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Abstract 

 

Agents are becoming one of the most important topics in distributed and autonomous decentralized 

systems, and there are increasing attempts to use agent technologies to develop large-scale commercial and 

industrial software systems. The complexity of such systems suggests a pressing need for system modeling 

techniques to support reliable, maintainable and extensible design. G-nets are a type of Petri net defined to 

support system modeling in terms of a set of independent and loosely-coupled modules. In this paper, we 

customize the basic G-net model to define a so-called “agent-based G-net” that can serve as a generic 

model for agent design. Then to progress from an agent-based design model to an agent-oriented model, 

new mechanisms to support inheritance modeling are introduced. To ill ustrate our formal modeling 

technique for multi -agent systems, an example of an agent family in electronic commerce is provided. 

Finally, we demonstrate how we can use model checking to verify some key behavioral properties of our 

agent model. This is facilit ated by the use of an existing Petri net tool. 
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1. Introduction 

 

Over the past decade, research and development efforts in computer science have increasingly embraced 

the concept of software agents and multi -agent systems. One key reason is that the idea of an agent as an 

autonomous system, capable of interacting with other agents in order to satisfy its design objectives, is a 

naturally appealing one for software designers. This has led to the growth of interest in agents as a new 

design-paradigm for software engineering [1]. 

                                                           
1 This material is based upon work supported by the U.S. Army Research Off ice under grant number 
DAAD19-99-1-0350, and the U.S. National Science Foundation under grant number CCR-9988168. 
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Applications that can most directly benefit from an agent-oriented design are typically structured as multi -

agent systems (MAS), which are usually defined as a concurrent system based on the notion of 

autonomous, reactive and internally-motivated agents in a decentralized environment [2]. One example of 

such an application is intelli gent team training environments [3]. Many of the technologies supporting 

multi -agent systems stem from distributed artificial intelli gence (DAI) research [4]. The increasing interest 

in MAS research is due to the significant advantages inherent in such systems, including their abilit y to 

solve problems that may be too large for a centralized single agent, to provide enhanced speed and 

reliabilit y, and to tolerate uncertain data and knowledge [4].  

 

Although there are many efforts aimed at developing multi -agent systems, there is sparse research on 

formal specification and design of such systems [5][6]. As multi -agent technology begins to emerge as a 

viable solution for large-scale applications, there is an increasing need to ensure that the systems being 

developed are robust, reliable and fit for purpose [7]. Previous work on formal modeling agent systems 

includes: (1) using formal languages, such as Z, to provide a framework for describing the agent 

architecture at different levels of abstractions [8]; (2) using temporal logics and multi -modal logics to 

represent individual agent behaviors where the representations can be executed directly, e.g., Fisher’s work 

on Concurrent METATEM [9], and (3) designing formal languages, such as DESIRE and SLABS, for 

specifying agent-based systems [10][11]. Although these formalisms are claimed to be agent specifications, 

they are not oriented for software engineering in terms of providing a modeling notation that directly 

supports software development. For instance, as stated in paper [12], formalisms such as temporal logics 

and multi -modal logics are often abstract and quite distant from agents that have actually been 

implemented. There are previous efforts to narrow the gap between agent formal models and agent-based 

practical systems, e.g., to use formal approaches for prototyping and simulation of multi -agent systems 

[13]; however, it is still hard to apply these formal methods directly to agent implementation. In contrast, 

our approach is explicitly oriented for specifying and defining the design architecture of multi -agent 

software systems. Also, unlike most previous work, our approach exploits the principle of “separation of 

concerns” in an agent-oriented design, similar to the basic idea proposed for some distributed object 

architectures that define a meta agent (on top of a base-level object) to handle non-functional requirements 

[14]. Specifically, we separate the traditional object-oriented features and reasoning mechanisms in our 

agent-oriented software model, and we discuss how reuse can be achieved in terms of functional units in 

agent-oriented design. While some have advocated that inheritance has limited value in conceptual models 

of agent behavior [15], we ill ustrate a useful role for inheritance in our agent-oriented models. Our agent-

based model is derived from the general agent model given in [16], and the extensions that create an agent-

oriented model are derived from the framework presented in [17]. At the heart of our approach is the use of 

a model that is rooted in the Petri net formalism [18]. As such, this work is complementary to other 

research efforts that use Petri nets to model the mental states of agents as part of an architecture for multi -

agent simulation [19].                                                                                                                                                                                                                                                                                                                                                                                                                  
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The rest of this paper is organized as follows. Section 2 begins with a brief introduction to the standard G-

net model, an object-based Petri net notation. It then presents the general structure of the proposed agent-

based G-net model based on BDI models [20], and discusses how inheritance modeling can be integrated 

into agent-based G-net models. Section 3 provides an example agent family in electronic commerce to 

ill ustrate our approach to agent design and inheritance modeling. Section 4 verifies some behavioral 

properties of our agent model by using Petri net theory and an existing Petri net tool. Finally, Section 5 

provides a brief conclusion and mentions future work. 

 

2. An Agent-Or iented Model 

 

2.1 The Standard G-Net Model 

 

A widely accepted software engineering principle is that a system should be composed of a set of 

independent modules, where each module hides the internal details of its processing activities and modules 

communicate through well -defined interfaces. The G-net model provides strong support for this principle 

[21][22]. G-nets are an object-based extension of Petri nets, which is a graphically defined model for 

concurrent systems. Petri nets have the strength of being visually appealing, while also being theoretically 

mature and supported by robust tools. We assume that the reader has a basic understanding of Petri nets 

[18]. But, as a general reminder, we note that Petri nets include three basic entities: place nodes 

(represented graphically by circles), transition nodes (represented graphically by solid bars), and directed 

arcs that can connect places to transitions or transitions to places. Furthermore, places can contain markers, 

called tokens, and tokens may move between place nodes by the “ firing” of the associated transitions. The 

state of a Petri net refers to the distribution of tokens to place nodes at any particular point in time (this is 

sometimes called the marking of the net). We now proceed to discuss the basics of standard G-net models. 

 

A G-net system is composed of a number of G-nets, each of them representing a self-contained module or 

object. A G-net is composed of two parts: a special place called Generic Switch Place (GSP) and an 

Internal Structure (IS). The GSP provides the abstraction of the module, and serves as the only interface 

between the G-net and other modules. The IS, a modified Petri net, represents the design of the module. An 

example of G-nets is shown in Figure 1. Here the G-net models represent two objects – a Buyer and a 

Seller. The generic switch places are represented by GSP(Buyer) and GSP(Seller) enclosed by elli pses, and 

the internal structures of these models are represented by round-cornered rectangles that contain four 

methods: buyGoods(), askPrice(), returnPrice() and sellGoods(). The functionality of these methods are 

defined as follows: buyGoods() invokes the method sellGoods() defined in G-net Seller to buy some goods; 

askPrice() invokes the method returnPrice() defined in G-net Seller to get the price of some goods; 

returnPrice() is defined in G-net Seller to calculate the latest price for some goods and sellGoods() is 
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defined in G-net Seller to wait for the payment, ship the goods and generate the invoice. A GSP of a G-net 

G contains a set of methods G.MS specifying the services or interfaces provided by the module, and a set of 

attributes, G.AS, which are state variables.  In G.IS, the internal structure of G-net G, Petri net places 

represent primitives, while transitions, together with arcs, represent connections or relations among those 

primitives. The primitives may define local actions or method calls. Method calls are represented by special 

places called Instantiated Switch Places (ISP). A primitive becomes enabled if it receives a token, and an 

enabled primitive can be executed. Given a G-net G, an ISP of G is a 2-tuple (G’ .Nid, mtd), where G’  could 

be the same G-net G or some other G-net, Nid is a unique identifier of G-net G’ , and mtd ∈ G’.MS. Each 

ISP(G’ .Nid, mtd) denotes a method call mtd() to G-net G’ . An example ISP (denoted as an elli psis in Figure 

1) is shown in the method askPrice() defined in G-net Buyer, where the method askPrice() makes a method 

call returnPrice() to the G-net Seller to query about the price for some goods. Note that we have 

highlighted this call i n Figure 1 by the dashed-arc, but such an arc is not actually a part of the static 

structure of G-net models. In addition, we have omitted all function parameters for simplicity.   

