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Abstract—Blockchain technology has been successfully applied 
in many different application domains. However, in some time-
sensitive applications, e.g., a COVID-19 tracking system with case 
and testing information recorded in blockchains, it is critical to 
publish information or transactions in blockchains in a timely 
manner. In this paper, we introduce an approach to timely 
publishing transaction records in private blockchains, which are 
small-scale permissioned ones with limited number of transactions 
broadcast per unit of time. In our approach, when a transaction is 
broadcast by a peer, it is published immediately in a temporary 
block after being approved using a consensus mechanism. When a 
predefined number of temporary blocks have been published, the 
system will combine them into a permanent one and publish it 
upon approval using the same consensus mechanism. The 
experimental results show that our proposed approach is feasible 
and effective for timely publication of transaction records in a 
private blockchain.  

Keywords— Private blockchain, timely publication, consensus 
mechanism, temporary block, permanent block 

I. INTRODUCTION 
Blockchain is a decentralized and distributed digital ledger 

technology, which was initially proposed as a key mechanism 
for a peer-to-peer electronic cash system, called Bitcoin, in 2008 
[1]. Due to its unique properties of immutability and 
decentralization, blockchains have been widely used to record 
transactions across many computers so that any stored record 
cannot be altered retroactively without the update of all 
subsequent blocks. Over the past decade, blockchain has 
become a groundbreaking technology with applications in many 
critical domains, such as virtual currencies, real estate title 
transfers and registration, digital voting, immutable data backup 
and so on. There are two types of blockchains, namely public 
blockchain and private blockchain. In a public blockchain 
network, peers can freely join, read, write, or participate in 
blockchain activities. In contrast, a private blockchain system 
places permission restrictions on the peers who can participate 
in the network and in which transactions. A public blockchain 
network may have a large number of peers; while the number of 
peers involved in a private blockchain network could be very 
limited. In most of the public blockchain systems, e.g., Bitcoin, 
after a number of transactions have been broadcast by peers, a 
new block that stores those transactions can be created and 
validated by the system in just a few minutes. This is because 

there is a massive amount of transactions generated per unit of 
time. However, in a private blockchain system, it would take 
much longer time if multiple transactions need to be included in 
a single block because new transactions are not generated as 
often as in a public blockchain system. Many time-sensitive 
systems, such as a COVID-19 tracking system with case and 
testing information recorded in blockchains, require that 
information broadcast by a peer must be published in a new 
block very quickly. One solution is to allow each block to record 
only one transaction, which could effectively reduce the time to 
publish a transaction; however, such an approach is not space 
efficient, and it also requires much longer time to retrieve and 
validate transactions in a blockchain that has a rapidly growing 
size. Thus, there is a pressing need to develop a time and space-
efficient mechanism that not only allows efficient usage of space 
but also ensures timely publication of new transaction records. 
In this paper, we introduce an approach that facilitates timely 
publication of a new transaction in a temporary block. Once a 
predefined number of temporary blocks have been published, 
they can be combined into a new permanent block, which 
replaces the temporary ones in the blockchain. 

Another challenging issue in our approach is to effectively 
achieve the necessary agreement on a single recognized 
blockchain by distributed peers. A consensus mechanism of the 
blockchain technology is a protocol that allows all peers, who 
maintain the blockchains, to be synchronized with each other to 
agree on the legitimacy of transaction records to be added into a 
blockchain. The Proof-of-Work (PoW) algorithm that has been 
used in Bitcoin is one example of consensus algorithms, where 
special peers, called miners, compete against each other to 
generate new blocks and get rewarded [1]. The disadvantage of 
PoW is the high energy consumption that is wasted and not 
applicable anywhere else. Proof-of-Stake (PoS) algorithm was 
developed as an alternative to the PoW algorithm to overcome 
the high energy consumption [2]; however, both PoW and PoS 
do not apply well to a private blockchain system that has a much 
smaller scale than public blockchains such as Bitcoin. On the 
other hand, practical Byzantine Fault Tolerance (pBFT) 
algorithm is a universal solution for distributed systems that 
tolerate Byzantine faults [3]. In our approach, we introduce a 
variation of the pBFT algorithm as a consensus mechanism to 
effectively validate the legitimacy of either a new temporary 
block or a permanent one in a private blockchain that requires 
timely publication of transaction records. 
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II. RELATED WORK 
The scalability of blockchain systems has been a challenging 

