
1

10/18/01 Computer Science Dept., UIC 1

Formal Methods in AgentFormal Methods in Agent--Oriented Oriented
Software EngineeringSoftware Engineering

Haiping Xu and Sol M. Shatz
Computer Science Department

The University of Illinois at Chicago

10/18/01 Computer Science Dept., UIC 2

Outline

• Part 1: Background.
• Part 2: Design of agent-based G-net model.
• Part 3: Modeling agent-oriented software.
• Part 4: Analysis of agent-oriented model.
• Part 5: Our current research work.
• Part 6: Conclusions and future work.

2

10/18/01 Computer Science Dept., UIC 3

Part 1: Background

• Formal methods in Software Engineering.
• Introduction to Petri net.
• G-net: A high level Petri net.
• Introduction to software agent.
• Agent-oriented software engineering.
• Our approach to agent-oriented design.

10/18/01 Computer Science Dept., UIC 4

Purpose of Formal Methods

“The term “formal methods” denotes software development
and analysis activities that entail a degree of
mathematical rigor. (…) A formal method manipulates a
precise mathematical description of a software system
for the purpose of establishing that the system does or
does not exhibit some property, which is itself-precisely
defined.” (Dillon and Sankar, 1997)

Dillon, L. K. and S. Sankar (1997), Introduction to the Special Issue, IEEE
Transactions on Software Engineering, Special Issue on Formal Methods in
Software Practice, 23(5): 265-266.

3

10/18/01 Computer Science Dept., UIC 5

Formal Methods in Software
Engineering

• To write formal requirements specification, which serves
as a contract between the user and the designer.

• To be used in software design. Design errors may be
caught in an early design stage.

• To support system analysis and verification.
– model checking
– theorem proving

10/18/01 Computer Science Dept., UIC 6

Introduction to Petri Net

• “Three-in-one” capability of a Petri net model.
– Graphical representation
– Mathematical description

– Simulation tool

• Definition:
A Petri net is a 4-tuple, PN = (P, T, F, M0) where

P = {P1, P2, …, Pm} is a finite set of places;

T = {t1, t2, …, tn} is a finite set of transitions;

F ⊆ (P x T) ∪ (T x P) is a set of arcs (flow relation);

M0: P --> {0, 1, 2, 3, …} is the initial marking.

4

10/18/01 Computer Science Dept., UIC 7

An Example

t1

t5

t3

t4

t2P1

P5

P3

P4

P2

Figure 1. A simple Petri net model example

10/18/01 Computer Science Dept., UIC 8

G-net: A High Level Petri Net

• Defined to support modeling of systems as a set of
independent and loosely-coupled modules.

• Provides support for incremental design and
successive modification.

• Is not fully object-oriented due to a lack of support for
inheritance.

5

10/18/01 Computer Science Dept., UIC 9

An Example

Figure 2. G-net models of buyer and seller objects

GSP(Buyer)

ISP(Seller,
sellGoods())

 buyGoods() askPrice()

t1

t2

ISP(Seller,
returnPrice())

t3

t4

returnPrice()

calculate_
price

sell_
goods

sellGoods()

GSP(Seller)

t8

t7

t6

t5

BuyGoods();
askPrice();

returnPrice();
sellGoods();

10/18/01 Computer Science Dept., UIC 10

Introduction to Software Agent

• The term “agent” comes from greek “agein”, which
means to drive or to lead.

• Today the term “agent” denotes something that
producing an effect, e.g., drying agent, a shipping agent.

• It is suitable to describe current trends in computer
science: active instruments (to which work can be
delegated) vs. passive tools.

• The term “agent” in computer science refers to software
agent.

6

10/18/01 Computer Science Dept., UIC 11

Space of Software Agents

Service interactivity

Application interactivity

Data interactivity

Representation of users

Asynchrony
Message passing

Remote procedure call
Remote execution

Weak migration
Strong migration

Preferences
Reasoning

Planning
Learning

Agency

Mobility

Intelligence

Figure 3. Space of software agents defined by IBM

10/18/01 Computer Science Dept., UIC 12

Current Researches on Agents

• Do not exploit all the capabilities classified by
these three dimensions.

