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Abstract—Accurate medical coding using the International 

Classification of Diseases (ICD) is essential for healthcare 

communication, billing, and research. However, traditional 

manual coding is both time-consuming and error-prone, requiring 

specialized expertise to assign codes to patient records, such as 

doctors’ notes. While hierarchical deep learning models have 

shown promise in automating ICD coding, the large and complex 

label space presents significant challenges to computational 

efficiency and scalability. To address these limitations, we 

introduce a Hybrid Decision Tree (HDT)-based classification 

framework that integrates rule-based logic and deep learning 

methods. The HDT approach decomposes the coding task into a 

hierarchy of manageable subtasks, using statistical feature scoring 

rules for simpler classifications and deep learning models for more 

complex cases. Experimental results demonstrate that our hybrid 

approach is a scalable and efficient solution for automated ICD 

coding, outperforming both the pure decision tree and the full 

deep learning-based decision tree approaches, by achieving high 

accuracy with significantly reduced computational overhead.  
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I. INTRODUCTION 

Clinical records in healthcare include both structured and 
unstructured data, each playing a critical role in documenting a 
patient’s medical journey. Structured data, such as diagnostic 
and procedure codes, are essential for standardizing how patient 
visits are recorded, billed, and analyzed in modern healthcare 
systems. One of the most widely used coding systems is the 
International Classification of Diseases (ICD), maintained by 
the World Health Organization [1]. ICD codes are assigned to 
diagnoses and procedures to ensure seamless communication 
across institutions and support key applications such as 
insurance billing, medical auditing, and epidemiological 
analysis. In contrast, unstructured data, including free-text 
clinical notes, imaging reports, and patient narratives, provides 
a wealth of contextual information but is more challenging to 
process and analyze systematically. Extracting insights from 
unstructured data often requires advanced natural language 
processing techniques to improve clinical decision-making and 
research applications. 

Traditionally, ICD coding has been performed manually by 
trained professionals who analyze doctors’ handwritten or 
typed notes and assign the appropriate codes from a vast 
hierarchy of possible diagnoses. This process is highly complex 
and requires coders to make expert judgments across a broad 

range of labels while interpreting lengthy and often ambiguous 
clinical narratives [2], [3]. Medical notes are often unstructured, 
written in free-form natural language, and may include spelling 
errors, domain-specific abbreviations, inconsistent wording, or 
irrelevant information. As a result, manual ICD coding is not 
only time-consuming and costly but also prone to variability 
and errors, and these challenges become even more significant 
with the growing volume of electronic health records (EHRs). 
To overcome these challenges, the medical informatics 
community has increasingly turned to automation. Early efforts 
focused on rule-based systems and keyword-pattern matching 
approaches, which offered computational efficiency and 
transparent decision logic [4]. However, such methods are not 
robust when dealing with the synonym variations, implied 
contexts, and ambiguous language common in medical 
narratives. To address these limitations, researchers have 
employed deep learning approaches for ICD coding, including 
the development of hierarchical classification models aligned 
with the ICD taxonomy [5]. While these approaches improved 
prediction performance and mirrored how clinicians reason 
about clinical records to derive medical codes, their reliance on 
deep learning at every stage made them computationally 
demanding and less transparent.  

In this study, we introduce a novel hybrid framework for 
ICD coding, called the Hybrid Decision Tree (HDT), which 
integrates statistical feature scoring rules and deep learning 
models within a decision tree structure. Our method first 
extracts diagnosis-specific sentences from unstructured 
doctors’ notes, ensuring that predictions focus on semantically 
relevant content. We then decompose the classification task 
into a sequence of decision stages aligned with the ICD code 
hierarchy. The key innovation of our approach is the selective 
integration of rule-based logic and deep learning: for simple 
decision tree nodes, we apply rule-based methods, while for 
nodes requiring contextual reasoning, we employ deep learning 
models such as Long Short-Term Memory (LSTM) networks. 
This hybrid strategy significantly reduces computational 
overhead while maintaining both accuracy and interpretability. 
We evaluated our approach using the MIMIC-IV dataset [6], a 
comprehensive collection of real-world ICU clinical records. 
Our results show that the HDT approach achieves performance 
comparable to full deep learning (FDL)-based models, while 
significantly improving scalability and reducing training time. 
Furthermore, integrating rule-based decision-making enhances 
transparency, making the model better suited for real-world 
healthcare applications where interpretability is critical. 
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II. RELATED WORK 

Automated medical coding has long been a focus of 
research due to the high cost and complexity of manually 
assigning ICD codes from free-text clinical notes. Over time, 
the approaches have evolved from keyword-based and rule-
based systems to more sophisticated hybrid and hierarchical 
models. Initial attempts at ICD coding heavily relied on rule-
based systems. Farkas and Szarvas, for instance, constructed an 
enhanced rule-based ICD-9-CM system that integrated expert 
rules with decision trees and a maximum entropy classifier to 
reduce false negatives [4]. Similarly, Medori and Fairon 
adopted a naïve Bayes classifier and demonstrated that 
incorporating feature engineering techniques, such as stemming 
and encoding, significantly improved recall [7]. As machine 
learning matured, researchers began using Support Vector 
Machines (SVMs) and neural models for multi-label 
classification. Perotte et al. introduced hierarchical SVMs that 
leveraged the structure of ICD codes to boost performance [8]. 
The release of the MIMIC-III database marked a turning point, 
enabling large-scale experimentation with deep learning. 
Baumel et al. conducted one of the early ICD prediction studies 
using multi-label classification over entire discharge 
summaries [9]. This approach was later refined by Falis et al., 
who incorporated hierarchical attention mechanisms [10]. 
These approaches, while effective, tend to treat the entire 
clinical note as a single input and rely on multi-label outputs, 
resulting in scalability issues, long input sequences, and limited 
interpretability. In contrast, our approach focuses on individual 
diagnosis-level predictions and derives medical codes from 
human-understandable concepts. 