issue since the blockchain technology has been adopted in 
various application domains. The challenge is mostly due to the 
significant and growing size of the blockchains. There are some 
existing approaches to changing or tweaking data structures to 
deal with the blockchain size problem. For example, the original 
Bitcoin system used the Simplified Payment Verification (SPV) 
mechanism to verify transactions without running through the 
full network nodes. Users can minimize storage space by only 
storing the block headers of the longest blockchain rather than 
the entire blockchain [1]. Cryptonite has been among the first 
implementations of the lightweight mini-blockchain scheme [4]. 
It has been designed to eliminate the need for a full blockchain 
by storing important block information locally for each node. 
This approach can significantly reduce the need for long-term 
data storage as old transactions are pruned but the account 
balance value in the hash tree structure can still be maintained. 
VerSum is an alternative proposed by Hooff et al. that allows 
light nodes to outsource expensive computation securely over 
large data structures such as Bitcoin blockchains to multiple 
servers [5]. It can achieve low server-side overhead for both 
incremental re-computation and conflict resolution, and easily 
keep up with Bitcoin’s rate of new blocks with new transactions. 
Different from the above approaches, our method can minimize 
the storage overhead for published blocks in a private 
blockchain by combining small-sized blocks, i.e., temporary 
blocks, into a permanent one. 

There is also previous work on using consensus algorithms 
for peers to reach agreement on the state of certain data stored 
on distributed nodes in a blockchain system. The most well-
known consensus method is the PoW algorithm used in Bitcoin 
[1]. In this method, different nodes in a blockchain try to solve 
a cryptographic hash function, SHA-256 in particular, which 
generates a unique and fixed size 256-bit hash value. The 
process of creating new blocks by first solving this hash problem 
is called mining, and the users performing this task are called 
miners. To counteract  the great deal of energy waste in the PoW 
algorithm, another consensus algorithm PoS was proposed [2]. 
The core idea of PoS is to attribute the mining power based on 
the number of coins held by a miner. Therefore, a PoS miner is 
allowed to mine only a limited number of blocks that reflects the 
miner’s ownership stake. Proof-of-Authority (PoA) is a new 
consensus method that provides high performance and fault 
tolerance [6]. In PoA, a peer must first pass a preliminary 
authentication, and is allowed to create a new block only if it has 
proven its authority for the task. The most related consensus 
algorithm to the one we used in this paper is pBFT, which could 
be suitable for a private blockchain [3]. The pBFT mechanism 
can work in asynchronous environments with improved 
response time. In our approach, we have revised the pBFT 
mechanism by utilizing a majority vote for approval of a new 
temporary or permanent block after being verified.  

Additional related work focuses on revising blockchain 
architecture to improve blockchain performance. Traditional 
blockchain uses a single chain to record transactions in a block. 
Since blocks in a single chain structure cannot be generated 
concurrently, the throughput of publishing new blocks in a 
blockchain is limited. To deal with this issue, DAG-based 
blockchain architectures are proposed, which enable concurrent 

block generation and allow multiple vertices to connect to a 
previous vertex in a directed acyclic graph [7]. A cryptocurrency 
for the Internet-of-Things (IoT), called IOTA, was among the 
first approaches to implementing the “blockless blockchain,” 
which uses a network of nodes to speed up the validation process 
[8]. It uses a structure called tangle, which is a DAG for storing 
transactions. In an early effort, Nicol and Xu developed a DAG-
based blockchainless approach for trusted public construction 
bidding with cryptographic guarantees to enforce fairness in the 
bidding process [9]. Instead of mining blocks of transactions as 
in a traditional blockchain, a DAG links a transaction containing 
a list of its parents, documents and transaction signatures, to 
other transactions via a less complex validation process. A 
recently proposed consensus protocol called SPECTRE can be 
applied to a DAG-based blockchain structure to create and 
publish blocks of transactions by extending local DAGs [10]. In 
SPECTRE, peers can perform blockchain activities without 
having to know other peers’ synchronization status. Similar, 
PHANTOM also applies blockDAG to achieve faster block 
generation and higher transaction throughput [11]. Moreover, 
PHANTOM proposes a greedy algorithm to order transactions 
embedded in blockDAG and supports smart contract. Our 
approach differs from the above approaches by following the 
traditional blockchain architecture; however, our approach is 
flexible and efficient, which allows timely publication of 
temporary blocks and simplification of a blockchain by 
combining temporary blocks into a permanent one.  