 
 
 
 GSP(Buyer) 

ISP(Seller, 
sellGoods()) 

   buyGoods() askPrice() 

t1 

t2 

ISP(Seller, 
returnPrice()) 

t3 

t4 

returnPrice() 

calculate_ 
price 

sell_ 
goods 

sellGoods() 

GSP(Seller) 

t8 

t7 

t6 

t5 

 

 

Figure 1. G-net model of buyer and seller objects 

 

From the above description, we can see that a G-net model essentially represents a module or an object 

rather than an abstraction of a set of similar objects. In a recent paper [23], we defined an approach to 

extend the G-net model to support class modeling. The idea of this extension is to generate a unique object 

identifier, G.Oid, and initialize the state variables when a G-net object is instantiated from a G-net G. An 

ISP method invocation is no longer represented as the 2-tuple (G’ .Nid, mtd), instead it is the 2-tuple 

(G’ .Oid, mtd), where different object identifiers could be associated with the same G-net class model. 

 

The token movement in a G-net object is similar to that of original G-nets [21]. A token tkn is a triple (seq, 

sc, mtd), where seq is the propagation sequence of the token, sc ∈ { before, after} is the status color of the 
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token and mtd is a triple (mtd_name, para_list, result). For ordinary places, tokens are removed from input 

places and deposited into output places by firing transitions. However, for the special ISP places, the output 

transitions do not fire in the usual way. Recall that marking an ISP place corresponds to making a method 

call . So, whenever a method call i s made to a G-net object, the token deposited in the ISP has the status of 

before. This prevents the enabling of associated output transitions. Instead the token is “processed” (by 

attaching information for the method call ), and then removed from the ISP. Then an identical token is 

deposited into the GSP of the called G-net object. So, for example, in Figure 1, when the Buyer object calls 

the returnPrice() method of the Seller object, the token in place ISP(Seller, returnPrice()) is removed and a 

token is deposited into the GSP place GSP(Seller). Through the GSP of the called G-net object, the token is 

then dispatched into an entry place of the appropriate called method, for the token contains the information 

to identify the called method. During “execution” of the method, the token will reach a return place 

(denoted by double circles) with the result attached to the token. As soon as this happens, the token will 

return to the ISP of the caller, and have the status changed from before to after. The information related to 

this completed method call i s then detached. At this time, output transitions (e.g., t4 in Figure 1) can 

become enabled and fire. 

 

We call a G-net model that supports class modeling a standard G-net model. Notice that the example we 

provide in Figure 1 follows the Client-Server paradigm, in which a Seller object works as a server and a 

Buyer object is a client. Further details about G-net models can be found in references [21][22][23].  

 

2.2 An Architecture for Agent-Based Modeling 

 

Although the standard G-net model works well i n object-based design, it is not suff icient in agent-based 

design for the following reasons. First, agents that form a multi -agent system may be developed 

independently by different vendors, and those agents may be widely distributed across large-scale networks 

such as the Internet. To make it possible for those agents to communicate with each other, it is desirable for 

them to have a common communication language and to follow common protocols. However the standard 

G-net model does not directly support protocol-based language communication between agents. Second, 

the underlying agent communication model is usually asynchronous, and an agent may decide whether to 

perform actions requested by some other agents. The standard G-net model does not directly support 

asynchronous message passing and decision-making, but only supports synchronous method invocations in 

the form of ISP places. Third, agents are commonly designed to determine their behavior based on 

individual goals, their knowledge and the environment. They may autonomously and spontaneously initiate 

internal or external behavior at any time. The standard G-net models can only directly support a predefined 

flow of control. 
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To support agent-based design, we need to extend a G-net to support modeling an agent class2. The basic 

idea is similar to extending a G-net to support class modeling for object-based design [23]. When we 

instantiate an agent-based G-net (an agent class model) G, an agent identifier G.Aid is generated and the 

mental state of the resulting agent object (an active object [7]) is initialized. In addition, at the class level, 

five special modules are introduced to make an agent autonomous and internally-motivated. They are the 

Goal module, the Plan module, the Knowledge-base module, the Environment module and the Planner 

module. Note that the Goal, Plan and Knowledge-base module are based on the BDI agent model proposed 

by Kinny and his colleagues [20].  

 

The template for an agent-based G-net model is shown in Figure 2. We describe each of the additional 

modules as follows. A Goal module is an abstraction of a goal model [20], which describes the goals that 

an agent may possibly adopt, and the events to which it can respond. It consists of a goal set which 

specifies the goal domain and one or more goal states. A Plan module is an abstraction of a plan model [20] 

that consists of a set of plans, known as a plan set. A plan may be intended or committed, and only 

committed plans will be achieved. A Knowledge-base module is an abstraction of a belief model [20], 

which describes the information about the environment and internal state that an agent of that class may 

hold. The possible beliefs of an agent are described by a belief set. An Environment module is an abstract 

model of the environment, i.e., the model of the outside world of an agent. The Environment module only 

models elements in the outside world that are of interest to the agent and that can be sensed by the agent.  

 

In the Planner module, committed plans are achieved, and the Goal, Plan and Knowledge-base modules of 

an agent are updated after the processing of each communicative act that defines the type and the content of 

a message [24][25], or if the environment changes. Thus, the Planner module can be viewed as the heart of 

an agent that may decide to ignore an incoming message, to start a new conversation, or to continue with 

the current conversation.  

 

The internal structure (IS) of an agent-based G-net consists of three sections: incoming message, outgoing 

message, and private utilit y. The incoming/outgoing message section defines a set of Message Processing 

Units (MPU), which corresponds to a subset of communicative acts. Each MPU, labeled as action_i in 

Figure 2, is used to process incoming/outgoing messages, and may use ISP-type modeling for calls to 

methods defined in its private utilit y section. Unlike with the methods defined in a standard G-net model, 

the private utilit y functions or methods defined in the private utilit y section can only be called by the agent 

itself. 

