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Abstract 

 

One of the grand challenges to achieving wide spread use and rapid development of multi -agent systems is 

to adapt principles of software engineering. Agent-oriented software provides a new software engineering 

paradigm and the opportunities for development of new domain-specific software models. With the 

continuing improvement of agent technology, and the rapid growth of software system complexity, 

especially for Internet applications, there is a pressing need for general models of mobile agents – models 

that explicitly support the features of mobilit y, cooperative behavior, and intelli gence. We present a design 

model for intelli gent mobile agent software by introducing mobilit y into a framework for agent-oriented 

software. The model facilit ates design reuse by providing an inheritance mechanism and explicitly supports 

asynchronous message passing. The approach benefits from a formal foundation that is based on the agent-

oriented G-net formalism, a formalism derived from an object-based Petri net model. Thus the approach 

supports model analysis and property verification. 
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1. Introduction 

 

Software agents can be classified in terms of a space defined by the three dimensions of intelli gence, 

agency and mobilit y [1]. The first dimension, intelli gence, is rooted in artificial intelli gence research and 

dates back to the fifties, where intelli gent agents can be classified according to their capabiliti es to express 

preferences, beliefs and emotions, and according to their abilit y to fulfill a task by reasoning, planning and 

learning techniques. The second dimension, agency, is the degree of autonomy and authority vested in the 

agent, and can be measured by the nature of the interaction between an agent and other entities of the 

system. Particularly, an agent must run asynchronously. The third dimension of software agent research, 

mobilit y, has emerged in the nineties and is motivated by the rise and rapid growth of a networked 

                                                           
1 This material is based upon work supported by the U.S. Army Research Off ice under grant number 
DAAD19-01-1-0672, and the U.S. National Science Foundation under grant number CCR-9988168. 
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computing environment, and the need for techniques to locally exploit distributed resources. Within this 

dimension of software agent research, the goal is remote action and mobilit y of data and computation.  

 

Current agent systems generally do not exploit all the capabiliti es classified by these three dimensions. For 

example, multi -agent systems (MAS) of distributed artificial intelli gence try to execute a given task using a 

large number of possibly distributed but static agents that collaborate and cooperate in an intelli gent 

manner [2][3]. On the other hand, research on mobile agents usually emphasizes agent mobilit y and agent 

coordination, and mobile agents are typically assumed to only have very limited or even no intelli gence 

[4][5][6]. The development schema in the later case is sometimes called weak agent approach, which 

contrasts with the strong agent approach that involves artifical intelli gence techniques [25].  

 

Previous work on multi -agent systems has fostered the concept of agent-oriented software [7][8][16], 

where agents are viewed as intell igent software that has the properties of autonomy, reactivity, pro-

activeness and social abilit y. Corresponding agent-oriented design methodologies are also proposed to 

provide guidelines for agent specification and design. Examples of such work are the AAII methodologies 

[9] and the Gaia methodologies [8], which are extensions of object-oriented methodologies. In our own 

previous work [16], an inheritance mechanism, in terms of agent functionaliti es, is introduced into agent-

oriented software design. 

 

For mobile agents, the concern is with intelli gent software agents that can migrate over computer networks. 

The concept of location has been one of the key features to characterize mobilit y in most theoretical models 

of mobile agents, such as the distributed join-calculus [10], which is an extension of the π-calculus that 

introduces the explicit notions of named localiti es and distribution failure. Additional typical formalisms 

for agent mobilit y modeling are summarized as follows. Mobile UNITY [4] provides a programming 

notation that captures the notion of mobilit y and transient interactions among mobile nodes. Inspired by 

Mobile UNITY, the concept of connectors [11] is explicitly identified to describe different kinds of 

transient interactions, and facilit ate the separation of coordination from computation in mobile computing. 

The connectors are written in COMMUNITY, a UNITY-like program design language whose semantics is 

given in a categorical framework. MobiS [5], as an extended version of PoliS, is a specification language 

based on multiple tuple spaces. It can be used to specify agent coordination and architectures containing 

mobile components. More recently, LIME [12], also based on tuple spaces, has been proposed as a 

middleware that supports the development of applications that exhibit both physical and logical mobilit y.  

 

Although the above results formally model mobile agents in terms of their mobilit y, they are not built upon 

a framework that explicitly supports the intelli gence feature of agents. Furthermore, they are weak in agent 

communication modeling, and typically such models are reactive rather than pro-active. In other words, 

these models may simply act in response to their environment, but they are not able to exhibit goal-directed 
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behaviors. Additional efforts, such as the MARS project [6], attempt to introduce context-dependent 

coordination into agent models, however, without explicitly suggesting the communication mechanism 

among mobile agents. There are also some research efforts concerned with mobile agent communication 

mechanisms, however they are not formally defined [13][14]. 

 

From the above review, we can see that current work on mobile agents mostly emphasizes some particular 

features of the mobile agents, e.g., agent mobilit y. With the continuing improvement of agent technology, 

and the rapid growth of software system complexity, especially for Internet applications, there is a pressing 

need for a more general model of mobile agents, in which agents are not only mobile and cooperative, but 

also intelli gent. There are a few previous efforts that discuss intelli gent mobile agents [18][14], however 

they lack a formal framework for intelli gent mobile agent design.  In this paper, we propose an intelli gent 

mobile agent (IMA) model by introducing mobilit y into a framework for agent-oriented software. This 

framework has been designed to model intelli gent software agents [15][16] for multi -agent systems, and it 

supports design reuse by providing an inheritance mechanism. Meanwhile, the resulting mobile agent 

models explicitly support asynchronous message passing. Another advantage of our approach is that our 

fundamental agent model is based on the agent-oriented G-net formalism [16], a formalism derived from an 

object-based Petri net model. As a formal model, this agent-oriented formalism can be translated into more 

“standard” forms of a Petri net for design analysis, including model checking. Examples of such analysis 

can be found in earlier work [17]. 

