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Abstract—Agents are becoming one of the most important topics in distributed and autonomous decentralized systems, and there are

increasing attempts to use agent technologies to develop large-scale commercial and industrial software systems. The complexity of

such systems suggests a pressing need for system modeling techniques to support reliable, maintainable, and extensible design.

G-nets are a type of Petri net defined to support system modeling in terms of a set of independent and loosely-coupled modules. In this

paper, we customize the basic G-net model to define a so-called “agent-based G-net” that can serve as a generic model for agent

design. Then, to progress from an agent-based design model to an agent-oriented model, new mechanisms to support inheritance

modeling are introduced. To illustrate our formal modeling technique for multiagent systems, an example of an agent family in

electronic commerce is provided. Finally, we demonstrate how we can use model checking to verify some key behavioral properties of

our agent model. This is facilitated by the use of an existing Petri net tool.

Index Terms—Multiagent systems, Petri net, G-net, design model, electronic commerce, model checking.
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1 INTRODUCTION

OVER the past decade, research and development efforts
in computer science have increasingly embraced the

concept of software agents and multiagent systems. One key
reason is that the idea of an agent as an autonomous system,
capable of interacting with other agents in order to satisfy its
design objectives, is a naturally appealing one for software
designers. This has led to the growth of interest in agents as
a new design-paradigm for software engineering [1].

Applications that can most directly benefit from an
agent-oriented design are typically structured as multiagent
systems (MAS), which are usually defined as a concurrent
system based on the notion of autonomous, reactive, and
internally-motivated agents in a decentralized environment
[2]. One example of such an application is intelligent team
training environments [3]. Many of the technologies
supporting multiagent systems stem from distributed
artificial intelligence (DAI) research [4]. The increasing
interest in MAS research is due to the significant advan-
tages inherent in such systems, including their ability to
solve problems that may be too large for a centralized single
agent, to provide enhanced speed and reliability, and to
tolerate uncertain data and knowledge [4].

Although there are many efforts aimed at developing
multiagent systems, there is sparse research on formal
specification and design of such systems [5], [6]. As
multiagent technology begins to emerge as a viable solution
for large-scale applications, there is an increasing need
to ensure that the systems being developed are robust,
reliable, and fit for purpose [7]. Previous work on formal
modeling agent systems includes: 1) using formal

languages, such as Z, to provide a framework for describing
the agent architecture at different levels of abstractions [8],
2) using temporal logics and multimodal logics to represent
individual agent behaviors where the representations can
be executed directly, e.g., Fisher’s work on Concurrent
METATEM [9], and 3) designing formal languages, such as
DESIRE and SLABS, for specifying agent-based systems
[10], [11]. Although these formalisms are claimed to be
agent specifications, they are not oriented for software
engineering in terms of providing a modeling notation that
directly supports software development. For instance, as
stated in [12], formalisms such as temporal logics and
multimodal logics are often abstract and quite distant from
agents that have actually been implemented. There are
previous efforts to narrow the gap between agent formal
models and agent-based practical systems, e.g., to use
formal approaches for prototyping and simulation of
multiagent systems [13]; however, it is still hard to apply
these formal methods directly to agent implementation. In
contrast, our approach is explicitly oriented for specifying
and defining the design architecture of multiagent software
systems. Also, unlike most previous work, our approach
exploits the principle of “separation of concerns” in an
agent-oriented design, similar to the basic idea proposed for
some distributed object architectures that define a meta-
agent (on top of a base-level object) to handle nonfunctional
requirements [14]. Specifically, we separate the traditional
object-oriented features and reasoning mechanisms in our
agent-oriented software model, and we discuss how reuse
can be achieved in terms of functional units in agent-
oriented design. While some have advocated that inheri-
tance has limited value in conceptual models of agent
behavior [15], we illustrate a useful role for inheritance in
our agent-oriented models. Our agent-based model is
derived from the general agent model given in [16], and
the extensions that create an agent-oriented model are
derived from the framework presented in [17]. At the heart
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of our approach is the use of a model that is rooted in the
Petri net formalism [18]. As such, this work is complemen-
tary to other research efforts that use Petri nets to model the
mental states of agents as part of an architecture for
multiagent simulation [19].

The rest of this paper is organized as follows: Section 2
begins with a brief introduction to the standard G-net
model, an object-based Petri net notation. It then presents
the general structure of the proposed agent-based G-net
model based on BDI models [20], and discusses how
inheritance modeling can be integrated into agent-based
G-net models. Section 3 provides an example agent family
in electronic commerce to illustrate our approach to agent
design and inheritance modeling. Section 4 verifies some
behavioral properties of our agent model by using Petri net
theory and an existing Petri net tool. Finally, Section 5
provides a brief conclusion and mentions future work.

2 AN AGENT-ORIENTED MODEL

2.1 The Standard G-Net Model

A widely accepted software engineering principle is that a
system should be composed of a set of independent
modules, where each module hides the internal details of
its processing activities and modules communicate through
well-defined interfaces. The G-net model provides strong
support for this principle [21], [22]. G-nets are an object-
based extension of Petri nets, which is a graphically defined
model for concurrent systems. Petri nets have the strength
of being visually appealing, while also being theoretically
mature and supported by robust tools. We assume that the
reader has a basic understanding of Petri nets [18]. But, as a
general reminder, we note that Petri nets include three basic
entities: place nodes (represented graphically by circles),
transition nodes (represented graphically by solid bars),
and directed arcs that can connect places to transitions or
transitions to places. Furthermore, places can contain
markers, called tokens, and tokens may move between
place nodes by the “firing” of the associated transitions. The
state of a Petri net refers to the distribution of tokens to
place nodes at any particular point in time (this is

sometimes called the marking of the net). We now proceed
to discuss the basics of standard G-net models.

