
Presented on Feb. 26 (Monday), 2001 at 3:30 PM in room 1027 SEO

FROM OBJECT TO AGENT: AN APPROACH TO USING FORMAL

METHODS IN SOFTWARE DESIGN AND ANALYSIS

 BY

HAIPING XU

B.S., Zhejiang University, Hangzhou, China, 1989

M.S., Zhejiang University, Hangzhou, China, 1992

M.S., Wright State University, Dayton, OH, 1998

PH.D. THESIS PROPOSAL

Submitted as partial fulfill ment of the requirements

For the degree of Doctor of Philosophy in Computer Science

In the Graduate College of the

University of Illi nois at Chicago, 2001

Chicago, Illi nois

 2

TABLE OF CONTENTS

CHAPTER

1. INTRODUCTION

1.1 Background

1.2 Related Work

1.2.1 Formal Methods in Object-Oriented Design

1.2.2 Agent-Oriented Methodology and Formal Approaches

1.3 Contributions of Our Work

2. INHERITANCE MODELING IN OBJECT-ORIENTED DESIGN

2.1 Introduction

2.2 G-net Model Background

2.3 Extending G-nets for Class Modeling

2.4 Extending G-net Models to Support Inheritance

2.5 Modeling Different Forms of Inheritance

2.6 Modeling Inheritance Anomaly Problem

2.7 Discussion

3. AN AGENT-BASED G-NET MODEL

3.1 Introduction

3.2 Agent-based G-net Model

3.3 Selli ng and Buying Agent Design

3.4 Verifying Agent-Based G-net Models

3.5 Discussion

4. A FRAMEWORK FOR MODELING AGENT-ORIENTED SOFTWARE

4.1 Introduction

4.2 An Agent-Oriented Model

4.2.1 An Architecture for Agent-Oriented Modeling

4.2.2 Inheritance Modeling in Agent-Oriented Design

4.3 Examples of Agent-Oriented Design

 3

4.3.1 A Hierarchy of Agents in an Electronic Marketplace

4.3.2 Modeling Agents in an Electronic Marketplace

4.4 Handling Multiple Inheritance in Agent-Oriented Models

4.5 Discussion

5. ANALYSIS OF AGENT-ORIENTED MODELS

5.1 Introduction

5.2 A Simpli fied Petri Net Model for a Buying Agent and Two Selli ng Agents

5.3 Deadlock Detection and Redesign of Agent-Oriented Models

5.4 Property Verification by Using Model Checking

5.5 Discussion

6. FUTURE RESEARCH PLANS

6.1 Introduction

6.2 A Unified Model for Object-Oriented and Agent-Oriented Design

6.3 Extending Agent-Oriented G-net Model for Mobile Agent Design

6.4 Security Issues in Mobile Agent Design

BIBLIOGRAPHY

PUBLICATIONS OF THE AUTHOR

CURRICULUM VITAE

 4

Chapter 1

Introduction

1.1 Background

The development of software systems starts with two main activities, namely software requirements

analysis and software design [Sommervile 1995][Pressman 1997]. The purpose of software requirements

analysis is to understand the problem thoroughly and reduce potential errors caused from incomplete or

ambiguous requirements. The product of the requirements analysis activity is a software requirements

specification, which serves as a contract between the customers and the software designers. The purpose of

the software design is to follow the software requirements specification and to depict the overall structure

of a system by decomposing the system into its logical components. The design activity translates

requirements into a representation of the software that can be assessed for quality before coding begins.

Like software requirements, the product of the design activity is a design specification, which serves as a

contract between the software designers and the programmers.

There are two ways to achieve the purposes of these two activities. One is to specify and analyze systems

formally, and the other is to describe and model systems naturally. When specifying, modeling and

analyzing the behavior of a critical and complex system, we usually choose a specification language that

can formally depict the properties of the system. This is because formal languages can be used to describe

system properties clearly, precisely and in detail , and to enable design and analysis techniques to evolve

and operate in a systematic manner. Since the 1960’s, researchers have been working on formal modeling

of critical and complex systems such as concurrent and distributed systems. Among these formal methods,

Petri nets [Murata 1989], as a graphical and mathematical modeling tool, are well recognized and widely

used in various application domains because of its simplicity and flexibilit y to depict the dynamic system

behaviors, and its strong expressive and analytic power for system modeling. Although Petri nets have been

successfully used for system modeling and analysis in various domains, formal methods are still not a

popular way for most of the industry/commercial software development. Therefore, many Petri net

researchers have devoted efforts to enhance/extend the theory and techniques of Petri nets, including high-

 5

level Petri nets such as CPN (Colored Petri Nets) [Jensen 1992], and tried to build a bridge between formal

methods and industry/commercial software development.

Meanwhile, in the industry, there are several transitions of software engineering paradigms during the last

few decades. In the seventies, structured programming was the dominant approach to software

development. Along with it, software engineering technologies were developed in order to ease and

formalize the system development li fe cycle: from planning, through analysis and design, and finally to

system construction, transition and maintenance. In the eighties, object-oriented (OO) languages

experienced a rise in popularity, bring with it new concepts such as data encapsulation, inheritance,

messaging and polymorphism. By the end of the eighties and beginning of the nineties, a jungle of

modeling approaches grew to support the OO market. For instance, the Unified Modeling Language (UML)

[Rational 1997], which unifies three popular approaches to OO modeling: the Booch method [Booch 1994],

OMT [Rumbaugh et al. 1991] and OOSE [Jacobson et al. 1992], becomes the most popular modeling

language for object-oriented software systems. Although the object-oriented paradigm has achieved a

considerable degree of maturity, researchers continually strive for more eff icient and powerful software

engineering techniques, especially as solutions for even more demanding applications. The emergence of

agent techniques is one of the examples of such efforts. In the last few years, the agent research community

has made substantial progress in proving a theoretical and practical understanding of many aspects of

agents and multi -agent systems [Green et al. 1997][Jennings et al. 1998]. Agents are being advocated as a

next generation model for engineering complex, distributed systems [Jennings 2000]. Yet despite of this

intense interest, the concepts of agent-oriented paradigm are still not matured, and the methodology,

especially the techniques for agent modeling in practical use, is yet to be researched.

Although there have been many efforts on object and agent modeling, to provide a framework for object-

oriented design and agent-oriented design is still a big challenge. Due to the lack of formalisms for

practical complex software design, we aim to use and extend a type of high-level Petri nets, called G-nets

[Perkusich and de Figueiredo 1997], to model objects and agents in object-oriented design and agent-

oriented design respectively. Our proposed formalism has the advantage of being easy to understand, easy

to use, and practically it is helpful for designers to design complex software systems, and to use existing

Petri net tools to analyze its correctness and to verify its behavior properties such as liveness. In addition,

since we view an agent as an extension of an object, i.e., an active object [Shoham 1993], our object

models and agent models maybe combined to provide a unified framework for complex software design,

especially for Internet applications such as electronic commerce.

1.2 Related Work

1.2.1 Formal Methods in Object-Or iented Design

 6

The concepts of object-oriented paradigm, such as encapsulation and inheritance, have been widely used in

system modeling because they allow us to describe a system easily, intuitively and naturally [Rumbaugh et

al. 1991][Booch 1994][Jacobson et al. 1992][Eliens 1995]. With the increasing complexity of nowadays

software systems, object-oriented software designers began to understand the usefulness of formal

methods. Along with this trend, object-oriented formal methods became one of hot research issues for the

last few years. Many researchers have suggested object-oriented formal methods, such as OPN (Object

Petri Nets) [Bastide 1995], VDM++ [Lano 1995] and Object-Z [Stepney et al. 1992]. Among them, the

research on the OPN methods have been actively studied to extend the Petri nets formalism to various

forms of object Petri nets, such as OBJSA [Battiston et al. 1988], LOOPN++ [Lakos and Keen 1994], CO-

OPN/2 [Biberstein et al. 1997] and G-nets [Perkusich and de Figueiredo 1997]. Although the results of

such studies are promising, these formalisms do not fully support all the major concepts of object-oriented

methodology. We now give a brief description of these formalisms.

OBJSA nets, suggested by E. Battiston, define a class of algebraic nets that are extended with modularity

features. Their name reflects that they integrate Superposed Automata nets and the algebraic specification

language OBJ [Battiston et al. 1988][Battiston et al. 1995]. OBJSA nets correspond to the semantics model

described by algebraic notations, and CLOWN (CLass Orientation With Nets) is a notation developed on

the top of OBJSA nets with object-oriented features added [Battiston et al. 1996]. CLOWN attributes can

be declared as constant (const) or variable (var), and all the actions that an object can execute are specified

by the “method” clauses. In addition, the “ interface” clause defines the interaction between a CLOWN

object and some other objects, and the inheritance features are extended by the “ inherits” clause.

In CLOWN, the data structure of a class is defined by algebraic notations, and the control structure of the

class is defined by a class net. Objects in CLOWN are represented as distinguished individual tokens

flowing in the corresponding class net. CLOWN does not take the full advantage of this formalism because

only the control structure of a system is modeled by Petri nets. Since object-oriented features in CLOWN

are not captured at the net level, there are limitations in using existing Petri net tools for system analysis.

O. Biberstein suggests the specification language, called CO-OPN/2 (Concurrent Object-Oriented Petri

Nets) [Biberstein et al. 1996, Biberstein et al. 1997], which is designed to specify and model large scale

concurrent systems. The class definition in CO-OPN/2 consists of two parts: “Signature” part is to describe

the interface with other classes, and “Body” part is to describe the internal behaviors and operations of a

class. The specification method of CO-OPN/2 is similar with that of CLOWN, but the differences are that

CO-OPN/2 supports abstract data type in order to reuse its type defined in other classes, and the methods

declared in “Signature” part is used as interface transition. The problem of CO-OPN/2 is that the unfolding

 7

mechanism for a CO-OPN/2 specification is not provided, therefore the analysis and simulation method of

CO-OPN/2 is unclear.

C. Lakos proposes a class of object-oriented Petri nets, called LOOPN++ (Language for Object-Oriented

Petri Nets) [Lakos and Keen 1994, Lakos 1995a, Lakos 1995b]. LOOPN++ uses the text-based grammar to

specify systems. In the specification of LOOPN++, the class definition consists of three parts: “Fields” to

define data, “Function” to describe expression with parameters and operation, and “Actions” to represent

the behavior of a system. The “Fields” part is a declaration of a token in Petri nets, and is used to represent

the states of places. The “Functions” and “Actions” part together represent the transitions of Petri nets.

One of the major characteristics of LOOPN++ is the feature for “super places” and “super transitions” , used

to represent the nesting structure of nets. It becomes a base to support the abstraction of nets. The super

place and super transition can be defined by labeling at the corresponding place and transition of nets with

the name of an external object. With this feature, “Parent” phrases can be used to represent (multiple)

inheritance of classes. Regardless of continuous research on LOOPN++, it has some deficiencies in fully

supporting the object-oriented concepts. First, LOOPN++ does not fully reflect the actual concepts of

objects because the nets include the global control structure of systems, and tokens are only passive data

types [Lakos 1997]. Second, LOOPN++ tries to represent the abstraction by the feature of fusion only, but

is not suff icient for abstraction of functional behavior and states. Third, LOOPN++ provides the “Export”

phrase, but the message passing mechanism for the interaction among objects is not supported. Finally,

LOOPN++ is well applied in the object-oriented software development methodology of Shlaer-Mellor

[Lakos and Keen 1994], but not in the methodology of OMT/UML, which is one of the most popular

approaches nowadays.

G-nets [Perkusich and de Figueiredo1997][Deng et al. 1993] support the concepts of objects better than in

CO-OPN/2 or LOOPN++, at least in our concerns. As one form of high-level Petri nets, G-nets are based

on the concept of modules corresponding to objects. There are two separate parts to describe the net

structure of an object in G-nets. One is called GSP (Generic Switch Place), which contains the name of an

object, the definition of attributes and methods, and initial marking of the net. The other one is called the IS

(Internal Structure), which describes the behaviors of methods with a variant of Petri nets. There are special

places in the nets, such as ISP (Instantiated Switching Place) to make a method call and GP (Goal Place) to

end a method execution. These features can be unfolded into Pr/T nets.

A fascinating feature of G-nets is its support for encapsulation of objects, message passing for object

interactions, and low coupling between objects. The use of the unique identifier for an object makes it

possible to represent recursive method calls. Also, the mechanism for method call i n G-nets is quite

suitable for modeling client-server systems. Although G-nets are useful for object modeling and the

 8

structure of a G-net is similar with that of an object in OMT/UML, it does not support inheritance

mechanism. In addition, it is diff icult to represent the abstraction hierarchy with net elements of G-nets.

The above object models are widely referenced and compared among high-level object-oriented Petri nets.

Other similar research includes: OPNets by Lee [Lee and Park 1993], which are focused on the decoupling

of inter-object communication knowledge and the seperation of synchronization constraints from the

internal structure of objects; OCoNs (Object Coordination Nets) by Giese [Giese et al. 1998] are to

describe the coordination of the behavior of a class on a service. Although these formalisms support

suff iciently the basic concepts of objects such as encapsulation and modularization, they do not incorporate

the concepts of abstraction and/or inheritance, and they do not clearly suggest the analysis or simulation

methods.

1.2.2 Agent-Or iented Methodologies and Formal Approaches

Agent technology has received a great deal of attention in the past few years and, as a result, the industry is

beginning to get interested in using this technology to develop its own products. In spite of the different

developed agent theories, languages, architectures and the successful agent-based applications, very littl e

work for specifying and design techniques to develop agent-based applications using agent technology has

been done [Iglesias et al. 1998]. The role of agent-oriented methodologies is to assist all the phases of the

li fe cycle of an agent-based application, including its management. A number of groups have reported on

methodologies for agent design, touching on representational mechanisms as they support the

methodology. Examples of such work are D. Kinny and his colleagues’ BDI agent model [Kinny et al.

1996] and the Gaia methodology suggested by M. Wooldridge [Wooldridge et al. 2000].

Formal methods for agent modeling are mostly concerning about agent specification and agent design.

Several formal approaches have tried to bridge the gap between formal theories and implementations.

Though formal methods are not so easily scalable in practice, they are especially useful for verifying and

analyzing critical applications, prototypes and complex cooperating systems. Traditional formal languages

such as Z have been used [Luck et al. 1997], providing an elegant framework for describing an agent

system at different levels of abstractions. Since there is no notion of time in Z, it is not quite suitable to

specify agent interactions. Another approach has been the use of temporal modal logic [Wooldridge 1998]

that allows the representation of dynamic aspects of the agents and a basis for specifying, implementing

and verifying agent-based systems. The implementation of the specification can be done by directly

executing the agent specification with a language such as Concurrent Metatem [Fisher and Wooldridge

1997] or by compili ng the agent specification. The usage of formal methods for multi -agent specification

such as DESIRE [Brazier et al. 1997] is an interesting alternative to be used as a detailed design language

 9

in agent-oriented methodology. DESIRE (framework for Design and Specification of Interacting Reasoning

components) proposes a component-based perspective based on task decomposition.

During the last few years, many efforts have been put on developing multi -agent systems, however there is

a lack of research on formal specification and design of such systems [Iglesias et al. 1998][Rogers et al.

2000]. As the multi -agent technology begins to emerge as a viable solution for large-scale industrial and

commercial applications, there is an increasing need to ensure that the systems being developed are robust,

reliable and fit for purpose. The concept of agent-oriented methodology is still new, and there are different

views on this issue [Iglesias et al. 1998][Jennings 2000]. In this proposal, we take the view that an agent is

an extension of an object. Thus, based on the concepts of object-oriented methodology, we propose our

agent-oriented design model, which is a nature approach for most of the object-oriented designers.

1.3 Contr ibutions of Our Work

The work reported in this Ph.D. thesis proposal is aimed at proposing a technique for modeling and

analyzing object-oriented and agent-oriented software systems. The concepts of agent-orientation are based

on the concepts of object-orientation, but need to be extended with additional features, such as mechanisms

for decision-making and asynchronous message passing. The major contributions of our work are listed as

follows:

• Extended the original G-net model to support class modeling and inheritance modeling.

• Designed an agent-based G-net model, and proved properties related to li veness, concurrency and

effectiveness for agent communication.

• Extended the agent-based G-net model to support inheritance modeling in agent-oriented design.

• Performed experiments with an existing Petri net tool to model and analyze agent-oriented

software systems.

 10

Chapter 2

Inheritance Modeling in Object-Or iented Design

2.1 Introduction

One of the key issues in object-oriented (OO) approach is inheritance. The inheritance mechanism allows

users to specify a subclass that inherits features from some other class, i.e., its superclass. A subclass has

the similar structure and behavior as the superclass, but in addition it may have some other features. As an

essential concept of the OO approach, inheritance is both a cognitive tool to ease the understanding of

complex systems and a technical support for software reuse and change. With the emergence of formalisms

integrating the OO approach and the Petri net (PN) theory, the question arises how inheritance may be

supported by such formalism, in order that they benefit from the advantages of this concept and existing

Petri net tools. Inheritance has been originally introduced within the framework of data processing and

sequential languages, while PNs are mainly concerned with the behavior of concurrent processes.

Moreover, it has been pointed out that inheritance within concurrent OO languages entails the occurrence

of many diff icult problems such as the inheritance anomaly problem [Matsuoka and Yonezawa 1993].

Thus, to incorporate inheritance mechanism into Object Petri Net (OPN) has been viewed as a challenging

task.

The concepts of inheritance define both the static features and dynamic behavior of a subclass object. The

static feature specifies the structure of a subclass object, i.e., its methods and attributes; while the dynamic

behavior of a subclass object refers to its state and its dynamic features such as overriding, dynamic

binding and polymorphism [Drake 1998]. Most of the existing object-oriented Petri nets (OOPN)

formalism, such as CLOWN, LOOPN++ and CO-OPN/2, fail to provide a uniform framework for class

modeling and inheritance modeling in terms of these two features, and they usually use text-based

formalism to incorporate inheritance into Petri nets. The problems of these approaches are that they do not

take full advantage of the Petri net formalism, and therefore, we cannot use existing Petri net tools to verify

the behavior properties of a subclass object in terms of inheritance. Little work has been done to model

inheritance of dynamic behavior. Examples of such work are the concept of li fe-cycle inheritance proposed

 11

by van der Aalst and Basten [Aalst and Basten 1997][Basten and Aalst 2000] and the SBOPN formalism

with additional inheritance features suggested by Xie [Xie 2000]. However, these formliasms are either too

theoretical to be used in practical software design, or too preliminary to cover all forms of inheritance, such

as refinement inheritance [Drake 1998].

