
1

An Educational Tool for Exploring the Pumping

Lemma Property for Regular Languages*

Josue N. Rivera and Haiping Xu

Computer and Information Science Department

University of Massachusetts Dartmouth, Dartmouth, MA, USA

Email: {josue.n.rivera, hxu}@umassd.edu

Abstract–Pumping lemma has been a very difficult topic for students to understand in a theoretical computer science course

due to a lack of tool support. In this paper, we present an active learning tool called MInimum PUmping length (MIPU)

educational software to explore the pumping lemma property for regular languages. For a given regular language, MIPU

offers three major functionalities: determining the membership of an input string, generating a list of short strings that belong

to the language, and automatically calculating the minimal pumping length of the language. The software tool has been

developed to provide educational assistance to students to better understand the concepts of pumping lemma and minimum

pumping length, and promote active learning through hand-on practice.

Keywords: Active learning; instructional tool; pumping lemma; regular language; minimum pumping length

1 Introduction

 The regular languages and finite automata are some of the most studied topics in formal language theories [1]. The notion

of finite automata, introduced by McCulloch and Pitts in 1943, revolutionized the idea of what a computational model looks

like, which has brought significant contributions in computer science and engineering [2]. These include but not limited to the

ideas of perceptrons (predecessors to neural networks) and logic design used in the development of modern embedded systems

[3]. The significant impact that finite automaton and regular languages had made in modern civilization is well-documented.

 Despite the thorough studies and many existing educational materials for regular languages and finite automata, pumping

lemma for regular languages has been a very difficult topic for students to understand in a theoretical computer science course.

Due to a lack of tool support, students usually have insufficient practice to clearly understand the concept of pumping length

and how to prove a language is not regular using pumping lemma. In this paper, we introduce an active learning tool called

MInimum PUmping length (MIPU) educational software to explore the pumping lemma property for regular languages. The

goal of MIPU is to serve as an active learning tool for students to understand the pumping lemma property, which is an essential

concept revealing the relationship between regular languages and finite automata through its formal proof. Active learning has

been defined as a high-level learning process where students are the primary actors in the process [4]. Unlike the traditional

learning model where students learn new concepts through a medium such as a textbook, active learning requires students to

perform hand-on tasks and learn by doing. The aim of active learning is to have students learn from experience instead of being

informed about the ideas with little practical engagement. Hence, in recent years, active learning models have become a focus

of discussion for teaching students in the classroom. They have been found to be effective in enhancing students’ retention,

boosting higher order thinking and reasoning skills, and improving student performance in STEM courses [5].

* This material is based upon a project for honored course CIS 560: Theoretical Computer Science, University of Massachusetts Dartmouth.

2

As an intriguing property of regular languages, the pumping lemma allows one to prove a language is not regular by

showing the language does not satisfy the pumping lemma property. Such a proof requires one to clearly understand the concept

of pumping length, how a string can be split into substrings in accordance with the property, and how it can be pumped. With

MIPU, we attempt to provide three major features that contribute to the overall understanding of the pumping lemma and the

concept of minimum pumping length. First, the software assists in verifying if a string belongs to a regular language described

by a regular expression. By converting a regular expression into a finite automaton, we can determine if a string is a member

of a given regular language. Second, the software can generate a list of short strings of a regular language. As a regular

expression defines the pattern of a regular language, by generating the short strings, students can gain a better understanding

of the language. Lastly, this tool can automatically calculate the minimum pumping length of a regular language and

demonstrate how a given string belonging to the regular language can be split into three substrings that satisfy the pumping

lemma property.

2 Related Work

 With the advance of powerful personal computers and the Internet, access to educational tools become much closer within

reach than in any other time in history. Gradually, educational tools have become widely available online that help to explain

many advanced topics in a variety of fields. With the rise, there has been an increasing number of active learning applications

that focus on aiding STEM education – a critical subject to teach in our modern lives. Computer science education is

particularly crucial due to the numerous influential advancements that have emerged from the field. Thus, it is not wonder that

many of these applications introduced are directed towards enhancing the experience of learning complex topics in the areas

of study.