A G-net system is composed of a number of G-nets, each
of them representing a self-contained module or object. A
G-net is composed of two parts: a special place called
Generic Switch Place (GSP) and an Internal Structure (IS). The
GSP provides the abstraction of the module, and serves as
the only interface between the G-net and other modules.
The IS, a modified Petri net, represents the design of the
module. An example of G-nets is shown in Fig. 1. Here, the
G-net models represent two objects—a Buyer and a Seller.
The generic switch places are represented by GSP(Buyer)
and GSP(Seller) enclosed by ellipses, and the internal
structures of these models are represented by round-
cornered rectangles that contain four methods: buyGoods(),
askPrice(), returnPrice(), and sellGoods(). The functionality of
these methods are defined as follows: buyGoods() invokes
the method sellGoods() defined in G-net Seller to buy some
goods; askPrice() invokes the method returnPrice() defined in
G-net Seller to get the price of some goods; returnPrice() is
defined in G-net Seller to calculate the latest price for some
goods; and sellGoods() is defined in G-net Seller to wait for
the payment, ship the goods, and generate the invoice. A
GSP of a G-net G contains a set of methods G.MS specifying
the services or interfaces provided by the module, and a set
of attributes, G.AS, which are state variables. In G.IS, the
internal structure of G-net G, Petri net places represent
primitives, while transitions, together with arcs, represent
connections or relations among those primitives. The
primitives may define local actions or method calls. Method
calls are represented by special places called Instantiated
Switch Places (ISP). A primitive becomes enabled if it receives
a token, and an enabled primitive can be executed. Given a
G-net G, an ISP of G is a 2-tuple (G’.Nid, mtd), where G’
could be the same G-net G or some other G-net, Nid is a
unique identifier of G-net G’, and mtd 2 G’.MS. Each
ISP(G’.Nid, mtd) denotes a method call mtd() to G-net G’. An
example ISP (denoted as an ellipsis in Fig. 1) is shown in the
method askPrice() defined in G-net Buyer, where the method
askPrice() makes a method call returnPrice() to the G-net
Seller to query about the price for some goods. Note that we
have highlighted this call in Fig. 1 by the dashed-arc, but
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Fig. 1. G-net model of buyer and seller objects.



such an arc is not actually a part of the static structure of
G-net models. In addition, we have omitted all function
parameters for simplicity.

From the above description, we can see that a G-net
model essentially represents a module or an object rather
than an abstraction of a set of similar objects. In a recent
paper [23], we defined an approach to extend the G-net
model to support class modeling. The idea of this extension
is to generate a unique object identifier, G.Oid, and initialize
the state variables when a G-net object is instantiated from a
G-net G. An ISP method invocation is no longer represented
as the 2-tuple (G’.Nid, mtd), instead it is the 2-tuple (G’.Oid,
mtd), where different object identifiers could be associated
with the same G-net class model.

The token movement in a G-net object is similar to that of
original G-nets [21]. A token tkn is a triple (seq, sc, mtd),
where seq is the propagation sequence of the token, sc 2
{before, after} is the status color of the token and mtd is a
triple (mtd_name, para_list, result). For ordinary places,
tokens are removed from input places and deposited into
output places by firing transitions. However, for the special
ISP places, the output transitions do not fire in the usual
way. Recall that marking an ISP place corresponds to
making a method call. So, whenever a method call is made
to a G-net object, the token deposited in the ISP has the
status of before. This prevents the enabling of associated
output transitions. Instead the token is “processed” (by
attaching information for the method call) and then
removed from the ISP. Then, an identical token is deposited
into the GSP of the called G-net object. So, for example, in
Fig. 1, when the Buyer object calls the returnPrice() method
of the Seller object, the token in place ISP(Seller, returnPrice())
is removed and a token is deposited into the GSP place
GSP(Seller). Through the GSP of the called G-net object, the
token is then dispatched into an entry place of the
appropriate called method, for the token contains the
information to identify the called method. During “execu-
tion” of the method, the token will reach a return place
(denoted by double circles) with the result attached to the
token. As soon as this happens, the token will return to the
ISP of the caller and have the status changed from before to
after. The information related to this completed method call
is then detached. At this time, output transitions (e.g., t4 in
Fig. 1) can become enabled and fire.

We call a G-net model that supports class modeling a
standard G-net model. Notice that the example we provide
in Fig. 1 follows the Client-Server paradigm, in which a Seller
object works as a server and a Buyer object is a client.
Further details about G-net models can be found in
references [21], [22], [23].

2.2 An Architecture for Agent-Based Modeling

Although the standard G-net model works well in object-
based design, it is not sufficient in agent-based design for
the following reasons. First, agents that form a multiagent
system may be developed independently by different
vendors and those agents may be widely distributed across
large-scale networks such as the Internet. To make it
possible for those agents to communicate with each other,
it is desirable for them to have a common communication
language and to follow common protocols. However, the

standard G-net model does not directly support protocol-
based language communication between agents. Second,
the underlying agent communication model is usually
asynchronous and an agent may decide whether to perform
actions requested by some other agents. The standard G-net
model does not directly support asynchronous message
passing and decision-making, but only supports synchro-
nous method invocations in the form of ISP places. Third,
agents are commonly designed to determine their behavior
based on individual goals, their knowledge, and the
environment. They may autonomously and spontaneously
initiate internal or external behavior at any time. The
standard G-net models can only directly support a
predefined flow of control.

To support agent-based design, we need to extend a
G-net to support modeling an agent class.1 The basic idea is
similar to extending a G-net to support class modeling for
object-based design [23]. When we instantiate an agent-
based G-net (an agent class model) G, an agent identifier
G.Aid is generated and the mental state of the resulting
agent object (an active object [7]) is initialized. In addition,
at the class level, five special modules are introduced to
make an agent autonomous and internally-motivated. They
are the Goal module, the Plan module, the Knowledge-base
module, the Environment module, and the Planner module.
Note that the Goal, Plan, and Knowledge-base module are
based on the BDI agent model proposed by Kinny and his
colleagues [20].

The template for an agent-based G-net model is shown in
Fig. 2. We describe each of the additional modules as
follows: A Goal module is an abstraction of a goal model
[20], which describes the goals that an agent may possibly
adopt and the events to which it can respond. It consists of a
goal set which specifies the goal domain and one or more
goal states. A Plan module is an abstraction of a plan model
[20] that consists of a set of plans, known as a plan set. A
plan may be intended or committed and only committed
plans will be achieved. A Knowledge-base module is an
abstraction of a belief model [20], which describes the
information about the environment and internal state that
an agent of that class may hold. The possible beliefs of an
agent are described by a belief set. An Environment module
is an abstract model of the environment, i.e., the model of
the outside world of an agent. The Environment module only
models elements in the outside world that are of interest to
the agent and that can be sensed by the agent.

In the Planner module, committed plans are achieved,
and the Goal, Plan, and Knowledge-base modules of an agent
are updated after the processing of each communicative act
that defines the type and the content of a message [24], [25],
or if the environment changes. Thus, the Planner module
can be viewed as the heart of an agent that may decide to
ignore an incoming message, to start a new conversation, or
to continue with the current conversation.

The internal structure (IS) of an agent-based G-net
consists of three sections: incoming message, outgoing message,
and private utility. The incoming/outgoing message section
defines a set of Message Processing Units (MPU), which
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corresponds to a subset of communicative acts. Each MPU,
labeled as action_i in Fig. 2, is used to process incoming/
outgoing messages and may use ISP-type modeling for calls
to methods defined in its private utility section. Unlike the
methods defined in a standard G-net model, the private
utility functions or methods defined in the private utility
section can only be called by the agent itself.

