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Abstract

Agents are beming one of the most important topics in distributed and autonomous decentralized
systems, and there ae increasing attempts to use gyent technologies to develop large-scde mmmercial and
industrial software systems. The complexity of such systems suggests a pressng real for system nodeling
techniques to suppart reliable, maintainable and extensible design. G-nets are atype of Petri net defined to
suppart system modeling in terms of a set of independent and loosely-coupled modules. In this paper, we
customize the basic G-net model to define a so-cdled “agent-based G-net” that can serve @ a generic
model for agent design. Then to progressfrom an agent-based design model to an agent-oriented model,
new medhanisms to suppat inheritance modeling are introduced. To illustrate our formal modeling
technique for multi-agent systems, an example of an agent family in eledronic commerce is provided.
Finally, we demonstrate how we can use model cheding to verify some key behaviora properties of our
agent model. Thisisfadlitated by the use of an existing Petri net todl.
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1. Introduction

Over the past decale, reseach and development efforts in computer science have increasingly embracel
the @mncept of software ggents and multi-agent systems. One key reason is that the ideaof an agent as an
autonomous g/stem, cgpable of interading with other agents in order to satisfy its design objedives, is a
naturally appeding one for software designers. This has led to the growth of interest in agents as a hew

design-paradigm for software engineging[1].

! This material is based upon work suppated by the U.S. Army Reseach Office under grant number
DAAD19-99-1-035(Q and the U.S. National Science Foundation under grant number CCR-9983168



Applicdions that can most diredly benefit from an agent-oriented design are typicdly structured as multi-
agent systems (MAS), which are usually defined as a @ncurrent system based on the notion of
autonomous, readive and internall y-motivated agents in a decentralized environment [2]. One example of
such an application is intelligent tean training environments [3]. Many of the tedhnologies supparting
multi -agent systems gem from distributed artificial intelli gence (DAI) reseach [4]. The increasing interest
in MAS reseach is due to the significant advantages inherent in such systems, including their ability to
solve problems that may be too large for a cedtralized single agent, to provide enhanced speal and
reliability, and to tolerate uncertain data and knowledge [4].

Although there ae many efforts aimed at developing multi-agent systems, there is garse reseach on
formal spedfication and design of such systems [5][6]. As multi-agent technology begins to emerge & a
viable solution for large-scde gplicaions, there is an increasing real to ensure that the systems being
developed are robust, reliable and fit for purpose [7]. Previous work on formal modeling agent systems
includes. (1) using formal langueges, such as Z, to provide a framework for describing the agent
architedure & different levels of abstradions [8]; (2) using temporal logics and multi-modal logics to
represent individual agent behaviors where the representations can be exeauted dredly, e.g., Fisher’s work
on Concurrent METATEM [9], and (3) designing formal langueges, such as DESIRE and SLABS, for
spedfying agent-based systems [10][ 11]. Althoughthese formalisms are daimed to be ayent spedfications,
they are not oriented for software engineeging in terms of providing a modeling rotation that diredly
suppats oftware development. For instance as gated in paper [12], formalisms guch as temporal logics
and multi-modal logics are often abstrad and quite distant from agents that have adualy been
implemented. There ae previous efforts to narrow the gap between agent formal models and agent-based
pradicd systems, e.g., to use formal approaches for prototyping and simulation of multi-agent systems
[13]; however, it is gill hard to apply these forma methods diredly to agent implementation. In contrast,
our approach is explicitly oriented for spedfying and defining the design architedure of multi-agent
software systems. Also, unlike most previous work, our approach exploits the principle of “separation of
concerns’ in an agent-oriented design, similar to the basic idea proposed for some distributed ohjed
architedures that define ameta agent (on top d a base-level objed) to handle non-functional requirements
[14]. Spedficdly, we separate the traditional objed-oriented feaures and reasoning mechanisms in our
agent-oriented software model, and we discuss how reuse can be adieved in terms of functional units in
agent-oriented design. While some have advocaed that inheritance has limited value in conceptual models
of agent behavior [15], we ill ustrate auseful role for inheritance in our agent-oriented models. Our agent-
based model is derived from the general agent model given in [16], and the extensions that crede an agent-
oriented model are derived from the framework presented in [17]. At the heat of our approad is the use of
a model that is rooted in the Petri net formalism [18]. As auch, this work is complementary to ather
reseach efforts that use Petri nets to model the mental states of agents as part of an architecure for multi-
agent simulation [19].



The rest of this paper is organized as follows. Sedion 2 begins with a brief introduction to the standard G-
net model, an objed-based Petri net notation. It then presents the genera structure of the proposed agent-
based G-net model based on BDI models [20], and discusses how inheritance modeling can be integrated
into agent-based G-net models. Sedion 3 provides an example gent family in eledronic commerce to
illustrate our approach to agent design and inheritance modeling. Sedion 4 verifies sme behavioral
properties of our agent model by using Petri net theory and an existing Petri net tool. Finally, Sedion 5

provides a brief conclusion and mentions future work.

2. An Agent-Oriented M odel

2.1 The Standard G-Net M odel

A widely acceted software engineeing principle is that a system should be composed of a set of
independent modules, where eatt module hides the internal detail s of its processng adiviti es and modules
communicate through well-defined interfaces. The G-net model provides grong suppart for this principle
[21][22]. G-nets are an objed-based extension of Petri nets, which is a graphicdly defined model for
concurrent systems. Petri nets have the strength of being visually appeding, while dso being theoreticaly
mature and supparted by robust tools. We assume that the reader has a basic understanding of Petri nets
[18]. But, as a general reminder, we note that Petri nets include three basic entities. place nodes
(represented graphicdly by circles), transition nodes (represented graphicdly by solid bars), and direded
arcs that can conned places to transitions or transitions to places. Furthermore, places can contain markers,
cdled tokens, and tokens may move between placenodes by the “firing’ of the asciated transitions. The
state of a Petri net refers to the distribution of tokens to placenodes at any particular point in time (thisis

sometimes cdl ed the marking of the net). We now proceed to dscussthe basics of standard G-net models.

A G-net system is compased of a number of G-nets, eat of them representing a self-contained module or
objed. A G-net is composed of two parts: a speda place cled Generic Switch Place (GSP) and an
Internal Structure (1S). The GSP provides the astradion of the module, and serves as the only interface
between the G-net and ather modules. The IS, amodified Petri net, represents the design of the module. An
example of G-nets is diown in Figure 1. Here the G-net models represent two oljeds — a Buyer and a
Sller. The generic switch places are represented by GSP(Buyer) and GSP(Seller) enclosed by elli pses, and
the internal structures of these models are represented by round-cornered redangles that contain four
methods: buyGoods(), askPrice), returnPrice() and sellGoods(). The functionality of these methods are
defined as follows: buyGoods() invokes the method sell Goods() defined in G-net Seller to buy some good;
askPrice() invokes the method returnPricg() defined in G-net Seller to get the price of some goods;
returnPricg)) is defined in G-net Seller to cdculate the latest price for some goods and sell Goods() is



defined in G-net Seller to wait for the payment, ship the goods and generate the invoice. A GSP of a G-net
G contains a set of methods G.MS spedfying the services or interfaces provided by the module, and a set of
attributes, G.AS, which are state variables. In G.IS, the interna structure of G-net G, Petri net places
represent primitives, while transitions, together with arcs, represent connections or relations among those
primitives. The primiti ves may define locd adions or method cdls. Method cdl s are represented by spedal
places cdled Instantiated Switch Places (ISP). A primitive beaomes enalled if it recaves a token, and an
enabled primitive can be exeauted. Given a G-net G, an ISP of G is a 2-tuple (G’ .Nid, mtd), where G’ could
be the same G-net G or some other G-net, Nid is a unique identifier of G-net G’, and mtd 0 G'.MS. Each
ISP(G’.Nid, mtd) denotes a method cdl mtd() to G-net G'. An example ISP (denoted as an elli psisin Figure
1) is sown in the method askPrice() defined in G-net Buyer, where the method askPrice() makes a method
cdl returnPrice) to the G-net Sdller to query about the price for some goods. Note that we have
highlighted this cdl in Figure 1 by the dashed-arc, but such an arc is not adually a part of the static
structure of G-net models. In addition, we have omitted al function parameters for simplicity.

