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Chapter 1 
 

Introduction 
 

1.1 Background 

 

The development of software systems starts with two main activities, namely software requirements 

analysis and software design [Sommervile 1995][Pressman 1997]. The purpose of software requirements 

analysis is to understand the problem thoroughly and reduce potential errors caused from incomplete or 

ambiguous requirements. The product of the requirements analysis activity is a software requirements 

specification, which serves as a contract between the customers and the software designers. The purpose of 

the software design is to follow the software requirements specification and to depict the overall structure 

of a system by decomposing the system into its logical components. The design activity translates 

requirements into a representation of the software that can be assessed for quality before coding begins. 

Like software requirements, the product of the design activity is a design specification, which serves as a 

contract between the software designers and the programmers. 

 

There are two ways to achieve the purposes of these two activities. One is to specify and analyze systems 

formally, and the other is to describe and model systems naturally. When specifying, modeling and 

analyzing the behavior of a critical and complex system, we usually choose a specification language that 

can formally depict the properties of the system. This is because formal languages can be used to describe 

system properties clearly, precisely and in detail , and to enable design and analysis techniques to evolve 

and operate in a systematic manner. Since the 1960’s, researchers have been working on formal modeling 

of critical and complex systems such as concurrent and distributed systems. Among these formal methods, 

Petri nets [Murata 1989], as a graphical and mathematical modeling tool, are well recognized and widely 

used in various application domains because of its simplicity and flexibilit y to depict the dynamic system 

behaviors, and its strong expressive and analytic power for system modeling. Although Petri nets have been 

successfully used for system modeling and analysis in various domains, formal methods are still not a 

popular way for most of the industry/commercial software development. Therefore, many Petri net 

researchers have devoted efforts to enhance/extend the theory and techniques of Petri nets, including high-
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level Petri nets such as CPN (Colored Petri Nets) [Jensen 1992], and tried to build a bridge between formal 

methods and industry/commercial software development. 

 

Meanwhile, in the industry, there are several transitions of software engineering paradigms during the last 

few decades. In the seventies, structured programming was the dominant approach to software 

development. Along with it, software engineering technologies were developed in order to ease and 

formalize the system development li fe cycle: from planning, through analysis and design, and finally to 

system construction, transition and maintenance. In the eighties, object-oriented (OO) languages 

experienced a rise in popularity, bring with it new concepts such as data encapsulation, inheritance, 

messaging and polymorphism. By the end of the eighties and beginning of the nineties, a jungle of 

modeling approaches grew to support the OO market. For instance, the Unified Modeling Language (UML) 

[Rational 1997], which unifies three popular approaches to OO modeling: the Booch method [Booch 1994], 

OMT [Rumbaugh et al. 1991] and OOSE [Jacobson et al. 1992], becomes the most popular modeling 

language for object-oriented software systems. Although the object-oriented paradigm has achieved a 

considerable degree of maturity, researchers continually strive for more eff icient and powerful software 

engineering techniques, especially as solutions for even more demanding applications. The emergence of 

agent techniques is one of the examples of such efforts. In the last few years, the agent research community 

has made substantial progress in proving a theoretical and practical understanding of many aspects of 

agents and multi -agent systems [Green et al. 1997][Jennings et al. 1998]. Agents are being advocated as a 

next generation model for engineering complex, distributed systems [Jennings 2000]. Yet despite of this 

intense interest, the concepts of agent-oriented paradigm are still not matured, and the methodology, 

especially the techniques for agent modeling in practical use, is yet to be researched. 

 

Although there have been many efforts on object and agent modeling, to provide a framework for object-

oriented design and agent-oriented design is still a big challenge. Due to the lack of formalisms for 

practical complex software design, we aim to use and extend a type of high-level Petri nets, called G-nets 

[Perkusich and de Figueiredo 1997], to model objects and agents in object-oriented design and agent-

oriented design respectively. Our proposed formalism has the advantage of being easy to understand, easy 

to use, and practically it is helpful for designers to design complex software systems, and to use existing 

Petri net tools to analyze its correctness and to verify its behavior properties such as liveness. In addition, 

since we view an agent as an extension of an object, i.e., an active object [Shoham 1993], our object 

models and agent models maybe combined to provide a unified framework for complex software design, 

especially for Internet applications such as electronic commerce. 

 

1.2 Related Work 

 

1.2.1 Formal Methods in Object-Or iented Design 
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The concepts of object-oriented paradigm, such as encapsulation and inheritance, have been widely used in 

system modeling because they allow us to describe a system easily, intuitively and naturally [Rumbaugh et 

al. 1991][Booch 1994][Jacobson et al. 1992][Eliens 1995]. With the increasing complexity of nowadays 

software systems, object-oriented software designers began to understand the usefulness of formal 

methods. Along with this trend, object-oriented formal methods became one of hot research issues for the 

last few years. Many researchers have suggested object-oriented formal methods, such as OPN (Object 

Petri Nets) [Bastide 1995], VDM++ [Lano 1995] and Object-Z [Stepney et al. 1992]. Among them, the 

research on the OPN methods have been actively studied to extend the Petri nets formalism to various 

forms of object Petri nets, such as OBJSA [Battiston et al. 1988], LOOPN++ [Lakos and Keen 1994], CO-

OPN/2 [Biberstein et al. 1997] and G-nets [Perkusich and de Figueiredo 1997]. Although the results of 

such studies are promising, these formalisms do not fully support all the major concepts of object-oriented 

methodology. We now give a brief description of these formalisms. 

 

OBJSA nets, suggested by E. Battiston, define a class of algebraic nets that are extended with modularity 

features. Their name reflects that they integrate Superposed Automata nets and the algebraic specification 

language OBJ [Battiston et al. 1988][Battiston et al. 1995]. OBJSA nets correspond to the semantics model 

described by algebraic notations, and CLOWN (CLass Orientation With Nets) is a notation developed on 

the top of OBJSA nets with object-oriented features added [Battiston et al. 1996]. CLOWN attributes can 

be declared as constant (const) or variable (var ), and all the actions that an object can execute are specified 

by the “method” clauses. In addition, the “ interface” clause defines the interaction between a CLOWN 

object and some other objects, and the inheritance features are extended by the “ inherits” clause. 

 

In CLOWN, the data structure of a class is defined by algebraic notations, and the control structure of the 

class is defined by a class net. Objects in CLOWN are represented as distinguished individual tokens 

flowing in the corresponding class net. CLOWN does not take the full advantage of this formalism because 

only the control structure of a system is modeled by Petri nets. Since object-oriented features in CLOWN 

are not captured at the net level, there are limitations in using existing Petri net tools for system analysis. 

 

O. Biberstein suggests the specification language, called CO-OPN/2 (Concurrent Object-Oriented Petri 

Nets) [Biberstein et al. 1996, Biberstein et al. 1997], which is designed to specify and model large scale 

concurrent systems. The class definition in CO-OPN/2 consists of two parts: “Signature” part is to describe 

the interface with other classes, and “Body” part is to describe the internal behaviors and operations of a 

class. The specification method of CO-OPN/2 is similar with that of CLOWN, but the differences are that 

CO-OPN/2 supports abstract data type in order to reuse its type defined in other classes, and the methods 

declared in “Signature” part is used as interface transition. The problem of CO-OPN/2 is that the unfolding 
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mechanism for a CO-OPN/2 specification is not provided, therefore the analysis and simulation method of 

CO-OPN/2 is unclear.  

 

C. Lakos proposes a class of object-oriented Petri nets, called LOOPN++ (Language for Object-Oriented 

Petri Nets) [Lakos and Keen 1994, Lakos 1995a, Lakos 1995b]. LOOPN++ uses the text-based grammar to 

specify systems. In the specification of LOOPN++, the class definition consists of three parts: “Fields” to 

define data, “Function” to describe expression with parameters and operation, and “Actions” to represent 

the behavior of a system. The “Fields” part is a declaration of a token in Petri nets, and is used to represent 

the states of places. The “Functions” and “Actions” part together represent the transitions of Petri nets.  

 

One of the major characteristics of LOOPN++ is the feature for “super places” and “super transitions” , used 

to represent the nesting structure of nets. It becomes a base to support the abstraction of nets. The super 

place and super transition can be defined by labeling at the corresponding place and transition of nets with 

the name of an external object. With this feature, “Parent” phrases can be used to represent (multiple) 

inheritance of classes. Regardless of continuous research on LOOPN++, it has some deficiencies in fully 

supporting the object-oriented concepts. First, LOOPN++ does not fully reflect the actual concepts of 

objects because the nets include the global control structure of systems, and tokens are only passive data 

types [Lakos 1997]. Second, LOOPN++ tries to represent the abstraction by the feature of fusion only, but 

is not suff icient for abstraction of functional behavior and states. Third, LOOPN++ provides the “Export” 

phrase, but the message passing mechanism for the interaction among objects is not supported. Finally, 

LOOPN++ is well applied in the object-oriented software development methodology of Shlaer-Mellor 

[Lakos and Keen 1994], but not in the methodology of OMT/UML, which is one of the most popular 

approaches nowadays. 

 

G-nets [Perkusich and de Figueiredo1997][Deng et al. 1993] support the concepts of objects better than in 

CO-OPN/2 or LOOPN++, at least in our concerns. As one form of high-level Petri nets, G-nets are based 

on the concept of modules corresponding to objects. There are two separate parts to describe the net 

structure of an object in G-nets. One is called GSP (Generic Switch Place), which contains the name of an 

object, the definition of attributes and methods, and initial marking of the net. The other one is called the IS 

(Internal Structure), which describes the behaviors of methods with a variant of Petri nets. There are special 

places in the nets, such as ISP (Instantiated Switching Place) to make a method call and GP (Goal Place) to 

end a method execution. These features can be unfolded into Pr/T nets. 

 

A fascinating feature of G-nets is its support for encapsulation of objects, message passing for object 

interactions, and low coupling between objects. The use of the unique identifier for an object makes it 

possible to represent recursive method calls. Also, the mechanism for method call i n G-nets is quite 

suitable for modeling client-server systems. Although G-nets are useful for object modeling and the 
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structure of a G-net is similar with that of an object in OMT/UML, it does not support inheritance 

mechanism. In addition, it is diff icult to represent the abstraction hierarchy with net elements of G-nets. 

 

The above object models are widely referenced and compared among high-level object-oriented Petri nets. 

Other similar research includes: OPNets by Lee [Lee and Park 1993], which are focused on the decoupling 

of inter-object communication knowledge and the seperation of synchronization constraints from the 

internal structure of objects; OCoNs (Object Coordination Nets) by Giese [Giese et al. 1998] are to 

describe the coordination of the behavior of a class on a service. Although these formalisms support 

suff iciently the basic concepts of objects such as encapsulation and modularization, they do not incorporate 

the concepts of abstraction and/or inheritance, and they do not clearly suggest the analysis or simulation 

methods. 

 

1.2.2 Agent-Or iented Methodologies and Formal Approaches 

 

Agent technology has received a great deal of attention in the past few years and, as a result, the industry is 

beginning to get interested in using this technology to develop its own products. In spite of the different 

developed agent theories, languages, architectures and the successful agent-based applications, very littl e 

work for specifying and design techniques to develop agent-based applications using agent technology has 

been done [Iglesias et al. 1998]. The role of agent-oriented methodologies is to assist all the phases of the 

li fe cycle of an agent-based application, including its management. A number of groups have reported on 

methodologies for agent design, touching on representational mechanisms as they support the 

methodology. Examples of such work are D. Kinny and his colleagues’ BDI agent model [Kinny et al. 

1996] and the Gaia methodology suggested by M. Wooldridge [Wooldridge et al. 2000]. 

 

Formal methods for agent modeling are mostly concerning about agent specification and agent design. 

Several formal approaches have tried to bridge the gap between formal theories and implementations. 

Though formal methods are not so easily scalable in practice, they are especially useful for verifying and 

analyzing critical applications, prototypes and complex cooperating systems. Traditional formal languages 

such as Z have been used [Luck et al. 1997], providing an elegant framework for describing an agent 

system at different levels of abstractions. Since there is no notion of time in Z, it is not quite suitable to 

specify agent interactions. Another approach has been the use of temporal modal logic [Wooldridge 1998] 

that allows the representation of dynamic aspects of the agents and a basis for specifying, implementing 

and verifying agent-based systems. The implementation of the specification can be done by directly 

executing the agent specification with a language such as Concurrent Metatem [Fisher and Wooldridge 

1997] or by compili ng the agent specification. The usage of formal methods for multi -agent specification 

such as DESIRE [Brazier et al. 1997] is an interesting alternative to be used as a detailed design language 
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in agent-oriented methodology. DESIRE (framework for Design and Specification of Interacting Reasoning 

components) proposes a component-based perspective based on task decomposition. 

 

During the last few years, many efforts have been put on developing multi -agent systems, however there is 

a lack of research on formal specification and design of such systems [Iglesias et al. 1998][Rogers et al. 

2000]. As the multi -agent technology begins to emerge as a viable solution for large-scale industrial and 

commercial applications, there is an increasing need to ensure that the systems being developed are robust, 

reliable and fit for purpose. The concept of agent-oriented methodology is still new, and there are different 

views on this issue [Iglesias et al. 1998][Jennings 2000]. In this proposal, we take the view that an agent is 

an extension of an object. Thus, based on the concepts of object-oriented methodology, we propose our 

agent-oriented design model, which is a nature approach for most of the object-oriented designers. 

 

1.3 Contr ibutions of Our Work 

 

The work reported in this Ph.D. thesis proposal is aimed at proposing a technique for modeling and 

analyzing object-oriented and agent-oriented software systems. The concepts of agent-orientation are based 

on the concepts of object-orientation, but need to be extended with additional features, such as mechanisms 

for decision-making and asynchronous message passing. The major contributions of our work are listed as 

follows: 

 

• Extended the original G-net model to support class modeling and inheritance modeling. 

• Designed an agent-based G-net model, and proved properties related to li veness, concurrency and 

effectiveness for agent communication. 

• Extended the agent-based G-net model to support inheritance modeling in agent-oriented design. 

• Performed experiments with an existing Petri net tool to model and analyze agent-oriented 

software systems. 
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Chapter 2 
 

Inheritance Modeling in Object-Or iented Design 
 

2.1 Introduction 

 

One of the key issues in object-oriented (OO) approach is inheritance. The inheritance mechanism allows 

users to specify a subclass that inherits features from some other class, i.e., its superclass. A subclass has 

the similar structure and behavior as the superclass, but in addition it may have some other features. As an 

essential concept of the OO approach, inheritance is both a cognitive tool to ease the understanding of 

complex systems and a technical support for software reuse and change. With the emergence of formalisms 

integrating the OO approach and the Petri net (PN) theory, the question arises how inheritance may be 

supported by such formalism, in order that they benefit from the advantages of this concept and existing 

Petri net tools. Inheritance has been originally introduced within the framework of data processing and 

sequential languages, while PNs are mainly concerned with the behavior of concurrent processes. 