Although both objects (passive objects) and agents use
message-passing to communicate with each other, message-
passing for objects is a unique form of method invocation,
while agents distinguish different types of messages and
model these messages frequently as speech-acts and use
complex protocols to negotiate [7]. In particular, these
messages must satisfy the format of the standardized
communicative (speech) acts, e.g., the format of the
communicative acts defined in the FIPA agent communica-
tion language, or KQML [24], [25], [26]. Note that, in Fig. 2,
each named MPU action_i refers to a communicative act,
thus our agent-based model supports an agent communica-
tion interface. In addition, agents analyze these messages
and can decide whether to execute the requested action. As
we stated before, agent communications are typically based
on asynchronous message passing. Since asynchronous
message passing is more fundamental than synchronous
message passing, it is useful for us to introduce a new
mechanism, called Message-passing Switch Place (MSP), to
directly support asynchronous message passing. When a
token reaches an MSP (we represent it as an ellipsis in
Fig. 2), the token is removed and deposited into the GSP of
the called agent. But, unlike with the standard G-net ISP
mechanism, the calling agent does not wait for the token to
return before it can continue to execute its next step. Since
we usually do not think of agents as invoking methods of
one-another, but rather as requesting actions to be
performed [27], in our agent-based model, we restrict the
usage of ISP mechanisms, so they are only used to refer to
an agent itself. Thus, in our models, one agent may not
directly invoke a method defined in another agent. All

communications between agents must be carried out
through asynchronous message passing as provided by
the MSP mechanism.

A template of the Planner module is shown in Fig. 3.2 The
modules Goal, Plan, Knowledge-base, and Environment are
represented as four special places (denoted by double
ellipses in Fig. 3), each of which contains a token that
represents a set of goals, a set of plans, a set of beliefs, and a
model of the environment, respectively. These four mod-
ules connect with the Planner module through abstract
transitions, denoted by shaded rectangles in Fig. 3 (e.g., the
abstract transition make_decision). Abstract transitions re-
present abstract units of decision-making or mental-state-
updating. At a more detailed level of design, abstract
transitions would be refined into subnets; however, how to
make decisions and how to update an agent’s mental state
is beyond the scope of this paper, and will be considered in
our future work. In the Planner module, there is a unit called
autonomous unit that makes an agent autonomous and
internally-motivated. An autonomous unit contains a sensor
(represented as an abstract transition), which may fire
whenever the preconditions of some committed plan are
satisfied or when new events are captured from the
environment. If the abstract transition sensor fires, based
on an agent’s current mental state (goal, plan, and knowl-
edge-base), the autonomous unit will then decide whether
to start a conversation or to simply update its mental state.
This is done by firing either the transition start_a_conversa-
tion or the transition automatic_update after executing any
necessary actions associated with place new_action.

Note that the Planner module is both goal-driven and
event-driven because the transition sensor may fire when
any committed plan is ready to be achieved or any new
event happens. In addition, the Planner module is also
message-triggered because certain actions may initiate
whenever a message arrives (either from some other agent
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Fig. 2. A generic agent-based G-net model.

2. Actually, this module purposely contains a somewhat subtle design
error that is used to demonstrate the value of automated verification in
Section 4.



or from the agent itself). A message is represented as a
message token with a tag of internal/external/private. A
message token with a tag of internal represents a message
forwarded by an agent to itself with the MSP mechanism, or
a newly generated outgoing message before sending to
some other agent; while a message token with a tag of
external is an incoming message which comes from some
other agent. In either case, the message token with the tag of
internal/external should not be involved in an invocation
of a method call. In contrast, a message token with a tag of
private indicates that the token is currently involved in an
invocation of some method call. When an incoming
message/method arrives, with a tag of external/private
in its corresponding token, it will be dispatched to the
appropriate MPU/method defined in the internal structure of
the agent. If it is a method invocation, the method defined
in the private utility section of the internal structure will be
executed and after the execution, the token will return to the
calling unit, i.e., an ISP of the calling agent. However, if it is
an incoming message, the message will be first processed by
a MPU defined in the incoming message section in the
internal structure of the agent. Then, the tag of the token
will be changed from external to internal before it is
transferred back to the GSP of the receiver agent by using
MSP(self). Note that we have extended G-nets to allow the
use of the keyword self to refer to the agent object itself.
Upon the arrival of a token tagged as internal in a GSP, the
transition internal may fire, followed by the firing of the
abstract transition make_decision. Note that, at this point of
time, there would exist tokens in those special places Goal,
Plan, and Knowledge-base, so the transition bypass is disabled
(due to the “inhibitor arc”3) and may not fire (the purpose

of the transition bypass is for inheritance modeling, which
will be addressed in Section 2.3). Any necessary actions
may be executed in place next_action before the conversa-
tion is either ignored or continued. If the current conversa-
tion is ignored, the transition ignore fires; otherwise, the
transition continue fires. If the transition continue fires, a
newly constructed outgoing message, in the form of a token
with a tag of internal, will be dispatched into the
appropriate MPU in the outgoing message section of the
internal structure of the agent. After the message is
processed by the MPU, the message will be sent to a
receiver agent by using the MSP(G’.Aid) mechanism, and
the tag of the message token will be changed from internal
to external, accordingly. In either case, a token will be
deposited into place update_goal/plan/kb, allowing the
abstract transition update to fire. As a consequence, the
Goal, Plan, and Knowledge-base modules are updated if
needed, and the agent’s mental state may change.

To ensure that all decisions are made upon the latest
mental state of the agent, i.e., the latest values in the goal,
plan, and knowledge-base modules, and similarly to ensure
that the sensor always captures the latest mental state of the
agent, we introduce a synchronization unit syn, modeled as
a place marked with an ordinary token (black token). The
token in place syn will be removed when the abstract
transition make_decision or sensor fires, thus delaying further
firing of these two abstract transitions until completion of
actions that update the values in the goal, plan, and
knowledge-base modules. This mechanism is intended to
guarantee the mutual exclusive execution of decision-
making, capturing the latest mental state and events, and
updating the mental state. Note that we have used the label
<e> on each of the arcs connecting with the place syn to
indicate that only ordinary tokens may be removed from or
deposited into the place syn.
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Fig. 3. A template for the planner module (initial design).

3. An inhibitor arc connects a place to a transition and defines the
property that the transition associated with the inhibitor arc is enabled only
when there are no tokens in the input place.



As a result of this extension to G-nets, the structure of
tokens in the agent-based G-net model should be redefined.
In addition to the ordinary token introduced in place syn,
essentially there are five types of colored tokens, namely,
the message token mTkn, the goal token gTkn, the plan
token pTkn, the knowledge token kTkn, and the environ-
ment token eTkn. One way to construct the gTkn, pTkn, kTkn,
and eTkn is as linked lists. In other words, a gTkn represents
a list of goals, pTkn represents a list of plans, a kTkn
represents a list of facts, and an eTkn represents a list of
events that are of the agent’s interests. Since these four
types of tokens confine themselves to those special places of
their corresponding modules, we do not describe them
further in this paper.