In this chapter, we propose a Petri net formalism, called extended G-nets, to model inheritance in

concurrent object-oriented design. Based on the original G-net formalism [Perkusich and de Figueiredo

1997], we first extend G-nets into the so-called standard G-nets for class modeling, then we introduce new

mechanisms to incorporate inheritance into standard G-net models. These new mechanisms are net-based,

therefore it would be possible for us to translate our net models into other forms of Petri nets, such as Pr/T

net, and use existing Petri net tools for behavior property analysis, e.g., to analyze the inheritance anomaly

problem.

2.2 G-net Model Background

A widely accepted software engineering principle is that a system should be composed of a set of

independent modules, where each module hides the internal details of its processing activities and modules

communicate through well -defined interfaces. The G-net model provides strong support for this principle

[Perkusich and de Figueiredo 1997][Deng et al. 1993]. G-nets are an object-based extension of Petri nets,

which is a graphically defined model for concurrent systems. Petri nets have the strength of being visually

appealing, while also being theoretically mature and supported by robust tools. We assume that the reader

has a basic understanding of Petri nets [Murata 1989]. But, as a general reminder, we note that Petri nets

include three basic entities: place nodes (represented graphically by circles), transition nodes (represented

graphically by solid bars), and directed arcs that can connect places to transitions or transitions to places.

Furthermore, places can contain markers, called tokens, and tokens may move between place nodes by the

“ firing” of the associated transitions. The state of a Petri net refers to the distribution of tokens to place

nodes at any particular point in time (this is sometimes called the marking of the net). We now proceed to

discuss the basics of standard G-net models.

A G-net system is composed of a number of G-nets, each of them representing a self-contained module or

object. A G-net is composed of two parts: a special place called Generic Switch Place (GSP) and an

Internal Structure (IS). The GSP provides the abstraction of the module, and serves as the only interface

between the G-net and other modules. The IS, a modified Petri net, represents the detailed design of the

module. An example of G-nets is shown in Figure 1. Here the G-net models represent two objects – a Buyer

and a Seller. The generic switch places are represented by GSP(Buyer) and GSP(Seller) enclosed by

elli pses, and the internal structures of these models are represented by round-cornered rectangles that

contain the detailed design of four methods: buyGoods(), askPrice(), returnPrice() and sellGoods(). The

 12

functionality of these methods are defined as follows: buyGoods() invokes the method sellGoods() defined

in G-net Seller to buy some goods; askPrice() invokes the method returnPrice() defined in G-net Seller to

get the price of some goods; returnPrice() is defined in G-net Seller to calculate the latest price for some

goods and sellGoods() is defined in G-net Seller to wait for the payment, ship the goods and generate the

invoice. A GSP of a G-net G contains a set of methods G.MS specifying the services or interfaces provided

by the module, and a set of attributes, G.AS, which are state variables. In G.IS, the internal structure of G-

net G, Petri net places represent primitives, while transitions, together with arcs, represent connections or

relations among those primitives. The primitives may define local actions or method calls. Method calls are

represented by special places called Instantiated Switch Places (ISP). A primitive becomes enabled if it

receives a token, and an enabled primitive can be executed. Given a G-net G, an ISP of G is a 2-tuple

(G’ .Nid, mtd), where G’ could be the same G-net G or some other G-net, Nid is a unique identifier of G-net

G’ , and mtd ∈ G’.MS. Each ISP(G’ .Nid, mtd) denotes a method call mtd() to G-net G’ . An example ISP

(denoted as an elli psis in Figure 1) is shown in the method askPrice() defined in G-net Buyer, where the

method askPrice() makes a method call returnPrice() to the G-net Seller to query about the price for some

goods. Note that we have highlighted this call i n Figure 1 by the dashed-arc, but such an arc is not actually

a part of the static structure of G-net models. In addition, we have omitted all function parameters for

simplicity.

 GSP(Buyer)

ISP(Seller,
sellGoods())

 buyGoods()

Figure 1. G-Net model of buyer and seller objects

askPrice()

t1

t2

ISP(Seller,
returnPrice())

t3

t4

returnPrice()

calculate_
price

sell_
goods

sellGoods()

GSP(Seller)

t8

t7

t6

t5

2.3 Extending G-nets for Class Modeling

From the above description, we can see that a G-net model essentially represents a module or an object

rather than an abstraction of a set of similar objects. In a recent paper [Xu and Shatz 2000], we have

extended the G-net model to support class modeling. The idea of this extension is to generate a unique

object identifier, G.Oid, and initialize the state variables when a G-net object is instantiated from a G-net G.

 13

An ISP method invocation is no longer represented as the 2-tuple (G’ .Nid, mtd), instead it is the 2-tuple

(G’ .Oid, mtd), where different object identifiers could be associated with the same G-net class model.

The token movement in a G-net object is similar to that of original G-nets [Perkusich and de Figueiredo

1997]. A token tkn is a triple (seq, sc, mtd), where seq is the propagation sequence of the token, sc ∈

{ before, after} is the status color of the token and mtd is a triple (mtd_name, para_list, result). For

ordinary places, tokens are removed from input places and deposited into output places by firing

transitions. However, for the special ISP places, the output transitions do not fire in the usual way. Recall

that marking an ISP place corresponds to making a method call . So, whenever a method call i s made to a

G-net object, the token deposited in the ISP has the status of before. This prevents the enabling of

associated output transitions. Instead the token is “processed” (by attaching information for the method

call), and then removed from the ISP. Then an identical token is deposited into the GSP of the called G-net

object. So, for example, in Figure 1, when the Buyer object calls the returnPrice() method of the Seller

object, the token in place ISP(Seller, returnPrice()) is removed and a token is deposited into the GSP place

GSP(Seller). Through the GSP of the called G-net object, the token is then dispatched into an entry place of

the appropriate called method, for the token contains the information to identify the called method. During

“execution” of the method, the token will reach a return place (denoted by double circles) with the result

attached to the token. As soon as this happens, the token will return to the ISP of the caller, and have the

status changed from before to after. The information related to this completed method call i s then

detached. At this time, output transitions (e.g., t4 in Figure 1) can become enabled and fire.

More specifically, when a G-net object G_obj with G.Oid makes a method call ISP(G’ .Oid, mtd(para_list))

in its thread/process with G.Pid, the procedure for updating a G-net token gTkn is as follows:

1. Call_before: gTkn.seq ← gTkn.seq + < G.Oid, G.Pid, mtd> ; gTkn.msg ← (mtd, para_list, NULL);

gTkn.sc ← before.

2. Transfer the gTkn token to the GSP place of the called G-net object with G’.Oid.

3. Wait for the result to be stored in gTkn.msg.result, and the gTkn token to be returned.

4. Call_after: gTkn.seq ← gTkn.seq – LAST(gTkn.seq); gTkn.sc ← after.

We call a G-net model that supports class modeling a standard G-net model. We now provide a few key

definitions for our standard G-net models.

Definition 2.1 G-net system

A G-net system (GNS) is a triple GNS = (INS, GC, GO), where INS is a set of initialization statements used

to instantiate G-nets as G-net objects; GC is a set of G-nets which are used to define classes; and GO is a

set of G-net objects which are instances of G-nets.

 14

Definition 2.2 G-net

A G-net is a 2-tuple G = (GSP, IS), where GSP is a Generic Switch Place (GSP) providing an abstraction

for the G-net; and IS is the Internal Structure, which is a set of modified Pr/T nets. A G-net is an abstract of

a set of similarly G-net objects, and it can be used to model a class.

Definition 2.3 G-net object

A G-net object is an instantiated G-net with a unique object identifier. It can be represented as (G, OID,

ST), where G is a G-net, OID is the unique object identifier and ST is the state of the object.

Definition 2.4 Generic Switching Place (GSP)

A Generic Switch Place (GSP) is a triple of (NID, MS, AS), where NID is a unique identifier (class

identifier) of a G-net G; MS is a set of methods defined as the interface of G-net G; and AS is a set of

attributes defined as a set of instance variables.

Definition 2.5 Internal Structure (IS)

The internal structure of G-net G (representing a class), G.IS, is a net structure, i.e., a modified Pr/T net.

G.IS consists of a set of methods.

Definition 2.6 Method

A method is a triple (P, T, A), where P is a set of places with three special places called entry place, ISP

place and goal place. Each method can have only one entry place and one goal place, but it may contain

multiple ISP places. T is a set of transitions, and each transition can be associated with a set of guards. A is

a set of arcs defined as: ((P-{ goal place}) x T) ∪ ((T x (P-{ entry place}).

2.4 Extending G-nets to Support Inheritance

An example of G-nets is shown in Figure 2. Here the G-net model represents an unbounded buffer class.

The generic switch place is represented by GSP(UB) enclosed by an elli psis, and the internal structure of

this model is represented by a rounded box which contains the detailed design of four methods: isEmpty(),

put(e), get() and who(). The functionality of these methods are defined as follows: isEmpty() checks if the

buffer is empty and return a boolean value, put(e) stores an item e into the buffer, get() removes an item

from the buffer and returns that item, and who() prints the object identifier of the unbounded buffer. For

clarity, in Figure 2, we put the signatures of these four methods in a rectangle on the right side of the GSP

place as the interface of G-net UB. An example of ISP is shown in the method get() (denoted as an elli psis),

where the method get() makes a method call isEmpty() to the G-net module/object itself to check if the

 15

buffer is empty. Note that we have extended G-nets to allow the use of the keyword self to refer to the

module/object itself.

GSP(UB)

check
_empty

isEmpty()

Figure 2. G-net model of unbounded buffer class (UB)

bool isEmpty();
void put(e);
Item get();
int who();

who()

print_Oid

ISP (self,
isEmpty())

 get()

t1

t2

syn

put(e)

return
_false

return
_true

remove

print
_error

store

t3

t4

t5

t6 t7

t8 t9

t10

t11

To deal with the concurrency issue in our G-net models, we extended our model by introducing a

synchronization module to synchronize methods defined in the internal structure of the G-net. For instance,

in the unbounded buffer class model we introduced a synchronization module syn to synchronize the

methods get() and put(e). This mechanism is necessary because these methods need to access the same

unbounded buffer and they should be mutually exclusive. Generally, to design the synchronization module,

we can either fulfill all synchronization requirements in one synchronization module or distribute them in

several synchronization modules. To simpli fy our model, we follow the second option. Therefore, each

class model may contain as many synchronization modules as necessary, and each synchronization module

can be used to synchronize among a group of methods. As we will see, the synchronization module can not

only be used to synchronize methods defined in a class model, but also can be used to synchronize methods

defined in a subclass model and methods defined in its superclass (ancestor) model.

With inheritance, when we instantiate a G-net Sub_G (a subclass), it is not enough to just associate an Oid

with Sub_G and initialize the state variables defined in Sub_G class. We must associate the same Oid with

all of Sub_G’s superclasses (ancestors) and initialize all state variables defined in those classes. The

initialized part corresponding to the subclass and each of the superclasses (ancestors) is called primary

subobject and subobject respectively [Rossie et al. 1996][Drake 1998]. When a method call i s made to the

object Sub_G_obj (i.e., an instantiation of class Sub_G), it is always the case that only the GSP place of the

 16

primary subobject is marked. The subobjects corresponding to the superclasses (ancestors) of Sub_G are

not activated unless the method call to Sub_G_obj is not defined in the subclass model Sub_G.

GSP(BB)

print
_error

 who()

Figure 3. G-net model of bounded buffer class (BB)

BB extends UB
int who(); // restricted
void put(e); // redefined
bool isFull();

default

SSP(UB)

ISP (self,
isFull())

isFull()

t1

t2

syn

put(e)

SSP(UB)

check
_full

print
_error

return
_true

return
_false

t5

t6 t7

t8 t9

t3

t4

t10

t11

When a method call i s not found in a subclass model, we need to resolve the problem by searching the

methods defined in the superclass models. To do this, we define a new mechanism called a default place. A

default place is a default entry place defined in the internal structure of a subclass model and is drawn as a

dash-lined circle, as shown in Figure 3. When a method is dispatched in a subclass model, the methods

defined in the subclass model are searched first. If there is a match, one of the entry places of those

methods is marked; otherwise, the default place is marked instead. After the dispatching, necessary

synchronization constraints are established by the synchronization modules. If the default place is marked,

the method call i s then forwarded to a named superclass model. At first, it may seem that we can use the

ISP method invocation mechanism to forward an existing method call . However this is not quite proper.

Note that the initial method call will attach information associated with the call to the gTkn token. Now the

subsequent call to the superclass would again attach the same information to the token, and the method call

will actually be invoked more than once. To solve this problem, we introduce a new mechanism called a

Superclass Switch Place (SSP).

An SSP (denoted as an elli psis in Figure 3) is similar to an ISP, but with the difference that the SSP is used

to forward an existing method call to a subobject (corresponding to a superclass model) of the object itself

rather than to make a new method call . Essentially, an SSP does not update the gTkn token because all the

information for the method call has already been attached by the original ISP method call . In the context of

multiple inheritance, we represent an SSP mechanism in subclass Sub_G as SSP(G’), where G’ is one of the

 17

superclasses of Sub_G. Note that the object identifier is not necessary, as in the case of ISP method

invocation, because the method call will be forwarded to the object itself (i.e., its subobject). When the

method call i s forwarded to the subobject corresponding to the superclass model G’ , the GSP place of the

superclass model G’ is marked, and the methods defined in the superclass model are searched. If a method

defined in the superclass model is matched, as in the case of ISP method invocation, the matched method is

executed, and the result is stored in gTkn.msg.result and the gTkn token returns to the SSP place.

Otherwise, the default place (if any) in the superclass is marked, and the methods defined in the

grandparent class model are searched. This procedure can be repeated until the called method is found. If

the method searching ends up in a class with no methods matched and no default place defined, a “method

undefined” exception should be raised. This situation can be avoided by static type checking.

Now consider a bounded buffer class example as shown in Figure 3. We define a bounded buffer class BB

as a subclass of an unbounded buffer class UB. Since the buffer has a limited size of MAX_SIZE, when

there is a put (e) method call , the size of the buffer needs to be checked to make sure that the buffer

capacity is not exceeded. In this case, the method put (e) defined in the class model UB is no longer correct,

and it needs to be redefined in the subclass model BB. A simple way to redefine the method put (e) in

subclass BB is to first make an ISP method call isFull () to the bounded buffer object itself. The method

isFull () is used to check if the bounded buffer is full and it is added to the BB class model as shown in

Figure 3. If it returns true, i.e., the bounded buffer has already been full , an error or exception will be

generated; otherwise, the method call put(e) will be forwarded to its superclass UB by using an SSP

mechanism. Here we use an SSP to allow reuse of the original method put(e) defined in class UB. As we

will explain later, we call this situation refinement inheritance. Note that if we use ISP(self, put(e)) in this

situation, a dead loop will occur. This is because the methods defined in the subclass will always be

searched first; and consequently, the method put(e) defined in subclass BB will be called recursively. Again

we see the value of introducing the SSP mechanism.

It is also important to notice that a synchronization module can be used to synchronize methods defined in

a subclass model and methods defined in the superclass model. However, in this case, all methods defined

in superclass (ancestor) models must be synchronized as a whole. For instance, in Figure 3, the refined

method put(e) defined in subclass BB is synchronized with all methods defined in the superclass UB, yet

the synchronization between the method put(e) and the inherited method isEmpty() is unnecessary.

To formally define extended G-nets with inheritance, we need to redefine the internal structure and define

the concept of Synchronization Module and Abstract Superclass Module. Based on the formal definitions of

standard G-net model in Section 2.2, we now provide a few key definitions for our extended G-net models

with inheritance features.

 18

Definition 2.7 Internal Structure (IS) // to replace definition 2.5

The internal structure of G-net G is a triple (M, S, A), where M is a set of methods, S is a set of

synchronization modules, and A is an optional Abstract Superclass Module. The arcs connecting M and S,

or connecting S and A belong to S. There are no direct arcs between M and A.

Definition 2.8 Synchronization Module

A synchronization module is 4-tuples (P, A, I, O), where P is a single place used to hold an sTkn token,

which is a colorless token, and A is a set of arcs defined as: (P x IS.M.T) ∪ (IS.M.T x P); I is a set of arc

inscriptions on place incoming arcs, and O is a set of arc inscriptions on place outgoing arcs.

Definition 2.9 Abstract Superclass Module

An Abstract Superclass Module is a triple (P, T, A), where P is a set of places includes three special places:

default place, goal place and Superclass Switch Place (SSP). T is a set of transitions with optional guards.

A is a set of arcs defined as: ((P – { goal place}) x T) ∪ (T x (P – { default place})).

2.5 Modeling Different Forms of Inheritance

Typically, to create a subclass model, we specialize a superclass by adding new protocols. We call this

augment inheritance [Drake 1998]. Alternatively, we can restrict or refine a superclass by overriding one or

more of its methods. This happens in three cases: method restriction, method replacement and method

refinement. We call each of them restrictive inheritance, replacement inheritance and refinement

inheritance [Drake 1998].

Augment inheritance is straightforward - new protocols, which are not defined in the superclass model, are

added to a subclass model. For instance, consider the design of the subclass BB as shown in Figure 3. We

require a service to check if the buffer is already full . This can be done by adding a new method isFull () to

the subclass BB. Since the method isFull () does not override any methods in class UB, we have used

augment inheritance.

In some cases, we regard a class as a specialization of another class, with some superclass methods absent

from the protocol of the subclass. We call this type of inheritance restrictive inheritance. Restrictive

inheritance actually runs counter to the semantics and intentions of inheritance, because the “ IS-A”

relationship between superclass and subclass is broken. However, restrictive inheritance may be necessary

when using an existing class hierarchy that cannot be modified. Usually, restrictive inheritance is

implemented in the subclass by overriding the disallowed superclass methods to produce error messages or

signal exceptions. Here we use a trivial example to ill ustrate how to model restrictive inheritance. Suppose

 19

we need to disallow the inherited method who() in our subclass BB. This can be simply done by redefining

method who() in class BB; the redefined method who() does nothing but prints an error message to indicate

that the method call for who() is disallowed in subclass model BB.

