

Int’l Conf. Data Science | ICDATA’21 | 1

A Deep Neural Network Based Approach to Building

Budget-Constrained Models for Big Data Analysis*

Rui Ming1, Haiping Xu2, Shannon E. Gibbs3, Donghui Yan4, and Ming Shao5
1,2,3,5Department of Computer and Information Science

4Department of Mathematics

University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA

Email: {rming, hxu, sgibbbs, dyan, mshao}@umassd.edu

Abstract—Deep learning approaches require collection of data on

many different input features or variables for accurate model

training and prediction. Since data collection on input features could

be costly, it is crucial to reduce the cost by selecting a subset of

features and developing a budget-constrained model (BCM). In this

paper, we introduce an approach to eliminating less important

features for big data analysis using Deep Neural Networks (DNNs).

Once a DNN model has been developed, we identify the weak links

and weak neurons, and remove some input features to bring the

model cost within a given budget. The experimental results show our

approach is feasible and supports user selection of a suitable BCM

within a given budget.

Keywords- Deep learning, big data analysis, budget-constrained

model, input feature, deep neural network

I. INTRODUCTION

With the emergence of big data, large scale data-driven

machine learning becomes increasingly important. Deep

learning, also called deep structured learning, is a subfield of

machine learning based on artificial neural networks (ANNs).

A deep neural network (DNN) is an ANN with multiple hidden

layers between the input and output layers. There are many

different types of DNNs, e.g., feedforward deep neural network

(FF-DNN), recurrent neural network (RNN) and convolutional

neural network (CNN), all of which follow similar procedures

for training and testing [1]. Deep learning approach has been

very successful in recent years for processing big data from

sources such as social media, Internet search engines, e-

commerce platforms, and healthcare systems. Successful deep

learning mechanisms require collecting a large amount of data

or purchasing data from a third-party vendor on many different

input features or variables in order to develop feasible and

accurate models for classification and prediction. However,

data collection on input features could be very expensive and

time consuming. Such cost may also include preprocessing,

maintenance and storage of the data associated with the input

features. For example, a recommendation system of a major e-

commerce application using deep learning would require

storing millions of user access information per month. Dozens

of features such as, the amount of time a user views a certain

item, and other items that are also viewed, would be recorded

* This material is based on work supported by 2020 University Industry

Collaborative Seed Fund, University of Massachusetts.

for each user access. The preprocessing of such data and the

costs associated with the storage, transmission and maintenance

can be remarkably high. Similarly, in a deep learning

application that determines when a cruise ship needs to be

maintained, a huge amount of data on the status measurements

and usage statistics of the different system components of the

cruise ship would also be required. As one more example, in a

healthcare application using deep learning, various medical test

data such as blood pressure, cholesterol levels and heart rates,

need to be collected to develop an accurate medical diagnose

model for training and determination of certain diseases.

The cost associated with input features include the cost to

collect the training and testing data as well as collection of a

new data point for the classification or prediction purpose. In

this study, we assume there are existing training and testing

datasets for building a deep learning model. Therefore, we can

focus on the total cost of collecting a new data point on all

required features of the model. We call the cost for collecting a

new data point the model cost. Note that a high model cost

would also imply a high cost of acquiring the needed datasets

for model training and testing. Practically, there are always

limits to the budgets in deep learning applications. Due to the

budget constraints, we must limit the number of features used

in a model, while keeping the model accuracy high enough. In

our approach, we reduce the model cost by selecting a subset of

the most important features and deriving a reasonable model

within a certain budget. In other words, with a given budget, we

need to eliminate the least important features to ensure the

model cost is lower than the budget. Since removing features

typically reduces the accuracy of the model, it is required that

our approach must deliver a budget-constrained model (BCM)

with a reasonable accuracy. In previous work, we proposed

several ways to select a set of features under a certain cost

profile [2]. In this paper, we focus on deep learning methods

and introduce a DNN-based approach to identifying the least

important features from a DNN, subject to a given budget.

Instead of deriving a single BCM, we produce a list of BCMs

with expected predictive accuracies, sorted by predefined

budget levels. This could be used to choose a BCM with the

best predictive accuracy under a given budget, or allow a user

to better trade off between budget and model accuracy.

Int’l Conf. Data Science | ICDATA’21 | 2

II. RELATED WORK

There have been many research efforts on big data analytics

using deep learning approaches. Deep architectures such as

DNNs can often capture hierarchical and complex patterns of

the inputs for more effective analysis of big data than traditional

statistical learning methods. For example, the “Google Brain”

project has used large DNNs with about one million simulated

neurons and one billion simulated connections to leverage big

data for image enhancement, language translation, and robotics

research [3]. Esteva et al. presented deep learning techniques

using DNNs for medical imaging, electronic health record data

processing, and robotic-assisted surgery in the healthcare

domain [4]. They also demonstrated the application of deep

learning in bioinformatics, e.g., building a deep-learning

system in genomics to convert raw data into input data tensors,

processed by DNNs for specific biomedical applications. Xu

and Gade designed a systematic approach to designing a

layered knowledge graph that can be converted into a structured

DNN [5]. The structured DNN model has been used for smart

real estate assessments, which outperforms conventional multi-

variate linear regression methods as well as prediction

mechanisms used by the leading real estate companies such as

Zillow and Redfin. Most of the deep learning approaches

assume the availability of required datasets for predictive

analysis without considering the cost associated with data

collection. In contrast, our approach aims to derive budget-

constrained models by eliminating the least important features.