III. THE BLOCKCHAIN STRUCTURE 
The block time is defined as the time required to create a new 

block in a blockchain [12]. In most of the blockchain systems, 
such as Bitcoin and Ethereum, an expected block time can be set 
to require the systems to wait for a fixed amount of time before 
a new block can be generated and published [1, 13]. However, 
in many critical and time-sensitive situations, users would 
request their transactions to be published in blockchains 
immediately rather than have to wait for a fixed amount of time 
for the transactions to be published. For example, in a 
blockchain-based COVID-19 real-time updating and tracking 
system, when infection cases are broadcast, such information 
needs to be available immediately to all those who had contact 
with the infected persons for emergency treatment. To avoid 
waiting for a fixed amount of time for the cases to be published, 
we define two types of blocks, namely the temporary block and 
the permanent block. A temporary block contains only one 
transaction, which can be generated in a timely manner and 
published efficiently after being verified. On the other hand, a 
permanent block is a traditional block that cannot be altered 
retroactively without the alteration of all subsequent blocks. A 
permanent block, generated by combining a predefined number 
of temporary blocks in a blockchain, can record multiple 
transactions and can effectively reduce the size of the blockchain 
by eliminating the temporary ones. 

A. The Blockchain Structure with Temporary Blocks 
We first define a set of super peers as a group of trusted peers 

who are responsible for creating new blocks and participating in 
the consensus process. There is also a voted super peer called 
the primary super peer or PSP, who serves as a leader for the 
consensus process. On the other hand, a regular peer is one who 
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has the access to the latest blockchain and can broadcast a new 
transaction to super peers for processing; however, it is not 
allowed to create new blocks or get involved in the consensus 
process. When a new transaction is generated, it can be 
announced by the peer who generates the transaction in a request 
message broadcast to all super peers. When the PSP receives the 
request message, it creates a new temporary block containing the 
transaction information and broadcast it to all super peers. In 
addition to the transaction information, the new block also 
contains the hash value of the last permanent block in the 
blockchain, the digital signature of the transaction signed by the 
peer who broadcast the message as well as other related 
information. When the super peers receive the newly created 
temporary block from the primary one, they use a consensus 
algorithm to verify and agree on the validity of the new block. If 
the new temporary block is verified to be correct, it will be 
published in the blockchain and broadcast to all peers. Then the 
transaction information recorded in the temporary block can be 
readily accessed by all peers. Fig. 1 shows how a new temporary 
block TBi is attached to a blockchain. 

 
Fig. 1. The blockchain structure with temporary blocks. 

For future transactions broadcast by peers, the system 
repeats the above operations until there is a predefined number 
Φ of temporary blocks published. At this time, PSP is 
responsible for creating a new permanent block to include all 
transactions recorded in the Φ temporary blocks. Once a new 
permanent block is created and broadcast to all super peers, it 
will be verified and approved by super peers using the same 
consensus algorithm that has been applied to temporary blocks. 
If the new permanent block is approved, the temporary blocks 
will be removed, and the new permanent block will be added to 
the blockchain by linking it to the last permanent block. This 
change is then broadcast to all peers in the blockchain system 
for blockchain updating.  

We define height h of a blockchain as the number of 
permanent blocks in the blockchain. As in a traditional 
blockchain, each permanent block PBi, where 1 < i � h, includes 
the hash value of its prior permanent block PBi-1; therefore, any 
changes to PBi-1 can be easily detected by checking the hash 
value of PBi-1 included in PBi. On the other hand, since all 
temporary blocks are linked to the last permanent block PBh as 
shown in Fig. 1, they all include the hash value of PBh.  

B. Temporary Block Structure and Generation 
As a temporary block can contain only one transaction, it 

can be published in a blockchain immediately upon approval 
without the need to wait for new transactions to be broadcast. 
As shown in Fig. 2, a temporary block TBi, contains four major 
components, namely the block header, the data, the hash value 
of TBi, denoted as ha(TBi), and a list of digital signatures 
ds[TBi]v, where v is a super peer in the consensus group, and 
each ds[TBi]v is the digital signature of super peer v for 

temporary block TBi. In the block header, ha(PBh) is the hash 
value of the last permanent block PBh, h is the height of the 
blockchain without counting temporary blocks, t is the 
timestamp when the transaction  was made, and p is the 
identification number of the peer who broadcasts the 
transaction. In the data portion, TX is a transaction with its 
required information to be recorded in the blockchain and ds[t, 
p, TX]p is the digital signature of peer p for transaction TX. The 
hash value of the temporary block TBi, denoted as ha(TBi), is 
defined as in (1). 

ha(TBi)=H(ha(PBh), h, t, p, TX, ds[t, p, TX]p)           (1) 

where H is a hash function. The list of ds[TBi]v are digital 
signatures signed by super peers during the consensus process, 
which is used to check the validity of the temporary block TBi. 
Note that in the blockchain, we use digital signature to 
guarantee that the contents of a message have not been altered 
in transit [14]. Each peer has a pair of keys. One key is called 
the private key, which is only known to the peer itself; while 
the other key is called the public key, which is known to the 
public. In the digital signature process, peer p1 uses its private 
key to encrypt the hash value of message m into a digital 
signature ds[m]P1, and then sends ds[m]P1 along with message 
m to peer p2. Peer p2 can decrypt ds[m]p1 using p1’s public key 
to verify the authenticity of message m, i.e., the hash value of 
message m, decrypted using p1’s public key, exactly matches 
with the hash value of the original message m. 