 It has been proven that active learning can strengthen the experience of STEM students in the classroom [5]. A research

performed by Kim and her colleagues in 2012 elaborated on and described the effects that active learning modules may have

in enhancing students’ critical thinking [6]. Their study had two goals: to examine the levels of critical thinking exhibited in

individual reports over the semester, and to explore the effect of active learning on undergraduate students’ critical thinking.

With the goals in mind, they focused on designing appropriate strategies to foster innovation in an undergraduate general

science course. Their team used the strategies to support students in engaging in hand-on practice by providing the learning

environments that required the use of scientific knowledge in solving real-life problems. The designs included support of

cognitive process such as scaffolding strategies and tools for building a knowledge pool. The modules presented to the students

to evaluate critical thinking dealt with the understanding of evacuation plans for hurricanes and authentic problems associated

with global warming. The study showed that the active learning strategies had been helpful to promote students’ critical

thinking. In recent years, there has been a push to bring effective active learning tools and strategies into the classroom to

enhance the learning process of students. This trend has greatly motivated our research in developing effective tools to support

active learning in computer science.

 The use of educational tools in computer science classrooms has seen a significant emergence. Computer science is now

an integral part in the society that we live in for the role that it plays in many crucial aspects of it. In a recent paper, Wang from

the University of Toledo tackled the integration of educational tools in computer science courses [7]. He presented multiple

modern software tools to assist with various subjects in a database course. He first introduced different components in a typical

database course, such as Entity Relation (ER) diagram and MySQL. Then he introduced existing support tools that make the

various component more interactive and easier to learn. The results of implementing these strategies in his online database

course was an increase in the visual appeal of the taught contents along with a significant jump in the average grade of the

class in various subjects. While his research was intended to be applied to online courses, the principles learned can be easily

3

transferred to an in-person setting. Wang’s work is an example of the shift in computer science education that is attempting to

make learning more interactive and enable topics to be learned from experience rather than through passive learning.

 There are currently many existing tools for experimenting with topics related to formal languages and automata, such as

deterministic finite automata (DFA), nondeterministic finite automata (NFA), conversion from NFA to DFA, pushdown

automata (PDA) and multi-tape Turing machines. Among the existing tools, the Java Formal Languages and Automata Package

(JFLAP) is by far one of the most popular educational tools. JFLAP is a collection of graphical tools that can be used as an aid

in learning the basic concepts of formal languages and automata theory [8] [9]. The goal of the tool is to “enhance the formal

languages course, changing it from a traditional mathematics course into a ‘hands-on’ computer science course” [10]. In

JFLAP, the graphical interface allows one to build automata, run them with different input strings, and see a snapshot of the

automaton at any stage of the computation along with the different configurations that lead to a final state. Despite that it is a

powerful tool, JFLAP lacks in some major areas of formal languages and finite automata theory, e.g., the tool support for

calculation of minimum pumping length and facilitating students to understand pumping lemma property. To the best of our

knowledge, there are no existing educational tools that support those features. As such, our work is complementary to other

research efforts, e.g., JFLAP, that use software tools to support hand-on computer science education.

3 Tool Support for Pumping Lemma

 Pumping lemma is a theorical idea that cannot be easily presented to students through a traditional visual medium or an

intuitive explanation. Instead, it requires students to go through a sufficient number of cases to build a mental model of the

concepts. Therefore, the design of an effective active learning tool for understanding pumping lemma is crucial for a successful

education in theoretical computer science.