Previous work related to cost-sensitive learning is

summarized as follows. Elkan showed the proportion of

negative examples in a training set would affect the optimal

cost-sensitive classification decisions for problems with

differing misclassification costs [6]. He recommended first

developing a classifier and then using the probability estimates

calculated from the classifier to compute optimal decisions.

Sheng and Ling proposed a method to select a proper threshold

that produces the lowest misclassification cost [7]. The

experimental results showed that thresholding, as a general

method to develop a cost-sensitive algorithm, has the least

sensitivity on the misclassification cost ratio. O’Brien et al.

analyzed the relationship between systematic errors in the class

probability estimates and cost matrices for multiclass

classification [8]. They explored the effect on the class

partitioning of the cost matrix and demonstrated the effective-

ness of learning a new partition matrix. Zhou et al. proposed a

method to select features by their probabilities that are inversely

proportional to the costs [9]. They constructed a decision tree

with feature costs and used a random forest-based feature

selection algorithm to produce low-cost feature subsets. Ji and

Carin presented a formal definition of the cost-sensitive

classification problem and provided a solution using a partially

observable Markov decision process (POMDP) [10]. Different

from traditional approaches, features were selected in a

sequential manner until no additional feature acquisition could

be justified based on classification results. More recently,

Maliah and Shani formulated the cost sensitive classification

problem as a POMDP, taking both test and misclassification

costs into consideration [11]. They used a tree-based MDP

approach to modeling a belief space and provided a scalable

method for reasoning about future actions. Frumosu et al.

proposed a method to reduce the production cost by predicting

the number of faulty products while ensuring production quality

delivery [12]. They reduced the problem to an imbalanced

binary classification problem and solved the problem using

Voronoi diagrams and the genetic algorithm.

The above cost-sensitive learning approaches provided

useful methods to reduce test and misclassification costs;

however, they are not aimed to provide users model options to

meet the budget constraints. In addition, most of the existing

cost-sensitive learning approaches are not deep learning

approaches, which intrinsically have limitations in dealing with

large datasets and complex problems such as medical diagnosis.

In previous work [2], Yan et al. approached the problem of

budget constrained learning, in terms of variable costs. They

explored the solution space to produce a model schedule as a

list of models, sorted by model costs and expected predictive

accuracy. Based on this work, we further proposed a deep

learning based approach to building budget-constrained models

using deep neural networks. In this sense, our approach

complements existing cost-sensitive learning approaches that

are suitable for applications not involving large amount of data

and provides a scalable solution to complex problems, such as

cybersecurity, fraud detection and medical diagnosis.

III. MODEL COST AND BUDGET-CONSTRAINED MODELS

Deep learning has been widely used in various fields such

as medical diagnosis, autonomous driving, and mathematics

education. DNNs are a type of deep learning methods widely

adopted in big data analytics and large-scale data driven

applications. Since DNN-based approaches have shown

ground-breaking results in speech recognition and image

recognition tasks in recent years, the number of applications

using DNNs has exploded. In this paper, we demonstrate our

deep learning approach using FF-DNN – a simple type of

DNNs, to build BCMs for big data analysis.

A. Model Cost of a Deep Neural Network

The FF-DNN model is usually treated as a “black box”;

however, it is undeniable that every neuron in a hidden layer of

a FF-DNN has certain significance or hidden semantics, and

different neurons have different effects on the outputs of the

model [5]. To a certain extent, the absolute weight value of a

link in a neural network represents the impact of the source

neuron to the target neuron. Such impact may pass through the

layers of the neural network and influence the results of the

output neurons. When an input neuron has the least impact on

the results of the output neurons, its corresponding feature may

become a candidate to be removed from the model with

minimal impact on the model accuracy.

To adopt a well-trained deep learning model for prediction

or classification, we need to collect data on a set of input

features. For example, the set of input features to determine if a

patient has a certain heart disease may include measures such

as “blood pressure”, “heart rate”, “fasting blood sugar”, “age”,

and “gender”. The collection, purchase, and storage of data on

Int’l Conf. Data Science | ICDATA’21 | 3

different features may incur different feature cost. Let F be the

set of all measurable features in a certain domain, where | F | =

m. Let f = {f1, f2, …, fK} be a set of input features of a model

Ф(f), which uses a total of K measurable features; thus, f ⊆ F

and K ≤ m. Let function *: ZFc  be a mapping from feature f

 F to the cost of measuring feature f. To simplify matters, we

assume a feature cost is a nonnegative integer from the set of

nonnegative integers Z*. We define the model cost of Ф(f) as

the summation of all feature costs as in Eq. (1).