To balance interpretability and performance, hybrid 
approaches that combine rule-based logic with statistical or 
neural components have emerged. Singto and Wongwirat 
implemented a decision tree-based ICD-10 classifier using 
seven key laboratory or medication features [11]. Their 
interpretable tree-based model achieved high accuracy, 
demonstrating the utility of symbolic approaches in structured 
environments. However, decision trees tend to underperform in 
ambiguous cases or when the textual data is unstructured. To 
overcome these limitations, newer models integrate natural 
language processing (NLP) with semantic matching. One such 
model classified diagnoses into ICD chapters and groups using 
stemming and stopword removal, then narrowed down 
candidate codes using cosine similarity on PubMedBERT 
embeddings of diagnoses and ICD definitions [12]. This hybrid 
of classic NLP techniques and domain-specific embeddings 
improved precision while maintaining interpretability. Another 
related study introduced a hybrid LSTM-CNN model with self-
guided attention to predict future diagnoses from discharge 
summaries, using clinical concept identifiers to guide attention 
and reduce noise in the input text [13]. However, these methods 
lack hierarchical learning and are not well-equipped to model 
code relationships or decision transitions across different code 
levels. In contrast, our hybrid approach extends these ideas by 
using term-matching and rule-based branching within an HDT, 
where LSTM models are applied only at complex nodes. 

As ICD codes inherently follow a tree-like structure, recent 
efforts have focused on hierarchical classification techniques. 
A notable example is the work by Wu et al., who developed 

Joint Attention Networks (JAN) for multi-label classification 
[14]. Mayya et al. proposed Label Attention Transformer 
Architectures (LATA) to attend to label-specific contexts in 
clinical text [15]. While these models improved performance, 
they often scaled poorly and required extensive training due to 
their flat multi-label formulation. To address the structure more 
directly, some researchers incorporated external ontologies or 
constructed models based on ICD hierarchies. One method 
proposed by Chen and Ren employed a bidirectional Tree-
LSTM architecture combined with a BiDAF-style attention 
mechanism [16]. Their approach jointly modeled diagnostic 
descriptions and ICD textual definitions while capturing parent-
child relationships within the ICD code hierarchy to improve 
prediction accuracy. An alternative direction utilizes medical 
ontologies such as Disease Ontology (DO) to extract 
semantically related terms and support classification. In a 
recent study, a hierarchical deep learning model aligned with 
the ICD taxonomy has been proposed, where the classification 
task is decomposed into subtasks corresponding to different 
levels of diagnostic specificity [5], [17]. Improving upon 
traditional multi-label setups, this framework assigned a single 
code per diagnosis and provided evidence for each prediction, 
enhancing both interpretability and scalability. Unlike these 
methods, our HDT approach introduces a hierarchical 
classification tree, where rule-based decisions are used for 
simple decisions and deep learning models are invoked only 
when ambiguities arise. This design enables efficient code 
prediction and scalable reasoning without the overhead of end-
to-end attention mechanisms or flat multi-label learning. 

III. A FRAMEWORK FOR A HYBRID DECISION TREE 

A. Fine-Grained Data Point 

To effectively manage the complexity and unstructured 
nature of clinical documentation while improving classification 
accuracy, doctors’ notes are first transformed into fine-grained 
data points before medical codes are assigned [2]. Each fine-
grained data point consists of a specific diagnosis and a list of 
semantically related sentences extracted from the patient’s 
clinical free-text notes. Fig. 1 shows a framework for 
generating fine-grained data points from a doctor’s notes Ξ.  

 

Fig. 1. A framework for generating a list of fine-grained data points 

The generation process begins by identifying diagnoses 
explicitly listed in the “Diagnoses” section of the doctor’s 
notes. As shown in Fig. 1, for each diagnosis, GPT-4 is utilized 
via its Chat Completions API to generate a comprehensive set 
of semantically related medical terms, including symptoms, 
synonyms, treatment methods, and associated body parts or 



3 

 

organs. For example, if the diagnosis is “Chronic Obstructive 
Pulmonary Disease (COPD),” GPT-4 generates related terms 
such as “chronic cough,” “bronchodilators,” “pulmonary 
rehabilitation,” and “chronic airflow obstruction.” Table I 
presents examples of prompts used to derive related terms for 
“COPD” using the GPT-4 API. Based on these extracted terms, 
the Sentence Extraction module scans unstructured clinical 
free-text notes to retrieve sentences containing one or more of 
these key terms. This ensures that the extracted sentences are 
directly relevant to the diagnosis and provide meaningful 
clinical context. The resulting fine-grained data points, each 
pairing a diagnosis with its extracted related sentences, serve as 
input to the HDT, providing a structured and contextually rich 
representation of features for ICD code prediction. 

TABLE I.  PROMPTS FOR DERIVING RELATED TERMS TO “COPD” 

User Message (Prompt) Related Concepts (GPT-4 Output) 

"List synonyms or related 

medical terms for ‘COPD'." 