 

The rest of this paper is organized as follows. Section 2 describes the agent-oriented G-net model, which 

was first proposed in [16]. Section 3 proposes the architecture for a mobile agent system, and ill ustrates 

how to design the principle agent system components: the intelli gent mobile agents (IMA) and the 

intelli gent facilit ator agents (IFA). Section 4 uses an electronic marketplace example to show how to 

incrementally design application-specific intelli gent mobile agents using the discussed architecture. Finally, 

in Section 5, we summarize our contributions and discuss the future work. 

 

2. A Framework for Agent-Or iented Software 

 

2.1 G-Net Model Background 

 

A widely accepted software engineering principle is that a system should be composed of a set of 

independent modules, where each module hides the internal details of its processing activities and modules 

communicate through well -defined interfaces. The G-net model provides strong support for this principle 

[20][21]. G-nets are an object-based extension of Petri nets, which is a graphically defined model for 

concurrent systems. Petri nets have the strength of being visually appealing, while also being theoretically 

mature and supported by robust tools. We assume that the reader has a basic understanding of Petri nets 
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[19]. But, as a general reminder, we note that Petri nets include three basic entities: place nodes 

(represented graphically by circles), transition nodes (represented graphically by solid bars), and directed 

arcs that can connect places to transitions or transitions to places. Furthermore, places can contain markers, 

called tokens, and tokens may move between place nodes by the “ firing” of the associated transitions. The 

state of a Petri net refers to the distribution of tokens to place nodes at any particular point in time (this is 

sometimes called the marking of the net). We now proceed to discuss the basics of the G-net models. 

 

A G-net system is composed of a number of G-nets, each of them representing a self-contained module or 

object. A G-net is composed of two parts: a special place called Generic Switch Place (GSP) and an 

Internal Structure (IS). The GSP provides the abstraction of the module, and serves as the only interface 

between the G-net and other modules. The IS, a modified Petri net, represents the detailed design of the 

module. An example of G-nets is shown in Figure 1. Here the G-net models represent two objects – a Buyer 

and a Seller. The generic switch places are represented by GSP(Buyer) and GSP(Seller) enclosed by 

elli pses, and the internal structures of these models are represented by round-cornered rectangles that 

contain four methods: buyGoods(), askPrice(), returnPrice() and sellGoods(). The functionality of these 

methods are defined as follows: buyGoods() invokes the method sellGoods() defined in G-net Seller to buy 

some goods; askPrice() invokes the method returnPrice() defined in G-net Seller to get the price of some 

goods; returnPrice() is defined in G-net Seller to calculate the latest price for some goods and sellGoods() 

is defined in G-net Seller to wait for the payment, ship the goods and generate the invoice. A GSP of a G-

net G contains a set of methods G.MS specifying the services or interfaces provided by the module, and a 

set of attributes, G.AS, which are state variables.  In G.IS, the internal structure of G-net G, Petri net places 

represent primitives, while transitions, together with arcs, represent connections or relations among those 

primitives. The primitives may define local actions or method calls. Method calls are represented by special 

places called Instantiated Switch Places (ISP). A primitive becomes enabled if it receives a token, and an 

enabled primitive can be executed. Given a G-net G, an ISP of G is a 2-tuple (G’ .Nid, mtd), where G’  could 

be the same G-net G or some other G-net, Nid is a unique identifier of G-net G’ , and mtd ∈ G’.MS. Each 

ISP(G’ .Nid, mtd) denotes a method call mtd() to G-net G’ . An example ISP (denoted as an elli psis in Figure 

1) is shown in the method askPrice() defined in G-net Buyer, where the method askPrice() makes a method 

call returnPrice() to the G-net Seller to query about the price for some goods. Note that we have 

highlighted this call i n Figure 1 by the dashed-arc, but such an arc is not actually a part of the static 

structure of G-net models. In addition, we have omitted all function parameters for simplicity. 

 

From the above description, we can see that a G-net model essentially represents a module or an object 

rather than an abstraction of a set of similar objects. In a recent paper [23], we defined an approach to 

extend the G-net model to support class modeling. The idea of this extension is to generate a unique object 

identifier, G.Oid, and initialize the state variables when a G-net object is instantiated from a G-net G. An 
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ISP method invocation is no longer represented as the 2-tuple (G’ .Nid, mtd), instead it is the 2-tuple 

(G’ .Oid, mtd), where different object identifiers could be associated with the same G-net class model. 

   

 
 
 GSP(Buyer) 
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sellGoods()) 

   buyGoods() 

Figure 1. G-net models of buyer and seller objects 
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The token movement in a G-net object is similar to that of original G-nets [20][21]. A token tkn is a triple 

(seq, sc, mtd), where seq is the propagation sequence of the token, sc ∈ { before, after} is the status color 

of the token and mtd is a triple (mtd_name, para_list, result). For ordinary places, tokens are removed from 

input places and deposited into output places by firing transitions. However, for the special ISP places, the 

output transitions do not fire in the usual way. Recall that marking an ISP place corresponds to making a 

method call . So, whenever a method call i s made to a G-net object, the token deposited in the ISP has the 

status of before. This prevents the enabling of associated output transitions. Instead the token is 

“processed” (by attaching information for the method call ), and then removed from the ISP. Then an 

identical token is deposited into the GSP of the called G-net object. So, for example, in Figure 1, when the 

Buyer object calls the returnPrice() method of the Seller object, the token in place ISP(Seller, 

returnPrice()) is removed and a token is deposited into the GSP place GSP(Seller). Through the GSP of the 

called G-net object, the token is then dispatched into an entry place of the appropriate called method, for 

the token contains the information to identify the called method. During “execution” of the method, the 

token will reach a return place (denoted by double circles) with the result attached to the token. As soon as 

this happens, the token will return to the ISP of the caller, and have the status changed from before to 

after. The information related to this completed method call i s then detached. At this time, output 

transitions (e.g., t4 in Figure 1) can become enabled and fire. 
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Notice that the example we provide in Figure 1 follows the Client-Server paradigm, in which a Seller 

object works as a server and a Buyer object is a client. Further details about G-net models can be found in 

references [20][21]. 