3.1 Pumping Lemma for Regular Languages

Aiding students in understanding pumping lemma is the core goal of MIPU. Pumping lemma is a property that all regular

languages have, which can be demonstrated using a finite automaton. For this reason, it is important to understand finite

automata in to learn how pumping lemma works. A regular language is defined as a set of strings that can be accepted by some

finite automaton. A finite automaton is commonly seen as a computational model with a limited number of states that contain

transitions between states labeled by symbols from a finite alphabet. Some or none of the states in a finite automaton are accept

states and one of the states is a start state. To compute an input string, an automaton reads each symbol in the string in order

and transitions to states according to the transition function. Once all symbols in the string have been processed, if a current

state of the automaton is an accept state, the string is accepted; otherwise, the string is rejected. Two types of finite automata

are DFA and NFA, which are equivalent. The strength of finite automata emerges from its ability to represent real-world

computation using a simple model. The act of switching on and off a light is one such example, but finite automata can be used

to model more complicated situations, e.g., representing the states of characters in a game or performing pattern recognition on

strings.

An intuitive way of distinguishing regular languages from nonregular languages is to determine if the modeling machine

needs to have an unbounded memory to account for the unlimited number of possibilities. However, this intuitive approach

does not always work. For example, in the following two languages C and D, both are seemingly non-regular, but surprisingly,

one of them (language D) is in fact regular [11].

C = {w | w has an equal number of 0s and 1s}

D = {w | w has an equal number of occurrences of 01 and 10 as substrings}

4

We can formally prove language D is regular by designing a regular expression that describes the language. However,

one may try to design a regular expression to describe language C, but still fail to find one. Can we conclude C is not regular

because no one is able to design a regular expression to describe C? The answer is no, and thus, it is important to establish a

formal approach to assisting in determining the non-regularity of a language.

 The pumping lemma for regular languages is a technique for proving non-regularity. The pumping lemma states that all

regular languages have a special property, i.e., the pumping lemma property. Therefore, if a language does not demonstrate the

pumping lemma property, the language must be nonregular. The pumping lemma ensures that any string in a regular language

with at least a certain length, i.e., the pumping length p, can be “pumped” and still belong to the language. Pumping a string,

in the context of the property, refers to repeating or eliminating a section of a string and still maintaining its membership with

the language.

 The pumping lemma can be described as follows [11], if A is a regular language, then there is a positive number p (the

pumping length) where if s is any string in A with a length of at least p, then s can be divided into three substrings, s = xyz,

satisfying the following three conditions:

1) for each i ≥ 0, xyiz belongs to A,

2) |y| > 0,

3) and |xy| ≤ p.

As demonstrated earlier, intuitively understanding the regularity and non-regularity of a language might not be sufficient.

Pumping lemma has played an important role in helping understand regularity and proving a language is not regular by

contradiction. However, a correct proof for nonregularity of a language requires accurate understanding of the pumping lemma

for regular languages. The goal of MIPU is to aid in understanding the pumping lemma property, and based on the conditions

required to satisfy the pumping lemma property, the tool provides three major functionalities: membership testing, generation

of strings that belong to a regular language, and calculation of the minimum pumping length needed to demonstrate the

existence of the property in a language if it is regular.

3.2 A Framework of the Active Learning Tool

To make MIPU easily customizable and flexible to optimize, it was built with an object-oriented design (OOD) in mind.

This would enable specific components of the tool to be adjusted without affecting the overall functionality. The framework of

MIPU consists of four major components that represent the major concepts in formal languages and automata. Fig. 1 showcases

their corresponding classes and their interactions with each other.

Figure 1. A framework of MIPU with four major components

5

 As shown in Fig. 1, the four components of MIPU are a regular expression to NFA converter, an NFA simulator, a

language’s strings generator (LSG), and a minimum pumping length determiner. For membership testing, the regular expression

to NFA converter is used to transform a given regular expression into an NFA instance that can be easily operated on. This

NFA instance is bundled with a “compute” function that is used to determine if a given string is a member of the language. To

generate short strings, the language’s strings generator is used to generate a list of such strings that belong to the language

described by the regular expression. Lastly, the determination of the minimum pumping length of a regular language uses all

the components in MIPU as needed by the pumping lemma for regular language. These functionalities are further discussed in

Section 4.