buyGoods() askPrice() /raumPri cef) sellGoods() \

t5 t7
ISP(Seller ISP(SeIIer
sl Goods() refurnPrice()) calculate, sall_
price goods
té t8

Figure 1. G-net model of buyer and seller objeds

From the aove description, we can seethat a G-net model esentially represents a module or an objed
rather than an abstradion of a set of similar objeds. In a recant paper [23], we defined an approac to
extend the G-net model to suppart classmodeling. The ideaof this extension is to generate aunique objed
identifier, G.0Oid, and initi ali ze the state variables when a G-net objed is instantiated from a G-net G. An
ISP method invocaion is no longer represented as the 2-tuple (G'.Nid, mtd), instead it is the 2-tuple
(G'.Qid, nmtd), where different objed identifiers could be asciated with the same G-net classmodel.

The token movement in a G-net objed is smilar to that of original G-nets[21]. A token tkn is atriple (seq,
sc, mtd), where seq is the propagation sequence of the token, sc O { before, after} isthe status color of the



token and mtd is a triple (mtd_name, para_list, result). For ordinary places, tokens are removed from input
places and depaosited into output places by firing transitions. However, for the spedal ISP places, the output
transitions do not fire in the usual way. Recdl that marking an ISP place orresponds to making a method
cdl. So, whenever a method cdl is made to a G-net objed, the token depasited in the | SP has the status of
before. This prevents the enabling of associated output transitions. Instead the token is “processed” (by
attaching information for the method cdl), and then removed from the ISP. Then an identicd token is
deposited into the GSP of the cdled G-net objed. So, for example, in Figure 1, when the Buyer objed cdls
the returnPrice() method d the Seller objed, the token in placel SP(Seller, returnPrice)) isremoved and a
token is depaosited into the GSP placeGSP(Sll er). Throughthe GSP of the cdled G-net objed, the token is
then dispatched into an entry placeof the gpropriate cdled method, for the token contains the information
to identify the cdled method. During “exeaution” of the method, the token will read a return place
(denoted by double drcles) with the result attached to the token. As on as this happens, the token will

return to the ISP of the cdler, and have the status changed from before to after. The information related to
this completed method cdl is then detached. At this time, output transitions (e.g., t4 in Figure 1) can
beame enabled and fire.

We cdl a G-net model that supparts classmodeling a standad G-net model. Notice that the example we
provide in Figure 1 follows the Client-Server paradigm, in which a Seller objed works as a server and a
Buyer objed isa dient. Further detail s about G-net models can be found in references [21][22][ 23].

2.2 An Architecure for Agent-Based Modeling

Although the standard G-net model works well in objed-based design, it is not sufficient in agent-based
design for the following reasons. First, agents that form a multi-agent system may be developed
independently by different vendors, and those ayents may be widely distributed aaosslarge-scde networks
such as the Internet. To make it possble for those agents to communicate with ead other, it is desirable for
them to have a @mmon communicaion language and to follow common protocols. However the standard
G-net model does not diredly suppart protocol-based language communicaion between agents. Seaond,
the underlying agent communication model is usually asynchronous, and an agent may dedde whether to
perform adions requested by some other agents. The standard G-net model does not diredly suppart
asynchronous message passng and dedsion-making, but only supparts g/nchronous method invocaions in
the form of ISP places. Third, agents are commonly designed to determine their behavior based on
individual goals, their knowledge and the environment. They may autonomously and spontaneousdly initiate
internal or external behavior at any time. The standard G-net models can only diredly suppart a predefined

flow of control.



To suppart agent-based design, we need to extend a G-net to suppart modeling an agent class. The basic
ideais gmilar to extending a G-net to suppat class modeling for objed-based design [23]. When we
instantiate a agent-based G-net (an agent classmodel) G, an agent identifier G.Aid is generated and the
mental state of the resulting agent objed (an adive objed [7]) isinitidized. In addition, at the dasslevel,
five speda modules are introduced to make an agent autonomous and internally-motivated. They are the
Goa module, the Plan module, the Knowledge-base module, the Environment module and the Planrer
module. Note that the Goal, Plan and Knowledge-base module ae based on the BDI agent model propcsed
by Kinny and his colleagues [20].

The template for an agent-based G-net model is siown in Figure 2. We describe eat of the alditional
modules as follows. A Goal module is an abstradion of a goal model [20], which describes the goa's that
an agent may possbly adopt, and the events to which it can respond. It consists of a goal set which
spedfies the goal domain and one or more goal states. A Plan module is an abstradion of aplan model [20]
that consists of a set of plans, known as a plan set. A plan may be intended or committed, and only
committed plans will be adieved. A Knowledge-base module is an abstradion of a belief model [20],
which describes the information about the environment and internal state that an agent of that class may
hold. The posshble beliefs of an agent are described by a belief set. An Environment module is an abstrad
model of the environment, i.e., the model of the outside world of an agent. The Environment module only

models elementsin the outside world that are of interest to the agent and that can be sensed by the agent.

In the Planrer module, committed plans are atieved, and the Goal, Plan and Knowledge-base modules of
an agent are updated after the processng of ead communicative ad that defines the type and the cntent of
amessage [24][25], or if the environment changes. Thus, the Planner module can be viewed as the heat of
an agent that may dedde to ignore an incoming message, to start a new conversation, or to continue with

the aurrent conversation.

The internal structure (1S) of an agent-based G-net consists of three sedions: incoming message, outgoing
message, and private utility. The incoming/outgoing message sedion defines a set of Message Processng
Units (MPU), which corresponds to a subset of communicdive ads. Each MPU, labeled as action_i in
Figure 2, is used to process incoming/outgoing messages, and may use |1SP-type modeling for cdls to
methods defined in its private utility sedion. Unlike with the methods defined in a standard G-net model,
the private utility functions or methods defined in the private utility sedion can only be cdled by the aent
itself.

