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Purpose of Formal Methods

“The term “formal methods’ denotes software devel opment
and analysis activities that entail a degree of mathematical
rigor. (...) A formal method manipulates a precise
mathematical description of a software system for the
purpose of establishing that the system does or does not
exhibit some property, which is itself-precisely defined.”
(Dillon and Sankar, 1997)

Dillon, L. K. and S. Sankar (1997), Introduction to the Special Issue, IEEE
Transactions on Software Engineering, Special |ssue on Formal Methodsin
Software Practice, 23(5): 265-266.
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Concurrent Program Analysis

* Objects communicate with each other and
undesirable situations, such as deadlock or
livelock, may occur.

* There are two different types of program fault
— Unconditional fault
— Conditional fault

« Automated program analysisis vital for debugging
and testing a concurrent program.
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| ntroduction to Petri Net

* “Three-in-one’ capability of a Petri net model.
— Graphical representation
— Mathematical description
— Simulation tool
o Definition:
A Petri netisa4-tuple, PN = (P, T, F, M) where
P={P1, P2, ..., Pm} isafinite set of places;
T ={t1,1t2, ..., tn} isafinite set of transitions,
FIi (PxT)E (T x P) isaset of arcs (flow relation);
My P-->{0,1, 2,3, ...} istheinitial marking.
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Automated Program Analysis Paradigm

|nvariant
calculation

Reachability
Analysis

Correctness
Verification
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Example: Modeling Rendezvous

Internal Representation

Task A

entry --> wait_ack, ack_enty

ack_accept, wait_ack --> S

Task B

accept, ack_entry --> S

end accept --> ack_accept, S

Task A Task B
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Motivation for This Work

* Tolllustrate the possibility of trandating advanced
features of Ada 95 into Petri net.

 Tolllustrate analysis capability by using aformal
modeling tool.

e To provide agraphic viewpoint of synchronization
methods to aid understanding for beginner.
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Three Synchronization Methods for
Concurrent Objects

e Synchronization isadded if and wheniitis
required, by extending the object.

e Synchronization is provided by the base (root)
object type.

e Synchronization is provided as a separate
protected type and the datais passed as a
discriminant.

A. Burnsand A. Wellings, Concurrency in Ada, Cambridge Press, 1995.
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Method 1: Synchronization Added by
Extending the Object

package Object Is
procedure Opl (O :in out Obj_Type);
procedure Op2 (O : in out Obj_Type);

type Obj_Typeistagged limited record ... end record;
end Object;

package Object.Synchronized is

type Protected Type is new Obj Type with record L: Mutex; end
record,

end Object.Synchronized,;

protected type Mutex is
entry Lock; procedure Unlock;

end Mutex;
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Method 1: Synchronization Added by
Extending the Object (continue)

package Object.Synchronized.Extended is
procedure Opl ext (O:in out Extended Protected Type);
procedure Op2_ext (O : in out Extended Protected Type);

type Extended Protected Typeisnew Protected Type
with record...end record,;
end Object.Synchronized.Extended,

procedure Opl ext (O:inout Extended Protected Type) is
begin

O.L.Lock; Opl (Obj_Type (O)); O.L.Unlock;
end Opl ext;
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Figure 1. Object.Synchronized.Extended model
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Potential Deadlock Problem

package Object.Synchronized is
procedure Opl (O : in out Protected_Type);
procedure Op2 (O : in out Protected_Type);

type Protected Typeisnew Obj Typewith record L : Mutex; end record,;
end Object.Synchronized,;

procedure Opl (O : in out Protected Type) is
begin

O.L.Lock; Opl(Obj_Type(O)); O.L.Unlock;
end Opl;
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Potential Deadlock Problem (continue)

package Object.Synchronized.Extended is
procedure Opl_ext (O : inout Extended Protected Type);
procedure Op2_ext (O : inout Extended Protected Type);

type Extended Protected Type is new Protected Type with record...end
record,;

end Object.Synchronized.Extended,

procedure Opl _ext (O : in out Extended Protected Type) is
begin
O.L.Lock; -- pre processing; Opl(Protected Type (O));
-- post_processing; O.L.Unlock;
end Opl;
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Figure 2. Object.Synchronized.Extended model
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Method 2: Synchronization Provided by the
Base Object Type

package Protected Object is
procedure Class Wide Opl (O: in out Protected Type'Class);
procedure Class Wide Op2 (O: in out Protected Type'Class);
type Protected Type is abstract tagged limited record L : Mutex; end
record,
procedure Opl (O : in out Protected Type) is abstract;
procedure Op2 (O : in out Protected Type) is abstract;
end Protected Object;

procedure Class Wide Opl (O: in out Protected TypeClass) is
begin

O.L.Lock; Opl(O); -- dispatch to correct operation O.L.Unlock;
end Class Wide Opl;
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Method 2: Synchronization Provided by the
Base Object Type (continue)

package Protected Object.My Object is
type My _Object Typeis new Protected Type withrecord ... end record;
procedure Opl (O :in out My Object_Type);
procedure Op2 (O : in out My _Object_Type);

end Protected Object.My_Object;

package Protected Object.My Object.Extended is

type Extended Protected Type is new My Object Type with record...end
record,

procedure Opl (O : in out Extended Protected Type);
procedure Op2 (O : in out Extended Protected Type);
end Protected Object.My_Object.Extended,;

10/20/99 Department of EECS, UIC 17



Method 2: Synchronization Provided by the
Base Object Type (continue)

MO: My_Object_Type; -- represented as color M in the following
Class Wide Opl(MO); -- Petri net model

EP: Extended Protected Type;, -- represented as color E in the following
Class Wide Opl(EP); -- Petri net model

Notes:. We will use colored Petri nets to model this method, where
“colored” tokens (or tokens with attributes) are used. In colored Petri
nets, a transition becomes enabled when its input places have tokens
with attributes that match the inscriptions on the corresponding arcs
from the place to the transition.
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Figure 3. Protected Object.My_Object.Extended model
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Concluding Comments

o |llustrated the possibility of trandating advanced
features of Ada 95 into Petri net.

« Shown that behavior analysis, such as deadlock
analysis, could be automated by using Petri net
reachability analysis.

* Performance analysisis possible by using
performance Petri net, such astimed Petri net,
stochastic Petri net etc.
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Definition of Protected Type: Mutex

protected type Mutex is

entry Lock; procedure Unlock;
private

Release: Boolean := True;
end Mutex;

protected body Mutex is

entry Lock when Release is
begin Release .= Falsg end Lock;

procedure Unlock
begin  Release :=True; end Unlock;

end Mutex;
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