3.2.1 Regular Expression to NFA Converter

The regular expression to NFA converter takes a regular expression in the form of a string and decodes it into a tuple of

five elements that comprise an NFA. These elements include: a finite set of states (Q), a finite set of the alphabet that forms the

language (∑), the transition function between states (𝛿), a start state (q0), and finally, a set of accept states (F). Algorithm 1

shows how to generate these elements of 5- tuple. The algorithm first checks if the regular expression represents a base case,

which can be an empty set, an empty string, or a regular expression containing only one symbol. Then the regular expression

is parsed into a list of segments that can be iterated through to form an NFA.

Algorithm 1: Convert a regular expression into an NFA

Input: regular expression regExp

Output: T as 5-tuple (states, alpha, transfun, startq, acceptq)

1: initialize states and alpha to empty sets

2: initialize transfun to an empty map with state and symbol as key and traversable states as value

3: currq = 0

4: createNFA(regExp)

5: if regExp is an empty set

6: return T with qcurrq as start state and no accept state

7: else if regExp is the empty string

8: return T with qcurrq as the start and accept state

9: else if regExp is of length 1

10: add transition between q(currq++) and q(currq++) with regExp as the transition symbol

11: add q(currq – 1) and q(currq – 2) to the states set

12: add regExp to the alphabet set

13: return T with q(currq – 2) and q(currq – 1) as the start and accept state, respectively

14: seg = parseSegments(regExp)

15: for each segment s in seg, where s is not an operation

16: T_seg = createNFA(s)

17: start_seg[s] = start state of T_seg

18: accept_seg[s] = accept state of T_seg

19: for each segment s in seg, where s is star

20: update currq and add new states to states set

21: add transitions starting with start state of the previous

 segment and ending with q(currq + 2)

22: for each segment s in seg, where s is concatenation

23: update currq and start & accept states

24: add epsilon transition between the previous segment

 and the next segment

25: for each segment s in seg, where s is union

26: update currq and add new states to states set

27: add transitions to connect the previous segment and

 the next segment

28: return T with start and accept state of seg

6

For the symbol that represents the empty set, an NFA is returned with the current state (currq) as the start state and there

is no accept state. For the empty string, an NFA is returned with currq as both the start and accept state. Lastly, for a regular

expression that contains only one symbol other than a regular operation, two states are created (currq++ and currq++), which

are connected by a transition labeled by the symbol. When the regular expression does not represent a base case, it is parsed

into a list of segments. The procedure utilized to parse the expression into segments will later be discussed in Algorithm 2. The

segments are iterated through in four different for-loops. The first for-loop traverses all the elements that are not an operation

and perform recursive calls on Algorithm 1 for the individual segments until the base cases are reached. The following three

for-loops are ordered according to the precedence of the regular operations, namely star, union, and concatenation. For each

regular operation, the algorithm follows the standard regular expression to NFA conversion techniques [11]. New states and

transitions are added as needed to the segment(s) that the operation is applied to; meanwhile, currq is also updated. The start

and accept state of the segments involved synchs to reflect in the newly created NFA. It must be highlighted that for union and

star operations, the NFA is adjusted to contain a single accept state. Fig. 2 showcases these changes. After all the segments are

constructed, the 5-tuple representing an NFA is returned.

Figure 2. Conversion of regular expression to an NFA

 To make the conversion procedure from a regular expression into an NFA more flexible and efficient, Algorithm 2 is

used to section a regular expression into segments while building the entire NFA.

Algorithm 2: Parse a regular expression into a segment list

Input: regular expression regExp

Output: expression segment list seg

1: parseSegments(regExp)

2: initialize count to 0 and temp to an empty string

3: initialize seg to an empty list of strings

4: for i = 1 to regExp.length

5: if regExp.charAt(i) == ‘(’

6: count++

7: if count == 1 continue

8: else if regExp.charAt(i) == ‘)’

9: count--

10: if count == 0

11: add temp to seg and reset temp to an empty string

12: if i < regExp.length-1

13: add concatenation operation “.” to seg if needed

14: continue

15: temp += regExp.charAt(i)