A mTkn is a 2-tuple (tag, body), where tag 2 {internal,
external, private} and body is a variant, which is determined
by the tag. According to the tag, the token deposited in a
GSP will finally be dispatched into a MPU or a method
defined in the internal structure of the agent-based G-net.
Then, the body of the token mTkn will be interpreted
differently. More specifically, we define the mTkn body as
follows:

struct Message{

int sender; //the identifier of the

message sender

int receiver; //the identifier of

the message receiver

string protocol_type; //the type of

contract net

protocol

string name; //the name of incoming/

outgoing messages

string content; //the content of this

message

};

enum Tag {internal, external};

struct MtdInvocation {

Triple (seq, sc, mtd); //as defined in

Section 2.1

}

if (mTkn.tag2 {internal, external})

then mTkn.body = struct {

Message msg; //message body

}

else mTkn.body = struct { // mTkn.tag equals to

the tag: private

Message msg; //message body

Tag old_tag; //to record the old

tag: internal/

external

MtdInvocation miv; //to trace method

invocations

}

When mTkn.tag2 {internal, external} and an ISP method
call occurs, the following steps will take place:

1. The two variables old_tag and miv are attached to the
mTkn to define mTkn.body.old_tag and mTkn.body.miv,
respectively. Then, mTkn.tag (the current tag, one of

internal or external) is recorded into mTkn.body.old_
tag and mTkn.tag is set to private.

2. Further method calls are traced by the variable
mTkn.body.miv, which is a triple of (seq, sc, mtd). The
tracing algorithm is defined as in the original G-net
definitions [21].

3. After all the ISP method calls are finished and the
mTkn token returns to the original ISP, the mTkn.tag
is set back as mTkn.body.old_tag, and both the
variables old_tag and miv are detached.

The MSP(id) mechanism defined in an agent AO is
responsible for asynchronously transferring a message
token mTkn to the agent itself or some other agent and for
changing the tag of the message token, mTkn.tag, before
mTkn is “sent out.” The steps for handling the message
token are as follows:

1. If id equals to self (in this case mTkn.tag must be
external), set mTkn.tag to internal, and transfer the
message token mTkn to the GSP place of agent AO.

2. Else-If id equals to G’.Aid, where G’.Aid does not
represent the agent AO (in this case mTkn.tag must
be internal), set mTkn.tag to external, and transfer
the message token mTkn to the GSP place of the
agent represented by G’.Aid.

We now provide a few key definitions giving the formal
structure of our agent-based G-net models.

Definition 2.1 Agent-based G-net. An agent-based G-net is
a 7-tuple AG = (GSP, GO, PL, KB, EN, PN, IS), where GSP is
a Generic Switch Place providing an abstract for the agent-
based G-net, GO is a Goal module, PL is a Plan module, KB is a
Knowledge-base module, EN is an Environment module,
PN is a Planner module, and IS is an internal structure of AG.

Definition 2.2 Planner Module. A Planner module of an
agent-based G-net AG is a colored sub-net defined as a 7-tuple
(IGS, IGO, IPL, IKB, IEN, IIS, DMU), where IGS, IGO, IPL,
IKB, IEN, and IIS are interfaces with GSP, Goal module,
Plan module, Knowledge-base module, Environment
module, and internal structure of AG, respectively. DMU
is a set of decision-making units, and it contains three abstract
transitions: make_decision, sensor, and update.

Definition 2.3 Internal Structure (IS). An internal structure
(IS) of an agent-based G-net AG is a triple (IM, OM, PU),
where IM/OM is the incoming/outgoing message section,
which defines a set of message processing units (MPU); and
PU is the private utility section, which defines a set of
methods.

Definition 2.4 Message Processing Unit (MPU). A message
processing unit (MPU) is a triple (P, T, A), where P is a set of
places consisting of three special places: entry place, ISP and
MSP. Each MPU has only one entry place and one MSP, but it
may contain multiple ISPs. T is a set of transitions and each
transition can be associated with a set of guards. A is a set of
arcs defined as: ððP ÿ fMSPgÞ� T Þ [ ððT � ðP ÿ fentrygÞ.

Definition 2.5 Method. A method is a triple (P, T, A),
where P is a set of places with three special places: entry
place, ISP, and return place. Each method has only one
entry place and one return place, but it may contain
multiple ISPs. T is a set of transitions and each transition
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can be associated with a set of guards. A is a set of arcs
defined as: ððP ÿ freturngÞ � T Þ [ ððT � ðP ÿ fentrygÞ.

2.3 Inheritance Modeling

Although there are different views with respect to the
concept of agent-oriented design [15], we consider an agent
as an extension of an object and we believe that agent-
oriented design should keep most of the key features in
object-oriented design. Thus, to progress from an agent-
based model to an agent-oriented model, we need to
incorporate some inheritance modeling capabilities. But,
inheritance in agent-oriented design is more complicated
than in object-oriented design. Unlike an object (passive
object), an agent object has mental states and reasoning
mechanisms. Therefore, inheritance in agent-oriented de-
sign invokes two issues: an agent subclass may inherit an
agent superclass’s knowledge, goals, plans, the model of its
environment, and its reasoning mechanisms; on the other
hand, as in the case of object-oriented design, an agent
subclass may inherit all the services that an agent superclass
may provide, such as private utility functions. There is
existing work on agent inheritance with respect to knowl-
edge, goals, and plans [2], [28]. However, we believe that
since inheritance happens at the class level, an agent
subclass may be initialized with an agent superclass’s
initial mental state, but new knowledge acquired, new
plans made, and new goals generated in a individual agent
object (as an instance of an agent superclass), can not be
inherited by an agent object when creating an instance of an
agent subclass. A superclass’s reasoning mechanism can be
inherited, however that is beyond the scope of this paper.
For simplicity, we assume that an instance of an agent
subclass (i.e., an subclass agent) always uses its own
reasoning mechanisms and, thus, the reasoning mechan-
isms in the agent superclass should be disabled in some
way. This is necessary because different reasoning mechan-
isms may deduce different results for an agent and to
resolve this type of conflict may be time-consuming and
make an agent’s reasoning mechanism inefficient. There-
fore, in this paper, we only consider how to initialize a
subclass agent’s mental state while an agent subclass is
instantiated; meanwhile, we concentrate on the inheritance
of services that are provided by an agent superclass, i.e., the
MPUs and methods defined in the internal structure of an
agent class. Before presenting our inheritance scheme, we
need the following definition:

Definition 2.6 Subagent and Primary Subagent. When an
agent subclass A is instantiated as an agent object AO, a
unique agent identifier is generated, and all superclasses and
ancestor classes of the agent subclass A, in addition to the
agent subclass A itself, are initialized. Each of those initialized
classes then becomes a part of the resulting agent object AO.
We call an initialized superclass or ancestor class of agent
subclass A a subagent, and the initialized agent subclass A
the primary subagent.