 𝐶(Ф(𝒇)) = ∑ 𝑐(𝑓𝑖)
K
𝑖=1 where fi f and | f | = K (1)

Given a budget level b, we need to find a set of features f ⊆

F, such that the model cost of Ф(f) is no more than b, and Ф(f)

has the best predictive accuracy. That is, to solve the optimal

problem defined in Eq. (2).

 arg max
𝒇⊆𝐹

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(Ф(𝒇)) subject to 𝐶(Ф(𝒇)) ≤ 𝑏 (2)

In our DNN-based approach, we start with all measurable

features and a list of predefined budget levels. We gradually

remove the least important input features until the model costs

are within the budgets. For each budget level, once the least

important features are removed, the remaining features form a

new set of inputs for development of a new classifier. It is

expected that the new model will be less accurate as the number

of input features decreases; however, the costs of collecting

data for training and prediction can be significantly reduced.

B. Budget-Constrained Models

In the context of FF-DNN, a budget-constrained model or

BCM Ф(f) is defined as a 4-tuple (S, f, w, p), where S is the

structure of the FF-DNN, f is a set of input features that

correspond to the set of input neurons in Ф(f), w is the weights

of the links in Ф(f), and p the expected accuracy of the model.

Note in this paper, S is defined as a fully connected DNN

(FCDNN), while using partially connected DNNs (PCDNNs) is

envisioned as a future, and more ambitious research direction.

Given a list of budget levels B = (b1, b2, …, bn) and a set of

measurable features F = {f1, f2, …, fm}, our task is to build a list

BCMs Фi, where 1 ≤ i ≤ n, and for each Фi, with an identified

subset of features from F such that the model satisfies Eq. (2)

for budget bi. Table I shows an example of a list of BCMs with

their expected model accuracy and lists of features, sorted by

budget levels. With a given budget and a required accuracy, we

can find the most suitable model from the table. For example,

if the given budget is 1750, and the required model accuracy is

0.94, we shall choose the BCM with the set of features

{1,4,5,8,10}, whose model cost is 1500 that is less than 1750.

TABLE I. AN EXAMPLE OF A LIST OF BCMS UNDER BUDGETS

Model Budget Accuracy Features

Ф1 3000 0.9615 {1,2,4,5,8,10,11,12}

Ф2 2500 0.9519 {1,2,4,5,8,10,11}

Ф3 2000 0.9433 {1,4,5,8,10,11}

Ф4 1500 0.9406 {1,4,5,8,10}

Ф5 1000 0.9357 {1,5,8,10}

Ф6 500 0.9325 {1,5,10}

C. A Framework for Building a Budget-Constrained Model

With sufficient training and testing datasets, our approach

aims to develop a BCM with its model cost within a given

budget level. The framework for generating a BCM under a

given budget is illustrated in Fig. 1.

Fig. 1. A Framework of generating a BCM under a given budget

For any raw data, whether captured by measurement or

purchased from a third-party vendor, there is typically a lot of

unnecessary information. We first need to preprocess the data

and retrieve the needed fields in a desired format. Since data

points with missing information or wrong information could

negatively affect the training and testing results, such data

points must be fixed or considered as outliers to be removed

from the dataset. The dataset is then split into a training dataset

and a testing dataset. Note that to simplify Fig. 1, we do not

show the process of partitioning the dataset into k equal sized

subsamples for the k-fold cross-validation purpose. We extract

all the features from the dataset to build the first model. After

the model is fully trained, we check if the model cost is higher

than the given budget. If the answer is yes, we find the least

important feature, remove it using an algorithm described in

Section IV, and create a new model using the remaining

features. This procedure is repeated until the model cost

becomes less than or equal to the given budget. In this case, the

testing dataset is used to calculate the expected model accuracy.

Finally, the 4-tuple (S, f, w, p), i.e., the structure S of the FF-

DNN, the set of input features f, the weights of the links w in

the model, and the expected accuracy p of the model, is

recorded as the resulting BCM for the given budget.

IV. GENERATION OF BUDGET-CONSTRAINED MODELS

A. Identifying the Least Important Input Feature

In our DNN-based approach, we define a set of thresholds

for the links of the neural network, designed to identify and

eliminate the weak links. When a neuron’s output links are all

identified as weak links, the neuron is considered to have

minimal impact on the output, and thus, it is considered a weak

neuron. Our approach starts with the last hidden layer that most

directly affects the output neurons, and then works backward to

Int’l Conf. Data Science | ICDATA’21 | 4

determine the weak links and weak neurons. The procedure

repeats until we find weak input neurons, whose corresponding

features become a candidate to be removed from the model.