 

2.2 An Architecture for Agent-Or iented Design 

 

Although the G-net model works well i n object-based design, it is not suff icient in agent-based design for 

the following reasons. First, agents that form a multi -agent system may be developed independently by 

different vendors, and those agents may be widely distributed across large-scale networks such as the 

Internet. To make it possible for those agents to communicate with each other, it is desirable for them to 

have a common communication language and to follow common protocols. However the G-net model does 

not directly support protocol-based language communication between agents. Second, the underlying agent 

communication model is usually asynchronous, and an agent may decide whether to perform actions 

requested by some other agents. The G-net model does not directly support asynchronous message passing 

and decision-making, but only supports synchronous method invocations in the form of ISP places. Third, 

agents are commonly designed to determine their behavior based on individual goals, their knowledge and 

the environment. They may autonomously and spontaneously initiate internal or external behavior at any 

time. The G-net models can only directly support a predefined flow of control. 

 

To support agent-oriented design, we need to extend a G-net to support modeling an agent class2. This 

extension is made in three steps. First, we introduce five special modules to a G-net to make an agent 

autonomous and internally motivated. As shown in Figure 2 the five special modules are the Goal module, 

the Plan module, the Knowledge-base module, the Environment module and the Planner module. The 

Goal, Plan and Knowledge-base module are based on the BDI agent model proposed by Kinny and his 

colleagues [9], while the Environment module is an abstract model of the environment, i.e., the model of 

the outside world of an agent. The Planner module represents the heart of an agent that may decide to 

ignore an incoming message, to start a new conversation, or to continue with the current conversation. In 

the Planner module, committed plans are achieved, and the Goal, Plan and Knowledge-base modules of an 

agent are updated after the execution of each communicative act [15][16] or if the environment changes. 

Second, different from the semantic of a G-net as an object or a module, we view the extended G-net, we 

call it an agent-oriented G-net, as a class model, i.e., the abstract of a set of similar agents. Third, we define 

the instantiation of the agent-oriented G-net as follows: when an agent-oriented G-net A is instantiated, we 

generate an agent identifier A.Aid for the resulting agent object AO; meanwhile, the state of AO, i.e., any 

state variables defined in A, is initialized.  

                                                           
2 We view the abstract of a set of similar agents as an agent class, and we call an instance of an agent class 
an agent or an agent object. 
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The internal structure (IS) of an agent-oriented G-net consists of four sections: incoming message, 

outgoing message, public service, and private utilit y. The incoming/outgoing message section defines a set 

of message processing units (MPU), which correspond to a subset of communicative acts [15][16]. Each 

MPU, labeled as action_i in Figure 2 is used to process incoming/outgoing messages and execute any 

necessary actions before or after the message processing. The public service section defines a set of 

methods that provide services to other agents, and it makes an agent work as a server. Similarly, the private 

utilit y section defines a set of methods that can only be called by the agent itself. 

 

Although both objects (passive objects) and agents use message-passing to communicate with each other, 

message-passing for objects is a unique form of method invocation, while agents distinguish different types 

of messages and model these messages frequently as speech-acts and use complex protocols to negotiate 

[8]. In particular, these messages must satisfy standardized communicative (speech) acts, which define the 

type and the content of the message (e.g., the FIPA agent communication language, or KQML) [22]. Note 

that in Figure 2 each named MPU action_i refers to a communicative act, thus our agent-oriented model 

supports an agent communication interface. In addition, agents analyze these messages and can decide 

whether to execute the requested action. As we stated before, agent communications are typically based on 

asynchronous message passing. Since asynchronous message passing is more fundamental than 

synchronous message passing, it is useful for us to introduce a new mechanism, called Message-passing 

Switch Place (MSP), to directly support asynchronous message passing. When a token reaches an MSP 
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(represented as an elli psis in Figure 2), the token is removed and deposited into the GSP of the called agent. 

But, unlike with the G-net ISP mechanism, the calli ng agent does not wait for the token to return before it 

can continue to execute its next step. 

 

A template of the Planner module is shown in Figure 3 The modules Goal, Plan, Knowledge-base and 

Environment are represented as four special places (denoted by double elli pses in Figure 3), each of which 

contains a token that represents a set of goals, a set of plans, a set of beliefs and a model of the 

environment, respectively. These four modules connect with the Planner module through abstract 

transitions, denoted by shaded rectangles in Figure 3 (e.g., the abstract transition make_decision). Abstract 

transitions represent abstract units of decision-making or mental-state-updating. At a more detailed level of 

design, abstract transitions would be refined into sub-nets; however how to make decisions and how to 

update an agent’s mental state is beyond the scope of this paper, and will be considered in our future work. 

