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Abstract

The popular K-means clustering algorithm potentially suffers from a
major weakness for further analysis or interpretation. Some cluster may
have disproportionately more (or fewer) points from one of the subpop-
ulations in terms of some sensitive variable, e.g., gender or race. Such a
fairness issue may cause bias and unexpected social consequences. This
work attempts to improve the fairness of K-means clustering with a two-
stage optimization formulation—clustering first and then adjust cluster
membership of a small subset of selected data points. Two computation-
ally efficient algorithms are proposed in identifying those data points that
are expensive for fairness, with one focusing on nearest data points outside
of a cluster and the other on highly 'mixed’ data points. Experiments on
benchmark datasets show substantial improvement on fairness with a min-
imal impact to clustering quality. The proposed algorithms can be easily
extended to a broad class of clustering algorithms or fairness metrics.

Index terms— Fairness, K-means clustering, Gini index, nearest foreign
points, class boundary.

1 Introduction

Clustering is an important problem in data mining. It aims to split the data
into groups such that data points in the same group are similar while points
in different groups are different under a given similarity metric. Clustering has
been successfully applied in many practical applications, such as data grouping
in exploratory data analysis, search results categorization, market segmenta-
tion etc. Clustering results are often used for further analysis or interpretation.
However, directly applying results obtained from usual clustering algorithms
may suffer from fairness issues—some cluster may favor data points from one of
the subpopulations, i.e., having disproportionally more points. One example of
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Figure 1: Illustration of the fairness issue in clustering, Points of different color
indicate different traits on a sensitive variable, e.q., gender where blue indicates
male and red female. Cluster 1 is dominated by females while Cluster 2 by
males. Points with an arrow indicate that we might switch its cluster member-
ship assignment to make the clusters less dominated by one subpopulation.

fairness issue is illustrated in Fig. |I| where, in each of the clusters, data points
coming from one of the subpopulations dominate. Data points in Cluster 1 is
dominated by females (marked by red), while Cluster 2 is dominated by males
(marked by blue). When the subpopulations of interest are defined over some
sensitive features (or variables), such as genders or races, it may cause undesir-
able bias |25] or social consequences [12,/17}21].

This work aims to alleviate the fairness issue arising from clustering, and we
focus on the popular K-means clustering algorithm [10] (note that our approach
is applicable to general clustering with minimal changes to our proposed algo-
rithm). One natural way is to treat clustering as an optimization problem, and
fairness is viewed as a constraint. However, the constrained optimization prob-
lem might be computationally hard, even for K-means clustering [1], due to its
nature as a mixed integer programming problem. While a number of methods
have been proposed for fairness in clustering [2,/7,[8L[15], they are often very
complicated or computationally expensive or tightly associated with a particu-
lar clustering algorithm. We take a different approach, and work on adjusting
the clustering results generated by a given clustering algorithm. We will iden-
tify a small set of ‘promising’ data points and switch their cluster membership
assignments to improve the fairness. The rationale is that, the inclusion of fair-
ness in the clustering formulation should only change a small part of results in
clustering.

Our contributions are as follows. We conceive a novel approach to improve
the fairness of K-means clustering by adjusting the cluster membership of a
small selected set of ‘promising’ data points. Two different implementations are
proposed, with one focusing on nearest data points outside of a cluster and the



other on highly ‘mixed’ data points. Both implementations are conceptually
simple, computationally efficient, and effective in improving the fairness of K-
means clustering. Notably, both are also broad and adaptable in the sense that
they are readily applicable to a broad class of clustering algorithms or different
notions of fairness.

The remaining of this paper is organized as follows. In Section [2| we describe
our algorithms to improve fairness in clustering. This is followed by a discussion
of related work in Section[3] Experiments and results are presented in Section [4
Finally we conclude in Section [f]

2 The method

The main idea of our approach is to identify a subset of ‘promising’ data points
and switch their cluster membership assignments to improve the fairness. Of
course, we require that the switching of cluster membership of those selected
points will not impact much of the overall cluster quality.