COPD, chronic bronchitis, emphysema, 

chronic airflow obstruction 

"List common symptoms and 

signs associated with 'COPD'." 

chronic cough, dyspnea, wheezing, 

increased sputum production 

"List common treatments or 

interventions associated with 

'COPD'." 

bronchodilators, inhaled steroids, 

oxygen therapy, pulmonary 

rehabilitation 

"List the organs or body systems 

typically affected by 'COPD'." 

lungs, bronchial tubes, respiratory tract, 

pulmonary system 

B. Hybrid Decision Tree-Based Classification 

Automated ICD coding faces significant challenges due to 
the large label space, the unstructured nature of clinical 
documentation, and the critical need for model interpretability 
in healthcare organizations. While deep learning-powered 
hierarchical classification models have shown promise, they are 
often computationally demanding and lack transparency in 
decision making. In addition, they require large amounts of 
labelled data points and significant computational resources, 
which may not always be available in resource-constrained 
healthcare environments. In our proposed approach, we adopt a 
hierarchical classification method that organizes subclassifiers 
in a structured hierarchy [5]. Fine-grained data points flow from 
a root subclassifier to increasingly specialized ones until the 
final classification is reached, thereby improving scalability 
and maintainability by decomposing the task into smaller, more 
manageable subtasks. When greater code coverage is required, 
additional subclassifications can be introduced into the 
classification hierarchy, ensuring high performance across a 
wide range of labeling spaces. While hierarchical classification 
enhances scalability, applying deep learning at every decision 
node remains computationally expensive. To mitigate this, we 
introduce an HDT framework that integrates statistical rule-
based methods with deep learning. During tree construction, 
each decision node needs to be evaluated to determine whether 
statistical feature matching is sufficient or if a deep learning 
model is required for deeper semantic analysis. Fig. 2 illustrates 
an example of an HDT for ICD coding with three decision 
nodes. Rule-based decision nodes (depicted as green round 
rectangles) efficiently handle straightforward cases using 
weighted term matching, while deep learning nodes (depicted 
as orange rectangles) manage complex and ambiguous 
diagnoses requiring deeper contextual understanding. As 

shown in the figure, a fine-grained data point can be classified 
by following the appropriate path through the constructed HDT 
to its corresponding ICD code. 

 

Fig. 2. An example of hybrid decision tree for ICD coding 

Algorithm 1 outlines the classification process using an 
HDT for automated ICD code prediction. The input consists of 
structured and unstructured doctor’s notes, denoted as Ξ, which 
are preprocessed to extract explicit diagnoses and generate a list 
of fine-grained data points σ through the sentence extraction 
module. The classification begins at the root node of the HDT, 
where either rule-based reasoning or deep learning-based 
prediction is applied. If the current node η is a rule-based 
decision node, classification is performed using statistical 
feature matching, where feature scores are computed based on 
weighted n-grams. The next classification node ηchild is then 
selected by comparing term-matching scores across candidate 
ICD categories. In contrast, if η is a deep learning node, the 
fine-grained data point is transformed into a dense vector 
representation and passed through an LSTM model. The model 
predicts the next classification node ηchild based on learned 
contextual dependencies in the medical text. This process 
repeats iteratively until a leaf node is reached, at which point 
the corresponding ICD code associated with ηchild is assigned 
and added to the list of predicted medical codes ω. Once all 
fine-grained data points have been classified, the final list of 
predicted ICD codes ω is returned.  

Algorithm 1: Classification Using a Hybrid Decision Tree 

Input: Doctor’s notes Ξ and hybrid decision tree Γ 
Output: A list of predicted medical codes ω 

1.   Split the free-text notes in Ξ into a list of sentences Σ 
2.   Initialize the list of fine-grained data points σ to empty 
3.   Initialize the list of predicted medical codes ω to empty 
4.   for each diagnosis ρ in Ξ 
5.      Extract semantically related sentences ξ in Σ  
6.      Create a fine-grained data point using ρ and ξ, and add it to σ 
7.   for each fine-grained data point d in σ 
8.      Let the current decision node η be the root node of Γ 
9       do 
10.       if the current node η is a rule-based node of Γ 
11.           Compute feature scores using weighted n-grams 
12.           Determine the next node ηchild based on term-matching 
13.        else if η is a deep learning node of Γ 
14.           Encode d into a dense vector representation 
15.           Pass encoded input to the deep learning model at η 
16.           Select ηchild based on the model’s prediction 
17.      while ηchild is not a leaf node of Γ 
18.      Add the corresponding ICD code associated with ηchild to ω 
19.  return a list of predicted medical codes ω 
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IV. RULE-BASED DECISION NODES 

A. A Motivating Example 

 In a constructed HDT, rule-based decision nodes handle 
straightforward classification cases, where decisions can be 
made using statistical feature scoring rules rather than deep 
learning models. These nodes either classify input into a broad 
diagnostic category for further refinement or, in some cases, 
directly assign an ICD code. They are particularly effective 
when diseases or conditions are explicitly stated in the clinical 
text. The primary advantage of rule-based nodes is that they 
eliminate the need for computationally expensive deep learning 
models in cases where classification can be achieved through 
simple pattern-matching techniques. Instead of relying on 
semantic understanding, these decision nodes use weighted n-
gram features to make classification decisions based on term 
frequency distributions. 

Consider a decision node tasked with categorizing between 
I50.9 (Heart Failure, Unspecified) and I35 (Nonrheumatic 
Aortic Valve Disorders). The unigrams and bigrams associated 
with these two classes are highly distinct, making them ideal 
candidates for rule-based classification. For example, text 
associated with I50.9 often contains the words “heart,” “failure,” 
“wheezing,” and “fatigue,” while text associated with I35 more 
likely includes “aortic,” “valve,” “stenosis,” and 
“insufficiency.” Similarly, bigrams in I50.9 instances typically 
include “heart failure,” “reduced ejection,” and “fluid 
retention,” while bigrams associated with I35 often feature 
“aortic regurgitation,” “valvular disease,” and “murmur 
detected.” Since these n-gram distributions create a clear 
separation between I50.9 and I35, a rule-based classifier can 
effectively distinguish between them without the need for deep 
learning-based semantic inference. 

