
211

Formal Modeling of Synchronization Methods forFormal Modeling of Synchronization Methods for
Concurrent Objects in Concurrent Objects in Ada 95Ada 95

Ravi K. Gedela
Dept. of EECS

Concurrent Software Lab
The University of Illinois at Chicago

Tel: +1-303-473-6722

R.Gedela@ericsson.com

Sol M. Shatz
Dept. of EECS

Concurrent Software Lab
The University of Illinois at Chicago

 Tel: +1-312-996-5488

shatz@eecs.uic.edu

Haiping Xu
Dept. of EECS

Concurrent Software Lab
The University of Illinois at Chicago

Tel: +1-312-666-8588

hxu1@eecs.uic.edu

1.1. ABSTRACTABSTRACT
One important role for One important role for Ada programming isAda programming is
to aid engineering of concurrent andto aid engineering of concurrent and
distributed software. In a concurrent anddistributed software. In a concurrent and
distributed environment, objects maydistributed environment, objects may
execute concurrently and need to beexecute concurrently and need to be
synchronized to serve a common goal. Threesynchronized to serve a common goal. Three
basic methods by which objects in abasic methods by which objects in a
concurrent environment can be constructedconcurrent environment can be constructed
and synchronized have been identified [1].and synchronized have been identified [1].
To formalize the semantics of these methodsTo formalize the semantics of these methods
and to provide a formal model of their coreand to provide a formal model of their core
behavior, we provide some graphic modelsbehavior, we provide some graphic models
based on the based on the Petri net formalism. ThePetri net formalism. The
purpose of this formal modeling is topurpose of this formal modeling is to
illustrate the possibility of automaticillustrate the possibility of automatic
program analysis for object-orientedprogram analysis for object-oriented
features in Ada-95. Models for the threefeatures in Ada-95. Models for the three
distributed-object synchronization methodsdistributed-object synchronization methods
are discussed, and a potential deadlockare discussed, and a potential deadlock
situation for one of the methods/models issituation for one of the methods/models is
illustrated. We conclude with someillustrated. We conclude with some
comparison of the three methods in terms ofcomparison of the three methods in terms of
the model abstractions.the model abstractions.
1.11.1 KeywordsKeywords
Ada-95, concurrent objects, distributed software,
synchronization methods, Petri net formalism

2.2. INTRODUCTIONINTRODUCTION
With the growing interest in concurrent and distributed
computing applications, there is significant value in new
capabilities to support the engineering of distributed
software. One of the principle objectives of concurrent
and distributed programming is to coordinate the
behavior of concurrent tasks. This is aided by using
object-oriented techniques in combination with
concurrent programming. The resultant software systems
consist of objects that execute concurrently and need to
be synchronized to serve a common goal. There might be
situations where access to an object is required by more
than one other object or task. In such cases, it is vital to
enforce synchronization. For example, consider a printer
as an object. The services of this printer object (server)
might be required by multiple tasks (clients). This would
require synchronization among the client tasks so that
only one task at a time can gain access to the printer
object. There are many such practical situations where
synchronization is very important. Thus, synchronization
among tasks accessing an object is a critical issue.

In the specific context of Ada-95 [2], Burns and Wellings
have identified three methods to introduce
synchronization among objects in a concurrent
environment [1]. These methods are listed as follows:

1. Synchronization is added if and when it is required, by
extending the object.

2. Synchronization is provided by the base (root) object
type.

3. Synchronization is provided as a separate protected
type and the data is passed as a discriminant.

Unfortunately, these methods can be difficult to
understand due to the lack of an abstraction formalism.
We have used Petri nets [3] to formalize the behavior of
these methods. Because Petri nets are graphically based,
the models provide a visualization result with well-
defined dynamic behavior. Petri nets provide a graphic
model that supports the fundamental concepts of
concurrency, synchronization, and nondeterminism. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGAda'99 10/99 Redondo Beach, CA, USA
© 1999 ACM 1-58113-127-5/99/0010...$5.00