• Multi-agent systems (MAS)
– Execute a given task.
– Use distributed but static agents.
– Collaborate and cooperate in an intelligent manner.

• Mobile agents (MA)
– Model agent mobility and agent coordination.
– Assume very limited or even no intelligence.

7

10/18/01 Computer Science Dept., UIC 13

Agent-Oriented Software
Engineering

• The agents can be considered as active objects, i.e.,
objects with a mental state.

• However, object-oriented methodologies do not address
the following aspects:
– asynchronous message-passing mechanism
– mental state: plan, goal and knowledge
– autonomous behavior

• Agent-oriented approaches: provide guidelines for agent
specification and design.
– AAII methodologies: based on BDI model.
– Gaia methodologies: based on role modeling.

10/18/01 Computer Science Dept., UIC 14

Formal Methods in Agent-Oriented
Software Engineering

• Very little work on how to formally specify and design agents.
– DESIRE (DEsign and Specification of Interacting REasoning components)

provides a compositional framework for modeling agents.
– dMARS (distributed MultiAgent Reasoning System) is based on Procedure

Reasoning System (PRS) and supports formal reasoning.

– Agent models based on Petri nets, such as [Moldt and Wienberg 1997]
[Merseguer et al. 2000] [Xu and Deng 2000]

• However, they do not explicitly model agent interactions, and they
do not address the issue of inheritance.

• Unlike the previous work, our proposed agent models:
– support protocol-based agent interaction/communication.
– support reuse of functional units of our agent class models.

8

10/18/01 Computer Science Dept., UIC 15

Our Incremental Approach

Object-based G-nets (the original G-nets)

Standard G-nets (support class modeling)

Object-Oriented G-nets
(support inheritance)

Agent-based G-nets (support agent
modeling)

Agent-Oriented G-nets (support
inheritance)

10/18/01 Computer Science Dept., UIC 16

Advantages of Our Approach

• Based on the Petri net formalism, which is a mature
formal model in terms of both existing theory and tool
support.

• Support reuse of object or agent designs.
• Provide a nature way for object-oriented software

designers to design agent systems.
• Support net-based modeling and analysis.

– provide a clean interface among objects or agents.
– do not use text-based formalism in our formal models.
– may unify the object-oriented G-nets and agent-oriented G-

nets to model complex software systems.

9

10/18/01 Computer Science Dept., UIC 17

Part 2: An Agent-based G-net
Model

• Becomes one of the most important topics in distributed
and autonomous decentralized systems.

• Multi-agent systems (MAS): autonomous, reactive and
internally-motivated agents.

• However, the G-net model is not sufficient for agent
modeling because:
– Do not support a common communication language and

common protocols among agents.
– Do not support asynchronous message passing directly.
– Be awkward to model agent’s mental state, such as goals, plans

and knowledge.

10/18/01 Computer Science Dept., UIC 18

An Agent-based G-net Model

GSP(G)

message_
processing

incoming message

Figure 4. A generic agent-based G-net model

Goal

 outgoing message

action_1 action_m

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(G’.Aid) MSP(G’.Aid)

action_1 action_n

message_
processing

message_
processing

message_
processing

 return return

private utility

utility_1 utility_p

…

…

…

…

…

…

utility_1 utility_p

Plan Environment

Notes: G’.Aid = mTkn.body.msg.receiver

10

10/18/01 Computer Science Dept., UIC 19

A Template of Planner Module

GSP(G)

Figure 5. A template of Planner module

Goal/Plan/KB Environment

ignore

start_a_
conversation

…

…

…

…

…

continue

external
internal

update

to place “goal”

to place “knowledge base”

from
transition
“update”

update_
goalplan/kb

next_
action

dispatch_
utilities

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

private_
utilities

incoming messages

outgoing messages private utilities

10/18/01 Computer Science Dept., UIC 20

Definitions of the Message Token: mTkn

struct Message{
int sender; // the identifier of the message sender
int receiver; // the identifier of the message receiver
string protocol_type; // the type of contract net protocol
string name; // the name of incoming/outgoing messages
string content; // the content of this message