We now use a few examples to show how to identify weak

links and weak neurons. Since multiple source neurons link to

a target neuron, the weights of each link represent their impact

on the target neuron. The higher absolute value of a weight, the

higher the impact a source neuron has on the target neuron. We

can identify the weak links by setting a threshold for each target

neuron of a link. For example, in Fig. 2 (a), the link threshold

for target neuron tn is set to 0.3. Consequently, the link from

source neuron n1 to n is marked as a weak link (denoted by a

dashed line) as the weight of the link is 0.1 that is less than tn.

 (a) (b)

Fig. 2. Examples of (a) weak link and (b) weak neuron

On the other hand, a source neuron links to multiple target

neurons. If the links coming from a source neuron have all been

identified as weak links, that source is marked as a weak neuron.

For example, in Fig. 2 (b), all links coming from source neuron

n are weak links because their link weights are less than their

corresponding thresholds; thus, neuron n is marked as a weak

neuron denoted by a dashed circle.

If a neuron is identified as a weak neuron, its impact on the

outputs of the neural network is considered minimal. Therefore,

all links connecting that weak neuron are considered as weak

links because if we remove the weak neuron from the DNN, all

its incoming links will also be removed. Fig. 3 shows such an

example with neuron n5 being a weak neuron.

Fig. 3. An example of weak links connecting to a weak neuron

As shown in Fig. 3, since neuron n5 is a weak neuron,

neuron n1 to n4 would have little impacts on the outputs of the

neural network through their links to n5; therefore, we can

reasonably mark links l1, l2, l3 and l4 as weak links. Being said,

a link is marked as a weak link in either of the following two

cases: 1) its weight is less than the threshold, and 2) its target

neuron is a weak neuron.

Fig. 4 presents an example of a FF-DNN model with four

layers including two hidden layers. There are three input

neurons n11, n12 and n13, which correspond to three input

features. All neurons except the input neurons have been

assigned thresholds. Note that the thresholds for the neurons

can be different, and each threshold of a neuron n is initialized

based on the weights of all links that connect to neuron n. As

described later in this section, the thresholds need to be adjusted

if no weak input neuron can be identified.

Fig. 4. An example of a FF-DNN model

The steps to identify weak links and weak neurons of the

neural network in Fig. 4 are illustrated in Fig. 5. From the figure,

we can see the process starts with the last hidden layer and

works backward to the input layer. For example, in Layer 3,

since the neuron n31 contains only one output link, which is a

weak link, it is marked as a weak neuron. Similarly, in Layer 2,

since neuron n21 contains links that are either weak or connect

to a weak neuron, neuron n21 is then marked as a weak neuron

as well. Finally, in Layer 1, two input neurons n11 and n12 are

identified as weak neurons; thus, their corresponding input

features are candidate features to be removed from the model.

It is worth noting that, in our approach, when more than one

weak input neurons are identified, the least important feature is

considered to be the one having the highest feature cost;

therefore, minimizing the model cost.

Fig. 5. The steps to identify weak links and weak neurons

Int’l Conf. Data Science | ICDATA’21 | 5

The procedure of finding the least important feature is

shown in Algorithm 1. As described in the algorithm, given a

FF-DNN Ф(f) with L layers, all neurons and links in Ф(f) are

initially considered strong. A very low initial threshold δn is set

for each neuron n, except for the input layer, based on the

weights of the input links to neuron n. Starting from the last

hidden layer lL-1, all the weak neurons and weak links are

marked in a backward manner. To ensure that the input layer

contains at least one weak neuron, the value of each threshold

can be increased gradually. Finally, a weak neuron in the input

layer is selected and its corresponding input feature is identified

as the least important feature f*.

Algorithm 1: Finding the Least Important Feature

Input: A FF-DNN Ф(f) with L layers including input layer l1 and

output layer lL, where f is a set of features and L ≥ 4.

Output: The least important feature f*.