212

Petri net models, conditions are represented by “place
nodes,” depicted as circles, and events are represented by
“transition nodes,” depicted by bars. Although we are not
yet ready to discuss Figure 1, it provides an example of a
Petri net graph. Note that directed arcs connect the place
and transition nodes and thus provide a logical
connection between the holding of conditions and the
occurrence of events. The other key component of a Petri
net is its marking, which is a distribution of tokens to
place nodes. Tokens are represented by black dots, as can
be seen in the place labeled L in Figure 1. As events
occur (i.e., transitions fire), tokens are consumed from
input places and deposited into output places. Due to lack
of space in this paper, we are not able to provide a more
complete introduction to Petri nets. Full details on this
model, including associated analysis techniques, can be
found in other references (e.g., [3]). There does exist
some other published work on Petri net modeling for
Ada. Among the earliest work is that of Mandrioli, et al
[4], which focused on using Petri nets to provide a formal
semantic for the basic tasking mechanisms of Ada-83.
Earlier work by our own research group investigated the
use of Petri nets for development of tools and techniques
for automated concurrency analysis of software based on
Ada tasking [5-6]. Again the focus was on Ada-83. More
recent work provided a formal description of Ada-95
tasking constructs, such as the asynchronous transfer of
control and requeue statement [7].

In the remainder of this paper, we will explain the
various object synchronization methods and present
associated net models for illustrative examples using
these methods. We also discuss a potential deadlock
situation and compare the three synchronization methods
at the model level.

3.3. SYNCHRONIZATION FORSYNCHRONIZATION FOR
CONCURRENT OBJECTSCONCURRENT OBJECTS
Among the three synchronization methods for concurrent
objects in Ada-95, the first method, whose
synchronization is added by extending the object, is the
simplest one. In the original example for the first method
by Burns and Wellings [1], procedures Op1 and Op2,
defined in package Object, are redefined in its child
package Object.Synchronized and its grandchild package
Object.Synchronized.Extended (as shown in Section 4.1).
Since this kind of polymorphism is resolved at compile
time, to make the formalism more obvious, we eliminate
the polymorphism by changing the corresponding
procedure name to Op1_syn, Op1_ext and so on. On the
other hand, for both the second and third synchronization
methods, a common procedure is used to dynamically
dispatch the correct procedure for different parameters,
and the polymorphism is resolved at execution time. In

such cases, the dynamic behavior of those original
examples are well-captured by the Petri net models.

3.13.1 Synchronization Added by ExtendingSynchronization Added by Extending
the Objectthe Object
Let us first consider the method where synchronization is
added if and when it is required by extending the object.
This is the most general approach that could be followed
to construct objects in a concurrent environment. The
Obj_Type is defined as tagged and can be extended to
facilitate synchronization. We remind the reader that this
technique was introduced in [1]. Consider the following
simple example:

package Object is

 procedure Op1 (O : in out Obj_Type);

 procedure Op2 (O : in out Obj_Type);

private

 type Obj_Type is tagged limited record … end record;

end Object;

package Object.Synchronized is

 type Protected_Type is new Obj_Type with private;

 procedure Op1_syn (O : in out Protected_Type);

 procedure Op2_syn (O : in out Protected_Type);

private

 type Protected_Type is new Obj_Type with

 record

 L : Mutex;

 end record;

end Object.Synchronized;

Type Mutex provides a simple mutual exclusion lock,
and is defined by a protected type as follows:

protected type Mutex is

 entry Lock;

 entry Unlock;

 end Mutex;

In the body of package Object.Synchronized, procedures
Op1_syn and Op2_syn can be defined to call the
procedures Op1 and Op2, defined in package Object, and
to include the synchronization facilities:

procedure Op1_syn (O : in out Protected_Type) is

213

begin

 O.L.Lock;

 Op1(Obj_Type(O));

 O.L.Unlock;

end Op1_syn;

procedure Op2_syn (O : in out Protected_Type) is

begin

 O.L.Lock;

 Op2(Obj_Type(O));

 O.L.Unlock;

end Op2_syn;

In this example, procedure Op1_syn takes O, a parameter
of type Protected_Type, and makes an attempt to gain the
lock. Then the procedure Op1, defined in Object, is
called by passing Obj_Type(O) as a parameter. After the
execution of the procedure Op1, entry Unlock is called to
release the Lock. Procedure Op2_syn has behavior
similar to procedure Op1_syn.

