
 1

A Design Model for Intelli gent Mobile Agent

Software Systems1

Haiping Xu and Sol M. Shatz

Department of Computer Science

The University of Illi nois at Chicago

Email: { hxu1, shatz} @cs.uic.edu

Abstract

One of the grand challenges to achieving wide spread use and rapid development of multi -agent systems is

to adapt principles of software engineering. Agent-oriented software provides a new software engineering

paradigm and the opportunities for development of new domain-specific software models. With the

continuing improvement of agent technology, and the rapid growth of software system complexity,

especially for Internet applications, there is a pressing need for general models of mobile agents – models

that explicitly support the features of mobilit y, cooperative behavior, and intelli gence. We present a design

model for intelli gent mobile agent software by introducing mobilit y into a framework for agent-oriented

software. The model facilit ates design reuse by providing an inheritance mechanism and explicitly supports

asynchronous message passing. The approach benefits from a formal foundation that is based on the agent-

oriented G-net formalism, a formalism derived from an object-based Petri net model. Thus the approach

supports model analysis and property verification.

Keywords: Intelli gent mobile agent (IMA), Petri net, agent-oriented G-net, design model, inheritance

1. Introduction

Software agents can be classified in terms of a space defined by the three dimensions of intelli gence,

agency and mobilit y [1]. The first dimension, intelli gence, is rooted in artificial intelli gence research and

dates back to the fifties, where intelli gent agents can be classified according to their capabiliti es to express

preferences, beliefs and emotions, and according to their abilit y to fulfill a task by reasoning, planning and

learning techniques. The second dimension, agency, is the degree of autonomy and authority vested in the

agent, and can be measured by the nature of the interaction between an agent and other entities of the

system. Particularly, an agent must run asynchronously. The third dimension of software agent research,

mobilit y, has emerged in the nineties and is motivated by the rise and rapid growth of a networked

1 This material is based upon work supported by the U.S. Army Research Off ice under grant number
DAAD19-01-1-0672, and the U.S. National Science Foundation under grant number CCR-9988168.

 2

computing environment, and the need for techniques to locally exploit distributed resources. Within this

dimension of software agent research, the goal is remote action and mobilit y of data and computation.

Current agent systems generally do not exploit all the capabiliti es classified by these three dimensions. For

example, multi -agent systems (MAS) of distributed artificial intelli gence try to execute a given task using a

large number of possibly distributed but static agents that collaborate and cooperate in an intelli gent

manner [2][3]. On the other hand, research on mobile agents usually emphasizes agent mobilit y and agent

coordination, and mobile agents are typically assumed to only have very limited or even no intelli gence

[4][5][6]. The development schema in the later case is sometimes called weak agent approach, which

contrasts with the strong agent approach that involves artifical intelli gence techniques [25].

Previous work on multi -agent systems has fostered the concept of agent-oriented software [7][8][16],

where agents are viewed as intell igent software that has the properties of autonomy, reactivity, pro-

activeness and social abilit y. Corresponding agent-oriented design methodologies are also proposed to

provide guidelines for agent specification and design. Examples of such work are the AAII methodologies

[9] and the Gaia methodologies [8], which are extensions of object-oriented methodologies. In our own

previous work [16], an inheritance mechanism, in terms of agent functionaliti es, is introduced into agent-

oriented software design.

For mobile agents, the concern is with intelli gent software agents that can migrate over computer networks.

The concept of location has been one of the key features to characterize mobilit y in most theoretical models

of mobile agents, such as the distributed join-calculus [10], which is an extension of the π-calculus that

introduces the explicit notions of named localiti es and distribution failure. Additional typical formalisms

for agent mobilit y modeling are summarized as follows. Mobile UNITY [4] provides a programming

notation that captures the notion of mobilit y and transient interactions among mobile nodes. Inspired by

Mobile UNITY, the concept of connectors [11] is explicitly identified to describe different kinds of

transient interactions, and facilit ate the separation of coordination from computation in mobile computing.

The connectors are written in COMMUNITY, a UNITY-like program design language whose semantics is

given in a categorical framework. MobiS [5], as an extended version of PoliS, is a specification language

based on multiple tuple spaces. It can be used to specify agent coordination and architectures containing

mobile components. More recently, LIME [12], also based on tuple spaces, has been proposed as a

middleware that supports the development of applications that exhibit both physical and logical mobilit y.

Although the above results formally model mobile agents in terms of their mobilit y, they are not built upon

a framework that explicitly supports the intelli gence feature of agents. Furthermore, they are weak in agent

communication modeling, and typically such models are reactive rather than pro-active. In other words,

these models may simply act in response to their environment, but they are not able to exhibit goal-directed

 3

behaviors. Additional efforts, such as the MARS project [6], attempt to introduce context-dependent

coordination into agent models, however, without explicitly suggesting the communication mechanism

among mobile agents. There are also some research efforts concerned with mobile agent communication

mechanisms, however they are not formally defined [13][14].

From the above review, we can see that current work on mobile agents mostly emphasizes some particular

features of the mobile agents, e.g., agent mobilit y. With the continuing improvement of agent technology,

and the rapid growth of software system complexity, especially for Internet applications, there is a pressing

need for a more general model of mobile agents, in which agents are not only mobile and cooperative, but

also intelli gent. There are a few previous efforts that discuss intelli gent mobile agents [18][14], however

they lack a formal framework for intelli gent mobile agent design. In this paper, we propose an intelli gent

mobile agent (IMA) model by introducing mobilit y into a framework for agent-oriented software. This

framework has been designed to model intelli gent software agents [15][16] for multi -agent systems, and it

supports design reuse by providing an inheritance mechanism. Meanwhile, the resulting mobile agent

models explicitly support asynchronous message passing. Another advantage of our approach is that our

fundamental agent model is based on the agent-oriented G-net formalism [16], a formalism derived from an

object-based Petri net model. As a formal model, this agent-oriented formalism can be translated into more

“standard” forms of a Petri net for design analysis, including model checking. Examples of such analysis

can be found in earlier work [17].

The rest of this paper is organized as follows. Section 2 describes the agent-oriented G-net model, which

was first proposed in [16]. Section 3 proposes the architecture for a mobile agent system, and ill ustrates

how to design the principle agent system components: the intelli gent mobile agents (IMA) and the

intelli gent facilit ator agents (IFA). Section 4 uses an electronic marketplace example to show how to

incrementally design application-specific intelli gent mobile agents using the discussed architecture. Finally,

in Section 5, we summarize our contributions and discuss the future work.