Mathematically, the problem of fair clustering can be formulated as an opti-
mization problem with some cluster quality measure as the objective function
and an additional constraint on fairness. Let S be the set of all data points. Let
functions ¢(.) and f(.) be the cluster quality measure and fairness measure of
interest, respectively. Assuming there are K clusters, the fair clustering problem
is formulated as the following optimization problem (%)

argmin g(St, .., Sic), (1)
f(S1,..,8k)<T (2)

where the clustering operator (i.e., function) 7 : S — {1, ..., K} maps each data
point z € S to its cluster index, and S; = {z € S : w(x) = i} is the set of data
points in the i*" cluster, i = 1,..., K, and T is a small tunable parameter. In
the above formulation, corresponds to the usual clustering problem, and
is a constraint on the fairness defined on clusters obtained by a given clustering
7, i.e., a partition of S as S = UK | S;.

Directly solving the constrained optimization problem (x) can be very costly,
as it is a mixed integer programming problem. Our approach can be viewed as
solving () by two stages. In the first stage we solve the optimization problem
without the fairness constraint , i.e., to solve the original clustering problem.
This leads to a set of feasible solutions (by adjusting cluster membership of
promising points) with each corresponding to a clustering result (i.e., cluster
membership assignment) of the best or near-optimal cluster quality measure.
The second stage starts from the set of feasible solutions, and focuses on the
single objective of finding a solution with improved fairness. This is done by
switching the cluster membership of data points along the cluster boundary.

Clearly data points that are far away from the cluster boundary should never
be touched when re-assigning cluster memberships. This is illustrated in Fig.
Suppose we wish to re-assign the cluster membership of one such data point, say



A A A
A A A A A A A
A A A A A
A
A A AA:,’A\\A A
A aa o, AaSa A
@ /1Aprys A A A
o © o ’ A
(<] A A
® e o AA A
o °© ©eo o °
°
° ° o o A2
e o °
o o
° e o .0 P
° ° ° o ©
° °
[} ... ..

Figure 2: Illustration of connectivity of data points in the same cluster. If one
switches point a to the red cluster, then green points between it and the red
cluster (i.e., points enclosed by the dashed curve) should also be switched.

a € cluster C; (i.e., cluster formed by green points) to cluster Cs (i.e., cluster
of red points). Then, due to the connectivity assumption (i.e., data points from
the same cluster form a “connected” region), many other data points between
a and cluster Cs, i.e., data points circled by the dashed circle, should also be
switched from cluster C; to cluster Co. This will lead to a substantial change
in the value of the given cluster quality measure and is not desirable. Focusing
on the near-boundary data points allows us to work on a small set of feasible
solutions, and computation can be done quickly.

Our definition of fairness takes into account of discrepancy of the proportion
of subpopulations in each cluster. For simplicity, assume that there are two
subpopulations of interest, and let p; and py be their respective proportions in
the entire population. For each cluster i =1, ..., K, let p;; be the proportion of
data points belonging to subpopulations j = 1,2. Let n be the total number
of data points, and n; be the number of data points in each of the clusters for
i=1,..., K. We can now give the following definition of the fairness index

n;
Fo= . Z|pm P |
=1

Mw

i=1

HMN

Z|pij_pj| ) (3)

j=1

where term (23:1 | pij — D) |) measures the discrepancy of respective propor-

tions of each subpopulation in the i*? cluster, and the discrepancies are weighted
by the relative size, w;, of each cluster out of the entire set of data points. We
have F € [0, 1], and a smaller value of F would indicate a more fair clustering,
and F = 0 indicates that, in each cluster, all the subpopulations have the same
proportion as in the general population. Note that our definition can be easily
extended to settings with multiple subpopulations.