 
Fig. 2. The structure of temporary block TBi. 

 When peer p in the blockchain system generates a 
transaction TX, it broadcasts it to super peers as a request 
message <TB-request, [t, p, TX], ds[t, p, TX]p> with all required 
information defined in a temporary block except the height of 
the blockchain, the hash value of the temporary block to be 
created, and the list of digital signatures of super peers for the 
temporary block. When PSP receives the request message for 
creating a temporary block to publish the transaction, it verifies 
the message for its hash value and the digital signature. If the 
message is valid, PSP generates a temporary block (as shown in 
Fig. 2) based on the information provided in peer p’s request 
message, and initiates a consensus process by broadcasting the 
new temporary block with its own digital signature ds[TBi]primary 
to all other super peers for approval. Algorithm 1 shows the 
procedure how PSP creates a temporary block when receiving a 
TB-request message. Note that in Algorithm 1, PSP needs to 
check if transaction TX sent by peer p has already been published 
in the blockchain. If TX has been recorded in an existing 
temporary block, a null value is returned; otherwise, PSP uses 
the sender’s public key to verify the authenticity of the request 

null hash hash … 

Permanent Block 
PB1  

Permanent Block 
PB2  

Permanent Block 
PBh 

hash 

hash 

hash 

… 

Temporary 
Block TB2

Temporary 
Block TB1

Temporary 
Block TBi 

ha(PBh) h t p 

TX ds[t, p, TX]p 

Data

ha(TBi) 

ds[TBi]v list 

Block Header

118



message. If the message has been altered, a null value is 
returned; otherwise, PSP generates all components including the 
hash value ha(TBk+1) and its digital signature ds[TB k+1]primary of 
the new temporary block TBk+1, and returns the newly 
constructed block temporary block TBk+1. 

Algorithm 1:  Generation of a Temporary Block 

Input: Request message <TB-request, [t, p, TX], ds[t, p, TX]p> 
Output: A temporary block TBk+1 signed by PSP 

1.   Let h be the height of the current blockchain 
2.   Let k be the number of temporary blocks linked to PBh 
3.   Let TBk+1 be the temporary block to be created   
4.   if k == Φ // the predefined number of temporary blocks  
5.       return null   // a permanent block shall be generated first    
6.   Compute the hash value of the last permanent block ha(PBh) 
7.   Extract t, p, TX from the TB-request message 
8.   for i = 1 to k 
9.      if [t, p, TX] matches with TBi 
10.         return null 
11. Use the public key of peer p to verify message [t, p, TX] 
12. if message [t, p, TX] has been altered  
13.    return null 
14. else  
15.    Calculate the hash value of temporary block ha(TBk+1) 
16.    Add ha(PBh), h, t, p, TX and ds[t, p, TX]p into TBk+1 
17.    Calculate hash value for TBk+1, i.e., ha(TBk+1) as in (1), and 
         add it into TBk+1 structure 
18.    Calculate the digital signature ds[TB k+1]primary, and add it 
         into the list of digital signatures of super peers for TBk+1.     
19.    return TBk+1    

C. Temporary Block Structure and Generation 
Different from a temporary block, a permanent block is one 

that cannot be removed from a blockchain. Similar to the 
structure of a temporary block, a permanent block also consists 
of four major components. As shown in Fig. 3, if the height of a 
blockchain is h, a new permanent block PBh+1 contains the block 
header, the data, the hash value of PBh+1, denoted as ha(PBh+1), 
and a list of digital signatures ds[PBh+1]v, where v is a super peer 
in the consensus group, and each ds[PBh+1]v is the digital 
signature of super peer v for permanent block PBh+1.  

 
Fig. 3. The structure of permanent block PBh+1. 

In the block header, ha(PBh) is the hash value of the last 
permanent block, t is the timestamp when the permanent block 

was created, and primary is the identification number of PSP 
who broadcasts the permanent block for verification. The data 
portion � consists of a list of Φ transactions tx1, tx2, … txΦ, each 
of which records the transaction information published in a 
temporary block. For example, the information recorded in the 
first transaction tx1 of � is extracted by PSP from temporary 
block TB1. This is illustrated in a box labeled as “Transaction 
tx1” that includes the timestamp t when the transaction was 
made, the identification number p of the peer who broadcasts 
the transaction, transaction TX, and peer p’s digital signature 
ds[t, p, TX]p. The hash value of the permanent block PBh+1, 
denoted as ha(PBh+1), is defined as in (2). 

ha(PBh+1)=H(ha(PBh), h, t, primary, �)               (2)  

where H is a hash function and � is a list of Φ transactions. The 
list of ds[PBh+1]v are digital signatures signed by super peers 
during the consensus process, which is used to check the 
validity of the new permanent block PBh+1.  