                                                           
2 We view the abstract of a set of similar agents as an agent class, and we call an instance of an agent class 
an agent or an agent object. 
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Figure 2. A generic agent-based G-net model 

 

Although both objects (passive objects) and agents use message-passing to communicate with each other, 

message-passing for objects is a unique form of method invocation, while agents distinguish different types 

of messages and model these messages frequently as speech-acts and use complex protocols to negotiate 

[7]. In particular, these messages must satisfy the format of the standardized communicative (speech) acts, 

e.g., the format of the communicative acts defined in the FIPA agent communication language, or KQML 

[24][25][26]. Note that in Figure 2, each named MPU action_i refers to a communicative act, thus our 

agent-based model supports an agent communication interface. In addition, agents analyze these messages 

and can decide whether to execute the requested action. As we stated before, agent communications are 

typically based on asynchronous message passing. Since asynchronous message passing is more 

fundamental than synchronous message passing, it is useful for us to introduce a new mechanism, called 

Message-passing Switch Place (MSP), to directly support asynchronous message passing. When a token 

reaches an MSP (we represent it as an elli psis in Figure 2), the token is removed and deposited into the GSP 

of the called agent. But, unlike with the standard G-net ISP mechanism, the calli ng agent does not wait for 

the token to return before it can continue to execute its next step. Since we usually do not think of agents as 

invoking methods of one-another, but rather as requesting actions to be performed [27], in our agent-based 

model, we restrict the usage of ISP mechanisms, so they are only used to refer to an agent itself. Thus, in 

our models, one agent may not directly invoke a method defined in another agent. All communications 

between agents must be carried out through asynchronous message passing as provided by the MSP 

mechanism.  
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A template of the Planner module is shown in Figure 33. The modules Goal, Plan, Knowledge-base and 

Environment are represented as four special places (denoted by double elli pses in Figure 3), each of which 

contains a token that represents a set of goals, a set of plans, a set of beliefs and a model of the 

environment, respectively. These four modules connect with the Planner module through abstract 

transitions, denoted by shaded rectangles in Figure 3 (e.g., the abstract transition make_decision). Abstract 

transitions represent abstract units of decision-making or mental-state-updating. At a more detailed level of 

design, abstract transitions would be refined into sub-nets; however how to make decisions and how to 

update an agent’s mental state is beyond the scope of this paper, and will be considered in our future work. 

In the Planner module, there is a unit called autonomous unit that makes an agent autonomous and 

internally-motivated. An autonomous unit contains a sensor (represented as an abstract transition), which 

may fire whenever the pre-conditions of some committed plan are satisfied or when new events are 

captured from the environment. If the abstract transition sensor fires, based on an agent’s current mental 

state (goal, plan and knowledge-base), the autonomous unit will t hen decide whether to start a conversation 

or to simply update its mental state. This is done by firing either the transition start_a_conversation or the 

transition automatic_update after executing any necessary actions associated with place new_action.  
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Figure 3. A template for the planner module (initial design) 

                                                           
3 Actually, this module purposely contains a somewhat subtle design error that is used to demonstrate the 
value of automated verification in section 4. 
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Note that the Planner module is both goal-driven and event-driven because the transition sensor may fire 

when any committed plan is ready to be achieved or any new event happens. In addition, the Planner 

module is also message-triggered because certain actions may initiate whenever a message arrives (either 

from some other agent or from the agent itself). A message is represented as a message token with a tag of 

internal/external/pr ivate. A message token with a tag of internal represents a message forwarded by an 

agent to itself with the MSP mechanism, or a newly generated outgoing message before sending to some 

other agent; while a message token with a tag of external is an incoming message which comes from some 

other agent. In either case, the message token with the tag of internal/external should not be involved in 

an invocation of a method call . In contrast, a message token with a tag of pr ivate indicates that the token is 

currently involved in an invocation of some method call . When an incoming message/method arrives, with 

a tag of external/pr ivate in its corresponding token, it will be dispatched to the appropriate MPU/method 

defined in the internal structure of the agent. If it is a method invocation, the method defined in the private 

utilit y section of the internal structure will be executed, and after the execution, the token will return to the 

calli ng unit, i.e., an ISP of the calli ng agent. However, if it is an incoming message, the message will be 

first processed by a MPU defined in the incoming message section in the internal structure of the agent. 

Then the tag of the token will be changed from external to internal before it is transferred back to the GSP 

of the receiver agent by using MSP(self). Note that we have extended G-nets to allow the use of the 

keyword self to refer to the agent object itself. Upon the arrival of a token tagged as internal in a GSP, the 

transition internal may fire, followed by the firing of the abstract transition make_decision. Note that at this 

point of time, there would exist tokens in those special places Goal, Plan and Knowledge-base, so the 

transition bypass is disabled (due to the “ inhibitor arc”4) and may not fire (the purpose of the transition 

bypass is for inheritance modeling, which will be addressed in Section 2.3). Any necessary actions may be 

executed in place next_action before the conversation is either ignored or continued. If the current 

conversation is ignored, the transition ignore fires; otherwise, the transition continue fires. If the transition 

continue fires, a newly constructed outgoing message, in the form of a token with a tag of internal, will be 

dispatched into the appropriate MPU in the outgoing message section of the internal structure of the agent. 

After the message is processed by the MPU, the message will be sent to a receiver agent by using the 

MSP(G’ .Aid) mechanism, and the tag of the message token will be changed  from internal to external, 

accordingly. In either case, a token will be deposited into place update_goal/plan/kb, allowing the abstract 

transition update to fire. As a consequence, the Goal, Plan and Knowledge-base modules are updated if 

needed, and the agent’s mental state may change. 

 

To ensure that all decisions are made upon the latest mental state of the agent, i.e., the latest values in the 

goal, plan, and knowledge-base modules, and similarly to ensure that the sensor always captures the latest 

mental state of the agent, we introduce a synchronization unit syn, modeled as a place marked with an 

                                                           
4 An inhibitor arc connects a place to a transition and defines the property that the transition associated with 
the inhibitor arc is enabled only when there are no tokens in the input place. 
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ordinary token (black token). The token in place syn will be removed when the abstract transition 

make_decision or sensor fires, thus delaying further firing of these two abstract transitions until completion 

of actions that update the values in the goal, plan and knowledge-base modules. This mechanism is 

intended to guarantee the mutual exclusive execution of decision-making, capturing the latest mental state 

and events, and updating the mental state. Note that we have used the label <e>  on each of the arcs 

connecting with the place syn to indicate that only ordinary tokens may be removed from or deposited into 

the place syn. 

 

As a result of this extension to G-nets, the structure of tokens in the agent-based G-net model should be 

redefined. In addition to the ordinary token introduced in place syn, essentially there are five types of 

colored tokens, namely the message token mTkn, the goal token gTkn, the plan token pTkn, the knowledge 

token kTkn and the environment token eTkn. One way to construct the gTkn, pTkn, kTkn and eTkn is as 

linked lists. In other words, a gTkn represents a list of goals, pTkn represents a list of plans, a kTkn 

represents a list of facts, and an eTkn represents a list of events that are of the agent’s interests. Since these 

four types of tokens confine themselves to those special places of their corresponding modules, we do not 

describe them further in this paper. 

 

A mTkn is a 2-tuple (tag, body), where tag ∈ { internal, external, pr ivate} and body is a variant, which is 

determined by the tag. According to the tag, the token deposited in a GSP will finally be dispatched into a 

MPU or a method defined in the internal structure of the agent-based G-net. Then the body of the token 

mTkn will be interpreted differently. More specifically, we define the mTkn body as follows:  

 

struct Message{  

    int sender;             // the identifier of the message sender 

    int receiver;           // the identifier of the message receiver                            

    string protocol_type;   // the type of contract net protocol 

    string name;            // the name of incoming/outgoing messages 

    string content;         // the content of this message 

};  

enum Tag {internal, external}; 

struct MtdInvocation { 

    Triple (seq, sc, mtd);  // as defined in Section 2.1 

}  

if (mTkn.tag ∈ {internal, external})  

then mTkn.body  =  struct { 

    Message msg;            // message body 

} 
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else mTkn.body =  struct {  // mTkn.tag equals to the tag: private 

    Message msg;            // message body 

    Tag old_tag;            // to record the old tag: internal/external 

    MtdInvocation miv;      // to trace method invocations   

}  

 

When mTkn.tag ∈ { internal, external} , and an ISP method call occurs, the following steps will t ake place: 

 

1. The two variables old_tag and miv are attached to the mTkn to define mTkn.body.old_tag and 

mTkn.body.miv, respectively. Then, mTkn.tag (the current tag, one of internal or external) is recorded 

into mTkn.body.old_tag, and mTkn.tag is set to pr ivate. 

