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Abstract—Deep learning approaches require collection of data on 

many different input features or variables for accurate model 

training and prediction. Since data collection on input features could 

be costly, it is crucial to reduce the cost by selecting a subset of 

features and developing a budget-constrained model (BCM). In this 

paper, we introduce an approach to eliminating less important 

features for big data analysis using Deep Neural Networks (DNNs). 

Once a DNN model has been developed, we identify the weak links 

and weak neurons, and remove some input features to bring the 

model cost within a given budget. The experimental results show our 

approach is feasible and supports user selection of a suitable BCM 

within a given budget. 
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I. INTRODUCTION  

With the emergence of big data, large scale data-driven 

machine learning becomes increasingly important. Deep 

learning, also called deep structured learning, is a subfield of 

machine learning based on artificial neural networks (ANNs). 

A deep neural network (DNN) is an ANN with multiple hidden 

layers between the input and output layers. There are many 

different types of DNNs, e.g., feedforward deep neural network 

(FF-DNN),  recurrent neural network (RNN) and convolutional 

neural network (CNN), all of which follow similar procedures 

for training and testing [1]. Deep learning approach has been 

very successful in recent years for processing big data from 

sources such as social media, Internet search engines, e-

commerce platforms, and healthcare systems. Successful deep 

learning mechanisms require collecting a large amount of data 

or purchasing data from a third-party vendor on many different 

input features or variables in order to develop feasible and 

accurate models for classification and prediction. However, 

data collection on input features could be very expensive and 

time consuming. Such cost may also include preprocessing, 

maintenance and storage of the data associated with the input 

features. For example, a recommendation system of a major e-

commerce application using deep learning would require 

storing millions of user access information per month. Dozens 

of features such as, the amount of time a user views a certain 

item, and other items that are also viewed, would be recorded 
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for each user access. The preprocessing of such data and the 

costs associated with the storage, transmission and maintenance 

can be remarkably high. Similarly, in a deep learning 

application that determines when a cruise ship needs to be 

maintained, a huge amount of data on the status measurements 

and usage statistics of the different system components of the 

cruise ship would also be required. As one more example, in a 

healthcare application using deep learning, various medical test 

data such as blood pressure, cholesterol levels and heart rates, 

need to be collected to develop an accurate medical diagnose 

model for training and determination of certain diseases.  

The cost associated with input features include the cost to 

collect the training and testing data as well as collection of a 

new data point for the classification or prediction purpose. In 

this study, we assume there are existing training and testing 

datasets for building a deep learning model. Therefore, we can 

focus on the total cost of collecting a new data point on all 

required features of the model. We call the cost for collecting a 

new data point the model cost. Note that a high model cost 

would also imply a high cost of acquiring the needed datasets 

for model training and testing. Practically, there are always 

limits to the budgets in deep learning applications. Due to the 

budget constraints, we must limit the number of features used 

in a model, while keeping the model accuracy high enough. In 

our approach, we reduce the model cost by selecting a subset of 

the most important features and deriving a reasonable model 

within a certain budget. In other words, with a given budget, we 

need to eliminate the least important features to ensure the 

model cost is lower than the budget. Since removing features 

typically reduces the accuracy of the model, it is required that 

our approach must deliver a budget-constrained model (BCM) 

with a reasonable accuracy. In previous work, we proposed 

several ways to select a set of features under a certain cost 

profile [2]. In this paper, we focus on deep learning methods 

and introduce a DNN-based approach to identifying the least 

important features from a DNN, subject to a given budget. 

Instead of deriving a single BCM, we produce a list of BCMs 

with expected predictive accuracies, sorted by predefined 

budget levels. This could be used to choose a BCM with the 

best predictive accuracy under a given budget, or allow a user 

to better trade off between budget and model accuracy. 
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II. RELATED WORK 

There have been  many research efforts on big data analytics 

using deep learning approaches. Deep architectures such as 

DNNs can often capture hierarchical and complex patterns of 

the inputs for more effective analysis of big data than traditional 

statistical learning methods. For example, the “Google Brain” 

project has used large DNNs with about one million simulated 

neurons and one billion simulated connections to leverage big 

data for image enhancement, language translation, and robotics 

research [3]. Esteva et al. presented deep learning techniques 

using DNNs for medical imaging, electronic health record data 

processing, and robotic-assisted surgery in the healthcare 

domain [4]. They also demonstrated the application of deep 

learning in bioinformatics, e.g., building a deep-learning 

system in genomics to convert raw data into input data tensors, 

processed by DNNs for specific biomedical applications. Xu 

and Gade designed a systematic approach to designing a 

layered knowledge graph that can be converted into a structured 

DNN [5]. The structured DNN model has been used for smart 

real estate assessments, which outperforms conventional multi-

variate linear regression methods as well as prediction 

mechanisms used by the leading real estate companies such as 

Zillow and Redfin. Most of the deep learning approaches 

assume the availability of required datasets for predictive 

analysis without considering the cost associated with data 

collection. In contrast, our approach aims to derive budget- 

constrained models by eliminating the least important features. 