Moreover, it has been pointed out that inheritance within concurrent OO languages entails the occurrence 

of many diff icult problems such as the inheritance anomaly problem [Matsuoka and Yonezawa 1993]. 

Thus, to incorporate inheritance mechanism into Object Petri Net (OPN) has been viewed as a challenging 

task. 

 

The concepts of inheritance define both the static features and dynamic behavior of a subclass object. The 

static feature specifies the structure of a subclass object, i.e., its methods and attributes; while the dynamic 

behavior of a subclass object refers to its state and its dynamic features such as overriding, dynamic 

binding and polymorphism [Drake 1998]. Most of the existing object-oriented Petri nets (OOPN) 

formalism, such as CLOWN, LOOPN++ and CO-OPN/2, fail to provide a uniform framework for class 

modeling and inheritance modeling in terms of these two features, and they usually use text-based 

formalism to incorporate inheritance into Petri nets. The problems of these approaches are that they do not 

take full advantage of the Petri net formalism, and therefore, we cannot use existing Petri net tools to verify 

the behavior properties of a subclass object in terms of inheritance. Little work has been done to model 

inheritance of dynamic behavior. Examples of such work are the concept of li fe-cycle inheritance proposed 
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by van der Aalst and Basten [Aalst and Basten 1997][Basten and Aalst 2000] and the SBOPN formalism 

with additional inheritance features suggested by Xie [Xie 2000]. However, these formliasms are either too 

theoretical to be used in practical software design, or too preliminary to cover all forms of inheritance, such 

as refinement inheritance [Drake 1998]. 

 

In this chapter, we propose a Petri net formalism, called extended G-nets, to model inheritance in 

concurrent object-oriented design. Based on the original G-net formalism [Perkusich and de Figueiredo 

1997], we first extend G-nets into the so-called standard G-nets for class modeling, then we introduce new 

mechanisms to incorporate inheritance into standard G-net models. These new mechanisms are net-based, 

therefore it would be possible for us to translate our net models into other forms of Petri nets, such as Pr/T 

net, and use existing Petri net tools for behavior property analysis, e.g., to analyze the inheritance anomaly 

problem. 

 

2.2 G-net Model Background 

 

A widely accepted software engineering principle is that a system should be composed of a set of 

independent modules, where each module hides the internal details of its processing activities and modules 

communicate through well -defined interfaces. The G-net model provides strong support for this principle 

[Perkusich and de Figueiredo 1997][Deng et al. 1993]. G-nets are an object-based extension of Petri nets, 

which is a graphically defined model for concurrent systems. Petri nets have the strength of being visually 

appealing, while also being theoretically mature and supported by robust tools. We assume that the reader 

has a basic understanding of Petri nets [Murata 1989]. But, as a general reminder, we note that Petri nets 

include three basic entities: place nodes (represented graphically by circles), transition nodes (represented 

graphically by solid bars), and directed arcs that can connect places to transitions or transitions to places. 

Furthermore, places can contain markers, called tokens, and tokens may move between place nodes by the 

“ firing” of the associated transitions. The state of a Petri net refers to the distribution of tokens to place 

nodes at any particular point in time (this is sometimes called the marking of the net). We now proceed to 

discuss the basics of standard G-net models. 

 

A G-net system is composed of a number of G-nets, each of them representing a self-contained module or 

object. A G-net is composed of two parts: a special place called Generic Switch Place (GSP) and an 

Internal Structure (IS). The GSP provides the abstraction of the module, and serves as the only interface 

between the G-net and other modules. The IS, a modified Petri net, represents the detailed design of the 

module. An example of G-nets is shown in Figure 1. Here the G-net models represent two objects – a Buyer 

and a Seller. The generic switch places are represented by GSP(Buyer) and GSP(Seller) enclosed by 

elli pses, and the internal structures of these models are represented by round-cornered rectangles that 

contain the detailed design of four methods: buyGoods(), askPrice(), returnPrice() and sellGoods(). The 
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functionality of these methods are defined as follows: buyGoods() invokes the method sellGoods() defined 

in G-net Seller to buy some goods; askPrice() invokes the method returnPrice() defined in G-net Seller to 

get the price of some goods; returnPrice() is defined in G-net Seller to calculate the latest price for some 

goods and sellGoods() is defined in G-net Seller to wait for the payment, ship the goods and generate the 

invoice. A GSP of a G-net G contains a set of methods G.MS specifying the services or interfaces provided 

by the module, and a set of attributes, G.AS, which are state variables.  In G.IS, the internal structure of G-

net G, Petri net places represent primitives, while transitions, together with arcs, represent connections or 

relations among those primitives. The primitives may define local actions or method calls. Method calls are 

represented by special places called Instantiated Switch Places (ISP). A primitive becomes enabled if it 

receives a token, and an enabled primitive can be executed. Given a G-net G, an ISP of G is a 2-tuple 

(G’ .Nid, mtd), where G’  could be the same G-net G or some other G-net, Nid is a unique identifier of G-net 

G’ , and mtd ∈ G’.MS. Each ISP(G’ .Nid, mtd) denotes a method call mtd() to G-net G’ . An example ISP 

(denoted as an elli psis in Figure 1) is shown in the method askPrice() defined in G-net Buyer, where the 

method askPrice() makes a method call returnPrice() to the G-net Seller to query about the price for some 

goods. Note that we have highlighted this call i n Figure 1 by the dashed-arc, but such an arc is not actually 

a part of the static structure of G-net models. In addition, we have omitted all function parameters for 

simplicity.   

 
 
 GSP(Buyer) 

ISP(Seller, 
sellGoods()) 

   buyGoods() 

Figure 1. G-Net model of buyer and seller objects 

askPrice() 

t1 

t2 

ISP(Seller, 
returnPrice()) 

t3 

t4 

returnPrice() 

calculate_ 
price 

sell_ 
goods 

sellGoods() 

GSP(Seller) 

t8 

t7 

t6 

t5 

 

 

2.3 Extending G-nets for Class Modeling 

 

From the above description, we can see that a G-net model essentially represents a module or an object 

rather than an abstraction of a set of similar objects. In a recent paper [Xu and Shatz 2000], we have 

extended the G-net model to support class modeling. The idea of this extension is to generate a unique 

object identifier, G.Oid, and initialize the state variables when a G-net object is instantiated from a G-net G. 
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An ISP method invocation is no longer represented as the 2-tuple (G’ .Nid, mtd), instead it is the 2-tuple 

(G’ .Oid, mtd), where different object identifiers could be associated with the same G-net class model. 

 

The token movement in a G-net object is similar to that of original G-nets [Perkusich and de Figueiredo 

1997]. A token tkn is a triple (seq, sc, mtd), where seq is the propagation sequence of the token, sc ∈ 

{ before, after} is the status color of the token and mtd is a triple (mtd_name, para_list, result). For 

ordinary places, tokens are removed from input places and deposited into output places by firing 

transitions. However, for the special ISP places, the output transitions do not fire in the usual way. Recall 

that marking an ISP place corresponds to making a method call . So, whenever a method call i s made to a 

G-net object, the token deposited in the ISP has the status of before. This prevents the enabling of 

associated output transitions. Instead the token is “processed” (by attaching information for the method 

call ), and then removed from the ISP. Then an identical token is deposited into the GSP of the called G-net 

object. So, for example, in Figure 1, when the Buyer object calls the returnPrice() method of the Seller 

object, the token in place ISP(Seller, returnPrice()) is removed and a token is deposited into the GSP place 

GSP(Seller). Through the GSP of the called G-net object, the token is then dispatched into an entry place of 

the appropriate called method, for the token contains the information to identify the called method. During 

“execution” of the method, the token will reach a return place (denoted by double circles) with the result 

attached to the token. As soon as this happens, the token will return to the ISP of the caller, and have the 

status changed from before to after. The information related to this completed method call i s then 

detached. At this time, output transitions (e.g., t4 in Figure 1) can become enabled and fire. 

 

More specifically, when a G-net object G_obj with G.Oid makes a method call ISP(G’ .Oid, mtd(para_list)) 

in its thread/process with G.Pid, the procedure for updating a G-net token gTkn is as follows: 

 

1. Call_before: gTkn.seq ← gTkn.seq + < G.Oid, G.Pid, mtd> ; gTkn.msg ← (mtd, para_list, NULL); 

gTkn.sc ← before. 

2. Transfer the gTkn token to the GSP place of the called G-net object with G’.Oid. 

3. Wait for the result to be stored in gTkn.msg.result, and the gTkn token to be returned. 

4. Call_after:  gTkn.seq ← gTkn.seq – LAST(gTkn.seq); gTkn.sc ← after. 

 

We call a G-net model that supports class modeling a standard G-net model. We now provide a few key 

definitions for our standard G-net models. 

 

Definition 2.1 G-net system 

A G-net system (GNS) is a triple GNS = (INS, GC, GO), where INS is a set of initialization statements used 

to instantiate G-nets as G-net objects; GC is a set of G-nets which are used to define classes; and GO is a 

set of G-net objects which are instances of G-nets. 
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Definition 2.2 G-net 

A G-net is a 2-tuple G = (GSP, IS), where GSP is a Generic Switch Place (GSP) providing an abstraction 

for the G-net; and IS is the Internal Structure, which is a set of modified Pr/T nets. A G-net is an abstract of 

a set of similarly G-net objects, and it can be used to model a class. 

 

Definition 2.3 G-net object 

A G-net object is an instantiated G-net with a unique object identifier. It can be represented as (G, OID, 

ST), where G is a G-net, OID is the unique object identifier and ST is the state of the object. 

 

Definition 2.4 Generic Switching Place (GSP) 

A Generic Switch Place (GSP) is a triple of (NID, MS, AS), where NID is a unique identifier (class 

identifier) of a G-net G; MS is a set of methods defined as the interface of G-net G; and AS is a set of 

attributes defined as a set of instance variables. 

 

Definition 2.5 Internal Structure (IS) 

The internal structure of G-net G (representing a class), G.IS, is a net structure, i.e., a modified Pr/T net. 

G.IS consists of a set of methods. 

 

Definition 2.6 Method 

A method is a triple (P, T, A), where P is a set of places with three special places called entry place, ISP 

place and goal place. Each method can have only one entry place and one goal place, but it may contain 

multiple ISP places. T is a set of transitions, and each transition can be associated with a set of guards. A is 

a set of arcs defined as: ((P-{ goal place} ) x T) ∪ ((T x (P-{ entry place} ).  

 

2.4 Extending G-nets to Support Inheritance 

 

An example of G-nets is shown in Figure 2. Here the G-net model represents an unbounded buffer class. 

The generic switch place is represented by GSP(UB) enclosed by an elli psis, and the internal structure of 

this model is represented by a rounded box which contains the detailed design of four methods: isEmpty(), 

put(e), get() and who(). The functionality of these methods are defined as follows: isEmpty() checks if the 

buffer is empty and return a boolean value, put(e) stores an item e into the buffer, get() removes an item 

from the buffer and returns that item, and who() prints the object identifier of the unbounded buffer. For 

clarity, in Figure 2, we put the signatures of these four methods in a rectangle on the right side of the GSP 

place as the interface of G-net UB. An example of ISP is shown in the method get() (denoted as an elli psis), 

where the method get() makes a method call isEmpty() to the G-net module/object itself to check if the 
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buffer is empty. Note that we have extended G-nets to allow the use of the keyword self to refer to the 

module/object itself.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

GSP(UB) 

check 
_empty 

isEmpty() 

Figure 2. G-net model of unbounded buffer class (UB) 

bool isEmpty(); 
void put(e); 
Item get(); 
int who(); 

who() 

print_Oid 

ISP (self, 
isEmpty()) 

 get() 
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syn 

put(e) 

return 
_false 

return 
_true 

remove 

print 
_error 

store 

t3 

t4 

t5 

t6 t7 

t8 t9 

t10 
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To deal with the concurrency issue in our G-net models, we extended our model by introducing a 

synchronization module to synchronize methods defined in the internal structure of the G-net. For instance, 

in the unbounded buffer class model we introduced a synchronization module syn to synchronize the 

methods get() and put(e). This mechanism is necessary because these methods need to access the same 

unbounded buffer and they should be mutually exclusive. Generally, to design the synchronization module, 

we can either fulfill all synchronization requirements in one synchronization module or distribute them in 

several synchronization modules. To simpli fy our model, we follow the second option. Therefore, each 

class model may contain as many synchronization modules as necessary, and each synchronization module 

can be used to synchronize among a group of methods. As we will see, the synchronization module can not 

only be used to synchronize methods defined in a class model, but also can be used to synchronize methods 

defined in a subclass model and methods defined in its superclass (ancestor) model.  

 

With inheritance, when we instantiate a G-net Sub_G (a subclass), it is not enough to just associate an Oid 

with Sub_G and initialize the state variables defined in Sub_G class. We must associate the same Oid with 

all of Sub_G’s superclasses (ancestors) and initialize all state variables defined in those classes. The 

initialized part corresponding to the subclass and each of the superclasses (ancestors) is called primary 

subobject and subobject respectively [Rossie et al. 1996][Drake 1998]. When a method call i s made to the 

object Sub_G_obj (i.e., an instantiation of class Sub_G), it is always the case that only the GSP place of the 
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primary subobject is marked. The subobjects corresponding to the superclasses (ancestors) of Sub_G are 

not activated unless the method call to Sub_G_obj is not defined in the subclass model Sub_G. 

 

 

 
 
 

GSP(BB) 

print 
_error 

      who() 

Figure 3. G-net model of bounded buffer class (BB) 

BB extends UB 
int who( );               // restricted 
void put(e);             // redefined 
bool isFull( ); 
 

default 

SSP(UB) 

ISP (self, 
isFull()) 

isFull() 

t1 

t2 

syn 

put(e) 

SSP(UB) 

check 
_full 

print 
_error 

return 
_true 

return 
_false 

t5 

t6 t7 

t8 t9 

t3 

t4 

t10 
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When a method call i s not found in a subclass model, we need to resolve the problem by searching the 

methods defined in the superclass models. To do this, we define a new mechanism called a default place. A 

default place is a default entry place defined in the internal structure of a subclass model and is drawn as a 

dash-lined circle, as shown in Figure 3. When a method is dispatched in a subclass model, the methods 

defined in the subclass model are searched first. If there is a match, one of the entry places of those 

methods is marked; otherwise, the default place is marked instead. After the dispatching, necessary 

synchronization constraints are established by the synchronization modules. If the default place is marked, 

the method call i s then forwarded to a named superclass model. At first, it may seem that we can use the 

ISP method invocation mechanism to forward an existing method call . However this is not quite proper. 

Note that the initial method call will attach information associated with the call to the gTkn token. Now the 

subsequent call to the superclass would again attach the same information to the token, and the method call 

will actually be invoked more than once. To solve this problem, we introduce a new mechanism called a 

Superclass Switch Place (SSP).  