To make a blockchain space and time efficient, we need to 
combine the temporary blocks into a permanent one when there 
have been Φ temporary blocks published in the blockchain. 
Algorithm 2 shows the process how PSP generates a permanent 
block PBh+1 by combining a list of temporary blocks. 

 
Algorithm 2:  Generation of a permanent block by combining a list 
of temporary blocks 

Input: A list of temporary blocks <TB1, TB2, …, TBΦ> 
Output: A permanent block PBh+1 signed by PSP 

1.   Let h be the height of the current blockchain 
2.   Let Φ be the number of temporary blocks linked to PBh 

3.   Let PBh+1 be the permanent block to be created   
4.   Compute the hash value ha(PBh) of the last permanent block 
5.   Set current timestamp t and identification number primary 
6.   Add [ha(PBh), h, t, primary] into PBh+1 as its block header 
7.   for i = 1 to Φ 
8.       extract [t, p, TX] and ds[t, p, TX]p from TBi, and add them 
          into data � of PBh+1 structure as transaction record txi  
9.    Calculate hash value for PBh+1, i.e., ha(PBh+1) as in (2), and  
       add it into PBh+1 structure 
10.  Calculate the digital signature ds[PBh+1]primary, and add it into 
       the list of digital signatures of super peers for PBh+1 
11.  return PBh+1     

 
In Algorithm 2, PSP first calculates the hash value ha(PBh) 

of the last permanent block PBh. It then sets t to the current 
timestamp and primary to its identification number. The four 
items [ha(PBh), h, t, primary] are added into PBh+1 as its block 
header. Next, PSP extracts the transaction information from 
each temporary block and adds them into PBh+1 as data � of the 
block. The hash value ha(PBh+1), the third component of PBh+1, 
is calculated according to (2). Finally, PSP signs PBh+1, adds its 
digital signature ds[PBh+1]primary into the ds[PBh+1]v list, and 
returns the newly constructed permanent block PBh+1. Once 
PBh+1 has been generated by PSP, it sends it to all other super 
peers to start the consensus process. If PBh+1 is approved by a 
major vote from the super peers, PSP deletes all temporary 
blocks in the blockchain and adds the new permanent block 
PBh+1 right after PBh. The changes are then broadcast to all 
peers including regular peers for blockchain updating.  
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IV. A VARIATION OF THE PBFT CONSENSUS MECHANISM 

We revised the pBFT consensus algorithm [3] to make it a 
suitable consensus mechanism for the private blockchain 
system we introduced in this paper. Some major revisions of the 
algorithm include a combination of the “Prepare” and 
“Commit” phases of the original pBFT algorithm into a 
“Verification & Approval” phase, called V&A. We further 
revised the “Reply” phase of the original pBFT algorithm into 
a majority “Voting” phase. The revised pBFT consensus 
algorithm can be used to approve either a temporary block or a 
permanent one, announced by PSP, for timely publication in a 
private blockchain. The only differences for the two usages are 
the ways to verify a new block. For a temporary block, the 
transaction recorded in the temporary block needs to be 
verified; while in the case of a permanent block, a list of 
recorded transactions must be verified to ensure they have been 
published in temporary blocks. In the following, we use the 
approval process of a permanent block as an example to show 
how the revised pBFT consensus algorithm works. 

Let � be the total number of super peers including PSP, who 
are involved in the consensus process. Fig. 4 shows an example 
of the consensus group with 5 super peers, i.e., � = 5, where PSP 
is the primary one, SP1, SP2 and SP3 are super peers that are all 
up and running but SP4 is currently down and not available. The 
consensus algorithm can be divided into four phases, which are 
the Announcement phase, the V&A phase, the Voting phase, and 
the Notification phase. In the Announcement phase, PSP 
broadcasts a message that contains a newly generated permanent 
block PBh+1 signed by PSP. Upon receiving PBh+1, super peers 
SP1, SP2 and SP3 start to verify the block to make sure all 
information included in PBh+1 is correct. This would include the 
verification of each transaction record txi, where 1 � i � Φ, has 
been published in temporary block TBi. Note that the verification 
steps (denoted as shaded bars in Fig. 4) can be performed by the 
super peers concurrently, but would take different amount of 
time depending on the performance of the machines on which 
the super peers are running. 

 
Fig. 4. A variation of the pBFT consensus mechanism. 