};

enum Tag {internal, external};

struct MtdInvocation {
Triple (seq, sc, mtd); // as defined in Section 2.1

}

if (mTkn.tag ∈ {internal, external})
then mTkn.body = struct {

Message msg; // message body
}
else mTkn.body = struct {

Message msg; // message body
Tag old_tag; // to record the old tag: internal/external
MtdInvocation miv; // to trace method invocations

}

11

10/18/01 Computer Science Dept., UIC 21

Formal Definitions of Agent-based
G-net Model

Definition 3.1 Agent-based G-net
An agent-based G-net is a 7-tuple AG = (GSP, GL, PL, KB, EN, PN, IS), where GSP is a Generic Switch Place providing an abstract for the agent-
based G-net, GL is a Goal module, PL is a Plan module, KB is a Knowledge-base module, EN is an Environment module, PN is a Planner module,
and IS is an internal structure of AG.

Definition 3.2 Planner Module
A Planner module of an agent-based G-net AG is a colored sub-net defined as a 7-tuple (IGS, IGO, IPL, IKB, IEN, IIS, DMU), where IGS, IGO,
IPL, IKB, IEN and IIS are interfaces with GSP, Goal module, Plan module, Knowledge-base module, Environment module and internal structure of
AG, respectively. DMU is a set of decision-making unit, and it contains three abstract transitions: make_decision, sensor and update.

Definition 3.3 Internal Structure (IS)
An internal structure (IS) of an agent-based G-net AG is a triple (IM, OM, PU), where IM/OM is the incoming/outgoing message section, which
defines a set of message processing units (MPU); and PU is the private utility section, which defines a set of methods.

Definition 3.4 Message Processing Unit (MPU)
A message processing unit (MPU) is a triple (P, T, A), where P is a set of places consisting of three special places: entry place, ISP and MSP. Each
MPU has only one entry place and one MSP, but it may contain multiple ISPs. T is a set of transitions, and each transition can be associated with a
set of guards. A is a set of arcs defined as: ((P-{MSP}) x T) ∪ ((T x (P-{entry}).

Definition 3.5 Method
A method is a triple (P, T, A), where P is a set of places with three special places: entry place, ISP and return place. Each method has only one entry
place and one return place, but it may contain multiple ISPs. T is a set of transitions, and each transition can be associated with a set of guards. A is a
set of arcs defined as: ((P-{return}) x T) ∪ ((T x (P-{entry}).

10/18/01 Computer Science Dept., UIC 22

Selling and Buying Agent Design

Buyer Buyer Buyer Seller Seller Seller

request-price

x

• refuse

propose

x

accept-proposal

reject-proposal

• confirm

request-price

propose

accept-proposal

• confirm

request-price

propose

reject-proposal

propose

accept-proposal

• confirm

(a) (b) (c)

Figure 6. A contract net protocol between buying
and selling agent

propose

x

accept-proposal

reject-proposal

*

12

10/18/01 Computer Science Dept., UIC 23

Selling and Buying Agent Design
(continue)

 GSP(G)

mesg_pr-
ocessing

incoming messages

Figure 7. An Agent-based G-net model for buying agent
class

Plan

 outgoing messages

propose refuse

t4

Environment

 Planner

MSP(self) MSP(self) MSP(self) MSP(G’.Aid)

confirm request-price accept-proposal reject-proposal

mesg_pr-
ocessing

mesg_pr-
ocessing

mesg_pr-
ocessing

 return return

private utilities

utility_1 utility_p

…

…

utili-
ty_1

utili-
ty_p

mesg_pr-
ocessing

MSP(G’.Aid) MSP(G’.Aid)

mesg_pr-
ocessing

Notes: G’.Aid = mTkn.body.msg.receiver

Goal Knowledge-base

10/18/01 Computer Science Dept., UIC 24

Verifying Agent-based G-net Model

• L3-live: any communicative act can be
performed as many times as needed.