2. Further method calls are traced by the variable mTkn.body.miv, which is a triple of (seq, sc, mtd). The 

tracing algorithm is defined as in the original G-net definitions [21]. 

3. After all the ISP method calls are finished and the mTkn token returns to the original ISP, the mTkn.tag 

is set back as mTkn.body.old_tag, and both the variables old_tag and miv are detached. 

 

The MSP(id) mechanism defined in an agent AO is responsible for asynchronously transferring a message 

token mTkn to the agent itself or some other agent, and for changing the tag of the message token, 

mTkn.tag, before mTkn is “sent out.” The steps for handling the message token are as follows: 

 

1. If id equals to self (in this case mTkn.tag must be external), set mTkn.tag to internal, and transfer the 

message token mTkn to the GSP place of agent AO. 

2. Else-If id equals to G'.Aid, where G'.Aid does not represent the agent AO (in this case mTkn.tag must 

be internal), set mTkn.tag to external, and transfer the message token mTkn to the GSP place of the 

agent represented by G'.Aid. 

 

We now provide a few key definitions giving the formal structure of our agent-based G-net models. 

 

Definition 2.1 Agent-based G-net 

An agent-based G-net is a 7-tuple AG = (GSP, GO, PL, KB, EN, PN, IS), where GSP is a Generic Switch 

Place providing an abstract for the agent-based G-net, GO is a Goal module, PL is a Plan module, KB is a 

Knowledge-base module, EN is an Environment module, PN is a Planner module, and IS is an internal 

structure of AG.  

 

Definition 2.2 Planner Module 

A Planner module of an agent-based G-net AG is a colored sub-net defined as a 7-tuple (IGS, IGO, IPL, 

IKB, IEN, IIS, DMU), where IGS, IGO, IPL, IKB, IEN and IIS are interfaces with GSP, Goal module, Plan 
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module, Knowledge-base module, Environment module and internal structure of AG, respectively. DMU is 

a set of decision-making unit, and it contains three abstract transitions: make_decision, sensor and update.  

 

Definition 2.3 Internal Structure (IS) 

An internal structure (IS) of an agent-based G-net AG is a triple (IM, OM, PU), where IM/OM is the 

incoming/outgoing message section, which defines a set of message processing units (MPU); and PU is the 

private utilit y section, which defines a set of methods. 

 

Definition 2.4 Message Processing Unit (MPU) 

A message processing unit (MPU) is a triple (P, T, A), where P is a set of places consisting of three special 

places: entry place, ISP and MSP. Each MPU has only one entry place and one MSP, but it may contain 

multiple ISPs. T is a set of transitions, and each transition can be associated with a set of guards. A is a set 

of arcs defined as: ((P-{ MSP} ) x T) ∪ ((T x (P-{ entry} ).  

 

Definition 2.5 Method 

A method is a triple (P, T, A), where P is a set of places with three special places: entry place, ISP and 

return place. Each method has only one entry place and one return place, but it may contain multiple ISPs. 

T is a set of transitions, and each transition can be associated with a set of guards. A is a set of arcs defined 

as: ((P-{ return} ) x T) ∪ ((T x (P-{ entry} ). 

 

2.3 Inheritance Modeling 

 

Although there are different views with respect to the concept of agent-oriented design [15], we consider an 

agent as an extension of an object, and we believe that agent-oriented design should keep most of the key 

features in object-oriented design. Thus, to progress from an agent-based model to an agent-oriented model, 

we need to incorporate some inheritance modeling capabiliti es. But inheritance in agent-oriented design is 

more complicated than in object-oriented design. Unlike an object (passive object), an agent object has 

mental states and reasoning mechanisms. Therefore, inheritance in agent-oriented design invokes two 

issues: an agent subclass may inherit an agent superclass’s knowledge, goals, plans, the model of its 

environment and its reasoning mechanisms; on the other hand, as in the case of object-oriented design, an 

agent subclass may inherit all the services that an agent superclass may provide, such as private utilit y 

functions. There is existing work on agent inheritance with respect to knowledge, goals and plans [2][28]. 

However, we believe that since inheritance happens at the class level, an agent subclass may be initialized 

with an agent superclass’s initial mental state, but new knowledge acquired, new plans made, and new 

goals generated in a individual agent object (as an instance of an agent superclass), can not be inherited by 

an agent object when creating an instance of an agent subclass. A superclass’s reasoning mechanism can be 

inherited, however it is beyond the scope of this paper. For simplicity, we assume that an instance of an 
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agent subclass (i.e., an subclass agent) always uses its own reasoning mechanisms, and thus the reasoning 

mechanisms in the agent superclass should be disabled in some way. This is necessary because different 

reasoning mechanisms may deduce different results for an agent, and to resolve this type of conflict may be 

time-consuming and make an agent’s reasoning mechanism ineff icient. Therefore, in this paper we only 

consider how to initialize a subclass agent’s mental state while an agent subclass is instantiated; 

meanwhile, we concentrate on the inheritance of services that are provided by an agent superclass, i.e., the 

MPUs and methods defined in the internal structure of an agent class. Before presenting our inheritance 

scheme, we need the following definition: 

 

Definition 2.6 Subagent and Primary Subagent 

When an agent subclass A is instantiated as an agent object AO, a unique agent identifier is generated, and 

all superclasses and ancestor classes of the agent subclass A, in addition to the agent subclass A itself, are 

initialized.  Each of those initialized classes then becomes a part of the resulting agent object AO. We call 

an initialized superclass or ancestor class of agent subclass A a subagent, and the initialized agent subclass 

A the primary subagent.  

 

The result of initializing an agent class is to take the agent class as a template and create a concrete 

structure of the agent class and initialize its state variables. Since we represent an agent class as an agent-

based G-net, an initialized agent class is modeled by an agent-based G-net with initialized state variables. 

In particular, the four tokens in the special places of an agent-based G-net, i.e., gTkn, pTkn, kTkn and eTkn, 

are set to their initial states. Since different subagents of AO may have goals, plans, knowledge and 

environment models that conflict with those of the primary subagent of AO, it is desirable to resolve them 

in an early stage. In our case, we deal with those conflicts in the instantiation stage in the following way. 

All the tokens gTkn, pTkn, kTkn and eTkn in each subagent of AO are removed from their associated special 

places, and the tokens are combined with the gTkn, pTkn, kTkn and eTkn in the primary subagent of AO.5 

The resulting tokens gTkn, pTkn, kTkn and eTkn (newly generated by unifying those tokens for each type), 

are put back into the special places of the primary subagent of AO. Consequently, all subagents of AO lose 

their abiliti es for reasoning, and only the primary subagent of AO can make necessary decisions for the 

whole agent object. More specifically, in the Planner module (as shown in Figure 3) that belongs to a 

subagent, the abstract transitions make_decision, sensor and update can never be enabled because there are 

no tokens in the following special places: Goal, Plan and Knowledge-base. If a message tagged as internal 

arrives, the transition bypass may fire and a message token can directly go to a MPU defined in the internal 

structure of the subagent if it is defined there. This is made possible by connecting the transition bypass 

with inhibitor arcs (denoted by dashed lines terminated with a small circle in Figure 3) from the special 

places Goal, Plan and Knowledge-base. So the transition bypass can only be enabled when there are no 

                                                           
5 The process of generating the new token values would involve actions such as conflict resolution among 
goals, plans or knowledge-bases, which is a topic outside the scope of our model and this paper. 
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tokens in these places. In contrast to this behavior, in the Planner module of a primary subagent, tokens do 

exist in the special places Goal, Plan and Knowledge-base. Thus, the transition bypass will never be 

enabled. Instead, the transition make_decision must fire before an outgoing message is dispatched. 