We will start by adjusting points from clusters for which one subpopulation
dominates the most. To measure how much a subpopulation dominates points
from a cluster, say A, we define the following cluster balance measure

{z € 51}
B(A) = ,
{z € 52}
where S; and Sy are the two subpopulations of interest and | - | indicates the

cardinality (i.e., number of elements) of a finite set. Note that the balance mea-
sure can also be calculated on the entire dataset (population). If a cluster has
a large value of cluster balance measure, then that means it has excessive data
points from subpopulation S;. On the other hand, clusters with a small value
of cluster balance index would have insufficient number of data points from
subpopulation S;. So, two clusters will be better balanced in terms of cluster
fairness by exchanging the cluster membership of points from a cluster of high
cluster balance index with points from clusters of a small cluster balance index.

Having found which two clusters to switch cluster membership for their data
points, the remaining issue is to identify which data points to adjust cluster
membership. The overall idea is to find data points near the cluster boundary.
Switching the cluster membership of such data points will not impact the clus-
ter quality much since they do not contribute much in determining the class
boundary as demonstrated by theoretical as well as empirical work in classifi-
cation setting [241[30].

We adopt two different implementations to locate candidate data points for
cluster membership swapping, while keeping the deterioration to cluster quality
‘minimal’. One is to pick points that are far away from their own cluster cen-
troid but near the centroid of some other cluster, and the other is to pick points
that are highly mixed in the sense that there are data points from different
clusters in a ‘small’ neighborhood of such data points. These are described in
Sections[2.2]and [2.3] respectively, after a short description of K-means clustering
in Section 2.1l

2.1 The K-means clustering algorithm

Formally, given n data points, K-means clustering seeks to find a partition
of K sets 51,99, ..., 5k such that the within-cluster sum of squares, SSyw, is

minimized
K
. 2
argmin > Y [lx — %, (4)
S1,52,...,Sk i=1x€S;

where p; is the centroid of S;,i = 1,2, ..., K.

Directly solving the problem formulated as is hard, as it is an integer pro-
gramming problem. Indeed it is a NP-hard problem [1]. The K-means clustering
algorithm is often referred to a popular implementation sketched as Algorithm [I]
below. For more details, one can refer to |10L[18].



Algorithm 1 K-means clustering algorithm

1: Generate an initial set of K centroids mq, ma, ..., mg;
2: Alternate between the following two steps
3: Assign each point x to the “closest” cluster

. 2
ar min xr—m;l|l ;

8 et k) | il
4: Calculate the new cluster centroids

\ 1 .
mieY = : E z, j=1,2,... K,
115511
€S

5: Stop when cluster assignment no longer changes.

2.2 Improve fairness by adjusting nearest foreign points

Our first proposed implementation works by switching the cluster membership
assignments for data points that are far away from their own cluster centroid
while near the cluster centroid of other clusters. Call this the near-foreign
heuristic. The idea is to switch the cluster membership of data points that
are less likely to be in their assigned cluster (called source cluster) since they
are far away from the cluster centroid while kind of likely to be part of some
other clusters as they are among the nearest data points that are outside of the
destination cluster (call such points foreign points of the destination cluster).
Since such data points are near the cluster boundary, reassigning them will not
impact the overall cluster quality much.

Fig.[3]is an illustration of the near-foreign heuristic. Note that simply switching
the cluster membership of points that are furthest to a cluster centroid will not
work, as there are two possibilities. One is that the data point is near some
other cluster, it makes sense to reassign the cluster membership to such points
to other cluster which will improve fairness while not impacting much to cluster
quality. The other possibility is that, although the data points are far away
from its own cluster centroid, they are not near any other cluster either (rather
they are near the outmost side of the data space). One example can be seen
from Fig. |3, where points a, b, ¢ are all far away from the centroid of the cluster
formed by green points. If we re-assign points a, b, ¢ to the neighboring cluster
which is the cluster formed by red points, then clearly point ¢ will not make a
good choice though points a and b are. Treating data points a and b as foreign
points of the ‘red’ cluster, then re-assigning them to the ‘red’ cluster is expected,
and in this case, point ¢ should not be re-assigned to the ‘red’ cluster as it is
not among those nearest foreign points.