 

An SSP (denoted as an elli psis in Figure 3) is similar to an ISP, but with the difference that the SSP is used 

to forward an existing method call to a subobject (corresponding to a superclass model) of the object itself 

rather than to make a new method call . Essentially, an SSP does not update the gTkn token because all the 

information for the method call has already been attached by the original ISP method call . In the context of 

multiple inheritance, we represent an SSP mechanism in subclass Sub_G as SSP(G’ ), where G’  is one of the 



 
 

 17 

superclasses of Sub_G. Note that the object identifier is not necessary, as in the case of ISP method 

invocation, because the method call will be forwarded to the object itself (i.e., its subobject). When the 

method call i s forwarded to the subobject corresponding to the superclass model G’ , the GSP place of the 

superclass model G’  is marked, and the methods defined in the superclass model are searched. If a method 

defined in the superclass model is matched, as in the case of ISP method invocation, the matched method is 

executed, and the result is stored in gTkn.msg.result and the gTkn token returns to the SSP place. 

Otherwise, the default place (if any) in the superclass is marked, and the methods defined in the 

grandparent class model are searched. This procedure can be repeated until the called method is found. If 

the method searching ends up in a class with no methods matched and no default place defined, a “method 

undefined” exception should be raised. This situation can be avoided by static type checking. 

 

Now consider a bounded buffer class example as shown in Figure 3. We define a bounded buffer class BB 

as a subclass of an unbounded buffer class UB. Since the buffer has a limited size of MAX_SIZE, when 

there is a put (e) method call , the size of the buffer needs to be checked to make sure that the buffer 

capacity is not exceeded. In this case, the method put (e) defined in the class model UB is no longer correct, 

and it needs to be redefined in the subclass model BB. A simple way to redefine the method put (e) in 

subclass BB is to first make an ISP method call isFull () to the bounded buffer object itself. The method 

isFull () is used to check if the bounded buffer is full and it is added to the BB class model as shown in 

Figure 3. If it returns true, i.e., the bounded buffer has already been full , an error or exception will be 

generated; otherwise, the method call put(e) will be forwarded to its superclass UB by using an SSP 

mechanism. Here we use an SSP to allow reuse of the original method put(e) defined in class UB. As we 

will explain later, we call this situation refinement inheritance. Note that if we use ISP(self, put(e)) in this 

situation, a dead loop will occur. This is because the methods defined in the subclass will always be 

searched first; and consequently, the method put(e) defined in subclass BB will be called recursively. Again 

we see the value of introducing the SSP mechanism. 

 

It is also important to notice that a synchronization module can be used to synchronize methods defined in 

a subclass model and methods defined in the superclass model. However, in this case, all methods defined 

in superclass (ancestor) models must be synchronized as a whole. For instance, in Figure 3, the refined 

method put(e) defined in subclass BB is synchronized with all methods defined in the superclass UB, yet 

the synchronization between the method put(e) and the inherited method isEmpty() is unnecessary. 

 

To formally define extended G-nets with inheritance, we need to redefine the internal structure and define 

the concept of Synchronization Module and Abstract Superclass Module. Based on the formal definitions of 

standard G-net model in Section 2.2, we now provide a few key definitions for our extended G-net models 

with inheritance features. 
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Definition 2.7 Internal Structure (IS)                                    // to replace definition 2.5 

The internal structure of G-net G is a triple (M, S, A), where M is a set of methods, S is a set of 

synchronization modules, and A is an optional Abstract Superclass Module. The arcs connecting M and S, 

or connecting S and A belong to S. There are no direct arcs between M and A. 

 

Definition 2.8 Synchronization Module 

A synchronization module is 4-tuples (P, A, I, O), where P is a single place used to hold an sTkn token, 

which is a colorless token, and A is a set of arcs defined as: (P x IS.M.T) ∪ (IS.M.T x P); I is a set of arc 

inscriptions on place incoming arcs, and O is a set of arc inscriptions on place outgoing arcs. 

 

Definition 2.9 Abstract Superclass Module 

An Abstract Superclass Module is a triple (P, T, A), where P is a set of places includes three special places: 

default place, goal place and Superclass Switch Place (SSP). T is a set of transitions with optional guards. 

A is a set of arcs defined as: ((P – { goal place} ) x T) ∪ (T x (P – { default place} )). 

 

2.5 Modeling Different Forms of Inheritance 

 

Typically, to create a subclass model, we specialize a superclass by adding new protocols. We call this 

augment inheritance [Drake 1998]. Alternatively, we can restrict or refine a superclass by overriding one or 

more of its methods. This happens in three cases: method restriction, method replacement and method 

refinement. We call each of them restrictive inheritance, replacement inheritance and refinement 

inheritance  [Drake 1998]. 

 

Augment inheritance is straightforward - new protocols, which are not defined in the superclass model, are 

added to a subclass model. For instance, consider the design of the subclass BB as shown in Figure 3. We 

require a service to check if the buffer is already full . This can be done by adding a new method isFull () to 

the subclass BB. Since the method isFull () does not override any methods in class UB, we have used 

augment inheritance.  

 

In some cases, we regard a class as a specialization of another class, with some superclass methods absent 

from the protocol of the subclass. We call this type of inheritance restrictive inheritance. Restrictive 

inheritance actually runs counter to the semantics and intentions of inheritance, because the “ IS-A” 

relationship between superclass and subclass is broken. However, restrictive inheritance may be necessary 

when using an existing class hierarchy that cannot be modified. Usually, restrictive inheritance is 

implemented in the subclass by overriding the disallowed superclass methods to produce error messages or 

signal exceptions. Here we use a trivial example to ill ustrate how to model restrictive inheritance. Suppose 
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we need to disallow the inherited method who() in our subclass BB. This can be simply done by redefining 

method who() in class BB; the redefined method who() does nothing but prints an error message to indicate 

that the method call for who() is disallowed in subclass model BB. 

 

A subclass can completely redefine the behavior of its superclass for a particular method defined in the 

superclass. Inheritance in this case is called replacement inheritance. With this form of method overriding, 

we say that the method in the subclass replaces the method defined in the superclass. Replacing a 

superclass method generally occurs when the subclass can define a more eff icient method or needs to 

define a method in a different way. An example of replacement inheritance would be possible in the 

bounded buffer example, if we redesign the method get() in subclass BB  to make the “remove” action 

more eff icient. 

 

More frequently, the semantics of a subclass demand that the subclass respond to a method call by a 

method that includes the behavior of its superclass, but extends it in some way. In this case, we say that the 

subclass method refines the superclass method, i.e., there is a refinement inheritance. Practically, method 

refinement is more common than method replacement because it provides a semantic consistence with 

specialization. When implementing method refinement, we may simply refine the method by copying the 

relevant superclass method into the subclass model. However, we would like our extended G-net formalism 

to provide a mechanism that supports automatic sharing of the superclass method. This capabilit y is 

supported by the SSP mechanism and it has been ill ustrated by the method refinement of put(e) in bounded 

buffer BB as shown in Figure 3.  

 

2.6 Modeling Inheritance Anomaly Problem 

 

Inheritance anomaly refers to the phenomenon that synchronization code cannot be effectively inherited 

without non-trivial re-definitions of some inherited methods [Matsuoka and Yonezawa 1993][Thomas 

1994].  As a consequence, some well -known proposals for concurrent object-based languages, such as 

famili es of Actor languages, POOL/T, Procol and ABCL/1, chose to not support inheritance as a 

fundamental language feature [Matsuoka and Yonezawa 1993]. Also some languages like Concurrent 

Smalltalk or Orient84/K do provide inheritance but do not support intra-object concurrency - that is there is 

only a single thread of control within an object [Thomas 1994]. 

 

There have been previous efforts to solve the inheritance anomaly problem [Mitchell and Welli ngs 1996], 

but most of the proposals are based on quasi concurrency, where only one thread at a time is allowed to 

execute. As stated in [Thomas 1994], this type of inheritance anomaly seems to be almost solved. “True” 

concurrency refers to cases that more than one thread can be executed in an object at the same time. 

Reference [Thomas 1994] talked about solutions in this context. The inheritance anomaly problem has 
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usually been approached in terms of analyzing the causes. The causes have been classified as partitioning 

of acceptable states, history-only sensitiveness of acceptable states, and modification of acceptable states 

[Matsuoka and Yonezawa 1993]. Here, we analyze the inheritance anomaly problem based on clarifying 

the terminology of “synchronization constraints” , and we always view a concurrent system as a “ true” one.  

 

As we will see, synchronization constraints among methods can be specified explicitly or implicitly. An 

explicit synchronization constraint refers to the concurrent/mutual exclusive execution between two 

methods in an object. For instance, in the unbounded buffer example, method get() and method who() can 

be executed concurrently, however the execution of method get() and method put(e) must be mutually 

exclusive. This type of synchronization constraint creates the inheritance anomaly problem when a method 

m1 defined in a subclass module needs to be mutually exclusive with a particular inherited method m2 that 

is defined in its superclass (ancestor) module. A simple way to deal with this situation is to refine the 

method m2 (e.g., to use the SSP mechanism in our extended G-net model) and to establish mutual 

exclusion between m1 and m2 in the subclass module. In this case the method defined in the superclass 

(ancestor) module can be reused by a refinement inheritance. 

 

An implicit synchronization constraint refers to cases where acceptance of a method in an object is based 

on that object’s state. The state of an object can be changed by executing a method in that object. For 

instance, when a buffer is in a state of “empty” , the method get() is not allowed to execute; however, after  

executing the method put(e), the state of the buffer is changed from “empty” to “partial,” and at this time, 

the method call of get() becomes acceptable. Since the methods get() and put(e) are indirectly synchronized 

through  the state of the buffer, we called this type of synchronization constraint an implicit 

synchronization constraint. The implicit constraints can be further classified in terms of two different views 

of an object’s state, namely internal view and external view. Under an internal view, the state of an object 

can be captured by the evaluation of state variables of the object [Matsuoka and Yonezawa 1993]. For 

example, the state “empty” of a buffer can be captured by checking if the state variable of buffer_size 

evaluates to “0” . This type of synchronization  can always be added to a subclass module without 

redefining inherited methods because it can be easily maintained by checking state variables before 

allowing the execution of a method.  

 

Another view is the external view, where the state is captured indirectly by the externally observable 

behavior of the object [Matsuoka and Yonezawa 1993]. For example, a state under external view could be 

the state of a buffer object when the last executed method is put(e). When synchronization constraints with 

respect to the external view of an object’s state are added to a subclass module, some methods defined in a 

superclass (ancestor) module must be redefined. Fortunately, in most cases, as long as no deadlocks are 

introduced, we can again use refinement inheritance to reuse the original method defined in the superclass 

(ancestor) module. We use the classic example of gget() to ill ustrate this situation. Consider a new bounded 
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buffer class BB1, defined as a subclass of bounded buffer class BB, and add a new method called gget(). 

The behavior of gget() is almost identical to that of get(), with the sole exception that it can not be executed 

immediately after the invocation of put(e) [Matsuoka and Yonezawa 1993]. The design of the new bounded 

buffer BB1 is ill ustrated in Figure 4. To establish the synchronization between methods gget() and put(e), 

the method put(e) must be redefined in the subclass module BB1. Suppose we have an object bb1, an 

instance of class BB1. Initially, the token in the synchronization module syn is “0” . Whenever there is a 

method call other than put(e) to object bb1, the token will be removed and deposited back to the 

synchronization module with the same value of “0” . However, if there is a method call for put(e), the token 

in the synchronization module syn will be removed first, and then the method call put(e) will be forwarded 

to its superclass BB by using the SSP(BB) mechanism. After the method call of put(e), a token with value 

“1” will be deposited into the synchronization module syn. At this time, if there is a method call for gget(), 

the call must wait because a token with value “0” is necessary to enable the transition t1. Thus the 

synchronization between methods gget() and put(e) is correctly established. Note that we cannot reuse the 

method get() when designing the method gget() by using the SSP(BB) mechanism. This is inapplicable 

because gget() and get() are two different methods. In addition, we need to redefine the methods isEmpty() 

and isFull () to avoid deadlocks.  

 

 

 
 
 

GSP(BB1) 

print 
_error 

Figure 4. G-net model of bounded buffer class (BB1) 

BB1 extends BB 
bool isEmpty( );        // redefined 
bool isFull ( );            // redefined 
void put(e);               // redefined 
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2.7 Discussion 

 

Inheritance has been introduced into several object-oriented net models, such as LOOPN++ [Lakos and 

Keen 1994] and CO-OPN/2 [Biberstein et al. 1997]. However, those methods do not use net-based 

extensions to capture inheritance properties. Our approach explicitly models inheritance at the net level to 
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maintain an underlying Petri net model that can be exploited during design simulation or analysis. In future 

work, we will explore an algorithmic basis for synthesis of subclass models as well as investigate how to 

analyze extended G-nets at an abstract level, with consideration for the state explosion problem. Issues like 

design consistency and deadlock avoidance will be of primary concern. 
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Chapter 3 
 

An Agent-based G-net Model 
 

3.1 Introduction 
 

Agents are becoming one of the most important topics in distributed and autonomous decentralized systems 

(ADS) [Mendes et al. 1997][Arai et al. 1999]. With the increasing importance of electronic commerce 

across the Internet, the need for agents to support both customers and suppliers in buying and selli ng goods 

or services is growing rapidly. Most of the technologies supporting today’s agent-based electronic 

commerce systems stem from distributed artificial intelli gence (DAI) research [Guttman et al. 1998][Green 

et al. 1997]. Applications developed with multi -agent systems (MAS) in electronic commerce are examples 

of such efforts. A multi -agent system (MAS) is a concurrent system based on the notion of autonomous, 

reactive, and internally-motivated agents in a decentralized environment. The increasing interest in MAS 

research is due to the significant advantages inherent in such systems, including their abilit y to solve 

problems that may be too large for a centralized single agent, to provide enhanced speed and reliabilit y, and 

to tolerate uncertain data and knowledge [Green et al. 1997]. The notable systems developed with MAS in 

electronic commerce are Kasbah [Chavez and Maes 1996] and MAGMA [Tsvetovatyy et al. 1997]. Kasbah 

is meant to represent a marketplace where Kasbah agents, acting on behalf of their owners, can filter 

through ads and find those that their users might be interested in. The agents then proceed to negotiate to 

buy and sell it ems. MAGMA moves the marketplace metaphor to an open marketplace involving agents 

buying/selli ng physical goods, investments and forming competitive/cooperative alli ances. These agents 

negotiate with each other through a global blackboard.  

 

Notice that the example we provide in Figure 1 (Chapter 2) follows the Client-Server paradigm, in which a 

Seller object works as a server and a Buyer object is a client. Although the standard G-net model works 

well i n object-based design, it is not suff icient in agent-based design for the following reasons: 

 

1. Agents in multi -agent systems are usually developed by different vendors independently, and those 

agents will be widely distributed across large-scale networks such as the Internet. To make it possible 

for those agents to communicate with each other, it is essential for them to have a common 
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communication language and to follow common protocols. However the standard G-net model does 

not directly support protocol-based language communication between agents. 

