A Design Moddl for Intelligent Mobile Agent
Software Systems'

Haiping Xu and Sol M. Shatz
Department of Computer Science
The University of Illinois at Chicago
Email: {hxul, shatz} @cs.uic.edu

Abstract

One of the grand chall enges to achieving wide spread use and rapid development of multi-agent systemsis
to adapt principles of software engineaing. Agent-oriented software provides a new software engineeing
paradigm and the oppatunities for development of new domain-spedfic software models. With the
continuing improvement of agent technology, and the rapid growth of software system complexity,
espedaly for Internet applicaions, there is a pressng reed for general models of mobile ayents — models
that explicitly suppart the feaures of mohility, cooperative behavior, and intelligence We present a design
model for intelligent mohile agent software by introducing mobility into a framework for agent-oriented
software. The model fadlit ates design reuse by providing an inheritance mechanism and explicitly supparts
asynchronous message passng. The gproac benefits from a formal foundation that is based on the agent-
oriented G-net formalism, a formalism derived from an objed-based Petri net model. Thus the gproach
supparts model analysis and property verificaion.

Keywords: Intelligent mohile aent (IMA), Petri net, agent-oriented G-net, design model, inheritance
1. Introduction

Software gents can be dassfied in terms of a space defined by the three dimensions of intelli gence,
agency and mohility [1]. The first dimension, intelligence, is rooted in artificial intelli gence research and
dates badk to the fifties, where intelli gent agents can be dassfied acwrding to their cgpabiliti es to express
preferences, beliefs and emotions, and ac@rding to their ability to fulfill atask by reasoning, planning and
leaning techniques. The second dmension, agency, is the degree of autonomy and authority vested in the
agent, and can be measured by the nature of the interadion between an agent and cther entities of the
system. Particularly, an agent must run asynchronously. The third dmension of software agent reseach,

mobhility, has emerged in the nineties and is motivated by the rise ad rapid growth of a networked

! This material is based upon work suppated by the U.S. Army Reseach Office under grant number
DAAD19-01-1-0672 and the U.S. National Science Foundation under grant number CCR-9988168

computing environment, and the need for techniques to locdly exploit distributed resources. Within this

dimension of software agent research, the goal is remote adion and mohility of data and computation.

Current agent systems generally do not exploit al the caabiliti es classfied by these three dimensions. For
example, multi-agent systems (MAS) of distributed artificial intelli gencetry to exeaute agiven task using a
large number of possbly distributed but static agents that collaborate ad cooperate in an intelli gent
manner [2][3]. On the other hand, reseach on mobile agents usually emphasizes agent mohility and agent
coordination, and mobile ayents are typicdly assumed to only have very limited or even no intelligence
[4][5][6]. The development schema in the later case is metimes cdled weak agent approad, which
contrasts with the strong agent approach that involves artificd intelli gencetechniques [25].

Previous work on multi-agent systems has fostered the mncept of agent-oriented software [7][8][16],
where gents are viewed as intelligent software that has the properties of autonomy, readivity, pro-
adiveness and social ability. Corresponding agent-oriented design methoddogies are dso propcsed to
provide guidelines for agent spedfication and design. Examples of such work are the AAIl methoddogies
[9] and the Gaia methoddogies [8], which are extensions of objed-oriented methoddogies. In our own
previous work [16], an inheritance medhanism, in terms of agent functionaliti es, is introduced into agent-
oriented software design.

For mobile agents, the concern is with intelli gent software ggents that can migrate over computer networks.
The concept of location has been one of the key feaures to charadterize mohility in most theoreticd models
of mobhile gents, such as the distributed join-caculus [10], which is an extension of the Tecdculus that
introduces the explicit notions of named locdliti es and dstribution failure. Additional typicd formalisms
for agent mobility modeling are summarized as follows. Mobile UNITY [4] provides a programming
notation that captures the notion of mohility and transient interadions among mobile nodes. Inspired by
Mobile UNITY, the mncept of connedors [11] is explicitly identified to describe different kinds of
transient interadions, and fadlit ate the separation of coordination from computation in mohile cmputing.
The onnedors are written in COMMUNITY, a UNITY -like program design language whose semanticsis
given in a cdegoricd framework. MobiS [5], as an extended version of PoliS, is a spedficdion language
based on multiple tuple spaces. It can be used to spedfy agent coordination and architedures containing
mobile components. More recetly, LIME [12], aso based on tuple spaces, has been proposed as a
middeware that supparts the development of applicaions that exhibit both physica and logicd mohility.

Althoughthe @ove results formally model mobile agentsin terms of their mobhility, they are not built upon
a framework that explicitly supparts the intelli gence feaure of agents. Furthermore, they are week in agent
communication modeling, and typicdly such models are readive rather than pro-adive. In other words,

these models may simply ad in response to their environment, but they are not able to exhibit goal-direced

behaviors. Additional efforts, such as the MARS projed [6], attempt to introduce mntext-dependent
coordination into agent models, however, without explicitly suggesting the communicaion mechanism
among mobile ayents. There ae dso some reseach efforts concerned with mobile ayent communication
medanisms, however they are not formally defined [13][14].

From the &ove review, we can seethat current work on mobile ayents mostly emphasizes some particular
fedures of the mohile ayents, e.g., agent mohility. With the continuing improvement of agent technology,
and the rapid growth of software system complexity, espedally for Internet applicaions, there is a pressng
need for a more general model of mobile ayents, in which agents are not only mobile and cooperative, but
aso intelligent. There ae afew previous efforts that discussintelligent mobile agents [18][14], however
they ladk a formal framework for intelli gent mobile agent design. In this paper, we propose an intelli gent
mobile gent (IMA) model by introducing mobility into a framework for agent-oriented software. This
framework has been designed to model intelli gent software agents [15][16] for multi-agent systems, and it
supparts design reuse by providing an inheritance mechanism. Meawhile, the resulting mobile agent
models explicitly suppart asynchronous message passng. Another advantage of our approach is that our
fundamental agent model is based on the agent-oriented G-net formalism [16], a formalism derived from an
objed-based Petri net model. As aformal model, this agent-oriented formalism can be trandated into more
“standard” forms of a Petri net for design analysis, including model checing. Examples of such analysis
can be found in ealier work [17].

The rest of this paper is organized as follows. Sedion 2 describes the ayent-oriented G-net model, which
was first proposed in [16]. Sedion 3 proposes the achitedure for a mobile agent system, and ill ustrates
how to design the principle aent system components. the intelligent mobile aents (IMA) and the
intelligent fadlitator agents (IFA). Sedion 4 uses an eledronic marketplace &le to show how to
incrementally design appli caion-spedfic intelli gent mohile agents using the discussed architecure. Finaly,

in Sedion 5, we summarize our contributions and discussthe future work.