1. Let all neurons/links in Ф(f) be strong neurons/links

2. Let f* be the least important feature, initialized to null

3. for i = 2 to L

4. for each neuron n in layer li

5. Initialize the threshold tn of neuron n with small value δn

6. while f* is null

7. for i = L-1 to 1 // identify weak links/neurons backward

8. for each target neuron β in li+1

9. for each source neuron α in li

10. Let wγ be the weight of the link γ from α to β

11. if wγ < tβ or β is a weak neuron

12. Mark link γ as a weak link

13 for each source neuron α in li

14. if all links from source neuron α are weak links

15. Mark source neuron α as a weak neuron

16. if there is no weak neuron in input layer l1

17. Let threshold tn of each target neuron n in Ф(f) be 2*δn

18. else // there are one or more weak input neurons

19. Select a weak neuron α* in l1 with highest feature cost

20. Set f* to the input feature corresponding to α*

21. return f*

B. Generating a FF-DNN based BCM

Once we are able to identify the least important input feature

in our FF-DNN based deep learning approach, we can generate

a FF-DNN model that satisfies a budget requirement. Let a

given budget be b. We develop a FF-DNN model that satisfies

the requirements described in Eq. (2). This may require going

through a number of steps to remove more than one input

feature to meet the budget requirement. Each time when the

least important feature is removed, we build a new FF-DNN

model and train it using the same datasets. It is expected that

the new model is less accurate than its previous model version

as the number of input features decreases. With the trained new

model, we identify the least important feature again until the

budget requirement is met. Algorithm 2 shows the procedure to

generate a BCM given budget level b, dataset D with a set of

features F, and model cost function C(Ф(f)). To make the

model cost C(Ф(f)) ≤ b, starting from f = F, the method

gradually removes the least important feature using Algorithm

1. Finally, the model Ф(f) is created and trained on the f that

satisfies C(Ф(f)) ≤ b, and the corresponding 4-tuple (S, f, w, p)

representing BCM Ф(f) is returned as the result.

Algorithm 2: Generating a BCM Under a Given Budget

Input: Dataset D with a set of m measurable features F = {f1, f2, …,

fm}, model cost function C(Ф(f)), and a given budget b.

Output: 4-tuple (S, f, w, p) representing BCM Ф(f) with C(Ф(f)) ≤ b.

1. Let f be the set of measurable features F

2. Randomly partition D into k equal sized subsamples.

3. while C(Ф(f)) > b // model cost is greater than the given budget

4. Create a FF-DNN Ф(f) with a set of features f

5. Train and test Ф(f) with dataset D using k-fold cross-validation

6. Invoke Algorithm 1, and let f* be the least important feature

7. Remove feature f* from f

8. Create a FF-DNN Ф(f) with a set of features f

9. Train and test Ф(f) with D, and save weights w and accuracy p

10. Let S be the structure of FF-DNN Ф(f).

11. return 4-tuple (S, f, w, p)

C. Generating a List of BCMs

Developing a deep learning model under a specific budget

may possibly result in failing to achieve the required predictive

accuracy or wasting money on unnecessary features. For

example, a low given budget for a deep learning model adopted

in a cardiac diagnosis application may only use a limited

number of features, which could make the prediction accuracy

less than 60%. Such an application is obviously not marketable.

On the other hand, suppose a vehicle routing simulation

application has already achieved close to 100% prediction

accuracy with a reasonable model cost. If we continue to

improve the model with more features under a higher budget, it

cannot improve the predictive accuracy significantly and will

inevitably waste money. To avoid the above undesirable

situations, users shall be allowed to trade off between various

budget levels and the required predictive accuracy for a suitable

cost-effective deep learning model. Algorithm 3 shows the

procedure to generate a list of BCMs LBCM, given a maximum

budget bmax and a distance d between two consecutive budget

levels. Each generated BCM satisfies the minimal accuracy

requirement as well as its corresponding budget requirement.

Algorithm 3: Generating a List of BCMs

Input: The maximum budget bmax, the distance d between two

consecutive budget levels, and the minimum required predictive

accuracy pmin

Output: A list of BCMs LBCM that meet the budget and predictive

accuracy requirements

1. Let LBCM be a list of BCMs, initialized to an empty list.

2. Let b be a budget level, initialized to bmax

3. while b > 0 // a budget level should be always greater than 0

4. Invoke Algorithm 2, and let (S, f, w, p) be a 4-tuple

 representing BCM Ф(f) with C(Ф(f)) ≤ b

5. if p ≥ pmin // the expected model accuracy is no less than pmin

6. Add the 4-tuple (S, f, w, p) into LBCM

7. else return LBCM

8. b = b - d

9. return LBCM

Int’l Conf. Data Science | ICDATA’21 | 6

V. CASE STUDY

The major goal of our approach is to develop a list of DNN

models that meet budget requirements, while keeping the

predictive accuracy of each model as high as possible. To

validate the feasibility and performance of our approach, we

conduct experiments on two datasets from the UC Irvine

Machine Learning Repository [13]. The two datasets are the

Early-stage diabetes risk prediction dataset (DS1) and the

Heart disease dataset (DS2). To facilitate the application of our

approach and ensure fully trained models as well as improved

model accuracy, we adopt the TensorFlow [14] to develop FF-

DNNs for the experiments and apply k-fold cross-validation to

train and test the models. Each dataset is randomly divided into

10 datasets for 10-fold cross-validation. For categorical data,

we use one-hot encoding to divide the corresponding feature

into multiple in order to improve model performance. For

example, the feature Itching in DS1 is a categorical feature with

a value of either “Yes” or “No”, representing the presence or

absence of itching symptoms, respectively. Using the one-hot

encoding, the feature Itching can be split into two features,

namely Itching_Yes and Itching_No. If Itching has value “Yes”,

it is replaced by two features Itching_Yes = 1 and Itching_No =

0; otherwise, we set Itching_Yes = 0 and Itching_No = 1.