2. A Framework for Agent-Or iented Software

2.1 G-Net Model Background

A widely accepted software engineering principle is that a system should be composed of a set of

independent modules, where each module hides the internal details of its processing activities and modules

communicate through well -defined interfaces. The G-net model provides strong support for this principle

[20][21]. G-nets are an object-based extension of Petri nets, which is a graphically defined model for

concurrent systems. Petri nets have the strength of being visually appealing, while also being theoretically

mature and supported by robust tools. We assume that the reader has a basic understanding of Petri nets

 4

[19]. But, as a general reminder, we note that Petri nets include three basic entities: place nodes

(represented graphically by circles), transition nodes (represented graphically by solid bars), and directed

arcs that can connect places to transitions or transitions to places. Furthermore, places can contain markers,

called tokens, and tokens may move between place nodes by the “ firing” of the associated transitions. The

state of a Petri net refers to the distribution of tokens to place nodes at any particular point in time (this is

sometimes called the marking of the net). We now proceed to discuss the basics of the G-net models.

A G-net system is composed of a number of G-nets, each of them representing a self-contained module or

object. A G-net is composed of two parts: a special place called Generic Switch Place (GSP) and an

Internal Structure (IS). The GSP provides the abstraction of the module, and serves as the only interface

between the G-net and other modules. The IS, a modified Petri net, represents the detailed design of the

module. An example of G-nets is shown in Figure 1. Here the G-net models represent two objects – a Buyer

and a Seller. The generic switch places are represented by GSP(Buyer) and GSP(Seller) enclosed by

elli pses, and the internal structures of these models are represented by round-cornered rectangles that

contain four methods: buyGoods(), askPrice(), returnPrice() and sellGoods(). The functionality of these

methods are defined as follows: buyGoods() invokes the method sellGoods() defined in G-net Seller to buy

some goods; askPrice() invokes the method returnPrice() defined in G-net Seller to get the price of some

goods; returnPrice() is defined in G-net Seller to calculate the latest price for some goods and sellGoods()

is defined in G-net Seller to wait for the payment, ship the goods and generate the invoice. A GSP of a G-

net G contains a set of methods G.MS specifying the services or interfaces provided by the module, and a

set of attributes, G.AS, which are state variables. In G.IS, the internal structure of G-net G, Petri net places

represent primitives, while transitions, together with arcs, represent connections or relations among those

primitives. The primitives may define local actions or method calls. Method calls are represented by special

places called Instantiated Switch Places (ISP). A primitive becomes enabled if it receives a token, and an

enabled primitive can be executed. Given a G-net G, an ISP of G is a 2-tuple (G’ .Nid, mtd), where G’ could

be the same G-net G or some other G-net, Nid is a unique identifier of G-net G’ , and mtd ∈ G’.MS. Each

ISP(G’ .Nid, mtd) denotes a method call mtd() to G-net G’ . An example ISP (denoted as an elli psis in Figure

1) is shown in the method askPrice() defined in G-net Buyer, where the method askPrice() makes a method

call returnPrice() to the G-net Seller to query about the price for some goods. Note that we have

highlighted this call i n Figure 1 by the dashed-arc, but such an arc is not actually a part of the static

structure of G-net models. In addition, we have omitted all function parameters for simplicity.

From the above description, we can see that a G-net model essentially represents a module or an object

rather than an abstraction of a set of similar objects. In a recent paper [23], we defined an approach to

extend the G-net model to support class modeling. The idea of this extension is to generate a unique object

identifier, G.Oid, and initialize the state variables when a G-net object is instantiated from a G-net G. An

 5

ISP method invocation is no longer represented as the 2-tuple (G’ .Nid, mtd), instead it is the 2-tuple

(G’ .Oid, mtd), where different object identifiers could be associated with the same G-net class model.

 GSP(Buyer)

ISP(Seller,
sellGoods())

 buyGoods()

Figure 1. G-net models of buyer and seller objects

askPrice()

t1

t2

ISP(Seller,
returnPrice())

t3

t4

returnPrice()

calculate_
price

sell_
goods

sellGoods()

GSP(Seller)

t8

t7

t6

t5

The token movement in a G-net object is similar to that of original G-nets [20][21]. A token tkn is a triple

(seq, sc, mtd), where seq is the propagation sequence of the token, sc ∈ { before, after} is the status color

of the token and mtd is a triple (mtd_name, para_list, result). For ordinary places, tokens are removed from

input places and deposited into output places by firing transitions. However, for the special ISP places, the

output transitions do not fire in the usual way. Recall that marking an ISP place corresponds to making a

method call . So, whenever a method call i s made to a G-net object, the token deposited in the ISP has the

status of before. This prevents the enabling of associated output transitions. Instead the token is

“processed” (by attaching information for the method call), and then removed from the ISP. Then an

identical token is deposited into the GSP of the called G-net object. So, for example, in Figure 1, when the

Buyer object calls the returnPrice() method of the Seller object, the token in place ISP(Seller,

returnPrice()) is removed and a token is deposited into the GSP place GSP(Seller). Through the GSP of the

called G-net object, the token is then dispatched into an entry place of the appropriate called method, for

the token contains the information to identify the called method. During “execution” of the method, the

token will reach a return place (denoted by double circles) with the result attached to the token. As soon as

this happens, the token will return to the ISP of the caller, and have the status changed from before to

after. The information related to this completed method call i s then detached. At this time, output

transitions (e.g., t4 in Figure 1) can become enabled and fire.

 6

Notice that the example we provide in Figure 1 follows the Client-Server paradigm, in which a Seller

object works as a server and a Buyer object is a client. Further details about G-net models can be found in

references [20][21].

2.2 An Architecture for Agent-Or iented Design

Although the G-net model works well i n object-based design, it is not suff icient in agent-based design for

the following reasons. First, agents that form a multi -agent system may be developed independently by

different vendors, and those agents may be widely distributed across large-scale networks such as the

Internet. To make it possible for those agents to communicate with each other, it is desirable for them to

have a common communication language and to follow common protocols. However the G-net model does

not directly support protocol-based language communication between agents. Second, the underlying agent

communication model is usually asynchronous, and an agent may decide whether to perform actions

requested by some other agents. The G-net model does not directly support asynchronous message passing

and decision-making, but only supports synchronous method invocations in the form of ISP places. Third,

agents are commonly designed to determine their behavior based on individual goals, their knowledge and

the environment. They may autonomously and spontaneously initiate internal or external behavior at any

time. The G-net models can only directly support a predefined flow of control.