Previous work related to cost-sensitive learning is 

summarized as follows. Elkan showed the proportion of 

negative examples in a training set would affect the optimal 

cost-sensitive classification decisions for problems with 

differing misclassification costs [6]. He recommended first 

developing a classifier and then using the probability estimates 

calculated from the classifier to compute optimal decisions. 

Sheng and Ling proposed a method to select a proper threshold 

that produces the lowest misclassification cost [7]. The 

experimental results showed that thresholding, as a general 

method to develop a cost-sensitive algorithm, has the least 

sensitivity on the misclassification cost ratio. O’Brien et al. 

analyzed the relationship between systematic errors in the class 

probability estimates and cost matrices for multiclass 

classification [8]. They explored the effect on the class 

partitioning of the cost matrix and demonstrated the effective-

ness of learning a new partition matrix. Zhou et al. proposed a 

method to select features by their probabilities that are inversely 

proportional to the costs [9]. They constructed a decision tree 

with feature costs and used a random forest-based feature 

selection algorithm to produce low-cost feature subsets. Ji and 

Carin presented a formal definition of the cost-sensitive 

classification problem and provided a solution using a partially 

observable Markov decision process (POMDP) [10]. Different 

from traditional approaches, features were selected in a 

sequential manner until no additional feature acquisition could 

be justified based on classification results. More recently, 

Maliah and Shani formulated the cost sensitive classification 

problem as a POMDP, taking both test and misclassification 

costs into consideration [11]. They used a tree-based MDP  

approach to modeling a belief space and provided a scalable 

method for reasoning about future actions. Frumosu et al. 

proposed a method to reduce the production cost by predicting 

the number of faulty products while ensuring production quality 

delivery [12]. They reduced the problem to an imbalanced 

binary classification problem and solved the problem using 

Voronoi diagrams and the genetic algorithm.  

The above cost-sensitive learning approaches provided 

useful methods to reduce test and misclassification costs; 

however, they are not aimed to provide users model options to 

meet the budget constraints. In addition, most of the existing 

cost-sensitive learning approaches are not deep learning 

approaches, which intrinsically have limitations in dealing with 

large datasets and complex problems such as medical diagnosis. 

In previous work [2], Yan et al. approached the problem of 

budget constrained learning, in terms of variable costs. They 

explored the solution space to produce a model schedule as a 

list of models, sorted by model costs and expected predictive 

accuracy. Based on this work, we further proposed a deep 

learning based approach to building budget-constrained models 

using deep neural networks. In this sense, our approach 

complements existing cost-sensitive learning approaches that 

are suitable for applications not involving large amount of data 

and provides a scalable solution to complex problems, such as 

cybersecurity, fraud detection and medical diagnosis. 

III. MODEL COST AND BUDGET-CONSTRAINED MODELS 

Deep learning has been widely used in various fields such 

as medical diagnosis, autonomous driving, and mathematics 

education. DNNs are a type of deep learning methods widely 

adopted in big data analytics and large-scale data driven 

applications. Since DNN-based approaches have shown 

ground-breaking results in speech recognition and image 

recognition tasks in recent years, the number of applications 

using DNNs has exploded. In this paper, we demonstrate our 

deep learning approach using FF-DNN – a simple type of 

DNNs, to build BCMs for big data analysis.   

A. Model Cost of a Deep Neural Network 

The FF-DNN model is usually treated as a “black box”; 

however, it is undeniable that every neuron in a hidden layer of 

a FF-DNN has certain significance or hidden semantics, and 

different neurons have different effects on the outputs of the 

model [5]. To a certain extent, the absolute weight value of a 

link in a neural network represents the impact of the source 

neuron to the target neuron. Such impact may pass through the 

layers of the neural network and influence the results of the 

output neurons. When an input neuron has the least impact on 

the results of the output neurons, its corresponding feature may 

become a candidate to be removed from the model with 

minimal impact on the model accuracy.  