B. Data Preprocessing and Weight Calculation 

Clinical documentation often contains synonyms, 
abbreviations, and negation constructions that, if left 
unaddressed, can reduce the accuracy of classification. To 
ensure consistency in terminology, we used medical 
dictionaries to map variants of medical terms to standardized 
forms, such as “MI” to “myocardial infarction” and “HTN” to 
“hypertension.” In addition, negation markers and their 
associated terms are identified and handled to prevent 
erroneous feature associations. For example, in the phrase “no 
signs of heart failure,” the term “heart failure” should not 
contribute to the classification process. After preprocessing the 
clinical text in the labeled dataset, statistical weights are 
computed for each extracted term within an ICD class. The 
weight of an n-gram 𝑡 in class 𝐶 is determined using Eq. (1). 

𝑤(𝑡, 𝐶) =  
𝑓𝑟𝑒𝑞(𝑡,𝐶)

∑ 𝑓𝑟𝑒𝑞(𝑣,𝐶)𝑣∈𝑉𝐶

                                    (1) 

where t represents an n-gram (unigram or bigram in this paper), 
freq(t,C) denotes the occurrence of t in class C, and VC is the 
vocabulary of class C. This weighting ensures that terms 
occurring more frequently within a specific ICD class contribute 
more significantly to the classification decision. 

A key challenge in term assignment arises when certain n-
grams appear across multiple ICD categories, leading to 
potential classification ambiguity. To address this issue, we 

assign each n-gram only to the class in which it has the highest 
weight, ensuring that each term is most relevant to a single ICD 
category. Specifically, for any term t that appears in more than 
one class, we assign it to the class Cmax-w, as defined in Eq. (2). 

𝐶𝑚𝑎𝑥−𝑤 = 𝑎𝑟𝑔 max
𝐶

𝑤(𝑡, 𝐶)                            (2) 

This class assignment method for shared terms prevents 
overlapping terms from affecting multiple ICD codes at the 
same time, reducing misclassifications caused by shared 
medical terms. After class assignment, the weights within each 
class are normalized to ensure that the most important term has 
a maximum weight of 1. This process balances the contribution 
of common and rare terms by scaling the term weights relative 
to the maximum weight in their class. The normalized weight 
for a term t in class C is computed as in Eq. (3). 

          𝑤𝑛𝑜𝑟𝑚(𝑡, 𝐶) =  
𝑤(𝑡,𝐶)

max
𝑣∈𝑉𝐶

𝑤(𝑣,𝐶)
                      (3) 

This scaling also enables consistent comparison across 
classes, making the decision nodes more interpretable and 
efficient. The resulting normalized weights serve as the basis for 
classification in rule-based decision nodes, facilitating both 
efficient and interpretable decision making. Algorithm 2 
outlines the procedure for preprocessing data from a dataset Φ 
of labeled fine-grained data points with m classes and computing 
the term weight array for n-grams in each ICD class. 
 

Algorithm 2: Data Preprocessing and Weight Calculation 

Input: A dataset Φ of labeled fine-grained data points with m classes 
Output: Term weight array w for n-grams in each ICD class 

1.  Initialize array w[t][C] to 0, where t is an n-gram and C is a class 
2.  for each fine-grained data point d in Φ 
3.     Use medical dictionaries to standardize terms in d 
4.     Remove negation markers and their associated terms 
5.     Extract n-grams from d and filter out irrelevant ones 
6.  for each class C in the set of m ICD classes 
7.     Identify relevant n-grams for class C 
8.     for each n-gram t in class C 
9.        Calculate w[t, C] as in Eq. (1) 
10.   for each n-gram t appearing in multiple classes 
11.      Identify the class Cmax-w as in Eq. (2) 
12.      Set w[t, C] to 0 for all classes except Cmax-w 

13.   Normalize all w[t, C] as in Eq. (3) 
14. return term weight array w 

As shown in Algorithm 2, the term weight array w for n-
grams in each ICD class is first initialized to 0. Each fine-
grained data point d in the given dataset is then preprocessed by 
standardizing terms, removing negation marks and their 
associated terms, and filtering out irrelevant terms. After 
preprocessing, relevant n-grams are identified for each ICD 
class, and their term weights are computed. If an n-gram 
appears in multiple classes, it is assigned only to the class where 
it has the highest weight. Finally, the weights for each class are 
normalized, and the term weight array is returned. 

C. Classification in Rule-Based Decision Nodes 

After calculating the term weights using Algorithm 2, the 
decision nodes can utilize them to classify new instances. Each 
fine-grained data point d is processed by checking whether 
relevant n-grams appear in its extracted text. Let the current 
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decision node be η, which has k child nodes or subclasses. The 
classification process evaluates how well data point d matches 
each subclass based on the weighted presence of these n-grams, 
assigning either an ICD code or an intermediate category from 
the k subclasses. Each matching n-gram contributes to the 
feature score of a subclass. Since bigrams provide stronger 
contextual signals, their weights are doubled in this step. The 
class feature score for each class C in the k subclasses is 
computed using feature scoring rules, as in Eq. (4). 

            𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑐𝑜𝑟𝑒[𝐶] = ∑ 𝑐𝑜𝑢𝑛𝑡(𝑢) ∙ 𝑤(𝑢, 𝐶)           𝑢∈𝑑   
(4) 

                                               + ∑ 2 ∙ 𝑐𝑜𝑢𝑛𝑡(𝑏) ∙ 𝑤(𝑏, 𝐶)𝑏∈𝑑   

where count(u) and count(b) represent the frequency of unigram 
u and bigram b in d, respectively, and w(u, C) and w(b, C) are 
the pre-calculated weights of unigrams and bigrams in class C. 
Finally, the ICD category with the highest feature score is 
assigned to data point d, as in Eq. (5). 

