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1.1.  IntroductionIntroduction

Security is the practice by which individuals and organizations protect their physical and intellectual

property from all forms of attack and pillage. Although security concerns are not new, there is revived

interest in the entire area of security in computing systems. This is because today's information systems

have become the repositories for both personal and corporate assets and computer networks are providing

new levels of access for users. Consequently, new opportunities for unauthorized interaction and possible

abuse may occur. In order to combat potential security threats, users need programs they can rely on.

Moreover, developers are looking for a development platform that has been designed with built-in security

capabilities. This is where the Java platform comes in. As a matter of fact, Java is designed from the ground

up for network-based computing, and security measures are an integral part of Java's design.

The business end of the Java security model is conveniently described by using the metaphor of the

Sandbox [1][2]. The sandbox comprises a number of cooperating system components, ranging from

security managers that execute as part of the application, to security measures designed into the Java

Virtual Machine* (JVM) and the language itself. Dr. Li Gong has classified the Java security model into

four layers, which are [1]:

1. The language is designed to be type-safe, and easy to use. Language features such as automatic

memory management, garbage collection and range checking on strings and arrays are examples of

how the language helps the programmer to write safer code.

2. Compilers and a bytecode verifier ensure that only legitimate Java code is executed. The bytecode

verifier, together with the Java virtual machine, guarantees language type safety at run time.

3. A class loader defines a  local name space, which is used to ensure that an untrusted applet cannot

interfere with the running of other Java programs.
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4. Access to crucial system resources is mediated by the Java virtual machine and is checked in advance

by a SecurityManager class that restricts to the minimum the actions of untrusted code.

In the next section, we will briefly introduce the Java security model  with respect to the above security

layers. In Section 3, we will concentrate on Java bytecode verification, and describe how to formally

specify and verify Java bytecode by using model checking.

2.2.  Java Security ArchitectureJava Security Architecture

Java security model can be illustrated in Figure 1 [5].  Note that both local Java bytecode and applets

(viewed as untrusted bytecode) must pass the bytecode verifier. After that, the class loader is invoked to

determine how and when applets can load classes. A class loader also enforces namespace partition, and it

ensures that one applet cannot affect the rest of the runtime environment. Finally the security manager is

used to perform run-time verification of all so-called “dangerous methods”, which are those methods that

request file I/O, network access, or those that want to define a new class loader.

Figure 1. Java Security Model

In the rest of this section, we will briefly describe three parts of the Java security model, which are

bytecode verifier, class loader and security manager.

                                                                                                                                                                    
1 This report serves as a part of background research on security modeling.
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2.1 Java 2.1 Java Bytecode VerifierBytecode Verifier

Java compiler compiles source programs into bytecodes, and a trustworthy compiler ensures that Java

source code does not violate the safety rules. At runtime, a compiled code fragment can come from

anywhere on the net, and it is unknown if the code fragment comes from a trustworthy compiler or not. So,

practically the Java runtime simply does not trust the incoming code, and instead subjects it to a series of

tests by bytecode verifier.

The bytecode verifier is a mini theorem prover, which verifies that the language ground rules are respected.

It checks the code to ensure that [5]:

• Compiled code is formatted correctly.

• Internal stacks will not overflow or underflow.

• No "illegal" data conversions will occur (i.e., the verifier will not allow integers to serve as pointers).

This ensures that variables will not be granted access to restricted memory areas.

• Byte-code instructions will have appropriately-typed parameters (for the same reason as described in

the previous bullet).

• All class member accesses are "legal". For instance, an object's private data must always remain

private.

The bytecode verifier ensures that the code passed to the Java interpreter is in a fit state to be executed and

can run without fear of breaking the Java interpreter.

2.2 Java Class Loader2.2 Java Class Loader

The class loader is defined in Java by an abstract class, ClassLoader. As an interface, it can be used to

define a policy for loading Java classes into the runtime environment. The major functions of the class

loader are [5]:

• It fetches the applet's code from the remote machine.

• It creates and enforces a namespace hierarchy. One of its more important functions is to ensure that

running applet do not replace system-level components within the runtime environment. In particular,

it prevents applets from creating their own class loader.

• It prevents applets from invoking method, that are part of the system's class loader.
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An executing Java environment (i.e., a running JVM), permits multiple Class Loaders, each with its own

namespace, to be active simultaneously, and namespaces allow the JVM to group classes based on where

they originates (e.g., local or remote). This delineates and controls what other portions of the runtime

environment the applet can access and modify. In addition, by placing restrictions on the namespace, the

class loader prevents untrusted applets from accessing other machine resources (e.g., local files).