Once a super peer SPk completes its verification step and if 
there is no error in PBh+1, SPk signs PBh+1 and add its digital 
signature ds[PBh+1]k to the list of digital signatures of super 

peers for PBh+1. The new permanent block PBh+1 with SPk’s 
digital signature is broadcast by SPk to all super peers except 
PSP. Then SPk waits for signed PBh+1 from other super peers 
before it approves or rejects PBh+1. Super peer SPk approves 
PBh+1 only when the following conditions are satisfied: 

1. PBh+1 contains digital signature of PSP 
2. SPk has verified PBh+1 and added its digital signature 
3. SPk has received (��/2�-1) messages from other super 

peers with signed PBh+1  
This would require a total number of ��/2�+1 digital 

signatures for SPk to approve PBh+1. If the new block is approved 
by SPk, SPk enters the “Voting” phase and sends its approval 
vote to PSP. When PSP receives at least ��/2� approval votes 
from other super peers, the total number of votes (��/2�+1) 
including its own vote represents a major vote; thus PBh+1 is 
officially approved. In this case, PSP replaces all temporary 
blocks by PBh+1 in the blockchain, enters the “Notification” 
phase, and notifies all super peers and regular peers to update 
their blockchains. Algorithm 3 summarizes the process how 
super peer SPk approves a new permanent block PBh+1. 

Algorithm 3:  Verification and approval of a new permanent block 
by super peer SPk 

Input: A new permanent block PBh+1 announced by PSP 
Output: approval or rejection 
1.   Let Φ be the number of transactions recorded in PBh+1 

2.   if ds[PBh+1]primary is not valid, return rejection 
3.   for i = 1 to Φ 
4.       if transaction record txi has not been published in TBi 

5.            return rejection  
6.       else if txi contains errors 
7.            return rejection 
8.    Calculate the digital signature ds[PBh+1]k, and add it into the 
       list of digital signatures of super peers for PBh+1 
9.    Broadcast PBh+1 with digital signatures ds[PBh+1]primary and 
       ds[PBh+1]k to all other super peers except PSP  
10.  while (not timeout) 
11.     if received signed PBh+1 from at least (��/2�-1) super peers 
12.          return approval        
13.     else return rejection 

Note that in Algorithm 3, if super peer SPk approves the new 
permanent block, it will send an approval vote to PSP along 
with its digital signature ds[PBh+1]k; otherwise, a rejection vote 
will be sent to PSP without the need for attaching any digital 
signature. Upon receiving at least ��/2� approval votes from 
other super peers, PSP is now responsible for adding all digital 
sigatures into the list of digital signatures of super peers for 
PBh+1 before publishing PBh+1 in the blockchain. 

V. CASE STUDY 
To illustrate the feasibility and the effectiveness of our 

approach, we implemented a prototype COVID-19 tracking 
system with case and testing information recorded in a private 
blockchain. In the system, the results of every test case are 
broadcast by a peer hospital and published in a blockchain. As 
such, the published case information can be shared by local 
hospitals and reliably maintained in the blockchain with no 
risks of being forged or manipulated by attackers.  
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A. Experimental Setup 
The computers running in the private blockchain system are 

connected with each other as a peer-to-peer (P2P) network. The 
system automatically broadcasts the most recent version of the 
blockchain over the network, and each peer can update its local 
copy of the blockchain from the P2P network. As the prototype 
blockchain-based COVID-19 tracking system was developed 
as a private blockchain system, we limit the total number of 
peers to no more than 300, and the total number of reported 
cases to no more than 1,000 per day. In our experiments, we set 
the number of super peers from 10 to 150. The number of 
regular peers will not affect our experimental results because 
only super peers are involved in the consensus process. When a 
peer hospital, either a regular peer or a super one, broadcasts a 
case (a transaction), PSP creates a temporary block and starts 
the consensus process. If the temporary block is approved by a 
majority vote, it will be published in the blockchain in a timely 
manner. When there is a predefined number Φ of published 
temporary blocks, PSP combines them into a permanent one. 
Upon approval by a major vote for the the permanent block, 
PSP removes all temporary blocks from the blockchain and 
replace them by the new permanent block. In the following 
experiments, we consider different scenarios when Φ is 10, 20 
and 30. The P2P system is running on a network with 10 
machines, each of which runs Windows 10, configured with 
16GB of RAM and a 512G hard drive. To conduct the 
experiments, each machine runs no more than 30 peers. 

To simulate a real P2P network, we assume the network 
latency for communications between peers is randomly 
distributed over range [10, 300] milliseconds (ms). The time for 
checking a digital signature signed by a peer follows the normal 
distribution N(�1, �1

2), where �1 = 500ms and �1 = 150. Verifying 
a transaction recorded in a new permanent block requires 
reading a temporary block from a hard disk. We assume the 
reading time follows the normal distribution N(�2, �2

2), where �2 
= 2000ms and �2 = 500. In the following sections, we present the 
experimental results for consensus latency, consensus failure 
rate and publication rates of temporary and permanent blocks. 

