
10/20/99 Department of EECS, UIC 1

Formal Modeling of Synchronization
Methods for Concurrent Objects in Ada 95

Ravi K. Gedela, Sol M. Shatz and Haiping Xu

Department of EECS

Concurrent Software System Lab

The University of Illinois at Chicago

R.Gedela@ericsson.com

{shatz, hxu1}@eecs.uic.edu

10/20/99 Department of EECS, UIC 2

Purpose of Formal Methods

“The term “formal methods” denotes software development
and analysis activities that entail a degree of mathematical
rigor. (…) A formal method manipulates a precise
mathematical description of a software system for the
purpose of establishing that the system does or does not
exhibit some property, which is itself-precisely defined.”
(Dillon and Sankar, 1997)

Dillon, L. K. and S. Sankar (1997), Introduction to the Special Issue, IEEE
Transactions on Software Engineering, Special Issue on Formal Methods in
Software Practice, 23(5): 265-266.

10/20/99 Department of EECS, UIC 3

Concurrent Program Analysis

• Objects communicate with each other and
undesirable situations, such as deadlock or
livelock, may occur.

• There are two different types of program fault

– Unconditional fault

– Conditional fault

• Automated program analysis is vital for debugging
and testing a concurrent program.

10/20/99 Department of EECS, UIC 4

Introduction to Petri Net

• “Three-in-one” capability of a Petri net model.
– Graphical representation

– Mathematical description

– Simulation tool

• Definition:
A Petri net is a 4-tuple, PN = (P, T, F, M0) where

P = {P1, P2, …, Pm} is a finite set of places;

T = {t1, t2, …, tn} is a finite set of transitions;

F ⊆ (P x T) ∪ (T x P) is a set of arcs (flow relation);

M0: P --> {0, 1, 2, 3, …} is the initial marking.

10/20/99 Department of EECS, UIC 5

Example:

t1

t5

t3

t4

t2P1

P5

P3

P4

P2

10/20/99 Department of EECS, UIC 6

Automated Program Analysis Paradigm

Ada Source Translator Petri Net

Invariant
calculation

Reachability
Analysis

Correctness
Verification

...

10/20/99 Department of EECS, UIC 7

Example: Modeling Rendezvous

Internal Representation

Task A

entry --> wait_ack, ack_enty

ack_accept, wait_ack --> S

Task B

accept, ack_entry --> S

end_accept --> ack_accept, S

entry

wait_ack

S

ack_entry

ack_accept

accept

S

S

ack_accept

end_accept

ack_entry

Task A Task B

t1

t4

t3

t2

10/20/99 Department of EECS, UIC 8

Motivation for This Work

• To illustrate the possibility of translating advanced
features of Ada 95 into Petri net.

• To illustrate analysis capability by using a formal
modeling tool.

• To provide a graphic viewpoint of synchronization
methods to aid understanding for beginner.

10/20/99 Department of EECS, UIC 9

Three Synchronization Methods for
Concurrent Objects

• Synchronization is added if and when it is
required, by extending the object.

• Synchronization is provided by the base (root)
object type.

• Synchronization is provided as a separate
protected type and the data is passed as a
discriminant.

A. Burns and A. Wellings, Concurrency in Ada, Cambridge Press, 1995.

10/20/99 Department of EECS, UIC 10

Method 1: Synchronization Added by
Extending the Object

package Object is
procedure Op1 (O : in out Obj_Type);

procedure Op2 (O : in out Obj_Type);

...

type Obj_Type is tagged limited record … end record;

end Object;

package Object.Synchronized is
type Protected_Type is new Obj_Type with record L: Mutex; end

record;

end Object.Synchronized;

protected type Mutex is
entry Lock; procedure Unlock;

end Mutex;

10/20/99 Department of EECS, UIC 11

Method 1: Synchronization Added by
Extending the Object (continue)

package Object.Synchronized.Extended is
procedure Op1_ext (O : in out Extended_Protected_Type);

procedure Op2_ext (O : in out Extended_Protected_Type);

...
type Extended_Protected_Type is new Protected_Type

with record…end record;

end Object.Synchronized.Extended;

procedure Op1_ext (O : in out Extended_Protected_Type) is
begin

O.L.Lock; Op1 (Obj_Type (O)); O.L.Unlock;

end Op1_ext;

10/20/99 Department of EECS, UIC 12

Figure 1. Object.Synchronized.Extended model

L

lock_op1_ext lock_op2_ext

a

op1_ext op2_ext

unlock_op1_extunlock_op2_ext

d

ghi

b c e

op2

op1

Obj_Type(O)