Now consider the following extension of the package
Object.Synchronized:

package Object.Synchronized.Extended is

 type Extended_Protected_Type is new Protected_Type

 with private;

 procedure Op1_ext (O : in out Extended_Protected_Type);

 procedure Op2_ext (O : in out Extended_Protected_Type);

 procedure Op3_ext (O : in out Extended_Protected_Type);

private

 type Extended_Protected_Type is new Protected_Type

 with record … end record;

end Object.Synchronized.Extended;

procedure Op1_ext (O : in out Extended_Protected_Type) is

begin

 O.L.Lock;

 Op1(Obj_Type(O));

 O.L.Unlock;

end Op1_ext;

procedure Op2_ext (O : in out Extended_Protected_Type) is

begin

 O.L.Lock;

 Op2(Obj_Type(O));

 O.L.Unlock;

end Op2_ext;

procedure Op3_ext (O : in out Extended_Protected_Type) is

begin

 O.L.Lock;

 -- data processing

 O.L.Unlock;

end Op3_ext;

The use of package Object.Synchronized.Extended can be
demonstrated by calling the procedure Op1_ext as
follows:

O : Extended_Protected_Type;

Op1_ext(O);

In package Object.Synchronized.Extended, procedures
Op1_ext and Op2_ext are defined to have the same
functional behavior as the procedures Op1_syn and
Op2_syn, defined in package Object.Synchronized. The
only difference is the formal parameter type, which is
defined as Extended_Protected_Type. Procedure Op3_ext
is a new procedure that is added to package
Object.Synchronized.Extended.

The Object.Synchronized.Extended object can be
modeled by a single Petri net as shown in Figure 1. In
this model, place L provides for mutual exclusion on the
execution of procedure Op1_ext, Op2_ext and Op3_ext,
which are represented as transitions op1_ext, op2_ext
and op3_ext respectively. Note that we have ignored
modeling the execution of procedure Op1_syn and
Op2_syn, which are defined in package
Object.Synchronized. This is because procedure Op1_syn
and Op2_syn have the same functionality as those
procedures Op1_ext and Op2_ext, which are defined in
package Object.Synchronized.Extended, and they can be
modeled in exactly the same way as shown in Figure 1.
To understand the model behavior, assume that task A
calls Op1_ext and task B calls Op2_ext simultaneously.
Both transitions op1_ext and op2_ext can fire, resulting
in a token in both places a and e. Under this condition,
both transitions lock_op1_ext and lock_op2_ext will be
enabled at the same time. However, due to the conflict
firing these two transitions (i.e., the competition for the
token in place L), only one of them will succeed. The
other transition must wait until the procedure defined in
package Object completes and the lock is released. The
synchronization involving calls to Op3_ext is similar.

214

3.23.2 Synchronization Provided by the BaseSynchronization Provided by the Base
Object TypeObject Type
The second method of providing synchronization to
objects in a concurrent environment is synchronization
provided by the base object type. In this method the base
object incorporates the synchronization mechanism.
Consider a similar example as discussed in the first
method. In this case the mutual exclusion lock is

declared in the base object. The Ada code for this would
be as follows:

package Protected_Object is

 type Protected_Type is abstract tagged limited private;

 procedure Class_Wide_Op1(O: in out Protected_Type'Class);

 procedure Class_Wide_Op2(O: in out Protected_Type'Class);

private

 type Protected_Type is abstract tagged limited

 record

 L : Mutex;

 end record;

 procedure Op1 (O : in out Protected_Type) is abstract;

 procedure Op2 (O : in out Protected_Type) is abstract;

end Protected_Object;