𝜂𝑐ℎ𝑖𝑙𝑑 = 𝑎𝑟𝑔 max
𝐶

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑐𝑜𝑟𝑒[𝐶]                    (5) 

where C is one of the k subclasses of the current node η. 
Algorithm 3 outlines the procedure for performing classification 
at rule-based decision node η using the term weight array.  

Algorithm 3: Classification in a Rule-Based Decision Node 

Input: A fine-grained data point d, term weight array w, and the 
current rule-based decision node η with k subclasses 

Output: Predicted ICD code category ηchild 

1.  Initialize featureScore[C] to 0, where C is a subclass of node η 
2.  for each class C among the k subclasses of node η 
3.     for each unigram u in d 
4.        if w[u, C] > 0 
5.           Count the frequency of unigram u in d as count(u)  
6.      for each bigram b in d 
7.         if w[b, C] > 0 
8.            Count the frequency of bigram b in d as count(b)  
9.      Calculate featureScore[C] as in Eq. (4) 
10. Identify the predicted ICD code category ηchild as in Eq. (5) 
11. return ηchild 

 As shown in Algorithm 3, for each class C among the 
subclasses of node η, we count the frequency of unigram u and  
bigram b in d if they are relevant to class C, as indicated by w[u, 
C] > 0 and  w[b, C] > 0, respectively. Once the class feature 
scores have been computed for each of the k subclasses, the 
subclass with the highest score is selected as the predicted 
category for the new data point d. This approach ensures that 
classification utilizes the most discriminating terms in each 
class, taking into account the context in which they occur. 

V. DEEP LEARNING NODES FOR COMPLEX DECISIONS 

A. A Motivating Example 

Deep learning nodes in an HDT can capture semantic 
relationships and long-range dependencies in medical text. 
Consider a decision node whose task is to categorize between 
I10 (Essential Primary Hypertension) and I12 (Hypertensive 
Chronic Kidney Disease). These two categories are closely 
related and both involve hypertension, but they differ based on 
whether kidney dysfunction is present. Since hypertension is a 
feature common to both classes, a rule-based approach may not 
be able to distinguish between them when kidney involvement 
is not explicitly mentioned in the clinical text. For example, a 

rule-based decision node may correctly classify the following 
case as I10, since hypertension is directly mentioned without 
references to kidney dysfunction. 

 

However, a rule-based decision node may misclassify the 
following case as I10, as it detects the term “hypertension” but 
may fail to associate “elevated creatinine” and “decreased 
eGFR” with hypertensive kidney disease. 

 

While rule-based methods can incorporate predefined 
kidney-related terms, the challenge lies in the high variability of 
medical terminology. Since rule-based classification depends on 
direct term matching, an exhaustive predefined list of all 
possible kidney-related terms is required. However, in real-
world clinical documentation, the terminology used can vary 
greatly across different doctors and hospitals. Deep learning 
models overcome this challenge by learning contextual 
relationships instead of relying on a fixed set of terms. A deep 
learning model, such as an LSTM-based classifier, can capture 
the relationship between hypertension and kidney dysfunction, 
recognizing that even when the word “kidney” is absent, phrases 
such as “decreased eGFR” and “elevated creatinine” are also 
strongly indicative of class I12. By selectively incorporating 
deep learning at decision nodes for complex decisions, the HDT 
approach can significantly improve prediction accuracy. 

B. LSTM-Based Classification for Complex Decisions 

A deep learning node in the HDT framework utilizes LSTM 
models to handle complex classification cases where the rule-
based approach may fail. An LSTM, a variant of Recurrent 
Neural Network (RNN), is particularly well-suited for medical 
text classification due to its ability to capture long-range 
dependencies and sequential patterns in unstructured clinical 
notes. Instead of treating words as isolated terms, the LSTM 
model learns patterns in clinical documentation by analyzing 
contextual relationships. In our approach, deep learning nodes 
use a multi-layer LSTM model to classify fine-grained data 
points, where contextual understanding is essential for 
distinguishing between closely related subclasses. The model 
architecture consists of a word embedding layer, LSTM layers, 
a fully connected layer, and a softmax activation function. The 
word embedding layer converts input tokens into dense vector 
representations, enabling the model to learn semantic 
relationships between words. The LSTM layers process these 
embeddings, capturing long-term dependencies, and identifying 
patterns associated with specific ICD subclasses. Let the current 
deep learning node be η, with k child nodes or subclasses. The 
fully connected layer and the softmax activation function map 
the LSTM output to a probability distribution over k ICD 
subclasses. Finally, the predicted ICD subclass ηchild is 
determined based on the highest probability of subclass C 
among the k subclasses of deep learning node η, as in Eq. (6). 

𝜂𝑐ℎ𝑖𝑙𝑑 = 𝑎𝑟𝑔 max
𝐶

 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦[𝐶]                       (6) 

The training process in a deep learning node involves 
preprocessing fine-grained data points extracted from doctors’ 

Patient diagnosed with persistent hypertension, currently on 

medication for blood pressure control … 

Patient has a long-standing history of hypertension. Recent lab 

results indicate elevated creatinine and decreased eGFR … 
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notes. Each sentence in a fine-grained data point undergoes 
preprocessing, which includes standardizing terms, eliminating 
negation markers along with their associated terms, and 
performing other necessary text normalization. The text is 
tokenized, converted into sequences of word indices, and 
mapped to a fixed-length input using padding or truncation. The 
categorical cross-entropy loss function is used to optimize 
model predictions, and an Adam optimizer with adaptive 
learning rate scheduling ensures stable convergence. To mitigate 
overfitting, dropout regularization is applied to the LSTM 
layers, and training is performed in mini-batches to improve 
computational efficiency. 