To support agent-oriented design, we need to extend a G-net to support modeling an agent class2. This

extension is made in three steps. First, we introduce five special modules to a G-net to make an agent

autonomous and internally motivated. As shown in Figure 2 the five special modules are the Goal module,

the Plan module, the Knowledge-base module, the Environment module and the Planner module. The

Goal, Plan and Knowledge-base module are based on the BDI agent model proposed by Kinny and his

colleagues [9], while the Environment module is an abstract model of the environment, i.e., the model of

the outside world of an agent. The Planner module represents the heart of an agent that may decide to

ignore an incoming message, to start a new conversation, or to continue with the current conversation. In

the Planner module, committed plans are achieved, and the Goal, Plan and Knowledge-base modules of an

agent are updated after the execution of each communicative act [15][16] or if the environment changes.

Second, different from the semantic of a G-net as an object or a module, we view the extended G-net, we

call it an agent-oriented G-net, as a class model, i.e., the abstract of a set of similar agents. Third, we define

the instantiation of the agent-oriented G-net as follows: when an agent-oriented G-net A is instantiated, we

generate an agent identifier A.Aid for the resulting agent object AO; meanwhile, the state of AO, i.e., any

state variables defined in A, is initialized.

2 We view the abstract of a set of similar agents as an agent class, and we call an instance of an agent class
an agent or an agent object.

 7

GSP(G)

action

incoming message

Figure 2. A generic agent-oriented G-net model

Plan

public service

serv-
ice_k

 outgoing message

action_1 action_m

Environment

 Planner

MSP(self) MSP(self) MSP(G’.Aid) MSP(G’.Aid)

action_1 action_n service_1 service_k

serv-
ice_1

 return return return return

private utility

utili ty_1 utili ty_p

…

…

…

…

…

…

…

…

utili -
ty_1

utili -
ty_p

Notes: G’ .Aid = mTkn.body.msg.receiver

Goal Knowledge-base

action action action

The internal structure (IS) of an agent-oriented G-net consists of four sections: incoming message,

outgoing message, public service, and private utilit y. The incoming/outgoing message section defines a set

of message processing units (MPU), which correspond to a subset of communicative acts [15][16]. Each

MPU, labeled as action_i in Figure 2 is used to process incoming/outgoing messages and execute any

necessary actions before or after the message processing. The public service section defines a set of

methods that provide services to other agents, and it makes an agent work as a server. Similarly, the private

utilit y section defines a set of methods that can only be called by the agent itself.

Although both objects (passive objects) and agents use message-passing to communicate with each other,

message-passing for objects is a unique form of method invocation, while agents distinguish different types

of messages and model these messages frequently as speech-acts and use complex protocols to negotiate

[8]. In particular, these messages must satisfy standardized communicative (speech) acts, which define the

type and the content of the message (e.g., the FIPA agent communication language, or KQML) [22]. Note

that in Figure 2 each named MPU action_i refers to a communicative act, thus our agent-oriented model

supports an agent communication interface. In addition, agents analyze these messages and can decide

whether to execute the requested action. As we stated before, agent communications are typically based on

asynchronous message passing. Since asynchronous message passing is more fundamental than

synchronous message passing, it is useful for us to introduce a new mechanism, called Message-passing

Switch Place (MSP), to directly support asynchronous message passing. When a token reaches an MSP

 8

(represented as an elli psis in Figure 2), the token is removed and deposited into the GSP of the called agent.

But, unlike with the G-net ISP mechanism, the calli ng agent does not wait for the token to return before it

can continue to execute its next step.

A template of the Planner module is shown in Figure 3 The modules Goal, Plan, Knowledge-base and

Environment are represented as four special places (denoted by double elli pses in Figure 3), each of which

contains a token that represents a set of goals, a set of plans, a set of beliefs and a model of the

environment, respectively. These four modules connect with the Planner module through abstract

transitions, denoted by shaded rectangles in Figure 3 (e.g., the abstract transition make_decision). Abstract

transitions represent abstract units of decision-making or mental-state-updating. At a more detailed level of

design, abstract transitions would be refined into sub-nets; however how to make decisions and how to

update an agent’s mental state is beyond the scope of this paper, and will be considered in our future work.

In the Planner module, there is a unit called autonomous unit that makes an agent autonomous and

internally motivated. An autonomous unit contains a sensor (represented as an abstract transition), which

may fire whenever the pre-conditions of some committed plan are satisfied or when new events are

captured from the environment. If the abstract transition sensor fires, the autonomous unit will t hen decide

based on an agent’s current mental state (goal, plan and knowledge-base) whether to start a conversation or

to simply update its mental state. This is done by firing either the transition start_a_conversation or the

transition automatic_update after executing any necessary actions associated with place new_action.

GSP(G)

Figure 3. A template for the Planner module

Goal Knowledge-base

make_
decision

start_a_
conver_
sation

…

…

…

…

…

continue

external internal

to place “ Goal”
to place “ Plan”
to place “ Knowledge base”

from transition
“ update”

update_
goal/plan/kb

check_
primary

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

dispatch_
method

method

Plan

bypass

ASP(super)

ignore/end

next_action

sensor

automatic_
update

new_
action

ASP(super)

ASP(super)

update

outgoing messages

private util ity
 or
public service

incoming messages

autonomous unit

Environment

 9

Note that the Planner module is both goal-driven and event-driven because the transition sensor may fire

when any committed plan is ready to be achieved or any new event happens. In addition, the Planner

module is also message-triggered because certain actions may initiate whenever a message arrives (either

from some other agent or from the agent itself). A message is represented as a message token, denoted as

mTkn, with a tag of internal/external/method. A message token with a tag of external represents an

incoming message which comes from some other agent, or a newly generated outgoing message before

sending to some other agent; while a message token with a tag of internal is a message forwarded by an

agent to itself with the MSP mechanism. In either case, the message token with the tag of internal/external

should not be involved in an invocation of a method call . On the contrary, a message token with a tag of

method indicates that the token is currently involved in an invocation of some method call . When an

incoming message/method arrives, with a tag of external/method in its corresponding token, it will be

dispatched to the appropriate MPU/method defined in the internal structure of the agent. If it is a method

invocation, the method defined in the public service or private utilit y section of the internal structure will

be executed, and after the execution, the token will return to the calli ng unit, i.e., an ISP of the calli ng

agent. However, if it is an incoming message, the message will be first processed by a MPU defined in the

incoming message section in the internal structure of the agent. Then the tag of the token will be changed

from external to internal before it is transferred back to the GSP of the receiver agent by using MSP(self).

Note that we have extended G-nets to allow the use of the keyword self to refer to the agent object itself.