16: if count == 0 // temp is an operation or one symbol

17: add temp to seg and reset temp to an empty string

18: if i < regExp.length-1

19: add concatenation operation “.” to seg if needed

20: return seg

7

 Algorithm 2’s role is to decipher a regular expression into a list of segments that Algorithm 1 can easily convert into an

NFA. The algorithm traverses each symbol of the regular expression, while at the same time, it keeps track of the appearance

of parenthesis (count), the segments of the expression (seg) and a temporary buffer for the current segment (temp). For each

character iterated, the character is first processed to discern parentheses. This step is performed to determine if the upcoming

elements of the expression are isolated from the rest of the elements. This is essential for operations like union that requires all

the elements to the right and left of the operation to be passed as inputs. If the current character is an opening parenthesis, count

is increased by one, and the procedure immediately moves on to the next symbol. On the other hand, if the character is a closing

parenthesis, count is decreased by one, and the collected elements in temp is added into seg when count becomes zero. In

addition to the elements added thus far, a concatenation operation is added as well if the next character is not a star or union

operation. These components ensure that isolation is secured. If the character is not a parenthesis, it is added into temp. When

count equals zero, temp must contain an operation or a single symbol, which is added into seg. In this case, a concatenation

operation is added if needed. To better illustrate the functionality of Algorithm 2, a sample input and its corresponding output

are provided as follows.

Input = “a(caUac)c*cac”

 Output = [“a”, “.”, “caUac”, “.”, “c”, “*”, “.”, “c”, “.”, “a”, “.”, “c”]

 One aspect of Algorithm 1 and 2 that must be highlighted is that they require the omission of special characters as element

in the NFA alphabet. The character used to represent union, concatenation, star, empty language, and epsilon cannot be elements

in the alphabet. Due to this notion, the algorithms have default characters that they treat as these special symbols. Union is

represented by uppercase letter “U”; concatenation is portrayed by the period “.”; and the star operation is symbolized by the

star character “*”. The empty language is equivalent to the backslash (\), and lastly, the empty string epsilon is depicted by

lowercase letter “e”. Future improvement to MIPU will allow customized settings to overwrite the default characters used.

3.2.2 Nondeterministic Finite Automaton (NFA)

The NFA class in the framework takes the 5-tuple generated by the regular expression to the NFA converter and offers

methods for managing the NFA. One such method is to test membership of an input string. To compute the input string, the

states of the NFA are traversed based on the symbols in the input string, and membership is determined if one of the possible

paths leads to an accept state. This NFA model is passed to the language’s strings generator and the minimum pumping length

determiner for each to serve their respective roles.

The membership testing of an input string results from three individual algorithms that contribute to each other to decide

if the current state ends is an accept state after a string is computed. Algorithm 3 shows this process that iterates through the

character in an input string and transits to other states based on the character read. At the end of the iteration, this algorithm

returns true or false depending on whether or not the current is found to be an accept state.

Algorithm 4 performs the transition method used in Algorithm 3. The algorithm searches for all possible states that the

current list of states can traverse to. It will then remove those states and update the list to reflect the most recent version of the

states that the current list of states has moved to. As the NFA may have multiples states that it can traverse to from the current

state and an input symbol, the transit algorithm (Algorithm 4) is separated from Algorithm 3 for simplicity.

An intriguing property of the NFA is the use of a special transition called epsilon transition. An epsilon transition allows

for the finite automaton to traverse without the need of an input symbol. The traversal of this type of transition is encapsulated

in Algorithm 5. The algorithm iterates a changing list that updates within the method itself. The logic behind this approach is

that if an epsilon transition is found, it is possible that the destination state may also contain another epsilon transition leading

8

another state. However, this method has a hidden issue: if a cycle of epsilon transitions exists, this would lead to an infinite

loop. The solution to this is to check if a new traversed state already exists in the list before it is added into the current list.