 

To reuse the services (i.e., MPUs and methods) defined in a subagent, we need to introduce a new 

mechanism called Asynchronous Superclass switch Place (ASP). An ASP (denoted by an elli psis in Figure 

3) is similar to a MSP, but with the difference that an ASP is used to forward a message or a method call to 

a subagent rather than to send a message to an agent object. For the MSP mechanism, the receiver could be 

some other agent object or the agent object itself. In the case of MSP(self), a message token is always sent 

to the GSP of the primary subagent. However, for ASP(super),  a message token is forwarded to the GSP of 

a subagent that is referred to by super. In the case of single inheritance, super refers to a unique superclass 

G-net, however with multiple inheritance, the reference of super must be resolved by searching the class 

hierarchy diagram.  

 

When a message/method is not defined in an agent subclass model, the dispatching mechanism will deposit 

the message token into a corresponding ASP(super). Consequently, the message token will be forwarded to 

the GSP of a subagent, and it will be again dispatched. This process can be repeated until the root subagent 

is reached. In this case, if the message is still not defined at the root, an exception occurs. In this paper, we 

do not provide exception handling for our agent models (from now on, we will call them agent-oriented G-

net models instead of agent-based G-net models), and we assume that all i ncoming messages have been 

correctly defined in the primary subagent or some other subagents. 

 

3. Examples of Agent-Or iented Design 

 

3.1 A Hierarchy of Agents in an Electronic Marketplace  

 

Consider an agent family in an electronic marketplace domain. Figure 4 shows the agents in a UML class 

hierarchy notation. A shopping agent class is defined as an abstract agent class that has the abilit y to 

register in a marketplace through a facilit ator, which serves as a well -known agent in the marketplace. A 

shopping agent class cannot be instantiated as an agent object; however the functionality of a shopping 

agent class can be inherited by an agent subclass, such as a buying agent class or a selli ng agent class. Both 

the buying agent and selli ng agent may reuse the functionality of a shopping agent class by registering 

themselves as a buying agent or a selli ng agent through a facilit ator. Furthermore, a retailer agent is an 

agent that can sell goods to a customer, but it also needs to buy goods from some selli ng agents. Thus a 

retailer agent class is designed as a subclass of both the buying agent class and the selli ng agent class. In 

addition, a customer agent class may be defined as a subclass of a buying agent class, and an auctioneer 

agent class may be defined as a subclass of a selli ng agent class. In the next section, we will explicitly 
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model three types of agent class, i.e., the shopping agent class, the buying agent class and the selli ng agent 

class. The modeling of the retailer agent class, the customer agent class and the auctioneer agent class can 

be done in a similar way. 

 

 
  Shopping agent 

   Customer agent 

    Buying agent       Sell ing agent 

    Retailer agent   Auctioneer agent 

 
 

Figure 4. The class hierarchy diagram of agents in an electronic marketplace 

 

3.2 Modeling Agents in an Electronic Marketplace 

 

To ill ustrate the processes for design of agents by using agent-oriented G-net models, we use the following 

examples. Figure 5 (a) depicts a template of a contract net protocol [29] expressed as an agent UML 

(AUML) sequence diagram [26] for a registration-negotiation protocol between a shopping agent and a 

facilit ator agent. Note that although AUML is on the way to be standarized, many researchers have 

attempted to exploit UML to support design of multi -agent systems [30][31][26]. Figure 5 (b) is a modified 

example of a contract net protocol adapted from [26], which depicts a template of a price-negotiation 

protocol between a buying agent and a selli ng agent. Figure 5(c) shows an example of price-negotiation 

contract net protocol that is instantiated from the protocol template in Figure 5(b). Some of the notations of 

AUML are adapted from [26] as extensions of UML sequence diagrams for agent design. In addition, to 

correctly draw the sequence diagram for the protocol templates, we introduce two new notations, i.e., the 

end of protocol operation “•” and the iteration of communication operation “*” .  Examples of using these 

two notations are as follows. In Figure 5 (a), we put a mark of “•” in front of the message name “ refuse” to 

indicate that this message ends the protocol. In Figure 5 (b), a mark “*” is put on the right corner of the 

narrow rectangle for the message “propose” to indicate that the communication actions in this section can 

be repeated zero or more times. 
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(b) 

x 

x 

* 

buying agent selling agent 

request-price 

• refuse 

accept-proposal 

reject-proposal x 

propose 

propose 

accept-proposal 

reject-proposal 

• confirm 

(a) 

accept-info 

x 

shopping agent facilitator agent 

request-registration 

• refuse 

request-info 

• confirm 

supply-info 

x 

• refuse 

accept-proposal 

buying agent selling agent 

request-price 

propose 

reject-proposal 

propose 

• confirm 

(c) 
 

             Figure 5. Contract net protocols (a) A template for the registration protocol (b) A template  
             for the price-negotiation protocol (c) An example of the price-negotiation protocol 
 

Consider Figure 5 (a). When a conversation based on a contract net protocol begins, the shopping agent 

sends a request for registration to a facilit ator agent. The facilit ator agent can then choose to respond to the 

shopping agent by refusing its registration or requesting agent information. Here the “x” in the decision 

diamond indicates an exclusive-or decision. If the facilit ator refuses the registration based on the 

marketplace’s size, the protocol ends; otherwise, the facilit ator agent waits for agent information to be 

supplied. If the agent information is correctly provided, the facilit ator agent then still has a choice of either 

accepting or rejecting the registration based on the shopping agent’s reputation and the marketplace’s 

functionality. Again, if the facilit ator agent refuses the registration, the protocol ends; otherwise, a 

confirmation message will be provided afterwards. Similarly, the price-negotiation between a buying agent 

and a sell ing agent is clearly ill ustrated in Figure 5 (b).  

 

Based on the communicative acts (e.g., request-registration, refuse, etc.) needed for the contract net 

protocol in Figure 5 (a), we may design the shopping agent class as in Figure 6. The Goal, Plan, 

Knowledge-base and Environment modules remain as abstract units and can be refined in a more detailed 

design stage. The Planner module may reuse the template shown in Figure 3. The design of the facilit ator 

agent class is similar, however it may support more protocols and should define more MPUs and methods 

in its internal structure.  
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Figure 6. An agent-oriented G-net model for shopping agent class (SC) 
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Figure 7. An agent-oriented G-net model for buying agent class (BC) 
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With inheritance, a buying agent class, as a subclass of a shopping agent class, may reuse MPUs/methods 

defined in a shopping agent class’s internal structure. Similarly, based on the communicative acts (e.g., 

request-price, refuse, etc.) needed for the contract net protocol in Figure 5 (b), we may design the buying 

agent class as in Figure 7. Note that we do not define the MPUs of refuse and confirm in the internal 

structure of the buying agent class, for they can be inherited from the shopping agent class. A selli ng agent 

class or a retailer agent class can be designed in the same way. In addition to their own MPU/methods, a 

selli ng agent class inherits all MPU/methods of the shopping agent class, and a retailer agent class inherits 

all MPU/methods of both the buying agent class and the selli ng agent class. 