A subclass can completely redefine the behavior of its superclass for a particular method defined in the

superclass. Inheritance in this case is called replacement inheritance. With this form of method overriding,

we say that the method in the subclass replaces the method defined in the superclass. Replacing a

superclass method generally occurs when the subclass can define a more eff icient method or needs to

define a method in a different way. An example of replacement inheritance would be possible in the

bounded buffer example, if we redesign the method get() in subclass BB to make the “remove” action

more eff icient.

More frequently, the semantics of a subclass demand that the subclass respond to a method call by a

method that includes the behavior of its superclass, but extends it in some way. In this case, we say that the

subclass method refines the superclass method, i.e., there is a refinement inheritance. Practically, method

refinement is more common than method replacement because it provides a semantic consistence with

specialization. When implementing method refinement, we may simply refine the method by copying the

relevant superclass method into the subclass model. However, we would like our extended G-net formalism

to provide a mechanism that supports automatic sharing of the superclass method. This capabilit y is

supported by the SSP mechanism and it has been ill ustrated by the method refinement of put(e) in bounded

buffer BB as shown in Figure 3.

2.6 Modeling Inheritance Anomaly Problem

Inheritance anomaly refers to the phenomenon that synchronization code cannot be effectively inherited

without non-trivial re-definitions of some inherited methods [Matsuoka and Yonezawa 1993][Thomas

1994]. As a consequence, some well -known proposals for concurrent object-based languages, such as

famili es of Actor languages, POOL/T, Procol and ABCL/1, chose to not support inheritance as a

fundamental language feature [Matsuoka and Yonezawa 1993]. Also some languages like Concurrent

Smalltalk or Orient84/K do provide inheritance but do not support intra-object concurrency - that is there is

only a single thread of control within an object [Thomas 1994].

There have been previous efforts to solve the inheritance anomaly problem [Mitchell and Welli ngs 1996],

but most of the proposals are based on quasi concurrency, where only one thread at a time is allowed to

execute. As stated in [Thomas 1994], this type of inheritance anomaly seems to be almost solved. “True”

concurrency refers to cases that more than one thread can be executed in an object at the same time.

Reference [Thomas 1994] talked about solutions in this context. The inheritance anomaly problem has

 20

usually been approached in terms of analyzing the causes. The causes have been classified as partitioning

of acceptable states, history-only sensitiveness of acceptable states, and modification of acceptable states

[Matsuoka and Yonezawa 1993]. Here, we analyze the inheritance anomaly problem based on clarifying

the terminology of “synchronization constraints” , and we always view a concurrent system as a “ true” one.

As we will see, synchronization constraints among methods can be specified explicitly or implicitly. An

explicit synchronization constraint refers to the concurrent/mutual exclusive execution between two

methods in an object. For instance, in the unbounded buffer example, method get() and method who() can

be executed concurrently, however the execution of method get() and method put(e) must be mutually

exclusive. This type of synchronization constraint creates the inheritance anomaly problem when a method

m1 defined in a subclass module needs to be mutually exclusive with a particular inherited method m2 that

is defined in its superclass (ancestor) module. A simple way to deal with this situation is to refine the

method m2 (e.g., to use the SSP mechanism in our extended G-net model) and to establish mutual

exclusion between m1 and m2 in the subclass module. In this case the method defined in the superclass

(ancestor) module can be reused by a refinement inheritance.

An implicit synchronization constraint refers to cases where acceptance of a method in an object is based

on that object’s state. The state of an object can be changed by executing a method in that object. For

instance, when a buffer is in a state of “empty” , the method get() is not allowed to execute; however, after

executing the method put(e), the state of the buffer is changed from “empty” to “partial,” and at this time,

the method call of get() becomes acceptable. Since the methods get() and put(e) are indirectly synchronized

through the state of the buffer, we called this type of synchronization constraint an implicit

synchronization constraint. The implicit constraints can be further classified in terms of two different views

of an object’s state, namely internal view and external view. Under an internal view, the state of an object

can be captured by the evaluation of state variables of the object [Matsuoka and Yonezawa 1993]. For

example, the state “empty” of a buffer can be captured by checking if the state variable of buffer_size

evaluates to “0” . This type of synchronization can always be added to a subclass module without

redefining inherited methods because it can be easily maintained by checking state variables before

allowing the execution of a method.

Another view is the external view, where the state is captured indirectly by the externally observable

behavior of the object [Matsuoka and Yonezawa 1993]. For example, a state under external view could be

the state of a buffer object when the last executed method is put(e). When synchronization constraints with

respect to the external view of an object’s state are added to a subclass module, some methods defined in a

superclass (ancestor) module must be redefined. Fortunately, in most cases, as long as no deadlocks are

introduced, we can again use refinement inheritance to reuse the original method defined in the superclass

(ancestor) module. We use the classic example of gget() to ill ustrate this situation. Consider a new bounded

 21

buffer class BB1, defined as a subclass of bounded buffer class BB, and add a new method called gget().

The behavior of gget() is almost identical to that of get(), with the sole exception that it can not be executed

immediately after the invocation of put(e) [Matsuoka and Yonezawa 1993]. The design of the new bounded

buffer BB1 is ill ustrated in Figure 4. To establish the synchronization between methods gget() and put(e),

the method put(e) must be redefined in the subclass module BB1. Suppose we have an object bb1, an

instance of class BB1. Initially, the token in the synchronization module syn is “0” . Whenever there is a

method call other than put(e) to object bb1, the token will be removed and deposited back to the

synchronization module with the same value of “0” . However, if there is a method call for put(e), the token

in the synchronization module syn will be removed first, and then the method call put(e) will be forwarded

to its superclass BB by using the SSP(BB) mechanism. After the method call of put(e), a token with value

“1” will be deposited into the synchronization module syn. At this time, if there is a method call for gget(),

the call must wait because a token with value “0” is necessary to enable the transition t1. Thus the

synchronization between methods gget() and put(e) is correctly established. Note that we cannot reuse the

method get() when designing the method gget() by using the SSP(BB) mechanism. This is inapplicable

because gget() and get() are two different methods. In addition, we need to redefine the methods isEmpty()

and isFull () to avoid deadlocks.

GSP(BB1)

print
_error

Figure 4. G-net model of bounded buffer class (BB1)

BB1 extends BB
bool isEmpty(); // redefined
bool isFull (); // redefined
void put(e); // redefined
Item gget();

isFull ()

SSP(BB) SSP(BB)

 put(e)

t1

t4

syn

gget()

0

<0>

<0>

<n>

<0>

<n>

<1>

return
_false

return
_true

ISP(self,
isEmpty())

remove
<0>

isEmpty()

SSP(BB)
t2 t3

t5

t6

t7

t8

t9

t10

t11 t13

t12

default

SSP(BB)

2.7 Discussion

Inheritance has been introduced into several object-oriented net models, such as LOOPN++ [Lakos and

Keen 1994] and CO-OPN/2 [Biberstein et al. 1997]. However, those methods do not use net-based

extensions to capture inheritance properties. Our approach explicitly models inheritance at the net level to

 22

maintain an underlying Petri net model that can be exploited during design simulation or analysis. In future

work, we will explore an algorithmic basis for synthesis of subclass models as well as investigate how to

analyze extended G-nets at an abstract level, with consideration for the state explosion problem. Issues like

design consistency and deadlock avoidance will be of primary concern.

 23

Chapter 3

An Agent-based G-net Model

3.1 Introduction

Agents are becoming one of the most important topics in distributed and autonomous decentralized systems

(ADS) [Mendes et al. 1997][Arai et al. 1999]. With the increasing importance of electronic commerce

across the Internet, the need for agents to support both customers and suppliers in buying and selli ng goods

or services is growing rapidly. Most of the technologies supporting today’s agent-based electronic

commerce systems stem from distributed artificial intelli gence (DAI) research [Guttman et al. 1998][Green

et al. 1997]. Applications developed with multi -agent systems (MAS) in electronic commerce are examples

of such efforts. A multi -agent system (MAS) is a concurrent system based on the notion of autonomous,

reactive, and internally-motivated agents in a decentralized environment. The increasing interest in MAS

research is due to the significant advantages inherent in such systems, including their abilit y to solve

problems that may be too large for a centralized single agent, to provide enhanced speed and reliabilit y, and

to tolerate uncertain data and knowledge [Green et al. 1997]. The notable systems developed with MAS in

electronic commerce are Kasbah [Chavez and Maes 1996] and MAGMA [Tsvetovatyy et al. 1997]. Kasbah

is meant to represent a marketplace where Kasbah agents, acting on behalf of their owners, can filter

through ads and find those that their users might be interested in. The agents then proceed to negotiate to

buy and sell it ems. MAGMA moves the marketplace metaphor to an open marketplace involving agents

buying/selli ng physical goods, investments and forming competitive/cooperative alli ances. These agents

negotiate with each other through a global blackboard.

Notice that the example we provide in Figure 1 (Chapter 2) follows the Client-Server paradigm, in which a

Seller object works as a server and a Buyer object is a client. Although the standard G-net model works

well i n object-based design, it is not suff icient in agent-based design for the following reasons:

1. Agents in multi -agent systems are usually developed by different vendors independently, and those

agents will be widely distributed across large-scale networks such as the Internet. To make it possible

for those agents to communicate with each other, it is essential for them to have a common

 24

communication language and to follow common protocols. However the standard G-net model does

not directly support protocol-based language communication between agents.

2. The underlying agent communication model is usually asynchronous, and an agent may decide

whether to perform actions requested by some other agents. The standard G-net model does not

directly support asynchronous message passing and decision-making, but only supports synchronous

method invocations in the form of ISP places.

3. Agents are commonly designed to determine their behavior based on individual goals, their knowledge

and the environment. They may autonomously and spontaneously initiate internal or external behavior

at any time. Standard G-net models can only directly support a predefined flow of control.

3.2 Agent-based G-net Model

To support agent-based design, we first need to extend a G-net to support modeling an agent class1. The

basic idea is similar to extending a G-net to support class modeling for object-based design [Xu and Shatz

2000]. When we instantiate an agent-based G-net (an agent class model) G, an agent identifier G.Aid is

generated and the mental state of the resulting agent object (an active object [Shoham 1993]) is initialized.

In addition, at the class level, five special modules are introduced to make an agent autonomous and

internally-motivated. They are the Goal module, the Plan module, the Knowledge-base module, the

Environment module and the Planner module. The template for an agent-based G-net model is shown in

Figure 5. We describe each of the additional modules as follows:

• A Goal module is an abstraction of a goal model [Kinny et al. 1996], which describes the goals that an

agent may possibly adopt, and the events to which it can respond. It consists of a goal set which

specifies the goal domain and one or more goal states.

• A Plan module is an abstraction of a plan model [Kinny et al. 1996] that consists of a set of plans,

known as a plan set. A plan may be intended or committed, and only committed plans will be

achieved.

• A Knowledge-base module is an abstraction of a belief model [Kinny et al. 1996], which describes the

information about the environment and internal state that an agent of that class may hold. The possible

beliefs of an agent are described by a belief set.

• An Environment module is an abstract model of the environment, i.e., the model of the outside world

of an agent. The Environment module only models elements in the outside world that are of interest to

the agent and that can be sensed by the agent.

• A Planner module is the heart of an agent that may decide to ignore an incoming message, to start a

new conversation, or to continue with the current conversation. In the Planner module, committed

1 We view the abstract of a set of similar agents as an agent class, and we call an instance of an agent class
an agent or an agent object.

 25

plans are achieved, and the Goal, Plan and Knowledge-base modules of an agent are updated after

each communicative act [Finin et al. 1997][Odell 2000] or if the environment changes.

GSP(G)

message_
processing

incoming message

Figure 5. A generic agent-based G-Net model

Goal

 outgoing message

action_1 action_m

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(G’ .Aid) MSP(G’ .Aid)

action_1 action_n

message_
processing

message_
processing

message_
processing

 return return

private utility

utility_1 utility_p

…

…

…

…

…

…

utility_1 utility_p

Plan Environment

Notes: G’.Aid = mTkn.body.msg.receiver as defined later in this section

The internal structure (IS) of an agent-based G-net consists of three sections: incoming message, outgoing

message, and private utilit y. The incoming/outgoing message section defines a set of message processing

units (MPU), which correspond to a subset of communicative acts. Each MPU, labeled as action_i in

Figure 5, is used to process incoming/outgoing messages, and may use ISP-type modeling for calls to

methods defined in its private utilit y section. Unlike with the methods defined in a standard G-net model,

the private utilit y functions or methods defined in the private utilit y section can only be called by the agent

itself.

Although both objects (passive objects) and agents use message-passing to communicate with each other,

message-passing for objects is a unique form of method invocation, while agents distinguish different types

of messages and model these messages frequently as speech-acts and use complex protocols to negotiate

[Iglesias et al. 1998]. In particular, these messages must satisfy standardized communicative (speech) acts,

which define the type and the content of the message (e.g., the FIPA agent communication language, or

KQML) [FIPA 2000][Finin et al. 1997]. Note that in Figure 5, each named MPU action_i refers to a

communicative act, thus our agent-based model supports an agent communication interface. In addition,

agents analyze these messages and can decide whether to execute the requested action. As we stated before,

agent communications are typically based on asynchronous message passing. Since asynchronous message

passing is more fundamental than synchronous message passing, it is useful for us to introduce a new

mechanism, called Message-passing Switch Place (MSP), to directly support asynchronous message

 26

passing. When a token reaches an MSP (we represent it as an elli psis in Figure 5), the token is removed and

deposited into the GSP of the called agent. But, unlike with the standard G-net ISP mechanism, the calli ng

agent does not wait for the token to return before it can continue to execute its next step. Since we usually

do not think of agents as invoking methods of one-another, but rather as requesting actions to be performed

[Jennings et al. 1998], in our agent-based model, we restrict the usage of ISP mechanisms, so they are only

used to refer to an agent itself. Thus, in our models, one agent may not directly invoke a method defined in

another agent. All communications between agents must be carried out through asynchronous message

passing as provided by the MSP mechanism.

A template of the Planner module is shown in Figure 6. Since the modules Goal, Plan and Knowledge-base

have the same interface with the Planner module, for brevity, we represent them as a single special place

(denoted by double elli pses in Figure 6), which contains a token Goal/Plan/KB that represents a set of

goals, a set of plans and a set of beliefs. The Environment module is also represented as a special place that

contains a token Environment as a model of the outside world of the agent. The Planner module is goal-

driven because the transition start_a_conversation may fire whenever an attempt is made to achieve a

committed goal. In addition, the Planner module is also message-triggered because certain actions may

initiate whenever a message arrives (either from some other agent or the agent itself). If the message comes

from some other agent, it will be dispatched to a MPU defined in the incoming messages section of the

agent-based G-net’s internal structure. After the message is processed, the MPU will t ransfer the processed

message as a token to the GSP place of the agent itself. This is done by sending a message MSP(self) to the

agent itself. Upon arrival of this internal message, the transition internal may fire, and the next action will

be determined based on the agent’s current mental state. Alternatively, the next action could be to ignore

the message or to continue with the current conversation. In either case, a token will be deposited in place

update_goal/plan/kb, and the transition update may fire. As a consequence, the agent’s mental state may

change. If the next action is to continue the conversation, the tag of the token will be changed from

internal to external, and the token will be deposited in place dispatch_outgoing_message. In this case, the

corresponding MPU will be called before the message is sent to some other agent by using the MSP

mechanism. In addition, an agent may provide a set of private utilit y functions for itself and allow other

functional units to make synchronous method calls to it. Whenever there is a method call , the token

deposited in the GSP place will be moved to place dispatch_utiliti es and then will be dispatched to a

method defined in the private utiliti es section.

 27

GSP(G)

Figure 6. A template of Planner module

Goal/Plan/KB Environment

ignore

start_a_
conversation

…

…

…

…

…

continue

external
internal

update

to place “ goal”

to place “ knowledge base”

from
transition
“ update”

update_
goalplan/kb

next_
action

dispatch_
utilities

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

private_
utilities

incoming messages

outgoing messages private util ities

As a result of this extension to G-nets, the structure of tokens in the agent-based G-net model should be

redefined. In addition to the ordinary token introduced in place syn, essentially there are five types of

colored tokens, namely the message token mTkn, the goal token gTkn, the plan token pTkn, the knowledge

token kTkn and the environment token eTkn. One way to construct the gTkn, pTkn, kTkn and eTkn is as

linked lists. In other words, a gTkn represents a list of goals, pTkn represents a list of plans, a kTkn

represents a list of facts, and an eTkn represents a list of events that are of the agent’s interests. Since these

four types of tokens confine themselves to those special places of their corresponding modules, we do not

describe them further in this paper.

A mTkn is a 2-tuple (tag, body), where tag ∈ { internal, external, pr ivate} and body is a variant, which is

determined by the tag. According to the tag, the token deposited in a GSP will finally be dispatched into a

MPU or a method defined in the internal structure of the agent-based G-net. Then the body of the token

mTkn will be interpreted differently. More specifically, we define the mTkn body as follows:

struct Message{

 int sender; // the identifier of the message sender

 int receiver; // the identifier of the message receiver

 string protocol_type; // the type of contract net protocol

 string name; // the name of incoming/outgoing messages

 string content; // the content of this message

};

enum Tag {internal, external};

 28

struct MtdInvocation {

 Triple (seq, sc, mtd); // as defined in Section 2.1

}

if (mTkn.tag ∈ {internal, external})

then mTkn.body = struct {

 Message msg; // message body

}

else mTkn.body = struct {

 Message msg; // message body

 Tag old_tag; // to record the old tag: internal/external

 MtdInvocation miv; // to trace method invocations

}

When mTkn.tag ∈ { internal, external} , and an ISP method call occurs, the following steps will t ake place:

1. The two variables old_tag and miv are attached to the mTkn to define mTkn.body.old_tag and

mTkn.body.miv, respectively. Then, mTkn.tag (the current tag, one of internal or external) is recorded

into mTkn.body.old_tag, and mTkn.tag is set to pr ivate.

2. Further method calls are traced by the variable mTkn.body.miv, which is a triple of (seq, sc, mtd). The

tracing algorithm is defined as in the original G-net definitions [9].

3. After all the ISP method calls are finished and the mTkn token returns to the original ISP, the mTkn.tag

is set back as mTkn.body.old_tag, and both the variables old_tag and miv are detached.

We now provide a few key definitions giving the formal structure of our agent-based G-net models.