To adopt a well-trained deep learning model for prediction 

or classification, we need to collect data on a set of input 

features. For example, the set of input features to determine if a 

patient has a certain heart disease may include measures such 

as “blood pressure”, “heart rate”, “fasting blood sugar”, “age”, 

and “gender”. The collection, purchase, and storage of data on 
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different features may incur different feature cost. Let F be the 

set of all measurable features in a certain domain, where | F | = 

m. Let f = {f1, f2, …, fK} be a set of input features of a model 

Ф(f), which uses a total of K measurable features; thus, f ⊆ F 

and K ≤ m. Let function *: ZFc  be a mapping from feature f 

 F to the cost of measuring feature f. To simplify matters, we 

assume a feature cost is a nonnegative integer from the set of 

nonnegative integers Z*. We define the model cost of Ф(f) as 

the summation of all feature costs as in Eq. (1). 

     𝐶(Ф(𝒇)) = ∑ 𝑐(𝑓𝑖)
K
𝑖=1     where   fi f  and | f | = K                 (1)   

Given a budget level b, we need to find a set of features f ⊆ 

F, such that the model cost of Ф(f) is no more than b, and Ф(f) 

has the best predictive accuracy. That is, to solve the optimal 

problem defined in Eq. (2). 

     arg max
𝒇⊆𝐹

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(Ф(𝒇))  subject to  𝐶(Ф(𝒇))  ≤ 𝑏     (2) 

In our DNN-based approach, we start with all measurable 

features and a list of predefined budget levels. We gradually 

remove the least important input features until the model costs 

are within the budgets. For each budget level, once the least 

important features are removed, the remaining features form a 

new set of inputs for development of a new classifier. It is 

expected that the new model will be less accurate as the number 

of input features decreases; however, the costs of collecting 

data for training and prediction can be significantly reduced. 

B. Budget-Constrained Models 

In the context of FF-DNN, a budget-constrained model or 

BCM Ф(f) is defined as a 4-tuple (S, f, w, p), where S is the 

structure of the FF-DNN, f is a set of input features that 

correspond to the set of input neurons in Ф(f), w is the weights 

of the links in Ф(f), and p the expected accuracy of the model. 

Note in this paper, S is defined as a fully connected DNN 

(FCDNN), while using partially connected DNNs (PCDNNs) is 

envisioned as a future, and more ambitious research direction. 

Given a list of budget levels B = (b1, b2, …, bn) and a set of 

measurable features F = {f1, f2, …, fm}, our task is to build a list 

BCMs Фi, where 1 ≤ i ≤ n, and for each Фi, with an identified 

subset of features from F such that the model satisfies Eq. (2) 

for budget bi. Table I shows an example of a list of BCMs with 

their expected model accuracy and lists of features, sorted by 

budget levels. With a given budget and a required accuracy, we 

can find the most suitable model from the table. For example, 

if the given budget is 1750, and the required model accuracy is 

0.94, we shall choose the BCM with the set of features 

{1,4,5,8,10}, whose model cost is 1500 that is less than 1750.    

TABLE I. AN EXAMPLE OF A LIST OF BCMS UNDER BUDGETS 

Model Budget Accuracy Features 

Ф1 3000 0.9615 {1,2,4,5,8,10,11,12} 

Ф2 2500 0.9519 {1,2,4,5,8,10,11} 

Ф3 2000 0.9433 {1,4,5,8,10,11} 

Ф4 1500 0.9406 {1,4,5,8,10} 

Ф5 1000 0.9357 {1,5,8,10} 

Ф6 500 0.9325 {1,5,10} 

C. A Framework for Building a Budget-Constrained Model 

With sufficient training and testing datasets, our approach 

aims to develop a BCM with its model cost within a given 

budget level. The framework for generating a BCM under a 

given budget is illustrated in Fig. 1.  

 

Fig. 1. A Framework of generating a BCM under a given budget 

For any raw data, whether captured by measurement or 

purchased from a third-party vendor, there is typically a lot of 

unnecessary information. We first need to preprocess the data 

and retrieve the needed fields in a desired format. Since data 

points with missing information or wrong information could 

negatively affect the training and testing results, such data 

points must be fixed or considered as outliers to be removed 

from the dataset. The dataset is then split into a training dataset 

and a testing dataset. Note that to simplify Fig. 1, we do not 

show the process of partitioning the dataset into k equal sized 

subsamples for the k-fold cross-validation purpose. We extract 

all the features from the dataset to build the first model. After 

the model is fully trained, we check if the model cost is higher 

than the given budget. If the answer is yes, we find the least 

important feature, remove it using an algorithm described in 

Section IV, and create a new model using the remaining 

features. This procedure is repeated until the model cost 

becomes less than or equal to the given budget. In this case, the 

testing dataset is used to calculate the expected model accuracy. 