Algorithm 3: Compute a string

Input: inputStr, transitions

Output: membershipStatus

1: initialize current to an empty list

2: add start state to current

3: updateEpsilonTransitions(current, transitions) // Algorithm 5

4: for each symbol c in inputStr

5: transitState(c, current, transitions) // Algorithm 4

6: updateEpsilonTransitions(current, transitions) // Algorithm 5

8: if current state is an accept state

9: return true

10: else

11: return false

Algorithm 4: Transit between NFA states

Input: symbol, current, transitions

Output: current

1: transitState(symbol, current)

2: if symbol is epsilon

3: return current

5: size = the size of the current list

6: for i = 1 to size

7: if there is a transition for current state i and symbol

8: for each traversable state s from current state i

9: if state s is not a member of current

10: add state s to current

11: remove state i from current

12: return current

Algorithm 5: Update epsilon transitions

Input: current, transitions

Output: current

1: updateEpsilonTransitions(current, transitions)

2: for each state i in current // current changes in the loop

3: if there is an epsilon transition from current state i

4: for each traversable state s from current state i

5: if state s is not a member of current

6: add state s to current

7: return current

 The algorithms presented form the bases for the membership testing functionality of MIPU. After traversing the NFA

graph and tracking all possible paths, one can determine the membership of a string by observing if one of the paths leads to

an accept state. The ability to detect the membership of a string is essential for the next two components of the MIPU

framework, namely the language’s strings generator and minimum pumping length determiner.

3.2.3 Language’s Strings Generator (LSG)

The language’s strings generator uses a given NFA instance to generate an adjustable number of permutations from the

alphabet. These permutations must be strings that can be accepted by the finite automaton. Every so often, the generator

9

generates a new batch of strings and stores them in a buffer for future usage. To improve the performance of the permutation

process for strings, branches of a permutation tree are tracked. If a path will not likely lead to a final state along the way, that

branch is removed. The fate of a future branch can be determined by observing the current states that the NFA is tracking for

the current segment of the string that has been generated thus far.

3.2.4 Minimum Pumping Length Determiner

Finally, as one of the primary functionalities of MIPU, the minimum pumping length determiner can calculate the

minimum pumping length of a regular language according to the definition of pumping lemma. The tool also retrieves one of

the shortest strings in the language that meet the conditions and partitions it into three segments x, y, and z described in pumping

lemma. The method takes an NFA instance and the strings generated by the LSG as inputs and tests the conditions to derive

how the pumping lemma property is satisfied. Since the strings are ordered by their string lengths, we will be able to check

strings starting from the shortest one and determine the minimum pumping length that meets the pumping lemma requirements.

4 Pumping Lemma for Regular Language

 The pumping lemma presents a set of conditions that must be satisfied in order to demonstrate the pumping lemma

property. These conditions include testing the membership of a “pumped” string, where the original string belongs to a regular

language and is of a size greater than or equal to the minimum pumping length. To help with the correct understanding of the

pumping lemma concept, MIPU offers three main tools that are essential to determine the existence of the property in regular

language, which are membership testing, string generation, and automated minimum pumping length determination, as

illustrated in Fig. 3. Membership testing function determines if an input string is a member of a given regular language, which

can be used to verify if a string still maintains its membership with the language after being pumped. String generation is the

retrieval of an ordered list of strings that belong to the language. This functionality is critical for validating that a significant

number of strings in the language adheres to the conditions set by the pumping lemma. Lastly, as the name suggests, the

minimum pumping length determiner automatically calculates the minimum pumping length of a regular language described

by a regular expression. It also, along with the minimum pumping length, provides the short strings that meet the conditions of

the pumping lemma and the ways how the strings can be partitioned into three appropriate substrings x, y and z. These are core

concepts that encompass the tools needed to determine the non-regularity of certain language using pumping lemma.

Figure 3. Main menu of MIPU

10

4.1 Membership Testing for Regular Languages

 The membership testing module is composed of the regular expression to NFA converter and the NFA class described

in Sections 3.2.1 and 3.2.2, respectively. The core of the functionality is found in the “compute” method of the NFA class. The

method traverses a graph created during the conversion of the regular expression to an NFA and observes if there is a path

leading to an accept state.