A. The Early Stage Diabetes Risk Prediction Dataset

The Early-stage diabetes risk prediction dataset includes

520 instances, collected using direct questionnaires from the

patients of Sylhet Diabetes Hospital in Sylhet, Bangladesh [13].

There are 13 categorical attributes used as features, namely

Age, Sex, Polydipsia, Weakness, Polyphagia, Genital thrush

(Gthrush), Visual blurring (Vblur), Itching, Irritability,

Delayed healing (Dheal), Partial paresis (Par), Muscle

stiffness (Mstiff) and Alopecia. Each input feature is assigned a

feature ID as shown in Table II.

TABLE II. FEATURES IN EARLY-STAGE DIABETES RISK PREDICTION DATASET

 DS1 Input Feature [Feature ID]

Dheal [1] Alopecia [2] Vblur [3] Obesity [4] Itching [5]

Gthrush [6] Polydipsia [7] Irritability [8] Polyphagia [9] Par [10]

Mstiff [11] Weakness [12] Age [13]

The label of each data point is an output categorical feature

of Diabetes, which has the value of either “Yes” or “No”,

indicating whether a patient has diabetes or not. The FF-DNN

models that we build for this dataset have 5 hidden layers with

120 hidden neurons in each hidden layer. We set the feature

costs randomly by sampling from [100, 300] uniformly, except

for the costs of Sex and Age, which are set to 0. In the following

experiments, the maximum budget level bmax is set to 1900,

which is greater than the total cost of all features in the diabetes

dataset; thus, the initial BCM model shall consist of all the

features with the potential maximum predictive accuracy. We

set a distance d = 200 between two consecutive budget levels,

gradually decrease the budget level, and derive the

corresponding BCMs. This process stops when the predictive

accuracy becomes less than the minimum required predictive

accuracy pmin = 0.65, as predefined for the experiments.

Table III shows a list of BCMs generated by applying

Algorithm 3, where the features are represented by the feature

ID as defined in Table II. For example, the BCM Ф8, with the

given budget of 500 and expected predictive accuracy of 0.8173,

has a set of input features {3,6,7,13}, representing the features

of Visual blurring, Genital thrush, Polydipsia, and Age.

TABLE III. LIST OF BCMS FOR THE EARLY-STAGE DIABETES DATASET

Model Budget Accuracy DS1 Input Features

Ф1 1900 0.9615 {1,2,3,4,5,6,7,8,9,10,11,12,13}

Ф2 1700 0.9423 {1,3,4,5,6,7,8,9,10,11,13}

Ф3 1500 0.9423 {1,3,4,5,6,7,8,9,10,13}

Ф4 1300 0.9327 {1,3,5,6,7,8,9,10,13}

Ф5 1100 0.9327 {1,3,6,7,9,10,13}

Ф6 900 0.9135 {3,6,7,9,10,13}

Ф7 700 0.8462 {3,6,7,9,13}

Ф8 500 0.8173 {3,6,7,13}

Ф9 300 0.7115 {3,13}

The list of BCMs in Table III allows a user to select an

appropriate deep learning model based on the budget and

accuracy requirements. For example, when the given budget is

1600 and the required accuracy is 0.94, the user shall select the

BCM Ф3with the set of features {1,3,4,5,6,7,8,9,10,13}. In this

case, the expected predictive accuracy is 0.9423, which is

greater than the required accuracy 0.94. However, if the

required accuracy becomes 0.95, the user will have to increase

the budget to 1900 and select the first model Ф1 with expected

predictive accuracy 0.9615, being greater than 0.95.

To demonstrate the expected performance of our approach,

we compare it with two different approaches: the cost-based

approach and the random selection approach. With the given

features and the cost function, the cost-based approach works

in accordance with the principle that it always removes the most

expensive feature to make the model cost decrease quickly;

while the random selection approach randomly removes a

feature each time to reduce the model cost.

For each of the three approaches, we generate 10 BCMs for

each budget level, and select the model with the highest

prediction accuracy. The highest predictive accuracy vs. model

cost at each budget level is presented in Fig. 6.

Fig. 6. Predictive accuracy over predefined budget levels (DS1)

Int’l Conf. Data Science | ICDATA’21 | 7

From Fig. 6, we can see that our approach outperforms the

other two approaches at each budget level, while the cost-based

approach works better than the random-selection approach in

most of the cases. Since the cost-based approach removes the

most expensive feature at each step, it can remove the minimum

number of features to make the model cost below a given

budget. Compared with the random-selection approach, the

cost-based approach would generally perform better than the

random selection approach as more features could be kept for a

given budget, potentially leading to a higher accuracy.