Finally, the 4-tuple (S, f, w, p), i.e., the structure S of the FF-

DNN, the set of input features f, the weights of the links w in 

the model, and the expected accuracy p of the model, is 

recorded as the resulting BCM for the given budget. 

IV. GENERATION OF BUDGET-CONSTRAINED MODELS 

A. Identifying the Least Important Input Feature 

In our DNN-based approach, we define a set of thresholds 

for the links of the neural network, designed to identify and 

eliminate the weak links. When a neuron’s output links are all 

identified as weak links, the neuron is considered to have 

minimal impact on the output, and thus, it is considered a weak 

neuron. Our approach starts with the last hidden layer that most 

directly affects the output neurons, and then works backward to 
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determine the weak links and weak neurons. The procedure 

repeats until we find weak input neurons, whose corresponding 

features become a candidate to be removed from the model.  

We now use a few examples to show how to identify weak 

links and weak neurons. Since multiple source neurons link to 

a target neuron, the weights of each link represent their impact 

on the target neuron. The higher absolute value of a weight, the 

higher the impact a source neuron has on the target neuron.  We 

can identify the weak links by setting a threshold for each target 

neuron of a link. For example, in Fig. 2 (a), the link threshold 

for target neuron tn is set to 0.3. Consequently, the link from 

source neuron n1 to n is marked as a weak link (denoted by a 

dashed line) as the weight of the link is 0.1 that is less than tn. 

   

                    (a)                                           (b)  

Fig. 2. Examples of (a) weak link and (b) weak neuron 

On the other hand, a source neuron links to multiple target 

neurons. If the links coming from a source neuron have all been 

identified as weak links, that source is marked as a weak neuron. 

For example, in Fig. 2 (b), all links coming from source neuron 

n are weak links because their link weights are less than their 

corresponding thresholds; thus, neuron n is marked as a weak 

neuron denoted by a dashed circle.   

If a neuron is identified as a weak neuron, its impact on the 

outputs of the neural network is considered minimal. Therefore, 

all links connecting that weak neuron are considered as weak 

links because if we remove the weak neuron from the DNN, all 

its incoming links will also be removed. Fig. 3 shows such an 

example with neuron n5 being a weak neuron.  

 

Fig. 3. An example of weak links connecting to a weak neuron 

As shown in Fig. 3, since neuron n5 is a weak neuron, 

neuron n1 to n4 would have little impacts on the outputs of the 

neural network through their links to n5; therefore, we can 

reasonably mark links l1, l2, l3 and l4 as weak links. Being said, 

a link is marked as a weak link in either of the following two 

cases: 1) its weight is less than the threshold, and 2) its target 

neuron is a weak neuron. 

Fig. 4 presents an example of a FF-DNN model with four 

layers including two hidden layers. There are three input 

neurons n11, n12 and n13, which correspond to three input 

features. All neurons except the input neurons have been 

assigned thresholds. Note that the thresholds for the neurons 

can be different, and each threshold of a neuron n is initialized 

based on the weights of all links that connect to neuron n. As 

described later in this section, the thresholds need to be adjusted 

if no weak input neuron can be identified. 

 

Fig. 4. An example of a FF-DNN model 

The steps to identify weak links and weak neurons of the 

neural network in Fig. 4 are illustrated in Fig. 5. From the figure, 

we can see the process starts with the last hidden layer and 

works backward to the input layer. For example, in Layer 3, 

since the neuron n31 contains only one output link, which is a 

weak link, it is marked as a weak neuron. Similarly, in Layer 2, 

since neuron n21 contains links that are either weak or connect 

to a weak neuron, neuron n21 is then marked as a weak neuron 

as well. Finally, in Layer 1, two input neurons n11 and n12 are 

identified as weak neurons; thus, their corresponding input 

features are candidate features to be removed from the model. 

It is worth noting that, in our approach, when more than one 

weak input neurons are identified, the least important feature is 

considered to be the one having the highest feature cost; 

therefore, minimizing the model cost.  

 

Fig. 5. The steps to identify weak links and weak neurons 
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The procedure of finding the least important feature is 

shown in Algorithm 1. As described in the algorithm, given a 

FF-DNN Ф(f) with L layers, all neurons and links in Ф(f) are 

initially considered strong. A very low initial threshold δn is set 

for each neuron n, except for the input layer, based on the 

weights of the input links to neuron n. Starting from the last 

hidden layer lL-1, all the weak neurons and weak links are 

marked in a backward manner. To ensure that the input layer 

contains at least one weak neuron, the value of each threshold 

can be increased gradually. Finally, a weak neuron in the input 

layer is selected and its corresponding input feature is identified 

as the least important feature f*. 

