where �1 = 500ms and �1 = 150. Verifying
a transaction recorded in a new permanent block requires
reading a temporary block from a hard disk. We assume the
reading time follows the normal distribution N(�2, �2

2), where �2
= 2000ms and �2 = 500. In the following sections, we present the
experimental results for consensus latency, consensus failure
rate and publication rates of temporary and permanent blocks.

B. Consensus Latency
In this experiment, we show how the number of super peers

may affect the consensus latency. We assume all super peers
are up and running. We record the latency time for consensus
process, which is the period between the time when PSP starts
the consensus process and the time when a new block is
published. We conducted experiments for three cases, namely
a temporary block with 1 transaction only, a permanent block
with 10 transactions, and a permanent block with 20
transactions. Fig. 5 shows the consensus latency using our
revised pBFT algorithm. From the figure, we can see that in all
cases, with more super peers, the consensus latency increases.
This is because for a temporary block, the consensus latency is
mainly due to the verification time used by super peers to verify
digital signatures signed by other super peers. If the total
number of super peers is �, each super peer needs to verify at
least ��/2� digital signatures including the one signed by PSP.
This explains why the consensus latency for a temporary block
increases with more super peers. For a permanent block, the
consensus latency consists of two major parts: the verification
time for digital signatures signed by other super peers, and the

reading time for published temporary blocks from a hard disk,
which is needed for verifying if the transactions included in the
new permanent block are valid. The more transactions that need
to be verified, the longer consensus latency. This explains when
a permanent block contains 20 transactions, it would take
longer time to complete the consensus process than in the case
when a permanent block contains only 10 transactions. It also
explains why a temporary block can be published most
efficiently among the three cases.

Fig. 5. Consensus latency using the revised pBFT algorithm.

C. Consensus Failure Rate
After PSP initiates the consensus process for a new block,

at least ��/2� super peers must vote for approval; otherwise, it
is considered a consensus failure. However, a super peer may
not be able respond with an approval vote due to various
reasons including network latency and device corruption. In
this experiment, we study the impact of the number of super
peers on the consensus failure rate when each super peer
(except PSP, who is considered a reliable one) has certain
chances of no response at 40%, 50% and 60%. The number of
super peers range from 10 to 150. For each case, we run the
consensus process for 1000 times and calculate the average
consensus failure rate. Fig. 6 shows the experimental results.

Fig. 6. Consensus failure rate over the number of super peers.

From the figure, we can see that with more super peers, the
consensus failure rate increases when each super peer has 60%
chance of no response. Since our revised pBFT algorithm
adopts a majority voting scheme, when the number of super

121

peers is low (e.g., 10), the results show that there would be
chances for PSP to receive at least 5 approval votes to declare
a successful consensus process. However, when the number of
super peers goes up (e.g., 150), it becomes nearly impossible
for PSP to receive at least 75 approval votes for a successful
consensus process. This might sound strange as one would
expect the failure rate remains constant regardless of the
number of super peers, but our experiment results do follow the
mathematical calculation of the successful rate using (3), where
� is the total number of super peers and p is the chance of no
response from each super peer except the primary one.

� �
])1([)(11

2/
1 −−−

=
− −= � kk

k k ppCf θθ

θ
θθ (3)

On the other hand, the experimental results show that with
more super peers, the consensus failure rate decreases when
each super peer has 40% chance of no response. When the
number of super peers goes up (e.g., 150), it becomes almost
constantly possible for PSP to receive at least 75 approval votes
for a successful consensus process. Finally, the results show
that the consensus failure rate is around 0.5 when each super
peer has 50% chance of no response. This implies the number
of super peers have no significant impact on the consensus
failure rate in this case. Based on the experiment results, we can
conclude that when the chance of no response from the super
peers is reasonable low (e.g., below 40%), with enough number
of super peers, the revised pBFT algorithm can always perform
reliably for successful consensus of a new block.

In more realistic scenarios, suppose each super peer (except
the primary one) has 10% chance of no response; however, when
a super peer responds, it may reject a new block due to various
reasons, e.g., errors found in the new block and being dishonest.
Such situations will inevitably affect the successful rate of the
consensus process. In the following experiment, we assume each
super peer has 10% chance of no response, and when it responds,
it will have 30%, 40% or 50% chance of rejection. Fig. 7 shows
the consensus failure rate over the number of super peers in the
three different scenarios.