2 We view the @stract of a set of similar agents as an agent class and we cadl an instance of an agent class
an agent or an agent objed.
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‘ Planner ‘
incoming message outgoing message private utility
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Notes: G'.Aid = mTkn.body.msg.recever asdefined later in this sction

Figure 2. A generic egent-based G-net model

Although both objeds (passve objeds) and agents use message-passng to communicate with ead other,
messge-passng for objeds is a unique form of method invocation, while ayents distinguish diff erent types
of messages and model these messages frequently as geedr-ads and use wmplex protocols to negotiate
[7]. In particular, these messages must satisfy the format of the standardized communicative (speed) ads,
e.g., the format of the communicaive ads defined in the FIPA agent communicaion language, or KQML
[24][25][26]. Note that in Figure 2, ead named MPU action_i refers to a ammmunicative ad, thus our
agent-based model supparts an agent communicdion interface In addition, agents analyze these messages
and can dedde whether to exeaute the requested adion. As we stated before, agent communications are
typicdly based on asynchronous message passng. Since aynchronous message passng is more
fundamenta than synchronous message passng, it is useful for us to introduce anew mechanism, cdled
Message-passng Switch Place (MSP), to dredly suppart asynchronous messge passng. When a token
reades an MSP (we represent it as an elli psisin Figure 2), the token is removed and deposited into the GSP
of the cdled agent. But, unlike with the standard G-net ISP mechanism, the cdli ng agent does not wait for
the token to return before it can continue to exeaute its next step. Since we usually do not think of agents as
invoking methods of one-another, but rather as requesting adions to be performed [27], in our agent-based
model, we restrict the usage of ISP mechanisms, so they are only used to refer to an agent itself. Thus, in
our models, one ggent may not diredly invoke amethod defined in another agent. All communications
between agents must be caried out through asynchronous messge passng as provided by the MSP

mechanism.



A template of the Planner module is own in Figure 3°. The modules Goal, Plan, Knomedge-base and
Environment are represented as four spedal places (denoted by double dli pses in Figure 3), eat of which
contains a token that represents a set of goals, a set of plans, a set of beliefs and a model of the
environment, respedively. These four modules conned with the Planner module through abstrad
transitions, denoted by shaded redanges in Figure 3 (e.g., the astrad transition make dedsion). Abstrac
transitions represent abstrad units of dedsion-making or mental-state-updating. At a more detail ed level of
design, abstrad transitions would be refined into sub-nets; however how to make dedsions and how to
update an agent’s mental state is beyond the scope of this paper, and will be considered in our future work.
In the Planrer module, there is a unit cdled autonomous unit that makes an agent autonomous and
internally-motivated. An autonamous unit contains a sensor (represented as an abstrad transition), which
may fire whenever the pre-conditions of some @mmitted plan are satisfied or when new events are
cgptured from the environment. If the dstrad transition sensor fires, based on an agent’s current mental
state (goal, plan and knowledge-base), the autonomous unit will then dedde whether to start a conversation
or to simply update its mental state. This is done by firing either the transition start_a_conversation or the

transition automatic_updae after exeauting any necessary adions associated with placenew_action.
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Figure 3. A template for the planner module (initial design)

3 Actually, this module purposely contains a somewhat subtle design error that is used to demonstrate the
value of automated verificaion in sedion 4.



Note that the Planner module is both goal-driven and event-driven because the transition sensor may fire
when any committed plan is ready to be achieved or any new event happens. In addition, the Planner
module is also message-triggered becaise cetain adions may initiate whenever a message atrives (either
from some other agent or from the agent itself). A message is represented as a message token with a tag of
internal/external/private. A message token with a tag of internal represents a message forwarded by an
agent to itself with the MSP mechanism, or a newly generated outgoing message before sending to some
other agent; while amessage token with atag of external is an incoming message which comes from some
other agent. In either case, the message token with the tag of internal/external should not be involved in
an invocation of a method cdl. In contrast, a message token with atag of private indicaes that the token is
currently involved in an invocaion of some method cdl. When an incoming message/method arrives, with
atag of external/private in its corresponding token, it will be dispatched to the gpropriate MPU/method
defined in the internal structure of the agent. If it is a method invocdtion, the method defined in the private
utility sedion of the internal structure will be exeauted, and after the exeaution, the token will return to the
cdling urit, i.e., an ISP of the cdling agent. However, if it is an incoming message, the message will be
first procesed by a MPU defined in the incoming message sedion in the internal structure of the agent.
Then the tag of the token will be changed from external to internal beforeit istransferred bad to the GSP
of the recaever agent by using MSP(self). Note that we have extended G-nets to allow the use of the
keyword self to refer to the agent objed itself. Upon the arival of atoken tagged asinternal in a GSP, the
transition internal may fire, followed by the firing of the abstrad transition make _dedsion. Note that at this
point of time, there would exist tokens in those speda places Goal, Plan and Knowledge-base, so the
transition bypassis disabled (due to the “inhibitor arc””) and may not fire (the purpose of the transition
bypassis for inheritance modeling, which will be aldressed in Sedion 2.3). Any necessary adions may be
exeauted in place neX_action before the mnversation is either ignored or continued. If the arrent
conversation is ignored, the transition ignare fires; otherwise, the transition continue fires. If the transition
continue fires, a newly constructed outgoing message, in the form of atoken with atag of internal, will be
dispatched into the gpropriate MPU in the outgoing message sedion of the internal structure of the aent.
After the message is processed by the MPU, the message will be sent to a recaéver agent by using the
MSP(G'.Aid) medhanism, and the tag of the message token will be danged from internal to external,
acordingy. In either case, a token will be deposited into placeupdae_god/plarvkb, allowing the ebstract
transition updae to fire. As a @mnsequence, the Goal, Plan and Knowledge-base modules are updated if
needed, and the ggent’s mental state may change.

To ensure that al dedsions are made upon the latest mental state of the agent, i.e., the latest values in the
goal, plan, and knowledge-base modules, and similarly to ensure that the sensor always captures the latest

mental state of the agent, we introduce asynchronization urit syn, modeled as a place marked with an

4 Aninhibitor arc conneds a placeto atransition and defines the property that the transiti on asociated with
the inhibitor arc is enabled only when there ae no tokensin the input place



ordinary token (bladk token). The token in place syn will be removed when the @strad transition
make_dedsion or sensor fires, thus delaying further firing of these two abstrad transiti ons urtil completion
of adions that update the values in the goal, plan and knowledge-base modules. This mechanism is
intended to guarantee the mutual exclusive exeaution of dedsion-making, capturing the latest mental state
and events, and updating the mental state. Note that we have used the label <e> on ead of the acs
conneding with the placesyn to indicae that only ordinary tokens may be removed from or deposited into
the placesyn.

As a result of this extension to G-nets, the structure of tokens in the agent-based G-net model should be
redefined. In addition to the ordinary token introduced in place syn, esentialy there ae five types of
colored tokens, namely the message token mTkn, the goa token gTkn, the plan token pTkn, the knowledge
token kTkn and the environment token eTkn. One way to construct the gTkn, pTkn, kTkn and eTkn is as
linked lists. In other words, a gTkn represents a list of goals, pTkn represents a list of plans, a kTkn
represents a list of fads, and an eTkn represents a list of events that are of the ggent’s interests. Sincethese
four types of tokens confine themselves to those spedal places of their corresponding modules, we do not

describe them further in this paper.