Algorithm 1:  Finding the Least Important Feature 

Input: A FF-DNN Ф(f) with L layers including input layer l1 and 

output layer lL, where f is a set of features and L ≥ 4. 

Output: The least important feature f*. 

1.   Let all neurons/links in Ф(f) be strong neurons/links  

2.   Let f* be the least important feature, initialized to null    

3.   for i = 2 to L 

4.      for each neuron n in layer li 

5.         Initialize the threshold tn of neuron n with small value δn 

6.    while f* is null  

7.       for i = L-1 to 1 // identify weak links/neurons backward 

8.          for each target neuron β in li+1 

9.                   for each source neuron α in li      

10.                Let wγ be the weight of the link γ from α to β 

11.                if wγ < tβ or β is a weak neuron 

12.                   Mark link γ as a weak link 

13         for each source neuron α in li      

14.           if all links from source neuron α are weak links 

15.              Mark source neuron α as a weak neuron 

16.     if there is no weak neuron in input layer l1  

17.        Let threshold tn of each target neuron n in Ф(f) be 2*δn 

18.     else   // there are one or more weak input neurons 

19.        Select a weak neuron α* in l1 with highest feature cost  

20.        Set f* to the input feature corresponding to α* 

21.  return f* 

B. Generating a FF-DNN based BCM 

Once we are able to identify the least important input feature 

in our FF-DNN based deep learning approach, we can generate 

a FF-DNN model that satisfies a budget requirement. Let a 

given budget be b. We develop a FF-DNN model that satisfies 

the requirements described in Eq. (2). This may require going 

through a number of steps to remove more than one input 

feature to meet the budget requirement. Each time when the 

least important feature is removed, we build a new FF-DNN 

model and train it using the same datasets. It is expected that 

the new model is less accurate than its previous model version 

as the number of input features decreases. With the trained new 

model, we identify the least important feature again until the 

budget requirement is met. Algorithm 2 shows the procedure to 

generate a BCM given budget level b, dataset D with a set of 

features F, and model cost function C(Ф(f)). To make the 

model cost C(Ф(f)) ≤ b, starting from f = F, the method 

gradually removes the least important feature using Algorithm 

1. Finally, the model Ф(f) is created and trained on the f that 

satisfies C(Ф(f)) ≤ b, and the corresponding 4-tuple (S, f, w, p) 

representing BCM Ф(f)  is returned as the result.  

Algorithm 2:  Generating a BCM Under a Given Budget 

Input:  Dataset D with a set of m measurable features F = {f1, f2, …, 

fm}, model cost function C(Ф(f)), and a given budget b.  

Output: 4-tuple (S, f, w, p) representing BCM Ф(f) with C(Ф(f)) ≤ b. 

1.   Let f be the set of measurable features F 

2.   Randomly partition D into k equal sized subsamples.  

3.   while C(Ф(f)) > b    // model cost is greater than the given budget 

4.       Create a FF-DNN Ф(f) with a set of features f 

5.       Train and test Ф(f) with dataset D using k-fold cross-validation 

6.       Invoke Algorithm 1, and let f* be the least important feature 

7.       Remove feature f* from f  

8.   Create a FF-DNN Ф(f) with a set of features f 

9.   Train and test Ф(f) with D, and save weights w and accuracy p 

10. Let S be the structure of FF-DNN Ф(f). 

11. return 4-tuple (S, f, w, p) 

C. Generating a List of BCMs 

Developing a deep learning model under a specific budget 

may possibly result in failing to achieve the required predictive 

accuracy or wasting money on unnecessary features. For 

example, a low given budget for a deep learning model adopted 

in a cardiac diagnosis application may only use a limited 

number of features, which could make the prediction accuracy 

less than 60%. Such an application is obviously not marketable. 

On the other hand, suppose a vehicle routing simulation 

application has already achieved close to 100% prediction 

accuracy with a reasonable model cost. If we continue to 

improve the model with more features under a higher budget, it 

cannot improve the predictive accuracy significantly and will 

inevitably waste money. To avoid the above undesirable 

situations, users shall be allowed to trade off between various 

budget levels and the required predictive accuracy for a suitable 

cost-effective deep learning model. Algorithm 3 shows the 

procedure to generate a list of BCMs LBCM, given a maximum 

budget bmax and a distance d between two consecutive budget 

levels. Each generated BCM satisfies the minimal accuracy 

requirement as well as its corresponding budget requirement.   

