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Part 1: Background

• Formal methods in Software Engineering.
• Introduction to Petri net.
• G-net: A high level Petri net.
• Introduction to software agent.
• Agent-oriented software engineering.
• Our approach to agent-oriented design. 
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Purpose of Formal Methods

“The term “formal methods” denotes software development 
and analysis activities that entail a degree of 
mathematical rigor. (…) A formal method manipulates a 
precise mathematical description of a software system 
for the purpose of establishing that the system does or 
does not exhibit some property, which is itself-precisely 
defined.”                        (Dillon and Sankar, 1997)

Dillon, L. K. and S. Sankar (1997), Introduction to the Special Issue, IEEE 
Transactions on Software Engineering, Special Issue on Formal Methods in 
Software Practice, 23(5): 265-266.
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Formal Methods in Software 
Engineering

• To write formal requirements specification, which serves 
as a contract between the user and the designer.

• To be used in software design. Design errors may be 
caught in an early design stage.

• To support  system analysis and verification. 
– model checking
– theorem proving
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Introduction to Petri Net

• “Three-in-one” capability of a Petri net model.
– Graphical representation
– Mathematical description

– Simulation tool

• Definition:
A Petri net is a 4-tuple, PN = (P, T, F, M0) where     

P = {P1, P2, …, Pm} is a finite set of places;

T = {t1, t2, …, tn} is a finite set of transitions;

F ⊆ (P x T) ∪ (T x P) is a set of arcs (flow relation);

M0: P --> {0, 1, 2, 3, …} is the initial marking. 
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An Example
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Figure 1. A simple Petri net model example
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G-net: A High Level Petri Net

• Defined to support modeling of systems as a set of 
independent and loosely-coupled modules.

• Provides support for incremental design and 
successive modification.

• Is not fully object-oriented due to a lack of support for 
inheritance.
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An Example

Figure 2. G-net models of buyer and seller objects 
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Introduction to Software Agent

• The term “agent” comes from greek “agein”, which 
means to drive or to lead.

• Today the term “agent” denotes something that 
producing an effect, e.g., drying agent, a shipping agent.

• It is suitable to describe current trends in computer 
science: active instruments (to which work can be 
delegated) vs. passive tools.

• The term “agent” in computer science refers to software 
agent.
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Space of Software Agents

Service interactivity

Application interactivity

Data interactivity

Representation of users

Asynchrony
Message passing

Remote procedure call
Remote execution

Weak migration
Strong migration

Preferences
Reasoning

Planning
Learning

Agency

Mobility

Intelligence

Figure 3. Space of software agents defined by IBM
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Current Researches on Agents

• Do not exploit all the capabilities classified by 
these three dimensions.

• Multi-agent systems (MAS)
– Execute a given task.
– Use distributed but static agents.
– Collaborate and cooperate in an intelligent manner.

• Mobile agents (MA)
– Model agent mobility and agent coordination.
– Assume very limited or even no intelligence.  
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Agent-Oriented Software 
Engineering

• The agents can be considered as active objects, i.e., 
objects with a mental state.

• However, object-oriented methodologies do not address 
the following aspects:
– asynchronous message-passing mechanism
– mental state: plan, goal and knowledge
– autonomous behavior

• Agent-oriented approaches: provide guidelines for agent 
specification and design.
– AAII methodologies: based on BDI model.
– Gaia methodologies: based on role modeling.
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Formal Methods in Agent-Oriented 
Software Engineering

• Very little work on how to formally specify and design agents.
– DESIRE (DEsign and Specification of Interacting REasoning components) 

provides a compositional framework for modeling agents.
– dMARS (distributed MultiAgent Reasoning System) is based on Procedure 

Reasoning System (PRS) and supports formal reasoning.

– Agent models based on Petri nets, such as [Moldt and Wienberg 1997] 
[Merseguer et al. 2000] [Xu and Deng 2000]

• However, they do not explicitly model agent interactions, and they 
do not address the issue of inheritance.