In this example, we declare the procedures Op1 and Op2
to be abstract and private, and the class-wide operations,

Class_Wide_Op1 and Class_wide_Op2, are being made
the only interfaces that are exported from the package.
Extensions of the base object must implement the
procedures Op1 and Op2. The class-wide operations can
now be defined in the package body as follows:

procedure Class_Wide_Op1(O: in out Protected_Type'Class) is

begin

 O.L.Lock;

 Op1(O); -- dispatch to correct operation

 O.L.Unlock;

end Class_Wide_Op1;

Figure 1. Object.Synchronized.Extended model

L

lock_op1_ext lock_op2_ext

a

op1_ext op2_ext

op3_ext

lock_op3_ext

unlock_op1_extunlock_op2_ext

unlock_op3_ext

d

ghi

op3

b c
e

k

lm

op2

op1

Obj_Type(O)

Obj_Type(O)

215

procedure Class_Wide_Op2(O: in out Protected_Type'Class) is

begin

 O.L.Lock;

 Op2(O); -- dispatch to correct operation

 O.L.Unlock;

end Class_Wide_Op2;

The following code demonstrates the usage of this
Protected_Object:

package Protected_Object.My_Object is

 type My_Object_Type is new Protected_Type

 with record … end record;

 private

 procedure Op1 (O : in out My_Object_Type);

 procedure Op2 (O : in out My_Object_Type);

 end Protected_Object.My_Object;

This method uses the dynamic dispatching mechanism.
Depending on the object type of the object that is passed
as a parameter in the call to the procedure, the runtime
system directs the call to the appropriate code defined for
that object type. The type can be extended, retaining the
mutual exclusion, as long as the operations are called
with the class-wide operator. For example, one extension
of the above is as follows:

package Protected_Object.My_Object.Extended is

 type Extended_Protected_Type is new My_Object_Type

 with private;

 procedure Class_Wide_Op3 (O: in out

 Extended_Protected_Type'Class);

private

 type Extended_Protected_Type is new My_Object_Type

 with record … end record;

 procedure Op1 (O : in out Extended_Protected_Type);

 procedure Op2 (O : in out Extended_Protected_Type);

 procedure Op3 (O : in out Extended_Protected_Type);

end Protected_Object.My_Object.Extended;

The use of package Protected_Object.My_Object can be
demonstrated by calling the procedure Class_Wide_Op1,
which is defined in package Protected_Object, with
parameters of different types My_Object_Type and
Extended_Protected_Type as follows:

MO: My_Object_Type; -- represented as color M in the

 -- following Petri net model

Class_Wide_Op1(MO);

 …

EP: Extended_Protected_Type; -- represented as color E in the

 --following Petri net model

Class_Wide_Op1(EP);

…

For procedure Op3, if mutual exclusion is also required,
a new procedure Class_Wide_Op3 should be defined:

procedure Class_Wide_Op3 (O : in out

 Extended_Protected_Type'Class) is

begin

 O.L.Lock;

 Op3(O); -- dispatch to correct operation

 O.L.Unlock;

end Class_Wide_Op3;

The object Protected_Object.My_Object.Extended can be
modeled by the Petri net in Figure 2.

When a call to Class_Wide_Op1 is made with an object
of type Extended_Protected_Type, the transition
class_wide_op1 fires. An output token with identity E
(called the “color” of the token) is put in the place a.1

Color E signifies that the call to Class_Wide_Op1 uses
an object of type Extended_Protected_Type. The firing of
lock_class_wide_op1 models the gaining of the lock and
this transition firing puts an output token of color E in
place b. Note that the firing of transition op1 or op1_ext
is dependent on the color of the token in place b. If the
token color is M, meaning that the object type is
My_Object_Type, then op1 would fire. But if the color is
E, as in the present case, then the transition op1_ext will
fire. This choice of transition models the dynamic
dispatching mechanism. When the transition op1_ext
fires, an output token of color E is put in place c. When
the procedure execution is complete, the transition
unlock_class_wide_op1 is enabled. Note that this

1 This type of Petri net model that uses “colored” tokens (or

tokens with attributes) is called a colored Petri net [8]. In
colored Petri nets, a transition becomes enabled when its
input places have tokens with attributes that match the
inscriptions on the corresponding arcs from the place to the
transition.