 

Algorithm 3:  Generating a List of BCMs 

Input: The maximum budget bmax, the distance d between two 

consecutive budget levels, and the minimum required predictive 

accuracy pmin  

Output: A list of BCMs LBCM that meet the budget and predictive 

accuracy requirements 

1.  Let LBCM be a list of BCMs, initialized to an empty list.   

2.  Let b be a budget level, initialized to bmax  

3.  while b > 0 // a budget level should be always greater than 0 

4.      Invoke Algorithm 2, and let (S, f, w, p) be a 4-tuple    

         representing BCM Ф(f) with C(Ф(f)) ≤ b 

5.      if p ≥ pmin // the expected model accuracy is no less than pmin  

6.          Add the 4-tuple (S, f, w, p) into LBCM 

7.      else return LBCM 

8.      b = b - d 

9.  return LBCM 
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V. CASE STUDY 

The major goal of our approach is to develop a list of DNN 

models that meet budget requirements, while keeping the 

predictive accuracy of each model as high as possible. To 

validate the feasibility and performance of our approach, we 

conduct experiments on two datasets from the UC Irvine 

Machine Learning Repository [13]. The two datasets are the 

Early-stage diabetes risk prediction dataset (DS1) and the 

Heart disease dataset (DS2). To facilitate the application of our 

approach and ensure fully trained models as well as improved 

model accuracy, we adopt the TensorFlow [14] to develop FF-

DNNs for the experiments and apply k-fold cross-validation to 

train and test the models. Each dataset is randomly divided into 

10 datasets for 10-fold cross-validation. For categorical data, 

we use one-hot encoding to divide the corresponding feature 

into multiple in order to improve model performance. For 

example, the feature Itching in DS1 is a categorical feature with 

a value of either “Yes” or “No”, representing the presence or 

absence of itching symptoms, respectively. Using the one-hot 

encoding, the feature Itching can be split into two features, 

namely Itching_Yes and Itching_No. If Itching has value “Yes”, 

it is replaced by two features Itching_Yes = 1 and Itching_No = 

0; otherwise, we set Itching_Yes = 0 and Itching_No = 1. 

A. The Early Stage Diabetes Risk Prediction Dataset 

The Early-stage diabetes risk prediction dataset includes 

520 instances, collected using direct questionnaires from the 

patients of Sylhet Diabetes Hospital in Sylhet, Bangladesh [13]. 

There are 13 categorical attributes used as features, namely 

Age, Sex, Polydipsia, Weakness, Polyphagia, Genital thrush 

(Gthrush), Visual blurring (Vblur), Itching, Irritability, 

Delayed healing (Dheal), Partial paresis (Par), Muscle 

stiffness (Mstiff) and Alopecia. Each input feature is assigned a 

feature ID as shown in Table II.  

TABLE II. FEATURES IN EARLY-STAGE DIABETES RISK PREDICTION DATASET 

 DS1 Input Feature [Feature ID] 

Dheal [1] Alopecia [2] Vblur [3] Obesity [4] Itching [5] 

Gthrush [6] Polydipsia [7] Irritability [8] Polyphagia [9] Par [10] 

Mstiff [11] Weakness [12] Age [13]   

The label of each data point is an output categorical feature 

of Diabetes, which has the value of either “Yes” or “No”, 

indicating whether a patient has diabetes or not. The FF-DNN 

models that we build for this dataset have 5 hidden layers with 

120 hidden neurons in each hidden layer. We set the feature 

costs randomly by sampling from [100, 300] uniformly, except 

for the costs of Sex and Age, which are set to 0. In the following 

experiments, the maximum budget level bmax is set to 1900, 

which is greater than the total cost of all features in the diabetes 

dataset; thus, the initial BCM model shall consist of all the 

features with the potential maximum predictive accuracy. We 

set a distance d = 200 between two consecutive budget levels, 

gradually decrease the budget level, and derive the 

corresponding BCMs. This process stops when the predictive 

accuracy becomes less than the minimum required predictive 

accuracy pmin = 0.65, as predefined for the experiments.  

Table III shows a list of BCMs generated by applying 

Algorithm 3, where the features are represented by the feature 

ID as defined in Table II. For example, the BCM Ф8, with the 

given budget of 500 and expected predictive accuracy of 0.8173, 

has a set of input features {3,6,7,13}, representing the features 

of Visual blurring, Genital thrush, Polydipsia, and Age. 