• Unlike the previous work, our proposed agent models:
– support protocol-based agent interaction/communication.
– support reuse of functional units of our agent class models.
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Our Incremental Approach

Object-based G-nets (the original G-nets)

Standard G-nets (support class modeling)

Object-Oriented G-nets 
(support inheritance)

Agent-based G-nets (support agent 
modeling)

Agent-Oriented G-nets (support 
inheritance)
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Advantages of Our Approach

• Based on the Petri net formalism, which is a mature 
formal model in terms of both existing theory and tool 
support.

• Support reuse of object or agent designs.
• Provide a nature way for object-oriented software 

designers to design agent systems.
• Support net-based modeling and analysis.

– provide a clean interface among objects or agents.
– do not use text-based formalism in our formal models.   
– may unify the object-oriented G-nets and agent-oriented G-

nets to model complex software systems.
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Part 2: An Agent-based G-net 
Model

• Becomes one of the most important topics in distributed 
and autonomous decentralized systems. 

• Multi-agent systems (MAS): autonomous, reactive and 
internally-motivated agents.

• However, the G-net model is not sufficient for agent 
modeling because:
– Do not support a common communication language and 

common protocols among agents.
– Do not support asynchronous message passing directly.
– Be awkward to model agent’s mental state, such as goals, plans 

and knowledge. 
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An Agent-based G-net Model
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Figure 4. A generic agent-based G-net model 
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A Template of Planner Module
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Definitions of the Message Token: mTkn

struct Message{ 
int sender;             // the identifier of the message sender
int receiver;           // the identifier of the message receiver  
string protocol_type;   // the type of contract net protocol
string name;            // the name of incoming/outgoing messages
string content;         // the content of this message

}; 

enum Tag {internal, external};

struct MtdInvocation {
Triple (seq, sc, mtd);  // as defined in Section 2.1

} 

if (mTkn.tag ∈ {internal, external}) 
then mTkn.body =  struct {

Message msg;            // message body
}
else mTkn.body =  struct {

Message msg;            // message body
Tag old_tag;            // to record the old tag: internal/external
MtdInvocation miv;      // to trace method invocations  

} 
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Formal Definitions of Agent-based 
G-net Model

Definition 3.1 Agent-based G-net
An agent-based G-net is a 7-tuple AG = (GSP, GL, PL, KB, EN, PN, IS), where GSP is a Generic Switch Place providing an abstract for the agent-
based G-net, GL is a Goal module, PL is a Plan module, KB is a Knowledge-base module, EN is an Environment module, PN is a Planner module,
and IS is an internal structure of AG. 

Definition 3.2 Planner Module
A Planner module of an agent-based G-net AG is a colored sub-net defined as a 7-tuple (IGS, IGO, IPL, IKB, IEN, IIS, DMU), where IGS, IGO,
IPL, IKB, IEN and IIS are interfaces with GSP, Goal module, Plan module, Knowledge-base module, Environment module and internal structure of
AG, respectively. DMU is a set of decision-making unit, and it contains three abstract transitions: make_decision, sensor and update. 

Definition 3.3 Internal Structure (IS)
An internal structure (IS) of an agent-based G-net AG is a triple (IM, OM, PU), where IM/OM is the incoming/outgoing message section, which
defines a set of message processing units (MPU); and PU is the private utility section, which defines a set of methods.

Definition 3.4 Message Processing Unit (MPU)
A message processing unit (MPU) is a triple (P, T, A), where P is a set of places consisting of three special places: entry place, ISP and MSP. Each
MPU has only one entry place and one MSP, but it may contain multiple ISPs. T is a set of transitions, and each transition can be associated with a
set of guards. A is a set of arcs defined as: ((P-{MSP}) x T) ∪ ((T x (P-{entry}). 