216

transition can fire with an input token of color M or E.
The lock is released when the transition
unlock_class_wide_op1 fires. Similarly,
Class_Wide_Op2 is modeled in the same way. Although
the additional procedure Class_Wide_Op3 is also
modeled as the transition class_wide_op3, this transition
can fire only when the input token color is E. This is
necessary since Class_Wide_Op3 is defined only on
Extended_Protected_Type and not on My_Object_Type.

3.33.3 Synchronization Using a ProtectedSynchronization Using a Protected
Type with Data ParametersType with Data Parameters
The third method of providing synchronization among
concurrent objects is by using a protected type with the
data passed as a discriminant. First, the base type is
defined as protected and all of its protected operations are
defined as abstract, which means extension of this base
type must implement these operations. Then a protected
type can be constructed, which has a class-wide access
discriminant as a formal parameter and has operations
used to dispatch the appropriate operations according to
the discriminant. Consider the following example:

package Object is

 type Obj_Type is abstract tagged null record;

 protected type Controller (O : access Obj_Type'Class) is

 procedure Op1;

 procedure Op2;

 end Controller;

private

 procedure Op1 (O : in out Obj_Type) is abstract;

 procedure Op2 (O : in out Obj_Type) is abstract;

end Object;

procedure Op1 is

begin

 Op1(O.all);

end Op1;

procedure Op2 is

begin

 Op2(O.all);

end Op2;

Figure 2. Protected_Object.My_Object.Extended model

L

lock_class_wide_op1 lock_class_wide_op2

a

class_wide_op1 class_wide_op2

class_wide_op3

lock_class_wide_op3

unlock_class_wide_op1unlock_class_wide_op2

unlock_class_wide_op3

b c
d

ef

g

hi

op1_ext

op2_ext

op1

op2

op3

M/E

M/E

M/E

M/E

M/E

M/E
M/E

M/E

M

M

M

M

E

E

E

E

E

E

E

E

E

E

217

In Object, the base type Controller and its operations Op1
and Op2 are defined as a protected type. The data type
Obj_Type'Class is passed to the protected type Controller
as a discriminant.

The usage of Object is demonstrated by the following
segment of code:

package Object.My_Object is

 type My_Obj is private;

private

 type My_Obj is new Obj_Type with record ... end record;

 procedure Op1(O : in out My_Obj);

 procedure Op2(O : in out My_Obj);

end Object.My_Object;

...

O : aliased My_Obj;

contr : Controller(O'Access);

contr.Op1;

Package Object.My_Object extends Obj_Type and
defines Op1 and Op2, with parameters of type My_Obj.
Mutual exclusion over Op1 and Op2 is ensured by the
definition of protected declaration of the Controller. This
method has the similar mechanism as the second method.
But, one disadvantage of this method is that new
operations cannot be added into the Controller, because a
protected type cannot be extended.

Now consider an extension of Object.My_Object:

package Object.My_Object.Extended is

 type My_Obj_Ext is private;

private

 type My_Obj_Ext is new My_Obj with record … end record;

 procedure Op1 (O : in out My_Obj_Ext);

 procedure Op2 (O : in out My_Obj_Ext);

end Object.My_Object.Extended;

The use of package Object.My_Object.Extended can be
demonstrated by calling the protected object Controller
with different parameters as follows:

OM : aliased My_Obj; -- represented as color O in the

 -- following Petri net model

contr1 : Controller (OM'Access);

contr1.Op1;

…

OE: aliased My_Obj_Ext; -- represented as color E in the

 -- following Petri net model

contr2: Controller (OE'Access);

contr2.Op1;

The above extension defines a new type, My_Obj_Ext, an
extension of My_Obj, and defines procedures Op1 and
Op2 for parameters of type My_Obj_Ext. A Petri net
model of this situation is shown in Figure 3.