In the Planner module, there is a unit called autonomous unit that makes an agent autonomous and 

internally motivated. An autonomous unit contains a sensor (represented as an abstract transition), which 

may fire whenever the pre-conditions of some committed plan are satisfied or when new events are 

captured from the environment. If the abstract transition sensor fires, the autonomous unit will t hen decide 

based on an agent’s current mental state (goal, plan and knowledge-base) whether to start a conversation or 

to simply update its mental state. This is done by firing either the transition start_a_conversation or the 

transition automatic_update after executing any necessary actions associated with place new_action. 
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Note that the Planner module is both goal-driven and event-driven because the transition sensor may fire 

when any committed plan is ready to be achieved or any new event happens. In addition, the Planner 

module is also message-triggered because certain actions may initiate whenever a message arrives (either 

from some other agent or from the agent itself). A message is represented as a message token, denoted as 

mTkn, with a tag of internal/external/method. A message token with a tag of external represents an 

incoming message which comes from some other agent, or a newly generated outgoing message before 

sending to some other agent; while a message token with a tag of internal is a message forwarded by an 

agent to itself with the MSP mechanism. In either case, the message token with the tag of internal/external 

should not be involved in an invocation of a method call . On the contrary, a message token with a tag of 

method indicates that the token is currently involved in an invocation of some method call . When an 

incoming message/method arrives, with a tag of external/method in its corresponding token, it will be 

dispatched to the appropriate MPU/method defined in the internal structure of the agent. If it is a method 

invocation, the method defined in the public service or private utilit y section of the internal structure will 

be executed, and after the execution, the token will return to the calli ng unit, i.e., an ISP of the calli ng 

agent. However, if it is an incoming message, the message will be first processed by a MPU defined in the 

incoming message section in the internal structure of the agent. Then the tag of the token will be changed 

from external to internal before it is transferred back to the GSP of the receiver agent by using MSP(self). 

Note that we have extended G-nets to allow the use of the keyword self to refer to the agent object itself. 

Upon the arrival of a token tagged as internal in a GSP, the transition internal may fire, followed by the 

firing of the abstract transition make_decision. Note that at this point of time, there would exist tokens in 

those special places Goal, Plan and Knowledge-base, so the transition bypass is disabled (due to the 

“ inhibitor arc”3) and may not fire (the purpose of the transition bypass is for inheritance modeling, which 

will be addressed in Section 2.3). Any necessary actions may be executed in place next_action before the 

conversation is either ignored/ended or continued. If the current conversation is ignored, the transition 

ignore/end fires; otherwise, the transition continue fires. If the transition continue fires, a newly constructed 

outgoing message, in the form of a token with a tag of internal, will be dispatched into the appropriate 

MPU in the outgoing message section of the internal structure of the agent. After the message is processed 

by the MPU, the message will be sent to a receiver agent by using the MSP(G’ .Aid) mechanism, and the tag 

of the message token will be changed  from internal to external, accordingly. In either case, a token will 

be deposited into place update_goal/plan/kb, allowing the abstract transition update to fire. As a 

consequence, the Goal, Plan and Knowledge-base modules are updated if needed, and the agent’s mental 

state may change. 

 

 

 

                                                           
3 An inhibitor arc connects a place to a transition and defines the property that the transition associated with 
the inhibitor arc is enabled only when there are no tokens in the input place. 
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2.3 Inheritance Modeling 

 

To support agent-oriented design, we also need to incorporate some inheritance modeling capabiliti es. But 

inheritance in agent-oriented design is more complicated than in object-oriented design. Unlike an object 

(passive object), an agent object has mental states and reasoning mechanisms. Therefore, inheritance in 

agent-oriented design invokes two issues: an agent subclass may inherit an agent superclass’s knowledge, 

goals, plans, the model of its environment and its reasoning mechanisms; on the other hand, as in the case 

of object-oriented design, an agent subclass may inherit all the services that an agent superclass may 

provide, such as public services and private utilit y functions [16]. Since inheritance happens at the class 

level, an agent subclass may be initialized with an agent superclass’s initial mental state, but new 

knowledge acquired, new plans made, and new goals generated in an individual agent object (as an instance 

of an agent superclass), cannot be inherited by an agent object when creating an instance of an agent 

subclass. For simplicity, we assume that an instance of an agent subclass (i.e., an subclass agent) always 

uses its own reasoning mechanisms, and thus the reasoning mechanisms in the agent superclass should be 

disabled in some way.  Therefore, as proposed in earlier work [16] we only consider how to initialize a 

subclass agent’s mental state while an agent subclass is instantiated; meanwhile, we concentrate on the 

inheritance of services that are provided by an agent superclass, i.e., the MPUs and methods defined in the 

internal structure of an agent class. Before presenting our inheritance scheme, we need the following 

definition: 

 

Definition 2.1 Subagent and Primary Subagent 

When an agent subclass A is instantiated as an agent object AO, a unique agent identifier is generated, and 

all superclasses and ancestor classes of the agent subclass A, in addition to the agent subclass A itself, are 

initialized.  Each of those initialized classes then becomes a part of the resulting agent object AO. We call 

an initialized superclass or ancestor class of agent subclass A, a subagent, and the initialized agent subclass 

A the primary subagent.  

 

The result of initializing an agent class is to take the agent class as a template and create a concrete 

structure of the agent class and initialize its state variables. Since we represent an agent class as an agent-

oriented G-net, an initialized agent class is modeled by an agent-oriented G-net with initialized state 

variables. In particular, the four tokens in the special places of an agent-oriented G-net, i.e., gTkn, pTkn, 

kTkn and eTkn, are set to their initial states. Since different subagents of AO may have goals, plans, 

knowledge and environment models that conflict with those of the primary subagent of AO, it is desirable 

to resolve them in an early stage. In our case, we deal with those conflicts in the instantiation stage in the 

following way. All the tokens gTkn, pTkn, kTkn and eTkn in each subagent of AO are removed from their 

associated special places, and the tokens are combined with the gTkn, pTkn, kTkn and eTkn in the primary 
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subagent of AO.4 The resulting tokens gTkn, pTkn, kTkn and eTkn (newly generated by unifying those 

tokens for each type), are put back into the special places of the primary subagent of AO. Consequently, all 

