
10/10/00 Department of EECS, UIC 1

Extending G-Nets to Support Inheritance Modeling in 
Concurrent Object-Oriented Design

Haiping Xu and Sol M. Shatz

Concurrent Software System Lab

Electrical Engineering and Computer Science Department

The University of Illinois at Chicago

{hxu1,shatz}@eecs.uic.edu



10/10/00 Department of EECS, UIC 2

Outline

• Why formal methods?

• Extending G-Nets to support class modeling.

• Extending G-Nets to support inheritance modeling.

• Analyzing inheritance anomaly problem

• Our current work: modeling agent-oriented design.

• Concluding comments and future work.



10/10/00 Department of EECS, UIC 3

Why Formal Methods?

• To write formal requirement specification, which serve as a 
contract between the user and the designer.

• To be used in software design. Design errors may be 
caught in an early design stage.

• To support  system verification. 
– model checking

– theorem proving



10/10/00 Department of EECS, UIC 4

G-Nets: A High Level Petri Net

• Defined to support modeling of systems as a set of 
independent and loosely-coupled modules.

• Provide support for incremental design and successive 
modification.

• Are not fully object-oriented due to a lack of support for 
inheritance.



10/10/00 Department of EECS, UIC 5

An Example

Figure 1. G-Net Models of Buyer and Seller Objects 

GSP(Buyer)

ISP(Seller,
sellGoods())

   buyGoods() askPrice()

t1

t2

ISP(Seller,
returnPrice())

t3

t4

returnPrice()

calculate_
price

sell_
goods

sellGoods()

GSP(Seller)

t8

t7

t6

t5

BuyGoods();
askPrice();

returnPrice();
sellGoods();



10/10/00 Department of EECS, UIC 6

Extending G-Nets to Support 
Class Modeling

• Motivation: to support inheritance.

• Interpret a G-Net as a model of class.

• Instantiate a G-Net G:
– generates a unique object identifier G.Oid

– initializes the state variables defined in G

– ISP method invocation becomes 2-tuple (G’.Oid, mtd)



10/10/00 Department of EECS, UIC 7

Different Forms of Inheritance

• Augment Inheritance: new protocols are added to 
a subclass model.

• Restrictive Inheritance: some superclass methods 
are absent from the protocol of the subclass.

• Refinement Inheritance: the subclass contains a 
method that includes the behavior of its 
superclass, but extends it in some way.



10/10/00 Department of EECS, UIC 8

Extending G-Net to Support Inheritance

• Default Place: a default entry place defined in the 
internal structure of a subclass model.

• The default place is marked only if the method is 
not defined in the subclass model.

• Superclass Switch Place (SSP): is used to forward 
a method call to a subobject of the object itself.



10/10/00 Department of EECS, UIC 9

A G-Net Model of Unbounded Buffer UB

GSP(UB)

check
_empty

isEmpty()

Figure 2 G-Net Model of Unbounded Buffer UB

bool isEmpty();
void put(e);
item get();
int who();

who()

print_Oid

ISP (self,
isEmpty())

 get()

t1

t2

syn

put(e)

return
_false

return
_true

remove

print
_error

store

t3

t4

t5

t6 t7

t8 t9

t10

t11



10/10/00 Department of EECS, UIC 10

A G-Net Model of Bounded Buffer BB
 
 
 

GSP(BB) 

print 
_error 

      who() 

Figure 3 G-Net Model of Bounded Buffer BB 

BB extends UB 
bool isEmpty(); 
bool isFull(); 
void put(e); 
Item get(); 

default 

SSP(UB) 

ISP (self, 
isFull()) 

isFull() 

t1 

t2 

syn 

put(e) 

SSP(UB) 

check 
_full 

print 
_error 

return 
_true 

return 
_false 

t5 

t6 t7 

t8 t9 

t3 

t4 

t10 

t11 



10/10/00 Department of EECS, UIC 11

Analyzing Inheritance Anomaly Problem

• Inheritance anomaly refers to the phenomenon that 
synchronization code can not be effectively inherited 
without non-trivial re-definition of some inherited methods.