2. A Framework for Agent-Oriented Software

2.1 G-Net Model Background

A widely acceted software engineaing principle is that a system should be composed o a set of
independent modules, where eatt module hides the internal detail s of its processng adiviti es and modules
communicate through well-defined interfaces. The G-net model provides grong suppart for this principle
[20][21]. G-nets are a1 objed-based extension of Petri nets, which is a graphicdly defined model for
concurrent systems. Petri nets have the strength of being visually appeding, while dso being theoreticdly
mature and supparted by robust tools. We asaume that the reader has a basic understanding of Petri nets

[19]. But, as a general reminder, we note that Petri nets include three basic entities. place nodes
(represented graphicdly by circles), transition nodes (represented graphicdly by solid bars), and direded
arcs that can conned places to transitions or transitions to places. Furthermore, places can contain markers,
cdled tokens, and tokens may move between placenodes by the “firing’ of the asciated transitions. The
state of a Petri net refers to the distribution of tokens to placenodes at any particular point in time (thisis

sometimes cdl ed the marking of the net). We now proceed to dscussthe basics of the G-net models.

A G-net system is compased of a number of G-nets, eat of them representing a self-contained module or
objed. A G-net is composed of two parts: a speda place cHed Generic Switch Place (GSP) and an
Internal Structure (1S). The GSP provides the astradion of the module, and serves as the only interface
between the G-net and other modules. The IS, a modified Petri net, represents the detailed design of the
module. An example of G-netsis $rown in Figure 1. Here the G-net models represent two oljeds — a Buyer
and a Seller. The generic switch places are represented by GSP(Buyer) and GSP(Seller) enclosed by
elipses, and the interna structures of these models are represented by round-cornered redanges that
contain four methods: buyGoods(), askPrice), returnPrice() and sellGoods(). The functionality of these
methods are defined as follows: buyGoods() invokes the method sell Goods() defined in G-net Seller to buy
some goods; askPrice() invokes the method returnPrice)) defined in G-net Seller to get the price of some
goods; returnPriceg() is defined in G-net Seller to cdculate the latest price for some goods and sell Goods()
is defined in G-net Seller to wait for the payment, ship the goods and generate the invoice A GSP of a G-
net G contains a set of methods G.MS spedfying the services or interfaces provided by the module, and a
set of attributes, G.AS, which are state variables. In G.IS the internal structure of G-net G, Petri net places
represent primitives, while transitions, together with arcs, represent connedions or relations among those
primitives. The primitives may define loca adions or method cdls. Method cdls are represented by spedal
places cdled Instantiated Snitch Places (ISP). A primitive beames enaled if it recaves a token, and an
enabled primitive can be exeauted. Given a G-net G, an ISP of G is a 2-tuple (G’ .Nid, mtd), where G’ could
be the same G-net G or some other G-net, Nid is a unique identifier of G-net G’, and mtd O G'.MS. Each
|SP(G’.Nid, mtd) denotes a method cdl mtd() to G-net G'. An example ISP (denoted as an elli psisin Figure
1) is $rown in the method askPrice() defined in G-net Buyer, where the method askPrice() makes a method
cdl returnPricg) to the G-net Seler to query about the price for some goods. Note that we have
highlighted this cdl in Figure 1 by the dashed-arc, but such an arc is not adualy a part of the static

structure of G-net models. In addition, we have omitted al function parameters for simplicity.

From the aove description, we can seethat a G-net model esentialy represents a module or an objed
rather than an abstradion of a set of similar objeds. In a recent paper [23], we defined an approach to
extend the G-net model to suppart classmodeling. The ideaof this extension is to generate aunique objed
identifier, G.Oid, and initialize the state variables when a G-net objed is instantiated from a G-net G. An

ISP method invocaion is no longer represented as the 2-tuple (G'.Nid, mtd), instead it is the 2-tuple
(G.0id, mtd), where different objed identifiers could be asciated with the same G-net classmodel.

buyGoods() askPrice() \ /,// returnPnce() sell Goods() \

1SP(Seller
sl Goods()

The token movement in a G-net objed is $milar to that of original G-nets [20][21]. A token tkn is atriple

1SP(Sdller,
refurnPrice()) cdculate sell_
price goods

Tt /

Figure 1. G-net models of buyer and seller objects

(seq, sc, mtd), where seq is the propagation sequence of the token, sc [0 { before, after} is the status color
of the token and mtd is a triple (mtd_name, para_list, result). For ordinary places, tokens are removed from
input places and depaosited into output places by firing transitions. However, for the spedal 1SP places, the
output transitions do not fire in the usual way. Recdl that marking an ISP place orresponds to making a
method cdl. So, whenever a method cdl is made to a G-net objed, the token deposited in the ISP has the
status of before. This prevents the enabling of aswciated output transtions. Instead the token is
“procesed” (by attaching information for the method cdl), and then removed from the ISP. Then an
identicd token is deposited into the GSP of the cdled G-net objed. So, for example, in Figure 1, when the
Buyer objed cdls the returnPrice) method o the Seller objed, the token in place I1SP(Sler,
returnPriceg))) is removed and atoken is depaosited into the GSP placeGSP(Sell er). Throughthe GSP of the
cdled G-net objed, the token is then dispatched into an entry placeof the gpropriate cdled method, for
the token contains the information to identify the cdled method. During “exeaution” of the method, the
token will read areturn place(denoted by double drcles) with the result attached to the token. As oon as
this happens, the token will return to the ISP of the cdler, and have the status changed from before to
after. The information related to this completed method cdl is then detached. At this time, output

transitions (e.g., t4 in Figure 1) can become enabled and fire.

Notice that the example we provide in Figure 1 follows the Client-Server paradigm, in which a Seller
objed works as a server and a Buyer objed is a dient. Further detail s about G-net models can be found in
references [20][21].

2.2 An Architedure for Agent-Oriented Design

Although the G-net model works well in object-based design, it is not sufficient in agent-based design for
the following reasons. First, agents that form a multi-agent system may be developed independently by
different vendors, and those aents may be widely distributed acoss large-scde networks such as the
Internet. To make it posshle for those agents to communicae with ead other, it is desirable for them to
have a ®mmon communication languege and to foll ow common protocols. However the G-net model does
not diredly suppart protocol-based language communication between agents. Seaond, the underlying agent
communication model is usualy asynchronous, and an agent may dedde whether to perform adions
requested by some other agents. The G-net model does not diredly suppart asynchronous message passng
and dedsion-making, but only supparts s/nchronous method invocaions in the form of 1SP places. Third,
agents are commonly designed to determine their behavior based on individual goals, their knowledge and
the environment. They may autonomously and spontaneoudly initiate internal or external behavior at any

time. The G-net models can only diredly suppart a predefined flow of control.