The result of initializing an agent class is to take the
agent class as a template and create a concrete structure of
the agent class and initialize its state variables. Since we
represent an agent class as an agent-based G-net, an

initialized agent class is modeled by an agent-based G-net
with initialized state variables. In particular, the four tokens
in the special places of an agent-based G-net, i.e., gTkn,
pTkn, kTkn, and eTkn, are set to their initial states. Since
different subagents of AO may have goals, plans, knowl-
edge, and environment models that conflict with those of
the primary subagent of AO, it is desirable to resolve them
in an early stage. In our case, we deal with those conflicts in
the instantiation stage in the following way: All the tokens
gTkn, pTkn, kTkn, and eTkn in each subagent of AO are
removed from their associated special places, and the
tokens are combined with the gTkn, pTkn, kTkn, and eTkn
in the primary subagent of AO. The resulting tokens gTkn,
pTkn, kTkn, and eTkn (newly generated by unifying those
tokens for each type) are put back into the special places of
the primary subagent of AO.4 Consequently, all subagents
of AO lose their abilities for reasoning, and only the primary
subagent of AO can make necessary decisions for the whole
agent object. More specifically, in the Planner module (as
shown in Fig. 3) that belongs to a subagent, the abstract
transitions make_decision, sensor, and update can never be
enabled because there are no tokens in the following special
places: Goal, Plan, and Knowledge-base. If a message tagged
as internal arrives, the transition bypass may fire and a
message token can directly go to a MPU defined in the
internal structure of the subagent if it is defined there. This
is made possible by connecting the transition bypass with
inhibitor arcs (denoted by dashed lines terminated with a
small circle in Fig. 3) from the special places Goal, Plan, and
Knowledge-base. So, the transition bypass can only be enabled
when there are no tokens in these places. In contrast to this
behavior, in the Planner module of a primary subagent,
tokens do exist in the special places Goal, Plan, and
Knowledge-base. Thus, the transition bypass will never be
enabled. Instead, the transition make_decision must fire
before an outgoing message is dispatched.

To reuse the services (i.e., MPUs and methods) defined in
a subagent, we need to introduce a new mechanism called
Asynchronous Superclass switch Place (ASP). An ASP (denoted
by an ellipsis in Fig. 3) is similar to a MSP, but with the
difference that an ASP is used to forward a message or a
method call to a subagent rather than to send a message to
an agent object. For the MSP mechanism, the receiver could
be some other agent object or the agent object itself. In the
case of MSP(self), a message token is always sent to the GSP
of the primary subagent. However, for ASP(super), a
message token is forwarded to the GSP of a subagent that
is referred to by super. In the case of single inheritance,
super refers to a unique superclass G-net, however with
multiple inheritance, the reference of super must be
resolved by searching the class hierarchy diagram.

When a message/method is not defined in an agent
subclass model, the dispatching mechanism will deposit the
message token into a corresponding ASP(super). Conse-
quently, the message token will be forwarded to the GSP of
a subagent, and it will be again dispatched. This process can
be repeated until the root subagent is reached. In this case, if

XU AND SHATZ: A FRAMEWORK FOR MODEL-BASED DESIGN OF AGENT-ORIENTED SOFTWARE 21

4. The process of generating the new token values would involve actions
such as conflict resolution among goals, plans or knowledge-bases, which is
a topic outside the scope of our model and this paper.



the message is still not defined at the root, an exception
occurs. In this paper, we do not provide exception handling
for our agent models (from now on, we will call them agent-
oriented G-net models instead of agent-based G-net models),
and we assume that all incoming messages have been
correctly defined in the primary subagent or some other
subagents.

3 EXAMPLES OF AGENT-ORIENTED DESIGN

3.1 A Hierarchy of Agents in an Electronic
Marketplace

Consider an agent family in an electronic marketplace
domain. Fig. 4 shows the agents in a UML class hierarchy
notation. A shopping agent class is defined as an abstract
agent class that has the ability to register in a marketplace
through a facilitator, which serves as a well-known agent
in the marketplace. A shopping agent class cannot be
instantiated as an agent object; however, the functionality
of a shopping agent class can be inherited by an agent
subclass, such as a buying agent class or a selling agent
class. Both the buying agent and selling agent may reuse
the functionality of a shopping agent class by registering

themselves as a buying agent or a selling agent through a
facilitator. Furthermore, a retailer agent is an agent that can
sell goods to a customer, but it also needs to buy goods
from some selling agents. Thus, a retailer agent class is
designed as a subclass of both the buying agent class and
the selling agent class. In addition, a customer agent class
may be defined as a subclass of a buying agent class, and
an auctioneer agent class may be defined as a subclass of a
selling agent class. In the next section, we will explicitly
model three types of agent class, i.e., the shopping agent
class, the buying agent class and the selling agent class. The
modeling of the retailer agent class, the customer agent
class and the auctioneer agent class can be done in a
similar way.

3.2 Modeling Agents in an Electronic Marketplace

To illustrate the processes for design of agents by using
agent-oriented G-net models, we use the following exam-
ples. Fig. 5a depicts a template of a contract net protocol [29]
expressed as an agent UML (AUML) sequence diagram [26]
for a registration-negotiation protocol between a shopping
agent and a facilitator agent. Note that, although AUML is
on the way to be standarized, many researchers have
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Fig. 4. The class hierarchy diagram of agents in an electronic marketplace.

Fig. 5. Contract net protocols (a) A template for the registration protocol. (b) A template for the price-negotiation protocol. (c) An example of the

price-negotiation protocol.



attempted to exploit UML to support design of multiagent
systems [30], [31], [26]. Fig. 5b is a modified example of a
contract net protocol adapted from [26], which depicts a
template of a price-negotiation protocol between a buying
agent and a selling agent. Fig. 5c shows an example of price-
negotiation contract net protocol that is instantiated from
the protocol template in Fig. 5b. Some of the notations of
AUML are adapted from [26] as extensions of UML
sequence diagrams for agent design. In addition, to
correctly draw the sequence diagram for the protocol
templates, we introduce two new notations, i.e., the end
of protocol operation “.” and the iteration of communica-
tion operation “*”. Examples of using these two notations
are as follows: In Fig. 5a, we put a mark of “.” in front of the
message name “refuse” to indicate that this message ends
the protocol. In Fig. 5b, a mark “*” is put on the right corner
of the narrow rectangle for the message “propose” to indicate
that the communication actions in this section can be
repeated zero or more times.