A description of an algorithm based on the near-foreign heuristic is given as
Algorithm |2, We say a cluster A is balance enough if its balance measure 8(A)
is close (e.g., within a factor of 8y = 5 ~ 10%) to that calculated on the entire
population. Note that the algorithm is described for two clusters for simplic-
ity, and we can easily extend it to settings of multiple clusters (simply repeat
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Figure 3: Illustration of the near-foreign heuristic. Points from different classes
are indicated by different colors. x indicates the centroid the clusters formed by
red points or green points.

the algorithm for a number of times for a pair of clusters which are highly un-
balanced). The algorithm has a linear computational complexity. It is upper
bounded by the product of the number of data points and the number of times
we exchange the cluster membership of points for a pair of unbalanced clusters.

Algorithm 2 fcNearForeign(X, k)

1: Apply K-means clustering algorithm to the data;
2: Calculate cluster balance measure, ;,7 = 1,..., K, on each cluster;

3: Let A and B be clusters with the max and min balance measures, respec-
tively;

4: Calculate cluster centroids, x4 and zpg, for clusters A and B;

5: for each data point X € AU B do

6:  Calculate its distance to cluster centroid x4 or xp as a foreign point;

7: end for

8: Sort such distances in increasing order;

9: Let the respective data points be X, ..., X, with m =| AU B |;

10: while Clusters A or B not balance enough do

11:  Switch the cluster membership for data point X; w.r.t. cluster A or B;
12:  Clusters A and B now become A’ and B’, respectively;

13:  Recalculate the cluster balance measure for clusters A’ and B’;

14:  Stop loop if A’ and B’ are balance enough;

15: end while

16: Return updated cluster membership assignment;

2.3 Improve fairness by Gini index

The Gini index is originally used in tree-based methodology for classification [3].
The classification tree grows by recursively splitting the tree nodes, starting from



Case Cl 02 03 Gini
Casel | 1/3 1/3 1/3 | 2/3
Case2 | 0.5 0.30 0.20 | 0.62
Case 3 | 0.80 0.10 0.10 | 0.34
Case4 | 090 0.05 0.05 | 0.185
Case 5 | 1.00 0.00 0.00 0

Table 1: A toy example of node impurity. C; denote the proportion of points
in class j = 1,2,...,5. Case 1 and Case 5 are at the two extremes, with Case 1
being the most mized while Case 5 being the purest.

the root node which consists of the entire set of data points, to make the resulting
child nodes more “pure” than their parent nodes. At each node split, one looks
for a direction and (or) split point such that the overall purity of resulting tree
nodes improves upon the node split. The Gini index measures how ‘mixed’ or
‘pure’ of points in a node which could be potentially from different classes. At
a given node, z, let the proportion of data points for class j be denoted by p;
for 5 =1,...,J, then the Gini index is defined as

J
Glz) = pi(1—pj). ()
j=1

To appreciate the Gini index as a measure of impurity, let us consider a few
numerical examples as illustrated in Table [I} Clearly Case 1 is the most mixed
while Case 5 is the purest by intuition, and the calculated Gini indices are con-
sistent with our intuition.

In this work, we propose a novel use of the Gini index, i.e., use it to detect
if a given data point is on or near the class (cluster) boundary. The idea is,
if a data point is on or near the cluster boundary, then a small neighborhood
of the data point would likely also consist of data points from different classes
(clusters) thus a higher Gini index. This will resemble Case 1 or 2. On the
other hand, if a data point is in the interior of a cluster, then data points from
a small neighborhood will mostly be from one cluster, thus a very small Gini in-
dex. This will be like Case 4-5. Empirically, we can easily find a cutoff value to
distinguish these two situations. The selection of the right-sized neighborhood
is data-dependent, and we make it adaptive to the data by using the k-nearest
neighborhood [29]. The goal is to make the neighborhood local and yet large
enough to capture the purity of the neighborhood. Empirically we find the clus-
ter quality not sensitive to the choice of k (c.f., Fig. [5).