The classification process in a deep learning node η with k 
subclasses predicts an ICD code or an intermediate category that 
best matches a fine-grained data point from the k subclasses. 
Before performing classification with a pre-trained LSTM 
model, the sentences in the fine-grained data point must be 
preprocessed. Algorithm 4 outlines the inference process for a  
fine-grained data point d using the pre-trained LSTM model Λ 
in a deep learning node η with k subclasses.  

Algorithm 4: Classification in a Deep Learning Node 

Input: A fine-grained data point d, pre-trained LSTM model Λ, and 
the current deep learning node η with k subclasses 

Output: Predicted ICD code category ηchild 

1. Preprocess all sentences T in d 
2. for each sentence s in T  
3.    Tokenize s into a sequence of words w1, w2, ..., wn 
4.    Embed each word into dense vector space 
5. Generate a sequence of word embeddings and input it into Λ 
6. Extract the hidden state h from the last LSTM layer of Λ 
7. Pass h through a fully connected layer and apply softmax  
    activation to produce a probability distribution 
8. Identify the predicted ICD code category ηchild as in Eq. (6) 
9. return ηchild 

As shown in Algorithm 4, after the sentences in d are 
preprocessed, they are tokenized, converted into dense vector 
representations, and processed through the LSTM layers. The 
resulting feature representation from the last LSTM layer of Λ 
is passed through a fully connected layer, followed by a softmax 
activation to produce a probability distribution. Finally, the 
predicted ICD code category ηchild is identified as the one with 
the highest probability among the k subclasses of node η. 

VI. CASE STUDIES 

A. Construction of a Hybrid Decision Tree   

In this section, we present a comprehensive case study 
demonstrating the practical application and effectiveness of the 
HDT approach to ICD-10 code prediction. The experimental 
evaluation utilized clinical notes sourced from the publicly 
available MIMIC-IV dataset, focusing on a subset of 19 
clinically relevant ICD-10 codes in the circulatory and 
respiratory disease categories. The purpose of this case study is 
to illustrate the ability of our approach to handle complex 
medical documents in the real world that are characterized by 
overlapping medical features, ambiguous symptom 
descriptions, and implicit contextual clues. Fig. 3 illustrates the 
high-level classification architecture, showing how fine-
grained data points can be initially categorized into two broad 

disease categories: respiratory and circulatory diseases. This 
initial classification uses a rule-based decision node to 
efficiently narrow the classification scope. 

 

Fig. 3. A high-level disease classification architecture 

Once a fine-grained data point is classified into one of the 
two disease categories, respiratory and circulatory diseases, 
subsequent layers of the classification hierarchy further 
differentiate specific subclasses within each category. Fig. 4 
illustrates the subsequent layers of the classification hierarchy 
for respiratory diseases. 

 

Fig. 4. Respiratory disease classification hierarchy 

As shown in Fig. 4, rule-based decision nodes handle 
distinct diseases such as acute respiratory failures J96.01 and 
J96.02, whereas LSTM-based deep learning nodes manage 
more nuanced classifications like distinguishing J45 (Asthma) 
from J44 (Other COPD). Fig. 5 illustrate the subsequent layers 
of the classification hierarchy for circulatory diseases.  

 

Fig. 5. Circulatory disease classification hierarchy 

As shown Fig. 5, rule-based decision nodes effectively 
resolve well-defined cases, such as distinguishing I50.9 (Heart 
Failure, Unspecified) from I35 (Nonrheumatic Aortic Valve 
Disorders). In contrast, LSTM-based deep learning nodes are 
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used for more complex decisions, such as differentiating I10 
(Essential Primary Hypertension) from I12 (Hypertensive 
Chronic Kidney Disease), where overlapping symptoms and 
comorbidities require a deeper semantic understanding of the 
clinical context. The HDT approach enhances computational 
efficiency by performing rule-based decision making for 
simpler, high-confidence cases, while maintains high-level 
accuracy by using resource-intensive deep learning 
computations at decision nodes where semantic understanding 
is required. The hierarchical structure of the HDT further 
improves scalability, as each node focuses only on a subset of 
classes, simplifying the learning and decision-making process 
at each level. As demonstrated by the examples above, this 
hierarchical decision-making process can effectively handle 
varying degrees of diagnostic complexity, providing a scalable, 
interpretable, and accurate solution for automated ICD-10 
coding in real clinical settings. 

To further illustrate this point, consider the classification 
task under the “Hypertensive Disease” node in the HDT (as 
shown in Fig. 5), which differentiates between I10 (Essential 
Primary Hypertension) and I12 (Hypertensive Chronic Kidney 
Disease). Since both diagnosis categories include the key term 
“hypertension,” a decision node classifier relying on statistical 
term matching tends to be ineffective and inaccurate due to the 
high similarity of the two classes. Table II shows the 
comparative experimental results of implementing the 
“Hypertensive Disease” node using either a statistical rule-
based approach or a deep learning model.  

TABLE II.  PERFORMANCE COMPARISON AT A DECISION NODE 

Decision Node Accuracy Precision Recall F1-score 

Rule-Based 0.849 0.842 0.846 0.838 

Deep Learning 0.924 0.918 0.930 0.922 

As shown in Table II, when a statistical rule-based approach 
is used, the prediction accuracy is 0.849 with a relatively low 
F-1 score of 0.838. In contrast, a deep learning node employing 
an LSTM model significantly outperforms the rule-based 
approach in distinguishing between I10 and I12. The LSTM 
model achieves a higher accuracy of 0.924 and an F1-score of 
0.922, indicating a better balance between precision and recall, 
which is essential when distinguishing between overlapping 
and subtle diagnoses such as I10 and I12. This improvement 
arises from the LSTM model’s ability to capture contextual 
relationships between terms and recognize that semantically 
related indicators of kidney dysfunction, when combined with 
hypertension, are strong signals for I12. 