Consider Fig. 5a. When a conversation based on a
contract net protocol begins, the shopping agent sends a
request for registration to a facilitator agent. The facilitator
agent can then choose to respond to the shopping agent by
refusing its registration or requesting agent information.
Here, the “x” in the decision diamond indicates an
exclusive-or decision. If the facilitator refuses the registra-
tion based on the marketplace’s size, the protocol ends;
otherwise, the facilitator agent waits for agent information
to be supplied. If the agent information is correctly
provided, the facilitator agent then still has a choice of
either accepting or rejecting the registration based on the
shopping agent’s reputation and the marketplace’s func-
tionality. Again, if the facilitator agent refuses the registra-
tion, the protocol ends; otherwise, a confirmation message
will be provided afterwards. Similarly, the price-negotiation
between a buying agent and a selling agent is clearly
illustrated in Fig. 5b.

Based on the communicative acts (e.g., request-registra-
tion, refuse, etc.) needed for the contract net protocol in
Fig. 5a, we may design the shopping agent class as in Fig. 6.
The Goal, Plan, Knowledge-base, and Environment modules
remain as abstract units and can be refined in a more
detailed design stage. The Planner module may reuse the
template shown in Fig. 3. The design of the facilitator agent
class is similar, however, it may support more protocols and
should define more MPUs and methods in its internal
structure.

With inheritance, a buying agent class, as a subclass of a
shopping agent class, may reuse MPUs/methods defined in a
shopping agent class’s internal structure. Similarly, based
on the communicative acts (e.g., request-price, refuse, etc.)
needed for the contract net protocol in Fig. 5b, we may
design the buying agent class as in Fig. 7. Note that we do
not define the MPUs of refuse and confirm in the internal
structure of the buying agent class, for they can be inherited
from the shopping agent class. A selling agent class or a
retailer agent class can be designed in the same way. In
addition to their own MPU/methods, a selling agent class
inherits all MPU/methods of the shopping agent class and a
retailer agent class inherits all MPU/methods of both the
buying agent class and the selling agent class.

Now, we discuss an example to show how the reuse of
MPU/methods works. Consider a buying agent object BO,
which receives a message of request-info from a facilitator
agent object FO. An mTkn token will be deposited in the
GSP of the primary subagent of BO, i.e., the GSP of the
corresponding buying agent class (BC). The transition
external in BC’s Planner module may fire and the mTkn will
be moved to the place dispatch_incoming_message. Since
there is no MPU for request-info defined in the internal
structure of BC, the mTkn will be moved to the ASP(super)
place. Since super here refers to a unique superclass—the
shopping agent class (SC)—the mTkn will be transferred to
the GSP of SC. Now, the mTkn can be correctly dispatched
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to the MPU for request-info. After the message is processed,

MSP(self) changes the tag of the mTkn from external to

internal and sends the processed mTkn token back into the

GSP of BC. Note that MSP(self) always sends a mTkn back

to the GSP of the primary subagent. Upon the arrival of this

message token, the transition internal in the Planner module

of BC may fire and the mTkn token will be moved to the

place check_primary. Since BC corresponds to the primary

subagent of BO, there are tokens in the special places Goal,

Plan, Knowledge-base, and Environment. Therefore, the

abstract transition make_decision may fire and any necessary

actions are executed in place next_action. Then, the current

conversation is either ignored or continued based on the

decision made in the abstract transition make_decision. If the

current conversation is ignored, the goals, plans, and

knowledge-base are updated as needed; otherwise, in

addition to the updating of goals, plans, and knowledge-

base, a newly constructed mTkn with a tag of internal is

deposited into place dispatch_outgoing_message. The new

mTkn token has the message name supply-info, following the

protocol defined in Fig. 5a. Again, there is no MPU for

supply-info defined in BC, so the new mTkn token will be

dispatched into the GSP of SC. Upon the arrival of the mTkn

in the GSP of SC, the transition internal in the Planner

module of SC may fire. However, at this time, SC does not

correspond to the primary subagent of BO, so all the tokens

in the special places of Goal, Plan, and Knowledge-base have

been removed. Therefore, the transition bypass is enabled.

When the transition bypass fires, the mTkn token will be

directly deposited into the place dispatch_outgoing_message,

and now the mTkn token can be correctly dispatched into

the MPU for supply-info defined in SC. After the message is

processed, the MSP(G’.Aid) mechanism changes the tag of

the mTkn token from internal to external and transfers the

mTkn token to the GSP of the receiver agent, in this case, the

facilitator agent.

For the reuse of private utility functions defined in a
superclass, the situation is the same as in the case of object-
oriented design. In addition, there are three different forms
of inheritance that are commonly used, namely, augment
inheritance, restrictive inheritance, and refinement inheri-
tance. The usage of these three forms of inheritance in
agent-oriented design is also similar to that in object-
oriented design. Examples concerning reuse of private
utility functions and different forms of inheritance can be
found in [23].

With single inheritance, the super in ASP(super) in an
agent object AO, as an instance of an agent class A, refers to
the subagent of AO, which corresponds to the unique
superclass of A. However, with multiple inheritance, super

may refer to any one of the subagents, which corresponds to
a superclass or an ancestor classes of A. One way to resolve
the reference of super is to use a modified breadth-first-
search of the inheritance hierarchy graph to find the
appropriate reference of super. Due to lack of space, we
do not discuss further details on this issue.

4 ANALYSIS OF AGENT-ORIENTED MODELS

One of the advantages of building a formal model for agents
in agent-oriented design is to help ensure a correct design
that meets certain specifications and system requirements.
A correct agent design should meet certain key require-
ments, such as liveness, deadlock freeness, and concur-
rency. Also, certain properties, such as the inheritance
mechanism, need to be verified to ensure its correct
functionality. Petri nets offer a promising, tool-supported
technique for checking the logic correctness of a design. In
this section, we use a Petri net tool, called INA (Integrated
Net Analyzer) [32], to analyze and verify our agent models.
We use an example of a simplified Petri net model for the
interaction between a single buying agent and two selling
agents.
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The INA tool is an interactive analysis tool that

incorporates a large number of powerful methods for

analysis of Petri nets [32]. These methods include analysis

of 1) structural properties, such as structural boundedness,

and T- and P-invariant analysis; 2) behavioral properties,

such as boundedness, safeness, liveness, and deadlock-

freeness; and 3) model checking, such as checking Compu-

tation Tree Logic (CTL) formulas. These analyses employ

various techniques, such as linear-algebraic methods (for

invariants), reachability and coverability graph traversals.

Here we focus on behavioral property verification by model

checking.

4.1 A Simplified Petri Net Model for a Buying Agent
and Two Selling Agents

The interaction of one buying agent and two selling agents

can be modeled as a net as in Fig. 8. Table 1 and Table 2

provide a legend that identifies the meaning associated

with each place and transition in Fig. 8. To derive this net

model, we use a GSP place to represent each selling agent.