Definition 3.1 Agent-based G-net

An agent-based G-net is a 7-tuple AG = (GSP, GL, PL, KB, EN, PN, IS), where GSP is a Generic Switch

Place providing an abstract for the agent-based G-net, GL is a Goal module, PL is a Plan module, KB is a

Knowledge-base module, EN is an Environment module, PN is a Planner module, and IS is an internal

structure of AG.

Definition 3.2 Planner Module

A Planner module of an agent-based G-net AG is a colored sub-net defined as a 7-tuple (IGS, IGO, IPL,

IKB, IEN, IIS, DMU), where IGS, IGO, IPL, IKB, IEN and IIS are interfaces with GSP, Goal module, Plan

module, Knowledge-base module, Environment module and internal structure of AG, respectively. DMU is

a set of decision-making unit, and it contains three abstract transitions: make_decision, sensor and update.

 29

Definition 3.3 Internal Structure (IS)

An internal structure (IS) of an agent-based G-net AG is a triple (IM, OM, PU), where IM/OM is the

incoming/outgoing message section, which defines a set of message processing units (MPU); and PU is the

private utilit y section, which defines a set of methods.

Definition 3.4 Message Processing Unit (MPU)

A message processing unit (MPU) is a triple (P, T, A), where P is a set of places consisting of three special

places: entry place, ISP and MSP. Each MPU has only one entry place and one MSP, but it may contain

multiple ISPs. T is a set of transitions, and each transition can be associated with a set of guards. A is a set

of arcs defined as: ((P-{ MSP}) x T) ∪ ((T x (P-{ entry}).

Definition 3.5 Method

A method is a triple (P, T, A), where P is a set of places with three special places: entry place, ISP and

return place. Each method has only one entry place and one return place, but it may contain multiple ISPs.

T is a set of transitions, and each transition can be associated with a set of guards. A is a set of arcs defined

as: ((P-{ return}) x T) ∪ ((T x (P-{ entry}).

3.3 Selli ng and Buying Agent Design

To ill ustrate how to design a selli ng/buying agent by using our agent-based G-net model, we use an

example derived from [Odell 2000]. Figure 7 (a) is a modified example of an FIPA contract net protocol,

which depicts a template of protocol expressed as a UML sequence diagram for a price-negotiation

protocol between a buying agent and a selli ng agent. To correctly draw the sequence diagram for this

template, we need to introduce two new notations, i.e., the end of protocol operation “•” and the iteration of

communicative acts operation “*” . Examples of using these two notations are as follows. In Figure 7 (a),

we put a mark of “•” in front of the message name “ refuse” to indicate that this message ends the protocol.

In the same figure, a mark “*” is put on the right corner of the narrow rectangle for the message “propose”

to indicate that the communicative actions in this section can be repeated zero or more times.

When a conversation based on this contract net protocol begins, the buying agent sends a request for price

to a selli ng agent. The selli ng agent can then choose to response to the buying agent by refusing to provide

price or submitting a proposal. Here the “x” in the decision diamond indicates an exclusive-or decision. If a

proposal is offered, the buying agent has a choice of either accepting or rejecting the proposal. If a selli ng

agent receives a reject-proposal message, it may send the buying agent a new proposal or replies the

buying agent with a confirmation message. If the selli ng agent receives an accept-proposal message, it will

simply send a confirmation message to the buying agent. Whenever a confirmation message is sent, the

protocol ends. Figure 7 (b) and 7 (c) shows two actual cases of this protocol template. In Figure 7 (b), the

 30

selli ng agent’s proposal is accepted by the buying agent in one round; while Figure 7 (c) shows the case

that the proposal is accepted by the buying agent in the second round.

Buyer Buyer Buyer Seller Seller Seller

request-price

x

• refuse

propose

x

accept-proposal

reject-proposal

• confirm

request-price

propose

accept-proposal

• confirm

request-price

propose

reject-proposal

propose

accept-proposal

• confirm

(a) (b) (c)

Figure 7. A contract net protocol between buying and selling agent

propose

x

accept-proposal

reject-proposal

*

GSP(G)

mesg_pr-
ocessing

incoming messages

Figure 8. An Agent-based G-net model for buying agent class

Plan

 outgoing messages

propose refuse

t4

Environment

 Planner

MSP(self) MSP(self) MSP(self) MSP(G’.Aid)

confirm request-price accept-proposal reject-proposal

mesg_pr-
ocessing

mesg_pr-
ocessing

mesg_pr-
ocessing

 return return

private utilities

utilit y_1 utilit y_p

…

…

utili -
ty_1

utili -
ty_p

mesg_pr-
ocessing

MSP(G’.Aid) MSP(G’.Aid)

mesg_pr-
ocessing

Notes: G’ .Aid = mTkn.body.msg.receiver as defined later in this section

Goal Knowledge-base

Based on the communicative acts (e.g., request-price, propose etc.) needed for this contract net protocol, we

may design the buying agent as in Figure 8. In Figure 8, the Goal and Knowledge-base modules remain as

abstract units and can be refined in further detailed design. The Planner module may use Figure 6 as a

template, with the transition start_a_conversation and the place next_action left to be refined in further

detailed design too. In the private utiliti es section, we may define some necessary functions that can be

called by the buying agent itself. Examples of such private utilit y functions could be: compare_price,

 31

update_know-ledge_base etc. The design of the selli ng agent is similar. We define MPUs of request-price,

accept-proposal and reject-propose in the incoming messages section of the selli ng agent, and define

MPUs of propose, refuse and confirm in the outgoing messages section of the selli ng agent.

3.4 Verifying Agent-based G-net models

One of the advantages of building a formal model for agents in agent-based design is to ensure a correct

design that meets certain specifications. A correct design of agents at least has the following properties:

• L3-live: any communicative act can be performed as many times as needed.

• Concurrent: a number of conversations among agents can happen at the same time.

• Effective: an agent communication protocol can be correctly traced in the agent models.

To verify the correctness of agent-based G-net models for selli ng/buying agents with respect to the above

properties, we first reduce our agent-based G-net models to an ordinary Petri net as follows: (1) simpli fy

the Goal module and Knowledge-base module as ordinary places with ordinary tokens; (2) omit the public

services and private utiliti es sections; (3) simpli fy mTkn tokens as ordinary tokens; (4) use net reduction to

simpli fy the Petri net corresponding to an MPU/Method as a single place; and (5) use the close world

assumption and make our system only contains two agents, i.e., a buying agent and a selli ng agent.

The resulting ordinary Petri net is ill ustrated in Figure 9. To verify the correctness of our agent-based G-

net model for agent communication, we utili ze some key definitions and theorems as adapted from

[Murata 1989].

Definition 3.6 Incidence Matrix

For a Petri net N with n transitions and m places, the incidence matrix A = [aij] is an n x m matrix of

integers and its typical entry is given by

aij = aij+ - aij -

where aij+ = w(i,j) is the weight of the arc from transition i to output place j and aij - = w(j,i) is the weight

of the arc from input place j to transition i.

Definition 3.7 Firing Count Vector

For some sequence of transition firings in a Petri net N, a firing count vector x is defined as an n-vector of

nonnegative integers, where the ith entry of x denotes the number of times that transition i must fire in that

firing sequence.

 32

 GSP(G)

Figure 9. A transformed model of buying and selli ng agents

(goa/plan/kb) (env)

(ignore) (continue)

(external) (internal)

(next_
action)

GSP(G)

Buyer Seller

(dispatch_
incoming_
message)

(dispatch_
incoming_
message)

(dispatch_
outgoing_
message)

(dispatch_
outgoing_
message)

(next_
action)

(external) (internal)

(start_a_
conversation)

(start_a_
conversation)

(env)

(continue) (ignore)

a1 b1 c1 a2 b2 c2

d1 d2 e1 e2

f1 g1 h1 f2 g2 h2
i1 i2

j1 j2

k1 l1 m1 k2 l2 m2

t1 t2

t4 t5 t6 t7 t8

t9 t10 t11
t12 t13 t14 t15

t16 t17 t18

t19 t20
t21 t3

t22 t23 t24 t25 t26

t27 t28 t29
t30 t31

t34

t32

t35

t33

t36

(update) (update)

(propose, refuse, confirm)

(request_price, accept_proposal,
reject_proposal)

(request_price, accept_proposal,
reject_proposal)

(propose, refuse, confirm)

(goa/plan/kb)

Definition 3.8 T-invariant

For a Petri net N, an n-vector x of integers (x ≠ 0) is called a T-invariant if x is an integer solution of

homogeneous equation A
T
x = 0, where A is the incidence matrix of Petri net N.

Definition 3.9 Support and minimal-support T-invariant

The set of transitions corresponding to non-zero entries in a T-invariant x ≥ 0 is called the support of a T-

invariant and is denoted as ||x||. A support is said to be minimal if no proper non-empty subset of the

support is also a support. Given a minimal support of a T-invariant, there is a unique minimal T-invariant

corresponding to the minimal support. Such a T-invariant is called the minimal-support T-invariant.

Definition 3.10 L3-live Petri net

A Petri net N with initial marking M0, denoted as (N, M0), is said to be L3-live if for every transition t in

the net, t appears infinitely often in some firing sequence L(N, M0), where L(N, M0) is the set of all

possible firing sequences from M0 in the net (N, M0).

Theorem 3.1 An n-vector x is a T-invariant of a Petri net N iff there exists a marking M0 and a firing

sequence σ that reproduces the marking M0, and x defines the firing count vector for σ.

 33

Theorem 3.2 A Petri net N with initial marking M0 is L3-live if there exists a set of minimal-support T-

invariants that covers all the transitions in the net, and for each minimal-support T-invariant there exists a

firing sequence that reproduces the initial marking M0.

Proof: Let T be the set of transitions in Petri net (N, M0), Γ be the set of minimal-support T-invariants that

covers all the transitions in T. From the given condition, we know that for ∀t ∈ T, ∃χ ∈ Γ, which covers

transition t. Since for the minimal-support T-invariant χ, there exists a finite firing sequence ρ that

reproduces the initial marking M0, t appears in ρ. Let the infinite firing sequence σ = ρ • ρ • ρ • ρ …,

where “•” is the concatenation operator between finite sequences, t appears in σ infinitely often. By

definition 4.5, Petri net (N, M0) is L3-live. ◊

 a

1
b
1

c
1

d
1

e
1

f
1

g
1

h
1

i
1

j
1

k
1

l
1

m
1

a
2

b
2

c
2

d
2

e
2

f
2

g
2

h
2

i
2

j
2

k
2

l
2

m
2

t1 -1 0 0 1 0
t2 -1 0 0 0 1 0
t3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t4 0 0 0 -1 0 1 0
t5 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t6 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t7 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t8 0 0 0 0 -1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t9 1 0 0 0 0 -1 0
t10 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t11 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t12 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t13 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t14 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t15 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
t16 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
t17 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
t18 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0
t19 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0
t20 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0
t21 0 1 0 0 0
t22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0
t23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0
t24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0
t25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0
t26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 1 0 0 0
t27 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0
t28 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0
t29 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0
t30 -1 0 0 0 0
t31 0 -1 1 0 0
t32 0 -1 0 1 0
t33 0 -1 0 0 1
t34 1 0 -1 0 0
t35 1 0 -1 0
t36 1 0 -1

Table 1. The incidence matrix A of the Petri net in Figure 9

The incidence matrix A of the Petri net in Figure 9 is listed in Table 1. By using Definition 3.6 and 3.9, we

can calculate a set of minimal-support T-invariants as follows:

x1 = [1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0]

x2 = [0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0]

x3 = [1 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0]

 34

x4 = [1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1]

x5 = [1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0]

From Theorem 3.1, for each minimal-support T-invariant xi in our example, there exists a marking M0 and

a firing sequence σi, which reproduces the marking M0, and xi defines the firing count vector for σi.

Obviously, the following firing sequences σ1, σ2, … σ5 reproduce the initial marking M0 = [0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0], and x1, x2, … x5 define the firing count vectors for σ1, σ2, … σ5

respectively:

σ1 = <t21, t31, t34, t1, t4, t9, t2, t7, t12>

σ2 = <t3, t13, t16, t19, t22, t27, t20, t25, t30>

σ3 = <t3, t13, t16, t19, t22, t27, t20, t26, t30, t31, t34, t1, t4, t9, t2, t7, t12>

σ4 = <t3, t14, t17, t19, t23, t28, t20, t26, t30, t33, t36, t1, t6, t11, t2,t7,t12>

σ5 = <t21, t32, t35, t1, t5, t10, t2, t8, t12, t15, t18, t19, t24,t29,t20,t25,t30>

Since the above minimal-support T-invariants cover all the transitions in the net, and for each minimal-

support T-invariant, there exists a firing sequence that reproduces the initial marking M0, from Theorem

3.2, we conclude that our Petri net model with initial marking M0 is L3-live, i.e., for any transition t in our

net model, we can find an infinite firing sequence that t appears infinitely often. Consequently, any

communicative act can be performed as many times as needed2.

In Figure 9, it is obvious to see that our net model is unbounded. This is because transitions t3 and t21 can

fire as many times as needed. This behavior shows that both the buying and selli ng agent may initiate

conversations autonomously and concurrently (as we stated before, the initiation of a new conversation is

goal driven). There can be as many conversations as necessary between the buying agent and the selli ng

agent. As an example, a buying agent may request prices of several goods from a selli ng agent at the same

time, and several buying agents may request price of the same goods from a selli ng agent concurrently.

In addition, we may trace an agent communication protocol p in our net model with a firing sequence σ.

For a protocol p, a corresponding firing sequence σ in our net model has more semantics than the protocol

itself because when we actually execute a protocol in our net, we need to do additional work, such as

updating the goal or knowledge base after each communicative act. Since a marking M that is reachable

from M0, but M ≠ M0, represents that there are still some ongoing conversations in the net, to correctly

2 One of the limitations for invariant approach is that it is not suff icient to prove a Petri net is L4-li ve or li ve, i.e., from any marking M
that is reachable from M0, it is possible to ultimately fire any transition of the net.

 35

trace a protocol p in our net model, it is essential for us to find a firing sequence σ that reproduces the

initial marking M0. In other words, we need to make sure that there will be no residual tokens for a

conversation left in the net after that conversation completes. In this case, we say that the protocol p can be

effectively traced as a firing sequence σ in our net model. To show that a protocol p can be effectively

traced, we use the contract net protocol examples in Figure 7 (b) and Figure 7 (c). These two protocols can

be traced in our net model as follows:

σb = <t3, t13, t16, t19, t22, t27, t20, t26, t30, t31, t34, t1, t4, t9, t2, t8, t12, t14, t17, t19, t23, t28, t20, t26,

t30, t33, t36, t1, t6, t11, t2, t7, t12>

σc = <t3, t13, t16, t19, t22, t27, t20, t26, t30, t31, t34, t1, t4, t9, t2, t8, t12, t15, t18, t19, t24, t29, t20, t26,

t30, t31, t34, t1, t4, t9, t2, t8, t12, t14, t17, t19, t23, t28, t20, t26, t30, t33, t36, t1, t6, t11, t2, t7, t12>

By Definition 3.7, we calculate their corresponding firing count vectors xb and xc as follows:

xb = [2 2 1 1 0 1 1 1 1 0 1 2 1 1 0 1 1 0 2 2 0 1 1 0 0 2 1 1 0 2 1 0 1 1 0 1]

xc = [3 3 1 2 0 1 1 2 2 0 1 3 1 1 1 1 1 1 3 3 0 1 1 1 0 3 1 1 1 3 2 0 1 2 0 1]

By Definition 3.8, it is easy to verify that both xb and xc are T-invariants because both of the equations

ATxb = 0 and ATxc = 0 are satisfied. This shows that both firing sequences σb and σc can reproduce the

initial marking M0. In other words, we prove that both protocols in Figure 7 (b) and 7 (c) can be effectively

traced in our agent-based model.

3.5 Discussion

One of the most rapidly growing areas of interest for Internet technology is that of electronic commerce.

Consumers are looking for suppliers selli ng products and services on the Internet, while suppliers are

looking for buyers to increase their market share. For convenience and eff iciency, we believe that multi -

agent system (MAS) is an effective way to automate the time consuming process of looking for buyers or

sellers and negotiate in order to obtain the best deal. Although there are several implementations of agent-

based electronic marketplaces available [Chavez and Maes 1996][Tsvetovatyy et al. 1997], formal

framework for such systems are few. It is an increasing need to provide formal methods in MAS

specification and design to ensure robust and reliable products.

 36

Chapter 4

A Framework for Modeling Agent-Or iented

Software

4.1 Introduction

To avoid building a methodology from scratch, the researchers on agent-oriented methodologies have

followed the approach of extending existing methodologies to include the relevant aspects of agents. These

extensions have been carried out mainly in two areas: objected-oriented (OO) methodologies and know

engineering (KE) methodologies [Iglesias et al. 1998]. Now we give a brief introduction to these two ways

of extensions.

To extend object-oriented methodologies for agent modeling is a nature way for most of the software

engineers. This is because there are similarities between the object-oriented paradigm and the agent-

oriented paradigm [Kinny et al. 1996]. Since the early times of distributed artificial intelli gence (DAI), the

close relationship between DAI and Object-Based Concurrent Programming (OBCP) was established

[Gasser and Briot 1992]. As stated by Shoham, the agents can be considered as active objects, i.e., objects

with a mental state [Shoham 1993]. Both paradigms use message passing for communication and can use

inheritance and aggregation for defining its architecture. The main difference is the constrained type of

messages in the AO paradigm and the definition of a state of an agent in terms of its beliefs, desires and

intentions [Iglesias et al. 1998].

The popularity of object-oriented methodologies is another potential advantage for this approach. Many

object-oriented methodologies are being used in the industry with success. Examples of such

methodologies are Object Modeling Technique (OMT) [Rumbaugh et al. 1991], Object-Oriented Software

Engineering (OOSE) [Jacobson et al. 1992], Object-Oriented Design [Booch 1994] and Unified Modeling

Language (UML) [Rational 1997]. This experience can be a key to facilit ate the integration of agent

technology into OO methodologies. This is because, on the one hand, the software engineers can be

 37

reluctant to use and learn a complete new methodology, and on the other hand, the managers would prefer

to follow methodologies that have been successfully tested.

Previous work based on this approach includes: agent modeling technique for systems of BDI agents

[Kinny et al. 1996], agent-oriented analysis and design [Burmeister 1996] and agent unified modeling

language (AUML) [Odell 2000].