A mTkn is a 2-tuple (tag, body), where tag O {internal, external, private} and body is a variant, which is
determined by the tag. According to the tag, the token deposited in a GSP will finally be dispatched into a
MPU or a method defined in the internal structure of the agent-based G-net. Then the body of the token
mTkn will be interpreted dfferently. More spedficdly, we define the mTkn body as foll ows:

struct Message{

i nt sender; /1 the identifier of the message sender
int receiver; /1 the identifier of the nmessage receiver
string protocol _type; /1l the type of contract net protocol
string nane; /1 the nanme of inconi ng/outgoing nessages
string content; /1l the content of this nessage

i
enum Tag {internal, external};
struct Mdlnvocation {

Triple (seq, sc, md); // as defined in Section 2.1

}
if (mMfkn.tag O {internal, external})
t hen nmTkn. body = struct {
Message nsg; /1 message body
}

10



el se nifkn. body = struct { // mlkn.tag equals to the tag: private

Message nBQ; /1 message body
Tag ol d_tag; /1 to record the old tag: internal/external
M dl nvocation miv; /1 to trace nethod invocations

When mTkn.tag O {internal, external}, and an ISP method cdl occurs, the foll owing steps will t ake place

1. The two variables old_tag and miv are atached to the mTkn to define mTkn.body.old_tag and
mTkn.body.miv, respedively. Then, mTkn.tag (the arrent tag, one of internal or external) is recorded
into mTkn.body.old_tag, and mTkn.tagis <t to private.

2. Further method cdls are traced by the variable mTkn.body.miv, which is a triple of (seq, sc, mtd). The
tradng agorithmis defined asin the original G-net definitions [21].

3. After al the ISP method cdls are finished and the mTkn token returns to the original 1SP, the mTkn.tag
is %t badk as mTkn.body.old_tag, and bah the variables old_tag and miv are detached.

The MSP(id) medhanism defined in an agent AO is responsible for asynchronoudly transferring a message
token mTkn to the aent itself or some other agent, and for changing the tag of the message token,
mTkn.tag, before mTkn is “sent out.” The steps for handling the message token are & foll ows:

1. If id equalsto salf (in this case mTkn.tag must be external), set mTkn.tag to internal, and transfer the
message token mTkn to the GSP placeof agent AO.

2. Elself id equals to G'.Aid, where G'.Aid does not represent the agent AO (in this case mTkn.tag must
be internal), set mTkn.tag to external, and transfer the message token mTkn to the GSP placeof the
agent represented by G'.Aid.

We now provide afew key definiti ons giving the formal structure of our agent-based G-net models.

Definition 2.1 Agent-based G-net

An agent-based G-net is a 7-tuple AG = (GSP, GO, PL, KB, EN, PN, |S), where GSP is a Generic Switch
Place providing an abstrad for the agent-based G-net, GO is a Goa module, PL is a Plan module, KB isa
Knowledge-base module, EN is an Environment module, PN is a Planner module, and IS is an internal
structure of AG.

Definition 2.2 Planner Modue

A Planrer modue of an agent-based G-net AG is a mlored sub-net defined as a 7-tuple (IGS, IGO, IPL,
IKB, IEN, IS DMU), where IGS, IGO, IPL, IKB, IEN and Il Sare interfaces with GSP, Goal module, Plan

11



module, Knowledge-base module, Environment module and internal structure of AG, respedively. DMU is

aset of dedsion-making urnit, and it contains three dstrad transitions. make _dedsion, sensor and update.

Definition 2.3 Internal Structure (19

An internal structure (I1S) of an agent-based G-net AG is a triple (IM, OM, PU), where IM/OM is the
incoming/outgoing message sedion, which defines a set of message processng urits (MPU); and PU isthe
private utility sedion, which defines a set of methodks.

Definition 2.4 Message Processng Unit (MPU)

A message processng unt (MPU) isatriple (P, T, A), where P is a set of places consisting of threespedal
places: entry place ISP and MSP. Each MPU has only one entry place ad one MSP, but it may contain
multiple ISPs. T is a set of transitions, and ead transition can be asciated with a set of guards. A is a set
of arcsdefined as: (P-{MSP}) x T) O ((T x (P-{entry}).

Definition 2.5 Method

A methodis atriple (P, T, A), where P is a set of places with three spedal places: entry place ISP and
return place Each method has only one entry place ad one return place but it may contain multiple |SPs.
T isaset of trangitions, and ead transition can be asciated with a set of guards. A is a set of arcs defined
as. ((P-{return}) x T) O ((T x (P-{entry}).

2.3Inheritance Modeling

Althoughthere ae different views with resped to the mncept of agent-oriented design [15], we mnsider an
agent as an extension of an objed, and we believe that agent-oriented design should kegp most of the key
feauresin objed-oriented design. Thus, to progressfrom an agent-based model to an agent-oriented model,
we ned to incorporate some inheritance modeling capabiliti es. But inheritance in agent-oriented design is
more complicaed than in objed-oriented design. Unlike an objed (passve objed), an agent objed has
mental states and reasoning mecdhanisms. Therefore, inheritance in agent-oriented design invokes two
issies. an agent subclass may inherit an agent superclasss knowledge, goals, plans, the model of its
environment and its reasoning mechanisms; on the other hand, as in the cae of objed-oriented design, an
agent subclass may inherit al the services that an agent superclass may provide, such as private utility
functions. There is existing work on agent inheritance with resped to knowledge, goals and plans [2][28].
However, we believe that since inheritance happens at the dasslevel, an agent subclassmay be initialized
with an agent superclasss initial mental state, but new knowledge aquired, new plans made, and new
goals generated in aindividual agent objed (as an instance of an agent superclasg, can not be inherited by
an agent objed when creaing an instance of an agent subclass A superclass s reasoning mechanism can be

inherited, however it is beyond the scope of this paper. For simplicity, we assume that an instance of an
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agent subclass (i.e., an subclass agent) always uses its own reasoning mechanisms, and thus the reasoning
mechanisms in the gent superclass $ould be disabled in some way. This is necessary because different
reasoning mechanisms may deduce different results for an agent, and to resolve this type of conflict may be
time-consuming and make a agent’s reasoning mechanism inefficient. Therefore, in this paper we only
consider how to initidize a subclass agent’'s mental state while an agent subclass is instantiated,;
meanwhil e, we mncentrate on the inheritance of services that are provided by an agent superclass i.e., the
MPUs and methods defined in the internal structure of an agent class Before presenting our inheritance

scheme, we need the foll owing definition:

Definition 2.6 Subagnt and Primary Subagnt

When an agent subclassA is instantiated as an agent objed AO, a unique ayent identifier is generated, and
all superclasses and ancestor classes of the ggent subclass A, in addition to the agent subclassA itself, are
initialized. Ead of those initialized classes then becomes a part of the resulting agent objed AO. We cdl

an initialized superclassor ancestor classof agent subclassA a subagent, and the initiali zed agent subclass
A the primary subagent.