This is practical because an agent-oriented G-net model can

be abstracted as a single GSP place, and agent models can

only interact with each other through GSP places. Mean-

while, the net for the buying agent, whose class is a subclass

of a shopping agent class, is simplified as follows:
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1. Since the special places of Goal, Plan, and Knowledge-

base have the same interfaces with the planner

module in an agent class, we fuse them into one

single place goal/plan/kb. Furthermore, we simplify

this fused place goal/plan/kb and the place of

environment as ordinary places with ordinary tokens.

2. We omit the private utilities sections in both the

shopping subagent model and the buying primary

subagent model. Thus, to obtain our simplified

model, we do not need to translate the ISP

mechanism, although such a translation to a Petri

net form can be found in [21].
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Legend for Fig. 8 (Description of Places)

TABLE 2
Legend for Fig. 8 (Description of Transitions)



3. We simplify mTkn tokens as ordinary tokens.
Although this simplification will cause the reach-
ability graph of our transformed Petri net to become
larger, this simplifies the message tokens, allowing
us to ignore message details, which is appropriate
for the purpose in this paper (we will explain it
further in Section 4.3).

4. We use net reduction (i.e., net transformation rules
[33]) to simplify the Petri net corresponding to an
MPU/Method as a single place. For instance, the MPU
identified as propose in Fig. 7 is represented as place
P25 in Fig. 8.

5. We use the closed-world assumption and consider a
system that only contains three agents, i.e., a buyer
agent and two seller agents. We assume that a
buying agent initiates a conversation. A system that
contains more than three agents can be verified by
the same technique.

4.2 Deadlock Detection and Redesign of
Agent-Oriented Models

Now, we use the INA tool to analyze the simplified agent

model illustrated in Fig. 8. To reduce the state space, we

further reduce the net by fusing the MPUs in the same

incoming/outgoing message section. For instance, in Fig. 8, we

fuse the places P8, P9, P10, and P11 into one single places.

Obviously, this type of net reduction [33] does not affect the

properties of liveness, deadlock-freeness, and the correct-

ness of inheritance mechanism. In addition, we set the

capacity of each place in our net model as 1, which means at

any time, some processing units, such as MPUs, can only

process one message. However, the property of concur-

rency is still preserved because different transitions can be

simultaneously enabled (and not in conflict); providing the

standard Petri net notion of concurrency based on the

interleaved semantics. For example, transitions t25 and t27

can be simultaneously enabled, representing that message

processing for a conversation and decision-making for

another conversation can happen at the same time.
To verify the correctness of our agent model, we utilize

some key definitions for Petri net behavior properties as

adapted from [18].

Definition 4.1 Reachability. In a Petri net N with initial

marking M0, denoted as ðN;M0Þ, a marking Mn is said to be

reachable from a marking M0 if there exists a sequence of

firings that transforms M0 to Mn. A firing or occurrence

sequence is denoted by � ¼M0 t1 M1 t2 M2 . . . tn Mn or

simply � ¼ t1t2 . . . tn. In this case, Mn is reachable from M0

by � and we write M0½� > Mn.

Definition 4.2 Boundedness. A Petri net ðN;M0Þ, is said to be

k-bounded or simply bounded if the number of tokens in

each place does not exceed a finite number k for any marking

reachable from M0. A Petri net ðN;M0Þ is said to be safe if it is

1-bounded.

Definition 4.3 Liveness. A Petri net ðN;M0Þ, is said to be live

if for any marking M that is reachable from M0, it is possible

to ultimately fire any transition of the net by progressing some

further firing sequence.

Definition 4.4 Reversibility. A Petri net ðN;M0Þ is said to be
reversible if, for each marking M that is reachable from the
initial marking M0, M0 is reachable from M.

With our net model in Fig. 8 as input, the INA tool
produces the following results:

Computation of the reachability graph

States generated: 8193

Arcs generated: 29701

Dead states:

484, 485,8189

Number of dead states found: 3

The net has dead reachable states.

The net is not live.

The net is not live and safe.

The net is not reversible (resetable).

The net is bounded.

The net is safe.

The following transitions are dead at the

initial marking:

7, 9, 14, 15, 16, 17, 20, 27, 28, 32, 33

The net has dead transitions at the initial

marking.

The analysis shows that our net model is not live and the
dead reachable states indicate a deadlock. By tracing the
firing sequence for those dead reachable states, we find that
when there is a token in place P29, both the transitions t34
and t35 are enabled. At this time, if the transition t35 fires, a
token will be deposited into place P30. After firing
transition t40, the token removed from place P24, by firing
transition t29, will return to place P24, and this makes it
possible to fire either transition t27 or t29 in a future state.
However, if the transition t34 fires, instead of firing
transition t35, there will be no tokens returned to place
P24. So, transition t27 and t29 will be disabled forever and a
deadlock situation occurs. To correct this error, we need to
modify the design of the planner module in Fig. 3. The
model modification is to add a new arc from transition
start_a_conversation to place syn. Correspondingly, we add
two new arcs in Fig. 8: an arc from transition t16 to place P7,
and another arc from transition t34 to place P24. After this
correction, we can again evaluate the revised net model by
using the INA tool. Now, we obtain the following results:

Computation of the reachability graph

States generated: 262143

Arcs generated: 1540095

The net has no dead reachable states.

The net is bounded.

The net is safe.

The following transitions are dead at the

initial marking:

7, 9, 14, 15, 16, 17, 20, 28

The net has dead transitions at the initial

marking.

Liveness test:
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Warning: Liveness analysis refers to the net

where all dead transitions are ignored.

The net is live, if dead transitions are

ignored.

The computed graph is strongly connected.

The net is reversible (resetable).

This automated analysis shows that our modified net

model is live, ignoring, of course, any transitions that are

dead in the initial marking. Thus, for any marking M that is
reachable from M0, it is possible to ultimately fire any

transition (except those dead transitions) of the net. Since
the initial marking M0 represents that there is no ongoing

(active) conversations in the net, a marking M that is

reachable from M0, but where M 6¼M0, implies that there
must be some conversations active in the net. By showing

that our net model is live, we prove that, under all

circumstances (no matter if there are, or are not, any active
conversations), it is possible to eventually perform any

needed future communicative act. Consider the dead
transitions t7, t9, t14, t15, t16, t17, and t20. These imply

that the decision-making units in the shopping subagent are

disabled. The remaining dead transition, t28, implies that
the primary subagent always makes decisions for the whole

buying agent.
Our net model is safe because we have set the capacity of

each place in our model to 1. A net model with capacity
k ðk > 1Þ for each place can be proved to be k-bounded in

the same way. However, the state space may increase
dramatically.

In addition, the analysis tells us that our net model is
reversible, indicating that the initial marking M0 can be

reproduced (recall Definition 4.4, given earlier). Since the
initial marking M0 represents that there are no ongoing

(active) conversations in the net, the reversible property

proves that every conversation in the net can be eventually
completed.