For the second approach, knowledge engineering methodologies can provide a good basis for multi -agent

systems modeling since they deal with the development of knowledge based systems. Since the agents have

cognitive characteristics, these methodologies are quite helpful to modeling agent knowledge. The

extension of current knowledge methodologies can take advantage of the acquired experience in these

methodologies. In addition, both the existing tools and the developed problem solving method libraries can

be reused. An example of this approach is the Gaia methodology for agent-oriented analysis and design

suggested by Wooldridge and his colleagues [Wooldridge et al. 2000].

In this proposal, we adopt the first approach, however unlike previous work, our approach uses the

principle of “separation of concerns” in agent-oriented design. We separate the traditional object-oriented

features and reasoning mechanisms in our agent-oriented software model as much as possible, and we

discuss how reuse can be achieved in terms of functional units, such as message processing units (MPUs)

and private functions, in agent-oriented design. While some people advocated that inheritance has limited

value in conceptual models of agent behavior [Jennings 2000][Wooldridge et al. 2000], we ill ustrate a

useful role for inheritance in our agent-oriented models. Our agent-based model is derived from the general

agent model given in [Xu and Shatz 2001a], and the extensions that create an agent-oriented model are

derived from the framework presented in [Xu and Shatz 2001b].

4.2 An Agent-Or iented Model

4.2.1 An Architecture for Agent-Or iented Modeling

To reuse the design of agent-based G-net model shown in Figure 5 (Chapter 3), we keep our agent-oriented

G-net model to have the same structure as an agent-based G-net model. However, to deal with inheritance,

we must revise our Planner module. In our new Planner module, we introduce new mechanisms such as

synchronous Superclass switch Place (ASP), and decision-making units such as abstract transitions. The

template of the Planner module is shown as in Figure 103. Similarly as before, the modules Goal, Plan,

Knowledge-base and Environment are represented as four special places (denoted by double elli pses in

 38

Figure 10), each of which contains a token that represents a set of goals, a set of plans, a set of beliefs and a

model of the environment, respectively. These four modules connect with the Planner module through

abstract transitions, denoted by shaded rectangles in Figure 10 (e.g., the abstract transition make_decision).

Abstract transitions represent abstract units of decision-making or mental-state-updating. At a more

detailed level of design, abstract transitions would be refined into sub-nets; however how to make decisions

and how to update an agent’s mental state is beyond the scope of this paper, and will be considered in our

future work. In the Planner module, there is a unit called autonomous unit that makes an agent autonomous

and internally-motivated. An autonomous unit contains a sensor (represented as an abstract transition),

which may fire whenever the pre-conditions of some committed plan are satisfied or when new events are

captured from the environment. If the abstract transition sensor fires, based on an agent’s current mental

state (goal, plan and knowledge-base), the autonomous unit will t hen decide whether to start a conversation

or simply update its mental state. This is done by firing either the transition start_a_conversation or the

transition automatic_update after executing any necessary actions associated with place new_action.

GSP(G)

Figure 10. A template for the Planner module (initial design)

Goal Knowledge-base

make_
decision

start_a_
conver_
sation

…

…

…

…

…

continue

external internal

to place “ Goal”
to place “ Plan”
to place “ Knowledge base”

from transition
“ update”

update_
goal/plan/kb

check_
primary

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

dispatch_
private_
utilit y

private

Plan

bypass

ASP(super)

ignore

next_
action

sensor

automatic_
update

new_
action

ASP(super)

ASP(super)

update

outgoing messages

private utiliti es

incoming messages

autonomous unit

Environment

syn
<e>

<e>

<e>

Note that the Planner module is both goal-driven and event-driven because the transition sensor may fire

when any committed plan is ready to be achieved or any new event happens. In addition, the Planner

module is also message-triggered because certain actions may initiate whenever a message arrives (either

from some other agent or from the agent itself). A message is represented as a message token with a tag of

3 Actually, this module purposely contains a somewhat subtle design error that is used to demonstrate the
value of automated verification in Chapter 5.

 39

internal/external/pr ivate. A message token with a tag of external represents an incoming message which

comes from some other agent, or a newly generated outgoing message before sending to some other agent;

while a message token with a tag of internal is a message forwarded by an agent to itself with the MSP

mechanism. In either case, the message token with the tag of internal/external should not be involved in

an invocation of a method call . On the contrary, a message token with a tag of pr ivate indicates that the

token is currently involved in an invocation of some method call . When an incoming message/method

arrives, with a tag of external/pr ivate in its corresponding token, it will be dispatched to the appropriate

MPU/method defined in the internal structure of the agent. If it is a method invocation, the method defined

in the private utilit y section of the internal structure will be executed, and after the execution, the token will

return to the calli ng unit, i.e., an ISP of the calli ng agent. However, if it is an incoming message, the

message will be first processed by a MPU defined in the incoming message section in the internal structure

of the agent. Then the tag of the token will be changed from external to internal before it is transferred

back to the GSP of the receiver agent by using MSP(self). Note that we have extended G-nets to allow the

use of the keyword self to refer to the agent object itself. Upon the arrival of a token tagged as internal in a

GSP, the transition internal may fire, followed by the firing of the abstract transition make_decision. Note

that at this point of time, there would exist tokens in those special places Goal, Plan and Knowledge-base,

so the transition bypass is disabled (due to the “ inhibitor arc”4) and may not fire (the purpose of the

transition bypass is for inheritance modeling, which will be addressed in Section 4.2.2). Any necessary

actions may be executed in place next_action before the conversation is either ignored or continued. If the

current conversation is ignored, the transition ignore fires; otherwise, the transition continue fires. If the

transition continue fires, a newly constructed outgoing message, in the form of a token with a tag of

external, will be dispatched into the appropriate MPU in the outgoing message section of the internal

structure of the agent. After the message is processed by the MPU, the message will be sent to a receiver

agent by using the MSP(Receiver) mechanism. In either case, a token will be deposited into place

update_goal/plan/kb, allowing the abstract transition update to fire. As a consequence, the Goal, Plan and

Knowledge-base modules are updated if needed, and the agent’s mental state may change.

To ensure that all decisions are made upon the latest mental state of the agent, i.e., the latest values in the

goal, plan, and knowledge-base modules, and similarly to ensure that the sensor always captures the latest

mental state of the agent, we introduce a synchronization unit syn, modeled as a place marked with an

ordinary token (black token). The token in place syn will be removed when the abstract transition

make_decision or sensor fires, thus delaying further firing of these two abstract transitions until completion

of actions that update the values in the goal, plan and knowledge-base modules. This mechanism is

intended to guarantee the mutual exclusive execution of decision-making, capturing the latest mental state

and events, and updating the mental state. Note that we have used the label <e> on each of the arcs

4 An inhibitor arc connects a place to a transition and defines the property that the transition associated with
the inhibitor arc is enabled only when there are no tokens in the input place.

 40

connecting with the place syn to indicate that only ordinary tokens may be removed from or deposited into

the place syn.

4.2.2 Inheritance Modeling in Agent-Or iented Design

Although there are different views with respect to the concept of agent-oriented design [Iglesias et al. 1998]

[Jennings 2000], we consider an agent as an extension of an object, and we believe that agent-oriented

design should keep most of the key features in object-oriented design. Thus, to progress from an agent-

based model to an agent-oriented model, we need to incorporate some inheritance modeling capabiliti es.

But inheritance in agent-oriented design is more complicated than in object-oriented design. Unlike an

object (passive object), an agent object has mental states and reasoning mechanisms. Therefore, inheritance

in agent-oriented design invokes two issues: an agent subclass may inherit an agent superclass’s

knowledge, goals, plans, the model of its environment and its reasoning mechanisms; on the other hand, as

in the case of object-oriented design, an agent subclass may inherit all the services that an agent superclass

may provide, such as private utilit y functions. There is existing work on agent inheritance with respect to

knowledge, goals and plans [Kinny and Georgeff 1997][Crnogorac et al. 1997]. However, we believe that

since inheritance happens at the class level, an agent subclass may be initialized with an agent superclass’s

initial mental state, but new knowledge acquired, new plans made, and new goals generated in a individual

agent object (as an instance of an agent superclass), can not be inherited by an agent object when creating

an instance of an agent subclass. A superclass’s reasoning mechanism can be inherited, however it is

beyond the scope of this paper. For simplicity, we assume that an instance of an agent subclass (i.e., an

subclass agent) always uses its own reasoning mechanisms, and thus the reasoning mechanisms in the agent

superclass should be disabled in some way. This is necessary because different reasoning mechanisms may

deduce different results for an agent, and to resolve this type of conflict may be time-consuming and make

an agent’s reasoning mechanism ineff icient. Therefore, in this paper we only consider how to initialize a

subclass agent’s mental state while an agent subclass is instantiated; meanwhile, we concentrate on the

inheritance of services that are provided by an agent superclass, i.e., the MPUs and methods defined in the

internal structure of an agent class. Before presenting our inheritance scheme, we need the following

definition:

Definition 4.1 Subagent and Primary Subagent

When an agent subclass A is instantiated as an agent object AO, a unique agent identifier is generated, and

all superclasses and ancestor classes of the agent subclass A, in addition to the agent subclass A itself, are

initialized. Each of those initialized classes then becomes a part of the resulting agent object AO. We call

an initialized superclass or ancestor class of agent subclass A a subagent, and the initialized agent subclass

A the primary subagent.

 41

The result of initializing an agent class is to take the agent class as a template and create a concrete

structure of the agent class and initialize its state variables. Since we represent an agent class as an agent-

oriented G-net, an initialized agent class is modeled by an agent-oriented G-net with initialized state

variables. In particular, the four tokens in the special places of an agent-oriented G-net, i.e., gTkn, pTkn,

kTkn and eTkn, are set to their initial states. Since different subagents of AO may have goals, plans,

knowledge and environment models that conflict with those of the primary subagent of AO, it is desirable

to resolve them in an early stage. In our case, we deal with those conflicts in the instantiation stage in the

following way. All the tokens gTkn, pTkn, kTkn and eTkn in each subagent of AO are removed from their

associated special places, and the tokens are combined with the gTkn, pTkn, kTkn and eTkn in the primary

subagent of AO.5 The resulting tokens gTkn, pTkn, kTkn and eTkn (newly generated by unifying those

tokens for each type), are put back into the special places of the primary subagent of AO. Consequently, all

subagents of AO lose their abiliti es for reasoning, and only the primary subagent of AO can make necessary

decisions for the whole agent object. More specifically, in the Planner module (as shown in Figure 10) that

belongs to a subagent, the abstract transitions make_decision, sensor and update can never be enabled

because there are no tokens in the following special places: Goal, Plan and Knowledge-base. If a message

tagged as internal arrives, the transition bypass may fire and a message token can directly go to a MPU

defined in the internal structure of the subagent if it is defined there. This is made possible by connecting

the transition bypass with inhibitor arcs (denoted by dashed lines terminated with a small circle in Figure

10) from the special places Goal, Plan and Knowledge-base. So the transition bypass can only be enabled

when there are no tokens in these places. In contrast to this behavior, in the Planner module of a primary

subagent, tokens do exist in the special places Goal, Plan and Knowledge-base. Thus, the transition bypass

will never be enabled. Instead, the transition make_decision must fire before an outgoing message is

dispatched.

To reuse the services (i.e., MPUs and methods) defined in a subagent, we need to introduce a new

mechanism called Asynchronous Superclass switch Place (ASP). An ASP (denoted by an elli psis in Figure

10) is similar to a MSP, but with the difference that an ASP is used to forward a message or a method call

to a subagent rather than to send a message to an agent object. For the MSP mechanism, the receiver could

be some other agent object or the agent object itself. In the case of MSP(self), a message token is always

sent to the GSP of the primary subagent. However, for ASP(super), a message token is forwarded to the

GSP of a subagent that is referred to by super. In the case of single inheritance, super refers to a unique

superclass G-net, however with multiple inheritance, the reference of super must be resolved by searching

the class hierarchy diagram.

5 The process of generating the new token values would involve actions such as conflict resolution among
goals, plans or knowledge-bases, which is a topic outside the scope of our model and this paper.

 42

When a message/method is not defined in an agent subclass model, the dispatching mechanism will deposit

the message token into a corresponding ASP(super). Consequently, the message token will be forwarded to

the GSP of a subagent, and it will be again dispatched. This process can be repeated until the root subagent

is reached. In this case, if the message is still not defined at the root, an exception occurs. In this paper, we

do not provide exception handling for our agent-oriented G-net models, and we assume that all i ncoming

messages have been correctly defined in the primary subagent or some other subagents.

4.3 Examples of Agent-Or iented Design

4.3.1 A Hierarchy of Agents in an Electronic Marketplace

Consider an agent family in an electronic marketplace domain. Figure 11 shows the agents in a UML class

hierarchy notation. A shopping agent class is defined as an abstract agent class that has the abilit y to

register in a marketplace through a facilit ator, which serves as a well -known agent in the marketplace. A

shopping agent class cannot be instantiated as an agent object, however, the functionality of a shopping

agent class can be inherited by an agent subclass, such as a buying agent class or a selli ng agent class. Both

the buying agent and selli ng agent may reuse the functionality of a shopping agent class by registering

themselves as a buying agent or a selli ng agent through a facilit ator. Furthermore, a retailer agent is an

agent that can sell goods to a customer, but it also needs to buy goods from some selli ng agents. Thus a

retailer agent class is designed as a subclass of both the buying agent class and the selli ng agent class. In

addition, a customer agent class may be defined as a subclass of a buying agent class, and an auctioneer

agent class may be defined as a subclass of a selli ng agent class. In this paper, we only consider four types

of agent class, i.e., the shopping agent class, the buying agent class, the selli ng agent class and the retailer

agent class. The modeling of the customer agent class and auctioneer agent class can be done in a similar

way.

 Shopping agent

Customer agent

Buying agent Selling agent

Retailer agent Auctioneer agent

Figure 11. The class hierarchy diagram of agents in an electronic marketplace

 43

4.3.2 Modeling Agents in an Electronic Marketplace

As in Chapter 3, to design an agent, we first need to define the necessary communicative acts of that agent.

The communicative acts for a shopping agent, facilit ator agent, buying agent and selli ng agent are shown as

agent UML (AUML) sequence diagram in Figure 12. Figure 12 (a) depicts a template of a contract net

protocol for a registration-negotiation protocol between a shopping agent and a facilit ator agent. Figure 12

(b) is the same example of a contract net protocol as in Figure 7 (a), which depicts a template of a price-

negotiation protocol between a buying agent and a selli ng agent. Figure 12 (c) shows an example of price-

negotiation contract net protocol that is instantiated from the protocol template in Figure 12 (b).

Consider Figure 12 (a). When a conversation based on a contract net protocol begins, the shopping agent

sends a request for registration to a facili tator agent. The facilit ator agent can then choose to respond to the

shopping agent by refusing its registration or requesting agent information. Here the “x” in the decision

diamond indicates an exclusive-or decision. If the facilit ator refuses the registration based on the

marketplace’s size, the protocol ends; otherwise, the facilit ator agent waits for agent information to be

supplied. If the agent information is correctly provided, the facilit ator agent then still has a choice of either

accepting or rejecting the registration based on the shopping agent’s reputation and the marketplace’s

functionality. Again, if the facilit ator agent refuses the registration, the protocol ends; otherwise, a

confirmation message will be provided afterwards. Similarly, the price-negotiation between a buying agent

and a selli ng agent is clearly ill ustrated in Figure 12 (b).

shopping agent facil itator agent

request-registration

• refuse

request-info
x

• confirm

(a) (b)

Figure 12. Contract net protocols (a) A template for the registration protocol (b) A template
for the price-negotiation protocol (c) An example of the price-negotiation protocol

supply-info

x
accept-info *

buying agent selli ng agent

request-price

• refuse

x

accept-proposal

reject-proposal x

propose

propose

accept-proposal

reject-proposal
x

• confirm

• refuse

buying agent selli ng agent

request-price

propose

reject-proposal

propose

accept-proposal

• confirm

(c)

 44

GSP(SC)

mesg_pr-
ocessing

incoming messages

Figure 13. An agent-based G-Net model for shopping agent class (SC)

Goal

 outgoing messages

request-info refuse

t4

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(self) MSP(self)

accept_info confirm request-registration supply-info

mesg_pr-
ocessing

mesg_pr-
ocessing

mesg_pr-
ocessing

 return return

private util ities

utility_1 utility_p

…

…

utili-
ty_1

utili-
ty_p

mesg_pr-
ocessing

MSP(G’ .Aid) MSP(G’ .Aid)

mesg_pr-
ocessing

Plan Environment

Based on the communicative acts (e.g., request-registration, refuse, etc.) needed for the contract net

protocol in Figure 12 (a), we may design the shopping agent class as in Figure 13. The Goal, Plan,

Knowledge-base and Environment modules remain as abstract units and can be refined in a further detailed

design stage. The Planner module may reuse the template shown in Figure 10. The design of the facilit ator

agent class is similar, however it may support more protocols and should define more MPUs and methods

in its internal structure.

 GSP(BC)
BC extends SC

message_
processing

incoming messages

Figure 14. An agent-based G-Net model for buying agent class (BC)

Goal

 outgoing messages

propose request-price

Knowledge-base

 Planner

MSP(self) MSP(G’.Aid) MSP(G’.Aid) MSP(G’.Aid)

accept-proposal reject-proposal

message_
processing

message_
processing

message_
processing

 return return

private util i ties

utilit y_1 utilit y_p

…

…

utilit y_1 utilit y_p

Plan Environment

 45

With inheritance, a buying agent class, as a subclass of a shopping agent class, may reuse MPUs/methods

defined in a shopping agent class’s internal structure. Similarly, based on the communicative acts (e.g.,

request-price, refuse, etc.) needed for the contract net protocol in Figure 12 (b), we may design the buying

agent class as in Figure 14. Note that we do not define the MPUs of refuse and confirm in the internal

structure of the buying agent class, for they can be inherited from the shopping agent class. A selli ng agent

class or a retailer agent class can be designed in the same way. In addition to their own MPU/methods, a

selli ng agent class inherits all MPU/methods of the shopping agent class, and a retailer agent class inherits

all MPU/methods of both the buying agent class and the selli ng agent class.