2. The underlying agent communication model is usually asynchronous, and an agent may decide 

whether to perform actions requested by some other agents. The standard G-net model does not 

directly support asynchronous message passing and decision-making, but only supports synchronous 

method invocations in the form of ISP places. 

3. Agents are commonly designed to determine their behavior based on individual goals, their knowledge 

and the environment. They may autonomously and spontaneously initiate internal or external behavior 

at any time. Standard G-net models can only directly support a predefined flow of control. 

 

3.2 Agent-based G-net Model 

 

To support agent-based design, we first need to extend a G-net to support modeling an agent class1. The 

basic idea is similar to extending a G-net to support class modeling for object-based design [Xu and Shatz 

2000]. When we instantiate an agent-based G-net (an agent class model) G, an agent identifier G.Aid is 

generated and the mental state of the resulting agent object (an active object [Shoham 1993]) is initialized. 

In addition, at the class level, five special modules are introduced to make an agent autonomous and 

internally-motivated. They are the Goal module, the Plan module, the Knowledge-base module, the 

Environment module and the Planner module. The template for an agent-based G-net model is shown in 

Figure 5. We describe each of the additional modules as follows: 

 

• A Goal module is an abstraction of a goal model [Kinny et al. 1996], which describes the goals that an 

agent may possibly adopt, and the events to which it can respond. It consists of a goal set which 

specifies the goal domain and one or more goal states.  

• A Plan module is an abstraction of a plan model [Kinny et al. 1996] that consists of a set of plans, 

known as a plan set. A plan may be intended or committed, and only committed plans will be 

achieved.  

• A Knowledge-base module is an abstraction of a belief model [Kinny et al. 1996], which describes the 

information about the environment and internal state that an agent of that class may hold. The possible 

beliefs of an agent are described by a belief set.  

• An Environment module is an abstract model of the environment, i.e., the model of the outside world 

of an agent. The Environment module only models elements in the outside world that are of interest to 

the agent and that can be sensed by the agent.  

• A Planner module is the heart of an agent that may decide to ignore an incoming message, to start a 

new conversation, or to continue with the current conversation. In the Planner module, committed 

                                                           
1 We view the abstract of a set of similar agents as an agent class, and we call an instance of an agent class 
an agent or an agent object. 
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plans are achieved, and the Goal, Plan and Knowledge-base modules of an agent are updated after 

each communicative act [Finin et al. 1997][Odell 2000] or if the environment changes. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

GSP(G) 

message_ 
processing 

incoming message 

Figure 5. A generic agent-based G-Net model 

Goal 

 outgoing message 

action_1 action_m 

Knowledge-base 

                  Planner 

MSP(self) MSP(self) MSP(G’ .Aid) MSP(G’ .Aid) 

action_1 action_n 

message_ 
processing 

message_ 
processing 

message_ 
processing 

 return  return 

private utility 

utility_1 utility_p 

… 

… 

… 

… 

… 

… 

utility_1 utility_p 

Plan Environment 

Notes: G’.Aid = mTkn.body.msg.receiver as defined later in this section 

 

 

The internal structure (IS) of an agent-based G-net consists of three sections: incoming message, outgoing 

message, and private utilit y. The incoming/outgoing message section defines a set of message processing 

units (MPU), which correspond to a subset of communicative acts. Each MPU, labeled as action_i in 

Figure 5, is used to process incoming/outgoing messages, and may use ISP-type modeling for calls to 

methods defined in its private utilit y section. Unlike with the methods defined in a standard G-net model, 

the private utilit y functions or methods defined in the private utilit y section can only be called by the agent 

itself. 

 

Although both objects (passive objects) and agents use message-passing to communicate with each other, 

message-passing for objects is a unique form of method invocation, while agents distinguish different types 

of messages and model these messages frequently as speech-acts and use complex protocols to negotiate 

[Iglesias et al. 1998]. In particular, these messages must satisfy standardized communicative (speech) acts, 

which define the type and the content of the message (e.g., the FIPA agent communication language, or 

KQML) [FIPA 2000][Finin et al. 1997]. Note that in Figure 5, each named MPU action_i refers to a 

communicative act, thus our agent-based model supports an agent communication interface. In addition, 

agents analyze these messages and can decide whether to execute the requested action. As we stated before, 

agent communications are typically based on asynchronous message passing. Since asynchronous message 

passing is more fundamental than synchronous message passing, it is useful for us to introduce a new 

mechanism, called Message-passing Switch Place (MSP), to directly support asynchronous message 
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passing. When a token reaches an MSP (we represent it as an elli psis in Figure 5), the token is removed and 

deposited into the GSP of the called agent. But, unlike with the standard G-net ISP mechanism, the calli ng 

agent does not wait for the token to return before it can continue to execute its next step. Since we usually 

do not think of agents as invoking methods of one-another, but rather as requesting actions to be performed 

[Jennings et al. 1998], in our agent-based model, we restrict the usage of ISP mechanisms, so they are only 

used to refer to an agent itself. Thus, in our models, one agent may not directly invoke a method defined in 

another agent. All communications between agents must be carried out through asynchronous message 

passing as provided by the MSP mechanism.  

 

A template of the Planner module is shown in Figure 6. Since the modules Goal, Plan and Knowledge-base 

have the same interface with the Planner module, for brevity, we represent them as a single special place 

(denoted by double elli pses in Figure 6), which contains a token Goal/Plan/KB that represents a set of 

goals, a set of plans and a set of beliefs. The Environment module is also represented as a special place that 

contains a token Environment as a model of the outside world of the agent. The Planner module is goal-

driven because the transition start_a_conversation may fire whenever an attempt is made to achieve a 

committed goal. In addition, the Planner module is also message-triggered because certain actions may 

initiate whenever a message arrives (either from some other agent or the agent itself). If the message comes 

from some other agent, it will be dispatched to a MPU defined in the incoming messages section of the 

agent-based G-net’s internal structure. After the message is processed, the MPU will t ransfer the processed 

message as a token to the GSP place of the agent itself. This is done by sending a message MSP(self) to the 

agent itself. Upon arrival of this internal message, the transition internal may fire, and the next action will 

be determined based on the agent’s current mental state. Alternatively, the next action could be to ignore 

the message or to continue with the current conversation. In either case, a token will be deposited in place 

update_goal/plan/kb, and the transition update may fire. As a consequence, the agent’s mental state may 

change. If the next action is to continue the conversation, the tag of the token will be changed from 

internal to external, and the token will be deposited in place dispatch_outgoing_message.  In this case, the 

corresponding MPU will be called before the message is sent to some other agent by using the MSP 

mechanism. In addition, an agent may provide a set of private utilit y functions for itself and allow other 

functional units to make synchronous method calls to it. Whenever there is a method call , the token 

deposited in the GSP place will be moved to place dispatch_utiliti es and then will be dispatched to a 

method defined in the private utiliti es section. 
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As a result of this extension to G-nets, the structure of tokens in the agent-based G-net model should be 

redefined. In addition to the ordinary token introduced in place syn, essentially there are five types of 

colored tokens, namely the message token mTkn, the goal token gTkn, the plan token pTkn, the knowledge 

token kTkn and the environment token eTkn. One way to construct the gTkn, pTkn, kTkn and eTkn is as 

linked lists. In other words, a gTkn represents a list of goals, pTkn represents a list of plans, a kTkn 

represents a list of facts, and an eTkn represents a list of events that are of the agent’s interests. Since these 

four types of tokens confine themselves to those special places of their corresponding modules, we do not 

describe them further in this paper. 

 

A mTkn is a 2-tuple (tag, body), where tag ∈ { internal, external, pr ivate} and body is a variant, which is 

determined by the tag. According to the tag, the token deposited in a GSP will finally be dispatched into a 

MPU or a method defined in the internal structure of the agent-based G-net. Then the body of the token 

mTkn will be interpreted differently. More specifically, we define the mTkn body as follows:  

 

struct Message{  

    int sender;             // the identifier of the message sender 

    int receiver;           // the identifier of the message receiver                            

    string protocol_type;   // the type of contract net protocol 

    string name;            // the name of incoming/outgoing messages 

    string content;         // the content of this message 

};  

 

enum Tag {internal, external}; 



 
 

 28 

struct MtdInvocation { 

    Triple (seq, sc, mtd);  // as defined in Section 2.1 

}  

 

if (mTkn.tag ∈ {internal, external})  

then mTkn.body  =  struct { 

    Message msg;            // message body 

} 

else mTkn.body =  struct { 

    Message msg;            // message body 

    Tag old_tag;            // to record the old tag: internal/external 

    MtdInvocation miv;      // to trace method invocations   

}  

 

When mTkn.tag ∈ { internal, external} , and an ISP method call occurs, the following steps will t ake place: 

 

1. The two variables old_tag and miv are attached to the mTkn to define mTkn.body.old_tag and 

mTkn.body.miv, respectively. Then, mTkn.tag (the current tag, one of internal or external) is recorded 

into mTkn.body.old_tag, and mTkn.tag is set to pr ivate. 

2. Further method calls are traced by the variable mTkn.body.miv, which is a triple of (seq, sc, mtd). The 

tracing algorithm is defined as in the original G-net definitions [9]. 

3. After all the ISP method calls are finished and the mTkn token returns to the original ISP, the mTkn.tag 

is set back as mTkn.body.old_tag, and both the variables old_tag and miv are detached. 

                             

We now provide a few key definitions giving the formal structure of our agent-based G-net models. 

 

Definition 3.1 Agent-based G-net 

An agent-based G-net is a 7-tuple AG = (GSP, GL, PL, KB, EN, PN, IS), where GSP is a Generic Switch 

Place providing an abstract for the agent-based G-net, GL is a Goal module, PL is a Plan module, KB is a 

Knowledge-base module, EN is an Environment module, PN is a Planner module, and IS is an internal 

structure of AG.  

 

Definition 3.2 Planner Module 

A Planner module of an agent-based G-net AG is a colored sub-net defined as a 7-tuple (IGS, IGO, IPL, 

IKB, IEN, IIS, DMU), where IGS, IGO, IPL, IKB, IEN and IIS are interfaces with GSP, Goal module, Plan 

module, Knowledge-base module, Environment module and internal structure of AG, respectively. DMU is 

a set of decision-making unit, and it contains three abstract transitions: make_decision, sensor and update.  
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Definition 3.3 Internal Structure (IS) 

An internal structure (IS) of an agent-based G-net AG is a triple (IM, OM, PU), where IM/OM is the 

incoming/outgoing message section, which defines a set of message processing units (MPU); and PU is the 

private utilit y section, which defines a set of methods. 

 

Definition 3.4 Message Processing Unit (MPU) 

A message processing unit (MPU) is a triple (P, T, A), where P is a set of places consisting of three special 

places: entry place, ISP and MSP. Each MPU has only one entry place and one MSP, but it may contain 

multiple ISPs. T is a set of transitions, and each transition can be associated with a set of guards. A is a set 

of arcs defined as: ((P-{ MSP} ) x T) ∪ ((T x (P-{ entry} ).  

 

Definition 3.5 Method 

A method is a triple (P, T, A), where P is a set of places with three special places: entry place, ISP and 

return place. Each method has only one entry place and one return place, but it may contain multiple ISPs. 

T is a set of transitions, and each transition can be associated with a set of guards. A is a set of arcs defined 

as: ((P-{ return} ) x T) ∪ ((T x (P-{ entry} ). 

 

3.3 Selli ng and Buying Agent Design 

 

To ill ustrate how to design a selli ng/buying agent by using our agent-based G-net model, we use an 

example derived from [Odell 2000]. Figure 7 (a) is a modified example of an FIPA contract net protocol, 

which depicts a template of protocol expressed as a UML sequence diagram for a price-negotiation 

protocol between a buying agent and a selli ng agent. To correctly draw the sequence diagram for this 

template, we need to introduce two new notations, i.e., the end of protocol operation “•” and the iteration of 

communicative acts operation “*” .  Examples of using these two notations are as follows. In Figure 7 (a), 

we put a mark of “•” in front of the message name “ refuse” to indicate that this message ends the protocol. 

In the same figure, a mark “*” is put on the right corner of the narrow rectangle for the message “propose” 

to indicate that the communicative actions in this section can be repeated zero or more times.  

 

When a conversation based on this contract net protocol begins, the buying agent sends a request for price 

to a selli ng agent. The selli ng agent can then choose to response to the buying agent by refusing to provide 

price or submitting a proposal. Here the “x” in the decision diamond indicates an exclusive-or decision. If a 

proposal is offered, the buying agent has a choice of either accepting or rejecting the proposal. If a selli ng 

agent receives a reject-proposal message, it may send the buying agent a new proposal or replies the 

buying agent with a confirmation message. If the selli ng agent receives an accept-proposal message, it will 

simply send a confirmation message to the buying agent. Whenever a confirmation message is sent, the 

protocol ends. Figure 7 (b) and 7 (c) shows two actual cases of this protocol template. In Figure 7 (b), the 
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selli ng agent’s proposal is accepted by the buying agent in one round; while Figure 7 (c) shows the case 

that the proposal is accepted by the buying agent in the second round. 
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Figure 7. A contract net protocol between buying and selling agent 
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Based on the communicative acts (e.g., request-price, propose etc.) needed for this contract net protocol, we 

may design the buying agent as in Figure 8. In Figure 8, the Goal and Knowledge-base modules remain as 

abstract units and can be refined in further detailed design. The Planner module may use Figure 6 as a 

template, with the transition start_a_conversation and the place next_action left to be refined in further 

detailed design too. In the private utiliti es section, we may define some necessary functions that can be 

called by the buying agent itself. Examples of such private utilit y functions could be: compare_price, 
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update_know-ledge_base etc. The design of the selli ng agent is similar. We define MPUs of request-price, 

accept-proposal and reject-propose in the incoming messages section of the selli ng agent, and define 

MPUs of propose, refuse and confirm in the outgoing messages section of the selli ng agent. 

 

3.4 Verifying Agent-based G-net models 

 

One of the advantages of building a formal model for agents in agent-based design is to ensure a correct 

design that meets certain specifications.  A correct design of agents at least has the following properties:  

 

• L3-live: any communicative act can be performed as many times as needed. 

• Concurrent: a number of conversations among agents can happen at the same time. 

• Effective: an agent communication protocol can be correctly traced in the agent models. 

 

To verify the correctness of agent-based G-net models for selli ng/buying agents with respect to the above 

properties, we first reduce our agent-based G-net models to an ordinary Petri net as follows: (1) simpli fy 

the Goal module and Knowledge-base module as ordinary places with ordinary tokens; (2) omit the public 

services and private utiliti es sections; (3) simpli fy mTkn tokens as ordinary tokens; (4) use net reduction to 

simpli fy the Petri net corresponding to an MPU/Method as a single place; and (5) use the close world 

assumption and make our system only contains two agents, i.e., a buying agent and a selli ng agent.  

 

The resulting ordinary Petri net is ill ustrated in Figure 9. To verify the correctness of our agent-based G-

net model for agent communication, we utili ze some key definitions and theorems as adapted from 

[Murata 1989]. 