 

Now we discuss an example to show how the reuse of MPU/methods works. Consider a buying agent 

object BO, which receives a message of request-info from a facilit ator agent object FO. A mTkn token will 

be deposited in the GSP of the primary subagent of BO, i.e., the GSP of the corresponding buying agent 

class (BC). The transition external in BC’s Planner module may fire, and the mTkn will be moved to the 

place dispatch_incoming_message. Since there is no MPU for request-info defined in the internal structure 

of BC, the mTkn will be moved to the ASP(super) place. Since super here refers to a unique superclass – 

the shopping agent class (SC) – the mTkn will be transferred to the GSP of SC. Now the mTkn can be 

correctly dispatched to the MPU for request-info. After the message is processed, MSP(self) changes the 

tag of the mTkn from external to internal, and sends the processed mTkn token back into the GSP of BC. 

Note that MSP(self) always sends a mTkn back to the GSP of the primary subagent. Upon the arrival of this 

message token, the transition internal in the Planner module of BC may fire, and the mTkn token will be 

moved to the place check_primary. Since BC corresponds to the primary subagent of BO, there are tokens 

in the special places Goal, Plan, Knowledge-base and Environment. Therefore the abstract transition 

make_decision may fire, and any necessary actions are executed in place next_action. Then the current 

conversation is either ignored or continued based on the decision made in the abstract transition 

make_decision. If the current conversation is ignored, the goals, plans and knowledge-base are updated as 

needed; otherwise, in addition to the updating of goals, plans and knowledge-base, a newly constructed 

mTkn with a tag of internal is deposited into place dispatch_outgoing_message. The new mTkn token has 

the message name supply-info, following the protocol defined in Figure 5 (a). Again, there is no MPU for 

supply-info defined in BC, so the new mTkn token will be dispatched into the GSP of SC. Upon the arrival 

of the mTkn in the GSP of SC, the transition internal in the Planner module of SC may fire. However at this 

time, SC does not correspond to the primary subagent of BO, so all the tokens in the special places of Goal, 

Plan, Knowledge-base have been removed. Therefore, the transition bypass is enabled. When the transition 

bypass fires, the mTkn token will be directly deposited into the place dispatch_outgoing_message, and now 

the mTkn token can be correctly dispatched into the MPU for supply-info defined in SC. After the message 

is processed, the MSP(G’ .Aid) mechanism changes the tag of the mTkn token from internal to external, 

and transfers the mTkn token to the GSP of the receiver agent, in this case, the facilit ator agent.  
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For the reuse of private utilit y functions defined in a superclass, the situation is the same as in the case of 

object-oriented design. In addition, there are three different forms of inheritance that are commonly used, 

namely augment inheritance, restrictive inheritance and refinement inheritance. The usage of these three 

forms of inheritance in agent-oriented design is also similar to that in object-oriented design. Examples 

concerning reuse of private utilit y functions and different forms of inheritance can be found in [23]. 

 

With single inheritance, the super in ASP(super) in an agent object AO, as an instance of an agent class A,  

refers to the subagent of AO, which corresponds to the unique superclass of A. However, with multiple 

inheritance, super may refer to any one of the subagents, which corresponds to a superclass or an ancestor 

classes of A. One way to resolve the reference of super is to use a modified breadth-first-search of the 

inheritance hierarchy graph to find the appropriate reference of super. Due to lack of space, we do not 

discuss further details on this issue. 

 

4. Analysis of Agent-Or iented Models 

 

One of the advantages of building a formal model for agents in agent-oriented design is to help ensure a 

correct design that meets certain specifications and system requirements. A correct agent design should 

meet certain key requirements, such as liveness, deadlock freeness and concurrency. Also certain 

properties, such as the inheritance mechanism, need to be verified to ensure its correct functionality. Petri 

nets offer a promising, tool-supported technique for checking the logic correctness of a design. In this 

section, we use a Petri net tool, called INA (Integrated Net Analyzer) [32], to analyze and verify our agent 

models. We use an example of a simpli fied Petri net model for the interaction between a single buying 

agent and two selli ng agents.  

 

The INA tool is an interactive analysis tool that incorporates a large number of powerful methods for 

analysis of Petri nets [32]. These methods include analysis of (1) structural properties, such as structural 

boundedness, and T- and P-invariant analysis; (2) behavioral properties, such as boundedness, safeness, 

liveness, and deadlock-freeness; and (3) model checking, such as checking Computation Tree Logic (CTL) 

formulas. These analyses employ various techniques, such as linear-algebraic methods (for invariants), 

reachabilit y and coverabilit y graph traversals. Here we focus on behavioral property verification by model 

checking. 

 

4.1 A Simpli fied Petr i net Model for a Buying Agent and Two Selli ng Agents 

 

The interaction of one buying agent and two selli ng agents can be modeled as a net as in Figure 8. Table 1 

and Table 2 provide a legend that identifies the meaning associated with each place and transition in Figure 

8. To derive this net model, we use a GSP place to represent each selli ng agent. This is practical because 
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an agent-oriented G-net model can be abstracted as a single GSP place, and agent models can only interact 

with each other through GSP places. Meanwhile, the net for the buying agent, whose class is a subclass of 

a shopping agent class, is simpli fied as follows: 

 

1. Since the special places of Goal, Plan, Knowledge-base have the same interfaces with the planner 

module in an agent class, we fuse them into one single place goal/plan/kb. Furthermore, we simpli fy 

this fused place goal/plan/kb and the place of environment as ordinary places with ordinary tokens. 

2. We omit the private utiliti es sections in both the shopping subagent model and the buying primary 

subagent model. Thus, to obtain our simpli fied model, we do not need to translate the ISP mechanism, 

although such a translation to a Petri net form can be found in [21].  

3. We simpli fy mTkn tokens as ordinary tokens. Although this simpli fication will cause the reachabilit y 

graph of our transformed Petri net to become larger, this simpli fies the message tokens, allowing us to 

ignore message details, which is appropriate for the purpose in this paper (we will explain it further in 

Section 4.3).  

4. We use net reduction (i.e., net transformation rules [33]) to simpli fy the Petri net corresponding to an 

MPU/Method as a single place. For instance, the MPU identified as propose in Figure 7 is represented 

as place P25 in Figure 8. 

5. We use the closed-world assumption and consider a system that only contains three agents, i.e., a 

buyer agent and two seller agents. We assume that a buying agent initiates a conversation. A system 

that contains more than three agents can be verified by the same technique.  

 

4.2 Deadlock Detection and Redesign of Agent-Or iented Models 

 

Now we use the INA tool to analyze the simpli fied agent model ill ustrated in Figure 8. To reduce the state 

space, we further reduce the net by fusing the MPUs in the same incoming/outgoing message section. For 

instance, in Figure 8, we fuse the places P8, P9, P10 and P11 into one single places. Obviously, this type 

of net reduction [33] does not affect the properties of liveness, deadlock-freeness and the correctness of 

inheritance mechanism. In addition, we set the capacity of each place in our net model as 1, which means 

at any time, some processing units, such as MPUs, can only process one message. However, the property 

of concurrency is still preserved because different transitions can be simultaneously enabled (and not in 

conflict); providing the standard Petri net notion of concurrency based on the interleaved semantics. For 

example, transitions t25 and t27 can be simultaneously enabled, representing that message processing for a 

conversation and decision-making for another conversation can happen at the same time. 
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Figure 8. A transformed model of one buying agent and two selli ng agents 
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Table 1 

LEGEND FOR FIGURE 8 (DESCRIPTION OF PLACES) 

 
Place Description 
P1 / P18 The GSP place of the shopping subagent / buying primary subagent. 
P2 / P19  The merged place for the Goal, Plan and Knowledge-base module of the shopping 

subagent / buying primary subagent. 
P3 / P20 The complementary place of P2 / P19 introduced to remove the inhibitor arcs. 
P4 / P21 The place for the Environment module of the shopping subagent / buying primary 

subagent. 
P5 / P22 The place for dispatching incoming messages. 
P6 / P23 The place for checking if the current subagent is a primary subagent  
P7 / P24 Synchronization place for making decision, updating mental state and capturing 

internal/external events. 
P8 / P9 / P10 / 
P11 

The place for the message processing unit (MPU) of request-info / refuse / accept-info / 
confirm. 