• Concurrent: a number of conversations
among agents can happen at the same time.

• Effective: an agent communication protocol
can be correctly traced in the agent models.

13

10/18/01 Computer Science Dept., UIC 25

Verifying Agent-based G-net Model
(continue)

 GSP(G)

Figure 8. A transformed model of buying and selling agents

(goa/plan/kb) (env)

(ignore) (continue)

(external) (internal)

(next_
action)

GSP(G)

Buyer Seller

(dispatch_
incoming_
message)

(dispatch_
incoming_
message)

(dispatch_
outgoing_
message)

(dispatch_
outgoing_
message)

(next_
action)

(external) (internal)

(start_a_
conversation)

(start_a_
conversation)

(env)

(continue) (ignore)

a1 b1 c1 a2 b2 c2

d1 d2 e1 e2

f1 g1 h1 f2 g2 h2
i1 i2

j1 j2

k1 l1 m1 k2 l2 m2

t1 t2

t4 t5 t6 t7 t8

t9 t10 t11
t12 t13 t14 t15

t16 t17 t18

t19 t20
t21 t3

t22 t23 t24 t25 t26

t27 t28 t29
t30 t31

t34

t32

t35

t33

t36

(update) (update)

(propose, refuse, confirm)

(request_price, accept_proposal,
reject_proposal)

(request_price, accept_proposal,
reject_proposal)

(propose, refuse, confirm)

(goa/plan/kb)

10/18/01 Computer Science Dept., UIC 26

Part 3: A Framework for Modeling
Agent-Oriented Software

• Extend existing methodologies:
– object-oriented (OO) methodologies

– knowledge engineering (KE) methodologies

• Follow the first approach, and separate traditional object-
oriented features and reasoning mechanism to enhance
reuse.

• Show the useful role of inheritance in agent-oriented
software design.

14

10/18/01 Computer Science Dept., UIC 27

Reuse of the Agent-based Model

GSP(G)

message_
processing

incoming message

Figure 9. A generic agent-based G-Net model

Goal

 outgoing message

action_1 action_m

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(G’.Aid) MSP(G’.Aid)

action_1 action_n

message_
processing

message_
processing

message_
processing

 return return

private utility

utility_1 utility_p

…

…

…

…

…

…

utility_1 utility_p

Plan Environment

Notes: G’.Aid = mTkn.body.msg.receiver

10/18/01 Computer Science Dept., UIC 28

Redesign of the Planner Module

• Abstract transitions: represents abstract units of
decision-making or mental-state-updating.

• Autonomous units: makes an agent autonomous and
internally-motivated.

• Asynchronous Superclass switch Place (ASP): is used to
forward a method call to a subagent of the agent itself.

15

10/18/01 Computer Science Dept., UIC 29

A Template for the Planner Module
(initial design)

GSP(G)

Figure 10. A template for the Planner module (initial design)

Goal Knowledge-base

make_
decision

start_a_
conver_
sation

…

…

…

…

…

continue

external internal

to place “Goal”
to place “Plan”
to place “Knowledge base”

from transition
“update”

update_
goal/plan/kb

check_
primary

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

dispatch_
private_
utility

private

Plan

bypass

ASP(super)

ignore

next_
action

sensor

automatic_
update

new_
action

ASP(super)

ASP(super)

update

outgoing messages

private utilities

incoming messages

autonomous unit

Environment

syn
<e>

<e>

<e>

10/18/01 Computer Science Dept., UIC 30

Examples of Agent-Oriented Design
(class hierarchy)

 Shopping agent

Customer agent

Buying agent Selling agent

Retailer agent Auctioneer agent

Figure 11. The class hierarchy diagram of agents in an
electronic marketplace

16

10/18/01 Computer Science Dept., UIC 31

Examples of Agent-Oriented Design
(contract net protocol)

shopping agent facilitator agent

request-registration

• refuse

request-info
x

• confirm

(a) (b)