subagents of AO lose their abiliti es for reasoning, and only the primary subagent of AO can make necessary 

decisions for the whole agent object. More specifically, in the Planner module (as shown in Figure 3 that 

belongs to a subagent, the abstract transitions make_decision, sensor and update can never be enabled 

because there are no tokens in the following special places: Goal, Plan and Knowledge-base. If a message 

tagged as internal arrives, the transition bypass may fire and a message token can directly go to a MPU 

defined in the internal structure of the subagent if it is defined there. This is made possible by connecting 

the transition bypass with inhibitor arcs (denoted by dashed lines terminated with a small circle in Figure 3) 

from the special places Goal, Plan and Knowledge-base. So the transition bypass can only be enabled when 

there are no tokens in these places. In contrast to this behavior, in the Planner module of a primary 

subagent, tokens do exist in the special places Goal, Plan and Knowledge-base. Thus, the transition bypass 

will never be enabled. Instead, the transition make_decision must fire before an outgoing message is 

dispatched. 

 

To reuse the services (i.e., MPUs and methods) defined in a subagent, we need to introduce a new 

mechanism called Asynchronous Superclass switch Place (ASP). An ASP (denoted by an elli psis in Figure 

3) is similar to a MSP, but with the difference that an ASP is used to forward a message or a method call  to 

a subagent rather than to send a message to an agent object. For the MSP mechanism, the receiver could be 

some other agent object or the agent object itself. In the case of MSP(self), a message token is always sent 

to the GSP of the primary subagent. However, for ASP(super),  a message token is forwarded to the GSP of 

a subagent that is referred to by super. In the case of single inheritance, super refers to a unique superclass 

G-net, however with multiple inheritance, the reference of super must be resolved by searching the class 

hierarchy diagram.  

 

When a message/method is not defined in an agent subclass model, the dispatching mechanism will deposit 

the message token into a corresponding ASP(super). Consequently, the message token will be forwarded to 

the GSP of a subagent, and it will be again dispatched. This process can be repeated until the root subagent 

is reached. In this case, if the message is still not defined at the root, an exception occurs. In this paper, we 

do not provide exception handling for our agent-oriented G-net models, and we assume that all i ncoming 

messages have been correctly defined in the primary subagent or some other subagents. 

 

 

 

 

                                                           
4 The process of generating the new token values would involve actions such as conflict resolution among 
goals, plans or knowledge-bases, which is a topic outside the scope of our model and this paper. 
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3. Intelli gent Mobile Agent Design 

 

Today’s users demand ubiquitous network access independent of their physical location. This style of 

computation, often referred to as mobile computing, is enabled by rapid advances in wireless 

communication technology [12]. The networking scenarios enabled by mobile computing range roughly 

between two extremes. At one end, the availabilit y of a fixed network is assumed, and its faciliti es are 

exploited by the mobile infrastructure. We call this form of mobilit y logical mobilit y. At the other end, the 

fixed network is absent and all network faciliti es (e.g., routing) must be implemented by relying only on the 

available mobile hosts, namely ad hoc networks. This form of mobilit y is called physical mobilit y. Mobile 

agent technology is a new networking technology that deals with both forms of mobilit y. It offers a new 

computing paradigm in which a program, in the form of an intelli gent software agent, can suspend its 

execution on a host computer, transfer itself to another agent-enabled host on the network, and resume 

execution on the new host. Here, as we will see in the next section, we define a host as either a static host 

or a mobile host, which is situated in an ad hoc network.  

 

3.1 Agent Wor ld Architecture 

 

First, we introduce the concepts of agent virtual machine (AVM) and agent world (AW), which serve to 

define a framework for a mobile agent system. Figure 4 shows a generic mobile agent system, and an 

example of agent migration. In the figure, Host-A and Host-B are two machines connected by a network. 

To make mobile agents platform independent, a mobile agent runs on an agent virtual machines (AVM), 

which provides a protected agent execution environment. Each host may have a number of AVMs, 

however, to make it simple, we only ill ustrate one AVM for each host in Figure 4. Each AVM is 

responsible for hosting and executing any agents created on that AVM or that arrive over the network, and 

for providing API for agent programmers.  

 

We now provide a few key definitions for the mobile agent system. 

 

Definition 3.1 Agent World (AW) 

An agent world (AW) is a 3-tuple (WKHOST, SHOST, HCOM), where WKHOST is a well -known static 

host, which is responsible for recording the most recent IP address of all other hosts. SHOST is a set of 

hosts that can provide agent virtual machines, where members of this set could be either static or mobile. 

Note that, in a special case, WKHOST is a member of SHOST. HCOM is the communication protocol 

among hosts in SHOST, an example of such protocols is TCP/IP. 
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Figure 4. Agent world architecture and an example of agent migration 
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Definition 3.2 Static Host (SH) and Mobile Host (MH) 

A host is 4-tuple (SAVM, ACOM, HOMEIP, CURIP), where SAVM is a set of agent virtual machines 

(AVM). ACOM is the communication protocol among AVMs in SAVM, and examples of such protocols are 

IPC and TCP/IP. HOMEIP is the original IP address of the host, and CURIP is the current IP address of the 

host. If at any time, CURIP = HOMEIP, we call the host a static host (SH); otherwise, we call it a mobile 

host (MH). 

 

Definition 3.3 Agent Virtual Machine (AVM) 

An agent virtual machine (AVM) is a 5-tuple (FA, SMA, MCOM, HOSTIP, ID), where FA is a facilit ator 

agent for AVM, which is responsible for recording information of mobile agents running on that AVM, and 

also for providing services for mobile agents running on other AVMs. Note that FA is a static agent, i.e., it 

does not migrate. SMA is a set of mobile agents. MCOM is the communication protocols for both static and 

mobile agents. HOSTIP is the current IP address of the host where the AVM runs on, and ID is a unique 

identifier for that AVM.  

