Formal Modeling of Synchronization
Methodsfor Concurrent Objectsin Ada 95

Ravi K. Gedela, Sol M. Shatz and Haiping Xu
Department of EECS
Concurrent Software System Lab
The University of lllinois at Chicago
R.Gedela@ericsson.com
{ shatz, hxul} @eecs.uic.edu

10/20/99 Department of EECS, UIC



Purpose of Formal Methods

“The term “formal methods’ denotes software devel opment
and analysis activities that entail a degree of mathematical
rigor. (...) A formal method manipulates a precise
mathematical description of a software system for the
purpose of establishing that the system does or does not
exhibit some property, which is itself-precisely defined.”
(Dillon and Sankar, 1997)

Dillon, L. K. and S. Sankar (1997), Introduction to the Special Issue, IEEE
Transactions on Software Engineering, Special |ssue on Formal Methodsin
Software Practice, 23(5): 265-266.

10/20/99 Department of EECS, UIC



Concurrent Program Analysis

* Objects communicate with each other and
undesirable situations, such as deadlock or
livelock, may occur.

* There are two different types of program fault
— Unconditional fault
— Conditional fault

« Automated program analysisis vital for debugging
and testing a concurrent program.

10/20/99 Department of EECS, UIC 3



| ntroduction to Petri Net

* “Three-in-one’ capability of a Petri net model.
— Graphical representation
— Mathematical description
— Simulation tool
o Definition:
A Petri netisa4-tuple, PN = (P, T, F, M) where
P={P1, P2, ..., Pm} isafinite set of places;
T ={t1,1t2, ..., tn} isafinite set of transitions,
FIi (PxT)E (T x P) isaset of arcs (flow relation);
My P-->{0,1, 2,3, ...} istheinitial marking.

10/20/99 Department of EECS, UIC



Exampl e:

GPl

1'[2 P2

1'[4

P4

t3

t5

PS5

10/20/99

Department of EECS, UIC



Automated Program Analysis Paradigm

|nvariant
calculation

Reachability
Analysis

Correctness
Verification

10/20/99 Department of EECS, UIC



Example: Modeling Rendezvous

Internal Representation

Task A

entry --> wait_ack, ack_enty

ack_accept, wait_ack --> S

Task B

accept, ack_entry --> S

end accept --> ack_accept, S

Task A Task B

10/20/99 Department of EECS, UIC



Motivation for This Work

* Tolllustrate the possibility of trandating advanced
features of Ada 95 into Petri net.

 Tolllustrate analysis capability by using aformal
modeling tool.

e To provide agraphic viewpoint of synchronization
methods to aid understanding for beginner.

10/20/99 Department of EECS, UIC 8



Three Synchronization Methods for
Concurrent Objects

e Synchronization isadded if and wheniitis
required, by extending the object.

e Synchronization is provided by the base (root)
object type.

e Synchronization is provided as a separate
protected type and the datais passed as a
discriminant.

A. Burnsand A. Wellings, Concurrency in Ada, Cambridge Press, 1995.

10/20/99 Department of EECS, UIC



Method 1: Synchronization Added by
Extending the Object

package Object Is
procedure Opl (O :in out Obj_Type);
procedure Op2 (O : in out Obj_Type);

type Obj_Typeistagged limited record ... end record;
end Object;

package Object.Synchronized is

type Protected Type is new Obj Type with record L: Mutex; end
record,

end Object.Synchronized,;

protected type Mutex is
entry Lock; procedure Unlock;

end Mutex;

10/20/99 Department of EECS, UIC 10



Method 1: Synchronization Added by
Extending the Object (continue)

package Object.Synchronized.Extended is
procedure Opl ext (O:in out Extended Protected Type);
procedure Op2_ext (O : in out Extended Protected Type);

type Extended Protected Typeisnew Protected Type
with record...end record,;
end Object.Synchronized.Extended,

procedure Opl ext (O:inout Extended Protected Type) is
begin

O.L.Lock; Opl (Obj_Type (O)); O.L.Unlock;
end Opl ext;

10/20/99 Department of EECS, UIC

11



opl ext

lock_opl ext lock _op2_ext

unlock_op2 ext unlock opl ext

S O A OO O]
Obj_Type(O) opl op2_ext
| h
O OO
op2 Obj_Type(O)