Figure 12. Contract net protocols (a) A template for the
registration protocol (b) A template for the price-negotiation
protocol (c) An example of the price-negotiation protocol

supply-info

x
accept-info *

buying agent selling agent

request-price

• refuse

x

accept-proposal

reject-proposal x

propose

propose

accept-proposal

reject-proposal
x

• confirm

• refuse

buying agent selling agent

request-price

propose

reject-proposal

propose

accept-proposal

• confirm

(c)

10/18/01 Computer Science Dept., UIC 32

Examples of Agent-Oriented Design
(shopping agent class)

GSP(SC)

mesg_pr-
ocessing

incoming messages

Figure 13. An agent-based G-Net model for shopping agent class
(SC)

Goal

 outgoing messages

request-info refuse

t4

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(self) MSP(self)

accept_info confirm request-registration supply-info

mesg_pr-
ocessing

mesg_pr-
ocessing

mesg_pr-
ocessing

 return return

private utilities

utility_1 utility_p

…

…

utili-
ty_1

utili-
ty_p

mesg_pr-
ocessing

MSP(G’.Aid) MSP(G’.Aid)

mesg_pr-
ocessing

Plan Environment

17

10/18/01 Computer Science Dept., UIC 33

Examples of Agent-Oriented Design
(buying agent class)

 GSP(BC)
BC extends SC

message_
processing

incoming messages

Figure 14. An agent-based G-Net model for buying agent class
(BC)

Goal

 outgoing messages

propose request-price

Knowledge-base

 Planner

MSP(self) MSP(G’.Aid) MSP(G’.Aid) MSP(G’.Aid)

accept-proposal reject-proposal

message_
processing

message_
processing

message_
processing

 return return

private utilities

utility_1 utility_p

…

…

utility_1 utility_p

Plan Environment

10/18/01 Computer Science Dept., UIC 34

Part 4: Analysis of Agent-Oriented
Models

• To help ensure a correct design that meets
certain specifications.

• To meet certain requirements such as liveness,
deadlock freeness and concurrency.

• Use Petri net tool: INA (Integrated Net Analyzer)
– verifying structural properties
– verifying behavioral properties
– modeling checking (CTL formulas)

18

10/18/01 Computer Science Dept., UIC 35

A Transformed Model of One Buying Agent and Two Selling Agents

GSP(Shopping)

Figure 15. A transformed model of one buying agent and two selling agents

(goal/plan/kb_1)

(make_
decision_1)

(start_a_
conversation_1)

(continue_1)

(external_1)
(internal_1)

(update_
goal/plan/kb_1)

(check_
primary_1)

(dispatch_
outgoing_
message_1)

(dispatch_
incoming_
message_1)

GSP(Selling_2)

(bypass_1)

(ignore_1)

(next_
action_1)

(sensor_1)

(automatic_
update_1)

(new_
action_1)

(update_1)

outgoing messages

incoming messages

(environment_1)

(dispatch_
incoming_
message_1)

GSP(Selling_1)

GSP(Buying)

ASP(Super)

(ignore_2)

(continue_2)

(goal/plan/kb_2) (environment_2)

(bypass_2) (sensor_2)

(internal_2)

(external_2)

(automatic_
update_2)

(new_
action_2)

(start_a_
conversation_2)

(make_
decision_2)

(update_
goal/plan/kb_2)

(update_2)

(next_
action_2)

Shopping: Shopping Subagent
Buying: Buying Primary Subagent
(Buying Agent Class extends
Shopping agent Class)

Selling_1: Selling Agent_1
Selling_2: Selling Agent_2

List of message processing units
=========================

P8: request_info
P9: refuse
P10: accept_info
P11: confirm
P16: request-registration
P17: supply_info
P25: propose
P31: request-price
P32: accept-proposal
P33: reject-proposal

outgoing messages

incoming messages

to superclass
ASP(Super)

to superclass

(dispatch_
outgoing_
message_2)