Definition 3.5 Method
A method is a triple (P, T, A), where P is a set of places with three special places: entry place, ISP and return place. Each method has only one entry
place and one return place, but it may contain multiple ISPs. T is a set of transitions, and each transition can be associated with a set of guards. A is a
set of arcs defined as: ((P-{return}) x T) ∪ ((T x (P-{entry}).
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Selling and Buying Agent Design
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Selling and Buying Agent Design 
(continue)
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Figure 7. An Agent-based G-net model for buying agent 
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Verifying Agent-based G-net Model

• L3-live: any communicative act can be 
performed as many times as needed.

• Concurrent: a number of conversations 
among agents can happen at the same time.

• Effective: an agent communication protocol 
can be correctly traced in the agent models.
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Verifying Agent-based G-net Model 
(continue)

 
 
 GSP(G) 

Figure 8. A transformed model of buying and selling agents 

(goa/plan/kb) (env) 

(ignore) (continue) 

(external) (internal) 

(next_ 
action) 

GSP(G) 

Buyer Seller 

(dispatch_ 
incoming_ 
message) 

(dispatch_ 
incoming_ 
message) 

(dispatch_ 
outgoing_ 
message) 

(dispatch_ 
outgoing_ 
message) 

(next_ 
action) 

(external) (internal) 

(start_a_ 
conversation) 

(start_a_ 
conversation) 

(env) 

(continue) (ignore) 

a1 b1 c1 a2 b2 c2 

d1 d2 e1 e2 

f1 g1 h1 f2 g2 h2 
i1 i2 

j1 j2 

k1 l1 m1 k2 l2 m2 

t1 t2 

t4 t5 t6 t7 t8 

t9 t10 t11 
t12 t13 t14 t15 

t16 t17 t18 

t19 t20 
t21 t3 

t22 t23 t24 t25 t26 

t27 t28 t29 
t30 t31 

t34 

t32 

t35 

t33 

t36 

(update) (update) 

(propose, refuse, confirm) 

(request_price, accept_proposal, 
reject_proposal) 

(request_price, accept_proposal, 
reject_proposal) 

(propose, refuse, confirm) 

(goa/plan/kb) 

10/18/01 Computer Science Dept., UIC 26

Part 3: A Framework for Modeling 
Agent-Oriented Software

• Extend existing methodologies:
– object-oriented (OO) methodologies

– knowledge engineering (KE) methodologies 

• Follow the first approach, and separate traditional object-
oriented features and reasoning mechanism to enhance 
reuse.

• Show the useful role of inheritance in agent-oriented 
software design. 
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Reuse of the Agent-based Model
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Figure 9. A generic agent-based G-Net model 
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Redesign of the Planner Module

• Abstract transitions: represents abstract units of 
decision-making or mental-state-updating.

• Autonomous units: makes an agent autonomous and 
internally-motivated.

• Asynchronous Superclass switch Place (ASP): is used to 
forward a method call to a subagent of the agent itself.
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A Template for the Planner Module
(initial design)
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Figure 10. A template for the Planner module (initial design) 
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Examples of Agent-Oriented Design
(class hierarchy)

 
 Shopping agent 

Customer agent 

Buying agent Selling agent 

Retailer agent Auctioneer agent 

Figure 11. The class hierarchy diagram of agents in an 
electronic marketplace  
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Examples of Agent-Oriented Design
(contract net protocol)
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Figure 12. Contract net protocols (a) A template for the 
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Examples of Agent-Oriented Design
(shopping agent class)
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Examples of Agent-Oriented Design
(buying agent class)
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Figure 14. An agent-based G-Net model for buying agent class 
(BC) 
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Part 4: Analysis of Agent-Oriented 
Models

• To help ensure a correct design that meets 
certain specifications.

• To meet certain requirements such as liveness, 
deadlock freeness and concurrency.