 

Definition 3.4 Static Agent (SA) and Mobile Agent (MA) 

An agent A is 3-tuple (HOMEIP, CURIP, AO), where HOMEIP is the IP address of the host, on which 

agent A is created. CURIP is the IP address of the host where agent A currently runs on. AO is the agent 

object with the general structure as we described in Section 2. If at ant time, CURIP = HOMEIP, we refer 

to agent A as a static agent (SA); otherwise, we refer to agent A as a mobile agent (MA). 
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Since in this paper we view mobile agents and facili tator agents (an example of static agent) as intelli gent 

software agents, for the rest of this paper a mobile/facilit ator agent always refers to an intelli gent mobile 

agent (IMA) or an intelli gent facilit ator agent (IFA). As shown in Figure 4, when a mobile agent α on 

AVM ΘA wants to migrate to another AVM ΘB, it needs to contact with the remote facilit ator agent θB first, 

which resides on AVM ΘB (step 1). In fact, the mobile agent α needs to know the address of the remote 

facilit ator agent θB before the communication can begin. This could be done by querying this information 

from its local facilit ator agent θA, which resides on AVM ΘA. If the local facilit ator agent θA knows the 

address of the remote facilit ator agent θB, it will provide this information to the mobile agent α; otherwise, 

it will contact with the well -known static host Π (we do not show it in Figure 4) for this information and 

forward the results to the mobile agent α thereafter. For simplicity, this procedure is omitted in Figure 4. 

Based on security and resource criteria, the remote facilit ator agent θB decides if the migration request is 

granted. If the migration request is granted (step 2), the mobile agent α notifies its local facilit ator agent θA 

about its leaving (step 3), and it finally moves to the remote AVM ΘB (step 4). In the following section, we 

will see that, in our approach, step 1 and step 2 are modeled by asynchronous message passing; while step 3 

and step 4 are modeled by method invocation. 

 

The situation above is an example of logical mobilit y. For physical mobilit y, a host may at some time 

change its IP address or lose its IP address temporarily (detached from the network) at some time. In this 

case, the well -known static host Π is critical for recording this information. To successfully send a message 

to an agent on which the AVM has changed its HOSTIP address, the knowledge of the sender agent’s local 

facilit ator agent needs to be consistent with the latest network information. Further discussion about this 

issue is beyond the scope of this paper, which concentrates on logical mobilit y. 

 

3.2 Intelli gent Mobile Agent (IMA) and Intelli gent Facili tator Agent (IFA) 

 

To ill ustrate the processes for design of intelli gent mobile agents (IMA) and intelli gent facilit ator agents 

(IFA) by using our agent model, we use the following examples. Since we view a facilit ator agent as an 

IFA, in addition to provide public services to a mobile agent or some other IFA, an IFA also has the 

capabilit y of making decisions. This feature is vitally important for an IFA to cater for the needs of service 

allocation in a dynamic network environment, such as resource management and security verifications. 

Figure 5 (a) depicts a template of a contract net protocol [24] expressed as an agent UML (AUML) 

sequence diagram [22] for a migration-request protocol between a mobile agent (MA) and a remote 

facilit ator agent (FA). Figure 5 (b) is a modified example of a contract net protocol adapted from [22], 

which depicts a template of a protocol expressed as an AUML sequence diagram for a price-negotiation 

protocol between a buying mobile agent (BMA) and a selli ng mobile agent (SMA). Some of the notations of 

AUML are adapted from [22] as extensions of UML sequence diagrams for agent design. In addition, to 
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correctly draw the sequence diagram for the protocol templates, we introduce two new notations, i.e., the 

end of protocol operation “•” and the iteration of communication operation “*” . 

 

 
 

IMA remote IFA 

move-request 

• refuse-move 

ask-authCode 
x 

• confirm-move 

(a) (b) 

Figure 5. Contract net protocols (a) a temple for the migration-
request protocol (b) a template for the price-negotiation protocol 

return-authCode 

x 
grant-move 

* 

BMA SMA 

request-price 

• refuse-price 

x 

accept-proposal 

reject-proposal 
x 

propose 

propose 

accept-proposal 

reject-proposal 
x 

• confirm-price 

• refuse-move 

IMA: intelli gent mobile agent, IFA: intelli gent facilit ator agent, BMA: buying mobile agent, SMA: selling mobile agent 

 
 

Consider Figure 5 (a). When a conversation based on a contract net protocol begins, the intelli gent mobile 

agent (IMA) sends a request for migration to a remote intelli gent facilit ator agent (IFA) on a different 

AVM. The remote IFA can then choose to respond to the IMA by refusing its migration or asking the IMA’s 

authorization code, which is used to verify that the IMA is on a trustable AVM. Here the “x” in the decision 

diamond indicates an exclusive-or decision. If the remote IFA refuses the migration based on resource 

limitation or some other reasons, the protocol ends; otherwise, the remote IFA waits for the IMA’s 

authorization code to be supplied. If the IMA’s authorization code is correctly provided, the remote IFA 

may grant the IMA for migration if it is trustable, or refuse the migration otherwise. Again, if the remote 

IFA refuses IMA's migration, the protocol ends; otherwise, a confirmation message will be provided 

afterwards. Similarly, the price-negotiation protocol between a buying mobile agent (BMA) and a selling 

mobile agent (SMA), which are subclasses of IMA, can be ill ustrated in Figure 5 (b). 