Upon the arrival of a token tagged as internal in a GSP, the transition internal may fire, followed by the

firing of the abstract transition make_decision. Note that at this point of time, there would exist tokens in

those special places Goal, Plan and Knowledge-base, so the transition bypass is disabled (due to the

“ inhibitor arc”3) and may not fire (the purpose of the transition bypass is for inheritance modeling, which

will be addressed in Section 2.3). Any necessary actions may be executed in place next_action before the

conversation is either ignored/ended or continued. If the current conversation is ignored, the transition

ignore/end fires; otherwise, the transition continue fires. If the transition continue fires, a newly constructed

outgoing message, in the form of a token with a tag of internal, will be dispatched into the appropriate

MPU in the outgoing message section of the internal structure of the agent. After the message is processed

by the MPU, the message will be sent to a receiver agent by using the MSP(G’ .Aid) mechanism, and the tag

of the message token will be changed from internal to external, accordingly. In either case, a token will

be deposited into place update_goal/plan/kb, allowing the abstract transition update to fire. As a

consequence, the Goal, Plan and Knowledge-base modules are updated if needed, and the agent’s mental

state may change.

3 An inhibitor arc connects a place to a transition and defines the property that the transition associated with
the inhibitor arc is enabled only when there are no tokens in the input place.

 10

2.3 Inheritance Modeling

To support agent-oriented design, we also need to incorporate some inheritance modeling capabiliti es. But

inheritance in agent-oriented design is more complicated than in object-oriented design. Unlike an object

(passive object), an agent object has mental states and reasoning mechanisms. Therefore, inheritance in

agent-oriented design invokes two issues: an agent subclass may inherit an agent superclass’s knowledge,

goals, plans, the model of its environment and its reasoning mechanisms; on the other hand, as in the case

of object-oriented design, an agent subclass may inherit all the services that an agent superclass may

provide, such as public services and private utilit y functions [16]. Since inheritance happens at the class

level, an agent subclass may be initialized with an agent superclass’s initial mental state, but new

knowledge acquired, new plans made, and new goals generated in an individual agent object (as an instance

of an agent superclass), cannot be inherited by an agent object when creating an instance of an agent

subclass. For simplicity, we assume that an instance of an agent subclass (i.e., an subclass agent) always

uses its own reasoning mechanisms, and thus the reasoning mechanisms in the agent superclass should be

disabled in some way. Therefore, as proposed in earlier work [16] we only consider how to initialize a

subclass agent’s mental state while an agent subclass is instantiated; meanwhile, we concentrate on the

inheritance of services that are provided by an agent superclass, i.e., the MPUs and methods defined in the

internal structure of an agent class. Before presenting our inheritance scheme, we need the following

definition:

Definition 2.1 Subagent and Primary Subagent

When an agent subclass A is instantiated as an agent object AO, a unique agent identifier is generated, and

all superclasses and ancestor classes of the agent subclass A, in addition to the agent subclass A itself, are

initialized. Each of those initialized classes then becomes a part of the resulting agent object AO. We call

an initialized superclass or ancestor class of agent subclass A, a subagent, and the initialized agent subclass

A the primary subagent.

The result of initializing an agent class is to take the agent class as a template and create a concrete

structure of the agent class and initialize its state variables. Since we represent an agent class as an agent-

oriented G-net, an initialized agent class is modeled by an agent-oriented G-net with initialized state

variables. In particular, the four tokens in the special places of an agent-oriented G-net, i.e., gTkn, pTkn,

kTkn and eTkn, are set to their initial states. Since different subagents of AO may have goals, plans,

knowledge and environment models that conflict with those of the primary subagent of AO, it is desirable

to resolve them in an early stage. In our case, we deal with those conflicts in the instantiation stage in the

following way. All the tokens gTkn, pTkn, kTkn and eTkn in each subagent of AO are removed from their

associated special places, and the tokens are combined with the gTkn, pTkn, kTkn and eTkn in the primary

 11

subagent of AO.4 The resulting tokens gTkn, pTkn, kTkn and eTkn (newly generated by unifying those

tokens for each type), are put back into the special places of the primary subagent of AO. Consequently, all

subagents of AO lose their abiliti es for reasoning, and only the primary subagent of AO can make necessary

decisions for the whole agent object. More specifically, in the Planner module (as shown in Figure 3 that

belongs to a subagent, the abstract transitions make_decision, sensor and update can never be enabled

because there are no tokens in the following special places: Goal, Plan and Knowledge-base. If a message

tagged as internal arrives, the transition bypass may fire and a message token can directly go to a MPU

defined in the internal structure of the subagent if it is defined there. This is made possible by connecting

the transition bypass with inhibitor arcs (denoted by dashed lines terminated with a small circle in Figure 3)

from the special places Goal, Plan and Knowledge-base. So the transition bypass can only be enabled when

there are no tokens in these places. In contrast to this behavior, in the Planner module of a primary

subagent, tokens do exist in the special places Goal, Plan and Knowledge-base. Thus, the transition bypass

will never be enabled. Instead, the transition make_decision must fire before an outgoing message is

dispatched.

To reuse the services (i.e., MPUs and methods) defined in a subagent, we need to introduce a new

mechanism called Asynchronous Superclass switch Place (ASP). An ASP (denoted by an elli psis in Figure

3) is similar to a MSP, but with the difference that an ASP is used to forward a message or a method call to

a subagent rather than to send a message to an agent object. For the MSP mechanism, the receiver could be

some other agent object or the agent object itself. In the case of MSP(self), a message token is always sent

to the GSP of the primary subagent. However, for ASP(super), a message token is forwarded to the GSP of

a subagent that is referred to by super. In the case of single inheritance, super refers to a unique superclass

G-net, however with multiple inheritance, the reference of super must be resolved by searching the class

hierarchy diagram.

When a message/method is not defined in an agent subclass model, the dispatching mechanism will deposit

the message token into a corresponding ASP(super). Consequently, the message token will be forwarded to

the GSP of a subagent, and it will be again dispatched. This process can be repeated until the root subagent

is reached. In this case, if the message is still not defined at the root, an exception occurs. In this paper, we

do not provide exception handling for our agent-oriented G-net models, and we assume that all i ncoming

messages have been correctly defined in the primary subagent or some other subagents.

4 The process of generating the new token values would involve actions such as conflict resolution among
goals, plans or knowledge-bases, which is a topic outside the scope of our model and this paper.

 12

3. Intelli gent Mobile Agent Design

Today’s users demand ubiquitous network access independent of their physical location. This style of

computation, often referred to as mobile computing, is enabled by rapid advances in wireless

communication technology [12]. The networking scenarios enabled by mobile computing range roughly

between two extremes. At one end, the availabilit y of a fixed network is assumed, and its faciliti es are

exploited by the mobile infrastructure. We call this form of mobilit y logical mobilit y. At the other end, the

fixed network is absent and all network faciliti es (e.g., routing) must be implemented by relying only on the

available mobile hosts, namely ad hoc networks. This form of mobilit y is called physical mobilit y. Mobile

agent technology is a new networking technology that deals with both forms of mobilit y. It offers a new

computing paradigm in which a program, in the form of an intelli gent software agent, can suspend its

execution on a host computer, transfer itself to another agent-enabled host on the network, and resume

execution on the new host. Here, as we will see in the next section, we define a host as either a static host

or a mobile host, which is situated in an ad hoc network.