The result of initializing an agent class is to take the agent class as a template and creade a o©ncrete
structure of the ayent classand initidlize its date variables. Since we represent an agent classas an agent-
based G-net, an initialized agent classis modeled by an agent-based G-net with initialized state variables.
In particular, the four tokens in the spedal places of an agent-based G-net, i.e., gTkn, pTkn, kTkn and eTkn,
are set to their initial states. Since different subagents of AO may have goas, plans, knowledge and
environment models that conflict with those of the primary subagent of AQ, it is desirable to resolve them
in an ealy stage. In our case, we ded with those anflicts in the instantiation stage in the foll owing way.
All the tokens gTkn, pTkn, kTkn and eTkn in ead subagent of AO are removed from their associated spedal
places, and the tokens are cmbined with the gTkn, pTkn, KTkn and e€Tkn in the primary subagent of AO.®
The resulting tokens gTkn, pTkn, kTkn and eTkn (newly generated by unifying those tokens for ead type),
are put badk into the spedal places of the primary subagent of AO. Consequently, al subagents of AO lose
their abiliti es for reasoning, and only the primary subagent of AO can make necessary dedsions for the
whole agent objed. More spedficdly, in the Planner module (as $own in Figure 3) that belongs to a
subagent, the astrad transitions make _dedsion, sensor and updae can never be enabled because there ae
no tokens in the foll owing spedal places: Goal, Plan and Knowledge-base. If a message tagged as internal
arrives, the transition bypassmay fire and a message token can diredly go to a MPU defined in the internal
structure of the subagent if it is defined there. This is made possble by conneding the transition bypass
with inhibitor arcs (denoted by dashed lines terminated with a small circle in Figure 3) from the spedal
places Goal, Plan and Knowledge-base. So the transition bypass can only be enabled when there ae no

® The processof generating the new token values would involve ations sich as conflict resolution among
goals, plans or knowledge-bases, which is atopic outside the scope of our model and this paper.
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tokens in these places. In contrast to this behavior, in the Planner module of a primary subagent, tokens do
exist in the speda places Goal, Plan and Knowledge-base. Thus, the transition bypass will never be
enabled. Instead, the transition make dedsion must fire before an outgoing message is dispatched.

To reuse the services (i.e, MPUs and methods) defined in a subagent, we neel to introduce anew
mechanism cdled Asynchronouws Superclass svitch Place (ASP). An ASP (denoted by an ellipsisin Figure
3) is smilar to a MSP, but with the differencethat an ASP is used to forward a message or a method cdl to
a subagent rather than to send a message to an agent objed. For the MSP mechanism, the recever could be
some other agent objed or the ayent objed itself. In the cae of MSP(self), a message token is always ent
to the GSP of the primary subagent. However, for ASP(super), amessage token is forwarded to the GSP of
a subagent that is referred to by super. In the cae of single inheritance, super refers to a unique superclass
G-net, however with multiple inheritance, the reference of super must be resolved by searching the dass

hierarchy diagram.

When a message/method is not defined in an agent subclassmodel, the dispatching mechanism will depaosit
the message token into a arresponding ASP(super). Consequently, the message token will be forwarded to
the GSP of a subagent, and it will be again dispatched. This processcan be repeaed urtil the root subagent
isreaded. In this case, if the message is gill not defined at the roaot, an exception occurs. In this paper, we
do not provide exception handling for our agent models (from now on, we will cdl them agent-oriented G-
net models instead of agent-based G-net models), and we asume that al incoming messages have been

corredly defined in the primary subagent or some other subagents.

3. Examples of Agent-Oriented Design

3.1 A Hierarchy of Agentsin an Electronic Marketplace

Consider an agent family in an eledronic marketplacedomain. Figure 4 shows the ggents in a UML class
hierarchy notation. A shopping agent class is defined as an abstrad agent class that has the adility to
register in a marketplacethrough a fadlit ator, which serves as a well-known agent in the marketplace A
shopping agent class cannot be instantiated as an agent objed; however the functionality of a shopping
agent classcan be inherited by an agent subclass such as a buying agent classor a selli ng agent class Both
the buying agent and selling agent may reuse the functionality of a shoppng agent class by registering
themselves as a buying agent or a selling agent through a fadlit ator. Furthermore, a retailer agent is an
agent that can sell goods to a austomer, but it also neals to buy goods from some selli ng agents. Thus a
retailer agent classis designed as a subclass of both the buying agent classand the selling agent class In
addition, a austomer agent classmay be defined as a subclass of a buying agent class and an auctionee

agent class may be defined as a subclass of a selling agent class In the next sedion, we will explicitly
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model threetypes of agent class i.e., the shoppng agent class the buying agent classand the selling agent
class The modeling of the retail er agent class the austomer agent classand the auctionee agent classcan

be donein asimilar way.

| Shopping agent |
| Buying agent | | Selling agent
| Customer agent | | Retailer agent | | Auctionee agent

Figure 4. The dasshierarchy diagram of agentsin an eledronic marketplace

3.2 Modeling Agentsin an Eledronic Marketplace

To ill ustrate the processes for design of agents by using agent-oriented G-net models, we use the following
examples. Figure 5 (a) depicts a template of a cntrad net protocol [29] expressed as an agent UML
(AUML) sequence diagram [26] for a registration-negotiation protocol between a shopping agent and a
fadlitator agent. Note that although AUML is on the way to be standarized, many reseachers have
attempted to exploit UML to suppart design of multi-agent systems [30][31][26]. Figure 5 (b) is a modified
example of a mntrad net protocol adapted from [26], which depicts a template of a price-negotiation
protocol between a buying agent and a selling agent. Figure 5(c) shows an example of price-negotiation
contrad net protocol that is instantiated from the protocol template in Figure 5(b). Some of the notations of
AUML are alapted from [26] as extensions of UML sequence diagrams for agent design. In addition, to
corredly draw the sequence diagram for the protocol templates, we introduce two new notations, i.e., the

end of protocol operation “«” and the iteration of communicaion operation “*”. Examples of using these

two notations are & follows. In Figure 5 (@), we put amark of “«” in front of the message name “refuse” to

indicae that this message ends the protocol. In Figure 5 (b), a mark “»” is put on the right corner of the

narrow redangle for the message “propose” to indicate that the communicaion adions in this sedion can

be repeaed zero or more times.
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Figure 5. Contrad net protocols (a) A template for the registration protocol (b) A template
for the price-negotiation protocol (c) An example of the price-negotiation protocol

Consider Figure 5 (a). When a conversation based on a contrad net protocol begins, the shoppng agent
sends a request for registration to a fadlit ator agent. The fadlit ator agent can then choose to respond to the
shopping agent by refusing its registration or requesting agent information. Here the “x” in the dedsion
diamond indicates an exclusive-or dedsion. If the fadlitator refuses the registration based on the
marketplacés sze the protocol ends; otherwise, the fadlitator agent waits for agent information to be
supplied. If the agent information is corredly provided, the fadlit ator agent then still has a choice of either
acceting or rgjeding the registration based on the shoppng agent’s reputation and the marketplacés
functionality. Again, if the fadlitator agent refuses the registration, the protocol ends; otherwise, a
confirmation message will be provided afterwards. Similarly, the price-negotiation between a buying agent
and aselling agent is clealy ill ustrated in Figure 5 (b).

Based on the comnmunicaive ads (e.g., request-registration, refuse, etc.) needed for the cntrad net
protocol in Figure 5 (a), we may design the shopping agent class as in Figure 6. The Goal, Plan,
Knowledge-base and Environment modules remain as abstrad units and can be refined in a more detail ed
design stage. The Planrer module may reuse the template shown in Figure 3. The design of the fadlit ator
agent classis smilar, however it may suppat more protocols and should define more MPUs and methods
initsinternal structure.
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Figure 6. An agent-oriented G-net model for shoppng agent class(SC)
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With inheritance, a buying agent class as a subclassof a shopping agent class may reuse MPUSmethods
defined in a shopping agent classs internal structure. Similarly, based on the communicaive ads (e.g.,
request-price, refuse, etc.) needed for the contrad net protocol in Figure 5 (b), we may design the buying
agent class as in Figure 7. Note that we do not define the MPUs of refuse and confirm in the internal
structure of the buying agent class for they can be inherited from the shopping agent class A selli ng agent
classor a retailer agent classcan be designed in the same way. In addition to their own MPU/methods, a
selling agent classinherits all MPU/methods of the shoppng agent class and a retail er agent classinherits
al MPU/methods of both the buying agent classand the selli ng agent class