Fig. 7. Consensus failure rate with chances of rejection.

The experiment results match those of our previous
experiment. When the chance of rejection is 50%, the
probability of approving a new block by a super peer with 10%
chance of no response would be 45%; therefore, with more super
peers, the consensus failure rate increases. In the other two

scenarios, the probabilities of approving a new block by a super
peer are all above 50%; thus, with more super peers, the
consensus failure rate decreases. With the above experimental
results, we can further conclude that when the chance of no
response and the chance of rejection from the super peers are
reasonable low (e.g., 10% and 30%, respectively), with enough
number of super peers, the revised pBFT algorithm can always
perform reliably for successful consensus of a new block.

D. Publication Rate of Temporary and Permanent Blocks
We now demonstrate how temporary blocks and permanent

blocks can be published timely in a private blockchain. Note
that with private blockchain, we do not expect a huge volume
of cases reported per day. In the following experiments, we set
the number of super peers (i.e., trusted hospitals) to 80. We
assume there are about 1,000 cases per day to be published in
the blockchain. Table I shows the number of cases generated
every 4 hours during a day, with more cases reported during the
daytime.

TABLE I. NUMBERS OF CASES GENERATED DURING A DAY

Hours 0-4 4-8 8-12 12-16 16-20 20-24
No. of Cases 100 200 200 300 100 100

We test our blockchain system in three different scenarios,
where a permanent block contains 10, 20 and 30 records from
temporary blocks, respectively. Fig. 8 shows the number of
permenant blocks published every 4 hours during a day.

Fig. 8. Number of permanent blocks published during a day.

From Fig. 8, we can see that almost all reported cases can
be published timely except for the 12-16 time period, where
about 60-80 cases have to be delayed for publication in the
following time period 16-20. This is not a major problem
because in our blockchain-based COVID-19 case recording and
tracking system, cases reported earlier will be processed and
published earlier. Therefore, the delay was actually within a
couple of hours rather than 4 hours. In all three scenarios with
different numbers of records in a block, the numbers of cases
that can be published during a time period are very close.

Figure 9 shows the number of temporary blocks published
every 4 hours during a day. Similarly, we can see that all cases
can be published timely except for the 12-16 time period, where
72 out of 300 cases generated during that period have to be
delayed for publication in the following time period 16-20. For

122

the same reason as described for permanent blocks, this is also
not a major issue as a couple of hours delay for publishing
temproary blocks is generally acceptable in our blockchain-
based COVID-19 case recording and tracking system.

Fig. 9. Number of temporary blocks published during a day.

It is worth noting that when the number of cases has been
signficantly reduced, e.g., 20 cases per day as shown in Table
II, those cases cannot be published in a timely manner without
utilizing temporary blocks as in our approach. For example,
when a permanent block contains 20 cases, a case reported
during a day may have to be delayed for 24 hours before it can
be published. However, using our approach, a reported case can
always be published immedidately using a temporary block.

TABLE II. REDUCED NUMBER OF CASES GENERATED DURING A DAY

Hours 0-4 4-8 8-12 12-16 16-20 20-24
No. of Cases 2 4 4 6 2 2

VI. CONCLUSIONS AND FUTURE WORK
Blockchain technology has been successfully applied in

many different domains; however, there is very little work on
timely publication of transaction records in a private blockchain
system. In this paper, we introduce an approach that facilitates
timely publication of new transaction records using temporary
blocks, which can be combined and published in a permanent
block later when there is a predefined number of published
temporary blocks. This approach differs from traditional
blockchain-based systems where new transaction records are
published either in fixed time cycles or in permanent blocks
only. Our approach not only allows publishing time-senstive
transaction records in a timely manner using temproary blocks,
but also reduces the blockchain storage space and potentially
supports efficient transaction queries. In addition, we have
introduced a variation of the pBFT consensus mechanism that
requires a majority vote for approval of either a new temporary
block or a permanent one to be added into a private blockchain.