3.1 Agent Wor ld Architecture

First, we introduce the concepts of agent virtual machine (AVM) and agent world (AW), which serve to

define a framework for a mobile agent system. Figure 4 shows a generic mobile agent system, and an

example of agent migration. In the figure, Host-A and Host-B are two machines connected by a network.

To make mobile agents platform independent, a mobile agent runs on an agent virtual machines (AVM),

which provides a protected agent execution environment. Each host may have a number of AVMs,

however, to make it simple, we only ill ustrate one AVM for each host in Figure 4. Each AVM is

responsible for hosting and executing any agents created on that AVM or that arrive over the network, and

for providing API for agent programmers.

We now provide a few key definitions for the mobile agent system.

Definition 3.1 Agent World (AW)

An agent world (AW) is a 3-tuple (WKHOST, SHOST, HCOM), where WKHOST is a well -known static

host, which is responsible for recording the most recent IP address of all other hosts. SHOST is a set of

hosts that can provide agent virtual machines, where members of this set could be either static or mobile.

Note that, in a special case, WKHOST is a member of SHOST. HCOM is the communication protocol

among hosts in SHOST, an example of such protocols is TCP/IP.

 13

(4)

Host-A

computer network

AVM: ΘA AVM: ΘB

Figure 4. Agent world architecture and an example of agent migration

Host-B

(1)

(2)

(3)

(1) move-request (2) grant (3) notify (4) move

… …

FA: θA MA: β MA: α MA: α MA: γ FA: θB

Definition 3.2 Static Host (SH) and Mobile Host (MH)

A host is 4-tuple (SAVM, ACOM, HOMEIP, CURIP), where SAVM is a set of agent virtual machines

(AVM). ACOM is the communication protocol among AVMs in SAVM, and examples of such protocols are

IPC and TCP/IP. HOMEIP is the original IP address of the host, and CURIP is the current IP address of the

host. If at any time, CURIP = HOMEIP, we call the host a static host (SH); otherwise, we call it a mobile

host (MH).

Definition 3.3 Agent Virtual Machine (AVM)

An agent virtual machine (AVM) is a 5-tuple (FA, SMA, MCOM, HOSTIP, ID), where FA is a facilit ator

agent for AVM, which is responsible for recording information of mobile agents running on that AVM, and

also for providing services for mobile agents running on other AVMs. Note that FA is a static agent, i.e., it

does not migrate. SMA is a set of mobile agents. MCOM is the communication protocols for both static and

mobile agents. HOSTIP is the current IP address of the host where the AVM runs on, and ID is a unique

identifier for that AVM.

Definition 3.4 Static Agent (SA) and Mobile Agent (MA)

An agent A is 3-tuple (HOMEIP, CURIP, AO), where HOMEIP is the IP address of the host, on which

agent A is created. CURIP is the IP address of the host where agent A currently runs on. AO is the agent

object with the general structure as we described in Section 2. If at ant time, CURIP = HOMEIP, we refer

to agent A as a static agent (SA); otherwise, we refer to agent A as a mobile agent (MA).

 14

Since in this paper we view mobile agents and facili tator agents (an example of static agent) as intelli gent

software agents, for the rest of this paper a mobile/facilit ator agent always refers to an intelli gent mobile

agent (IMA) or an intelli gent facilit ator agent (IFA). As shown in Figure 4, when a mobile agent α on

AVM ΘA wants to migrate to another AVM ΘB, it needs to contact with the remote facilit ator agent θB first,

which resides on AVM ΘB (step 1). In fact, the mobile agent α needs to know the address of the remote

facilit ator agent θB before the communication can begin. This could be done by querying this information

from its local facilit ator agent θA, which resides on AVM ΘA. If the local facilit ator agent θA knows the

address of the remote facilit ator agent θB, it will provide this information to the mobile agent α; otherwise,

it will contact with the well -known static host Π (we do not show it in Figure 4) for this information and

forward the results to the mobile agent α thereafter. For simplicity, this procedure is omitted in Figure 4.

Based on security and resource criteria, the remote facilit ator agent θB decides if the migration request is

granted. If the migration request is granted (step 2), the mobile agent α notifies its local facilit ator agent θA

about its leaving (step 3), and it finally moves to the remote AVM ΘB (step 4). In the following section, we

will see that, in our approach, step 1 and step 2 are modeled by asynchronous message passing; while step 3

and step 4 are modeled by method invocation.

The situation above is an example of logical mobilit y. For physical mobilit y, a host may at some time

change its IP address or lose its IP address temporarily (detached from the network) at some time. In this

case, the well -known static host Π is critical for recording this information. To successfully send a message

to an agent on which the AVM has changed its HOSTIP address, the knowledge of the sender agent’s local

facilit ator agent needs to be consistent with the latest network information. Further discussion about this

issue is beyond the scope of this paper, which concentrates on logical mobilit y.

3.2 Intelli gent Mobile Agent (IMA) and Intelli gent Facili tator Agent (IFA)

To ill ustrate the processes for design of intelli gent mobile agents (IMA) and intelli gent facilit ator agents

(IFA) by using our agent model, we use the following examples. Since we view a facilit ator agent as an

IFA, in addition to provide public services to a mobile agent or some other IFA, an IFA also has the

capabilit y of making decisions. This feature is vitally important for an IFA to cater for the needs of service

allocation in a dynamic network environment, such as resource management and security verifications.

Figure 5 (a) depicts a template of a contract net protocol [24] expressed as an agent UML (AUML)

sequence diagram [22] for a migration-request protocol between a mobile agent (MA) and a remote

facilit ator agent (FA). Figure 5 (b) is a modified example of a contract net protocol adapted from [22],

which depicts a template of a protocol expressed as an AUML sequence diagram for a price-negotiation

protocol between a buying mobile agent (BMA) and a selli ng mobile agent (SMA). Some of the notations of

AUML are adapted from [22] as extensions of UML sequence diagrams for agent design. In addition, to

 15

correctly draw the sequence diagram for the protocol templates, we introduce two new notations, i.e., the

end of protocol operation “•” and the iteration of communication operation “*” .