When a call to Op1 is made by an object of type
Controller with a data discriminant of type My_Obj_Ext,
the transition op1_protected_start fires, and an output
token of color E is put in place a. Color E signifies that
the data discriminant of the object of type Controller is of
the type My_Obj_Ext. Firing of the transition
op1_protected_start removes the token in controller
place, thus disabling any other calls to the protected
procedures Op1 and Op2. Now, the firing of transition
op1 or op1_ext is dependent on the color of the token in
place a. If the token color is O, meaning that the data
discriminant of the calling object of type Controller is of
the type My_Obj, then transition, op1 would fire. But, if
the token color is E, which is the present case, the
transition op1_ext would fire. Again, this choice of firing
of transitions, based on the color of the token in the input
place, models the dynamic dispatching mechanism. Now,
the transition op1_protected_end can fire, taking away a
token of color E from place b and putting an output token
in controller place. This models the end of the protected
operation associated with executing Op1, so other objects
waiting to gain access can now proceed.

4.4. DISCUSSIONDISCUSSION
4.14.1 Potential Deadlock ProblemPotential Deadlock Problem
One disadvantage with the first method is that when the
type Object.Synchronized is further extended, there are
circumstances that can cause a potential for deadlock. To
make the deadlock situation not so obvious, we rewrite
both the child package Object.Synchronized and the
grandchild package Object.Synchronized.Extended as
follows, which are the same as those in Burns and
Wellings’s original example [1]:

package Object.Synchronized is

 type Protected_Type is new Obj_Type with private;

 procedure Op1 (O : in out Protected_Type);

 procedure Op2 (O : in out Protected_Type);

private

 type Protected_Type is new Obj_Type with

218

 record

 L : Mutex;

 end record;

end Object.Synchronized;

package body Object.Synchronized is

 procedure Op1 (O : in out Protected_Type) is

 begin

 O.L.Lock;

 Op1(Obj_Type(O));

 O.L.Unlock;

 end Op1;

 …

end Object.Synchronized;

package Object.Synchronized.Extended is

 type Extended_Protected_Type is new Protected_Type

 with private;

 procedure Op1 (O : in out Extended_Protected_Type);

 procedure Op2 (O : in out Extended_Protected_Type);

 procedure Op3 (O : in out Extended_Protected_Type);

 private

 type Extended_Protected_Type is new Protected_Type

 with record … end record;

end Object.Synchronized.Extended;

package body Object.Synchronized.Extended is

 procedure Op1 (O : in out Extended_Protected_Type) is

 begin

 O.L.Lock;

 -- pre_processing;

 Op1(Protected_Type(O));

 -- post_processing;

 O.L.Unlock;

 end Op1;

 …

end Object.Synchronized.Extended;

The use of package Object.Synchronized.Extended can be
demonstrated by calling the procedure Op1 with a
parameter of type Extended_Protected_Type as follows:

O : Extended_Protected_Type;

Op1(O);

In this example, the procedures Op1 and Op2, which are
defined in package Object, are redefined in both of its
child package Object.Synchronized and grandchild
package Object.Synchronized.Extended. The resolution