In future work, we plan to improve the block merging
mechanism to allow for dynamic determination of a reasonable
number of transaction records in a permanent block. Our
current approach assumes a primary super peer is always
reliable for accomplishing its tasks; however, in a real scenario,
a primary super peer may also fail for unexpected reasons. To
address this issue, we will further improve our revised pBFT

consensus mechanism and show how to efficiently and
effectively replace a primary super peer in real time when it is
found to be disqualified for its tasks due to various reasons such
as being not reliable or having been found dishonest. One
related challenge in addressing this issue is to effectively
monitor the reliality of super peer software components as in
previous work [15]. Finally, we plan to implement a fully
functioning private blockchain system for timely publication of
transaction records that can be applied in various critical and
time-sensitive application domains.

REFERENCES
[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2009.

Retrieved on March 5 2019 from https://bitcoin.org/bitcoin.pdf
[2] S. King and S. Nadal, “PPCoin: Peer-to-Peer Crypto-Currency with

Proof-of-Stake,” August 19, 2012. Retrieved on March 5 2020 from
https://decred.org/research/king2012.pdf

[3] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” In
Proceedings of the Third Symposium on Operating Systems Design and
Implementation (OSDI’99), New Orleans, LA, USA, February 22-25,
1999, pp. 173-186.

[4] J. D. Bruce, “The Mini-Blockchain Scheme,” Cryptonite, Mini-
blockchain Project, Revision 3, March 2017. Retrieved on January 18,
2020 from http://cryptonite.info/files/mbc-scheme-rev3.pdf

[5] J. Hooff, M. F. Kaashoek, and N. Zeldovich, “Versum: Verifiable
Computations Over Large Public Logs,” In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS
2014), Scottsdale, Arizona, USA, November 3-7, 2014 2014. Available:
https://people.csail.mit.edu/nickolai/papers/vandenhooff-versum.pdf

[6] S. Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and V.
Sassone, “PBFT vs Proof-of-Authority: Applying the CAP Theorem to
Permissioned Blockchain,” In Proceedings of the Italian Conference on
Cyber Security (ITA-SEC18), Milan, February 6-9, 2018, pp. 1-11.

[7] H. Pervez, M. Muneeb, M. Irfan, and I. Haq, “A Comparative Analysis of
DAG-Based Blockchain Architectures,” In Proceedings of the 12th
International Conference on Open Source Systems and Technologies
(ICOSST), December 19-21, 2018, Lahore, Pakistan, pp. 27-34.

[8] S. Popov and Q. Lu, “IOTA: Feeless and Free,” IEEE Blockchain
Technical Briefs, IOTA Foundation, January 2019. Retrieved on June 1,
2020 from https://blockchain.ieee.org/technicalbriefs/january-2019/iota-
feeless-and-free

[9] N. Nicol and H. Xu, “A Blockchainless Approach for Trusted Public
Construction Bidding,” Computer Science Technical Report, Computer
and Information Science Department, University of Massachusetts
Dartmouth, December 2018.

[10] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “SPECTRE: A Fast and
Scalable Cryptocurrency Protocol,” IACR Cryptology ePrint Archive,
2016, pp. 1159.

[11] Y. Sompolinsky and A. Zohar, “PHANTOM: A Scalable BlockDAG
Protocol,” IACR Cryptology ePrint Archive, 2018, pp. 104.

[12] D. Fullmer and A. Morse, “Analysis of Difficulty Control in Bitcoin and
Proof-of-Work Blockchains,” In Proceedings of the 57th IEEE
Conference on Decision and Control (CDC), Miami Beach, FL, USA,
December 17-19, 2018, pp. 5988-5992.

[13] V. Buterin, “Ethereum White Paper: A Next Generation Smart Contract
& Decentralized Application Platform,” Online Resource for the
Ethereum Community, Ethereum for Enterprise, 2013. Retrieved on June
20, 2020 from https://ethereum.org/whitepaper/

[14] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Communications of the ACM,
Vol. 21, No. 2, 1978, pp. 120-126.

[15] J. Rahme and H. Xu, “Dependable and Reliable Cloud-Based Systems
Using Multiple Software Spare Components,” In Proceedings of the 14th
IEEE International Conference on Advanced and Trusted Computing
(ATC 2017), August 4-8, 2017, San Francisco, CA, USA, pp. 1462-1469.

123