IMA remote IFA

move-request

• refuse-move

ask-authCode
x

• confirm-move

(a) (b)

Figure 5. Contract net protocols (a) a temple for the migration-
request protocol (b) a template for the price-negotiation protocol

return-authCode

x
grant-move

*

BMA SMA

request-price

• refuse-price

x

accept-proposal

reject-proposal
x

propose

propose

accept-proposal

reject-proposal
x

• confirm-price

• refuse-move

IMA: intelli gent mobile agent, IFA: intelli gent facilit ator agent, BMA: buying mobile agent, SMA: selling mobile agent

Consider Figure 5 (a). When a conversation based on a contract net protocol begins, the intelli gent mobile

agent (IMA) sends a request for migration to a remote intelli gent facilit ator agent (IFA) on a different

AVM. The remote IFA can then choose to respond to the IMA by refusing its migration or asking the IMA’s

authorization code, which is used to verify that the IMA is on a trustable AVM. Here the “x” in the decision

diamond indicates an exclusive-or decision. If the remote IFA refuses the migration based on resource

limitation or some other reasons, the protocol ends; otherwise, the remote IFA waits for the IMA’s

authorization code to be supplied. If the IMA’s authorization code is correctly provided, the remote IFA

may grant the IMA for migration if it is trustable, or refuse the migration otherwise. Again, if the remote

IFA refuses IMA's migration, the protocol ends; otherwise, a confirmation message will be provided

afterwards. Similarly, the price-negotiation protocol between a buying mobile agent (BMA) and a selling

mobile agent (SMA), which are subclasses of IMA, can be ill ustrated in Figure 5 (b).

Based on the communicative acts (e.g., move-request, refuse-move, etc.) needed for the contract net

protocol in Figure 5 (a), we may adopt the agent design template shown in Figure 2, and design the mobile

agent class as in Figure 6. The Goal, Plan, Knowledge-base and Environment modules remain as abstract

units and can be refined in a further detailed design stage. The Planner module may reuse the template

shown in Figure 3. The design of the remote facilit ator agent is similar, which is ill ustrated in Figure 7.

 16

 GSP(IMA)

incoming message

Figure 6. An agent-based G-net model for intelligent mobile agent class (IMA)

Goal

 outgoing message

ask-authCode refuse-move

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(self) MSP(self)

grant-move confirm-move move-request return-authCode

 return return

private utility

notify move

…

…

ISP(FA,
inform)

utility

MSP(G’.Aid) MSP(G’.Aid)

Plan Environment

action action action action action action

GSP(IFA)

incoming message

Figure 7. An agent-based G-net model for intelli gent facil itator agent class (IFA)

Goal

 outgoing message

move-request return-authCode

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(G’.Aid) MSP(G’.Aid)

ask-authCode refuse-move grant-move confirm-move

 return return

public service

register inform

…

…

utili ty utili ty

MSP(G’.Aid) MSP(G’.Aid)

Plan Environment

action action action action action action

 17

To show how our agent models work correctly in an agent conversation, we now discuss an example.

Consider a mobile agent object MAO, which receives a message of ask-authCode from a remote facilit ator

agent object FAO. A mTkn token with a tag of external will be deposited in the GSP of the primary

subagent of MAO, i.e., the GSP of the corresponding intelli gent mobile agent class (IMA). The transition

external in MA’s Planner module may fire, and the mTkn will be moved to the place

dispatch_incoming_message. Since there is an MPU for ask-authCode defined in the internal structure of

MA, the mTkn will be dispatched to the entry place of that MPU. After the message is processed, MSP(self)

changes the tag of the mTkn from external to internal, and sends the processed mTkn token back into the

GSP of IMA. Upon the arrival of this message token, the transition internal in the Planner module of MA

may fire, and the mTkn token will be moved to the place check_primary. Since IMA corresponds to the

primary subagent of MAO, there are tokens in the special places Goal, Plan, Knowledge-base and

Environment. Therefore the abstract transition make_decision may fire, and any necessary actions are

executed in place next_action. Then the current conversation is either ignored or continued based on the

decision made in the abstract transition make_decision. If the current conversation is ignored, the goals,

plans and knowledge-base are updated as needed; otherwise, in addition to the updating of goals, plans and

knowledge-base, a newly constructed mTkn with a tag of internal is deposited into place

dispatch_outgoing_message. The new mTkn token has the message name return-authCode, following the

protocol defined in Figure 5 (a). Again, there is an MPU for return-authCode defined in IMA, so the new

mTkn token will be dispatched into the entry place of that MPU. After the message is processed, the

MSP(G’ .Aid) mechanism changes the tag of the mTkn token from internal to external, and transfers the

mTkn token to the GSP of the receiver agent, in this case, the remote facilit ator agent object FAO.

To further ill ustrate how to refine the MPU/method in a mobile agent's internal structure, we use the

examples of the MPU confirm-move defined in the incoming message section and the method move defined

in the private utility section. The refinement of another method notify() is straightforward; as shown in

Figure 6, the notify() method makes a method invocation inform() to its local facilit ator agent. This is done

to notify the facilit ator agent that the calli ng agent is leaving. The refinement of method move() and MPU

confirm-move are shown in Figure 8 (a) and Figure 8 (b), respectively. In Figure 8 (a), when there is a

token deposited in the entry place, the transition start_move fires, and deposit a token into place migration.

The migration might be successful or failed, due to the network condition. If the migration fails, the

transition fail fires, and deposits a token into place retry. The mobile agent will t hen count the number of

retrials. If it has retried less than MAX_TRIAL times, the mobile agent will t ry to migrate again; otherwise,

the transition else fires, and a method call inform(FAILURE) will be made to its local facilit ator agent (FA)

to notify the local FA that its migration is failed. This is modeled by the ISP(rFA, inform(FAILURE))

mechanism. After that, the method call move() returns. If the migration succeeds, the transition succeed

fires, and the mobile agent’s current IP address CURIP will be changed to the new one. Then a method call

 18

ISP(rFA, register) is made to the remote facilit ator agent (FA), which is actually the mobile agent’s local

FA now. After registering with the FA, the method call move() returns.

In Figure 8 (b), the refinement of MPU confirm-move is straightforward. When there is a token deposited

into the entry place of the MPU confirm-move, the transition begin_process fires. After processing the

message token, it makes a method call ISP(self, notify) to the agent itself, which further makes a method

call to the mobile agent’s local facilit ator agent -- to inform the facilit ator agent that the mobile agent is

leaving. After that, the migration starts by invoking the method move(). Finally, after finishing the

migration, either failed or succeeded, it transfers the message token to the agent itself, and ends the

conversation.