B. Consensus Latency 
In this experiment, we show how the number of super peers 

may affect the consensus latency. We assume all super peers 
are up and running. We record the latency time for consensus 
process, which is the period between the time when PSP starts 
the consensus process and the time when a new block is 
published. We conducted experiments for three cases, namely 
a temporary block with 1 transaction only, a permanent block 
with 10 transactions, and a permanent block with 20 
transactions. Fig. 5 shows the consensus latency using our 
revised pBFT algorithm. From the figure, we can see that in all 
cases, with more super peers, the consensus latency increases. 
This is because for a temporary block, the consensus latency is 
mainly due to the verification time used by super peers to verify 
digital signatures signed by other super peers. If the total 
number of super peers is �, each super peer needs to verify at 
least ��/2� digital signatures including the one signed by PSP. 
This explains why the consensus latency for a temporary block 
increases with more super peers. For a permanent block, the 
consensus latency consists of two major parts: the verification 
time for digital signatures signed by other super peers, and the 

reading time for published temporary blocks from a hard disk, 
which is needed for verifying if the transactions included in the 
new permanent block are valid. The more transactions that need 
to be verified, the longer consensus latency. This explains when 
a permanent block contains 20 transactions, it would take 
longer time to complete the consensus process than in the case 
when a permanent block contains only 10 transactions. It also 
explains why a temporary block can be published most 
efficiently among the three cases. 

 

 
Fig. 5. Consensus latency using the revised pBFT algorithm.  

C. Consensus Failure Rate 
After PSP initiates the consensus process for a new block, 

at least ��/2� super peers must vote for approval; otherwise, it 
is considered a consensus failure. However, a super peer may 
not be able respond with an approval vote due to various 
reasons including network latency and device corruption. In 
this experiment, we study the impact of the number of super 
peers on the consensus failure rate when each super peer 
(except PSP, who is considered a reliable one) has certain 
chances of no response at 40%, 50% and 60%. The number of 
super peers range from 10 to 150. For each case, we run the 
consensus process for 1000 times and calculate the average 
consensus failure rate. Fig. 6 shows the experimental results. 

 

 
Fig. 6. Consensus failure rate over the number of super peers. 

From the figure, we can see that with more super peers, the 
consensus failure rate increases when each super peer has 60% 
chance of no response. Since our revised pBFT algorithm 
adopts a majority voting scheme, when the number of super 
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peers is low (e.g., 10), the results show that there would be 
chances for PSP to receive at least 5 approval votes to declare 
a successful consensus process. However, when the number of 
super peers goes up (e.g., 150), it becomes nearly impossible 
for PSP to receive at least 75 approval votes for a successful 
consensus process. This might sound strange as one would 
expect the failure rate remains constant regardless of the 
number of super peers, but our experiment results do follow the 
mathematical calculation of the successful rate using (3), where 
� is the total number of super peers and p is the chance of no 
response from each super peer except the primary one. 

� �
])1([)( 11

2/
1 −−−

=
− −= � kk

k k ppCf θθ

θ
θθ                           (3) 

On the other hand, the experimental results show that with 
more super peers, the consensus failure rate decreases when 
each super peer has 40% chance of no response. When the 
number of super peers goes up (e.g., 150), it becomes almost 
constantly possible for PSP to receive at least 75 approval votes 
for a successful consensus process. Finally, the results show 
that the consensus failure rate is around 0.5 when each super 
peer has 50% chance of no response. This implies the number 
of super peers have no significant impact on the consensus 
failure rate in this case. Based on the experiment results, we can 
conclude that when the chance of no response from the super 
peers is reasonable low (e.g., below 40%), with enough number 
of super peers, the revised pBFT algorithm can always perform 
reliably for successful consensus of a new block. 

In more realistic scenarios, suppose each super peer (except 
the primary one) has 10% chance of no response; however, when 
a super peer responds, it may reject a new block due to various 
reasons, e.g., errors found in the new block and being dishonest. 
Such situations will inevitably affect the successful rate of the 
consensus process. In the following experiment, we assume each 
super peer has 10% chance of no response, and when it responds, 
it will have 30%, 40% or 50% chance of rejection. Fig. 7 shows 
the consensus failure rate over the number of super peers in the 
three different scenarios. 

 
Fig. 7. Consensus failure rate with chances of rejection. 