 

Based on the communicative acts (e.g., move-request, refuse-move, etc.) needed for the contract net 

protocol in Figure 5 (a), we may adopt the agent design template shown in Figure 2, and design the mobile 

agent class as in Figure 6. The Goal, Plan, Knowledge-base and Environment modules remain as abstract 

units and can be refined in a further detailed design stage. The Planner module may reuse the template 

shown in Figure 3. The design of the remote facilit ator agent is similar, which is ill ustrated in Figure 7. 
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Figure 6. An agent-based G-net model for intelligent mobile agent class (IMA) 
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Figure 7. An agent-based G-net model for intelli gent facil itator agent class (IFA) 
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To show how our agent models work correctly in an agent conversation, we now discuss an example. 

Consider a mobile agent object MAO, which receives a message of ask-authCode from a remote facilit ator 

agent object FAO. A mTkn token with a tag of external will be deposited in the GSP of the primary 

subagent of MAO, i.e., the GSP of the corresponding intelli gent mobile agent class (IMA). The transition 

external in MA’s Planner module may fire, and the mTkn will be moved to the place 

dispatch_incoming_message. Since there is an MPU for ask-authCode defined in the internal structure of 

MA, the mTkn will be dispatched to the entry place of that MPU. After the message is processed, MSP(self) 

changes the tag of the mTkn from external to internal, and sends the processed mTkn token back into the 

GSP of IMA. Upon the arrival of this message token, the transition internal in the Planner module of MA 

may fire, and the mTkn token will be moved to the place check_primary. Since IMA corresponds to the 

primary subagent of MAO, there are tokens in the special places Goal, Plan, Knowledge-base and 

Environment. Therefore the abstract transition make_decision may fire, and any necessary actions are 

executed in place next_action. Then the current conversation is either ignored or continued based on the 

decision made in the abstract transition make_decision. If the current conversation is ignored, the goals, 

plans and knowledge-base are updated as needed; otherwise, in addition to the updating of goals, plans and 

knowledge-base, a newly constructed mTkn with a tag of internal is deposited into place 

dispatch_outgoing_message. The new mTkn token has the message name return-authCode, following the 

protocol defined in Figure 5 (a). Again, there is an MPU for return-authCode defined in IMA, so the new 

mTkn token will be dispatched into the entry place of that MPU. After the message is processed, the 

MSP(G’ .Aid) mechanism changes the tag of the mTkn token from internal to external, and transfers the 

mTkn token to the GSP of the receiver agent, in this case, the remote facilit ator agent object FAO.  

 

To further ill ustrate how to refine the MPU/method in a mobile agent's internal structure, we use the 

examples of the MPU confirm-move defined in the incoming message section and the method move defined 

in the private utility section. The refinement of another method notify() is straightforward; as shown in 

Figure 6, the notify() method makes a method invocation inform() to its local facilit ator agent. This is done 

to notify the facilit ator agent that the calli ng agent is leaving. The refinement of method move() and MPU 

confirm-move are shown in Figure 8 (a) and Figure 8 (b), respectively. In Figure 8 (a), when there is a 

token deposited in the entry place, the transition start_move fires, and deposit a token into place migration. 

The migration might be successful or failed, due to the network condition. If the migration fails, the 

transition fail  fires, and deposits a token into place retry.  The mobile agent will t hen count the number of 

retrials. If it has retried less than MAX_TRIAL times, the mobile agent will t ry to migrate again; otherwise, 

the transition else fires, and a method call inform(FAILURE) will be made to its local facilit ator agent (FA) 

to notify the local FA that its migration is failed. This is modeled by the ISP(rFA, inform(FAILURE)) 

mechanism. After that, the method call move() returns. If the migration succeeds, the transition succeed 

fires, and the mobile agent’s current IP address CURIP will be changed to the new one. Then a method call 
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ISP(rFA, register) is made to the remote facilit ator agent (FA), which is actually the mobile agent’s local 

FA now. After registering with the FA, the method call move() returns. 

 

In Figure 8 (b), the refinement of MPU confirm-move is straightforward. When there is a token deposited 

into the entry place of the MPU confirm-move, the transition begin_process fires. After processing the 

message token, it makes a method call ISP(self, notify) to the agent itself, which further makes a method 

call to the mobile agent’s local facilit ator agent -- to inform the facilit ator agent that the mobile agent is 

leaving. After that, the migration starts by invoking the method move(). Finally, after finishing the 

migration, either failed or succeeded, it transfers the message token to the agent itself, and ends the 

conversation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

ISP(FA,  
inform(FAILURE)) ISP(rFA,  register) 

return 

start_move 

succeed fail  

retry change_CurIP 

(a) (b) 

Figure 8. Examples of detailed design (a) refinement of method move()  
(b) refinement of MPU confirm-move 

ISP(self, notify) 

ISP(self, move) 

message_processing 

entry place 

MSP(G’, Aid) 

entry place 

move() confirm-move 

[retry ≤ MAX_TRIAL] 

else 

migration 

begin_process 

after_process 

begin_migration 

after_migration 
end 

retry 

 

 

4. Intelli gent Mobile Agent Design in an Electronic Marketplace 

 

Consider a mobile agent family in an electronic marketplace domain, which is a global stock market 

tracking and trading system. Figure 9 shows the agents in a UML class hierarchy notation. An intelli gent 

mobile agent class (IMA) is defined as a superclass that is capable of communicating with an intelli gent 

facilit ator agent class (IFA), and migrating among AVMs. The functionality of an intelli gent mobile agent 

class (IMA) can be inherited by an agent subclass, such as a buying mobile agent class (BMA) or a selli ng 
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mobile agent class (SMA). Both the BMA and SMA may reuse the functionality of IMA for communication 

with IFA and migration among AVMs. Furthermore, a broker mobile agent class is designed as a subclass 

of both the BMA and SMA, and a stock-buyer/stock-seller mobile agent class may be defined as a subclass 

of a BMA/SMA. 