Now we discuss an example to show how the reuse of MPU/methods works. Consider a buying agent
objea BO, which receives a message of request-info from a fadlit ator agent objedt FO. A mTkn token will
be deposited in the GSP of the primary subagent of BO, i.e., the GSP of the arresponding buying agent
class (BC). The transition external in BC's Planrer module may fire, and the mTkn will be moved to the
placedispatch_incoming_message. Since there is no MPU for request-info defined in the internal structure
of BC, the mTkn will be moved to the ASP(super) place Since super here refers to a unique superclass—
the shopping agent class (SC) — the mTkn will be transferred to the GSP of SC. Now the mTkn can be
corredly dispatched to the MPU for request-info. After the message is processed, MSP(self) changes the
tag of the mTkn from external to internal, and sends the processed mTkn token bad into the GSP of BC.
Note that MSP(self) aways snds a mTkn badk to the GSP of the primary subagent. Upon the arival of this
messge token, the transition internal in the Planrer module of BC may fire, and the mTkn token will be
moved to the placecheck primary. Since BC corresponds to the primary subagent of BO, there ae tokens
in the speda places Goal, Plan, Knowledge-base and Environment. Therefore the astrad transition
make _dedsion may fire, and any necessary adions are exeauted in place neX_action. Then the arrent
conversation is either ignored o continued based on the dedsion made in the &strad transition
make _dedsion. If the aurrent conversation is ignored, the goals, plans and knowledge-base ae updated as
needed; otherwise, in addition to the updating of goals, plans and knowledge-base, a newly constructed
mTkn with atag of internal is deposited into placedispatch_ougoing_message. The new mTkn token has
the message name suppy-info, following the protocol defined in Figure 5 (a). Again, there is no MPU for
supdy-info defined in BC, so the new mTkn token will be dispatched into the GSP of SC. Upon the arival
of the mTkn in the GSP of SC, the transition internal in the Planner module of SC may fire. However at this
time, SC does not correspond to the primary subagent of BO, so al the tokensin the spedal places of Goal,
Plan, Knowledge-base have been removed. Therefore, the transition bypassis enabled. When the transition
bypassfires, the mTkn token will be diredly depaosited into the placedispatch_ougoing_message, and now
the mTkn token can be wrredly dispatched into the MPU for suppy-info defined in SC. After the message
is processed, the MSP(G'.Aid) mechanism changes the tag of the mTkn token from internal to external,

and transfers the mTkn token to the GSP of the recdver agent, in this case, the fadlit ator agent.
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For the reuse of private utility functions defined in a superclass the situation is the same & in the cae of
objed-oriented design. In addition, there ae threedifferent forms of inheritance that are commonly used,
namely augment inheritance, restrictive inheritance and refinement inheritance The usage of these three
forms of inheritance in agent-oriented design is also similar to that in objed-oriented design. Examples

concerning reuse of private utility functions and different forms of inheritance can be found in [23].

With single inheritance, the super in ASP(super) in an agent objed AO, as an instance of an agent classA,
refers to the subagent of AO, which corresponds to the unique superclass of A. However, with multiple
inheritance, super may refer to any one of the subagents, which corresponds to a superclassor an ancestor
classes of A. One way to resolve the reference of super is to use amodified brealth-first-seach of the
inheritance hierarchy graph to find the gpropriate reference of super. Due to ladk of space we do not
discussfurther detail s on thisisaue.

4. Analysisof Agent-Oriented Models

One of the alvantages of building a forma model for agents in agent-oriented design is to help ensure a
corred design that mees certain spedfications and system requirements. A corred agent design should
med certain key requirements, such as liveness deallock freeness and concurrency. Also certain
properties, such as the inheritance medhanism, need to be verified to ensure its corred functionality. Petri
nets offer a promising, tool-supparted technique for cheding the logic corredness of a design. In this
sedion, we use a Petri net todl, cadled INA (Integrated Net Analyzer) [32], to analyze and verify our agent
models. We use an example of a simplified Petri net model for the interadion between a singe buying

agent and two selli ng agents.

The INA tod is an interadive analysis tod that incorporates a large number of powerful methods for
analysis of Petri nets [32]. These methods include analysis of (1) structural properties, such as dructural
boundedness and T- and P-invariant analysis; (2) behavioral properties, such as boundedness safeness
liveness and deallock-freeness and (3) model cheding, such as cheding Computation TreeLogic (CTL)
formulas. These analyses employ various techniques, such as linea-algebraic methods (for invariants),
reatability and coverability graph traversals. Here we focus on behavioral property verification by model
cheding.

4.1 A Simplified Petri net Model for a Buying Agent and Two Selling Agents
The interadion of one buying agent and two selling agents can be modeled asanet asin Figure 8. Table 1

and Table 2 provide alegend that identifies the meaning assciated with ead place ad transition in Figure

8. To derive this net model, we use aGSP placeto represent ead selling agent. Thisis pradicd because
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an agent-oriented G-net model can be abstraded as a single GSP place and agent models can only interad
with ead other through GSP places. Meanwhil g, the net for the buying agent, whose dassis a subclassof

ashopping agent class is smplified as foll ows:

1. Since the spedal places of Goal, Plan, Knowledge-base have the same interfaces with the planner
module in an agent class we fuse them into one single placegod/plarvkb. Furthermore, we simplify
this fused placegod/plan/kb and the placeof environment as ordinary places with ordinary tokens.

2. We omit the private utiliti es sedions in both the shoppng subagent model and the buying primary
subagent model. Thus, to oktain our simplified model, we do not need to trandate the ISP mechanism,
athoughsuch atrandation to a Petri net form can be found in [21].

3. We simplify mTkn tokens as ordinary tokens. Although this smplificaion will cause the reatability
graph of our transformed Petri net to become larger, this smplifies the message tokens, allowing s to
ignore message detail s, which is appropriate for the purpase in this paper (we will explain it further in
Sedion 4.3).

4. We use net reduction (i.e., net transformation rules [33]) to simplify the Petri net corresponding to an
MPU/Method as a single place For instance, the MPU identified as propase in Figure 7 is represented
asplaceP25in Figure 8.

5. We use the dosed-world assumption and consider a system that only contains three aents, i.e., a
buyer agent and two seller agents. We asaume that a buying agent initiates a conversation. A system

that contains more than three gents can be verified by the same technique.

4.2 Deadlock Detedion and Redesign of Agent-Oriented Models

Now we use the INA tod to analyze the simplified agent model ill ustrated in Figure 8. To reduce the state
space we further reduce the net by fusing the MPUs in the same incoming/outgoing message sedion. For
instance, in Figure 8, we fuse the places P8, P9, P10 and P11 into ane single places. Obviously, this type
of net reduction [33] does not affed the properties of liveness deallock-freeness and the crredness of
inheritance mechanism. In addition, we set the cgadty of ead placein our net model as 1, which means
at any time, some processng urits, such as MPUs, can only processone message. However, the property
of concurrency is gill preserved because different transitions can be simultaneously enabled (and not in
conflict); providing the standard Petri net notion of concurrency based on the interleaved semantics. For
example, transitions t25 and t27 can be simultaneously enabled, representing that message processng for a

conversation and dedsion-making for another conversation can happen at the same time.
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Table 1
LEGEND FOR FIGURE 8 (DESCRIPTION OF PLACES)

Place Description

P1/P18 The GSP place of the shopping subagent / buying primary subagent.