To suppart agent-oriented design, we need to extend a G-net to suppat modeling an agent class. This
extension is made in three steps. First, we introduce five speda modules to a G-net to make an agent
autonomous and internaly motivated. As siown in Figure 2 the five spedal modules are the Goal module,
the Plan module, the Knowledge-base module, the Environment module and the Planner module. The
Goal, Plan and Knowledge-base module ae based on the BDI agent model proposed by Kinny and his
colleagues [9], while the Environment module is an abstrad model of the environment, i.e., the model of
the outside world of an agent. The Planner module represents the heat of an agent that may dedde to
ignore an incoming message, to start a new conversation, or to continue with the aurrent conversation. In
the Planrer module, committed plans are atieved, and the Goal, Plan and Knowledge-base modules of an
agent are updated after the exeaution of ead communicdive ad [15][16] or if the environment changes.
Seoond, different from the semantic of a G-net as an objed or a module, we view the extended G-net, we
cdl it an agent-oriented G-net, as a dassmodedl, i.e., the abstraa of a set of similar agents. Third, we define
the instantiation of the agent-oriented G-net as follows: when an agent-oriented G-net A is instantiated, we
generate an agent identifier A.Aid for the resulting agent objed AO; meanwhile, the state of AQO, i.e., any
state variables defined in A, isinitialized.

2 We view the @stract of a set of similar agents as an agent class and we cadl an instance of an agent class
an agent or an agent objed.

Knowledge-base ‘ ‘ Environment ‘

v ¢ ' ' $

‘ Planner ‘

incoming message outgoing message public service private utility
adion_1 adion_m adion_1 adion_n savice 1 service k utility 1 utility_p

Serv- Serv- utili- utili=
ice_1 ice_k ty 1 ty p

w(sdf) MSP(self) MSP(G'.Aid) MSP(G'.Aid) return return return raurn/

Notes: G'.Aid = mTkn.bady.msg.receiver

adion adion adion adion

Figure 2. A generic agent-oriented G-net model

The internal structure (1S of an agent-oriented G-net consists of four sedions: incoming message,
outgoing message, pulblic service, and private utility. The incoming/outgoing message sedion defines a set
of message processng urits (MPU), which correspond to a subset of communicaive ads [15][16]. Each
MPU, labeled as action_i in Figure 2 is used to process incoming/outgoing messages and exeaute aly
necessry adions before or after the message processng. The pubic service sedion defines a set of
methods that provide servicesto ather agents, and it makes an agent work as a server. Similarly, the private
utility sedion defines a set of methods that can only be cdled by the agent itself.

Although both objeds (passve objeds) and agents use message-passng to communicate with ead other,
messge-passng for objeds is a unique form of method invocation, while ayents distinguish diff erent types
of messages and model these messages frequently as geedr-ads and use wmplex protocols to negotiate
[8]. In particular, these messages must satisfy standardized communicative (speed) ads, which define the
type and the mntent of the message (e.g., the FIPA agent communicaion language, or KQML) [22]. Note
that in Figure 2 ead named MPU action_i refers to a omommunicaive ac, thus our agent-oriented model
supparts an agent communication interface In addition, agents analyze these messages and can dedde
whether to exeaute the requested adion. As we stated before, agent communicaions are typicaly based on
asynchronous message pasdng. Since aynchronous messge pasdng is more fundamental than
synchronous message passng, it is useful for us to introduce anew mechanism, cdled Message-passng

Switch Place (MSP), to dredly suppat asynchronous message passng. When a token reades an MSP

(represented as an €lli psisin Figure 2), the token is removed and deposited into the GSP of the cdl ed agent.
But, unlike with the G-net ISP medchanism, the cdli ng agent does not wait for the token to return before it
can continue to exeaute its next step.

A template of the Planrer module is gown in Figure 3 The modules Goal, Plan, Knowledge-base and
Environment are represented as four spedal places (denoted by double dli pses in Figure 3), eat of which
contains a token that represents a set of goas, a set of plans, a set of beliefs and a model of the
environment, respedively. These four modules conned with the Planner module through abstrad
transitions, denoted by shaded redangles in Figure 3 (e.g., the éstrad transition make dedsion). Abstrad
transiti ons represent abstrad units of dedsion-making or mental-state-updating. At a more detail ed level of
design, abstrad transitions would be refined into sub-nets, however how to make dedsions and how to
update an agent’s mental state is beyond the scope of this paper, and will be considered in our future work.
In the Planner module, there is a unit cdled autonamous unit that makes an agent autonomous and
internally motivated. An autonamous unit contains a sensor (represented as an abstrad transition), which
may fire whenever the pre-conditions of some mmitted plan are satisfied or when new events are
cgptured from the environment. If the astrad transition sensor fires, the autonomous unit will then dedde
based on an agent’s current mental state (goal, plan and knowledge-base) whether to start a wnversation or
to simply update its mental state. This is done by firing either the transition start_a_conversation or the

transition automatic_updde after exeauting any necessary adions asociated with placenew_action.

GSP(G) Goal @ Knowledge-basd @

A A Ad ATAd A

external

wy

fromtransition
“updae’

dispatch_
incoming_

message fautonomous unit

Y. sensor

new_ H method
adion

decision bypass

o next_adion
(5 (5 A—
incoming messages
|gnore/end continue

start_a_
conver_
sation

| dispatch_
automatic_| method
update H

updale A/dlspalch
“Soarpran/kb outgoing_
message ASP(super)
to place“ Goal” update private utility
to place* Plan” ?A 'y or
to place“ Knowledge base” public service

@
ol

ASP(super)
outgoing messages " -

Figure 3. A template for the Planner module

Note that the Planner module is both goal-driven and event-driven because the transition sensor may fire
when any committed plan is ready to be adieved or any new event happens. In addition, the Planner
module is also message-triggered becaise cetain adions may initiate whenever a message atrives (either
from some other agent or from the gent itself). A message is represented as a message token, denoted as
mTkn, with a tag of internal/external/method. A message token with a tag of external represents an
incoming message which comes from some other agent, or a newly generated outgoing message before
sending to some other agent; while amessage token with a tag of internal is a message forwarded by an
agent to itself with the MSP medhanism. In either case, the message token with the tag of internal/external
should not be involved in an invocaion of a method cal. On the @ntrary, a message token with a tag of
method indicaes that the token is currently involved in an invocaion of some method cdl. When an
incoming message/method arrives, with a tag of external/method in its corresponding token, it will be
dispatched to the gpropriate MPU/method defined in the internal structure of the agent. If it is a method
invocation, the method defined in the puldic service or private utility sedion of the internal structure will
be exeauted, and after the exeaution, the token will return to the cdling urit, i.e., an ISP of the cdling
agent. However, if it is an incoming message, the message will be first processed by a MPU defined in the
incoming message sedion in the interna structure of the agent. Then the tag of the token will be danged
from external to internal before it istransferred badk to the GSP of the recever agent by using MSP(self).
Note that we have extended G-nets to allow the use of the keyword self to refer to the agent objed itself.
Upon the arival of a token tagged as internal in a GSP, the transition internal may fire, followed by the
firing of the abstrad transition make dedsion. Note that at this point of time, there would exist tokens in
those spedal places Goal, Plan and Knowledge-base, so the transition bypass is disabled (due to the
“inhibitor arc””) and may not fire (the purpase of the transition bypassis for inheritance modeling, which
will be addressed in Sedion 2.3). Any necessary adions may be exeauted in placenex_action before the
conversation is either ignored/ended or continued. If the arrent conversation is ignored, the transition
ignare/end fires; otherwise, the transition continue fires. If the transition continue fires, a newly constructed
outgoing message, in the form of a token with a tag of internal, will be dispatched into the gpropriate
MPU in the outgoing message sedion of the internal structure of the agent. After the message is processed
by the MPU, the message will be sent to a recever agent by using the MSP(G’ .Aid) mechanism, and the tag
of the message token will be danged from internal to external, acordingly. In either case, a token will
be deposited into place updae god/plarvkb, alowing the astrad transition updae to fire. As a
consequence, the Goal, Plan and Knowledge-base modules are updated if needed, and the gent’s mental
state may change.