 

 
      Intelligent Mobile Agent (IMA) 

Stock Buyer  Mobile Agent  

Buying Mobile Agent (BMA) Sell ing Mobile Agent (SMA) 

Broker Mobile Agent Stock Seller Mobile Agent 

Figure 9. The class hierarchy diagram of mobile agents in an electronic marketplace  
 

 

Based on the communicative acts (e.g., request-price, refuse-price, etc.) needed for the contract net 

protocol between the buying mobile agent (BMA) and the selli ng mobile agent (SMA), we may design the 

BMA as shown in Figure 10. The SMA can be designed in the same way. 
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Figure 10. An agent-based G-net model for buying mobile agent class (BMA) 
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With inheritance, a buying mobile agent class (BMA), as a subclass of a mobile agent class (MA), may 

reuse MPUs/methods defined in MA’s internal structure. Similarly, a selli ng mobile agent class  (SMA) 

inherits all MPU/methods of MA, and a retailer mobile agent class inherits all MPU/methods of both the 

BMA and the SMA.  

 

Now we discuss an example to show how the reuse of MPU/methods works. Consider a buying mobile 

agent object BMO, which receives a message of ask-authCode from a remote facilit ator agent object FAO. 

A mTkn token will be deposited in the GSP of the primary subagent of BMO, i.e., the GSP of the 

corresponding buying mobile agent class (BMA). The transition external in BMA’s Planner module may 

fire, and the mTkn will be moved to the place dispatch_incoming_message. Since there is no MPU for ask-

authCode defined in the internal structure of BMA, the mTkn will be moved to the ASP(super) place. Since 

super here refers to a unique superclass – the mobile agent class (MA) – the mTkn will be transferred to the 

GSP of MA. Now the mTkn can be correctly dispatched to the MPU for ask-authCode. After the message is 

processed, MSP(self) changes the tag of the mTkn from external to internal, and sends the processed mTkn 

token back into the GSP of BMA. Note that MSP(self) always sends a mTkn back to the GSP of the primary 

subagent. Upon the arrival of this message token, the transition internal in the Planner module of BMA 

may fire, and the mTkn token will be moved to the place check_primary. Since BMA corresponds to the 

primary subagent of BMO, there are tokens in the special places Goal, Plan, Knowledge-base and 

Environment. Therefore the abstract transition make_decision may fire, and any necessary actions are 

executed in place next_action. Then the current conversation is either ignored or continued based on the 

decision made in the abstract transition make_decision. If the current conversation is ignored, the goals, 

plans and knowledge-base are updated as needed; otherwise, in addition to the updating of goals, plans and 

knowledge-base, a newly constructed mTkn with a tag of internal is deposited into place 

dispatch_outgoing_message. The new mTkn token has the message name return-authCode, following the 

protocol defined in Figure 5 (a). Again, there is no MPU for return-authCode defined in BMA, so the new 

mTkn token will be dispatched into the GSP of MA. Upon the arrival of the mTkn in the GSP of MA, the 

transition internal in the Planner module of MA may fire. However at this time, MA does not correspond to 

the primary subagent of BMO, so all the tokens in the special places of Goal, Plan, and Knowledge-base 

have been removed. Therefore, the transition bypass is enabled. When the transition bypass fires, the mTkn 

token will be directly deposited into the place dispatch_outgoing_message, and now the mTkn token can be 

correctly dispatched into the MPU for return-authCode defined in MA. After the message is processed, the 

MSP(G’ .Aid) mechanism changes the tag of the mTkn token from internal to external, and transfers the 

mTkn token to the GSP of the receiver agent, in this case, the remote facilit ator agent FAO.  

 

For the reuse of public services and private utilit y functions defined in a superclass, the situation is the 

same as in the case of object-oriented design. In addition, there are three different forms of inheritance that 

are commonly used, namely augment inheritance, restrictive inheritance and refinement inheritance. The 
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usage of these three forms of inheritance in agent-oriented design is also similar to that in object-oriented 

design. Examples concerning reuse of public services and private utilit y functions and different forms of 

inheritance can be found in earlier work [23]. 

 

5. Conclusion and Future Work 

 

Agent-oriented software provides a new software engineering paradigm and the opportunities for 

development of new domain-specific software models. With the continuing improvement of agent 

technology, and the rapid growth of software system complexity, especially for Internet applications, there 

is a pressing need for general models of mobile agents. Such models can allow a structured approach for 

design of agent software systems and facilit ate the application of formal methods techniques for design 

analysis and implementation synthesis. 

 

We presented the design models of intelli gent mobile agents in a framework for agent-oriented software. 

Unlike previous work, which only models a particular feature of mobile agents, our mobile agent models 

can be served as a general agent model that has the capabiliti es of mobilit y, corporative behavior, and 

intelli gence. With the example of electronic marketplace, we show that specific mobile agents can be 

design incrementally as subclasses of the mobile agent base class. Furthermore, our intelli gent mobile agent 

models are based on the agent-oriented G-net formalism, which can be translated into a standard form of 

Petri net (Predicate-Transition net, Pr/T net) [19][20]. Because the Petri net formalism is theoretically 

mature and supported by robust tools, our approach supports formal analysis, such as model checking.   

 

For our future research work, we plan to use our marketplace example to demonstrate the analysis power 

inherent in our intelli gent mobile agent models. We will i nvestigate use of model checking techniques to 

show that our agent models satisfy certain behavioral properties, such as effective movement and freedom 

of deadlock. We will also try to implement a mobile agent prototype following our formal design, by which 

we can show our approach supports rapid development of mobile agents. Finally, we need to explore 

various security issues in mobile agent design. As a side note, since we embed agent movement, and any 

other possible actions, in the context of agent conversations, we believe that our approach leaves adequate 

room for security modeling.   
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