However, the cost-based approach may also mistakenly remove

the most expensive feature that is also an important one. This is

the reason why the cost-based approach cannot perform as well

as our approach. Note that our approach always removes the

least important feature first, which has the lowest impact on the

model prediction accuracy. In the figure, all three curves

intersect at budget level 1900, the reason being, all three

approaches share the same FF-DNN that uses all input features,

and thus, they have the same accuracy. In addition, we notice

that the accuracies of all three methods drop sharply when the

budget level becomes less than 900; whereas the budget levels

above 900 maintain high accuracies of all three methods. This

indicates that the BCM Ф6 from Table III with the budget level

of 900 may be considered as the most cost-effective model.

To further demonstrate that our approach leads to a higher

degree of model accuracy than the other two approaches. We

conduct experiments using the three approaches by removing

only one feature at a time. Fig. 7 shows the comparison results

among the three approaches showing how accuracy changes

with the number of features removed. As demonstrated in the

figure, for any number of features removed, our approach

consistently achieves the highest model accuracy than the other

two approaches.

Fig. 7. Accuracy changes with the number of features removed (DS1)

B. The Heart Disease Dataset

The Heart disease dataset contains 76 attributes, but only 14

features is used in this experiment for demonstration purpose

[13]. The 14 features include 7 categorical attributes, namely

Sex, Chest pain type (Cp), Slope of the peak exercise ST

segment (Slope), Resting electrocardiographic results

(Restecg), Number of major vessels colored by fluoroscopy

(Ca), Exercise induced angina (Thal), Thallium Stress Test

(Exang), along with 6 integer attributes, namely Age, Resting

blood pressure (Trestbps), Serum cholestoral in mg/dl (Chol),

Fasting blood sugar (Fbs), Maximum heart rate achieved

(Thalach), and ST depression induced by exercise relative to

rest (Oldpeak). Each input feature is assigned a feature ID as

shown in Table IV.

TABLE IV. FEATURES IN HEART DISEASE DATASET

DS2 Input Feature [Feature ID]

Ca [1] Exang [2] Cp [3] Thal [4] Thalach [5]

Oldpeak [6] Trestbps [7] Slope [8] Fbs [9] Restecg [10]

Chol [11] Sex [12] Age [13]

The label of each data point is an output categorical feature

of Diagnosis of heart disease, which has the value of either

“Yes” or “No”, indicating whether a patient has a heart disease

or not. The FF-DNN model we built for this dataset contains 3

hidden layers with 200 hidden neurons in each hidden layer.

Similar to the experiments on the Early-stage diabetes risk

prediction dataset, we set the maximum budget level bmax to

1600, the distance d = 200 between two consecutive budget

levels, and the minimum required predictive accuracy pmin to

0.65. Table V shows the list of BCMs generated using our

approach with random feature costs sampling from [100, 300].

TABLE V. LIST OF BCMS FOR THE HEART DISEASE DATASET

Model Budget Accuracy DS2 Input Features

Ф1 1600 0.9333 {1,2,3,4,5,6,7,8,9,10,11,12,13}

Ф2 1400 0.9111 {1,2,3,4,6,8,9,10,11,12,13}

Ф3 1200 0.9111 {1,2,3,6,8,9,10,11,12,13}

Ф4 1000 0.8889 {1,2,3,6,9,10,12,13}

Ф5 800 0.8444 {1,2,6,9,10,12,13}

Ф6 600 0.8222 {2,6,10,12,13}

Ф7 400 0.8000 {6,10,12,13}

Ф8 200 0.7778 {6,12,13}

Now, we compare the performance of our approach with

that of the cost-based approach and the random selection

approach by generating lists of BCMs for various budget levels.

The results of predictive accuracy over predefined budget levels

for the three approaches are shown in Fig. 8.

Fig. 8. Predictive accuracy over predefined budget levels (DS2)

Int’l Conf. Data Science | ICDATA’21 | 8

From Fig. 8, we can see that our approach has the highest

model accuracy at all budget levels, while the cost-based

approach has higher accuracy than the random selection

approach at most of the budget levels. These results are

consistent with those from the previous experiments on DS1.

However, we notice that when the two features Exang and

Restecg are removed from BCM Ф6 and Ф7, respectively, the

predictive accuracy is not significantly changed. This is

different from the situation shown in Fig. 6, where accuracy

drops sharply when the budget level becomes low. Since our

approach always removes the least important feature first, the

features Exang and Restecg are supposed to be important ones;

thus, removing them shall result in significant decrease of the

predictive accuracy. The reason why this does not happen could

be explained by the correlations the input features may have

with each other. In this particular case, the importance of the

features Exang and Restecg may have relied on features that

have been removed, e.g., features Ca and Fbs in BCM Ф5.

Similar to the experiments on DS1, we develop models

using the three approaches by removing only one feature at a

time. Fig. 9 shows the comparison results among the three

approaches. As shown in the figure, for any number of features

removed, our approach again consistently achieves the highest

model accuracy than the other two approaches.