ISP(FA,
inform(FAILURE)) ISP(rFA, register)

return

start_move

succeed fail

retry change_CurIP

(a) (b)

Figure 8. Examples of detailed design (a) refinement of method move()
(b) refinement of MPU confirm-move

ISP(self, notify)

ISP(self, move)

message_processing

entry place

MSP(G’, Aid)

entry place

move() confirm-move

[retry ≤ MAX_TRIAL]

else

migration

begin_process

after_process

begin_migration

after_migration
end

retry

4. Intelli gent Mobile Agent Design in an Electronic Marketplace

Consider a mobile agent family in an electronic marketplace domain, which is a global stock market

tracking and trading system. Figure 9 shows the agents in a UML class hierarchy notation. An intelli gent

mobile agent class (IMA) is defined as a superclass that is capable of communicating with an intelli gent

facilit ator agent class (IFA), and migrating among AVMs. The functionality of an intelli gent mobile agent

class (IMA) can be inherited by an agent subclass, such as a buying mobile agent class (BMA) or a selli ng

 19

mobile agent class (SMA). Both the BMA and SMA may reuse the functionality of IMA for communication

with IFA and migration among AVMs. Furthermore, a broker mobile agent class is designed as a subclass

of both the BMA and SMA, and a stock-buyer/stock-seller mobile agent class may be defined as a subclass

of a BMA/SMA.

 Intelligent Mobile Agent (IMA)

Stock Buyer Mobile Agent

Buying Mobile Agent (BMA) Sell ing Mobile Agent (SMA)

Broker Mobile Agent Stock Seller Mobile Agent

Figure 9. The class hierarchy diagram of mobile agents in an electronic marketplace

Based on the communicative acts (e.g., request-price, refuse-price, etc.) needed for the contract net

protocol between the buying mobile agent (BMA) and the selli ng mobile agent (SMA), we may design the

BMA as shown in Figure 10. The SMA can be designed in the same way.

 GSP(BMA)
BMA extends MA

incoming message

Figure 10. An agent-based G-net model for buying mobile agent class (BMA)

Goal

 outgoing message

refuse-price propose

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(self) MSP(G’Aid)

confirm-price request-price accept-proposal reject-proposal

 return return

private utility

util ity_1 util ity_p

…

…

util ity util i ty

MSP(G’ .Aid) MSP(G’ .Aid)

Plan Environment

action action action action action action

 20

With inheritance, a buying mobile agent class (BMA), as a subclass of a mobile agent class (MA), may

reuse MPUs/methods defined in MA’s internal structure. Similarly, a selli ng mobile agent class (SMA)

inherits all MPU/methods of MA, and a retailer mobile agent class inherits all MPU/methods of both the

BMA and the SMA.

Now we discuss an example to show how the reuse of MPU/methods works. Consider a buying mobile

agent object BMO, which receives a message of ask-authCode from a remote facilit ator agent object FAO.

A mTkn token will be deposited in the GSP of the primary subagent of BMO, i.e., the GSP of the

corresponding buying mobile agent class (BMA). The transition external in BMA’s Planner module may

fire, and the mTkn will be moved to the place dispatch_incoming_message. Since there is no MPU for ask-

authCode defined in the internal structure of BMA, the mTkn will be moved to the ASP(super) place. Since

super here refers to a unique superclass – the mobile agent class (MA) – the mTkn will be transferred to the

GSP of MA. Now the mTkn can be correctly dispatched to the MPU for ask-authCode. After the message is

processed, MSP(self) changes the tag of the mTkn from external to internal, and sends the processed mTkn

token back into the GSP of BMA. Note that MSP(self) always sends a mTkn back to the GSP of the primary

subagent. Upon the arrival of this message token, the transition internal in the Planner module of BMA

may fire, and the mTkn token will be moved to the place check_primary. Since BMA corresponds to the

primary subagent of BMO, there are tokens in the special places Goal, Plan, Knowledge-base and

Environment. Therefore the abstract transition make_decision may fire, and any necessary actions are

executed in place next_action. Then the current conversation is either ignored or continued based on the

decision made in the abstract transition make_decision. If the current conversation is ignored, the goals,

plans and knowledge-base are updated as needed; otherwise, in addition to the updating of goals, plans and

knowledge-base, a newly constructed mTkn with a tag of internal is deposited into place

dispatch_outgoing_message. The new mTkn token has the message name return-authCode, following the

protocol defined in Figure 5 (a). Again, there is no MPU for return-authCode defined in BMA, so the new

mTkn token will be dispatched into the GSP of MA. Upon the arrival of the mTkn in the GSP of MA, the

transition internal in the Planner module of MA may fire. However at this time, MA does not correspond to

the primary subagent of BMO, so all the tokens in the special places of Goal, Plan, and Knowledge-base

have been removed. Therefore, the transition bypass is enabled. When the transition bypass fires, the mTkn

token will be directly deposited into the place dispatch_outgoing_message, and now the mTkn token can be

correctly dispatched into the MPU for return-authCode defined in MA. After the message is processed, the

MSP(G’ .Aid) mechanism changes the tag of the mTkn token from internal to external, and transfers the

mTkn token to the GSP of the receiver agent, in this case, the remote facilit ator agent FAO.

For the reuse of public services and private utilit y functions defined in a superclass, the situation is the

same as in the case of object-oriented design. In addition, there are three different forms of inheritance that

are commonly used, namely augment inheritance, restrictive inheritance and refinement inheritance. The

 21

usage of these three forms of inheritance in agent-oriented design is also similar to that in object-oriented

design. Examples concerning reuse of public services and private utilit y functions and different forms of

inheritance can be found in earlier work [23].

5. Conclusion and Future Work

Agent-oriented software provides a new software engineering paradigm and the opportunities for

development of new domain-specific software models. With the continuing improvement of agent

technology, and the rapid growth of software system complexity, especially for Internet applications, there

is a pressing need for general models of mobile agents. Such models can allow a structured approach for

design of agent software systems and facilit ate the application of formal methods techniques for design

analysis and implementation synthesis.

We presented the design models of intelli gent mobile agents in a framework for agent-oriented software.

Unlike previous work, which only models a particular feature of mobile agents, our mobile agent models

can be served as a general agent model that has the capabiliti es of mobilit y, corporative behavior, and

intelli gence. With the example of electronic marketplace, we show that specific mobile agents can be

design incrementally as subclasses of the mobile agent base class. Furthermore, our intelli gent mobile agent

models are based on the agent-oriented G-net formalism, which can be translated into a standard form of

Petri net (Predicate-Transition net, Pr/T net) [19][20]. Because the Petri net formalism is theoretically

mature and supported by robust tools, our approach supports formal analysis, such as model checking.

For our future research work, we plan to use our marketplace example to demonstrate the analysis power

inherent in our intelli gent mobile agent models. We will i nvestigate use of model checking techniques to

show that our agent models satisfy certain behavioral properties, such as effective movement and freedom

of deadlock. We will also try to implement a mobile agent prototype following our formal design, by which

we can show our approach supports rapid development of mobile agents. Finally, we need to explore

various security issues in mobile agent design. As a side note, since we embed agent movement, and any

other possible actions, in the context of agent conversations, we believe that our approach leaves adequate

room for security modeling.