P2/ P19 The merged place for the Goal, Plan and Knowledge-base module of the shopping
subagent / buying primary subagent.

P3/ P20 The complementary place of P2/ P19 introduced to remove the inhibitor arcs.

P4/ P21 The place for the Environment module of the shopping subagent / buying primary
subagent.

P5/ P22 The place for dispatching incoming messages.

P6 /P23 The place for chedking if the current subagent is a primary subagent

P7 /P24 Synchronization dace for making decision, updating mental state and cgpturing

internal/external events.
P8/P9/P10/ The place for the message processng urit (MPU) of request-info / refuse / accept-info /
P11 confirm.

P12/ P27 The place for choosing the next action: to ignore or to continue with the arrent
conversation.

P13/ P28 The place for dispatching outgoing messages.

P14/ P29 The place for choosing a new adion: to start a mnversation a to automatically update the
agent mental state.

P15/ P30 The place for updating the agent mental state.

P16/ P17 The place for the message processng urit (MPU) of request-registration / supply-info.

P25 The place for the message processng urnt (MPU) of propose.

P26 Asynchronous superclass switch place (ASP)

P31/P32/ The Place for the message processng unit (MPU) of request-price / accept-proposal /

P33 reject-proposal.

P34 Asynchronous superclass switch place (ASP)

P35 The GSP place of selling agent_1 (we use the GSP place to represent the whole agent).

P36 The GSP place of selling agent_2 (we use the GSP place to represent the whole agent).

Table 2

LEGEND FOR FIGURE 8 (DESCRIPTION OF TRANSITIONS)

Transition Description

t1/123 The transition external, which fires when the token from the GSP has a tag of external.

t2/124 Thetrangition internal, which fires when the token from the GSP has a tag of internal.

t3, 110 Transitions related to the message processng unit (MPU) of request-info.

t4, 111 Transitions related to the message processng urit (MPU) of refuse.

t5, t12 Transitions related to the message processng urit (MPU) of accept-info.

t6, 113 Transitions related to the message processing urit (MPU) of confirm.

t7/t27 The astract transition make_decision, which determines the next action to perform.

t8/128 The transition bypass which is disabled when there are tokens in place P2 / P19, i.e., there
isno token in place P3 / P20. Notice that P3 / P20 is a complementary place of P2/ P19.

t9/t29 The astract transition sensor, which cgpturesinternal and externa events.

t14 /132 The transitionignore that ignores the current conversation.

t15/t33 The transition continue that continues with the aurrent conversation.

t16/t34 Thetransition start_a conversation that starts a new conversation.

t17/t35 The transition automatic_update that automeatically updates the agent’s mental state.

18, t21 Transitions related to the message processing urit (MPU) of request-registration.

119, t22 Transitions related to the message processng urit (MPU) of supply-info.

t20/t40 The astract transition update_goal/plan/kb, which updates the agent’s mental state.

t25, t30 Transitions related to the message processing urit (MPU) of propose.

26, t31 Transitions related to the asynchronous superclass svitch place (ASP) .

36, t41 Transitions related to the message processng urit (MPU) of request-price.

t37, 142 Transitions related to the message processng urit (MPU) of accept-proposal.

t38, 143 Transitions related to the message processng urit (MPU) of reject-proposal.

t39, t44 Transitions related to the asynchronous superclass svitch place (ASP) .

t45 / t46 The transition related to the GSP of Selling Agent_1/ Selling Agent_2.
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To verify the corredness of our agent model, we utilize some key definitions for Petri net behavior

properties as adapted from [18].

Definition 4.1 Reachalhility
In a Petri net N with initial marking Mg, denoted as (N, Mg), a marking Mp, is sid to be reachalle from a
marking Mg if there exists a sequence of firings that transforms Mg to Mp. A firing or occurr ence sequence

isdenoted by 0 = Mg t1 M1 t2 M2 ...th M or simply o =t1t2 ... tn. In this case, Mp, isreatable from Mg

by o and we write Mg [0 > Mp,.

Definition 4.2 Boundedness

A Petri net (N, Mp), is sid to be k-bounded or simply boundkd if the number of tokens in eat placedoes
not exceed a finite number k for any marking readable from Mq. A Petri net (N, Mp) is sid to be safeiif it
is 1-bounded.

Definition 4.3 Liveness
A Petri net (N, M), is sid to be live if for any marking M that is readable from Mg, it is possble to

ultimately fire any transiti on of the net by progressng some further firing sequence

Definition 4.4 Revesibility
A Petri net (N, M) is sid to be revesibleif, for ead marking M that is reatable from the initial marking

Mo, Mg isreatable from M.

With our net model in Figure 8 asinput, the INA tool produces the following results:

Conput ation of the reachability graph
St ates generated: 8193
Arcs generated: 29701

Dead st ates:
484, 485, 8189
Nunmber of dead states found: 3
The net has dead reachabl e states.
The net is not |ive.
The net is not live and safe.
The net is not reversible (resetable).
The net is bounded.
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The net is safe.
The following transitions are dead at the initial marking:
7, 9, 14, 15, 16, 17, 20, 27, 28, 32, 33

The net has dead transitions at the initial marking.

The analysis ows that our net model is not live, and the dead reatable states indicate adeadlock. By
tradng the firing sequence for those deal readable states, we find that when there is a token in placeP29,
bath the transitions t34 and t35 are enabled. At thistime, if the transition t35 fires, atoken will be deposited
into placeP30. After firing transition t40, the token removed from placeP24, by firing transition t29, will
return to placeP24, and this makes it possble to fire d@ther transition t27 or t29 in a future state. However
if the transition t34 fires, instead of firing transition t35, there will be no tokens returned to placeP24. So,
transition t27 and t29 will be disabled forever, and a deadlock situation occurs. To corred this error, we
need to modify the design of the planner module in Figure 3. The model modification is to add a new arc
from transition start_a_conversation to placesyn. Correspondingly, we ald two new arcs in Figure 8: an
arc from transition t16 to placeP7, and another arc from transition t34 to placeP24. After this corredion,

we can again evaluate the revised net model by usingthe INA tool. Now we obtain the foll owing results:

Conputati on of the reachability graph
States generated: 262143
Arcs generated: 1540095

The net has no dead reachabl e states.

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:
7, 9, 14, 15, 16, 17, 20, 28

The net has dead transitions at the initial marking.

Li veness test:

Warni ng: Liveness analysis refers to the net where all dead transitions
are ignored.

The net is live, if dead transitions are ignored.

The conputed graph is strongly connect ed.

The net is reversible (resetable).

This automated analysis $ows that our modified net model is live, ignoring, of course, any transiti ons that

are ded in the initial marking. Thus, for any marking M that is readable from Mo, it is possble to
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ultimately fire ay transition (except those dead transitions) of the net. Since the initial marking Mg
represents that there is no ongoing (adive) conversations in the net, a marking M that is readable from Mo,
but where M # Mg, implies that there must be some cnversations adive in the net. By showing that our net

mode is live, we prove that under al circumstances (no matter if there ae, or are not, any adive
conversations), it is possble to eventualy perform any needed future communicaive ad¢. Consider the
dea transitions t7, t9, t14, t15, t16, t17 and t20. These imply that the dedsion-making uritsin the shopping
subagent are disabled. The remaining deal transition, t28, implies that the primary subagent always makes

dedsionsfor the whole buying agent.

