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Why Formal Methods?

• To write formal requirement specification, which serve as a 
contract between the user and the designer.

• To be used in software design. Design errors may be 
caught in an early design stage.

• To support  system verification. 
– model checking

– theorem proving
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G-Nets: A High Level Petri Net

• Defined to support modeling of systems as a set of 
independent and loosely-coupled modules.

• Provide support for incremental design and successive 
modification.

• Are not fully object-oriented due to a lack of support for 
inheritance.
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An Example

Figure 1. G-Net Models of Buyer and Seller Objects 
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Extending G-Nets to Support 
Class Modeling

• Motivation: to support inheritance.

• Interpret a G-Net as a model of class.

• Instantiate a G-Net G:
– generates a unique object identifier G.Oid

– initializes the state variables defined in G

– ISP method invocation becomes 2-tuple (G’.Oid, mtd)
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Different Forms of Inheritance

• Augment Inheritance: new protocols are added to 
a subclass model.

• Restrictive Inheritance: some superclass methods 
are absent from the protocol of the subclass.

• Refinement Inheritance: the subclass contains a 
method that includes the behavior of its 
superclass, but extends it in some way.
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Extending G-Net to Support Inheritance

• Default Place: a default entry place defined in the 
internal structure of a subclass model.

• The default place is marked only if the method is 
not defined in the subclass model.

• Superclass Switch Place (SSP): is used to forward 
a method call to a subobject of the object itself.
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A G-Net Model of Unbounded Buffer UB
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Figure 2 G-Net Model of Unbounded Buffer UB
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A G-Net Model of Bounded Buffer BB
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Figure 3 G-Net Model of Bounded Buffer BB 
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Analyzing Inheritance Anomaly Problem

• Inheritance anomaly refers to the phenomenon that 
synchronization code can not be effectively inherited 
without non-trivial re-definition of some inherited methods.

• The inheritance anomaly problem has usually been 
approached in terms of analyzing the causes, such as 
partitioning of acceptable states, history-only sensitiveness 
of acceptance states etc.

• We analyze the inheritance anomaly problem based on 
clarifying the terminology of “synchronization constraints”.
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Analyzing Inheritance Anomaly Problem (Cont.)

• Synchronization constraints among methods can be 
specified explicitly or implicitly. 

• An explicit synchronization constraint refers to the 
concurrent/mutual-exclusive execution between two 
methods in an object.

• An implicit synchronization constraint refers to cases where 
acceptance of a method in an object is based on that 
object’s state.

• In either case, the inheritance anomaly problem may be 
attacked by using refinement inheritance.
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A G-Net Model of Bounded Buffer BB1
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Figure 4 G-Net Model of Bounded Buffer BB1
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Our Current Work: Agent-Oriented Design

• A multi-agent system (MAS) is a concurrent system with 
autonomous, reactive, internally-motivated agents in a 
decentralized environment.

• We extend G-Net to support agent modeling based on the 
BDI agent model. 

• To progress from an agent-based design model to an 
agent-oriented model, we also introduce new mechanisms 
to support inheritance modeling.
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A Framework of Agent-based Model
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Figure 5 A Generic Agent-based G-Net Model
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A Template of Planner Module
GSP(G)

Figure 6 A Template of Planner Module
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Concluding Comments

• There is an increasing need to ensure that complex 
software systems being developed are robust, reliable and 
fit for purpose.

• Petri nets are an excellent formalism for formal specification
because they tend to provide a visual, and thus easy to 
understand, model. 

• Extending G-Nets to support inheritance in object-oriented 
design and agent-oriented design provides an effective way 
for modeling complex software systems.
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Future Work

• Transform the object model and agent model into colored 
Petri nets, and verify our net models using existing Petri net 
tools, such as Design/CPN.

• Incrementally design our distributed object system or multi-
agent system, and capture early design errors.

• Implement tools to help designer to write formal design 
specification with our formalism, and automatically verify 
the behavior properties of the system.