Now we discuss an example to show how the reuse of MPU/methods works. Consider a buying agent

object BO, which receives a message of request-info from a facilit ator agent object FO. A mTkn token will

be deposited in the GSP of the primary subagent of BO, i.e., the GSP of the corresponding buying agent

class (BC). The transition external in BC’s Planner module may fire, and the mTkn will be moved to the

place dispatch_incoming_message. Since there is no MPU for request-info defined in the internal structure

of BC, the mTkn will be moved to the ASP(super) place. Since super here refers to a unique superclass –

the shopping agent class (SC) – the mTkn will be transferred to the GSP of SC. Now the mTkn can be

correctly dispatched to the MPU for request-info. After the message is processed, MSP(self) changes the

tag of the mTkn from external to internal, and sends the processed mTkn token back into the GSP of BC.

Note that MSP(self) always sends a mTkn back to the GSP of the primary subagent. Upon the arrival of this

message token, the transition internal in the Planner module of BC may fire, and the mTkn token will be

moved to the place check_primary. Since BC corresponds to the primary subagent of BO, there are tokens

in the special places Goal, Plan, Knowledge-base and Environment. Therefore the abstract transition

make_decision may fire, and any necessary actions are executed in place next_action. Then the current

conversation is either ignored or continued based on the decision made in the abstract transition

make_decision. If the current conversation is ignored, the goals, plans and knowledge-base are updated as

needed; otherwise, in addition to the updating of goals, plans and knowledge-base, a newly constructed

mTkn with a tag of external is deposited into place dispatch_outgoing_message. The new mTkn token has

the message name supply-info, following the protocol defined in Figure 12 (a). Again, there is no MPU for

supply-info defined in BC, so the new mTkn token will be dispatched into the GSP of SC. Upon the arrival

of the mTkn in the GSP of SC, the transition external in the Planner module of SC may fire. However at

this time, SC does not correspond to the primary subagent of BO, so all the tokens in the special places of

Goal, Plan, Knowledge-base have been removed. Therefore, the transition bypass is enabled. When the

transition bypass fires, the mTkn token will be directly deposited into the place

dispatch_outgoing_message, and now the mTkn token can be correctly dispatched into the MPU for supply-

info defined in SC. After the message is processed, the mTkn token will be transferred to the GSP of the

receiver mTkn.body.msg.receiver, and in this case, it is a facilit ator agent object.

 46

For the reuse of private utilit y functions defined in a superclass, the situation is the same as in the case of

object-oriented design. In addition, there are four different forms of inheritance that are commonly used,

namely augment inheritance, restrictive inheritance, replacement inheritance and refinement inheritance.

The usage of these four forms of inheritance in agent-oriented design is also similar to that in object-

oriented design. Examples concerning reuse of private utilit y functions and different forms of inheritance

can be found in Section 2.5 or [Xu and Shatz 2000].

4.4 Handling Multiple Inheritance in Agent-Or iented Models

With single inheritance, the super in ASP(super) in an agent object AO, as an instance of an agent class A,

refers to the subagent of AO, which corresponds to the unique superclass of A. However, with multiple

inheritance, super may refer to any one of the subagents, which corresponds to a superclass or an ancestor

classes of A. The reference of super then needs to be resolved. In this section, we propose a modified

breadth-first-search algorithm to find the appropriate reference of super. The algorilthm is based on the

hierarchy of inheritance diagram and the MPU/Methods defined in each agent-oriented G-net. Before

presenting our algorithm, we need the following definitions:

Definition 4.2 Parent Set P(s)

Let s be an agent-oriented G-net, the parent set, P(s), is a set of agent-oriented G-nets, where each of the

elements is a superclass of s.

Definition 4.3 Interface Set Interface(s)

Let s be an agent-oriented G-net, the interface set, Interface(s), is a set of MPU/methods defined in G-net s.

Definition 4.4 Class Hierarchy Graph G

A class hierarchy graph G=(V, E) is a formal description of the hierarchy of inheritance diagram. The class

hierarchy graph G is a directed acyclic graph G=(V, E), where V is a set of nodes of agent-oriented G-nets,

and E is a set of arcs denotes the inheritance relationship.

The breadth-first-search algorithm is so named because it discovers all the vertices at distance k from s

before processing any vertices at distance k+1. To keep track of progress, the breadth-first-search algorithm

colors each vertex white, gray, or black. All vertices start out white and may later become gray and then

black. A vertex is processed the first time it is encountered during the search, at which time it becomes

nonwhite. Gray and black vertices, therefore, have been processed, but breadth-first search distinguishes

between them to ensure that the search proceeds in a breadth-first manner. In addition, we assume that we

have the following data structures: the color of each vertex u ∈ V is stored in the variable color[u], and a

first-in, first-out queue Q is used to manage the set of gray vertices. The algorithm is presented as follows:

 47

1. for each vertex u ∈ V – { s}

2. do color[u] ← WHITE

3. color[s] ← GRAY

4. Q ← { s}

5. while Q ≠ φ

6. do u ← head[Q]

7. for each v ∈ P(u)

8. do if color[v] = WHITE

9. then if mTkn.body.msg.name ∈ Interface(v)

10. then super ← v; return true

11. else color[v] ← GRAY; ENQUEUE(Q,v)

12. DEQUEUE(Q)

13. color[u] ← BLACK

14. return false

If a true value returns, a MPU/Method is discovered, and the mTkn can be directly deposited into the GSP

of super; otherwise, the MPU/Method can not be found and an exception occurs. As stated before, we do

not consider such exceptions in this paper. Note that this algorithm works correctly for both single and

multi -level inheritance, and it has the advantage that the message token can be deposited directly to the

appropriate GSP of a subagent without going through possible intermediate subagents.

Since a class can have more than one superclass (with multiple inheritance), the inheritance hierarchy has

the structure of a directed acyclic graph rather than a tree or forest. In this case, ambiguous or conflicting

inheritance can occur. The three issues that must be dealt with are as follows:

• Name conflict: two or more ancestors of a class might have messages with the same name, or state

variables with the same name and type.

• Repeated inheritance: When a class A inherits from two superclasses that share a common ancestor,

there are two copies of the same ancestor class. In class A, the usage of state variables and

MPUs/methods defined in the common ancestor class is ambiguous.

• Dominance problem: When a class A inherits from two superclasses that share a common ancestor, and

if a MPU/method defined in the common ancestor class is redefined by one of its superclasses, the

reference of this MPU/method in the subclass A is ambiguous.

For the name conflict problem, we usually use a quali fied name to solve the problem. For instance, if both a

selli ng agent class SAC and a buying agent class BAC defines MPU/method m_1, the intended

 48

message/method called in a retailer agent class RAC must be referred to as SAC::m_1 or BAC::m_1, unless

m_1 is redefined in RAC. For the repeated inheritance problem, we assume that only one copy of the

common ancestor class is maintained. Therefore, if a state variable or MPU/method defined in a common

ancestor of superclasses of class A is referenced, it is always meant to the unique one. Finally, for the

dominance problem, we assume that a redefined MPU/method has a dominance over the original one.

Obviously, our modified breadth-first-search algorithm correctly enforces this rule of dominance.

4.5 Discussion

Multi -agent systems (MAS) have become one of the most rapidly growing areas of interest for distributed

computing. Although there are several implementations of MAS available, formal frameworks for such

systems are few [Brazier et al. 1998][Rogers et al. 2000]. In this chapter, we introduced an agent-oriented

model rooted in the Petri net formalism, which provides a foundation that is mature in terms of both

existing theory and tool support. An example of an agent family in electronic commerce was used to

ill ustrate the modeling approach. Models for a shopping agent, selli ng agent, buying agent and retailer

agent were presented, with emphasis on the characteristics of being autonomous, reactive and internally-

motivated. Our agent-oriented models also provide a clean interface between agents, and agents may

communicate with each other by using contract net protocols. By the example of registration-negotiation

protocol between shopping agents and facilit ator agents, and the example of a price-negotiation protocol

between shopping agents and buying agents, we ill ustrated how to create agent models and how to reuse

functional units defined in an agent superclass.

For our future work, we will consider the refinements of the Goal, Plan, Knowledge-base and Environment

modules. Also, the abstract transitions defined in the Planner module, i.e., make_decision, sensor and

update, can be refined into correct sub-nets that capture action sequences specific to those activities. This

work will provide a bridge to other work concerned with such agent activities [Deng and Chang

1990][Murata et al. 1991a][Murata et al. 1991b]. We will also look further into issues like deadlock

avoidance and state exploration problems in the agent-oriented design and verification processes.

 49

Chapter 5

Analysis of Agent-Or iented Models

5.1 Introduction

One of the advantages of building a formal model for agents in agent-oriented design is to help ensure a

correct design that meets certain specifications. A correct design of agent should meet certain key

requirements, such as liveness, deadlock freeness and concurrency. Also certain properties, such as the

inheritance mechanism, need to be verified to ensure its correct functionality. Petri nets offer a promising,

tool-supported technique for checking the logic correctness of a design. In this section, we use a Petri tool,

called INA (Integrated Net Analyzer) [Roch and Starke 1999], to analyze and verify our agent models. We

use an example of a simpli fied Petri net model for the interaction between a single buying agent and two

selli ng agents.

The INA tool is an interactive analysis tool that incorporates a large number of powerful methods for

analysis of P/T nets [Roch and Starke 1999]. These methods include analysis of: (1) structural properties,

such as structural boundedness, T- and P-invariant analysis; (2) behavioral properties, such as

boundedness, safeness, liveness, deadlock-freeness; and (3) model checking, such as checking

Computation Tree Logic (CTL) formulas. These analyses employ various techniques, such as linear-

algebraic methods (for invariants), reachabilit y and coverabilit y graph traversals. Here we focus on

behavioral properties verification and model checking.

5.2 A Simpli fied Petr i net Model for a Buying Agent and Two Sell ing Agents

The interaction between a buying agent and two selli ng agents can be modeled as a net as in Figure 15. To

derive this net model, we use a GSP place to represent each selli ng agent. This is practical because an

agent-oriented G-net model can be abstracted as a single GSP place, and agent models can only interact

with each other through GSP places. Meanwhile, for the buying agent, whose class is a subclass of a

shopping agent class, we simpli fy it as follows:

 50

1. Since the special places of Goal, Plan, Knowledge-base have the same interfaces with the planner

module in an agent class, we fuse them into one single place goal/plan/kb. Furthermore, we simpli fy

this fused place goal/plan/kb and the place of environment as ordinary places with ordinary tokens.

2. We omit the private utiliti es sections in both the shopping subagent model and the buying primary

subagent model. Thus, to obtain our simpli fied model, we do not need to translate the ISP mechanism,

although such a translation to a Petri net form can be found in [Deng et al. 1993].

GSP(Shopping)

Figure 15. A transformed model of one buying agent and two selling agents

(goal/plan/kb_1)

(make_
decision_1)

(start_a_
conversation_1)

(continue_1)

(external_1)
(internal_1)

(update_
goal/plan/kb_1)

(check_
primary_1)

(dispatch_
outgoing_
message_1)

(dispatch_
incoming_
message_1)

GSP(Selling_2)

(bypass_1)

(ignore_1)

(next_
action_1)

(sensor_1)

(automatic_
update_1)

(new_
action_1)

(update_1)

outgoing messages

incoming messages

(environment_1)

(dispatch_
incoming_
message_1)

GSP(Selling_1)

GSP(Buying)

ASP(Super)

(ignore_2)

(continue_2)

(goal/plan/kb_2) (environment_2)

(bypass_2) (sensor_2)

(internal_2)

(external_2)

(automatic_
update_2)

(new_
action_2)

(start_a_
conversation_2)

(make_
decision_2)

(update_
goal/plan/kb_2)

(update_2)

(next_
action_2)

Shopping: Shopping Subagent
Buying: Buying Primary Subagent
(Buying Agent Class extends
Shopping agent Class)
Selling_1: Selling Agent_1
Selling_2: Selling Agent_2

List of message processing units
=========================

P8: request_info
P9: refuse
P10: accept_info
P11: confirm
P16: request-registration
P17: supply_info
P25: propose
P31: request-price
P32: accept-proposal
P33: reject-proposal

outgoing messages

incoming messages

to superclass
ASP(Super)

to superclass

(dispatch_
outgoing_
message_2)

(check_
primary_2)

P1 P2
P3 P4

P5
P6

P8 P9 P10 P11

P12
P13

P14

P15

P16 P17

P18 P19
P20 P21

P22
P23

P25 P26

P27
P28

P29

P30

P31 P33 P32
P34

P36

P35

t1
t2

t3 t4 t5 t6 t7 t8
t9

t10
t16

t12 t13 t14
t15

t11
t17

t18 t19

t20

t21
t22

t23 t24

t25 t26 t27
t28

t29

t30
t31

t32 t33 t34 t35

t36
t37 t38

t40

t41
t42 t43 t44

t46

t45

(syn_1)

(syn_2)

P7

P24

t39

(inhib_arc_1)

(inhib_arc_2)

 51

3. We simpli fy mTkn tokens as ordinary tokens. Although this simpli fication will cause the reachabilit y

graph of our transformed Petri net to become larger, this simpli fies the message tokens, allowing us to

ignore message details, which is appropriate for the purpose in this paper (we will explain it further in

Section 5.4).

4. We use net reduction (i.e., net transformation rules [Shatz et al. 1996]) to simpli fy the Petri net

corresponding to an MPU/Method as a single place. For instance, the MPU identified as propose in

Figure 14 is represented as place P25 in Figure 15.

5. We use the closed-world assumption and consider a system that only contains three agents, i.e., a

buying agent and two selli ng agents. A system contains more than three agents can be verified in the

same way.

5.3 Deadlock Detection and Redesign of Agent-Or iented Models

Now we use the INA tool to analyze the simpli fied agent model ill ustrated in Figure 15. To reduce the

state space, we further reduce the net by fusing the MPUs in the same incoming/outgoing message section.

For instance, in Figure 8, we fuse the places P8, P9, P10 and P11 into one single places. Obviously, this

type of net reduction [Shatz et al. 1996] does not affect the properties of liveness, deadlock-freeness and

the correctness of inheritance mechanism. In addition, we set the capacity of each place in our net model as

1, which means at any time, some processing units, such as MPUs, can only process one message.

However, the property of concurrency is still preserved because different transitions can be simultaneously

enabled (and not in conflict); providing the standard Petri net notion of concurrency based on the

interleaved semantics. For example, transitions t25 and t27 can be simultaneously enabled, representing

that message processing for a conversation and decision-making for another conversation can happen at

the same time.

To verify the correctness of our agent model, we utili ze some key definitions for Petri net behavior

properties as adapted from [Murata 1989].

Definition 5.1 Reachabilit y

In a Petri net N with initial marking M0, denoted as (N, M0), a marking Mn is said to be reachable from a

marking M0 if there exists a sequence of firings that transforms M0 to Mn. A firing or occurrence sequence

is denoted by σ = M0 t1 M1 t2 M2 … tn Mn or simply σ = t1 t2 … tn. In this case, Mn is reachable from M0

by σ and we write M0 [σ > Mn.

Definition 5.2 Boundedness

 52

A Petri net (N, M0), is said to be k-bounded or simply bounded if the number of tokens in each place does

not exceed a finite number k for any marking reachable from M0. A Petri net (N, M0) is said to be safe if it

is 1-bounded.

Definition 5.3 Liveness

A Petri net (N, M0), is said to be li ve if for any marking M that is reachable from M0, it is possible to

ultimately fire any transition of the net by progressing some further firing sequence.

Definition 5.4 Reversibilit y

A Petri net (N, M0) is said to be reversible if, for each marking M that is reachable from the initial marking

M0, M0 is reachable from M.

With our net model in Figure 8 as input, the INA tool produces the following results:

Computation of the reachability graph

States generated: 8193

Arcs generated: 29701

Dead states:

 484, 485,8189

Number of dead states found: 3

The net has dead reachable states.

The net is not live.

The net is not live and safe.

The net is not reversible (resetable).

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:

 7, 9, 14, 15, 16, 17, 20, 27, 28, 32, 33

The net has dead transitions at the initial marking.

The analysis shows that our net model is not live, and the dead reachable states indicate a deadlock. By

tracing the firing sequence for those dead reachable states, we find that when there is a token in place P29,

both the transitions t34 and t35 are enabled. At this time, if the transition t35 fires, a token will be deposited

into place P30. After firing transition t40, the token removed from place P24, by firing transition t29, will

return to place P24, and this makes it possible to fire either transition t27 or t29 in a future state. However

 53

if the transition t34 fires, instead of firing transition t35, there wil l be no tokens returned to place P24. So,

transition t27 and t29 will be disabled forever, and a deadlock situation occurs.

GSP(G)

Figure 16. A template for the Planner module (revised design)

Goal Knowledge-base

make_
decision

start_a_
conver_
sation

…

…

…

…

…

continue

external internal

to place “ Goal”
to place “ Plan”
to place “ Knowledge base”

from transition
“ update”

update_
goal/plan/kb

check_
primary

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

dispatch_
private_
utili ty

private

Plan

bypass

ASP(super)

ignore

next_
action

sensor

automatic_
update

new_
action

ASP(super)

ASP(super)

update

outgoing messages

private utilities

incoming messages

autonomous unit

Environment

syn
<e>

<e>

<e>

To correct this error, we need to modify the design of the Planner module in Figure 10. The model

modification is to add a new arc from transition start_a_conversation to place syn, and the correct version

of our Planner module design is shown as in Figure 16. Correspondingly, we add two new arcs in Figure

15: an arc from transition t16 to place P7, and another arc from transition t34 to place P24. After this

correction, we can again evaluate the revised net model by using the INA tool. Now we obtain the

following results:

Computation of the reachability graph

States generated: 262143

Arcs generated: 1540095

The net has no dead reachable states.

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:

 7, 9, 14, 15, 16, 17, 20, 28

The net has dead transitions at the initial marking.

 54

Liveness test:

Warning: Liveness analysis refers to the net where all dead transitions

are ignored.

The net is live, if dead transitions are ignored.

The computed graph is strongly connected.

The net is reversible (resetable).

This automated analysis shows that our modified net model is li ve, ignoring, of course, any transitions that

are dead in the initial marking. Thus, for any marking M that is reachable from M0, it is possible to

ultimately fire any transition (except those dead transitions) of the net. Since the initial marking M0

represents that there is no ongoing (active) conversations in the net, a marking M that is reachable from M0,

but where M ≠ M0, implies that there must be some conversations active in the net. By showing that our net

model is live, we prove that under all circumstances (no matter if there are, or are not, any active

conversations), it is possible to eventually perform any needed future communicative act. Consider the

dead transitions t7, t9, t14, t15, t16, t17 and t20. These imply that the decision-making units in the shopping

subagent are disabled. The remaining dead transition, t28, implies that the primary subagent always makes

decisions for the whole buying agent.