 

Definition 3.6 Incidence Matrix 

For a Petri net N with n transitions and m places, the incidence matrix A = [aij ] is an n x m matrix of 

integers and its typical entry is given by 

aij  = aij+ - aij - 

where aij+ = w(i,j) is the weight of the arc from transition i to output place j and aij - = w(j,i) is the weight 

of the arc from input place j to transition i. 

 

Definition 3.7 Firing Count Vector 

For some sequence of transition firings in a Petri net N, a firing count vector x is defined as an n-vector of 

nonnegative integers, where the ith entry of x denotes the number of times that transition i must fire in that 

firing sequence. 
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Figure 9. A transformed model of buying and selli ng agents 

(goa/plan/kb) (env) 

(ignore) (continue) 

(external) (internal) 

(next_ 
action) 

GSP(G) 

Buyer Seller 

(dispatch_ 
incoming_ 
message) 

(dispatch_ 
incoming_ 
message) 

(dispatch_ 
outgoing_ 
message) 

(dispatch_ 
outgoing_ 
message) 

(next_ 
action) 

(external) (internal) 

(start_a_ 
conversation) 

(start_a_ 
conversation) 

(env) 

(continue) (ignore) 

a1 b1 c1 a2 b2 c2 

d1 d2 e1 e2 

f1 g1 h1 f2 g2 h2 
i1 i2 

j1 j2 

k1 l1 m1 k2 l2 m2 

t1 t2 

t4 t5 t6 t7 t8 

t9 t10 t11 
t12 t13 t14 t15 

t16 t17 t18 

t19 t20 
t21 t3 

t22 t23 t24 t25 t26 

t27 t28 t29 
t30 t31 

t34 

t32 

t35 

t33 

t36 

(update) (update) 

(propose, refuse, confirm) 

(request_price, accept_proposal, 
reject_proposal) 

(request_price, accept_proposal, 
reject_proposal) 

(propose, refuse, confirm) 

(goa/plan/kb) 

 

 

Definition 3.8 T-invariant 

For a Petri net N, an n-vector x of integers (x ≠ 0) is called a T-invariant if x is an integer solution of 

homogeneous equation A
T
x = 0, where A is the incidence matrix of Petri net N. 

 

Definition 3.9 Support and minimal-support T-invariant 

The set of transitions corresponding to non-zero entries in a T-invariant x ≥ 0 is called the support of a T-

invariant and is denoted as ||x||. A support is said to be minimal if no proper non-empty subset of the 

support is also a support. Given a minimal support of a T-invariant, there is a unique minimal T-invariant 

corresponding to the minimal support. Such a T-invariant is called the minimal-support T-invariant.  

 

Definition 3.10 L3-live Petri net 

A Petri net N with initial marking M0, denoted as (N, M0), is said to be L3-live if for every transition t in 

the net, t appears infinitely often in some firing sequence L(N, M0), where L(N, M0) is the set of all 

possible firing sequences from M0 in the net (N, M0). 

 

Theorem 3.1 An n-vector x is a T-invariant of a Petri net N iff there exists a marking M0 and a firing 

sequence σ that reproduces the marking M0, and x defines the firing count vector for σ. 
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Theorem 3.2 A Petri net N with initial marking M0 is L3-live if there exists a set of minimal-support T-

invariants that covers all the transitions in the net, and for each minimal-support T-invariant there exists a 

firing sequence that reproduces the initial marking M0. 

 

Proof:  Let T be the set of transitions in Petri net (N, M0), Γ be the set of minimal-support T-invariants that 

covers all the transitions in T. From the given condition, we know that for ∀t ∈ T, ∃χ ∈ Γ, which covers 

transition t. Since for the minimal-support T-invariant χ, there exists a finite firing sequence ρ that 

reproduces the initial marking M0, t appears in ρ. Let the infinite firing sequence σ = ρ • ρ • ρ • ρ …, 

where “•” is the concatenation operator between finite sequences, t appears in σ infinitely often. By 

definition 4.5, Petri net (N, M0) is L3-live.                                                                                                       ◊ 
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t1 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t2 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t4 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t5 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t6 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t7 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t8 0 0 0 0 -1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t9 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t10 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t11 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t12 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t13 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t14 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t15 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
t16 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
t17 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
t18 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 
t19 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 
t20 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 
t21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
t22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 
t23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 
t24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 
t25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 
t26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 1 0 0 0 
t27 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 
t28 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 
t29 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 
t30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 
t31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 
t32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 
t33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 
t34 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 
t35 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 
t36 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 
 
 
 

Table 1. The incidence matrix A of the Petri net in Figure 9 
 

 

The incidence matrix A of the Petri net in Figure 9 is listed in Table 1. By using Definition 3.6 and 3.9, we 

can calculate a set of minimal-support T-invariants as follows: 

 

x1 = [1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0]     

x2 = [0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0] 

x3 = [1 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0]     
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x4 = [1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1]     

x5 = [1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0]     

 

From Theorem 3.1, for each minimal-support T-invariant xi in our example, there exists a marking M0 and 

a firing sequence σi, which reproduces the marking M0, and xi defines the firing count vector for σi. 

Obviously, the following firing sequences σ1, σ2, … σ5  reproduce the initial marking M0 = [0 1 1 0 0 0 0 

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0], and x1, x2, … x5 define the firing count vectors for σ1, σ2, … σ5 

respectively: 

σ1 = <t21, t31, t34, t1, t4, t9, t2, t7, t12> 

σ2 = <t3, t13, t16, t19, t22, t27, t20, t25, t30> 

σ3 = <t3, t13, t16, t19, t22, t27, t20, t26, t30, t31, t34, t1, t4, t9, t2, t7, t12> 

σ4 = <t3, t14, t17, t19, t23, t28, t20, t26, t30, t33, t36, t1, t6, t11, t2,t7,t12> 

σ5 = <t21, t32, t35, t1, t5, t10, t2, t8, t12, t15, t18, t19, t24,t29,t20,t25,t30> 

 

Since the above minimal-support T-invariants cover all the transitions in the net, and for each minimal-

support T-invariant, there exists a firing sequence that reproduces the initial marking M0, from Theorem 

3.2, we conclude that our Petri net model with initial marking M0 is L3-live, i.e., for any transition t in our 

net model, we can find an infinite firing sequence that t appears infinitely often. Consequently, any 

communicative act can be performed as many times as needed2.  

 

In Figure 9, it is obvious to see that our net model is unbounded. This is because transitions t3 and t21 can 

fire as many times as needed. This behavior shows that both the buying and selli ng agent may initiate 

conversations autonomously and concurrently (as we stated before, the initiation of a new conversation is 

goal driven). There can be as many conversations as necessary between the buying agent and the selli ng 

agent. As an example, a buying agent may request prices of several goods from a selli ng agent at the same 

time, and several buying agents may request price of the same goods from a selli ng agent concurrently. 

 

In addition, we may trace an agent communication protocol p in our net model with a firing sequence σ. 

For a protocol p, a corresponding firing sequence σ in our net model has more semantics than the protocol 

itself because when we actually execute a protocol in our net, we need to do additional work, such as 

updating the goal or knowledge base after each communicative act. Since a marking M that is reachable 

from M0, but M ≠ M0, represents that there are still some ongoing conversations in the net, to correctly 

                                                           
2 One of the limitations for invariant approach is that it is not suff icient to prove a Petri net is L4-li ve or li ve, i.e., from any marking M 
that is reachable from M0, it is possible to ultimately fire any transition of the net. 
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trace a protocol p in our net model, it is essential for us to find a firing sequence σ that reproduces the 

initial marking M0. In other words, we need to make sure that there will be no residual tokens for a 

conversation left in the net after that conversation completes. In this case, we say that the protocol p can be 

effectively traced as a firing sequence σ in our net model. To show that a protocol p can be effectively 

traced, we use the contract net protocol examples in Figure 7 (b) and Figure 7 (c). These two protocols can 

be traced in our net model as follows: 

 

σb = <t3, t13, t16, t19, t22, t27, t20, t26, t30, t31, t34, t1, t4, t9, t2, t8, t12,  t14, t17, t19, t23, t28, t20, t26, 

t30, t33, t36, t1, t6, t11, t2, t7, t12> 

σc = <t3, t13, t16, t19, t22, t27, t20, t26, t30, t31, t34, t1, t4, t9, t2, t8, t12, t15, t18, t19, t24, t29, t20, t26, 

t30, t31, t34, t1, t4, t9, t2, t8, t12, t14, t17, t19, t23, t28, t20, t26, t30, t33, t36, t1, t6, t11, t2, t7, t12> 

 

By Definition 3.7, we calculate their corresponding firing count vectors xb and xc as follows:  

 

xb = [2 2 1 1 0 1 1 1 1 0 1 2 1 1 0 1 1 0 2 2 0 1 1 0 0 2 1 1 0 2 1 0 1 1 0 1] 

xc = [3 3 1 2 0 1 1 2 2 0 1 3 1 1 1 1 1 1 3 3 0 1 1 1 0 3 1 1 1 3 2 0 1 2 0 1] 

 

By Definition 3.8, it is easy to verify that both xb and xc are T-invariants because both of the equations 

ATxb = 0 and ATxc = 0 are satisfied. This shows that both firing sequences σb and σc can reproduce the 

initial marking M0. In other words, we prove that both protocols in Figure 7 (b) and 7 (c) can be effectively 

traced in our agent-based model. 

 

3.5 Discussion 

 

One of the most rapidly growing areas of interest for Internet technology is that of electronic commerce. 

Consumers are looking for suppliers selli ng products and services on the Internet, while suppliers are 

looking for buyers to increase their market share. For convenience and eff iciency, we believe that multi -

agent system (MAS) is an effective way to automate the time consuming process of looking for buyers or 

sellers and negotiate in order to obtain the best deal. Although there are several implementations of agent-

based electronic marketplaces available [Chavez and Maes 1996][Tsvetovatyy et al. 1997], formal 

framework for such systems are few. It is an increasing need to provide formal methods in MAS 

specification and design to ensure robust and reliable products.  
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Chapter 4 
 

A Framework for Modeling Agent-Or iented 

Software 
 

4.1 Introduction 

 

To avoid building a methodology from scratch, the researchers on agent-oriented methodologies have 

followed the approach of extending existing methodologies to include the relevant aspects of agents. These 

extensions have been carried out mainly in two areas: objected-oriented (OO) methodologies and know 

engineering (KE) methodologies [Iglesias et al. 1998]. Now we give a brief introduction to these two ways 

of extensions. 

 

To extend object-oriented methodologies for agent modeling is a nature way for most of the software 

engineers. This is because there are similarities between the object-oriented paradigm and the agent-

oriented paradigm [Kinny et al. 1996]. Since the early times of distributed artificial intelli gence (DAI), the 

close relationship between DAI and Object-Based Concurrent Programming (OBCP) was established 

[Gasser and Briot 1992]. As stated by Shoham, the agents can be considered as active objects, i.e., objects 

with a mental state [Shoham 1993]. Both paradigms use message passing for communication and can use 

inheritance and aggregation for defining its architecture. The main difference is the constrained type of 

messages in the AO paradigm and the definition of a state of an agent in terms of its beliefs, desires and 

intentions [Iglesias et al. 1998]. 

 

The popularity of object-oriented methodologies is another potential advantage for this approach. Many 

object-oriented methodologies are being used in the industry with success. Examples of such 

methodologies are Object Modeling Technique (OMT) [Rumbaugh et al. 1991], Object-Oriented Software 

Engineering (OOSE) [Jacobson et al. 1992], Object-Oriented Design [Booch 1994] and Unified Modeling 

Language (UML) [Rational 1997]. This experience can be a key to facilit ate the integration of agent 

technology into OO methodologies. This is because, on the one hand, the software engineers can be 



 
 

 37 

reluctant to use and learn a complete new methodology, and on the other hand, the managers would prefer 

to follow methodologies that have been successfully tested.  

 

Previous work based on this approach includes: agent modeling technique for systems of BDI agents 

[Kinny et al. 1996], agent-oriented analysis and design [Burmeister 1996] and agent unified modeling 

language (AUML) [Odell 2000]. 

 

For the second approach, knowledge engineering methodologies can provide a good basis for multi -agent 

systems modeling since they deal with the development of knowledge based systems. Since the agents have 

cognitive characteristics, these methodologies are quite helpful to modeling agent knowledge. The 

extension of current knowledge methodologies can take advantage of the acquired experience in these 

methodologies. In addition, both the existing tools and the developed problem solving method libraries can 

be reused. An example of this approach is the Gaia methodology for agent-oriented analysis and design 

suggested by Wooldridge and his colleagues [Wooldridge et al. 2000]. 

 

In this proposal, we adopt the first approach, however unlike previous work, our approach uses the 

principle of “separation of concerns” in agent-oriented design. We separate the traditional object-oriented 

features and reasoning mechanisms in our agent-oriented software model as much as possible, and we 

discuss how reuse can be achieved in terms of functional units, such as message processing units (MPUs) 

and private functions, in agent-oriented design. While some people advocated that inheritance has limited 

value in conceptual models of agent behavior [Jennings 2000][Wooldridge et al. 2000], we ill ustrate a 

useful role for inheritance in our agent-oriented models. Our agent-based model is derived from the general 

agent model given in [Xu and Shatz 2001a], and the extensions that create an agent-oriented model are 

derived from the framework presented in [Xu and Shatz 2001b]. 

 

4.2 An Agent-Or iented Model 

 

4.2.1 An Architecture for Agent-Or iented Modeling 

 

To reuse the design of agent-based G-net model shown in Figure 5 (Chapter 3), we keep our agent-oriented 

G-net model to have the same structure as an agent-based G-net model. However, to deal with inheritance, 

we must revise our Planner module. In our new Planner module, we introduce new mechanisms such as 

synchronous Superclass switch Place (ASP), and decision-making units such as abstract transitions. The 

template of the Planner module is shown as in Figure 103. Similarly as before, the modules Goal, Plan, 

Knowledge-base and Environment are represented as four special places (denoted by double elli pses in 
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Figure 10), each of which contains a token that represents a set of goals, a set of plans, a set of beliefs and a 

model of the environment, respectively. These four modules connect with the Planner module through 

abstract transitions, denoted by shaded rectangles in Figure 10 (e.g., the abstract transition make_decision). 

Abstract transitions represent abstract units of decision-making or mental-state-updating. At a more 

detailed level of design, abstract transitions would be refined into sub-nets; however how to make decisions 

and how to update an agent’s mental state is beyond the scope of this paper, and will be considered in our 

future work. In the Planner module, there is a unit called autonomous unit that makes an agent autonomous 

and internally-motivated. An autonomous unit contains a sensor (represented as an abstract transition), 

which may fire whenever the pre-conditions of some committed plan are satisfied or when new events are 

captured from the environment. If the abstract transition sensor fires, based on an agent’s current mental 

state (goal, plan and knowledge-base), the autonomous unit will t hen decide whether to start a conversation 

or simply update its mental state. This is done by firing either the transition start_a_conversation or the 

transition automatic_update after executing any necessary actions associated with place new_action.  