3 Aninhibitor arc conneds a placeto atransition and defines the property that the transiti on asociated with
the inhibitor arc is enabled only when there are no tokensin the input place

2.3Inheritance Modeling

To suppart agent-oriented design, we dso need to incorporate some inheritance modeling cgpabiliti es. But
inheritance in agent-oriented design is more complicaed than in objed-oriented design. Unlike an objed
(passve objed), an agent objed has mental states and reasoning mechanisms. Therefore, inheritance in
agent-oriented design invokes two isaues: an agent subclass may inherit an agent superclasss knowledge,
gods, plans, the model of its environment and its reasoning mechanisms; on the other hand, as in the cae
of objed-oriented design, an agent subclass may inherit all the services that an agent superclass may
provide, such as public services and private utility functions [16]. Since inheritance happens at the dass
level, an agent subclass may be initialized with an agent superclasss initial mental state, but new
knowledge aquired, new plans made, and new goals generated in an individual agent objed (as an instance
of an agent superclasg, cannot be inherited by an agent objed when creding an instance of an agent
subclass For simplicity, we asame that an instance of an agent subclass (i.e., an subclass agent) always
uses its own reasoning mechanisms, and thus the reasoning mechanisms in the agent superclass $ould be
disabled in some way. Therefore, as proposed in ealier work [16] we only consider how to initidize a
subclass agent’s mental state while an agent subclass is instantiated; meanwhile, we cncentrate on the
inheritance of services that are provided by an agent superclass i.e., the MPUs and methods defined in the
internal structure of an agent class Before presenting our inheritance scheme, we need the following
definiti on:

Definition 2.1 Subagnt and Primary Subagnt

When an agent subclassA is instantiated as an agent objed AO, a unique ayent identifier is generated, and
all superclasses and ancestor classes of the ggent subclassA, in addition to the agent subclassA itself, are
initialized. Each of those initialized classes then becomes a part of the resulting agent objed AO. We cadl

an initialized superclassor ancestor classof agent subclassA, a subagent, and the initiali zed agent subclass
A the primary subagent.

The result of initializing an agent classis to take the agent class as a template and crede a oncrete
structure of the ayent classand initialize its gate variables. Since we represent an agent classas an agent-
oriented G-net, an initidized agent class is modeled by an agent-oriented G-net with initialized state
variables. In particular, the four tokens in the speda places of an agent-oriented G-net, i.e., gTkn, pTkn,
kTkn and €Tkn, are set to their initial states. Since different subagents of AO may have goals, plans,
knowledge and environment models that conflict with those of the primary subagent of AQ, it is desirable
to resolve them in an ealy stage. In our case, we ded with those @nflicts in the instantiation stage in the
following way. All the tokens gTkn, pTkn, kTkn and eTkn in eat subagent of AO are removed from their
asciated spedal places, and the tokens are ambined with the gTkn, pTkn, kTkn and €Tkn in the primary

10

subagent of AO.* The resulting tokens gTkn, pTkn, kTkn and eTkn (newly generated by unifying those
tokens for ead type), are put bad into the spedal places of the primary subagent of AO. Consequently, all
subagents of AO lose their abiliti es for reasoning, and only the primary subagent of AO can make necessary
dedsions for the whole ggent objed. More spedficdly, in the Planner module (as $own in Figure 3 that
belongs to a subagent, the éstrad transitions make dedsion, sensor and updae can rever be enabled
because there ae no tokens in the following spedal places: Goal, Plan and Knowledge-base. If a message
tagged as internal arrives, the transition bypass may fire and a message token can diredly go to a MPU
defined in the interna structure of the subagent if it is defined there. This is made possble by conneding
the transition bypasswith inhibitor arcs (denoted by dashed lines terminated with a small circlein Figure 3)
from the spedal places Goal, Plan and Knowledge-base. So the transition bypasscan only be enabled when
there ae no tokens in these places. In contrast to this behavior, in the Planrer module of a primary
subagent, tokens do exist in the spedal places Goal, Plan and Knowledge-base. Thus, the transition bypass
will never be enabled. Instead, the transition make dedsion must fire before an outgoing message is
dispatched.

To reuse the services (i.e., MPUs and methods) defined in a subagent, we neeal to introduce anew
mechanism cdled Asynchronows Sugerclass svitch Place (ASP). An ASP (denoted by an ellipsisin Figure
3) is smilar to a MSP, but with the differencethat an ASP is used to forward a message or a method cdl to
a subagent rather than to send a message to an agent objed. For the MSP mecdhanism, the recever could be
some other agent objed or the ayent objed itself. In the cae of MSP(self), a message token is aways snt
to the GSP of the primary subagent. However, for ASP(super), a message token is forwarded to the GSP of
a subagent that is referred to by super. In the cae of singe inheritance, super refers to a unique superclass
G-net, however with multiple inheritance, the reference of super must be resolved by searching the dass

hierarchy diagram.

When a message/method is not defined in an agent subclassmodel, the dispatching mecdhanism will deposit
the message token into a crresponding ASP(super). Conseguently, the message token will be forwarded to
the GSP of a subagent, and it will be again dispatched. This processcan be repeaed urtil the root subagent
isreaded. In this case, if the message is gill not defined at the roat, an exception occurs. In this paper, we
do not provide exception handling for our agent-oriented G-net models, and we assume that al incoming

messages have been corredly defined in the primary subagent or some other subagents.

* The processof generating the new token values would involve ations sich as conflict resolution among
goals, plans or knowledge-bases, which is atopic outside the scope of our model and this paper.

11

3. Intelligent Mobile Agent Design

Today’'s users demand ubiquitous network access independent of their physicd location. This gyle of
computation, often referred to as mobile cmputing, is enabled by rapid advances in wireless
communication technology [12]. The networking scenarios enabled by mobile computing range roughy
between two extremes. At one end, the avail ability of a fixed network is asaumed, and its fadliti es are
exploited by the mobile infrastructure. We cdl this form of mobhility logical mobility. At the other end, the
fixed network is absent and all network fadliti es (e.g., routing) must be implemented by relying only on the
avail able mobil e hosts, namely ad ha networks. This form of mobhility is cdled physical mohility. Mobile
agent technology is a new networking technology that deds with both forms of mobility. It offers a new
computing paradigm in which a program, in the form of an intelligent software aent, can suspend its
exeaution on a host computer, transfer itself to another agent-enabled host on the network, and resume
exeaution on the new host. Here, as we will seein the next sedion, we define ahost as either a static host

or amobile host, which is stuated in an ad ha network.