Figure 3. Object.My_Object.Extended model

controller

op1_protected_start op2_protected_start

op1_protected_endop2_protected_end

a

b

cd

op1_ext

op2_ext

op1

op2

O/E

O/E

O/E

O/EO

O

O

O

E

E

E

E

219

of this polymorphism is made according to the parameter
types at compile time. So, in our Petri net model, they
are represented as different transitions. Similar as before,
the procedures Op1 defined in package Object, its child
package Object.Synchronized and its grandchild package
Object.Synchronized.Extended are represented as
transitions Op1, Op1_syn and Op1_ext respectively. The
most significant difference between this example and the
one in Section 3.1 is that here procedure Op1, defined in
package Object.Synchronized.Extended, calls the
procedure Op1 with a parameter of type Protected_Type
rather than Obj_Type as before. At compile time, it is
determined that the actual called procedure Op1 is the
one which is defined in package Object.Synchronized.
The Petri net model for this revised version of
Object.Synchronized.Extended is shown in Figure 4. To
make the deadlock detection more obvious, we ignore
modeling the execution of procedures Op2 and Op3,
which are defined in grandchild package
Object.Synchronized.Extended. They can be modeled
exactly the same as in Figure 1.

In the model of Figure 4, when a call to Op1, defined in
package Object.Synchronized.Extended, is made with an
object of type Extended_Protected_Type, the transition
op1_ext fires and a token is deposited into place a. The
firing of the enabled transition lock_op1_ext takes the
token from place L and deposits an output token in place
b. This models the acquisition of the lock by the object
that called procedure Op1, defined in
Object.Synchronized.Extended. The firing of transition
pre_processing models the starting of some arbitrary data
processing. Upon the completion of this data processing,
a call is made to Op1, defined in package
Object.Synchronized, with type Protected_Type. The

conversion of type is modeled by the firing of the
transition Protected_Type(O), and the call is modeled by
the firing of the transition op1_syn, as was used in the
previous model of Figure 1. But now, the procedure Op1,
defined in package Object.Synchronized, tries to again
obtain the lock. In this state, where there is a token in
place e but no token in place L, the transition
lock_op1_syn is not enabled. The resulting deadlock is
naturally captured and can be visualized in the model by
the lack of any enabled transition.

4.24.2 Some Comparison Comments on theSome Comparison Comments on the
Net ModelsNet Models
The study of the Petri net models for different methods of
providing synchronization among concurrent objects
provides us an opportunity to compare them to identify
model relationships at the code level. The model in
Figure 1 is comparable to the models in Figure 2 and
Figure 3. One significant difference among these is the
use of colored Petri nets for the later two methods,
whereas an uncolored Petri net is sufficient to model the
first method. A study of the models reveals that the
model in Figure 2 actually contains the models used in
Figures 1 and 3. For example, in Figure 2 the firing
sequence class_wide_op1, lock_class_wide_op1,
op1_ext, unlock_class_wide_op1 is comparable to the
firing sequence op1_ext, lock_ext_op1 , Obj_Type(O),
Op1, unlock_ext_op1 in Figure 1 and the firing sequence
op1_protected_start, op1_ext, op1_protected_end in
Figure 3. A similar situation exists for the firing
sequence for class_wide_op2. However, consider the
firing sequence in Figure 2 for class_wide_op3, namely
class_wide_op3, lock_class_wide_op3, op3_ext,
unlock_class_wide_op3. This has a comparable firing

Figure 4. Object.Synchronized.Extended model

lock_op1_syn

unlock_op1_syn

L

lock_op1_ext
unlock_op1_ext

a

op1_ext

Obj_Type(O)

b c d e f g

h

i

j

Protected_Type(O) op1_synpre_processing

op1

post_processing

220

sequence op3_ext, lock_ext_op3 , op3, unlock_ext_op3 in
Figure 1, but there is no such firing sequence in Figure 3.
The reason for this is that in the third method we cannot
extend the protected type with respect to adding new
protected procedures.

Note that the model in Figure 1 transition op1_ext can
only accept calls with a parameter of type
Extended_Protected_Type, but not of type
Protected_Type. On the other hand, both models in
Figure 2 and Figure 3 have the capability of handling all
the extensions of the base class with a common
transition, say class_wide_op1 or op1_protected_start.
This advantage is due to the dynamic dispatching
mechanism in these methods.