2.3 Java Security Manager2.3 Java Security Manager

The SecurityManager contains a number of methods which are intended to be called to check specific types

of actions. The SecurityManager class itself is not intended to be used directly, instead it is intended to be

subclassed and installed as the System SecurityManager. The subclassed SecurityManager can be used to

instantiate the desired security policy.

The SecurityManager provides an extremely flexible and powerful mechanism for conditionally allowing

access to resources. The SecurityManager methods which check access are passed arguments which are

necessary to implement conditional access policies, as well as having the ability to check the execution

stack to determine if the code has been called by local or downloaded code. Some of the Security

Manager’s duties include [5]:

• Managing all socket operations.

• Guarding access to protected resources including files, personal data, etc.

• Controlling the creation of, and all access to, operating system programs and processes.

• Preventing the installation of new Class Loaders.

• Maintaining thread integrity.

• Controlling access to Java packages (i.e., groups of classes).

To ensure compliance, all methods that are part of the basic Java libraries (i.e., those supplied by Sun)

consult the Security Manager prior to executing any dangerous operations, such as network access and file

I/O request.

Our goal of trusting execution of untrusted programs on a JVM requires solutions to a number of problems,

such as defining the behavior of JVM execution, defining safe execution on the JVM, and proving that

recognized programs execute safely on JVM. In the next section, we will concentrate on Java bytecode

verification by using model checking, which is one the fundamental problem we need to solve. The

referenced paper was written by J. Posegga and H. Vogt [6]. In their paper, the authors described the basic

idea for Java bytecode verification by using model checking, and they tried to achieve the goal of proving
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CTL formulas [12] automatically. However, J. Posegga’s method was based on unlabeled state transition

graph, and the CTL formulas they described were not written in terms of atomic propositions. In this case,

the CTL formulas cannot be proved directly by using existing methods, such as the algorithms introduced

in paper [12]. In the next section, we first introduce the idea proposed by J. Posegga and H. Vogt, after that,

we introduce a labeled finite state transition graph and define a set of atomic propositions. Finally we show

that some interesting security properties written in CTL formula can be automatically proved by using the

algorithms introduced in paper [12].

3.3.  Java Java Bytecode Verification Using Model CheckingBytecode Verification Using Model Checking

Java bytecode verification ensures that bytecode can be trusted to avoid various dynamic runtime errors,

and it proves that a given bytecode program conforms to certain security requirements intended to protect

the executing platform from malicious code. There are many related works in this research area

[7][8][9][10], however each of them concentrates either on formalization of the process of bytecode verifier

or implementation of the bytecode verifier. Examples for formalization of the process of bytecode verifier

are listed as follows:

1. Stata and Abadi [7] proposed a type system for subroutines, provided lengthy proofs for the soundness

of the system and clarified several key semantic issues about subroutines.

2. Qian [8] presented a constraint-based typing system for objects, primitive values, methods and

subroutines and proved the soundness.

3. Goldberg [9] directly used dataflow analysis to formally specify bytecode verification focusing on

type-correctness and global type consistency for dynamic class loading. He successfully formalized a

way to relate bytecode verification and class loading.

And an example for the implementation of the bytecode verifier is the Kimera project [10], which is quite

effective in detecting flaws in commercial bytecode verifier. Using a comparative testing approach, they

wrote a reference bytecode verifier and tested commercial bytecode verifier against it. Their code is well

structured and organized, and derived from the English JVM specification [13]. It achieves a higher level of

assurance than commercial implementations. However, since there is no formal specification, it is not

possible to reason about it, or to establish its formal correctness.

Through all these works, there seems to be no implementation that is actually built upon a rigid formal

description. Based on this fact, J. Posegga and H. Vogt tried to show how Java bytecode verification can be

implemented as a model checking problem. As we can see from their paper, although they aimed at using a

standard model tool like SMV [11], and being able to describe bytecode verification at a very high level in

terms of CTL formulas [12], an important part, which is how to translate ASM (Abstract State Machine)
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rules [6] into a SMV program, is missing. In this report, we try to use another method, which was based on

labeled state transition graphs. By using the model checker introduced in paper [12], we may verify CTL

formulas efficiently.