P12 / P27 The place for choosing the next action: to ignore or to continue with the current 
conversation.  

P13 / P28 The place for dispatching outgoing messages. 
P14 / P29 The place for choosing a new action: to start a conversation or to automatically update the 

agent mental state.  
P15 / P30 The place for updating the agent mental state. 
P16 / P17  The place for the message processing unit (MPU) of request-registration / supply-info. 
P25  The place for the message processing unit (MPU) of propose. 
P26 Asynchronous superclass switch place (ASP) 
P31 / P32 / 
P33 

The Place for the message processing unit (MPU) of request-price / accept-proposal / 
reject-proposal. 

P34 Asynchronous superclass switch place (ASP) 
P35 The GSP place of selling agent_1 (we use the GSP place to represent the whole agent).  
P36 The GSP place of selling agent_2 (we use the GSP place to represent the whole agent). 
 
  

Table 2 

LEGEND FOR FIGURE 8 (DESCRIPTION OF TRANSITIONS) 

 
Transition Description 
t1 / t23 The transition external, which fires when the token from the GSP has a tag of external. 
t2 / t24  The transition internal, which fires when the token from the GSP has a tag of internal. 
t3, t10 Transitions related to the message processing unit (MPU) of request-info. 
t4, t11 Transitions related to the message processing unit (MPU) of refuse. 
t5, t12  Transitions related to the message processing unit (MPU) of accept-info. 
t6, t13 Transitions related to the message processing unit (MPU) of confirm. 
t7 / t27 The abstract transition make_decision, which determines the next action to perform. 
t8 / t28 The transition bypass, which is disabled when there are tokens in place P2 / P19, i.e., there 

is no token in place P3 / P20. Notice that P3 / P20 is a complementary place of P2 / P19. 
t9 / t29 The abstract transition sensor, which captures internal and external events. 
t14 / t32 The transition ignore that ignores the current conversation. 
t15 / t33 The transition continue that continues with the current conversation. 
t16 / t34 The transition start_a_conversation that starts a new conversation. 
t17 / t35 The transition automatic_update that automatically updates the agent’s mental state. 
t18, t21  Transitions related to the message processing unit (MPU) of request-registration. 
t19, t22  Transitions related to the message processing unit (MPU) of supply-info. 
t20 / t40 The abstract transition update_goal/plan/kb, which updates the agent’s mental state. 
t25, t30 Transitions related to the message processing unit (MPU) of propose. 
t26, t31 Transitions related to the asynchronous superclass switch place (ASP) . 
t36, t41 Transitions related to the message processing unit (MPU) of request-price. 
t37, t42 Transitions related to the message processing unit (MPU) of accept-proposal. 
t38, t43 Transitions related to the message processing unit (MPU) of reject-proposal. 
t39, t44 Transitions related to the asynchronous superclass switch place (ASP) . 
t45 / t46 The transition related to the GSP of Selling Agent_1 / Selling Agent_2. 
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To verify the correctness of our agent model, we utili ze some key definitions for Petri net behavior 

properties as adapted from [18]. 

 

Definition 4.1 Reachabilit y 

In a Petri net N with initial marking M0, denoted as (N, M0), a marking Mn is said to be reachable from a 

marking M0 if there exists a sequence of firings that transforms M0 to Mn. A firing or occurrence sequence 

is denoted by σ = M0 t1 M1 t2 M2 … tn Mn or simply σ = t1 t2 … tn. In this case, Mn is reachable from M0 

by σ and we write M0 [σ > Mn. 

 

Definition 4.2 Boundedness 

A Petri net (N, M0), is said to be k-bounded or simply bounded if the number of tokens in each place does 

not exceed a finite number k for any marking reachable from M0. A Petri net (N, M0) is said to be safe if it 

is 1-bounded. 

 

Definition 4.3 Liveness 

A Petri net (N, M0), is said to be li ve if for any marking M that is reachable from M0, it is possible to 

ultimately fire any transition of the net by progressing some further firing sequence. 

 

Definition 4.4 Reversibilit y 

A Petri net (N, M0) is said to be reversible if, for each marking M that is reachable from the initial marking 

M0, M0 is reachable from M. 

 

With our net model in Figure 8 as input, the INA tool produces the following results: 

 

Computation of the reachability graph 

States generated: 8193 

Arcs generated: 29701 

 

Dead states: 

      484, 485,8189 

Number of dead states found: 3 

The net has dead reachable states. 

The net is not live. 

The net is not live and safe. 

The net is not reversible (resetable). 

The net is bounded. 



 24 

The net is safe. 

The following transitions are dead at the initial marking: 

       7, 9, 14, 15, 16, 17, 20, 27, 28, 32, 33 

The net has dead transitions at the initial marking. 

 

The analysis shows that our net model is not live, and the dead reachable states indicate a deadlock. By 

tracing the firing sequence for those dead reachable states, we find that when there is a token in place P29, 

both the transitions t34 and t35 are enabled. At this time, if the transition t35 fires, a token will be deposited 

into place P30. After firing transition t40, the token removed from place P24, by firing transition t29, will 

return to place P24, and this makes it possible to fire either transition t27 or t29 in a future state. However 

if the transition t34 fires, instead of firing transition t35, there will be no tokens returned to place P24. So, 

transition t27 and t29 will be disabled forever, and a deadlock situation occurs.  To correct this error, we 

need to modify the design of the planner module in Figure 3. The model modification is to add a new arc 

from transition start_a_conversation to place syn. Correspondingly, we add two new arcs in Figure 8: an 

arc from transition t16 to place P7, and another arc from transition t34 to place P24. After this correction, 

we can again evaluate the revised net model by using the INA tool. Now we obtain the following results: 

 

Computation of the reachability graph 

States generated: 262143 

Arcs generated: 1540095 

 

The net has no dead reachable states. 

The net is bounded. 

The net is safe. 

The following transitions are dead at the initial marking: 

       7, 9, 14, 15, 16, 17, 20, 28 

The net has dead transitions at the initial marking. 

 

Liveness test: 

Warning: Liveness analysis refers to the net where all dead transitions  

are ignored. 

The net is live, if dead transitions are ignored. 

The computed graph is strongly connected. 

The net is reversible (resetable). 

 

This automated analysis shows that our modified net model is li ve, ignoring, of course, any transitions that 

are dead in the initial marking. Thus, for any marking M that is reachable from M0, it is possible to 
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ultimately fire any transition (except those dead transitions) of the net. Since the initial marking M0 

represents that there is no ongoing (active) conversations in the net, a marking M that is reachable from M0, 

but where M ≠ M0, implies that there must be some conversations active in the net. By showing that our net 

model is live, we prove that under all circumstances (no matter if there are, or are not, any active 

conversations), it is possible to eventually perform any needed future communicative act. Consider the 

dead transitions t7, t9, t14, t15, t16, t17 and t20. These imply that the decision-making units in the shopping 

subagent are disabled. The remaining dead transition, t28, implies that the primary subagent always makes 

decisions for the whole buying agent. 