As shown in Fig. 4, MIPU allows one to enter a regular expression and an input string. Then it takes the regular

expression and generates an NFA for it. While computing membership, the input string is passed as a parameter to the NFA’s

“compute” function, which returns either “True” or “False”, indicating whether the sting belongs to the language or not.

Figure 4. Membership testing window after a string is tested

Fig. 5 presents another example for membership testing, where the regular expression is (1⋃0)*101(1⋃0)* and the input

string is 1011. As the result shows, the input string is determined to be a member of the language. The substring 101 of the

given string reflects the segment 101 of the regular expression, while the symbol “1” at the end of the input string is the one

generated by the rightmost segment (1⋃0)*. Due to the tool’s ability to track multiple paths of the NFA as it computes a string,

the only path that leads to an accept state for 1011 can be identified to accept the string.

Figure 5. Another example for membership testing

11

4.2 String Generation

 String generation for a given a regular expression is the second tool offered by MIPU. It is responsible for producing

strings that are members of the regular language. The resulting strings are ordered by the length of the strings from the shortest

to the longest. The generator can dynamically generate more strings as requested. This functionality uses the following

components: regular expression to NFA converter, the NFA class, and the LSG. The LSG module uses the NFA produced from

the regular expression and generates the strings from permutations of its alphabet that are members of the language. Various

optimizations are used to eliminate branches of a permutation that will not lead to a valid string.

 The string generation tool allows a user to enter a regular expression in the provided text field. After the regular

expression is converted into an NFA, an LSG instance is created to generate strings that are recognized by the NFA. The LSG

module dynamically calls a “generate” function that produces new strings as requested. Fig. 6 shows some resulting strings

after the “Get Strings” button is pressed. The generated strings belonging to the language are listed in a lexicographic order,

which is the same as the dictionary ordering except that shorter strings precede longer ones.

Figure 6. An example of generating short strings

Fig. 7 shows another example for string generation. Note that the shortest string “00” is generated first by ignoring the

segments containing a star operation. Then the following strings are generated by considering the segments containing a star

operation, e.g., the last “1*” segment.

Figure 7. Another example for string generation

12

4.3 Determination of Minimum Pumping Length

 The last function implemented in MIPU is to automatically calculate the minimum pumping length of a regular language.

All modules of the MIPU framework, including conversion of a regular expression into an NFA and testing the various pumping

lemma conditions, are used to achieve this function. As shown in Fig. 8, the minimum pumping length determination tool

requires only a regular expression as its input. Once a regular expression is put in, an instance of the minimum pumping lemma

determiner is created, which tests a significant number of strings belonging to the language and then decides the minimum

pumping length. The figure shows that when the regular expression “10*1” is typed in and the “Get Min Pump” button is

pressed, the tool displays the minimum pumping length of the regular language along with a string example “101” that helps

explain a way of portioning of the string that satisfies the pumping lemma conditions.

Figure 8. Minimum pumping length determination

 Fig. 9 shows the minimum pumping length of the regular language 1*01*01. In this scenario, the minimum pumping

length is 3 and one of the minimum strings that meets the conditions of the pumping lemma property is 001. A possible partition

of the string is also displayed. It should be noted that although 001 is selected, other minimum strings also exist, e.g., 100 and

010. One aspect of the results produced that should also be highlighted is the minimum string 001 given in Fig. 9 in comparison

to the shortest string 00 shown in Fig. 7. In both scenarios, the regular expressions are the same, but the shortest string generated

in Fig. 7 cannot be pumped, thus it is not listed as a minimum string.

Figure 9. Another example of minimum pumping length

13

 One last example of minimum pumping length, illustrated in Fig. 10, is the regular expression aabUa*b*. The result is

interesting because normally with a union operation where the left segment of the union operation represents a finite language

and the right segment represents an infinite language, the minimum pumping length would be larger than the length of the finite

segment since the string represented by the finite segment usually cannot be pumped. However, in this particular example,

because the left segment can be generated by the right segment, the minimum pumping length of the regular expression equals

to the minimum pumping length of the right segment, which is 1.