3.1 Formal Semantics of Java 3.1 Formal Semantics of Java Bytecode InstructionsBytecode Instructions

The formal semantic of most Java bytecode instructions has been described in Qian’s work [8]. Based on

the formalism of Java byte code instructions, a Java bytecode program can be described as an ASM

(Abstract State Machine). All variables in a bytecode program plus some additional variables, such as pc

(program counter) become the state variables in the ASM, and each instruction is mapped to a state

transition in ASM, which could be described as an ASM rule as follows:

If pc == i then SIi;

where pc is the program counter, and RIi is the instantiation of rule schemes for it’s corresponding

instruction Ii. Thus a bytecode program I1; I2; …; In can be mapped to a set of ASM rules:

If pc==1 then SI1,

If pc==2 then SI2,

…

If pc==n then SIn

An ASM rule (SIi  
part) also serves as an interpretation for its corresponding instruction. An example of the

ASM rule (SIi  
part) for instruction “if_acmpeq L” could be:

S if_acmpeq L =

   x1 := top(opd)

   opd := pop(opd)

   x2 := top(opd)

   opd := pop(opd)

   pc :=

       L  if (x1==x2)

       pc+1   otherwise

Here x1 and x2 represent local variables (or registers), opd is the operand stack, and top(), pop() are regular

stack operations. The interpretation SI says, the instruction “if_acmpeq L” first restores the value of local
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variable x1 and x2 from the operand stack, then compares them. If they equal, the program branches to the

target address L; otherwise, it continues to execute the next instruction.

In paper [6], the authors did not treat all bytecode instructions in every detail, but picked up the jsr/ret

instructions as an illustration of building the ASM (Abstract State Machine) model. This is because jsr/ret

instructions, which are used for implementing subroutine calls, impose certain difficulties on bytecode

verification, and the reasons are as follows:

• The variables used by the subroutine must have appropriate types for the subroutine, this limits the use

of these variables in the code before the subroutine call.

• The ret instruction must be used in a well-structured way such that the variable used by ret contains a

valid return address.

• Subroutines may not be called recursively, and several subroutines can be completed by returning from

an inner subroutine call.

Actually, according to the official JVM specification by Lindholm and Yellin [13], jsr/ret instructions are

control transfer instructions typically used to implement finally clauses in Java . A “jsr L” instruction

pushes the return address pc+1 onto the operand stack and transfers control to the jsr target at address L;

while an “ret x” instruction uses a local variable x to restore the return address from the operand stack and

transfers control to the returning program point.

Similarly as before, the formal semantics of jsr/ret instructions can be described as follows:

S jsr L =

   opd := push(opd, pc+1)

   pc := L

S ret x =

   pc := x

S astore x =

   x := top(opd)

   opd := pop (opd)

   pc := pc +1

To meet our requirements for model checking, the above description is not enough. In addition, we use a

list of 2-tuples <target_addr, return_addr>, we call it sr, to record nested subroutine calls. By doing so, it
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would be possible for us to check, when an instruction “ret x” is executed, the return address x is valid. The

additional description is given by the following rules (S’Ii  
 part):

S’ jsr L =

    sr := <L, pc+1> • sr

S’ ret x =

    let (-, sr’) = split (sr, <-, x>)

    in sr:= sr’

where the dot (•) operator is used to add a 2-tuple to the list sr; the dash (-) in the let statement denotes a

“don’t care” part, and the function split() is defined as follows:

split (u<-,a>v, <-,a>) = (u<-,a>, v), where <-,a> ∉ u

Now we can build an ASM for a Java bytecode program. However, the domain of the state variables

defined above can be unbounded, thus the resulting ASM could be an infinite state machine. This is

unrealistic for a real bytecode program, and also it would be impossible for us to do the model checking

with infinite states. Our next step is to give constraints to the state variables and try to build a finite ASM

for a Java bytecode program.

3.2 Building a Finite Abstract State Machine3.2 Building a Finite Abstract State Machine

In order to build a finite state machine, we need to redefine the state variables which could only have a

finite number of values. Meanwhile, since for a concrete program, the number of variables is fixed, also we

assume that we add finite number of additional variables into ASM, our resulting ASM will be a finite state

machine. Now suppose the number of the bytecode instructions in a given program is codelength and the

instructions are given in an array code with the length codelength; the local variables are given in an array

variable with the length varlength; also we assume that the maximum height of operand stack opd is H and

the maximal integer value for each local variable variable(i) is N. Then we can define the state variables as

follows:

pc : {1, …, codelength} ∪ {undef}

variable(i): {0, 1, …, N} ∪ {undef}  for 1# i #varlength

opdsize: {0, 1, …, H}

sr: {<L, i+1> : ∃ i, code(i) = “jsr L”}*
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Here pc is explicitly restricted to the possible address of instructions in the code array, extended by a

special value undef denoting an invalid address; variable(i) is a local variable whose value must be an

integer between [0,N] and a value of undef denotes an underflow or overflow; opd is the operand stack with

the maximum height of H; opdsize is the current size of the operand stack opd; and sr is a list of 2-tuples of

<target_addr, return_addr>.