• The inheritance anomaly problem has usually been 
approached in terms of analyzing the causes, such as 
partitioning of acceptable states, history-only sensitiveness 
of acceptance states etc.

• We analyze the inheritance anomaly problem based on 
clarifying the terminology of “synchronization constraints”.



10/10/00 Department of EECS, UIC 12

Analyzing Inheritance Anomaly Problem (Cont.)

• Synchronization constraints among methods can be 
specified explicitly or implicitly. 

• An explicit synchronization constraint refers to the 
concurrent/mutual-exclusive execution between two 
methods in an object.

• An implicit synchronization constraint refers to cases where 
acceptance of a method in an object is based on that 
object’s state.

• In either case, the inheritance anomaly problem may be 
attacked by using refinement inheritance.



10/10/00 Department of EECS, UIC 13

A G-Net Model of Bounded Buffer BB1

GSP(BB1)

print
_error

Figure 4 G-Net Model of Bounded Buffer BB1

BB1 extends BB
bool isEmpty( );        // redefined
bool isFull( );            // redefined
void put(e);               // redefined
Item gget( );

isFull()

SSP(BB)SSP(BB)

 put(e)

t1

t4

syn

gget()

0

<0>

<0>

<n>

<0>

<n>

<1>

return
_false

return
_true

ISP(self,
isEmpty())

remove
<0>

isEmpty()

SSP(BB)
t2 t3

t5

t6

t7

t8

t9

t10

t11 t13

t12

default

SSP(BB)



10/10/00 Department of EECS, UIC 14

Our Current Work: Agent-Oriented Design

• A multi-agent system (MAS) is a concurrent system with 
autonomous, reactive, internally-motivated agents in a 
decentralized environment.

• We extend G-Net to support agent modeling based on the 
BDI agent model. 

• To progress from an agent-based design model to an 
agent-oriented model, we also introduce new mechanisms 
to support inheritance modeling.



10/10/00 Department of EECS, UIC 15

A Framework of Agent-based Model
GSP(G)

message_
processing

incoming message

Figure 5 A Generic Agent-based G-Net Model

Goal

 outgoing message

action_1 action_m

Knowledge-base

                  Planner

MSP(self) MSP(self) MSP(G’.aid) MSP(G’.aid)

action_1 action_n

message_
processing

message_
processing

message_
processing

 return  return

private utility

utility_1 utility_p

…

…

…

…

…

…

utility_1 utility_p

Plan Environment

Notes: G’.aid = mTkn.body.msg.receiver as defined later in this section



10/10/00 Department of EECS, UIC 16

A Template of Planner Module
GSP(G)

Figure 6 A Template of Planner Module

Goal Knowledge-base

make_
decision

start_a_
conver_
sation

…

…

…

…

…

continue

external internal

to place “Goal”
to place “Plan”
to place “Knowledge base”

from transition
“update”

update_
goal/plan/kb

check_
primary

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

dispatch_
private_
utility

private

Plan

bypass

ASP(super)

ignore

next_
action

sensor

automatic_
update

new_
action

ASP(super)

ASP(super)

update

outgoing messages

private utilities

incoming messages

autonomous unit

Environment

syn



10/10/00 Department of EECS, UIC 17

Concluding Comments

• There is an increasing need to ensure that complex 
software systems being developed are robust, reliable and 
fit for purpose.

• Petri nets are an excellent formalism for formal specification
because they tend to provide a visual, and thus easy to 
understand, model. 

• Extending G-Nets to support inheritance in object-oriented 
design and agent-oriented design provides an effective way 
for modeling complex software systems.



10/10/00 Department of EECS, UIC 18

Future Work

• Transform the object model and agent model into colored 
Petri nets, and verify our net models using existing Petri net 
tools, such as Design/CPN.

• Incrementally design our distributed object system or multi-
agent system, and capture early design errors.

• Implement tools to help designer to write formal design 
specification with our formalism, and automatically verify 
the behavior properties of the system.