Our net model is safe because we have set the capacity of each place in our model to 1. A net model with

capacity k (k > 1) for each place can be proved to be k-bounded in the same way. However, the state space

may increase dramatically.

In addition, the analysis tells us that our net model is reversible, indicating that the initial marking M0 can

be reproduced (recall definition 4.4, given earlier). Since the initial marking M0 represents that there are no

ongoing (active) conversations in the net, the reversible property proves that every conversation in the net

can be eventually completed.

5.4 Property Verification by Using Model Checking

To further prove additional behavioral properties of our revised net model, we use some model checking

capabiliti es provided by the INA tool. Model checking is a technique in which the verification of a system

is carried out by using a finite representation of its state space. Basic properties, such as an absence of

deadlock or satisfaction of a state invariant (e.g., mutual exclusion), can be verified by checking individual

states. More subtle properties, such as guarantee of progress, require checking for specific cycles in a graph

representing the states and possible transitions between them. Properties to be checked are typically

 55

described by formulae in a branching time or linear time temporal logic [Clarke et al. 1986] [Clark and

Wing 1996].

The INA tool allows us to state properties in the form of CTL formulae [Roch and Starke 1999][Clarke et

al. 1986]. Using this notation, we can specify and verify some key properties of our revised net model, such

as concurrency, mutual exclusion, and proper inheritance behavior:

• Concurrency

The following formula says that, in the reachabilit y graph of our revised net model, there exists a path that

leads to a state in which all the places P5, P13, P22 and P28 are marked.

 EF(P5 &(P13 &(P22 &P28))) Result: The formula is TRUE

Result explanation: A TRUE result indicates that all the places P5, P13, P22 and P28 can be marked at the

same time. From Figure 8, we see that incoming/outgoing messages are dispatched in these places. So the

result implies that different messages can be dispatched in our net model concurrently.

• Mutual Exclusion

The following formula says that, in the reachabilit y graph of our revised net model, there exists a path that

leads to a state in which both places P27 and P30 (or both places P29 and P30) are marked.

 EF(P27 &P30) V (P29 &P30)) Result: The formula is FALSE

Result explanation: A FALSE result indicates that it is impossible to mark both places P27 and P30 (or

both places P29 and P30) at the same time. From Figure 8, we see that place P27 represents any actions

executed after decision-making, and place P30 is used for updating the plan, goal and knowledge-base.

Thus, this result guarantees that decisions can only be made upon the latest mental state, i.e., the latest

values in plan, goal and knowledge-base modules. Similarly, the fact that P29 and P30 cannot be marked at

the same time guarantees the requirement that the sensor can always capture the latest mental state.

• Inheritance Mechanism (decision-making in subagent)

The following formula says that, in the reachabilit y graph of our revised net model, P12, P14 and P15 are

not marked in any state on all paths.

 56

 AG(-P12 &(-P14 &-P15)) Result: The formula is TRUE

Result explanation: A TRUE result indicates that places P12, P14 and P15 are not marked under any

circumstance. From Figure 8, we see that P12, P14 and P15 belong to decision-making units in the

shopping subagent. As we stated earlier, all decision-making mechanisms in subagents should be disabled,

with all decision-makings for an agent being achieved by the primary subagent. So, the result implies a

desirable feature of the inheritance mechanism in our net model.

• Inheritance Mechanism (ASP message forwarding I)

The following formula says that, in the reachabilit y graph of our revised net model, P26 or P34 are always

marked before P5 or P6 is marked.

 A[(P26 VP34)B(P5 VP6)] Result: The formula is TRUE

Result explanation: A TRUE result indicates that neither place P5 nor P6 can become marked before the

place P26 or P34 is marked. From Figure 8, we see that place P26 and P34 represent ASP places, and P5

and P6 represent the message dispatching units. The result implies that messages will never be dispatched

in a shopping subagent unless a MPU is not found in the primary buying subagent, in which case, either the

ASP place P26 or P34 will be marked.

• Inheritance Mechanism (ASP message forwarding II)

The following formula says that, in the reachabilit y graph of our revised net model, P26 (P34) is always

marked before P5 (P6) is marked.

 A[P26 BP5]VA[P34 BP6] Result: The formula is FALSE

Result explanation: We expect that for every incoming (outgoing) message, if it is not found in the primary

buying subagent, it will be forwarded to the shopping agent, and dispatched into a MPU of the incoming

(outgoing) message section. However, the FALSE result indicates that our net model does not work as we

have expected. By looking into the generic agent model, we can observe that when we created the net

model in Figure 8, we simpli fied all message tokens as ordinary tokens, i.e., black tokens. This

simpli fication makes it possible for an incoming (outgoing) message to be dispatched into an outgoing

(incoming) message section. Therefore, a message might be processed by a MPU that is not the desired

one. To solve this problem, we may use colored tokens, instead of ordinary tokens, to represent message

 57

tokens, and attach guards to transitions. However, in this paper, by using ordinary place/transition net (not a

colored net), we obtain a simpli fied model that is suff icient to ill ustrate our key concepts.

5.5 Discussion

In this Chapter, we discussed how to verify liveness properties of our net model by using an existing Petri

net tool, the INA tool. The value of such an automated analysis capabilit y was demonstrated by detection of

a deadlock situation due to a design error. The revised model was then proved to be both li ve and

reversible. In addition, some model checking techniques were used to prove some additional behavioral

properties for our agent model, such as concurrency, mutual exclusion, and correctness of the inheritance

mechanism. Although we proved some key behavioral properties of our agent model, our formal method

approach is also of value in creating a clear understanding of the structure of an agent, which can increase

confidence in the correctness of a particular multi -agent system design. Also, in producing a detailed

design, where the abstract transitions in the planner module are refined, we may again use Petri net tools to

capture further design errors.

 58

Chapter 6

Future Research Plans

6.1 Introduction

Communication among distributed processes is an essential requisite in nowadays computing systems. A

communication paradigm represents the set of rules to be followed in exchanging data and synchronizing

the execution of processes. The nature of currently available computing systems is pushing a lot towards a

distributed approach which assumes that computing resources and data are no longer located on the same

machine, and migration of code and data is executed in order to speed up the whole execution process. The

classic client-server paradigm assumes that the client functionaliti es are somehow disjoint from the

execution power of the server. Since a server usually provides service to a large number of clients, the

amount of data exchanged may be considerable. Therefore, the work of the server is usually limited to the

mere execution of some basic procedures for the data retrieval and storage, while the data processing

mainly takes place on the client host. This type of scheme is used when we want to create a very simple

system from the management point of view, or structures with a high level of security. An advantage of this

architecture is the possibilit y of controlli ng the type of message and the ways of communication between

clients and servers. In other words, the server only deal with what is expected during the design phase.

Consequently, the level of security is very high. Since clients and servers can be viewed as passive objects,

the object-oriented paradigm provides the best framework for developing a client-server application.

Unlike the client-server paradigm, a multi -agent system consists of a set of agents, i.e., active objects

[Shoham 1993]. Agents usually do not communicate with each other in a way of method invocation,

instead, an agent can send meaningful messages, possibly attached with a piece of code, to another agent.

The receiver agent may analyze the received message, execute the attached code and decide whether to

perform the requested actions. Therefore, an agent must be able to deal with messages that might not be

expected during the design phase, and the communication mechanism among agents should be in a way of

asynchronous message passing. This way of communication is similar to the remote evaluation (REV)

paradigm [Stamos and Gifford 1990], which implies that server receives not only the processing requests

 59

from the client, but also the whole code needed for performing operations on the data. However, agent

communication in a multi -agent system is more flexible and more complicated than the server-client

interactions in REV paradigm. Although we may use object-oriented approach to design a multi -agent

system, it may complicate the design process while we dealing with asynchronous message passing

mechanism and those mental decisions of agents. Thus an agent-oriented approach, such as the one we

proposed, is necessary to be used to design a multi -agent system.

A third communication paradigm is the mobile agent paradigm. As one of the new agent techniques,

mobile agent is becoming a promising paradigm pertinent to the highly distributed, dynamic, heterogeneous

and open environment, such as Internet. Mobile agents are autonomous agents that can migrate around a

computer network, and execute at different locations during their li fe spans. A mobile agent consumes

fewer network resources in that they transfer the computation to the data rather than the data to the

computation, which is adopted by traditional distributed computing. As one of our future plans, we will t ry

to extend our agent-oriented G-net models for mobile agent modeling.

6.2 A Unified Model for Object-Or iented and Agent-Or iented Design

Internet is becoming the most complex environment that provides an open, dynamic and heterogeneous

environment for large distributed systems. An Internet application, such as an electronic commerce

application, usually consists of a set of both objects and agents. In those situations, an object usually works

as a server and provides services to various clients (including agents), while agents may communicate with

each other and negotiate to achieve their own goals. Therefore, a unified model for both object modeling

and agent modeling might be useful for this type of applications. Based on our previous work, we will t ry

to unify our object model and agent model, and provide a uniform framework for Internet application

designs.

The basic idea behind this unified model is to provide both synchronous and asynchronous message passing

mechanisms for a distributed system. In a complex software system with both objects and agents, objects

usually use synchronous message passing to communicate with each other, while agents communicated

with each other by using asynchronous message passing. Moreover, an agent could be a client of an object

server, and it may also use synchronous message passing to get services from an object. Synchronous

message passing in a form of method invocation is more eff icient than asynchronous message passing,

however it is not flexible enough for agent communications. Therefore, to provide both mechanisms for a

complex software system design is not only a research issue, but also could be a practical attempt.

 60

6.3 Extending Agent-Or iented G-net Model for M obile Agent Design

In a broad sense, a software agent is any program that acts on behalf of a (human) user, just as different

types of agents (e.g., travel agents, insurance agents, secretaries) represent other people in day-to-day

transactions in the real world. A mobile agent then is a program which represents a user in a computer

network, and is capable of migrating autonomously (under its own control) from node to node in the

network, to perform some computation on behalf of the user. Its tasks are determined by the agent

application, and can range from online shopping to real-time device control to distributed scientific

computing. Applications can inject mobile agents into a network, allowing them to roam the network either

on a predetermined path, or one that the agents themselves determine based on dynamically gathered

information. Having accomplished their goals, the agents may either terminate or return to their “home

site” in order to report their results to the user.

Harrison et al. identified several advantages of the mobile agent paradigm, in comparison with remote

procedure calls (RPC) [Tay and Ananda 1990] and message-passing. These advantages include: reduce

network usage, increase asynchrony between clients and servers, add client-specified functionality to

servers, dynamically update server interfaces and introduce concurrency [Harrison et al. 1995].

The mobile agent paradigm can be exploited in a variety of ways, ranging from low-level system

administration to middleware to user-level applications. An example of such application could be an

electronic marketplace. Vendors can set up online shops with products, services or information for sale. A

customer’s agent would carry a shopping list along with a set of preferences, visit various sellers, find the

best deal based on the preferences, and purchase the product using digital forms of cash. This application

imposes a broad spectrum of requirements on mobile agent systems. Apart from mobilit y, it needs

mechanisms for restricted resource access, secure electronic commerce, protection of agent data, robustness

and user control over roving agents. For our future work, we will t ry to extend our agent-oriented model for

agent mobilit y modeling. This work will be based on previous work [Picco et al. 1999][Roman et al.

1997][Asperti and Busi 1996][Fan and Xu 2000].

6.4 Secur ity Issues in Mobile Agent Design

Messages sent across an open network like the Internet are inherently insecure. As a mobile agent traverses

the network, its code and data are vulnerable to various types of security threats. We consider the following

types of attacks on communication links that the system needs to protect against [Ford 1994]:

Passive attacks: In passive attacks, the adversary does not interfere with the message traff ic, but only

attempts to extract useful information from it. The simplest form of such attack is eavesdropping, which

 61

can result in the leakage of sensitive information stored in the message (agent) being transmitted. Even if

the adversary is unable to decipher the message contents (because of encryption, for example), useful

information may be gleaned from the sizes and frequency of message exchanged, or merely the fact that

two principles are in communication. This type of passive attack is usually called traffic analysis in the

security literature. To counter passive attacks, a confidentiality (i.e., privacy) mechanism is therefore

necessary.

Active attacks: In the case of open networks like the Internet, we must assume a very general threat model

in which the adversary can arbitrarily intercept and modify network-level message, or even delete them

altogether and insert forged ones. These are termed as active attacks, since they involve active interference

by the adversary. Another type of attack in this category involves impersonation, The adversary

impersonates one of the legitimate principals in the system and can attempt to intercept messages intended

for that principal. Active attacks require greater sophistication on the part of the adversary, but can also be

more dangerous than passive attacks. While we can not always prevent all such attacks, the damage caused

by them can be minimized if the communication link provides assurances of data integrity and

authentication. Here data integrity means that data is either delivered unmodified or a flag is raised to

signal i f it has been tampered with, and authentication requires that the source and destination of the

message is unambiguously identified.

If time permitted, we will t ry to model mobile agents and hostile agents with our agent framework. Our

purpose is to study the different forms of attack and to verify that some mobile agent design might be

vulnerable to some types of attack. The advantages of this research will be the automated verification of an

agent design by using existing Petri net tools.

 62

Bibliography

[Aalst and Basten 1997] W.M.P. van der Aalst and T. Basten, “Life-cycle Inheritance: A Petri-net-based

approach,” In P. Azema and G. Balbo , editors, Application and Theory of Petri Nets 1997, volume

1248 of Lecture Notes in Computer Science, pages 62--81. Springer-Verlag, Berlin, 1997.

[Arai et al. 1999] S. Arai, K. Miyazaki, and S. Kobayashi, “Multi -agent Reinforcement Learning for Crane

Control Problem: Designing Rewards for Conflict Resolution,” Proceedings of 4th International

Symposium on Autonomous Decentralized Systems (ISADS '99), Tokyo, Japan, 20-23 March 1999.

[Asperti and Busi 1996] Andrea Asperti and Nadi Busi, “Mobile Petri Nets,” Technical Report UBLCS-96-

10, University of Bologna, 1996.

[Bastide 1995] R. Bastide, “Approaches in Unifying Petri Nets and the Object-Oriented Approach,”

Proceedings of the International Workshop on Object-Oriented Programming and Models of

Concurrency, Turin, Italy, June 1995.

[Basten and Aalst 2000] T. Basten and W.M.P. van der Aalst, “ Inheritance of Dynamic Behavior:

Development of a Groupware Editor,” In G. Agha, F. De Cindo, and G. Rozenberg, editors,

Concurrent Object-Oriented Programming and Petri Nets, Lecture Notes in Computer Science,

Advances in Petri Nets, Springer-Verlag, Berlin, 2000.

[Battiston et al. 1988] E. Battiston, F. De Cindio and G. Mauri, “OBJSA Nets: a Class of High Level Nets

Having Objects as Domains” , in Advances in Petri Nets 88, G. Rozenberg (ed.), LNCS 340, Springer

Verlag, 1988.

[Battiston et al. 1995] E. Battiston, A. Chizzoni and F. De Cindio, “ Inheritance and Concurrency in

CLOWN,” 16th International Conference on Application and Theory of Petri nets, 1st Workshop on

Object-Oriented Programming and Models of Concurrency, Turin, Italy, June 1995.

[Battiston et al. 1996] E. Battiston, A.Chizzoni and F. De Cindio, “Modeling a Cooperative Development

Environment with CLOWN,” 17th Int’ l Conference on Application and Theory of Petri nets, 2nd

Workshop on Object-Oriented Programming and Models of Concurrency, Osaka, Japan, June 1996.

[Biberstein et al. 1996] O. Biberstein, D. Buchs and N. Guelfi, “Modeling of Cooperative Editors Using

CO-OPN/2,” 17th International Conference on Application and Theory of Petri nets, 2nd Workshop on

Object-Oriented Programming and Models of Concurrency, Osaka, Japan, June 1996.

[Biberstein et al. 1997] O. Biberstein, D. Buchs and N. Guelfi, “CO-OPN/2: A Concurrent Object-Oriented

Formalism,” Proceedings of the Second IFIP Conference on Formal Methods for Open Object-Based

Distributed Systems (FMOODS), Canterbury, UK, July 1997, pp. 57-72.

 63

[Booch 1994]G. Booch, Object-Oriented Analysis and Design, with Applications (2nd ed.),

Benjamin/Cummings, San Mateo, Cali fornia, 1994.

[Brazier et al. 1997] Brazier, F.M.T., Dunin Keplicz, B., Jennings, N., and Treur, J., “DESIRE: Modeling

Multi -Agent Systems in a Compositional Formal Framework” , International Journal of Cooperative

Information Systems, vol. 6, Special Issue on Formal Methods in Cooperative Information Systems:

Multi -Agent Systems, (M. Huhns and M. Singh, eds.), 1997, pp. 67-94.

[Brazier et al. 1998] F. Brazier, F. Cornelissen, R. Gustavsson, C. Jonker, O. Lindeberg, B. Polak, and J.

Treur, “Agents Negotiating for Load Balancing of Electricity Use,” In: M.P. Papazoglou, M.

Takizawa, B. Krämer, S. Chanson (eds.), Proceedings of the 18th International Conference on

Distributed Computing Systems, ICDCS'98, IEEE Computer Society Press, 1998, pp. 622-629.

[Burmeister 1996] Birgit Burmeister, “Models and Methodology for Agent-Oriented Analysis and Design,”

In K. Fischer, editor, Working Notes of the KI’ 96 Workshop on Agent-Oriented Programming and

Distributed Systems, DFKI Document D-96-06, 1996.

[Chavez and Maes 1996] Anthony Chavez, Pattie Maes, “Kasbah: An Agent Marketplace for Buying and

Selli ng Goods,” Proceedings of the First International Conference on the Practical Application of

Intelli gent Agents and Multi -Agent Technology, London, UK, April 1996.

[Clark and Wing 1996] E. M. Clarke and J. M. Wing, “Formal Methods: State of the Art and Future

Directions,” ACM Computing Surveys, vol. 28, no. 4, December 1996, pp. 626-643.

[Clarke et al. 1986] E. M. Clarke, E. A. Emerson and A. P. Sistla. “Automatic verification of finite-state

concurrent systems using temporal logic specifications,” ACM Transactions on Programming

Languages and Systems, 8(2), 1986, pp. 244-263.

[Crnogorac et al. 1997] Lobel Crnogorac, Anand S. Rao, Kotagiri Ramamohanarao, “Analysis of

Inheritance Mechanisms in Agent-Oriented Programming,” IJCAI (1) 1997: 647-654.