The proposed algorithm starts by switching the cluster membership assignment
for two neighboring clusters that are at two extremes in terms of a cluster bal-
ance measure. A description of an algorithm based on the Gini index is given
as Algorithm Similarly as that for the Algorithm [2] it is described for two
clusters for simplicity, and we can easily extend to multiple clusters. Clearly
the algorithm also has a linear computational complexity.



Figure 4: [llustration of boundary and non-boundary points. Points from dif-
ferent classes are indicated by different colors. The circle are the 10-nearest
neighborhood of given points a, b and c. The respective Gini indices are calcu-
lated as 0.66,0.50, and O (which indicates the given point is an interior point).

3 Related work

Work related to ours falls into several categories. The first is on algorithms for
fair clustering. A number of algorithms have been proposed in the last decade,
for instance [2}/7,[8]. Such algorithms generally formulate fair clustering as an
optimization problem along with an additional constraint on fairness, and then
directly solve the optimization problem at its entirety. Constraints that involves
integer programming would substantially increase the computation. Also, such
algorithms are typically closely tied to the underlying clustering algorithms.
In contrast, our algorithm solves the constrained optimization problem in two
stages with insights that allow us to focus on a small set of feasible solutions,
which greatly reduces the problem space at low computational complexity. Also
our proposed algorithms, though described for K-means clustering, does not ex-
plicitly depend on the underlying clustering algorithm.

There are many work that explores various notions of fairness in clustering or
other machine learning problems, such as proportional fairness [5/14], group fair-
ness [6], and individually fair clustering [4,/19] etc. Also there are work that es-
tablishes theoretical guarantees [15] for fair clustering. Additionally, algorithms
have been proposed to account for multiple fairness metrics simultaneously [9].

4 Experiments

To evaluate the performance of our approach, we choose 7 datasets from the
UC Irvine Machine Learning Repository [16]. This includes the Indian Liver
Patient dataset (ILPD), the Heart dataset, the Hepatitis C Virus (HCV) for
Egyptian patients dataset, the Student Performance (StudentPerf) dataset, the
Contraceptive Method Choice (CMC) dataset, the Seed dataset, the Higher Ed-



Algorithm 3 fcGini(X, k)

1: Apply K-means clustering algorithm to the data;

2: Calculate cluster balance measure, 5;,7 = 1,...,J, on each cluster;

: Let A and B be clusters with the max and min balance measures, respec-
tively;

: for each data point X € AU B do
Calculate the Gini index for X in its k-nearest neighborhood;

end for

Sort Gini indices in set Gini(A U B) in decreasing order;

: Let the respective data points be X;, ..., X,,, with m =] AUB |;

: for i=1 to m do

10:  Switch the cluster membership for data point X; w.r.t. cluster A or B;

11:  Clusters A and B now become A’ and B’, respectively;

12:  Recalculate the cluster balance measure for clusters A’ and B’;

13:  Stop loop if A’ and B’ are balance enough;

14: end for

15: Return updated cluster membership assignment;

w

Data set # Features # instances | #Clusters
ILPD 10 579 2
Heart 13 303 2
HCV 12 615 2

StudentPerf 30 649 2
CMC 9 1473 3
Seed 7 210 3

HigherEdu 31 145 5

Table 2: A short summary of the datasets used in our erperiments.

ucation (HigherEdu) Students Performance Evaluation dataset. A summary of
these datasets is given in Table

For each dataset, we choose one of the variables, such as gender, as the sensitive
variable for which we will calculate fairness. Note that our proposed algorithms
continue to work for fairness defined over several variables. We compare the
fairness obtained by the original K-means clustering algorithm, the fcNearFor-
eign algorithm and feGini algorithm. Two metrics are used for performance
evaluation in our experiments. One is fairness defined in , and the other is a
commonly used cluster quality measure [11,28], defined as