 

 
 
 
 

GSP(G) 

Figure 10. A template for the Planner module (initial design) 
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Note that the Planner module is both goal-driven and event-driven because the transition sensor may fire 

when any committed plan is ready to be achieved or any new event happens. In addition, the Planner 

module is also message-triggered because certain actions may initiate whenever a message arrives (either 

from some other agent or from the agent itself). A message is represented as a message token with a tag of 

                                                                                                                                                                             
3 Actually, this module purposely contains a somewhat subtle design error that is used to demonstrate the 
value of automated verification in Chapter 5. 
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internal/external/pr ivate. A message token with a tag of external represents an incoming message which 

comes from some other agent, or a newly generated outgoing message before sending to some other agent; 

while a message token with a tag of internal is a message forwarded by an agent to itself with the MSP 

mechanism. In either case, the message token with the tag of internal/external should not be involved in 

an invocation of a method call . On the contrary, a message token with a tag of pr ivate indicates that the 

token is currently involved in an invocation of some method call . When an incoming message/method 

arrives, with a tag of external/pr ivate in its corresponding token, it will be dispatched to the appropriate 

MPU/method defined in the internal structure of the agent. If it is a method invocation, the method defined 

in the private utilit y section of the internal structure will be executed, and after the execution, the token will 

return to the calli ng unit, i.e., an ISP of the calli ng agent. However, if it is an incoming message, the 

message will be first processed by a MPU defined in the incoming message section in the internal structure 

of the agent. Then the tag of the token will be changed from external to internal before it is transferred 

back to the GSP of the receiver agent by using MSP(self). Note that we have extended G-nets to allow the 

use of the keyword self to refer to the agent object itself. Upon the arrival of a token tagged as internal in a 

GSP, the transition internal may fire, followed by the firing of the abstract transition make_decision. Note 

that at this point of time, there would exist tokens in those special places Goal, Plan and Knowledge-base, 

so the transition bypass is disabled (due to the “ inhibitor arc”4) and may not fire (the purpose of the 

transition bypass is for inheritance modeling, which will be addressed in Section 4.2.2). Any necessary 

actions may be executed in place next_action before the conversation is either ignored or continued. If the 

current conversation is ignored, the transition ignore fires; otherwise, the transition continue fires. If the 

transition continue fires, a newly constructed outgoing message, in the form of a token with a tag of 

external, will be dispatched into the appropriate MPU in the outgoing message section of the internal 

structure of the agent. After the message is processed by the MPU, the message will be sent to a receiver 

agent by using the MSP(Receiver) mechanism. In either case, a token will be deposited into place 

update_goal/plan/kb, allowing the abstract transition update to fire. As a consequence, the Goal, Plan and 

Knowledge-base modules are updated if needed, and the agent’s mental state may change. 

 

To ensure that all decisions are made upon the latest mental state of the agent, i.e., the latest values in the 

goal, plan, and knowledge-base modules, and similarly to ensure that the sensor always captures the latest 

mental state of the agent, we introduce a synchronization unit syn, modeled as a place marked with an 

ordinary token (black token). The token in place syn will be removed when the abstract transition 

make_decision or sensor fires, thus delaying further firing of these two abstract transitions until completion 

of actions that update the values in the goal, plan and knowledge-base modules. This mechanism is 

intended to guarantee the mutual exclusive execution of decision-making, capturing the latest mental state 

and events, and updating the mental state. Note that we have used the label <e>  on each of the arcs 

                                                           
4 An inhibitor arc connects a place to a transition and defines the property that the transition associated with 
the inhibitor arc is enabled only when there are no tokens in the input place. 
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connecting with the place syn to indicate that only ordinary tokens may be removed from or deposited into 

the place syn. 

 

4.2.2 Inheritance Modeling in Agent-Or iented Design 

 

Although there are different views with respect to the concept of agent-oriented design [Iglesias et al. 1998] 

[Jennings 2000], we consider an agent as an extension of an object, and we believe that agent-oriented 

design should keep most of the key features in object-oriented design. Thus, to progress from an agent-

based model to an agent-oriented model, we need to incorporate some inheritance modeling capabiliti es. 

But inheritance in agent-oriented design is more complicated than in object-oriented design. Unlike an 

object (passive object), an agent object has mental states and reasoning mechanisms. Therefore, inheritance 

in agent-oriented design invokes two issues: an agent subclass may inherit an agent superclass’s 

knowledge, goals, plans, the model of its environment and its reasoning mechanisms; on the other hand, as 

in the case of object-oriented design, an agent subclass may inherit all the services that an agent superclass 

may provide, such as private utilit y functions. There is existing work on agent inheritance with respect to 

knowledge, goals and plans [Kinny and Georgeff 1997][Crnogorac et al. 1997]. However, we believe that 

since inheritance happens at the class level, an agent subclass may be initialized with an agent superclass’s 

initial mental state, but new knowledge acquired, new plans made, and new goals generated in a individual 

agent object (as an instance of an agent superclass), can not be inherited by an agent object when creating 

an instance of an agent subclass. A superclass’s reasoning mechanism can be inherited, however it is 

beyond the scope of this paper. For simplicity, we assume that an instance of an agent subclass (i.e., an 

subclass agent) always uses its own reasoning mechanisms, and thus the reasoning mechanisms in the agent 

superclass should be disabled in some way. This is necessary because different reasoning mechanisms may 

deduce different results for an agent, and to resolve this type of conflict may be time-consuming and make 

an agent’s reasoning mechanism ineff icient. Therefore, in this paper we only consider how to initialize a 

subclass agent’s mental state while an agent subclass is instantiated; meanwhile, we concentrate on the 

inheritance of services that are provided by an agent superclass, i.e., the MPUs and methods defined in the 

internal structure of an agent class. Before presenting our inheritance scheme, we need the following 

definition: 

 

Definition 4.1 Subagent and Primary Subagent 

When an agent subclass A is instantiated as an agent object AO, a unique agent identifier is generated, and 

all superclasses and ancestor classes of the agent subclass A, in addition to the agent subclass A itself, are 

initialized.  Each of those initialized classes then becomes a part of the resulting agent object AO. We call 

an initialized superclass or ancestor class of agent subclass A a subagent, and the initialized agent subclass 

A the primary subagent.  
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The result of initializing an agent class is to take the agent class as a template and create a concrete 

structure of the agent class and initialize its state variables. Since we represent an agent class as an agent-

oriented G-net, an initialized agent class is modeled by an agent-oriented G-net with initialized state 

variables. In particular, the four tokens in the special places of an agent-oriented G-net, i.e., gTkn, pTkn, 

kTkn and eTkn, are set to their initial states. Since different subagents of AO may have goals, plans, 

knowledge and environment models that conflict with those of the primary subagent of AO, it is desirable 

to resolve them in an early stage. In our case, we deal with those conflicts in the instantiation stage in the 

following way. All the tokens gTkn, pTkn, kTkn and eTkn in each subagent of AO are removed from their 

associated special places, and the tokens are combined with the gTkn, pTkn, kTkn and eTkn in the primary 

subagent of AO.5 The resulting tokens gTkn, pTkn, kTkn and eTkn (newly generated by unifying those 

tokens for each type), are put back into the special places of the primary subagent of AO. Consequently, all 

subagents of AO lose their abiliti es for reasoning, and only the primary subagent of AO can make necessary 

decisions for the whole agent object. More specifically, in the Planner module (as shown in Figure 10) that 

belongs to a subagent, the abstract transitions make_decision, sensor and update can never be enabled 

because there are no tokens in the following special places: Goal, Plan and Knowledge-base. If a message 

tagged as internal arrives, the transition bypass may fire and a message token can directly go to a MPU 

defined in the internal structure of the subagent if it is defined there. This is made possible by connecting 

the transition bypass with inhibitor arcs (denoted by dashed lines terminated with a small circle in Figure 

10) from the special places Goal, Plan and Knowledge-base. So the transition bypass can only be enabled 

when there are no tokens in these places. In contrast to this behavior, in the Planner module of a primary 

subagent, tokens do exist in the special places Goal, Plan and Knowledge-base. Thus, the transition bypass 

will never be enabled. Instead, the transition make_decision must fire before an outgoing message is 

dispatched. 

 

To reuse the services (i.e., MPUs and methods) defined in a subagent, we need to introduce a new 

mechanism called Asynchronous Superclass switch Place (ASP). An ASP (denoted by an elli psis in Figure 

10) is similar to a MSP, but with the difference that an ASP is used to forward a message or a method call 

to a subagent rather than to send a message to an agent object. For the MSP mechanism, the receiver could 

be some other agent object or the agent object itself. In the case of MSP(self), a message token is always 

sent to the GSP of the primary subagent. However, for ASP(super),  a message token is forwarded to the 

GSP of a subagent that is referred to by super. In the case of single inheritance, super refers to a unique 

superclass G-net, however with multiple inheritance, the reference of super must be resolved by searching 

the class hierarchy diagram.  

 

                                                           
5 The process of generating the new token values would involve actions such as conflict resolution among 
goals, plans or knowledge-bases, which is a topic outside the scope of our model and this paper. 
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When a message/method is not defined in an agent subclass model, the dispatching mechanism will deposit 

the message token into a corresponding ASP(super). Consequently, the message token will be forwarded to 

the GSP of a subagent, and it will be again dispatched. This process can be repeated until the root subagent 

is reached. In this case, if the message is still not defined at the root, an exception occurs. In this paper, we 

do not provide exception handling for our agent-oriented G-net models, and we assume that all i ncoming 

messages have been correctly defined in the primary subagent or some other subagents. 

 

4.3 Examples of Agent-Or iented Design 

 

4.3.1 A Hierarchy of Agents in an Electronic Marketplace  

 

Consider an agent family in an electronic marketplace domain. Figure 11 shows the agents in a UML class 

hierarchy notation. A shopping agent class is defined as an abstract agent class that has the abilit y to 

register in a marketplace through a facilit ator, which serves as a well -known agent in the marketplace. A 

shopping agent class cannot be instantiated as an agent object, however, the functionality of a shopping 

agent class can be inherited by an agent subclass, such as a buying agent class or a selli ng agent class. Both 

the buying agent and selli ng agent may reuse the functionality of a shopping agent class by registering 

themselves as a buying agent or a selli ng agent through a facilit ator. Furthermore, a retailer agent is an 

agent that can sell goods to a customer, but it also needs to buy goods from some selli ng agents. Thus a 

retailer agent class is designed as a subclass of both the buying agent class and the selli ng agent class. In 

addition, a customer agent class may be defined as a subclass of a buying agent class, and an auctioneer 

agent class may be defined as a subclass of a selli ng agent class. In this paper, we only consider four types 

of agent class, i.e., the shopping agent class, the buying agent class, the selli ng agent class and the retailer 

agent class. The modeling of the customer agent class and auctioneer agent class can be done in a similar 

way. 

 
 
 Shopping agent 

Customer agent 

Buying agent Selling agent 

Retailer agent Auctioneer agent 

Figure 11. The class hierarchy diagram of agents in an electronic marketplace  
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4.3.2 Modeling Agents in an Electronic Marketplace 

 

As in Chapter 3, to design an agent, we first need to define the necessary communicative acts of that agent. 

The communicative acts for a shopping agent, facilit ator agent, buying agent and selli ng agent are shown as 

agent UML (AUML) sequence diagram in Figure 12. Figure 12 (a) depicts a template of a contract net 

protocol for a registration-negotiation protocol between a shopping agent and a facilit ator agent. Figure 12 

(b) is the same example of a contract net protocol as in Figure 7 (a), which depicts a template of a price-

negotiation protocol between a buying agent and a selli ng agent. Figure 12 (c) shows an example of price-

negotiation contract net protocol that is instantiated from the protocol template in Figure 12 (b).  

 

Consider Figure 12 (a). When a conversation based on a contract net protocol begins, the shopping agent 

sends a request for registration to a facili tator agent. The facilit ator agent can then choose to respond to the 

shopping agent by refusing its registration or requesting agent information. Here the “x” in the decision 

diamond indicates an exclusive-or decision. If the facilit ator refuses the registration based on the 

marketplace’s size, the protocol ends; otherwise, the facilit ator agent waits for agent information to be 

supplied. If the agent information is correctly provided, the facilit ator agent then still has a choice of either 

accepting or rejecting the registration based on the shopping agent’s reputation and the marketplace’s 

functionality. Again, if the facilit ator agent refuses the registration, the protocol ends; otherwise, a 

confirmation message will be provided afterwards. Similarly, the price-negotiation between a buying agent 

and a selli ng agent is clearly ill ustrated in Figure 12 (b).  

 

 
 
 

shopping agent facil itator agent 

request-registration 

• refuse 

request-info 
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(a) (b) 

Figure 12. Contract net protocols (a) A template for the registration protocol (b) A template 
for the price-negotiation protocol (c) An example of the price-negotiation protocol 
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Figure 13. An agent-based G-Net model for shopping agent class (SC) 
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Based on the communicative acts (e.g., request-registration, refuse, etc.) needed for the contract net 

protocol in Figure 12 (a), we may design the shopping agent class as in Figure 13. The Goal, Plan, 

Knowledge-base and Environment modules remain as abstract units and can be refined in a further detailed 

design stage. The Planner module may reuse the template shown in Figure 10. The design of the facilit ator 

agent class is similar, however it may support more protocols and should define more MPUs and methods 

in its internal structure.  
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Figure 14. An agent-based G-Net model for buying agent class (BC) 
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With inheritance, a buying agent class, as a subclass of a shopping agent class, may reuse MPUs/methods 

defined in a shopping agent class’s internal structure. Similarly, based on the communicative acts (e.g., 

request-price, refuse, etc.) needed for the contract net protocol in Figure 12 (b), we may design the buying 

agent class as in Figure 14. Note that we do not define the MPUs of refuse and confirm in the internal 

structure of the buying agent class, for they can be inherited from the shopping agent class. A selli ng agent 

class or a retailer agent class can be designed in the same way. In addition to their own MPU/methods, a 

selli ng agent class inherits all MPU/methods of the shopping agent class, and a retailer agent class inherits 

all MPU/methods of both the buying agent class and the selli ng agent class. 

 

Now we discuss an example to show how the reuse of MPU/methods works. Consider a buying agent 

object BO, which receives a message of request-info from a facilit ator agent object FO. A mTkn token will 

be deposited in the GSP of the primary subagent of BO, i.e., the GSP of the corresponding buying agent 

class (BC). The transition external in BC’s Planner module may fire, and the mTkn will be moved to the 

place dispatch_incoming_message. Since there is no MPU for request-info defined in the internal structure 

of BC, the mTkn will be moved to the ASP(super) place. Since super here refers to a unique superclass – 

the shopping agent class (SC) – the mTkn will be transferred to the GSP of SC. Now the mTkn can be 

correctly dispatched to the MPU for request-info. After the message is processed, MSP(self) changes the 

tag of the mTkn from external to internal, and sends the processed mTkn token back into the GSP of BC. 