Fig. 9. Accuracy changes with the number of features removed (DS2)

VI. CONCLUSIONS AND FUTURE WORK

Big data analytics is increasingly becoming one of the

trending industry practices, but it has also brought major

challenges for data processing, data maintenance and accurate

prediction. One such major challenge is associated with the

high cost of model features in many applications. In this paper,

we introduced a DNN-based approach to developing deep

learning models subject to budget constraints. Our approach

can gradually reduce the model cost by removing the least

important feature at each step. We present an algorithm to find

weak links and weak neurons in a backward manner and

identify the least important feature in a model. To support user

selection of a suitable BCM under a given budget, or trade off

between budget and predictive accuracy, we demonstrate how

to generate a list of BCMs under predefined budget levels and

a minimum required accuracy. Since our approach is based on

deep neural network, it is scalable and provides a promising

method for big data analysis.

In our current work, we performed experiments using the

FF-DNN on standard datasets. In future work, we will adopt

more advanced DNNs such as RNN, further verify the

performance of our approach using much larger datasets, and

evaluate the computational cost of our approach. We will also

look into the dependency among input features, and seek a more

efficient method by removing a group of highly correlated but

less important features. Instead of deriving a list of BCMs, we

will explore to build dynamic models with mutable feature

costs. This would require developing real-time classifiers as

shown in previous work [15]. Finally, we plan to build partially

connected FF-DNNs under given budget levels. This could be

a challenging task because partially connected FF-DNNs are

currently not supported in major deep learning tools such as

TensorFlow. However, as in earlier work [5], using partially

connected DNNs in our deep learning approach can simplify

the computation process and lead to more efficient BCMs.

REFERENCES

[1] A. Shrestha and A. Mahmood, “Review of Deep Learning Algorithms and
Architectures,” IEEE Access, Vol. 7, 2019, pp. 53040-53065.

[2] D. Yan, Z. Qin, S. Gu, H. Xu, and M. Shao, “Cost-Sensitive Selection of
Variables by Ensemble of Model Sequences,” To appear in Knowledge
and Information Systems (KAIS), An International Journal, 2021.

[3] N Jones, “Computer Science: the Learning Machines,” Nature, Vol. 505,
No. 7482, 2014, pp. 146-148.

[4] A. Esteva, A. Robicquet, B Ramsundar et al., “A Guide to Deep Learning
in Healthcare,” Nature Medicine, Vol. 25, 2019, pp. 24-29.

[5] H. Xu and A. Gade, “Smart Real Estate Assessments Using Structured
Deep Neural Networks,” In Proceedings of the 2017 IEEE International
Conference on Smart City Innovations (IEEE SCI 2017), San Francisco,
CA, USA, August 4-8, 2017, pp. 1126-1132.

[6] C. Elkan, “The Foundations of Cost-Sensitive Learning,” In Procedings
of the 17th International Joint Conference on Articial Intelligence
(IJCAI’01), Seattle, Washington, August 4-10, 2001, pp. 973-978.

[7] V. S. Sheng and C. X. Ling, “Thresholding for Making Classifiers Cost-
Sensitive,” In Proceedings of the 21st National Conference on Artificial
Intelligence (AAAI’06), Vol. 1, July 2006, pp. 476-481.

[8] D. B. O’Brien, M. R. Gupta, and R. M. Gray, “Cost-Sensitive Multi-Class
Classication from Probability Estimates,” In Proceedings of the 25th
International Conference on Machine Learning (ICML’08), Helsinki,
Finland, July 2008, pp. 712-719.

[9] Q. Zhou, H. Zhou, and T. Li. “Cost-Sensitive Feature Selection Using
Random Forest: Selecting Low-Cost Subsets of Informative Features,”
Knowledge-Based Systems, Vol. 95, 2016, pp. 1-11.

[10] S. Ji and L. Carin, “Cost-Sensitive Feature Acquisition and Classification,”
Pattern Recognition, Vol. 40, No. 5, 2007, pp. 1474-1485.

[11] S. Maliah and G. Shani, “Using POMDPs for Learning Cost Sensitive
Decision Trees,” Artificial intelligence, Vol. 292, March 2021, 103400.

[12] F. D. Frumosu, A. R. Khan, H. Schiøler, M. Kulahci, M. Zaki and P.
Westermann-Rasmussen, “Cost-Sensitive Learning Classification
Strategy for Predicting Product Failures,” Expert Systems with
Applications, 2020, Vol. 161, 113653.

[13] D. Dua and C. Graff, UCI Machine Learning Repository, Retrived from
http://archive.ics.uci.edu/ml, Irvine, CA, University of California, School
of Information and Computer Science, 2019.

[14] M. Abadi, A. Agarwal, P. Barham, et al., “TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems,” TensorFlow White
Papers, 2015. Software available from tensorflow.org.

[15] B. J. Ford, H. Xu, and I. Valova, “A Real-Time Self-Adaptive Classifier
for Identifying Suspicious Bidders in Online Auctions,” The Computer
Journal (COMPJ), Vol. 56, No. 5, 2013, pp. 646-663.