B. Comparative Analysis with a Pure Decision Tree Approach 

To evaluate the effectiveness and high performance of our 
HDT approach, we compared it with a pure decision tree (PDT) 
approach. In the PDT approach, all classification decisions rely 
exclusively on statistical feature matching using weighted n-
gram features, without employing any deep learning models. 
This comparison is crucial for assessing the limitations of PDT 
methods, especially when dealing with term overlap and 
implicit semantic cues. In order to quantify the improvements 
offered by the HDT approach, we evaluated both approaches 
using standard performance metrics. Table III presents the 
comparative results between the two approaches. 

TABLE III.  PERFORMANCE COMPARISON: PDT VS. HDT 

Approach Accuracy Precision Recall F1-score 

PDT 0.812 0.794 0.810 0.779 

HDT 0.931 0.923 0.935 0.915 

As shown in Table III, the PDT approach achieves an 
accuracy of 0.812, demonstrating its effectiveness in handling 
explicitly stated diagnoses. However, its reliance on predefined 
terminology limits its ability to interpret implicit relationships, 
resulting in low precision (0.794) and recall (0.810) due to the 
misclassification of ambiguous cases. By introducing deep 
learning models at critical decision nodes, the HDT approach 
significantly improves accuracy to 0.931, overcoming the 
limitations of PDT. It also enhances precision (0.923) and recall 
(0.935), leading to a higher overall F1-score of 0.915. 

In addition to improved accuracy, the HDT approach offers 
a balanced trade-off between complexity and adaptability. 
While the PDT approach relies entirely on static term weights, 
the HDT selectively incorporates deep learning only when 
statistical rule-based methods are insufficient. This allows the 
HDT approach to better handle diagnostic ambiguity without 
significantly sacrificing model efficiency or interpretability. 
Furthermore, this design supports robust generalization to edge 
cases that may be challenging for model training and can be 
incrementally extended to new classes with minimal retraining, 
making it more practical for evolving clinical datasets. 

C. Comparative Analysis with a Full Deep Learning-Based 

Decision Tree Approach 

To further evaluate the efficiency of the HDT approach, we 
compared it with a full deep learning (FDL)-based decision tree 
approach, where each decision node employs an LSTM model. 
While deep learning models effectively capture complex 
semantic relationships, their universal application across all 
decision nodes leads to increased computational overhead and 
reduced scalability, especially in large-scale clinical scenarios. 
The FDL-based approach follows a monolithic hierarchical 
structure, similar to previous work [5], with each classification 
decision made by an LSTM model trained to differentiate 
between ICD categories. Unlike the HDT approach, which 
applies rule-based decision-making for explicit and 
straightforward cases, the FDL-based approach relies entirely 
on deep learning models at every classification step, increasing 
computational complexity even for cases that could be 
efficiently handled using statistical feature matching. 

In our HDT approach, existing decision nodes are retained 
when new ICD codes are introduced. Therefore, reducing the 
training time for newly added ICD codes is essential to ensure 
scalability. To quantify the computational efficiency and the 
high scalability of our HDT approach, we simulated the training 
time required when introducing a varying number of new 
decision nodes, ranging from 1 to 100. In these simulations, the 
percentage of deep learning nodes was randomly sampled from 
the interval [20%, 40%], consistent with the observed 38% 
usage in our case study. The training time for each deep 
learning node was randomly selected from the interval [50, 70] 
minutes, while training rule-based nodes consistently required 
10 minutes. Fig. 6 illustrates the training time comparison for 
the FDL-based approach and the HDT approach. As shown in 
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the figure, the HDT approach consistently demonstrates 
superior scalability compared to the FDL-based approach as the 
number of new decision nodes increases. These results 
highlight HDT’s ability to reduce computational overhead 
while maintaining adaptability to evolving ICD hierarchies in 
real-world clinical environments. Moreover, it also reduces the 
demand for large datasets needed to train deep learning models 
in the HDT approach. 

 

Fig. 6. Training time comparison for full deep learning vs. hybrid decision tree 

VII. CONCLUSIONS AND FUTURE WORK 

In this study, we present an HDT-based framework for 
automated ICD coding that integrates statistical rule-based 
decision making with deep learning-based classification. Our 
approach effectively addresses key challenges in medical text 
classification, such as prediction accuracy, computational 
efficiency, and scalability. Unlike pure rule-based methods, 
which often struggle with overlapping or ambiguous diagnoses, 
and FDL-based decision tree approaches, which incur high 
computational costs and require large amounts of data, the HDT 
approach applies deep learning models to handle complex 
decisions, while using feature scoring rules for simpler 
classifications. This hybrid strategy not only strikes a balance 
between accuracy and efficiency but also enhances scalability. 
By selectively applying deep learning models only when 
necessary, the HDT framework reduces the computational 
overhead typically seen in systems that use FDL models at 
every node. Additionally, the hierarchical structure of the HDT 
approach allows for seamless expansion, accommodating new 
ICD codes with minimal retraining and ensuring that the system 
can scale efficiently as clinical datasets evolve. 

Currently, decisions regarding the application of rule-based 
logic or deep learning at each node of the HDT hierarchy are 
made manually. A promising direction for future work is to 
automate this decision-making process using meta-learning 
techniques [18], which could enhance both adaptability and 
reliability. For instance, confidence thresholds or entropy-
based criteria could dynamically determine whether a node’s 
inputs require in-depth contextual modeling or can be resolved 
symbolically. By incorporating such adaptive mechanisms, the 
framework can reduce manual intervention, improve 
generalization, and expand its applicability to various clinical 
scenarios. These extensions will not only simplify the 
deployment of HDT but also pave the way for more intelligent 
and autonomous medical coding solutions. 