 58p

where SSp and SSt are the between-cluster sum of squared distances and the
total sum of squared distances, respectively. Clearly x € [0, 1] as the calculation
of SSp involves only part of those distances used in SSp. A “large” value of
kx would imply that the inter-cluster distances carry a large proportion of all
pairwise distances, an indication of well-separated clusters thus a good cluster
quality. Note that here our goal is not to achieve the best , rather to demon-
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Original Near-Foreign Gini
ILPD 0.11 37.60% | 0.07 35.90% | 0.07 36.20%
Heart 0.12 82.21% | 0.08 81.48% | 0.08 81.09%
HCV 0.03 84.96% | 0.02 79.93% | 0.02 79.12%

StudentPerf | 0.09 70.74% | 0.01  73.45% | 0.01 72.44%
CMC 0.12  62.36% | 0.09 60.89% | 0.09 60.17%
Seed 0.19 77.70% | 0.12 77.45% | 0.12 77.12%

HigherEdu | 0.32 75.03% | 0.27 71.56% | 0.27 70.19%

Table 3: Comparison of fairness obtained by the original K-means clustering
algorithm, algorithm by the near-foreign and the Gini index heuristics, respec-
tively. In each cell, there are two numbers, one is the overall fairness index and
the other the cluster quality measure k.

strate that the proposed algorithms could improve cluster fairness while not
impacting the cluster quality much.

Table |3 shows that, for all the 7 datasets used in the experiments, our pro-
posed algorithms based on both the near-foreign and the Gini index heuristics
improve the fairness over the original K-means clustering algorithm while main-
taining the cluster quality as evidenced in small changes in the value of the s
measure. It is interesting that, for most datasets, the near-foreign and the Gini
index heuristics lead to similar cluster quality (i..e, similar x values). It is not
clear when one will outperform the other. In general, the Gini index heuristic
tends to pick those highly mixed data points, that is, points that lie at the
boundary of several clusters, to switch cluster membership. One weakness with
the near-foreign heuristic lies in its use of distance in picking data points to
re-assign their cluster membership. We have to adapt to the right distance met-
ric otherwise performance might be impacted in situations when the geometry
in the data becomes complex and non-convex, for example, when the data lie
on a low-dimensional Swiss-roll like manifold in a high dimensional space [221|26].

For the Gini index heuristic, we also assess the sensitivity of cluster quality
k w.r.t. the choice of neighborhood size k in calculating the Gini index of indi-
vidual data points. In particular, we vary k over {5,10,15}. Fig. [5| shows that
the influence to cluster quality is negligible when varying the value of k. The
dataset with the largest impact from k is the ILPD data, and we attribute it to
the fact that this dataset has mostly integer-(categorical) valued variables.

5 Conclusions and future work

We have proposed a novel approach with two implementations to improve the
fairness of K-means clustering, one based on the near-foreign heuristic and the
other based on the Gini index. Both are conceptually simple, computationally
light and are effective in improving the fairness in K-means clustering algo-
rithms. As they do not rely on the implementation of the underlying clustering
algorithms, they are readily applicable to a broad class of clustering algorithms,
for example the popular spectral clustering [13,20L23] and a recently proposed
rpf-kernel based clustering [27]. Also since our approach solves the fair cluster-

11
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Figure 5: Insensitivity of the cluster quality over different choices of neighbor-
hood size k € {5,10,15} in calculating the Gini index of individual data points.
The cluster qualities vary very little when k increases from 5 to 15.

ing problem by a two-stage optimization, it can be easily adopted to different
definitions of fairness.

While the near-foreign and the Gini index heuristics both explore boundary
data points, they are different in the sense that the Gini index heuristic at-
tempts to locate those highly mixed data points (which may lie at the class
boundary of several clusters) which is not necessarily the case for that of the
near-foreign heuristic. It might be interesting to see what happens if and how
one may combine these two ideas. Another direction for future work is to extend
our algorithms to account for multiple fairness measures simultaneously along
the line of [9].
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