Figure 1. Object.Synchronized.Extended model

10/20/99

Department of EECS, UIC 12



Potential Deadlock Problem

package Object.Synchronized is
procedure Opl (O : in out Protected_Type);
procedure Op2 (O : in out Protected_Type);

type Protected Typeisnew Obj Typewith record L : Mutex; end record,;
end Object.Synchronized,;

procedure Opl (O : in out Protected Type) is
begin

O.L.Lock; Opl(Obj_Type(O)); O.L.Unlock;
end Opl;

10/20/99 Department of EECS, UIC

13



Potential Deadlock Problem (continue)

package Object.Synchronized.Extended is
procedure Opl_ext (O : inout Extended Protected Type);
procedure Op2_ext (O : inout Extended Protected Type);

type Extended Protected Type is new Protected Type with record...end
record,;

end Object.Synchronized.Extended,

procedure Opl _ext (O : in out Extended Protected Type) is
begin
O.L.Lock; -- pre processing; Opl(Protected Type (O));
-- post_processing; O.L.Unlock;
end Opl;

10/20/99 Department of EECS, UIC 14



lock_opl_ext

I lock_opl syn

unlock_opl ext

unlock_opl syn

a Protected Type(O)
b c d e : f g %7 h d
OPLext e processing opl_syn Obj_Type(O) post_processing

Figure 2. Object.Synchronized.Extended model

10/20/99 Department of EECS, UIC 15



Method 2: Synchronization Provided by the
Base Object Type

package Protected Object is
procedure Class Wide Opl (O: in out Protected Type'Class);
procedure Class Wide Op2 (O: in out Protected Type'Class);
type Protected Type is abstract tagged limited record L : Mutex; end
record,
procedure Opl (O : in out Protected Type) is abstract;
procedure Op2 (O : in out Protected Type) is abstract;
end Protected Object;

procedure Class Wide Opl (O: in out Protected TypeClass) is
begin

O.L.Lock; Opl(O); -- dispatch to correct operation O.L.Unlock;
end Class Wide Opl;

10/20/99 Department of EECS, UIC 16



Method 2: Synchronization Provided by the
Base Object Type (continue)

package Protected Object.My Object is
type My _Object Typeis new Protected Type withrecord ... end record;
procedure Opl (O :in out My Object_Type);
procedure Op2 (O : in out My _Object_Type);

end Protected Object.My_Object;

package Protected Object.My Object.Extended is

type Extended Protected Type is new My Object Type with record...end
record,

procedure Opl (O : in out Extended Protected Type);
procedure Op2 (O : in out Extended Protected Type);
end Protected Object.My_Object.Extended,;

10/20/99 Department of EECS, UIC 17



Method 2: Synchronization Provided by the
Base Object Type (continue)

MO: My_Object_Type; -- represented as color M in the following
Class Wide Opl(MO); -- Petri net model

EP: Extended Protected Type;, -- represented as color E in the following
Class Wide Opl(EP); -- Petri net model

Notes:. We will use colored Petri nets to model this method, where
“colored” tokens (or tokens with attributes) are used. In colored Petri
nets, a transition becomes enabled when its input places have tokens
with attributes that match the inscriptions on the corresponding arcs
from the place to the transition.

10/20/99 Department of EECS, UIC 18



lock class wide opl lock class wide op2

unlock_class wide_op2 I‘ﬂock_cl ass wide opl
MJE opl M/E
a M/E b : " i
M/E M/E

M/E

class wide opl ¢lass wide op2

M/E

Figure 3. Protected Object.My_Object.Extended model

10/20/99 Department of EECS, UIC 19



Concluding Comments

o |llustrated the possibility of trandating advanced
features of Ada 95 into Petri net.

« Shown that behavior analysis, such as deadlock
analysis, could be automated by using Petri net
reachability analysis.

* Performance analysisis possible by using
performance Petri net, such astimed Petri net,
stochastic Petri net etc.

10/20/99 Department of EECS, UIC

20



Definition of Protected Type: Mutex

protected type Mutex is

entry Lock; procedure Unlock;
private

Release: Boolean := True;
end Mutex;

protected body Mutex is

entry Lock when Release is
begin Release .= Falsg end Lock;

procedure Unlock
begin  Release :=True; end Unlock;

end Mutex;

10/20/99 Department of EECS, UIC

21