Note that MSP(self) always sends a mTkn back to the GSP of the primary subagent. Upon the arrival of this 

message token, the transition internal in the Planner module of BC may fire, and the mTkn token will be 

moved to the place check_primary. Since BC corresponds to the primary subagent of BO, there are tokens 

in the special places Goal, Plan, Knowledge-base and Environment. Therefore the abstract transition 

make_decision may fire, and any necessary actions are executed in place next_action. Then the current 

conversation is either ignored or continued based on the decision made in the abstract transition 

make_decision. If the current conversation is ignored, the goals, plans and knowledge-base are updated as 

needed; otherwise, in addition to the updating of goals, plans and knowledge-base, a newly constructed 

mTkn with a tag of external is deposited into place dispatch_outgoing_message. The new mTkn token has 

the message name supply-info, following the protocol defined in Figure 12 (a). Again, there is no MPU for 

supply-info defined in BC, so the new mTkn token will be dispatched into the GSP of SC. Upon the arrival 

of the mTkn in the GSP of SC, the transition external in the Planner module of SC may fire. However at 

this time, SC does not correspond to the primary subagent of BO, so all the tokens in the special places of 

Goal, Plan, Knowledge-base have been removed. Therefore, the transition bypass is enabled. When the 

transition bypass fires, the mTkn token will be directly deposited into the place 

dispatch_outgoing_message, and now the mTkn token can be correctly dispatched into the MPU for supply-

info defined in SC. After the message is processed, the mTkn token will be transferred to the GSP of the 

receiver mTkn.body.msg.receiver, and in this case, it is a facilit ator agent object.  
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For the reuse of private utilit y functions defined in a superclass, the situation is the same as in the case of 

object-oriented design. In addition, there are four different forms of inheritance that are commonly used, 

namely augment inheritance, restrictive inheritance, replacement inheritance and refinement inheritance. 

The usage of these four forms of inheritance in agent-oriented design is also similar to that in object-

oriented design. Examples concerning reuse of private utilit y functions and different forms of inheritance 

can be found in Section 2.5 or [Xu and Shatz 2000]. 

 

4.4 Handling Multiple Inheritance in Agent-Or iented Models 

 

With single inheritance, the super in ASP(super) in an agent object AO, as an instance of an agent class A,  

refers to the subagent of AO, which corresponds to the unique superclass of A. However, with multiple 

inheritance, super may refer to any one of the subagents, which corresponds to a superclass or an ancestor 

classes of A. The reference of super then needs to be resolved. In this section, we propose a modified 

breadth-first-search algorithm to find the appropriate reference of super. The algorilthm is based on the 

hierarchy of inheritance diagram and the MPU/Methods defined in each agent-oriented G-net. Before 

presenting our algorithm, we need the following definitions: 

 

Definition 4.2 Parent Set P(s) 

Let s be an agent-oriented G-net, the parent set, P(s), is a set of agent-oriented G-nets, where each of the 

elements is a superclass of s. 

 

Definition 4.3 Interface Set Interface(s) 

Let s be an agent-oriented G-net, the interface set, Interface(s), is a set of MPU/methods defined in G-net s. 

 

Definition 4.4 Class Hierarchy Graph G 

A class hierarchy graph G=(V, E) is a formal description of the hierarchy of inheritance diagram. The class 

hierarchy graph G is a directed acyclic graph G=(V, E), where V is a set of nodes of agent-oriented G-nets, 

and E is a set of arcs denotes the inheritance relationship. 

 

The breadth-first-search algorithm is so named because it discovers all the vertices at distance k from s 

before processing any vertices at distance k+1. To keep track of progress, the breadth-first-search algorithm 

colors each vertex white, gray, or black. All vertices start out white and may later become gray and then 

black. A vertex is processed the first time it is encountered during the search, at which time it becomes 

nonwhite. Gray and black vertices, therefore, have been processed, but breadth-first search distinguishes 

between them to ensure that the search proceeds in a breadth-first manner. In addition, we assume that we 

have the following data structures: the color of each vertex u ∈ V is stored in the variable color[u], and a 

first-in, first-out queue Q is used to manage the set of gray vertices. The algorithm is presented as follows: 
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1. for  each vertex u ∈ V – { s}  

2.       do color[u] ← WHITE 

3. color[s] ← GRAY            

4. Q ← { s}  

5. while Q ≠ φ 

6.       do u ← head[Q] 

7.             for  each v ∈ P(u) 

8.                    do if color[v] = WHITE 

9.                         then if mTkn.body.msg.name ∈ Interface(v) 

10.                                  then super ← v; return true 

11.                                  else color[v] ← GRAY; ENQUEUE(Q,v) 

12.            DEQUEUE(Q) 

13.            color[u] ← BLACK 

14. return false 

 

If a true value returns, a MPU/Method is discovered, and the mTkn can be directly deposited into the GSP 

of super; otherwise, the MPU/Method can not be found and an exception occurs. As stated before, we do 

not consider such exceptions in this paper. Note that this algorithm works correctly for both single and 

multi -level inheritance, and it has the advantage that the message token can be deposited directly to the 

appropriate GSP of a subagent without going through possible intermediate subagents. 

 

Since a class can have more than one superclass (with multiple inheritance), the inheritance hierarchy has 

the structure of a directed acyclic graph rather than a tree or forest. In this case, ambiguous or conflicting 

inheritance can occur. The three issues that must be dealt with are as follows:  

 

• Name conflict: two or more ancestors of a class might have messages with the same name, or state 

variables with the same name and type. 

• Repeated inheritance: When a class A inherits from two superclasses that share a common ancestor, 

there are two copies of the same ancestor class. In class A, the usage of state variables and 

MPUs/methods defined in the common ancestor class is ambiguous. 

• Dominance problem: When a class A inherits from two superclasses that share a common ancestor, and 

if a MPU/method defined in the common ancestor class is redefined by one of its superclasses, the 

reference of this MPU/method in the subclass A is ambiguous. 

 

For the name conflict problem, we usually use a quali fied name to solve the problem. For instance, if both a 

selli ng agent class SAC and a buying agent class BAC defines MPU/method m_1, the intended 
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message/method called in a retailer agent class RAC must be referred to as SAC::m_1 or BAC::m_1, unless 

m_1 is redefined in RAC. For the repeated inheritance problem, we assume that only one copy of the 

common ancestor class is maintained. Therefore, if a state variable or MPU/method defined in a common 

ancestor of superclasses of class A is referenced, it is always meant to the unique one. Finally, for the 

dominance problem, we assume that a redefined MPU/method has a dominance over the original one. 

Obviously, our modified breadth-first-search algorithm correctly enforces this rule of dominance. 

 

4.5 Discussion 

 

Multi -agent systems (MAS) have become one of the most rapidly growing areas of interest for distributed 

computing. Although there are several implementations of MAS available, formal frameworks for such 

systems are few [Brazier et al. 1998][Rogers et al. 2000]. In this chapter, we introduced an agent-oriented 

model rooted in the Petri net formalism, which provides a foundation that is mature in terms of both 

existing theory and tool support. An example of an agent family in electronic commerce was used to 

ill ustrate the modeling approach. Models for a shopping agent, selli ng agent, buying agent and retailer 

agent were presented, with emphasis on the characteristics of being autonomous, reactive and internally-

motivated. Our agent-oriented models also provide a clean interface between agents, and agents may 

communicate with each other by using contract net protocols. By the example of registration-negotiation 

protocol between shopping agents and facilit ator agents, and the example of a price-negotiation protocol 

between shopping agents and buying agents, we ill ustrated how to create agent models and how to reuse 

functional units defined in an agent superclass.  

 

For our future work, we will consider the refinements of the Goal, Plan, Knowledge-base and Environment 

modules. Also, the abstract transitions defined in the Planner module, i.e., make_decision, sensor and 

update, can be refined into correct sub-nets that capture action sequences specific to those activities. This 

work will provide a bridge to other work concerned with such agent activities [Deng and Chang 

1990][Murata et al. 1991a][Murata et al. 1991b]. We will also look further into issues like deadlock 

avoidance and state exploration problems in the agent-oriented design and verification processes. 
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Chapter 5 
 

Analysis of Agent-Or iented Models 
 

5.1 Introduction 

 

One of the advantages of building a formal model for agents in agent-oriented design is to help ensure a 

correct design that meets certain specifications. A correct design of agent should meet certain key 

requirements, such as liveness, deadlock freeness and concurrency. Also certain properties, such as the 

inheritance mechanism, need to be verified to ensure its correct functionality. Petri nets offer a promising, 

tool-supported technique for checking the logic correctness of a design. In this section, we use a Petri tool, 

called INA (Integrated Net Analyzer) [Roch and Starke 1999], to analyze and verify our agent models. We 

use an example of a simpli fied Petri net model for the interaction between a single buying agent and two 

selli ng agents.  

 

The INA tool is an interactive analysis tool that incorporates a large number of powerful methods for 

analysis of P/T nets [Roch and Starke 1999]. These methods include analysis of: (1) structural properties, 

such as structural boundedness, T- and P-invariant analysis; (2) behavioral properties, such as 

boundedness, safeness, liveness, deadlock-freeness; and (3) model checking, such as checking 

Computation Tree Logic (CTL) formulas. These analyses employ various techniques, such as linear-

algebraic methods (for invariants), reachabilit y and coverabilit y graph traversals. Here we focus on 

behavioral properties verification and model checking. 

 

5.2 A Simpli fied Petr i net Model for a Buying Agent and Two Sell ing Agents 

 

The interaction between a buying agent and two selli ng agents can be modeled as a net as in Figure 15. To 

derive this net model, we use a GSP place to represent each selli ng agent. This is practical because an 

agent-oriented G-net model can be abstracted as a single GSP place, and agent models can only interact 

with each other through GSP places. Meanwhile, for the buying agent, whose class is a subclass of a 

shopping agent class, we simpli fy it as follows: 
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1. Since the special places of Goal, Plan, Knowledge-base have the same interfaces with the planner 

module in an agent class, we fuse them into one single place goal/plan/kb. Furthermore, we simpli fy 

this fused place goal/plan/kb and the place of environment as ordinary places with ordinary tokens.  

2. We omit the private utiliti es sections in both the shopping subagent model and the buying primary 

subagent model. Thus, to obtain our simpli fied model, we do not need to translate the ISP mechanism, 

although such a translation to a Petri net form can be found in [Deng et al. 1993]. 
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3. We simpli fy mTkn tokens as ordinary tokens. Although this simpli fication will cause the reachabilit y 

graph of our transformed Petri net to become larger, this simpli fies the message tokens, allowing us to 

ignore message details, which is appropriate for the purpose in this paper (we will explain it further in 

Section 5.4).  

4. We use net reduction (i.e., net transformation rules [Shatz et al. 1996]) to simpli fy the Petri net 

corresponding to an MPU/Method as a single place. For instance, the MPU identified as propose in 

Figure 14 is represented as place P25 in Figure 15. 

5. We use the closed-world assumption and consider a system that only contains three agents, i.e., a 

buying agent and two selli ng agents. A system contains more than three agents can be verified in the 

same way.  

 

5.3 Deadlock Detection and Redesign of Agent-Or iented Models 

 

Now we use the INA tool to analyze the simpli fied agent model ill ustrated in Figure 15. To reduce the 

state space, we further reduce the net by fusing the MPUs in the same incoming/outgoing message section. 

For instance, in Figure 8, we fuse the places P8, P9, P10 and P11 into one single places. Obviously, this 

type of net reduction [Shatz et al. 1996] does not affect the properties of liveness, deadlock-freeness and 

the correctness of inheritance mechanism. In addition, we set the capacity of each place in our net model as 

1, which means at any time, some processing units, such as MPUs, can only process one message. 

However, the property of concurrency is still preserved because different transitions can be simultaneously 

enabled (and not in conflict); providing the standard Petri net notion of concurrency based on the 

interleaved semantics. For example, transitions t25 and t27 can be simultaneously enabled, representing 

that message processing for a conversation and decision-making for another conversation can happen at 

the same time. 

 

To verify the correctness of our agent model, we utili ze some key definitions for Petri net behavior 

properties as adapted from [Murata 1989]. 

 

Definition 5.1 Reachabilit y 

In a Petri net N with initial marking M0, denoted as (N, M0), a marking Mn is said to be reachable from a 

marking M0 if there exists a sequence of firings that transforms M0 to Mn. A firing or occurrence sequence 

is denoted by σ = M0 t1 M1 t2 M2 … tn Mn or simply σ = t1 t2 … tn. In this case, Mn is reachable from M0 

by σ and we write M0 [σ > Mn. 

 

Definition 5.2 Boundedness 
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A Petri net (N, M0), is said to be k-bounded or simply bounded if the number of tokens in each place does 

not exceed a finite number k for any marking reachable from M0. A Petri net (N, M0) is said to be safe if it 

is 1-bounded. 

 

Definition 5.3 Liveness 

A Petri net (N, M0), is said to be li ve if for any marking M that is reachable from M0, it is possible to 

ultimately fire any transition of the net by progressing some further firing sequence. 

 

Definition 5.4 Reversibilit y 

A Petri net (N, M0) is said to be reversible if, for each marking M that is reachable from the initial marking 

M0, M0 is reachable from M. 

 

With our net model in Figure 8 as input, the INA tool produces the following results: 

 

Computation of the reachability graph 

States generated: 8193 

Arcs generated: 29701 

 

Dead states: 

      484, 485,8189 

Number of dead states found: 3 

The net has dead reachable states. 

The net is not live. 

The net is not live and safe. 

The net is not reversible (resetable). 

The net is bounded. 

The net is safe. 

The following transitions are dead at the initial marking: 

       7, 9, 14, 15, 16, 17, 20, 27, 28, 32, 33 

The net has dead transitions at the initial marking. 

 

The analysis shows that our net model is not live, and the dead reachable states indicate a deadlock. By 

tracing the firing sequence for those dead reachable states, we find that when there is a token in place P29, 

both the transitions t34 and t35 are enabled. At this time, if the transition t35 fires, a token will be deposited 

into place P30. After firing transition t40, the token removed from place P24, by firing transition t29, will 

return to place P24, and this makes it possible to fire either transition t27 or t29 in a future state. However 
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if the transition t34 fires, instead of firing transition t35, there wil l be no tokens returned to place P24. So, 

transition t27 and t29 will be disabled forever, and a deadlock situation occurs.   

 

 

 
 
 
 

GSP(G) 

Figure 16. A template for the Planner module (revised design) 
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To correct this error, we need to modify the design of the Planner module in Figure 10. The model 

modification is to add a new arc from transition start_a_conversation to place syn, and the correct version 

of our Planner module design is shown as in Figure 16. Correspondingly, we add two new arcs in Figure 

15: an arc from transition t16 to place P7, and another arc from transition t34 to place P24. After this 

correction, we can again evaluate the revised net model by using the INA tool. Now we obtain the 

following results: 

 

Computation of the reachability graph 

States generated: 262143 

Arcs generated: 1540095 

 

The net has no dead reachable states. 