[Deng et al. 1993] Y. Deng, S. K. Chang, A. Perkusich and J. de Figueredo, “ Integrating Software

Engineering Methods and Petri Nets for the Specification and Analysis of Complex Information

Systems,” Proceedings of The 14th Int’ l Conf. on Application and Theory of Petri Nets, Chicago, June

21-25, 1993, pp. 206-223.

[Deng and Chang 1990] Y. Deng and S. K. Chang, “A G-net Model for Knowledge Representation and

Reasoning,” IEEE Transactions on Knowledge and Data Engineering, Vol.2, No.3, September 1990,

pp. 295-310.

[Drake 1998] Caleb Drake, Object-oriented programming with C++ and Smalltalk. Upper Saddle River,

New Jersey, Prentice Hall , 1998.

[Eliens 1995] A. Eliens, Principles of Object-Oriented Software Development, Addison-Wesley, 1995.

[Fan and Xu 2000] X. Fan and D. Xu, “SAFIN: An Open Framework for Mobile Agents,” The 2000

International Conference on Artificial Intelli gence (IC-AI'2000), Las Vegas, June 2000.

 64

[Finin et al. 1997] Tim Finin, Yannis Labrou, and James Mayfield, “KQML as an agent communication

language,” in Jeff Bradshaw (Ed.), Software Agents, MIT Press, Cambridge, 1997.

[FIPA 2000] FIPA, FIPA ACL Message Structure Specification, Foundation for Intelli gent Physical

Agents, Technical Report XC00061, 2000.

[Fisher and Wooldridge 1997] M. Fisher and M. Wooldridge, “On the Formal Specification and

Verification of Multi -Agent Systems,” International Journal of Cooperative Information Systems,

1(6): 37-65, 1997.

[Ford 1994] Warwick Ford, Computer Communications Security – Principles, Standard Protocols and

Techniques, Prentice Hall , 1994.

[Gasser and Briot 1992] Les Gasser and Jean-Pierre Briot, “Object-Based Concurrent Processing and

Distributed Artificial Intelli gence,” In Nicholas M. Avouris and Les Gasser, editors, Distributed

Artificial Intelli gence: Theory and Praxis, pages 81-108, Kluwer Academic Publishers: Boston, MA,

1992.

[Giese et al. 1998] H. Giese, J. Graf and G. Wirtz, “Modeling Distributed Software Systems with Object

Coordination Nets,” Proceedings for the Int’ l Symposium on Software Engineering for Parallel and

Distributed Systems, Japan, April 1998, pp.39-49.

[Green et al. 1997] S. Green, L. Hurst, B. Nangle, P. Cunningham, F. Somers, R. Evans, “Software Agents:

A Review,” Technical report TCD-CS-1997-06, Trinity College Dublin, May 1997.

[Guttman et al. 1998] R. Guttman, A. Moukas, and P. Maes, “Agent-mediated Electronic Commerce: A

Survey,” Knowledge Engineering Review, June 1998.

[Harrison et al. 1995] Colin G. Harrison, David M. Chess and Aaron Kershenbaum, “Mobile Agents: Are

They a Good Idea?” Tech. Rep., IBM Research Division, T. J. Watson Research Center, March 1995.

[Iglesias et al. 1998] Carlos Argel Iglesias, Mercedes Garrijo, José Centeno-González, “A Survey of

Agent-Oriented Methodologies,” Proceedings of the Fifth International Workshop on Agent Theories,

Architectures, and Language (ATAL-98), 1998, pp. 317-330.

[Jensen 1992] K. Jensen, Colored Petri Nets: Basic concepts, Analysis methods, and Practical use, Vol. 1,

No. 2, Springer-Verlag, 1992.

[Jacobson et al. 1992] I. Jacobson, et al., Object-Oriented Software Engineering: A Use Case Driven

Approach, Addison-Wesley Publishing Company, 1992.

[Jennings et al. 1998] N. R. Jennings, K. Sycara and M. Wooldridge, “A Roadmap of Agent Research and

Development,” Int’ l Journal of Autonomous Agents and Multi -Agent Systems, 1(1), 1998, pp. 7-38.

[Jennings 2000] N. R. Jennings, “On Agent-Based Software Engineering,” Artificial Intelli gence,

117(2000): 277-296.

[Kendall 2000] Elizabeth A. Kendall , “Role Modeling for Agent System Analysis, Design, and

Implementation,” IEEE Concurrency, April -June, 2000, pp. 34-41.

 65

[Kinny and Georgeff 1997] David Kinny, Michael P. Georgeff , “Modeling and Design of Multi -Agent

Systems,” Proceedings of the 4th Int’ l Workshop on Agent Theories, Architectures, and Language

(ATAL-97), 1997, pp. 1-20.

[Kinny et al. 1996] D. Kinny, M. Georgeff , and A. Rao, “A Methodology and Modeling Technique for

Systems of BDI Agents,” Tech. Rep. 58, Australian Artificial Intelli gence Institute, Melbourne,

Australia, Jan. 1996.

[Lakos and Keen 1994] C. Lakos and C. Keen, “LOOPN++: A New Language for Object-Oriented Petri

Nets,” Technical Report R94-4, Networking Research Group, University of Tasmania, Australia, April

1994.

[Lakos 1995a] C. Lakos, “Pragmatic Inheritance Issues for Object Petri Nets” , Proceedings of Technology

of Object-Oriented Languages and Systems (TOOLS) Pacific 1995, Melbourne, Australia, Prentice-

Hall, 1995.

[Lakos 1995b] C. Lakos, “The Object Orientation of Object Petri Nets,” Proceedings of the International

Workshop on Object-Oriented and Models of Concurrency, Turin, Italy, June 1995.

[Lakos 1997] C. Lakos, “On the Abstraction of Coloured Petri Nets,” Proceedings of Petri Net Conference

97, Touloure, France, 1997.

[Lano 1995] K. Lano, Formal Object-Oriented Development, Springer-Verlag, 1995.

[Lee and Park 1993] Y. K. Lee and S. J. Park, “OPNets: An Object-Oriented High-Level Petri Net Model

for Real-Time System Modeling,” Journal of Systems and Software, 20(1): 69-86, 1993.

[Luck et al. 1997] Michael Luck, Nathan Griff iths and Mark d’ Inverno, “From Agent Theory to Agent

Construction: A Case Study,” In J. P. Muller, M.Wooldridge and N. R. Jennings, editors, Intelli gent

Agents III (LNAI 1193), Lecture Notes in Artificial Intelli gence, Springer-Verlag: Heidelberg,

Germany, 1997.

[Matsuoka and Yonezawa 1993] Satoshi Matsuoka and Akinori Yonezawa, “Analysis of inheritance

anomaly in object-oriented concurrent programming languages” . In Gul Agha et. al., editors, Research

Directions in Concurrent Object-Oriented Programming, pages 107-150. MIT Press, 1993.

[Mendes et al. 1997] M. Mendes, O. Falsarella, I. Fontes, S. Krause, W. Loyolla, C. Mendez, P.S. Silva, C.

Tobar, “Architectural Considerations about Open Distributed Agent Support Platforms,” Proceedings

of 3rd Int’ l Symp. on Autonomous Decentralized Systems (ISADS '97), Berlin, Germany, April 1997.

[Mitchell and Welli ngs 1996] S. Mitchell and A. Welli ngs, “Synchronization, Concurrent Object-Oriented

Programming and the Inheritance Anomaly” , Computer Languages, 1996, Vol. 22, No. 1, pp. 15 - 26.

[Murata 1989] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE,

77(4): 541-580, April 1989.

 66

[Murata et al. 1991a] T. Murata, V. S. Subrahmanian and T. Wakayama, “A Petri Net Model for Reasoning

in the Presence of Inconsistency” , IEEE Transactions on Knowledge and Data Engineering, Vol. 3,

No.3, September 1991, pp. 281-292.

[Murata et al. 1991b] T. Murata, P.C. Nelson, and J. Yim, “A Predicate-Transition Net Model for Multiple

Agent Planning,” Information Sciences, 57-58, 1991, pp. 361-384.

[Odell 2000] James Odell , H. Van Dyke Parunak, Bernhard Bauer, “Representing Agent Interaction

Protocols in UML,” ICSE 2000 Workshop on Agent-Oriented Software Engineering (AOSE-2000),

June 10, 2000, Limerick, Ireland.

[Perkusich and de Figueiredo 1997] A. Perkusich and J. de Figueiredo, “G-nets: A Petri Net Based

Approach for Logical and Timing Analysis of Complex Software Systems,” Journal of Systems and

Software, 39(1): 39–59, 1997.

[Picco et al. 1999] G. P. Picco, A. L. Murphy and G.-C. Roman, "Lime: Linda meets Mobilit y,"

Proceedings of the 21st International Conference on Software Engineering (ICSE'99), May 1999.

[Pressman 1997] Roger S. Pressman, Software Engineering: A Practitioner's Approach, 4th Edition,

McGraw-Hill , 1997.

[Rational 1997] Rational Software Corporation, Unified Modeling Language (UML) version 1.0, Rational

Software Corporation, 1997.

[Roch and Starke 1999] S. Roch and P. H. Starke, INA:Integrated Net Analyzer, Version 2.2, Humboldt-

Universität zu Berlin, Institut für Informatik, April 1999.

[Rogers et al. 2000] T. J. Rogers, Robert Ross, V. S. Subrahmanian, “ IMPACT: A System for Building

Agent Applications,” Journal of Intelli gent Information Systems (JIIS), 14(2-3): 95-113 (2000).

[Roman et al. 1997] G.-C. Roman, P. J. McCann and J. Y. Plun, “Mobile UNITY: Reasoning and

Specification in Mobile Computing,” ACM Transactions on Software Engineering and Methodology,

Vol. 6, No. 3, July 1997, pp. 250-282.

[Rossie et al. 1996] J. G. Rossie Jr., D. P. Friedman and M. Wand, “Modeling Subobject-Based

Inheritance”, Proceedings of ECOOP’96, Vol. 1219, Lecture Notes in Computer Science, pp. 248-274,

Springer-Verlag, 1996.

[Rumbaugh et al. 1991] J. Rumbaugh, et al., Object-Oriented Modeling and Design, Prentice Hall , New

York, 1991.

[Shatz et al. 1996] S. M. Shatz, S. Tu, T. Murata, and S. Duri, “An Application of Petri Net Reduction for

Ada Tasking Deadlock Analysis,” IEEE Transactions on Parallel and Distributed Systems, Vol. 7, No.

12, December 1996, pp. 1307-1322.

[Shoham 1993] Yoav Shoham, “Agent-Oriented Programming,” Artificial Intelli gence, 60(1): 51-92,

March 1993.

[Sommervile 1995] Ian Sommervile, Software Engineering, Fifth Edition, Addison-Wesley, 1995.

 67

[Stamos and Gifford 1990] James W. Stamos and David K. Gifford, “Remote Evaluation,” ACM

Transactions on Programming Languages and Systems, 12(4): 537-565, October 1990.

[Stepney et al. 1992] Susan Stepney, Rosalind Barden, and David Cooper, editors, Object Orientation in Z,

Workshops in Computing, Springer-Verlag, 1992.

[Tay and Ananda 1990] B. H. Tay and A. L. Ananda, “A Survey of Remote Procedure Calls,” Operating

Systems Review, 24(3): 68-79, July 1990.

[Thomas 1994] Laurent Thomas, “ Inheritance Anomaly in True Concurrent Object Oriented Languages: A

Proposal” , IEEE TENCON’94, August 1994, pp. 541-545.

[Tsvetovatyy et al. 1997] M. Tsvetovatyy, M. Gini, B. Mobasher, Z. Wieckowski, “MAGMA: An Agent-

Based Virtual Market for Electronic Commerce,” Applied Artificial Intelli gence, special issue on

Intelli gent Agents, No. 6, September 1997.

[Wooldridge 1998] Michael Wooldridge, “Agents and Software Engineering,” AI* IA Notizie XI, 3,

September 1998.

[Wooldridge et al. 2000] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia Methodology for

Agent-Oriented Analysis and Design,” International Journal of Autonomous Agents and Multi -Agent

Systems, 3(3), 2000, pp. 285-312.

[Xie 2000] X. Xie, Design Support for State-Based Distributed Object Software, Ph.D. thesis, EECS

Department, The University of Illi nois at Chicago, December 2000.

[Xu and Shatz 2000] H. Xu and S. M. Shatz, “Extending G-nets to Support Inheritance Modeling in

Concurrent Object-Oriented Design,” IEEE International Conference on Systems, Man, and

Cybernetics (SMC), October 2000, Nashvill e, Tennessee, USA, pp. 3128-3133.

[Xu and Shatz 2001a] H. Xu and S. M. Shatz, “An Agent-based Petri Net Model with Application to

Seller/Buyer Design in Electronic Commerce,” To appear in the Proc. of the 5th International

Symposium on Autonomous Decentralized Systems (ISADS), March 2001, Dallas, Texas.

[Xu and Shatz 2001b] H. Xu and S. M. Shatz, “A Framework for Modeling Agent-Oriented Software,” To

appear in the Proc. of the 21st International Conference on Distributed Computing Systems (ICDCS),

April 2001, Phoenix, Arizona.

 68

Publications of the Author

[1] H. Xu and S. M. Shatz, "An Approach to Using Formal Methods in Agent-Oriented Design and

Analysis," (submitted to journal), January 2001.

[2] H. Xu and S. M. Shatz, "A Framework for Modeling Agent-Oriented Software," To appear in the

Proceedings of the 21st International Conference on Distributed Computing Systems (ICDCS-21),

April 16-19, 2001, Phoenix, Arizona, USA.

[3] H. Xu and S. M. Shatz, "An Agent-based Petri Net Model with Application to Seller/Buyer Design in

Electronic Commerce," To appear in the Proceedings of the Fifth International Symposium on

Autonomous Decentralized Systems (ISADS 2001), March 26-28, 2001, Dallas, Texas, USA.

[4] H. Xu and S. M. Shatz, "Extending G-nets to Support Inheritance Modeling in Concurrent Object-

Oriented Design," Proceedings of the IEEE International Conference on Systems, Man, and

Cybernetics (SMC 2000), October 8-11, 2000, Nashvill e, Tennessee, USA, pp. 3128-3133.

[5] R. K. Gedela, S. M. Shatz and H. Xu, "Compositional Petri Net Models of Advanced Tasking in Ada-

95," Computer Languages, July 1999, Vol.25, No.2, pp.55-87.

[6] R. K. Gedela, S. M. Shatz and H. Xu, "Formal Modeling of Synchronization Methods for Concurrent

Objects in Ada 95," Proceedings of the ACM Annual International Conference on Ada (SIGAda'99),

October 17-21, 1999, Redondo Beach, CA, USA, pp. 211-220.

[7] K. Warendorf, H. Xu, and A. Verhoeven, "Case-based Instructional Planning for Learning in a

Context," Proceedings of PACES/SPICIS 97 (24-27 February 1997), Singapore, pp. 354-360.

[8] H. Xu, X. Ruan, Z. Chen, S. Hu and H. Ren, "Hypertext and Multi -knowledge Source Based ICTS

(Intelli gent Chinese Tutoring System)," Journal of Chinese Information Processing, 1992, Vol. 6, No.

2, pp.8-16.

[9] Q. Hu, H. Xu, Y. Zhang and C. Zhou, "Software Design of an Expert Control System in Vaccum

Distill ation," Control and Instruments in Chemical Industry, 1992, Vol. 19, No. 4, pp.25-29.

[10] X. Ruan, S. Hu, Z. Chen and H. Xu, "The Presentation and Inference of Chinese Language

Knowledge," Proceedings of the International Conference on "Information & System", A.M.S.E.,

October 1991, Hangzhou, China.

[11] H. Xu, Z. Chen, and S. Hu, "Design and Implementation Techniques for an Intelli gent Chinese

Tutoring System," Proceedings of the Second National Conference on Computer Application, October

1991, Beijing, China, pp. 988-991.

[12] H. Xu, "Software Design of an Microcomputer-based Nuclear Scaler," Process Automation

Instrumentation, 1991, Vol. 12, No. 10, pp.13-16.

 69

Curr iculum Vitae

Haiping Xu was born in Pinghu, a coastal city of Zhejiang, China. He got his early education in his

hometown, and skipped two grades in primary school. As a gifted child, Haiping skipped one more grade in

senior high school and was admitted to the "Juvenile Class" of Zhejiang University in April 1985, when he

was only 15 years old. In July 1989, Haiping Xu got his B.S. degree in Electrical Engineering.

Owing to Haiping’s excellent performance in his undergraduate study, in 1989, he was admitted directly to

the Graduate School of Zhejiang University without entrance examination. Haiping’s research area was

Intelli gent Computer Aided Instruction (ICAI), and he worked on a project called “ Intelli gent Chinese

Language Tutoring System” in the Artificial Intelli gence Lab at Computer Science Department. In March

1992, Haiping Xu not only got his M.S. degree, but also was awarded the diploma and medal of "Excellent

Graduate Student of Zhejiang University".

After graduated from Zhejiang University, Haiping Xu was employed as a software engineer in the

Ministry of Electronics Industry in Beijing, China. Then from June 1993 to May 1996, he successively

worked as a senior engineer in Shenyan Company and Hewlett-Packard Company in Beijing, China.

In May 1996, Haiping Xu went to Singapore and worked there as a short-term research scholar in the

Intelli gent Systems Lab at Nanyang Technological University. During the four months there, Haiping built

an intelli gent tutoring system prototype for the computer science course "Data Structures and Algorithms"

and published an international conference paper.

In August 1996, Haiping Xu came to the United States, and began to fulfill his unfinished ambition in his

graduate study. Haiping was awarded a research assistantship from the Computer Science and Engineering

Department at Wright State University, and worked in the area of parallel and distributed computing. In

1998, due to his excellent performance in his graduate study, Haiping Xu was awarded the Dayton Area

Graduate Studies Institute (DAGSI) Scholarship and got his M.S. degree in computer science.

In August 1998, Haiping decided to continue his Ph.D. study at the University of Illi nois at Chicago. Now

he is a Ph.D. candidate in the Electrical Engineering and Computer Science Department at UIC. During the

two and a half years study at UIC, Haiping has published four conference papers and one journal paper.

Currently, Haiping’s research interest is to apply Petri net formalism to software development, with

applications to electronic commerce and Internet security.