The experiment results match those of our previous 
experiment. When the chance of rejection is 50%, the 
probability of approving a new block by a super peer with 10% 
chance of no response would be 45%; therefore, with more super 
peers, the consensus failure rate increases. In the other two 

scenarios, the probabilities of approving a new block by a super 
peer are all above 50%; thus, with more super peers, the 
consensus failure rate decreases. With the above experimental 
results, we can further conclude that when the chance of no 
response and the chance of rejection from the super peers are 
reasonable low (e.g., 10% and 30%, respectively), with enough 
number of super peers, the revised pBFT algorithm can always 
perform reliably for successful consensus of a new block. 

D. Publication Rate of Temporary and Permanent Blocks 
We now demonstrate how temporary blocks and permanent 

blocks can be published timely in a private blockchain. Note 
that with private blockchain, we do not expect a huge volume 
of cases reported per day. In the following experiments, we set 
the number of super peers (i.e., trusted hospitals) to 80. We 
assume there are about 1,000 cases per day to be published in 
the blockchain. Table I shows the number of cases generated 
every 4 hours during a day, with more cases reported during the 
daytime. 

TABLE I. NUMBERS OF CASES GENERATED DURING A DAY 

Hours 0-4 4-8 8-12 12-16 16-20 20-24 
No. of Cases 100 200 200 300 100 100 

We test our blockchain system in three different scenarios, 
where a permanent block contains 10, 20 and 30 records from 
temporary blocks, respectively. Fig. 8 shows the number of 
permenant blocks published every 4 hours during a day.  

 

 
Fig. 8. Number of permanent blocks published during a day. 

From Fig. 8, we can see that almost all reported cases can 
be published timely except for the 12-16 time period, where 
about 60-80 cases have to be delayed for publication in the 
following time period 16-20. This is not a major problem 
because in our blockchain-based COVID-19 case recording and 
tracking system, cases reported earlier will be processed and 
published earlier. Therefore, the delay was actually within a 
couple of hours rather than 4 hours. In all three scenarios with 
different numbers of records in a block, the numbers of cases 
that can be published during a time period are very close.  

Figure 9 shows the number of temporary blocks published 
every 4 hours during a day. Similarly, we can see that all cases 
can be published timely except for the 12-16 time period, where 
72 out of 300 cases generated during that period have to be 
delayed for publication in the following time period 16-20. For 
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the same reason as described for permanent blocks, this is also 
not a major issue as a couple of hours delay for publishing 
temproary blocks is generally acceptable in our blockchain-
based COVID-19 case recording and tracking system.  

 
Fig. 9. Number of temporary blocks published during a day. 

It is worth noting that when the number of cases has been 
signficantly reduced, e.g., 20 cases per day as shown in Table 
II, those cases cannot be published in a timely manner without 
utilizing temporary blocks as in our approach. For example, 
when a permanent block contains 20 cases, a case reported 
during a day may have to be delayed for 24 hours before it can 
be published. However, using our approach, a reported case can 
always be published immedidately using a temporary block. 

TABLE II. REDUCED NUMBER OF CASES GENERATED DURING A DAY 

Hours 0-4 4-8 8-12 12-16 16-20 20-24 
No. of Cases 2 4 4 6 2 2 

VI. CONCLUSIONS AND FUTURE WORK 
Blockchain technology has been successfully applied in 

many different domains; however, there is very little work on 
timely publication of transaction records in a private blockchain 
system. In this paper, we introduce an approach that facilitates 
timely publication of new transaction records using temporary 
blocks, which can be combined and published in a permanent 
block later when there is a predefined number of published 
temporary blocks. This approach differs from traditional 
blockchain-based systems where new transaction records are 
published either in fixed time cycles or in permanent blocks 
only. Our approach not only allows publishing time-senstive 
transaction records in a timely manner using temproary blocks, 
but also reduces the blockchain storage space and potentially 
supports efficient transaction queries. In addition, we have 
introduced a variation of the pBFT consensus mechanism that 
requires a majority vote for approval of either a new temporary 
block or a permanent one to be added into a private blockchain. 

In future work, we plan to improve the block merging 
mechanism to allow for dynamic determination of  a reasonable 
number of transaction records in a permanent block. Our 
current approach assumes a primary super peer is always 
reliable for accomplishing its tasks; however, in a real scenario, 
a primary super peer may also fail for unexpected reasons. To 
address this issue, we will further improve our revised pBFT 

consensus mechanism and show how to efficiently and 
effectively replace a primary super peer in real time when it is 
found to be disqualified for its tasks due to various reasons such 
as being not reliable or having been found dishonest. One 
related challenge in addressing this issue is to effectively 
monitor the reliality of super peer software components as in 
previous work [15]. Finally, we plan to implement a fully 
functioning private blockchain system for timely publication of 
transaction records that can be applied in various critical and 
time-sensitive application domains. 
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