Obj_Type(O)

10/20/99 Department of EECS, UIC 13

Potential Deadlock Problem

package Object.Synchronized is

procedure Op1 (O : in out Protected_Type);

procedure Op2 (O : in out Protected_Type);

...

type Protected_Type is new Obj_Type with record L : Mutex; end record;

end Object.Synchronized;

procedure Op1 (O : in out Protected_Type) is

begin

O.L.Lock; Op1(Obj_Type(O)); O.L.Unlock;

end Op1;

10/20/99 Department of EECS, UIC 14

Potential Deadlock Problem (continue)
package Object.Synchronized.Extended is

procedure Op1_ext (O : in out Extended_Protected_Type);

procedure Op2_ext (O : in out Extended_Protected_Type);

…

type Extended_Protected_Type is new Protected_Type with record…end
record;

end Object.Synchronized.Extended;

procedure Op1_ext (O : in out Extended_Protected_Type) is

begin

O.L.Lock; -- pre_processing; Op1(Protected_Type (O));

-- post_processing; O.L.Unlock;

end Op1;

10/20/99 Department of EECS, UIC 15

Figure 2. Object.Synchronized.Extended model

lock_op1_syn

unlock_op1_syn

L

lock_op1_ext unlock_op1_ext

a

op1_ext Obj_Type(O)

b c d e f g h

i

j

Protected_Type(O)

op1_synpre_processing

op1

post_processing

10/20/99 Department of EECS, UIC 16

Method 2: Synchronization Provided by the
Base Object Type

package Protected_Object is

procedure Class_Wide_Op1 (O: in out Protected_Type'Class);

procedure Class_Wide_Op2 (O: in out Protected_Type'Class);
...
type Protected_Type is abstract tagged limited record L : Mutex; end
record;

procedure Op1 (O : in out Protected_Type) is abstract;

procedure Op2 (O : in out Protected_Type) is abstract;

end Protected_Object;

procedure Class_Wide_Op1 (O: in out Protected_Type'Class) is

begin

O.L.Lock; Op1(O); -- dispatch to correct operation O.L.Unlock;

end Class_Wide_Op1;

10/20/99 Department of EECS, UIC 17

Method 2: Synchronization Provided by the
Base Object Type (continue)

package Protected_Object.My_Object is

type My_Object_Type is new Protected_Type with record … end record;

procedure Op1 (O : in out My_Object_Type);

procedure Op2 (O : in out My_Object_Type);

end Protected_Object.My_Object;

package Protected_Object.My_Object.Extended is

type Extended_Protected_Type is new My_Object_Type with record…end
record;

procedure Op1 (O : in out Extended_Protected_Type);

procedure Op2 (O : in out Extended_Protected_Type);

end Protected_Object.My_Object.Extended;

10/20/99 Department of EECS, UIC 18

Method 2: Synchronization Provided by the
Base Object Type (continue)

MO: My_Object_Type; -- represented as color M in the following

Class_Wide_Op1(MO); -- Petri net model

…

EP: Extended_Protected_Type; -- represented as color E in the following

Class_Wide_Op1(EP); -- Petri net model

Notes: We will use colored Petri nets to model this method, where
“colored” tokens (or tokens with attributes) are used. In colored Petri
nets, a transition becomes enabled when its input places have tokens
with attributes that match the inscriptions on the corresponding arcs
from the place to the transition.

10/20/99 Department of EECS, UIC 19

Figure 3. Protected_Object.My_Object.Extended model

L

lock_class_wide_op1 lock_class_wide_op2

a

class_wide_op1 class_wide_op2

unlock_class_wide_op1unlock_class_wide_op2

b c d

ef

op1_ext

op2_ext

op1

op2

M/E

M/E

M/E

M/E

M/E

M/E

M/E

M/E

M

M

M

M

E
E

E
E

10/20/99 Department of EECS, UIC 20

Concluding Comments

• Illustrated the possibility of translating advanced
features of Ada 95 into Petri net.

• Shown that behavior analysis, such as deadlock
analysis, could be automated by using Petri net
reachability analysis.

• Performance analysis is possible by using
performance Petri net, such as timed Petri net,
stochastic Petri net etc.

10/20/99 Department of EECS, UIC 21

Definition of Protected Type: Mutex

protected type Mutex is
entry Lock; procedure Unlock;

private
Release: Boolean := True;

end Mutex;

protected body Mutex is

entry Lock when Release is

begin Release := False; end Lock;

procedure Unlock

begin Release := True; end Unlock;

end Mutex;