3.1Agent World Architedure

First, we introduce the mncepts of agent virtual madcine (AVM) and agent world (AW), which serve to
define aframework for a mobile agent system. Figure 4 shows a generic mohbile aent system, and an
example of agent migration. In the figure, Host-A and Host-B are two machines conneded by a network.
To make mobile gents platform independent, a mobile aent runs on an agent virtual macines (AVM),
which provides a proteded agent exeaution environment. Each host may have a number of AVMs,
however, to make it simple, we only illustrate one AVM for ead host in Figure 4. Each AVM s
responsible for hosting and exeauting any agents creaed on that AVM or that arrive over the network, and

for providing API for agent programmers.
We now provide afew key definitions for the mohile agent system.

Definition 3.1 Agent World (AW)

An agent world (AW) is a 3-tuple (WKHOST, SHOST, HCOM), where WKHOST is a well-known static
host, which is responsible for recording the most recent IP address of al other hosts. SHOST is a set of
hosts that can provide ayent virtual machines, where members of this st could be dther static or mobile.
Note that, in a speda case, WKHOST is a member of SHOST. HCOM is the communication protocol
among hostsin SHOST, an example of such protocolsis TCP/IP.

12

4

)

1 (2) |

computer network

(1) move-request (2) grant (3) notify (4) move

Figure 4. Agent world architecture and an example of agent migration

Definition 3.2 Satic Host (SH) and Mobile Host (MH)

A hogt is 4-tuple (SAVM, ACOM, HOMEIP, CURIP), where SAWM is a set of agent virtual machines
(AVM). ACOM isthe aoommunicaion protocol anong AVMs in SAVM, and examples of such protocols are
IPC and TCP/IP. HOMEIP isthe original IP addressof the host, and CURIP isthe airrent IP addressof the
host. If at any time, CURIP = HOMEIP, we cdl the host a static host (SH); otherwise, we cdl it a mobile
host (MH).

Definition 3.3 Agent Virtual Machine (AVM)

An agent virtual machine (AVM) is a 5-tuple (FA, SMA, MCOM, HOSTIP, ID), where FA is a fadlit ator
agent for AVM, which is responsible for recording information of mobile gyents runrning on that AVM, and
also for providing services for mobile agents runring on other AVMs. Note that FA is a static agent, i.e., it
does not migrate. SVIA is a set of mobile ayents. MCOM is the communicaion protocols for both static and
mobile agents. HOSTIP is the aurrent IP address of the host where the AVM runs on, and ID is a unique
identifier for that AVM.

Definition 3.4 Satic Agent (SA) and Mobile Agent (MA)

An agent A is 3-tuple (HOMEIP, CURIP, AO), where HOMEIP is the IP address of the host, on which
agent A is creaed. CURIP is the IP address of the host where agent A currently runs on. AO is the gent
objea with the general structure a we described in Sedion 2. If at ant time, CURIP = HOMEIP, we refer
to agent A as a static agent (SA); otherwise, we refer to agent A as a mohile agent (MA).

13

Sincein this paper we view mobile agents and fadlitator agents (an example of static agent) as intelli gent
software ayents, for the rest of this paper a mobhil e/fadlit ator agent always refers to an intelli gent mobhile
agent (IMA) or an intelligent fadlitator agent (IFA). As $own in Figure 4, when a mobile aent a on
AVM O, wants to migrate to another AVM g, it neeads to contad with the remote fadlit ator agent 65 first,
which resides on AVM O3 (step 1). In fad, the mobile agent a neals to know the aldress of the remote
fadlit ator agent 65 before the communication can begin. This could be done by querying this information
from its locd fadlitator agent 65, which resides on AVM ©,. If the locd fadlitator agent 6, knows the
addressof the remote fadlit ator agent g, it will provide this information to the mohile agent a; otherwise,
it will contad with the well-known static host I (we do not show it in Figure 4) for this information and
forward the results to the mobile ayent a theredter. For simplicity, this procedure is omitted in Figure 4.
Based on seaurity and resource aiteria, the remote fadlit ator agent 65 deddes if the migration request is
granted. If the migration request is granted (step 2), the mobile agent a notifiesits locd fadlit ator agent 6,
about its leaving (step 3), and it finally moves to the remote AVM ©g (step 4). In the foll owing sedion, we
will seethat, in our approach, step 1 and step 2 are modeled by asynchronous message passng; while step 3
and step 4 are modeled by method invocation.

The situation above is an example of logicd mobility. For physicd mohility, a host may at some time
change its IP addressor lose its IP addresstemporarily (detached from the network) at some time. In this
case, the well-known static host N is criticd for recording this information. To succesgully send a message
to an agent on which the AVM has changed its HOSTIP address the knowledge of the sender agent’s locd
fadlit ator agent neals to be @nsistent with the latest network information. Further discusson about this

issue is beyond the scope of this paper, which concentrates on logicd mobhility.

3.2Intelligent Mobile Agent (IMA) and Intelli gent Facili tator Agent (IFA)

To ill ustrate the processes for design of intelligent mobile agents (IMA) and intelli gent fadlit ator agents
(IFA) by using our agent model, we use the following examples. Since we view a fadlit ator agent as an
IFA, in addition to provide public services to a mobile agent or some other IFA, an IFA aso has the
cgpahility of making dedsions. This feaure is vitally important for an IFA to cater for the neals of service
dlocaion in a dynamic network environment, such as resource management and seaurity verifications.
Figure 5 (a) depicts a template of a cntrad net protocol [24] expressed as an agent UML (AUML)
sequence diagram [22] for a migration-request protocol between a mohile agent (MA) and a remote
facilitator agent (FA). Figure 5 (b) is a modified example of a cmntrad net protocol adapted from [22],
which depicts a template of a protocol expressed as an AUML sequence diagram for a price-negotiation
protocol between a buying mobil e agent (BMA) and a selling mobile agent (SMA). Some of the notations of
AUML are aapted from [22] as extensions of UML sequence diagrams for agent design. In addition, to

14

corredly draw the sequence diagram for the protocol templates, we introduce two new notations, i.e., the

end of protocol operation “+” and the iteration of communicaion operation “x”.