4.34.3 Future WorkFuture Work
A well-known advantage of Petri nets is their potential
for formal analysis. By translating Ada code into Petri
nets, we may achieve the goal of automated analysis of
Ada programs, such as automated deadlock analysis of
Ada programs as we had done before [6]. The critical
issue here is how to automatically translate Ada code into
Petri nets, since constructing a model manually is not
only error-prone but also unrealistic for a large program.
In our previous work, we have successfully developed a
tool kit called TOTAL (the tasking-oriented tool kit for
the Ada language) [9] to build correct models for Ada
tasking by using compiler techniques. Our future work
will further this technique and enhance this tool kit to
include the object-oriented features in Ada-95
programming. The work done in this paper indicates that
automated translation is possible and has potential to aid
validation of object interactions.

5.5. CONCLUSIONCONCLUSION
Formal modeling of the synchronization constructs for
concurrent objects in Ada is difficult due to the need to
properly capture many behaviors that are interdependent.
In this paper, we have presented and discussed a means
to model these constructs using the Petri net modeling
formalism. Petri nets have been chosen because they tend
to provide a visual, and thus easy to understand, model.
Also, Petri nets are well matched to the problem due to
their inherent support for modeling concurrency,
nondeterminism, synchronization, and mutual exclusion.
We developed models for three different object
synchronization methods. These methods were defined in
terms of Ada-95 and presented in [1]. As a simple
example, we described how a deadlock situation caused
by improper object synchronization design can be
observed in terms of a standard Petri net deadlock. Also
we provided some comparison comments on the
synchronization methods in terms of their formal model

attributes. The value of this type of modeling is revealed
by our plans for future work.

6.6. ACKNOWLEDGMENTSACKNOWLEDGMENTS
This material is based upon work supported by, or in part
by, the U.S. National Science Foundation under grant
CCR-9321743 and the U.S. Army Research Office under
grant number DAAG55-98-1-0470.

7.7. REFERENCESREFERENCES
[1] A. Burns and A. Wellings, Concurrency in Ada,

Cambridge Press, 1995.

[2] J. Barnes, Programming in Ada 95. Addison-
Wesley, Inc., 1996.

[3] T. Murata, “Petri Nets: Properties, Analysis and
Applications,” Proceedings of the IEEE,
77(4):541-580, April 1989.

[4] D. Mandrioli, R. Zicari, C. Ghezzi and F. Tisato,
“Modeling the Ada Task System by Petri Nets,”
Computer Languages, 10(1):43-61, 1985.

[5] S. M. Shatz, S. Tu, T. Murata, and S. Duri, “An
Application of Petri Net Reduction for Ada
Tasking Deadlock Analysis,” IEEE Transactions
on Parallel and Distributed Systems, Vol. 7, No.
12, Dec. 1996, pp. 1307-1322.

[6] S. Duri, U. Buy, R. Devarapalli, and S. M. Shatz,
“Application and Experimental Evaluation of
State Space Reduction Methods for Deadlock
Analysis in Ada,” ACM Transactions on Software
Engineering Methodology, Vol. 3, No. 4, Oct.
1994, pp. 340-380.

[7] R. Gedela and S. M. Shatz, “Formal Modeling of
Advanced Tasking in Ada: A Petri Net
Perspective,” 2nd International Workshop on
Software Engineering for Parallel and Distributed
Systems (PDSE-97), Boston, May, 1997, pp. 4-14.

[8] K. Jensen, “Coloured Petri Nets: A High Level
Language for System Design and Analysis,”
Advances in Petri Nets 1990, G. Rozenberg
(Editor), in Lecture Notes in Computer Science ,
483, Springer-Verlag, 1990.

[9] S. M. Shatz, et al, “Design and Implementation of
a Petri Net Based Tool kit for Ada Tasking
Analysis,” IEEE Transactions On Parallel and
Distributed Systems , Oct. 1990, pp.424-441.