4.3 Property Verification by Model Checking

To further prove additional behavioral properties of our

revised net model, we use some model checking capabil-
ities provided by the INA tool. Model checking is a

technique in which the verification of a system is carried

out by using a finite representation of its state space. Basic
properties, such as an absence of deadlock or satisfaction of

a state invariant (e.g., mutual exclusion), can be verified by

checking individual states. More subtle properties, such as
guarantee of progress, require checking for specific cycles

in a graph representing the states and possible transitions
between them. Properties to be checked are typically

described by formulae in a branching time or linear time

temporal logic [34], [35].
The INA tool allows us to state properties in the form of

CTL formulae [32], [34]. Using this notation, we can specify

and verify some key properties of our revised net model,

such as concurrency, mutual exclusion, and proper inheri-
tance behavior:

. Concurrency. The following formula says that, in the
reachability graph of our revised net model, there

exists a path that leads to a state in which all the
places P5, P13, P22, and P28 are marked.

EF(P5 &(P13 &(P22 &P28)))

Result: The formula is TRUE

Result explanation: A TRUE result indicates that all
the places P5, P13, P22, and P28 can be marked at the
same time. From Fig. 8 and Table 1, we see that
incoming/outgoing messages are dispatched in
these places. So, the result implies that different
messages can be dispatched in our net model
concurrently.

. Mutual Exclusion. The following formula says that, in
the reachability graph of our revised net model,
there exists a path that leads to a state in which both
places P27 and P30, or both places P29 and P30, are
marked.

EF((P27 &P30) V (P29 &P30))

Result: The formula is FALSE

Result explanation: A FALSE result indicates that it
is impossible to mark both places P27 and P30, or
both places P29 and P30, at the same time. From
Fig. 8 and Table 1, we see that place P27 represents
any actions executed after decision-making, and
place P30 is used for updating the plan, goal, and
knowledge-base. Thus, this result guarantees that
decisions can only be made upon the latest mental
state, i.e., the latest values in plan, goal, and
knowledge-base modules. Similarly, the fact that
P29 and P30 cannot be marked at the same time
guarantees the requirement that the sensor can
always capture the latest mental state.

. Inheritance Mechanism (decision-making in subagent).
The following formula says that, in the reachability
graph of our revised net model, P12, P14, and P15
are not marked in any state on all paths.

AG(-P12 &(-P14 &-P15))

Result: The formula is TRUE

Result explanation: A TRUE result indicates that
places P12, P14, and P15 are not marked under any
circumstance. From Fig. 8 and Table 1, we see that
P12, P14, and P15 belong to decision-making units in
the shopping subagent. As we stated earlier, all
decision-making mechanisms in subagents should
be disabled, with all decision-makings for an agent
being achieved by the primary subagent. So, the
result implies a desirable feature of the inheritance
mechanism in our net model.

. Inheritance Mechanism (ASP message forwarding I). The
following formula says that, in the reachability
graph of our revised net model, P26 or P34 are
always marked before P5 or P6 is marked.

A[(P26 VP34)B(P5 VP6)]

Result: The formula is TRUE

Result explanation: A TRUE result indicates that
neither place P5 nor P6 can become marked before
the place P26 or P34 is marked. From Fig. 8 and
Table 1, we see that place P26 and P34 represent ASP
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places and P5 and P6 represent the message
dispatching units. The result implies that messages
will never be dispatched in a shopping subagent
unless a MPU is not found in the primary buying
subagent, in which case, either the ASP place P26 or
P34 will be marked.

. Inheritance Mechanism (ASP message forwarding II).
The following formula says that, in the reachability
graph of our revised net model, P26 (P34) is always
marked before P5 (P6) is marked.

A[P26 BP5]VA[P34 BP6]

Result: The formula is FALSE

Result explanation: We expect that, for every
incoming (outgoing) message, if it is not found in
the primary buying subagent, it will be forwarded to
the shopping agent, and dispatched into a MPU of
the incoming (outgoing) message section. However,
the FALSE result indicates that our net model does
not work as we have expected. By looking into the
generic agent model, we can observe that when we
created the net model in Fig. 8, we simplified all
message tokens as ordinary tokens, i.e., black tokens.
This simplification makes it possible for an incoming
(outgoing) message to be dispatched into an out-
going (incoming) message section. Therefore, a
message might be processed by a MPU that is not
the desired one. To solve this problem, we may use
colored tokens, instead of ordinary tokens, to
represent message tokens, and attach guards to
transitions. However, in this paper, by using
ordinary place/transition net (not a colored net),
we obtain a simplified model that is sufficient to
illustrate our key concepts.

5 CONCLUSION AND FUTURE WORK

One of the most rapidly growing areas of interest for
distributed computing is that of distributed agent systems.
Although there are several implementations of multiagent
systems available, formal frameworks for such systems are
few. Formal methods in multiagent system specification
and design can help to ensure robust and reliable products.

In this paper, we introduced an agent-oriented model
rooted in the Petri net formalism, which provides a
foundation that is mature in terms of both existing theory
and tool support. An example of an agent family in
electronic commerce was used to illustrate the modeling
approach. Models for a shopping agent, selling agent,
buying agent, and retailer agent were presented, with
emphasis on the characteristics of being autonomous,
reactive and internally-motivated. Our agent-oriented mod-
els also provide a clean interface between agents and agents
may communicate with each other by using contract net
protocols. By the example of registration-negotiation pro-
tocol between shopping agents and facilitator agents, and
the example of a price-negotiation protocol between
shopping agents and buying agents, we illustrated how to
create agent models and how to reuse functionality defined
in an agent superclass. We also discussed how to verify
liveness properties of our net model by using an existing
Petri net tool, the INA tool. The value of such an automated

analysis capability was demonstrated by detection of a
deadlock situation due to a design error. The revised model
was then proved to be both live and reversible. Finally, some
model checking techniques were used to prove some
additional behavioral properties for our model, such as
concurrency, mutual exclusion, and correctness of the
inheritance mechanism. Although we proved some key
behavioral properties of our agent model, our formal
method approach is also of value in creating a clear
understanding of the structure of an agent, which can
increase confidence in the correctness of a particular
multiagent system design. Also, in producing a more
detailed design, where the abstract transitions in the
planner module are refined, we may again use Petri net
tools to capture further design errors.

For our future work, we will consider the refinements of
the Goal, Plan, Knowledge-base, and Environment modules.
Also, the abstract transitions defined in the Planner module,
i.e., make_decision, sensor, and update, can be refined into
correct sub-nets that capture action sequences specific to
those activities. This work will provide a bridge to other
work concerned with such agent activities [36], [37], [38].
We will also look further into issues like deadlock
avoidance and state exploration problems in the agent-
oriented design and verification processes.
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