TABLE III. LIST OF BCMS FOR THE EARLY-STAGE DIABETES DATASET 

Model Budget Accuracy DS1 Input Features 

Ф1 1900 0.9615 {1,2,3,4,5,6,7,8,9,10,11,12,13} 

Ф2 1700 0.9423 {1,3,4,5,6,7,8,9,10,11,13} 

Ф3 1500 0.9423 {1,3,4,5,6,7,8,9,10,13} 

Ф4 1300 0.9327 {1,3,5,6,7,8,9,10,13} 

Ф5 1100 0.9327 {1,3,6,7,9,10,13} 

Ф6 900 0.9135 {3,6,7,9,10,13} 

Ф7 700 0.8462 {3,6,7,9,13} 

Ф8 500 0.8173 {3,6,7,13} 

Ф9 300 0.7115 {3,13} 

The list of BCMs in Table III allows a user to select an 

appropriate deep learning model based on the budget and 

accuracy requirements. For example, when the given budget is 

1600 and the required accuracy is 0.94, the user shall select the 

BCM Ф3with the set of features {1,3,4,5,6,7,8,9,10,13}. In this 

case, the expected predictive accuracy is 0.9423, which is 

greater than the required accuracy 0.94. However, if the 

required accuracy becomes 0.95, the user will have to increase 

the budget to 1900 and select the first model Ф1 with expected 

predictive accuracy 0.9615, being greater than 0.95. 

To demonstrate the expected performance of our approach, 

we compare it with two different approaches: the cost-based 

approach and the random selection approach. With the given 

features and the cost function, the cost-based approach works 

in accordance with the principle that it always removes the most 

expensive feature to make the model cost decrease quickly; 

while the random selection approach randomly removes a 

feature each time to reduce the model cost. 

For each of the three approaches, we generate 10 BCMs for 

each budget level, and select the model with the highest 

prediction accuracy. The highest predictive accuracy vs. model 

cost at each budget level is presented in Fig. 6.  

 

 

Fig. 6. Predictive accuracy over predefined budget levels (DS1) 
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From Fig. 6, we can see that our approach outperforms the 

other two approaches at each budget level, while the cost-based 

approach works better than the random-selection approach in 

most of the cases. Since the cost-based approach removes the 

most expensive feature at each step, it can remove the minimum 

number of features to make the model cost below a given 

budget. Compared with the random-selection approach, the 

cost-based approach would generally perform better than the 

random selection approach as more features could be kept for a 

given budget, potentially leading to a higher accuracy. 

However, the cost-based approach may also mistakenly remove 

the most expensive feature that is also an important one. This is 

the reason why the cost-based approach cannot perform as well 

as our approach. Note that our approach always removes the 

least important feature first, which has the lowest impact on the 

model prediction accuracy. In the figure, all three curves 

intersect at budget level 1900, the reason being, all three 

approaches share the same FF-DNN that uses all input features, 

and thus, they have the same accuracy. In addition, we notice 

that the accuracies of all three methods drop sharply when the 

budget level becomes less than 900; whereas the budget levels 

above 900 maintain high accuracies of all three methods. This 

indicates that the BCM Ф6 from Table III with the budget level 

of 900 may be considered as the most cost-effective model. 

To further demonstrate that our approach leads to a higher 

degree of model accuracy than the other two approaches. We 

conduct experiments using the three approaches by removing 

only one feature at a time. Fig. 7 shows the comparison results 

among the three approaches showing how accuracy changes 

with the number of features removed. As demonstrated in the 

figure, for any number of features removed, our approach 

consistently achieves the highest model accuracy than the other 

two approaches.  

 

 

Fig. 7. Accuracy changes with the number of features removed (DS1) 

 

B. The Heart Disease Dataset 

The Heart disease dataset contains 76 attributes, but only 14 

features is used in this experiment for demonstration purpose 

[13]. The 14 features include 7 categorical attributes, namely 

Sex, Chest pain type (Cp), Slope of the peak exercise ST 

segment (Slope), Resting electrocardiographic results 

(Restecg), Number of major vessels colored by fluoroscopy 

(Ca), Exercise induced angina (Thal), Thallium Stress Test 

(Exang), along with 6 integer attributes, namely Age, Resting 

blood pressure (Trestbps), Serum cholestoral in mg/dl (Chol), 

Fasting blood sugar (Fbs), Maximum heart rate achieved 

(Thalach), and ST depression induced by exercise relative to 

rest (Oldpeak). Each input feature is assigned a feature ID as 

shown in Table IV.  

TABLE IV. FEATURES IN HEART DISEASE DATASET  

DS2 Input Feature [Feature ID] 

Ca [1] Exang [2]  Cp [3] Thal [4] Thalach [5]   

Oldpeak [6]   Trestbps [7] Slope [8]   Fbs [9]  Restecg [10]  

Chol [11]   Sex [12] Age [13]   

The label of each data point is an output categorical feature 

of Diagnosis of heart disease, which has the value of either 

“Yes” or “No”, indicating whether a patient has a heart disease 

or not. The FF-DNN model we built for this dataset contains 3 

hidden layers with 200 hidden neurons in each hidden layer. 