(check_
primary_2)

P1 P2
P3 P4

P5
P6

P8 P9 P10 P11

P12
P13

P14

P15

P16 P17

P18 P19
P20 P21

P22
P23

P25 P26

P27
P28

P29

P30

P31 P33P32
P34

P36

P35

t1
t2

t3 t4 t5 t6 t7 t8
t9

t10
t16

t12 t13 t14
t15

t11
t17

t18 t19

t20

t21
t22

t23 t24

t25 t26 t27
t28

t29

t30
t31

t32 t33 t34 t35

t36
t37 t38

t40

t41
t42 t43 t44

t46

t45

(syn_1)

(syn_2)

P7

P24

t39

(inhib_arc_1)

(inhib_arc_2)

10/18/01 Computer Science Dept., UIC 36

Experiment Result -1

Computation of the reachability graph

States generated: 8193

Arcs generated: 29701

Dead states:

484, 485,8189

Number of dead states found: 3

The net has dead reachable states.

The net is not live.

The net is not live and safe.

The net is not reversible (resetable).

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:

7, 9, 14, 15, 16, 17, 20, 27, 28, 32, 33

The net has dead transitions at the initial marking.

19

10/18/01 Computer Science Dept., UIC 37

Redesign of the Planner Module

GSP(G)

Figure 16. A template for the Planner module
(revised design)

Goal Knowledge-base

make_
decision

start_a_
conver_
sation

…

…

…

…

…

continue

external internal

to place “Goal”
to place “Plan”
to place “Knowledge base”

from transition
“update”

update_
goal/plan/kb

check_
primary

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

dispatch_
private_
utility

private

Plan

bypass

ASP(super)

ignore

next_
action

sensor

automatic_
update

new_
action

ASP(super)

ASP(super)

update

outgoing messages

private utilities

incoming messages

autonomous unit

Environment

syn
<e>

<e>

<e>

10/18/01 Computer Science Dept., UIC 38

Experiment Result - 2

Computation of the reachability graph

States generated: 262143

Arcs generated: 1540095

The net has no dead reachable states.

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:

7, 9, 14, 15, 16, 17, 20, 28

The net has dead transitions at the initial marking.

Liveness test:

Warning: Liveness analysis refers to the net where all dead transitions are
ignored.

The net is live, if dead transitions are ignored.

The computed graph is strongly connected.

The net is reversible (resetable).

20

10/18/01 Computer Science Dept., UIC 39

Property Verification by Using
Modeling Checking

• Concurrency

EF(P5 &(P13 &(P22 &P28))) Result: The formula is TRUE

• Mutual Exclusion

EF(P27 &P30) V (P29 &P30)) Result: The formula is FALSE

• Inheritance Mechanism (decision-making in subagent)

AG(-P12 &(-P14 &-P15)) Result: The formula is TRUE

• Inheritance Mechanism (ASP message forwarding I)

A[(P26 VP34)B(P5 VP6)] Result: The formula is TRUE

• Inheritance Mechanism (ASP message forwarding II)

A[P26 BP5]VA[P34 BP6] Result: The formula is FALSE

10/18/01 Computer Science Dept., UIC 40

Part 5: Our Current Research Work

• Model intelligent mobile agents (IMA).
– Introduce mobility into agent-oriented software model.
– Provide a framework for intelligent mobile agent.

• Implement a model-based agent development
prototype (Mad-Pro).
– Use Jini middleware for agent communication.
– Use the agent-oriented G-net model as guidelines for

agent detailed design and implementation.

21

10/18/01 Computer Science Dept., UIC 41

Overview of Agent Design
Architecture

Modularization
GSP, Goal, Plan, Knowledge-
base, Planner, Internal
Structure

Message Passing Mechanism
Asynchronous: MSP
Synchronous: ISP

Functional Units
MPU, Methods

Formal Agent Framework
Implementation Platform

Middleware
Jini/JavaSpaces/RMI

Java Virtual Machine
JVM, Java Swing etc.