References

[1] K. Rothermel and M. Schwehm, “Mobile Agents,” In: A. Kent and J. G. Willi ams (Eds.):

Encyclopedia for Computer Science and Technology, Volume 40 - Supplement 25, New York: M.

Dekker Inc., 1999, pp. 155-176.

 22

[2] D. Kinny, M. P. Georgeff , “Modeling and Design of Multi -Agent Systems,” Proceedings of the 4th

Int’ l Workshop on Agent Theories, Architectures, and Language (ATAL-97), 1997, pp. 1-20.

[3] N. R. Jennings, K. Sycara and M. Wooldridge, “A Roadmap of Agent Research and Development,”

International Journal of Autonomous Agents and Multi -Agent Systems, 1(1), 1998, pp. 7-38.

[4] G.-C. Roman, P. J. McCann, and J. Y. Plun, “Mobile UNITY: Reasoning and Specification in Mobile

Computing,” ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 3, July 1997,

pp. 250-282.

[5] C. Mascolo, “MobiS: A Specification Language for Mobile Systems,” In Third Int. Conference on

Coordination Models and Languages, Amsterdam, The Netherlands. April 1999. P. Ciancarini and A.

Wolf (editors). Lecture Notes in Computer Science, Springer-Verlag, No.1594, pp. 37-52.

[6] G. Cabri, L. Leonardi, F. Zambonelli , “Engineering Mobile-Agent Applications via Context-dependent

Coordination,” In Proceedings of the 23rd International Conference on Software Engineering (ICSE

2001), Toronto, Canada, 2001, pp.371-380.

[7] C. Argel Iglesias, M. Garrijo, José Centeno-González, “A Survey of Agent-Oriented Methodologies,”

Proceedings of the Fifth International Workshop on Agent Theories, Architectures, and Language

(ATAL-98), 1998, pp. 317-330.

[8] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia Methodology for Agent-Oriented Analysis

and Design,” Journal of Autonomous Agents and Multi -Agent Systems, 3 (3): 285-312, 2000.

[9] D. Kinny, M. Georgeff , and A. Rao, “A Methodology and Modeling Technique for Systems of BDI

Agents,” In W. Van de Velde and J. W. Perram, editors, Agents Breaking Away: Proceedings of the

Seventh European Workshop on Modeling Autonomous Agents in a Multi -Agent World, (LNAI Volume

1038), pp. 56-71, Springer-Verlag: Berlin, Germany, 1996.

[10] C. Fournet, G. Gonthier, J. Lévy, L. Maranget, and D. Rémy, "A Calculus of Mobile Agents," In

Proceedings of the 7th International Conference on Concurrency Theory (CONCUR'96), Springer-

Verlag, LNCS 1119, August 1996, pp. 406-421.

[11] M. Wermelinger, J. L. Fiadeiro, “Connectors for Mobile Programs,” IEEE Transactions on Software

Engineering 24(5), pp. 331-341, May 1998.

[12] A. L. Murphy, G. P. Picco, and G.-C. Roman, “LIME: A Middleware for Physical and Logical

Mobilit y,” In Proceedings of the 21st International Conference on Distributed Computing Systems

(ICDCS-21), April 2001, Phoenix, Arizona, USA, pp. 524-533.

[13] J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel and M. Strasser, “Communication Concepts for

Mobile Agent Systems,” In Proceedings of the 1st International Workshop on Mobile Agents (MA'97),

Springer Verlag, 1997, pp.123-135.

 23

[14] T. Finin, Y. Labrou and Y. Peng, “Mobile Agents can Benefit from Standards Efforts in Inter-agent

Communication,” IEEE Communications Magazine, Vol. 36, No. 7, pp. 50-56, July 1998.

[15] H. Xu and S. M. Shatz, “An Agent-based Petri Net Model with Application to Seller/Buyer Design in

Electronic Commerce,” In Proceedings of the Fifth International Symposium on Autonomous

Decentralized Systems (ISADS 2001), March 2001, Dallas, Texas, USA, pp.11-18.

[16] H. Xu and S. M. Shatz, “A Framework for Modeling Agent-Oriented Software,” In Proceedings of the

21st International Conference on Distributed Computing Systems (ICDCS-21), April 2001, Phoenix,

Arizona, USA, pp.57-64.

[17] H. Xu and S. M. Shatz, “A Framework for Model-Based Design of Agent-Oriented Software,”

Technical Report, Computer Science Department, The University of Illi nois at Chicago, June 2001.

[18] H. Ku H., G. W. Luderer and B. Subbiah, “An Intelli gent Mobile Agent Framework for Distributed

Network Management,” In Proceedings of the IEEE Global Telecommunications Conference

(GLOBECOM'97), Phoenix, USA, November 1997.

[19] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE, 77(4), April

1989, pp. 541-580.

[20] Deng, Y., S. K. Chang, A. Perkusich and J. de Figueredo, “ Integrating Software Engineering Methods

and Petri Nets for the Specification and Analysis of Complex Information Systems,” Proceedings of

The 14th Int’ l Conf. on Application and Theory of Petri Nets, Chicago, June 21-25, 1993, pp. 206-223.

[21] A. Perkusich and J. de Figueiredo, “G-nets: A Petri Net Based Approach for Logical and Timing

Analysis of Complex Software Systems,” Journal of Systems and Software, 39(1): 39–59, 1997.

[22] J. Odell , H. Van Dyke Parunak, and B. Bauer, “Representing Agent Interaction Protocols in UML,”

Agent-Oriented Software Engineering, Paolo Ciancarini and Michael Wooldridge eds., Springer-

Verlag, Berlin, 2001, pp. 121–140.

[23] H. Xu and S. M. Shatz, “Extending G-nets to Support Inheritance Modeling in Concurrent Object-

Oriented Design,” Proceedings of the IEEE International Conference on Systems, Man, and

Cybernetics (SMC 2000), October 2000, Nashvill e, Tennessee, USA, pp. 3128-3133.

[24] R.A. Flores and R.C. Kremer, “Formal Conversations for the Contract Net Protocol,” in V. Marik, M.

Luck & O. Stepankova (Eds.), Multi -Agent Systems and Applications II , Lecture Notes in Computer

Science, Springer-Verlag, 2001.

[25] A. R. Silva, A. Romão, D. Deugo, and M. M. da Silva, “Towards a Reference Model for Surveying

Mobile Agent Systems,” Autonomous Agents and Multi -Agent Systems, Vol. 4, No. 3, pp.187-231,

Sept. 2001.