• Use Petri net tool: INA (Integrated Net Analyzer)
– verifying structural properties
– verifying behavioral properties
– modeling checking (CTL formulas) 
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A Transformed Model of One Buying Agent and Two Selling Agents
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Figure 15. A transformed model of one buying agent and two selling agents 
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Experiment Result -1

Computation of the reachability graph

States generated: 8193

Arcs generated: 29701

Dead states:

484, 485,8189

Number of dead states found: 3

The net has dead reachable states.

The net is not live.

The net is not live and safe.

The net is not reversible (resetable).

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:

7, 9, 14, 15, 16, 17, 20, 27, 28, 32, 33

The net has dead transitions at the initial marking.
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Redesign of the Planner Module
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Experiment Result - 2

Computation of the reachability graph

States generated: 262143

Arcs generated: 1540095

The net has no dead reachable states.

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:

7, 9, 14, 15, 16, 17, 20, 28

The net has dead transitions at the initial marking.

Liveness test:

Warning: Liveness analysis refers to the net where all dead transitions are 
ignored.

The net is live, if dead transitions are ignored.

The computed graph is strongly connected.

The net is reversible (resetable).
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Property Verification by Using 
Modeling Checking

• Concurrency

EF(P5 &(P13 &(P22 &P28)))     Result: The formula is TRUE

• Mutual Exclusion

EF(P27 &P30) V (P29 &P30))    Result: The formula is FALSE

• Inheritance Mechanism (decision-making in subagent)

AG(-P12 &(-P14 &-P15))        Result: The formula is TRUE

• Inheritance Mechanism (ASP message forwarding I)

A[(P26 VP34)B(P5 VP6)]        Result: The formula is TRUE

• Inheritance Mechanism (ASP message forwarding II)

A[P26 BP5]VA[P34 BP6]         Result: The formula is FALSE
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Part 5: Our Current Research Work

• Model intelligent mobile agents (IMA).
– Introduce mobility into agent-oriented software model.
– Provide a framework for intelligent mobile agent.

• Implement a model-based agent development 
prototype (Mad-Pro).
– Use Jini middleware for agent communication.
– Use the agent-oriented G-net model as guidelines for 

agent detailed design and implementation.
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Overview of Agent Design 
Architecture
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GSP, Goal, Plan, Knowledge-
base, Planner, Internal 
Structure 

Message Passing Mechanism 
Asynchronous: MSP 
Synchronous: ISP 

Functional Units 
MPU, Methods 

Formal Agent Framework 
Implementation Platform 

Middleware 
Jini/JavaSpaces/RMI 

Java Virtual Machine 
JVM, Java Swing etc. 

Network Communication 
TCP/IP, UDP 

Design& 
Implementation 

 
Mad-Pro 

(Model-Based 
Agent 

Development 
- Prototype) 

Figure 17. Overview of Agent Design Architecture 
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The Jini Community
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Figure 19. The Jini Community with Agents of 
AirTicketSeller and AirTicketBuyer 
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The Class Hierarchy of Agents in an 
Electronic Marketplace
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Figure 18.The class hierarchy diagram of agents in an electronic marketplace  
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Agent Interface Design

Figure 20. The agent interface for a buyer agent
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Part 6: Concluding Comments

• There is an increasing need to ensure that complex 
software systems being developed are robust, reliable 
and fit for purpose.

• Petri nets are an excellent formalism for formal 
specification because they tend to provide a visual, and 
thus easy to understand, model. 

• Extending G-nets to support inheritance in agent-
oriented design provides an effective way for modeling 
complex software systems.
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Future Work

• Provide a class library for agent design.
• Define the agent communication language 

(ACL) in electronic commerce.
• Design and implement a compiler to 

automatically translate agent communication 
protocols into MPUs and decision-making units.

• Develop a model-based agent development 
environment (MADE) for rapid agent design and 
implementation.
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The End
The copy of the slides for this lecture may be downloaded from

http://www.cs.uic.edu/~hxu1/Papers/Lecture542-2.PDF