 

Our net model is safe because we have set the capacity of each place in our model to 1. A net model with 

capacity k (k > 1) for each place can be proved to be k-bounded in the same way. However, the state space 

may increase dramatically.  

 

In addition, the analysis tells us that our net model is reversible, indicating that the initial marking M0 can 

be reproduced (recall definition 4.4, given earlier). Since the initial marking M0 represents that there are no 

ongoing (active) conversations in the net, the reversible property proves that every conversation in the net 

can be eventually completed.  

 

4.3 Property Verification by Model Checking 

 

To further prove additional behavioral properties of our revised net model, we use some model checking 

capabiliti es provided by the INA tool. Model checking is a technique in which the verification of a system 

is carried out by using a finite representation of its state space. Basic properties, such as an absence of 

deadlock or satisfaction of a state invariant (e.g., mutual exclusion), can be verified by checking individual 

states. More subtle properties, such as guarantee of progress, require checking for specific cycles in a graph 

representing the states and possible transitions between them. Properties to be checked are typically 

described by formulae in a branching time or linear time temporal logic [34][35]. 

 

The INA tool allows us to state properties in the form of CTL formulae [32][34]. Using this notation, we 

can specify and verify some key properties of our revised net model, such as concurrency, mutual 

exclusion, and proper inheritance behavior: 

 

• Concurrency 

 

The following formula says that, in the reachabilit y graph of our revised net model, there exists a path that 

leads to a state in which all the places P5, P13, P22 and P28 are marked. 
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     EF(P5 &(P13 &(P22 &P28)))     Result: The formula is TRUE 

 

Result explanation: A TRUE result indicates that all the places P5, P13, P22 and P28 can be marked at the 

same time. From Figure 8 and Table 1, we see that incoming/outgoing messages are dispatched in these 

places. So the result implies that different messages can be dispatched in our net model concurrently.  

 

• Mutual Exclusion 

 

The following formula says that, in the reachabilit y graph of our revised net model, there exists a path that 

leads to a state in which both places P27 and P30, or both places P29 and P30, are marked.  

 

     EF((P27 &P30) V (P29 &P30))    Result: The formula is FALSE 

 

Result explanation: A FALSE result indicates that it is impossible to mark both places P27 and P30, or 

both places P29 and P30, at the same time. From Figure 8 and Table 1, we see that place P27 represents 

any actions executed after decision-making, and place P30 is used for updating the plan, goal and 

knowledge-base. Thus, this result guarantees that decisions can only be made upon the latest mental state, 

i.e., the latest values in plan, goal and knowledge-base modules. Similarly, the fact that P29 and P30 cannot 

be marked at the same time guarantees the requirement that the sensor can always capture the latest mental 

state. 

 

• Inheritance Mechanism (decision-making in subagent) 

 

The following formula says that, in the reachabilit y graph of our revised net model, P12, P14 and P15 are 

not marked in any state on all paths.  

 

     AG(-P12 &(-P14 &-P15))        Result: The formula is TRUE 

 

Result explanation: A TRUE result indicates that places P12, P14 and P15 are not marked under any 

circumstance. From Figure 8 and Table 1, we see that P12, P14 and P15 belong to decision-making units in 

the shopping subagent. As we stated earlier, all decision-making mechanisms in subagents should be 

disabled, with all decision-makings for an agent being achieved by the primary subagent. So, the result 

implies a desirable feature of the inheritance mechanism in our net model. 

 

• Inheritance Mechanism (ASP message forwarding I) 
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The following formula says that, in the reachabilit y graph of our revised net model, P26 or P34 are always 

marked before P5 or P6 is marked.  

 

     A[(P26 VP34)B(P5 VP6)]        Result: The formula is TRUE 

 

Result explanation: A TRUE result indicates that neither place P5 nor P6 can become marked before the 

place P26 or P34 is marked. From Figure 8 and Table 1, we see that place P26 and P34 represent ASP 

places, and P5 and P6 represent the message dispatching units. The result implies that messages will never 

be dispatched in a shopping subagent unless a MPU is not found in the primary buying subagent, in which 

case, either the ASP place P26 or P34 will be marked. 

 

• Inheritance Mechanism (ASP message forwarding II ) 

 

The following formula says that, in the reachabilit y graph of our revised net model, P26 (P34) is always 

marked before P5 (P6) is marked.  

 

     A[P26 BP5]VA[P34 BP6]         Result: The formula is FALSE 

 

Result explanation: We expect that for every incoming (outgoing) message, if it is not found in the primary 

buying subagent, it will be forwarded to the shopping agent, and dispatched into a MPU of the incoming 

(outgoing) message section. However, the FALSE result indicates that our net model does not work as we 

have expected. By looking into the generic agent model, we can observe that when we created the net 

model in Figure 8, we simpli fied all message tokens as ordinary tokens, i.e., black tokens. This 

simpli fication makes it possible for an incoming (outgoing) message to be dispatched into an outgoing 

(incoming) message section. Therefore, a message might be processed by a MPU that is not the desired 

one. To solve this problem, we may use colored tokens, instead of ordinary tokens, to represent message 

tokens, and attach guards to transitions. However, in this paper, by using ordinary place/transition net (not a 

colored net), we obtain a simpli fied model that is suff icient to ill ustrate our key concepts. 

 

5. Conclusion and Future Work 

 

One of the most rapidly growing areas of interest for distributed computing is that of distributed agent 

systems. Although there are several implementations of multi -agent systems available, formal frameworks 

for such systems are few. Formal methods in multi -agent system specification and design can help to 

ensure robust and reliable products.  
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In this paper, we introduced an agent-oriented model rooted in the Petri net formalism, which provides a 

foundation that is mature in terms of both existing theory and tool support. An example of an agent family 

in electronic commerce was used to ill ustrate the modeling approach. Models for a shopping agent, selli ng 

agent, buying agent and retailer agent were presented, with emphasis on the characteristics of being 

autonomous, reactive and internally-motivated. Our agent-oriented models also provide a clean interface 

between agents, and agents may communicate with each other by using contract net protocols. By the 

example of registration-negotiation protocol between shopping agents and facilit ator agents, and the 

example of a price-negotiation protocol between shopping agents and buying agents, we ill ustrated how to 

create agent models and how to reuse functionality defined in an agent superclass. We also discussed how 

to verify liveness properties of our net model by using an existing Petri net tool, the INA tool. The value of 

such an automated analysis capabilit y was demonstrated by detection of a deadlock situation due to a 

design error. The revised model was then proved to be both li ve and reversible. Finally, some model 

checking techniques were used to prove some additional behavioral properties for our model, such as 

concurrency, mutual exclusion, and correctness of the inheritance mechanism. Although we proved some 

key behavioral properties of our agent model, our formal method approach is also of value in creating a 

clear understanding of the structure of an agent, which can increase confidence in the correctness of a 

particular multi -agent system design. Also, in producing a more detailed design, where the abstract 

transitions in the planner module are refined, we may again use Petri net tools to capture further design 

errors. 

 

For our future work, we will consider the refinements of the Goal, Plan, Knowledge-base and Environment 

modules. Also, the abstract transitions defined in the Planner module, i.e., make_decision, sensor and 

update, can be refined into correct sub-nets that capture action sequences specific to those activities. This 

work will provide a bridge to other work concerned with such agent activities [36][37][38]. We will also 

look further into issues like deadlock avoidance and state exploration problems in the agent-oriented design 

and verification processes. 
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