‘ IMA ‘ ‘ raﬂothFA ‘ BMA ‘ ‘ S!\{IA

T
| | |

move-request
1 * refuse-move
i ask-authCode i: :
return-authCode D accept-proposal ;
* refuse-move u

request-price

« refuse-price

propose

1

-

propose

*
grant-move accent-proposal

I « confirm-move reject-proposal

L 1 « confirm-price D

@ | | (b)

IMA: intelli gent mobile agent, IFA: intelli gent facilit ator agent, BMA: buying mobile agent, SMA: selling mobile agent

Figure 5. Contrad net protocols (a) atemple for the migration-
request protocol (b) atemplate for the price-negotiation grotocol

Consider Figure 5 (a). When a conversation based on a contrad net protocol begins, the intelli gent mobile
agent (IMA) sends a request for migration to a remote intelli gent facilit ator agent (IFA) on a different
AVM. The remote IFA can then choose to respond to the IMA by refusing its migration or asking the IMA’s
authorizaion code, which is used to verify that the IMA is on atrustable AVM. Here the “Xx” in the dedsion
diamond indicates an exclusive-or dedsion. If the remote IFA refuses the migration based on resource
limitation or some other reasons, the protocol ends; otherwise, the remote IFA waits for the IMA's
authorization code to be supplied. If the IMA's authorizaion code is corredly provided, the remote IFA
may grant the IMA for migration if it is trustable, or refuse the migration otherwise. Again, if the remote
IFA refuses IMA's migration, the protocol ends; otherwise, a @nfirmation message will be provided
afterwards. Similarly, the price-negotiation protocol between a buying mobile agent (BMA) and a selling
mobil e agent (SMA), which are subclasses of IMA, can beill ustrated in Figure 5 (b).

Based on the mmmunicaive ads (e.g., movereguest, refuse-move, etc.) neealed for the ntrad net
protocol in Figure 5 (a), we may adopt the agent design template shown in Figure 2, and design the mobile
agent classas in Figure 6. The Goal, Plan, Knowledge-base and Environment modules remain as abstrad
units and can be refined in a further detailed design stage. The Planner module may reuse the template
shown in Figure 3. The design of the remote fadlit ator agent is smilar, which isill ustrated in Figure 7.

15

5
g
8
:
§

Environment ‘

:

incoming message
authCode refuse-move grant-move confirm-move. move-request return-authCode

outgoing message

private utlllty
notify

adion adion

ISP(FA,
inform)
utility

OH

MSP(G’.Aid) MSP(G'.Aid)

\@%@

O

return return

Figure 6. An agent-based G-net model for intelligent mobile agent class(IMA)

Knowledge-base

Environment

' ' '

:

Planner

v

incoming message
move-request return-authCode

action action

Wsel) MSP(self)

outgoing message
ask-authCode refuse-move

TYTY

grant-move confirm-move

public service

Y

register inform

utility utility

-0
OO 8

3544
i

MSP(G Aid) MSP(G Aid) MSP(G .Aid) MSP(G .Aid)

O
O-

N2

return return

Figure 7. An agent-based G-net model for intelli gent facilitator agent class(IFA)

16

To show how our agent models work corredly in an agent conversation, we now discuss an example.
Consider a mohile agent objed MAO, which receves a message of ask-authCode from a remote fadlit ator
agent objed FAO. A mTkn token with a tag of external will be depaosited in the GSP of the primary
subagent of MAQ, i.e., the GSP of the arresponding intelli gent mobile agent class (IMA). The transition
exerna in MA's Planrer module may fire, and the mTkn will be moved to the place
dispatch_incoming_message. Since there is an MPU for ask-authCode defined in the internal structure of
MA, the mTkn will be dispatched to the entry placeof that MPU. After the message is processed, MSP(self)
changes the tag of the mTkn from external to internal, and sends the processed mTkn token badk into the
GSP of IMA. Upon the arival of this message token, the transition internal in the Planner module of MA
may fire, and the mTkn token will be moved to the place check primary. Since IMA corresponds to the
primary subagent of MAO, there ae tokens in the spedal places Goal, Plan, Knowledge-base and
Environment. Therefore the astrad transition make dedsion may fire, and any necessary adions are
exeauted in placenext_action. Then the aurrent conversation is either ignored or continued based on the
dedsion made in the astrad transition make dedsion. If the aurrent conversation is ignored, the goals,
plans and knowledge-base ae updated as nealed; otherwise, in addition to the updating of goals, plans and
knowledge-base, a newly constructed mTkn with a tag of internal is deposited into place
dispatch_ougoing_message. The new mTkn token has the message name return-authCode, following the
protocol defined in Figure 5 (a). Again, there is an MPU for return-authCode defined in IMA, so the new
mTkn token will be dispatched into the entry place of that MPU. After the message is processed, the
MSP(G'.Aid) mechanism changes the tag of the mTkn token from internal to external, and transfers the

mTkn token to the GSP of the recever agent, in this case, the remote fadlit ator agent objed FAQ.

To further illustrate how to refine the MPU/method in a mobile aent's internal structure, we use the
examples of the MPU confirm-move defined in the incoming message sedion and the method move defined
in the private utility sedion. The refinement of another method natify() is draightforward; as siown in
Figure 6, the natify() method makes a method invocaion inform() to its locd fadlit ator agent. Thisis done
to notify the fadlit ator agent that the cdling agent is leasing. The refinement of method move() and MPU
confirm-move are shown in Figure 8 (a) and Figure 8 (b), respedively. In Figure 8 (a), when there is a
token depasited in the entry place the transition start_movefires, and deposit atoken into placemigration.
The migration might be succesful or failed, due to the network condition. If the migration fails, the
transition fail fires, and deposits a token into placeretry. The mobile agent will then count the number of
retrials. If it has retried lessthan MAX_TRIAL times, the mobile agent will try to migrate ayain; otherwise,
the transition else fires, and a method cdl inform(FAILURE) will be made to its locd facilit ator agent (FA)
to notify the locd FA that its migration is failed. This is modeled by the ISP(rFA, inform(FAILURE))
medhanism. After that, the method cdl move() returns. If the migration succeels, the transition succeel

fires, and the mohile ayent’s current |P address CURIP will be dhanged to the new one. Then a method cdl

17

ISP(rFA, register) is made to the remote facilit ator agent (FA), which is adually the mohile aent’s locd
FA now. After registering with the FA, the method cdl move() returns.

In Figure 8 (b), the refinement of MPU confirm-move is graightforward. When there is a token deposited
into the entry place of the MPU confirm-move, the transition begin_process fires. After processng the
message token, it makes a method cdl |SP(sdlf, natify) to the agent itself, which further makes a method
cdl to the mobile gent’s locd fadlitator agent -- to inform the fadlit ator agent that the mobile agent is
leaving. After that, the migration starts by invoking the method move)). Finaly, after finishing the
migration, either failled or succeealed, it transfers the message token to the agent itself, and ends the

conversation.

move() confirm-move
entry place entry place
start_move begin_process
> migration message_processing
1 succeed after_process
1SP(self, notify)
change_CurlP
retry else
begin_migration
[retry < MAX_TRIAL]
|SP(self, move)
ISP(FA,
inform(FAILURE)) ISP(rFA, register)
after_migration
end
© return MSP(G’, Aid)

(@ (b)

Figure 8. Examples of detail ed design (a) refinement of method move()
(b) refinement of MPU confirm-move

4. Intelligent Mobile Agent Design in an Eledronic Marketplace

Consider a mobile aent family in an eledronic marketplace domain, which is a global stock market
tracking and trading system. Figure 9 shows the ayents in a UML class hierarchy notation. An intelli gent
mobile agent class (IMA) is defined as a superclassthat is cgpable of communicaing with an intelli gent
facilitator agent class (IFA), and migrating anong AVMs. The functionality of an intelli gent mobil e agent
class(IMA) can be inherited by an agent subclass such as a buying mobile agent class(BMA) or a selling

18

mobile agent class (SMA). Both the BMA and SMA may reuse the functionality of IMA for communicaion
with IFA and migration among AVMs. Furthermore, a broker mobile agent classis designed as a subclass
of bath the BMA and SMA, and a stock-buyer/stock-seller mobile agent classmay be defined as a subclass
of aBMA/SMA.