Similar to the experiments on the Early-stage diabetes risk 

prediction dataset, we set the maximum budget level bmax to 

1600, the distance d = 200 between two consecutive budget 

levels, and the minimum required predictive accuracy pmin to 

0.65. Table V shows the list of BCMs generated using our 

approach with random feature costs sampling from [100, 300].  

TABLE V. LIST OF BCMS FOR THE HEART DISEASE DATASET 

Model Budget Accuracy DS2 Input Features 

Ф1 1600 0.9333 {1,2,3,4,5,6,7,8,9,10,11,12,13} 

Ф2 1400 0.9111 {1,2,3,4,6,8,9,10,11,12,13} 

Ф3 1200 0.9111 {1,2,3,6,8,9,10,11,12,13} 

Ф4 1000 0.8889 {1,2,3,6,9,10,12,13} 

Ф5 800 0.8444 {1,2,6,9,10,12,13} 

Ф6 600 0.8222 {2,6,10,12,13} 

Ф7 400 0.8000 {6,10,12,13} 

Ф8 200 0.7778 {6,12,13} 

Now, we compare the performance of our approach with 

that of the cost-based approach and the random selection 

approach by generating lists of BCMs for various budget levels. 

The results of predictive accuracy over predefined budget levels 

for the three approaches are shown in Fig. 8.  

 

Fig. 8. Predictive accuracy over predefined budget levels (DS2) 
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From Fig. 8, we can see that our approach has the highest 

model accuracy at all budget levels, while the cost-based 

approach has higher accuracy than the random selection 

approach at most of the budget levels. These results are 

consistent with those from the previous experiments on DS1. 

However, we notice that when the two features Exang and 

Restecg are removed from BCM Ф6 and Ф7, respectively, the 

predictive accuracy is not significantly changed. This is 

different from the situation shown in Fig. 6, where accuracy 

drops sharply when the budget level becomes low. Since our 

approach always removes the least important feature first, the 

features Exang and Restecg are supposed to be important ones; 

thus, removing them shall result in significant decrease of the 

predictive accuracy. The reason why this does not happen could 

be explained by the correlations the input features may have 

with each other. In this particular case, the importance of the 

features Exang and Restecg may have relied on features that 

have been removed, e.g., features Ca and Fbs in BCM Ф5.  

Similar to the experiments on DS1, we develop models 

using the three approaches by removing only one feature at a 

time. Fig. 9 shows the comparison results among the three 

approaches. As shown in the figure, for any number of features 

removed, our approach again consistently achieves the highest 

model accuracy than the other two approaches.  

 

Fig. 9. Accuracy changes with the number of features removed (DS2) 

VI. CONCLUSIONS AND FUTURE WORK 

Big data analytics is increasingly becoming one of the 

trending industry practices, but it has also brought major 

challenges for data processing, data maintenance and accurate 

prediction. One such major challenge is associated with the 

high cost of model features in many applications. In this paper, 

we introduced a DNN-based approach to developing deep 

learning models subject to budget constraints. Our approach 

can gradually reduce the model cost by removing the least 

important feature at each step. We present an algorithm to find 

weak links and weak neurons in a backward manner and 

identify the least important feature in a model. To support user 

selection of a suitable BCM under a given budget, or trade off 

between budget and predictive accuracy, we demonstrate how 

to generate a list of BCMs under predefined budget levels and 

a minimum required accuracy. Since our approach is based on 

deep neural network, it is scalable and provides a promising 

method for big data analysis. 

In our current work, we performed experiments using the 

FF-DNN on standard datasets. In future work, we will adopt 

more advanced DNNs such as RNN, further verify the 

performance of our approach using much larger datasets, and 

evaluate the computational cost of our approach. We will also 

look into the dependency among input features, and seek a more 

efficient method by removing a group of highly correlated but 

less important features. Instead of deriving a list of BCMs, we 

will explore to build dynamic models with mutable feature 

costs. This would require developing real-time classifiers as 

shown in previous work [15]. Finally, we plan to build partially 

connected FF-DNNs under given budget levels. This could be 

a challenging task because partially connected FF-DNNs are 

currently not supported in major deep learning tools such as 

TensorFlow. However, as in earlier work [5], using partially 

connected DNNs in our deep learning approach can simplify 

the computation process and lead to more efficient BCMs. 
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