Our net model is safe becaise we have set the cgadty of ead placein our model to 1. A net model with
cgpadty k (k> 1) for eat place ca be proved to be k-bounded in the same way. However, the state space

may increase dramaticdly.

In addition, the analysis tells us that our net model is revesible, indicaing that the initial marking Mg can
be reproduced (recdl definition 4.4, given ealier). Sincethe initial marking Mg represents that there ae no

ongoing (adive) conversations in the net, the reversible property proves that every conversation in the net

can be eventually completed.

4.3 Property Verification by Model Cheding

To further prove alditional behavioral properties of our revised net model, we use some model cheding
cgpabiliti es provided by the INA todl. Model chedingis a technique in which the verificdion of a system
is carried out by using a finite representation of its tate space Basic properties, such as an absence of
deadlock or satisfadion of a state invariant (e.g., mutual exclusion), can be verified by cheding individual
states. More subtle properties, such as guaranteeof progress require chedking for spedfic ¢yclesin agraph
representing the states and passble transitions between them. Properties to be thedked are typicdly

described by formulaein a branching time or linea time temporal logic [34][ 35].

The INA tod allows us to state properties in the form of CTL formulae [32][ 34]. Using this notation, we
can spedfy and verify some key properties of our revised net model, such as concurrency, mutual
exclusion, and proper inheritance behavior:

*  Concurrency

The following formula says that, in the readability graph of our revised net model, there eists a path that
leadsto a state in which al the places P5, P13, P22 and P28 are marked.
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EF(P5 & P13 & P22 &P28))) Result: The fornmula is TRUE

Result explanation: A TRUE result indicates that all the places P5, P13, P22 and P28 can be marked at the
same time. From Figure 8 and Table 1, we see that incoming/outgoing messages are dispatched in these

places. So the result implies that diff erent messages can be dispatched in our net model concurrently.

¢ Mutua Exdusion

The following formula says that, in the readability graph of our revised net model, there exists a path that
leads to a state in which both places P27 and P30, or both places P29 and P30, are marked.

EF( (P27 &P30) V (P29 &P30)) Result: The formula is FALSE

Result explanation: A FALSE result indicaes that it is impossble to mark both places P27 and P30, or
both places P29 and P30, at the same time. From Figure 8 and Table 1, we seethat placeP27 represents
any adions exeautted after dedsion-making, and place P30 is used for updating the plan, goa and
knowledge-base. Thus, this result guarantees that dedsions can only be made upon the latest mental state,
i.e., the latest values in plan, goa and knowledge-base modules. Simil arly, the fad that P29 and P30 cannot
be marked at the same time guarantees the requirement that the sensor can always cgpture the latest mental
state.

¢ Inheritance Mechansm (dedsion-making in subagent)

The following formula says that, in the readability graph of our revised net model, P12, P14 and P15 are
not marked in any state on all paths.

AG - P12 &(-Pl4 & P15)) Result: The formula is TRUE

Result explanation: A TRUE result indicates that places P12, P14 and P15 are not marked under any
circumstance From Figure 8 and Table 1, we seethat P12, P14 and P15 belong to dedsion-making uritsin
the shopping subagent. As we stated ealier, al dedsion-making medianisms in subagents should be
disabled, with all dedsion-makings for an agent being achieved by the primary subagent. So, the result

implies adesirable feaure of the inheritance mecdhanism in our net model.

e Inheritance Mechanism (ASP message forwarding 1)
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The following formula says that, in the readability graph of our revised net model, P26 or P34 are dways
marked before P5 or P6 is marked.

Al (P26 VP34)B(P5 VP6)] Result: The fornmula is TRUE

Result explanation: A TRUE result indicates that neither placeP5 nor P6 can beaome marked before the
place P26 or P34 is marked. From Figure 8 and Table 1, we seethat place P26 and P34 represent ASP
places, and P5 and P6 represent the message dispatching urits. The result implies that messages will never
be dispatched in a shoppng subagent unlessa MPU is not found in the primary buying subagent, in which
case, either the ASP placeP26 or P34 will be marked.

* Inheritance Mechanism (ASP message forwarding I1)

The following formula says that, in the readability graph of our revised net model, P26 (P34) is aways
marked before P5 (P6) is marked.

Al P26 BP5] VA[ P34 BP6] Result: The formula is FALSE

Result explanation: We exped that for every incoming (outgoing) message, if it is not found in the primary
buying subagent, it will be forwarded to the shopping agent, and dispatched into a MPU of the incoming
(outgoing) message sedion. However, the FALSE result indicaes that our net model does not work as we
have expeded. By looking into the generic agent model, we can observe that when we aeaed the net
model in Figure 8, we simplified all message tokens as ordinary tokens, i.e., bladk tokens. This
simplification makes it possble for an incoming (outgoing) message to be dispatched into an outgoing
(incoming) messge sedion. Therefore, a message might be processed by a MPU that is not the desired
one. To solve this problem, we may use mlored tokens, instead of ordinary tokens, to represent message
tokens, and attach guards to transitions. However, in this paper, by using ordinary placétransition net (not a

colored net), we obtain a simplified model that is sufficient to ill ustrate our key concepts.

5. Conclusion and Future Work

One of the most rapidly growing areas of interest for distributed computing is that of distributed agent
systems. Although there ae severa implementations of multi-agent systems avail able, formal frameworks
for such systems are few. Formal methods in multi-agent system spedfication and design can help to

ensure robust and reliable products.
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In this paper, we introduced an agent-oriented model rooted in the Petri net formalism, which provides a
foundation that is mature in terms of both existing theory and tod suppat. An example of an agent family
in eledronic commerce was used to ill ustrate the modeling approach. Models for a shopping agent, selling
agent, buying agent and retailer agent were presented, with emphasis on the daraderistics of being
autonomous, readive and internally-motivated. Our agent-oriented models also provide a ¢ean interface
between agents, and agents may communicate with ead other by using contradt net protocols. By the
example of registration-negotiation protocol between shoppng agents and fadlitator agents, and the
example of a price-negotiation protocol between shopping agents and buying agents, we ill ustrated how to
crede gyent models and how to reuse functionality defined in an agent superclass We dso discussed how
to verify livenessproperties of our net model by using an existing Petri net toal, the INA toal. The value of
such an automated analysis capability was demonstrated by detedion of a deadlock situation due to a
design error. The revised model was then proved to be both live and revesible. Finally, some model
cheding techniques were used to prove some alditional behaviora properties for our model, such as
concurrency, mutual exclusion, and corredness of the inheritance medanism. Although we proved some
key behaviora properties of our agent model, our formal method approach is also of value in creding a
clea understanding of the structure of an agent, which can increase @nfidence in the wrredness of a
particular multi-agent system design. Also, in producing a more detailed design, where the éstrad
transitions in the planner module ae refined, we may again use Petri net tools to capture further design

errors.

For our future work, we will consider the refinements of the Goal, Plan, Knowledge-base and Environment
modules. Also, the astrad transitions defined in the Planrer module, i.e., make _dedsion, sensor and
updae, can be refined into corred sub-nets that capture adion sequences gedfic to those adivities. This
work will provide abridge to ather work concerned with such agent adivities [36][37][38]. We will also
look further into isaues like deadlock avoidance and state exploration problemsin the agent-oriented design

and verificaion process.
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