‘ Intelligent Mobile Agent (IMA) ‘

| ! |

Buying Mobile Agent (BMA) ‘ ‘ Selling Mobile Agent (SMA)

ff i

‘ Stock Buyer Mobile Agent ‘ ‘ Broker Mobile Agent ‘ ‘ Stock Seller Mobile Agent

Figure 9. The dass hierarchy diagram of mobile ayentsin an eledronic marketplace

Based on the communicdive ads (e.g., request-price, refuse-price, etc.) neeled for the contrad net
protocol between the buying mobile agent (BMA) and the selling mobile agent (SMA), we may design the
BMA as grown in Figure 10. The SMA can be designed in the same way.

GSP(BMA)
BMA extends MA ‘ Goal ‘ ‘ Plan ‘ ‘ Knowledge-base ‘ ‘ Environment‘

v ' ‘ '

incoming message outgoing message private utility
refuse-price propose confirm-price| request-price acaept-proposal reject-proposal utility_1 utility_p

adion adion adion adion adion adion utility utility

w@m MSP(self) MSP(self) MSP(G'Aid) MSP(G .Aid) MSP(G'.Aid) return reuy

Figure 10. An agent-based G-net model for buying mobile ggent class(BMA)

19

With inheritance, a buying mobile agent class (BMA), as a subclass of a mobile agent class (MA), may
reuse MPUsmethods defined in MA's interna structure. Similarly, a selling mohile agent class (SMA)
inherits all MPU/methods of MA, and a retailer mobile agent classinherits all MPU/methods of bath the
BMA and the SMA.

Now we discuss an example to show how the reuse of MPU/methods works. Consider a buying mobile
agent objed BMO, which recaves a message of ask-authCode from a remote fadlit ator agent objed FAO.
A mTkn token will be deposited in the GSP of the primary subagent of BMO, i.e., the GSP of the
corresponding buying mobile agent class (BMA). The transition exerna in BMA’'s Planner module may
fire, and the mTkn will be moved to the placedispatch_incoming_message. Sincethere isno MPU for ask-
authCode defined in the interna structure of BMA, the mTkn will be moved to the ASP(super) place Since
super here refers to a unique superclass— the mobile ayent class(MA) — the mTkn will be transferred to the
GSP of MA. Now the mTkn can be crredly dispatched to the MPU for ask-authCode. After the messageis
processed, MSP(self) changes the tag of the mTkn from external to internal, and sends the processed mTkn
token badk into the GSP of BMA. Note that MSP(self) always sends a mTkn badk to the GSP of the primary
subagent. Upon the arival of this message token, the transition internal in the Planner module of BMA
may fire, and the mTkn token will be moved to the placecheck primary. Since BMA corresponds to the
primary subagent of BMO, there ae tokens in the speda places Goal, Plan, Knowledge-base and
Environment. Therefore the astrad transition make dedsion may fire, and any necessary adions are
exeauted in placenext_action. Then the aurrent conversation is either ignored or continued based on the
dedsion made in the astrad transition make dedsion. If the aurrent conversation is ignored, the goals,
plans and knowledge-base ae updated as nealed; otherwise, in addition to the updating of goals, plans and
knowledge-base, a newly constructed mTkn with a tag of internal is deposited into place
dispatch_ougoing_message. The new mTkn token has the message name return-authCode, following the
protocol defined in Figure 5 (a). Again, there is no MPU for return-authCode defined in BMA, so the new
mTkn token will be dispatched into the GSP of MA. Upon the arival of the mTkn in the GSP of MA, the
trangition interna in the Planner module of MA may fire. However at this time, MA does not correspond to
the primary subagent of BMO, so all the tokens in the spedal places of Goal, Plan, and Knowledge-base
have been removed. Therefore, the transition bypassis enabled. When the transition bypassfires, the mTkn
token will be diredly deposited into the placedispatch_ougoing_message, and now the mTkn token can be
corredly dispatched into the MPU for return-authCode defined in MA. After the message is processed, the
MSP(G’.Aid) mechanism changes the tag of the mTkn token from internal to external, and transfers the

mTkn token to the GSP of the recaver agent, in this case, the remote fadlit ator agent FAO.
For the reuse of public services and private utility functions defined in a superclass the situation is the

same & in the cae of objed-oriented design. In addition, there ae threedifferent forms of inheritance that

are ommonly used, namely augment inheritance restrictive inheritance and refinement inheritance The

20

usage of these threeforms of inheritance in agent-oriented design is also similar to that in objed-oriented
design. Examples concerning reuse of public services and private utility functions and dfferent forms of
inheritance can be found in ealier work [23].

5. Conclusion and Future Work

Agent-oriented software provides a new software engineaing paradigm and the oppatunities for
development of new domain-spedfic software models. With the cntinuing improvement of agent
technology, and the rapid growth of software system complexity, espedaly for Internet applications, there
is a pressng read for general models of mobile ayents. Such models can alow a structured approach for
design of agent software systems and fadlit ate the goplicaion of forma methods techniques for design
analysis and implementation synthesis.

We presented the design models of intelli gent mobile agents in a framework for agent-oriented software.
Unlike previous work, which only models a particular feaure of mobile ayents, our mobile ayent models
can be served as a general agent model that has the caabiliti es of mobhility, corporative behavior, and
intelligence. With the example of eledronic marketplace we show that spedfic mobile aents can be
designincrementally as subclasses of the mobile agent base dass Furthermore, our intelli gent mobile ayent
models are based on the ayent-oriented G-net formalism, which can be translated into a standard form of
Petri net (Predicae-Transition net, Pr/T net) [19][20]. Because the Petri net formalism is theoreticdly
mature and supparted by robust toals, our approach supparts formal analysis, such as model chedking.

For our future research work, we plan to use our marketplace eample to demonstrate the analysis power
inherent in our intelligent mobile agent models. We will i nvestigate use of model chedking techniques to
show that our agent models stisfy certain behavioral properties, such as effedive movement and freedom
of deadlock. We will also try to implement a mobile agent prototype foll owing our formal design, by which
we can show our approach supparts rapid development of mobile agents. Finally, we neel to explore
various earity isaies in mobile ayent design. As a side note, since we anbed agent movement, and any
other passhle adions, in the mntext of agent conversations, we believe that our approac leares adequate

room for seaurity modeling.