 For more examples, the MIPU as well as the source code can be downloaded from the GitHub repository at

https://github.com/JosueCom/MIPU.

Figure 10. One more example of minimum pumping length

5 Conclusions and Future Work

Finite automata and regular languages have brought humanity to a new age of innovation. They have led to advancements

in artificial intelligence, the design of modern computers, and the representation of complex systems by a machine with limited

memory. Through the MIPU project as well as the forthcoming improvements to enhance active learning, students will become

more familiar with the formal concept of pumping lemma and overcome the complex challenge of understanding the concepts

of regularity and nonregularity of languages. MIPU creates an environment that enables students to be actors for developing

higher order thinking, and has the potential to be an effective tool in aiding students to better understand complex concepts.

 For future work, we will improve MIPU to support visualization of the process of creating an NFA from a regular

expression. We will also provide a pumping operation function that can retrieve a string that has been pumped for a given

number of times. Additionally, the tool will allow a user to configure settings including redefining the restricted characters

used to represent special symbols in a regular expression. The performance of generating strings may also be improved by

designing a new generator that traverses the NFA graph when forming new strings instead of creating a permutation tree.

Finally, we will redesign the GUI for string generation to allow dynamic generation of new strings when requested by users.

6 References

[1] S. Yu. “Regular Languages,” In Grzegorz Rozenberg; Arto Salomaa (eds.), Handbook of Formal Languages, Vol. 1, Word, Language,

Grammar. Springer, 1997, p. 41.

[2] W. S. McCulloch and W. Pitts, “A Logical Calculus of the Ideas Immanent in Nervous Activity,” Bulletin of Mathematical Biophysics,

Vol. 5, 1943, pp. 115-133.

14

[3] G. Piccinini, “The First Computational Theory of Mind and Brain: A Close Look at Mcculloch and Pitts’s ‘Logical Calculus of Ideas

Immanent in Nervous Activity’,” Synthese, Vol. 141, No. 2, 2004, pp. 175-215.

[4] M. Mani, N. Alkabour and D. Alao, “Evaluating Effectiveness of Active Learning in Computer Science Using Metacognition,” In

Proceedings of the 2014 IEEE Frontiers in Education Annual Conference (FIE’14), Madrid, Spain, 2014, pp. 1-8.

[5] W. B. Wood, “Clickers: A Teaching Gimmick that Works,” Developmental Cell, Vol. 7, No. 6, 2004, pp. 796-798.

[6] K. Kim, P. Sharma, S. Land and M. Furlong, “Effects of Active Learning on Enhancing Student Critical Thinking in an Undergraduate

General Science Course,” Innovative Higher Education, Vol. 38, No. 3, 2013, pp. 223-235.

[7] H. Wang. “Integrating Modern Software Tools into Online Database Course,” In Proceedings of the International Conference on

Frontiers in Education: Computer Science and Computer Engineering (FECS’17), Las Vegas, Neveda, July 17-20, 2017, pp. 100-103.

[8] S. H. Rodger and T. W. Finley, JFLAP - An Interactive Formal Languages and Automata Package, Jones and Bartlett Publishers.

2006.

[9] M. LoSacco and S. H. Rodger, “FLAP: A Tool for Drawing and Simulating Automata,” ED-MEDIA 93, World Conference on

Educational Multimedia and Hypermedia, 1993, pp. 310-317.

[10] M. Procopiuc, O. Procopiuc and S. Rodger, “Visualization and Interaction in the Computer Science Formal Languages Course with

JFLAP”, In Proceedings of the 1996 Frontiers in Education Annual Conference (FIE’96), Salt Lake City, Utah, Nov. 6-9, 1996, pp.

121-125.

[11] M. Sipser, Introduction to the Theory of Computation, Third Edition, Cengage Learning, 2013.