REFERENCES 

[1] WHO, “International statistical classification of diseases and related 

health problems (ICD),” Health Topics, World Health Organization 

(WHO), Jan. 2022. [Online]. Available: https://www.who.int/standards/ 

classifications/classification-of-diseases. 

[2] J. Carberry and H. Xu, “Fine-grained ICD code assignment using 

ontology-based classification,” in Proc. 2022 IEEE 23rd Int. Conf. 

Information Reuse and Integration for Data Science (IRI), San Diego, 

CA, USA, 2022, pp. 228-233, doi: 10.1109/IRI54793.2022.00058. 

[3] I. Goldstein, A. Arzumtsyan, and O. Uzuner, “Three approaches to 

automatic assignment of ICD-9-CM codes to radiology reports,” AMIA 

Annu. Symp. Proc., vol. 2007, Oct. 2007, pp. 279-283. 

[4] R. Farkas and G. Szarvas, “Automatic construction of rule-based ICD-9-

CM coding systems,” BMC Bioinformatics, vol. 9, suppl 3, no. S10, Apr. 

2008, doi: 10.1186/1471-2105-9-S3-S10. 

[5] J. Carberry and H. Xu, “A hierarchical fine-grained deep learning model 

for automated medical coding,” in Proc. 3rd Int. Conf. Comput. Mach. 

Intell. (ICMI), Central Michigan University, MI, USA, Apr. 13-14, 2024, 

doi: 10.1109/ICMI60790.2024.10585710. 

[6] A. E. W. Johnson, T. J. Pollard, S. Raffa, L. A. Celi, R. G. Mark, and R. 

P. Badawi, “MIMIC-IV, a freely accessible electronic health record 

dataset,” Scientific Data, vol. 9, p. 722, 2022, doi: 10.1038/s41597-022-

02176-8. 

[7] J. Medori and C. Fairon, “Machine learning and features selection for 

semi-automatic ICD-9-CM encoding,” in Proc. NAACL HLT 2nd Louhi 

Workshop Text Data Mining Health Documents, Los Angeles, CA, USA, 

Jun. 2010, pp. 84-89. 

[8] A. Perotte, R. Pivovarov, K. Natarajan, N. Weiskopf, F. Wood, and N. 

Elhadad, “Diagnosis code assignment: models and evaluation metrics,” J. 

Amer. Med. Informat. Assoc., vol. 21, no. 2, pp. 231-237, 2014. 

[9] T. Baumel, J. Nassour-Kassis, R. Cohen, M. Elhadad, and N. Elhadad, 

“Multi-label classification of patient notes: case study on ICD code 

assignment,” in Proc. Workshops at the Thirty-Second AAAI Conf. 

Artificial Intelligence, New Orleans, LA, USA, 2017, pp. 409-416. 

[10] M. Falis, M. Pajak, A. Lisowska, P. Schrempf, L. Deckers, S. Mikhael, S, 

Tsaftaris, A. O’Neil, “Ontological attention ensembles for capturing 

semantic concepts in ICD code prediction from clinical text,” in Proc. 

10th Int. Workshop Health Text Mining and Information Analysis 

(LOUHI), Hong Kong, 2019, pp. 168-177, doi: 10.18653/v1/D19-6220. 

[11] C. Singto and O. Wongwirat, “An automatic ICD-10 classification system 

using decision trees,” in Proc. 2021 18th Int. Joint Conf. Computer 

Science and Software Engineering (JCSSE), Bangkok, Thailand, 2021, 

pp. 1-6, doi: 10.1109/JCSSE52506.2021.9495001. 

[12] N. Albokae, B. AlKhtib and K. Omar, “Hybrid method for ICD prediction 

using word embedding and natural language processing,” in Proc. 2023 

24th Int. Arab Conf. Information Technology (ACIT), Ajman, United 

Arab Emirates, 2023, pp. 1-5, doi: 10.1109/ACIT58888.2023.10453813. 

[13] G. Harerimana, G. I. Kim, J. W. Kim, and B. Jang, “HSGA: A hybrid 

LSTM-CNN self-guided attention to predict the future diagnosis from 

discharge narratives,” IEEE Access, vol. 11, pp. 130067-130082, Sep. 

2023, doi: 10.1109/ACCESS.2023.3320179. 

[14] Wu, Z. Chen, X. Yao, X. Chen, Z. Zhou, and J. Xue, “JAN: Joint attention 

networks for automatic ICD coding,” IEEE J. Biomed. Health Inform., 

vol. 26, no. 10, pp. 5235-5246, Oct. 2022, doi: 10.1109/JBHI.2022. 

3189404. 

[15] V. Mayya, S. S. Kamath, and V. Sugumaran, “LATA - Label attention 

transformer architectures for ICD-10 coding of unstructured clinical 

notes,” in Proc. 2021 IEEE Conf. Comput. Intell. Bioinformatics and 

Computational Biology (CIBCB), Melbourne, Australia, 2021, pp. 1-7, 

doi: 10.1109/CIBCB49929.2021.9562815. 

[16] Y. Chen and J. Ren, “Automatic ICD code assignment utilizing textual 

descriptions and hierarchical structure of ICD code,” in Proc. 2019 IEEE 

Int. Conf. Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 

2019, pp. 348-353, doi: 10.1109/BIBM47256.2019.8983078. 

[17] J. Carberry and H. Xu, “GPT-enhanced hierarchical deep learning model 

for automated ICD coding,” Advances in Science, Technology and 

Engineering Systems Journal (ASTESJ), August 2024, Vol. 9, No. 4, pp. 

21-34, doi: 10.25046/aj090404. 

[18] B. X. Weng, J. Sun, G. Huang, F. Deng, G. Wang, and J. Chen, 

“Competitive meta-learning,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 9, 

pp. 1902–1904, Sept. 2023, doi: 10.1109/JAS.2023.123354. 