References

[1] K. Rothermel and M. Schwehm, “Mobile Agents,” In: A. Kent and J. G. Williams (Eds.):
Encydopedia for Computer Science and Techndogy, Volume 40 - Supplement 25, New York: M.
Dekker Inc., 1999 pp. 155176

21

(2]

(3]

[4]

(5]

6]

(8]

(9]

D. Kinny, M. P. Georgeff, “Modeling and Design of Multi-Agent Systems,” Procealings of the 4th
Int’l Workshop onAgent Theories, Architedures, andLanguag (ATAL-97), 1997, pp. 1-20.

N. R. Jennings, K. Sycara and M. Wodldridge, “A Roadmap of Agent Reseach and Development,”
Internationd Journal of Autonamous Agents and Multi-Agent Systems, 1(1), 1998 pp. 7-38.

G.-C. Roman, P. J. McCann, and J. Y. Plun, “Mobile UNITY: Reasoning and Spedfication in Mobile
Computing,” ACM Transactions on Sdtware Engineeging andMethoddogy, VVol. 6, No. 3, July 1997,
pp. 250282

C. Mascolo, “MobiS: A Spedficaion Language for Mohile Systems,” In Third Int. Conference on
Coordination Models and Languagpes, Amsterdam, The Netherlands. April 1999 P. Ciancarini and A.
Wolf (editors). Ledure Notesin Computer Science, Springer-Verlag, No.1594 pp. 37-52.

G. Cabri, L. Leonardi, F. Zambonelli, “Engineeing Mobil e-Agent Appli caions via Context-dependent
Coordination,” In Procealings of the 23rd Internationd Conference on Sdtware Engineeing (ICSE
2002, Toronto, Canada, 2001, pp.371-380.

C. Argel Iglesias, M. Garrijo, José Centeno-Gonzdez “A Survey of Agent-Oriented Methoddogies,”
Procedlings of the Fifth Internationd Workshop onAgent Theories, Architedures, and Languag
(ATAL-98), 1998 pp. 317-330.

M. Wooaldridge, N. R. Jennings, and D. Kinny, “The Gaia Methoddogy for Agent-Oriented Analysis
and Design,” Journal of Autonamous Agents and Multi-Agent Systems, 3 (3): 285312, 2000

D. Kinny, M. Georgeff, and A. Rao, “A Methoddogy and Modeling Technique for Systems of BDI
Agents,” In W. Van de Velde and J. W. Perram, editors, Agents Breaking Away: Proceedings of the
Seventh European Workshop onModeling Autonamous Agents in a Multi-Agent World, (LNAI Volume
1038, pp. 56-71, Springer-Verlag: Berlin, Germany, 1996

[10] C. Fournet, G. Gonthier, J. Lévy, L. Maranget, and D. Rémy, "A Calculus of Mobhile Agents," In

Procedalings of the 7th Internationd Conference on Concurrency Theory (CONCUR'96), Springer-
Verlag, LNCS 1119 August 1996 pp. 406421

[11] M. Wermelinger, J. L. Fiadeiro, “Connedors for Mobile Programs,” |EEE Transactions on Sdtware

Engineaing 24(5), pp. 331-341, May 1998

[121A. L. Murphy, G. P. Picco, and G.-C. Roman, “LIME: A Middleware for Physicd and Logicd

Mobility,” In Procealings of the 21st Internationd Conference on Distributed Computing S/stems
(ICDCS-21), April 2001, Phoenix, Arizona, USA, pp. 524533

[13]J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel and M. Stras<er, “Communicaion Concepts for

Mobhile Agent Systems,” In Procealings of the 1¥ Internationad Workshop onMobile Agents (MA'97),
Springer Verlag, 1997 pp.123-135.

22

[14]T. Finin, Y. Labrou and Y. Peng, “Mobile Agents can Benefit from Standards Efforts in Inter-agent
Communicdion,” IEEE Comnunications Magazine, Vol. 36, No. 7, pp. 50-56, July 1998

[15]H. Xu and S. M. Shatz, “An Agent-based Petri Net Model with Applicéion to Seller/Buyer Designin
Eledronic Commerce” In Procealings of the Fifth Internationd Symposium on Autonamous
Decentralized Systems (I1SADS 200}, March 2001, Dall as, Texas, USA, pp.11-18.

[16] H. Xu and S. M. Shatz, “A Framework for Modeling Agent-Oriented Software,” In Procealings of the
21st Internationd Conference on Distributed Computing §stems (ICDCS-21), April 2001, Phoenix,
Arizona, USA, pp.57-64.

[17]H. Xu and S. M. Shatz, “A Framework for Model-Based Design of Agent-Oriented Software,”
Tecdhnical Report, Computer Science Department, The University of Illi nois at Chicago, June 2001

[18H. Ku H., G. W. Luderer and B. Subbiah, “An Intelligent Mobile Agent Framework for Distributed
Network Management,” In Procealings of the IEEE Globd Teleoomnunications Conference
(GLOBECOM'97), Phoenix, USA, November 1997

[19] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Procealings of the IEEE 77(4), April
1989 pp. 541-580.

[20] Deng, Y., S. K. Chang, A. Perkusich and J. de Figueredo, “Integrating Software Engineering Methods
and Petri Nets for the Spedficdion and Analysis of Complex Information Systems,” Procealings of
The 14th Int’l Conf. on Application andTheory of Petri Nets, Chicago, June 21-25, 1993 pp. 206-223

[21] A. Perkusich and J. de Figueiredo, “G-nets: A Petri Net Based Approac for Logicd and Timing
Analysis of Complex Software Systems,” Journal of Systemsand Sdtware, 39(1): 39-59, 1997

[22]J. Odell, H. Van Dyke Parunak, and B. Bauer, “Representing Agent Interadion Protocols in UML,”
Agent-Oriented Software Engineeing, Paolo Ciancarini and Michad Wooldridge edls., Springer-
Verlag, Berlin, 2001, pp. 121-140,

[23]H. Xu and S. M. Shatz, “Extending G-nets to Suppat Inheritance Modeling in Concurrent Objed-
Oriented Design,” Proceealings of the IEEE Internationd Conference on $stems, Man, and
Cybernetics (SMC 2000, October 2000 Nashvill e, Tennesee USA, pp. 31283133

[24] R.A. Flores and R.C. Kremer, “Formal Conversations for the Contrad Net Protocol,” in V. Marik, M.
Luck & O. Stepankova (Eds.), Multi-Agent Systems and Applications I, Ledure Notes in Computer
Science, Springer-Verlag, 2001

[25] A. R. Silva, A. Roméo, D. Deugo, and M. M. da Silva, “Towards a Reference Model for Surveying
Mobile Agent Systems,” Autonomous Agents and Multi-Agent Systems, Vol. 4, No. 3, pp.187-23],
Sept. 2001

23