The net is bounded. 

The net is safe. 

The following transitions are dead at the initial marking: 

       7, 9, 14, 15, 16, 17, 20, 28 

The net has dead transitions at the initial marking. 



 
 

 54 

 

Liveness test: 

Warning: Liveness analysis refers to the net where all dead transitions 

are ignored. 

The net is live, if dead transitions are ignored. 

The computed graph is strongly connected. 

The net is reversible (resetable). 

 

This automated analysis shows that our modified net model is li ve, ignoring, of course, any transitions that 

are dead in the initial marking. Thus, for any marking M that is reachable from M0, it is possible to 

ultimately fire any transition (except those dead transitions) of the net. Since the initial marking M0 

represents that there is no ongoing (active) conversations in the net, a marking M that is reachable from M0, 

but where M ≠ M0, implies that there must be some conversations active in the net. By showing that our net 

model is live, we prove that under all circumstances (no matter if there are, or are not, any active 

conversations), it is possible to eventually perform any needed future communicative act. Consider the 

dead transitions t7, t9, t14, t15, t16, t17 and t20. These imply that the decision-making units in the shopping 

subagent are disabled. The remaining dead transition, t28, implies that the primary subagent always makes 

decisions for the whole buying agent. 

 

Our net model is safe because we have set the capacity of each place in our model to 1. A net model with 

capacity k (k > 1) for each place can be proved to be k-bounded in the same way. However, the state space 

may increase dramatically.  

 

In addition, the analysis tells us that our net model is reversible, indicating that the initial marking M0 can 

be reproduced (recall definition 4.4, given earlier). Since the initial marking M0 represents that there are no 

ongoing (active) conversations in the net, the reversible property proves that every conversation in the net 

can be eventually completed.  

 

5.4 Property Verification by Using Model Checking 

 

To further prove additional behavioral properties of our revised net model, we use some model checking 

capabiliti es provided by the INA tool. Model checking is a technique in which the verification of a system 

is carried out by using a finite representation of its state space. Basic properties, such as an absence of 

deadlock or satisfaction of a state invariant (e.g., mutual exclusion), can be verified by checking individual 

states. More subtle properties, such as guarantee of progress, require checking for specific cycles in a graph 

representing the states and possible transitions between them. Properties to be checked are typically 
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described by formulae in a branching time or linear time temporal logic [Clarke et al. 1986] [Clark and 

Wing 1996]. 

 

The INA tool allows us to state properties in the form of CTL formulae [Roch and Starke 1999][Clarke et 

al. 1986]. Using this notation, we can specify and verify some key properties of our revised net model, such 

as concurrency, mutual exclusion, and proper inheritance behavior: 

 

• Concurrency 

 

The following formula says that, in the reachabilit y graph of our revised net model, there exists a path that 

leads to a state in which all the places P5, P13, P22 and P28 are marked. 

 

     EF(P5 &(P13 &(P22 &P28)))     Result: The formula is TRUE 

 

Result explanation: A TRUE result indicates that all the places P5, P13, P22 and P28 can be marked at the 

same time. From Figure 8, we see that incoming/outgoing messages are dispatched in these places. So the 

result implies that different messages can be dispatched in our net model concurrently.  

 

• Mutual Exclusion 

 

The following formula says that, in the reachabilit y graph of our revised net model, there exists a path that 

leads to a state in which both places P27 and P30 (or both places P29 and P30) are marked.  

 

     EF(P27 &P30) V (P29 &P30))    Result: The formula is FALSE 

 

Result explanation: A FALSE result indicates that it is impossible to mark both places P27 and P30 (or 

both places P29 and P30) at the same time. From Figure 8, we see that place P27 represents any actions 

executed after decision-making, and place P30 is used for updating the plan, goal and knowledge-base. 

Thus, this result guarantees that decisions can only be made upon the latest mental state, i.e., the latest 

values in plan, goal and knowledge-base modules. Similarly, the fact that P29 and P30 cannot be marked at 

the same time guarantees the requirement that the sensor can always capture the latest mental state. 

 

• Inheritance Mechanism (decision-making in subagent) 

 

The following formula says that, in the reachabilit y graph of our revised net model, P12, P14 and P15 are 

not marked in any state on all paths.  
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     AG(-P12 &(-P14 &-P15))        Result: The formula is TRUE 

 

Result explanation: A TRUE result indicates that places P12, P14 and P15 are not marked under any 

circumstance. From Figure 8, we see that P12, P14 and P15 belong to decision-making units in the 

shopping subagent. As we stated earlier, all decision-making mechanisms in subagents should be disabled, 

with all decision-makings for an agent being achieved by the primary subagent. So, the result implies a 

desirable feature of the inheritance mechanism in our net model. 

 

• Inheritance Mechanism (ASP message forwarding I) 

 

The following formula says that, in the reachabilit y graph of our revised net model, P26 or P34 are always 

marked before P5 or P6 is marked.  

 

     A[(P26 VP34)B(P5 VP6)]        Result: The formula is TRUE 

 

Result explanation: A TRUE result indicates that neither place P5 nor P6 can become marked before the 

place P26 or P34 is marked. From Figure 8, we see that place P26 and P34 represent ASP places, and P5 

and P6 represent the message dispatching units. The result implies that messages will never be dispatched 

in a shopping subagent unless a MPU is not found in the primary buying subagent, in which case, either the 

ASP place P26 or P34 will be marked. 

 

• Inheritance Mechanism (ASP message forwarding II ) 

 

The following formula says that, in the reachabilit y graph of our revised net model, P26 (P34) is always 

marked before P5 (P6) is marked.  

 

     A[P26 BP5]VA[P34 BP6]         Result: The formula is FALSE 

 

Result explanation: We expect that for every incoming (outgoing) message, if it is not found in the primary 

buying subagent, it will be forwarded to the shopping agent, and dispatched into a MPU of the incoming 

(outgoing) message section. However, the FALSE result indicates that our net model does not work as we 

have expected. By looking into the generic agent model, we can observe that when we created the net 

model in Figure 8, we simpli fied all message tokens as ordinary tokens, i.e., black tokens. This 

simpli fication makes it possible for an incoming (outgoing) message to be dispatched into an outgoing 

(incoming) message section. Therefore, a message might be processed by a MPU that is not the desired 

one. To solve this problem, we may use colored tokens, instead of ordinary tokens, to represent message 
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tokens, and attach guards to transitions. However, in this paper, by using ordinary place/transition net (not a 

colored net), we obtain a simpli fied model that is suff icient to ill ustrate our key concepts. 

 

5.5 Discussion 

 

In this Chapter, we discussed how to verify liveness properties of our net model by using an existing Petri 

net tool, the INA tool. The value of such an automated analysis capabilit y was demonstrated by detection of 

a deadlock situation due to a design error. The revised model was then proved to be both li ve and 

reversible. In addition, some model checking techniques were used to prove some additional behavioral 

properties for our agent model, such as concurrency, mutual exclusion, and correctness of the inheritance 

mechanism. Although we proved some key behavioral properties of our agent model, our formal method 

approach is also of value in creating a clear understanding of the structure of an agent, which can increase 

confidence in the correctness of a particular multi -agent system design. Also, in producing a detailed 

design, where the abstract transitions in the planner module are refined, we may again use Petri net tools to 

capture further design errors. 
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Chapter 6 
 

Future Research Plans 
 

6.1 Introduction 

 

Communication among distributed processes is an essential requisite in nowadays computing systems. A 

communication paradigm represents the set of rules to be followed in exchanging data and synchronizing 

the execution of processes. The nature of currently available computing systems is pushing a lot towards a 

distributed approach which assumes that computing resources and data are no longer located on the same 

machine, and migration of code and data is executed in order to speed up the whole execution process. The 

classic client-server paradigm assumes that the client functionaliti es are somehow disjoint from the 

execution power of the server. Since a server usually provides service to a large number of clients, the 

amount of data exchanged may be considerable. Therefore, the work of the server is usually limited to the 

mere execution of some basic procedures for the data retrieval and storage, while the data processing 

mainly takes place on the client host. This type of scheme is used when we want to create a very simple 

system from the management point of view, or structures with a high level of security. An advantage of this 

architecture is the possibilit y of controlli ng the type of message and the ways of communication between 

clients and servers. In other words, the server only deal with what is expected during the design phase. 

Consequently, the level of security is very high. Since clients and servers can be viewed as passive objects, 

the object-oriented paradigm provides the best framework for developing a client-server application.  

 

Unlike the client-server paradigm, a multi -agent system consists of a set of agents, i.e., active objects 

[Shoham 1993]. Agents usually do not communicate with each other in a way of method invocation, 

instead, an agent can send meaningful messages, possibly attached with a piece of code, to another agent. 

The receiver agent may analyze the received message, execute the attached code and decide whether to 

perform the requested actions. Therefore, an agent must be able to deal with messages that might not be 

expected during the design phase, and the communication mechanism among agents should be in a way of 

asynchronous message passing. This way of communication is similar to the remote evaluation (REV) 

paradigm [Stamos and Gifford 1990], which implies that server receives not only the processing requests 
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from the client, but also the whole code needed for performing operations on the data. However, agent 

communication in a multi -agent system is more flexible and more complicated than the server-client 

interactions in REV paradigm. Although we may use object-oriented approach to design a multi -agent 

system, it may complicate the design process while we dealing with asynchronous message passing 

mechanism and those mental decisions of agents.  Thus an agent-oriented approach, such as the one we 

proposed, is necessary to be used to design a multi -agent system. 

 

A third communication paradigm is the mobile agent paradigm.  As one of the new agent techniques, 

mobile agent is becoming a promising paradigm pertinent to the highly distributed, dynamic, heterogeneous 

and open environment, such as Internet. Mobile agents are autonomous agents that can migrate around a 

computer network, and execute at different locations during their li fe spans. A mobile agent consumes 

fewer network resources in that they transfer the computation to the data rather than the data to the 

computation, which is adopted by traditional distributed computing. As one of our future plans, we will t ry 

to extend our agent-oriented G-net models for mobile agent modeling. 

 

6.2 A Unified Model for Object-Or iented and Agent-Or iented Design 

 

Internet is becoming the most complex environment that provides an open, dynamic and heterogeneous 

environment for large distributed systems. An Internet application, such as an electronic commerce 

application, usually consists of a set of both objects and agents. In those situations, an object usually works 

as a server and provides services to various clients (including agents), while agents may communicate with 

each other and negotiate to achieve their own goals. Therefore, a unified model for both object modeling 

and agent modeling might be useful for this type of applications. Based on our previous work, we will t ry 

to unify our object model and agent model, and provide a uniform framework for Internet application 

designs. 

 

The basic idea behind this unified model is to provide both synchronous and asynchronous message passing 

mechanisms for a distributed system. In a complex software system with both objects and agents, objects 

usually use synchronous message passing to communicate with each other, while agents communicated 

with each other by using asynchronous message passing. Moreover, an agent could be a client of an object 

server, and it may also use synchronous message passing to get services from an object. Synchronous 

message passing in a form of method invocation is more eff icient than asynchronous message passing, 

however it is not flexible enough for agent communications. Therefore, to provide both mechanisms for a 

complex software system design is not only a research issue, but also could be a practical attempt. 
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6.3 Extending Agent-Or iented G-net Model for M obile Agent Design 

 

In a broad sense, a software agent is any program that acts on behalf of a (human) user, just as different 

types of agents (e.g., travel agents, insurance agents, secretaries) represent other people in day-to-day 

transactions in the real world. A mobile agent then is a program which represents a user in a computer 

network, and is capable of migrating autonomously (under its own control) from node to node in the 

network, to perform some computation on behalf of the user. Its tasks are determined by the agent 

application, and can range from online shopping to real-time device control to distributed scientific 

computing. Applications can inject mobile agents into a network, allowing them to roam the network either 

on a predetermined path, or one that the agents themselves determine based on dynamically gathered 

information. Having accomplished their goals, the agents may either terminate or return to their “home 

site” in order to report their results to the user. 

 

Harrison et al. identified several advantages of the mobile agent paradigm, in comparison with remote 

procedure calls (RPC) [Tay and Ananda 1990] and message-passing. These advantages include: reduce 

network usage, increase asynchrony between clients and servers, add client-specified functionality to 

servers, dynamically update server interfaces and introduce concurrency [Harrison et al. 1995].  

 

The mobile agent paradigm can be exploited in a variety of ways, ranging from low-level system 

administration to middleware to user-level applications. An example of such application could be an 

electronic marketplace. Vendors can set up online shops with products, services or information for sale. A 

customer’s agent would carry a shopping list along with a set of preferences, visit various sellers, find the 

best deal based on the preferences, and purchase the product using digital forms of cash. This application 

imposes a broad spectrum of requirements on mobile agent systems. Apart from mobilit y, it needs 

mechanisms for restricted resource access, secure electronic commerce, protection of agent data, robustness 

and user control over roving agents. For our future work, we will t ry to extend our agent-oriented model for 

agent mobilit y modeling. This work will be based on previous work [Picco et al. 1999][Roman et al. 

1997][Asperti and Busi 1996][Fan and Xu 2000]. 

 

6.4 Secur ity Issues in Mobile Agent Design 

 

Messages sent across an open network like the Internet are inherently insecure. As a mobile agent traverses 

the network, its code and data are vulnerable to various types of security threats. We consider the following 

types of attacks on communication links that the system needs to protect against [Ford 1994]:  

 

Passive attacks: In passive attacks, the adversary does not interfere with the message traff ic, but only 

attempts to extract useful information from it. The simplest form of such attack is eavesdropping, which 
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can result in the leakage of sensitive information stored in the message (agent) being transmitted. Even if 

the adversary is unable to decipher the message contents (because of encryption, for example), useful 

information may be gleaned from the sizes and frequency of message exchanged, or merely the fact that 

two principles are in communication. This type of passive attack is usually called traffic analysis in the 

security literature. To counter passive attacks, a confidentiality (i.e., privacy) mechanism is therefore 

necessary. 

 

Active attacks: In the case of open networks like the Internet, we must assume a very general threat model 

in which the adversary can arbitrarily intercept and modify network-level message, or even delete them 

altogether and insert forged ones. These are termed as active attacks, since they involve active interference 

by the adversary. Another type of attack in this category involves impersonation, The adversary 

impersonates one of the legitimate principals in the system and can attempt to intercept messages intended 

for that principal. Active attacks require greater sophistication on the part of the adversary, but can also be 

more dangerous than passive attacks. While we can not always prevent all such attacks, the damage caused 

by them can be minimized if the communication link provides assurances of data integrity and 

authentication. Here data integrity means that data is either delivered unmodified or a flag is raised to 

signal i f it has been tampered with, and authentication requires that the source and destination of the 

message is unambiguously identified. 

 

If time permitted, we will t ry to model mobile agents and hostile agents with our agent framework. Our 

purpose is to study the different forms of attack and to verify that some mobile agent design might be 

vulnerable to some types of attack. The advantages of this research will be the automated verification of an 

agent design by using existing Petri net tools. 
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