Network Communication
TCP/IP, UDP

Design&
Implementation

Mad-Pro

(Model-Based
Agent

Development
- Prototype)

Figure 17. Overview of Agent Design Architecture

10/18/01 Computer Science Dept., UIC 42

The Jini Community

 Discovery Service Lookup Service Join Manager

AirTicket
Seller

AirTicket
Seller

AirTicket
Buyer

AirTicket
Buyer

Jini Community

SellerGSP
BuyerGSP

BuyerGSP SellerGSP

…
 …

Figure 19. The Jini Community with Agents of
AirTicketSeller and AirTicketBuyer

22

10/18/01 Computer Science Dept., UIC 43

The Class Hierarchy of Agents in an
Electronic Marketplace

 GSPImpl

 Domestic
Air Ticket Seller

Seller Buyer

Book Seller Air Ticket Buyer

Figure 18.The class hierarchy diagram of agents in an electronic marketplace

 GSP (interface)

Book Buyer Air Ticket Seller

 International
Air Ticket Seller

Textbook Buyer Literature Book Buyer … …

Class Library

Derived Classes

10/18/01 Computer Science Dept., UIC 44

Agent Interface Design

Figure 20. The agent interface for a buyer agent

23

10/18/01 Computer Science Dept., UIC 45

Part 6: Concluding Comments

• There is an increasing need to ensure that complex
software systems being developed are robust, reliable
and fit for purpose.

• Petri nets are an excellent formalism for formal
specification because they tend to provide a visual, and
thus easy to understand, model.

• Extending G-nets to support inheritance in agent-
oriented design provides an effective way for modeling
complex software systems.

10/18/01 Computer Science Dept., UIC 46

Future Work

• Provide a class library for agent design.
• Define the agent communication language

(ACL) in electronic commerce.
• Design and implement a compiler to

automatically translate agent communication
protocols into MPUs and decision-making units.

• Develop a model-based agent development
environment (MADE) for rapid agent design and
implementation.

24

10/18/01 Computer Science Dept., UIC 47

References

• A. Perkusich and J. de Figueiredo, “G-nets: A Petri Net Based Approach for Logical and Timing Analysis of
Complex Software Systems,” Journal of Systems and Software, 39(1): 39–59, 1997.

• N. R. Jennings, K. Sycara and M. Wooldridge, “A Roadmap of Agent Research and Development,”
International Journal of Autonomous Agents and Multi-Agent Systems, 1(1): 7-38, 1998.

• H. Xu and S. M. Shatz, “An Agent-based Petri Net Model with Application to Seller/Buyer Design in Electronic
Commerce,” Proceedings of the Fifth International Symposium on Autonomous Decentralized Systems
(ISADS 2001), March 26-28, 2001, Dallas, Texas, USA, pp.11-18.

• H. Xu and S. M. Shatz, “A Framework for Modeling Agent-Oriented Software,” Proceedings of the 21st
International Conference on Distributed Computing Systems (ICDCS-21), April 16-19, 2001, Phoenix, Arizona,
USA, pp.57-64.

• D. Kinny, M. Georgeff, and A. Rao, “A Methodology and Modeling Technique for Systems of BDI Agents,” In
W. Van de Velde and J. W. Perram, editors, Agents Breaking Away: Proceedings of the Seventh European
Workshop on Modeling Autonomous Agents in a Multi-Agent World, (LNAI Volume 1038), pp. 56-71, Springer-
Verlag: Berlin, Germany, 1996.

• C. A. Iglesias, M. Garrijo, J. Centeno-González, “A Survey of Agent-Oriented Methodologies,” Proceedings of
the Fifth International Workshop on Agent Theories, Architectures, and Language (ATAL-98), 1998, pp. 317-
330.

10/18/01 Computer Science Dept., UIC 48

The End
The copy of the slides for this lecture may be downloaded from

http://www.cs.uic.edu/~hxu1/Papers/Lecture542-2.PDF