When we rewrite the ASM rules, the structure of the ASM rules are not changed, however, the functions

must be substituted with finite abstractions. We give the definitions of the abstracted functions as follows:

push(u, a) =

         {au}      if |u| < H

         {undef} otherwise

pop(u) =

         {v}  for u = av

         {undef} if u ∈ {ε, undef}

top(u) =

         {a} for u = av

         {undef} if u ∈ {ε, undef}

n + i =

         {m}  with m = n+i, if (n+i) #codelength

         {undef} otherwise

<a, b> • u =

         {<a,b>u}   if <a,b> ∉ u

         {undef}  otherwise

split (u, <-,a>) =

         {w<-,a>, v}  if u = w<-,a>v and <-,a> ∉ w

         {undef} otherwise

In J. Posegga and H. Vogt’s paper, the finite ASM corresponds to an unlabeled state transition graph, and

they defined the finite state transition graph as a 3-tuple M = (S, R, I), where S is a finite set of states; R ∈

S x S is the transition relation, and I ∈ S is the initial state. This method limited their ability to use CTL

formulas to express security properties. As we can see from their paper, the CTL formulas they described

are not in terms of atomic propositions. In the next section, we treat the finite state transition graph in

another way: we first define a set of atomic propositions P, and then we map each state to a subset of 2P.
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3.3 Labeling the State Transition Graph with Atomic Propositions3.3 Labeling the State Transition Graph with Atomic Propositions

A labeled state transition graph is a 5-tuple M = (P, S, L, N, S0) where P is a set of atomic propositions, S

is a finite set of states, L: S-> 2P is a function labeling each state with a set of atomic propositions, N ⊆ S x

S is a transition relation, and S0
 is an initial state. To meet the requirements for CTL formulas

expressiveness, we define a set of atomic propositions P as follows (of course, the set P can be extended to

meet certain requirements of a particular CTL formula):

p
1:  0 # opdsize #H

p
2
:  code(pc) == “jsr L”

p
3:  code(pc) == “ret x”

p
4
:  code(pc) == “jsr L” such that  ∃ x, <L, x> ∈ sr

p
5:  code(pc) == “ret x” such that  ∃ L, <L, x> ∈ sr

p
6
:  sr = ε

For the rest of elements in the 5-tuple M, we define them as follows:

• S is a finite set of states, and each state is a mapping from the set of state variables to a set of values.

The set of state variables is defined in Section 3.2. Since the number of values for each state variable is

finite, the number of states must be finite too, although most of the states are unreachable.

• L is a mapping from each state to a set of atomic propositions. For the given set of propositions P, the

value of each proposition p
i 
can be determined trivially for each state. We label each state with the set

of propositions those are valued as True.

• N stands for the transition relation, and it can be determined by ASM rules. For jsr/ret instructions,

each corresponding state has a unique successor. However, for conditional branching instructions such

as “if_acmeq L”, each corresponding state has two successors, which state will be reached next in our

abstract model is a nondeterministic choice.

• S0 is the initial state, for our model, the initial state corresponds to the following mappings:

       pc = 1

   variable(i) = undef  for 1# i #varlength

   opdsize = 0

   sr = ε
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With the labeled state transition graph M, we can write CTL formulas in terms of atomic propositions now.

By using the model checker introduced by E. M. Clarke, E. A. Emerson and A. P. Sistla [12], we may

verify that a Java bytecode program meets a certain security specification expressed in a temporal logic in

linear time.

3.4 Security Properties Verification3.4 Security Properties Verification

To illustrate that some interesting security properties can be expressed in CTL formulas and could actually

be verified, we rewrite some of the CTL formulas shown in paper [6] in terms of atomic propositions. The

last security property is used to show that not only safety properties can be specified, liveness properties

can be specified and verified in the same way. However the semantic of the last property might not be true

in real life.

1) No underflow or overflow on the operand stack

       AG p1

This property can simply be stated as above. The preceding quantifier AG says that p1 must hold at every

state in every execution path.

2) No recursive call allowed

   AG p2 à ¬ p4

This CTL formula says that, at every state in every execution path, whenever we meet a “jsr L” instruction,

it can not be the one that has been recorded in list sr. In other words, the same subroutine call can not be

made until it is returned.

3) Returning from subroutine

       AG p3 à p5    

This formula simply says that, at every state in every execution path, any return address must be recorded

before. In other words, the return address must be a valid one.

4) every subroutine call must finally be returned
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   AG (p2 à AF p6)

This formula says that, at every state in every execution path, whenever we meet a “jsr L” instruction, it

will finally be returned either from the same subroutine call or from one of it’s inner subroutine call. In

other words, finally, the list sr must become empty.

4.4.  Conclusion and Future WorksConclusion and Future Works

Java security model provides us an excellent test bed for security formal modeling and verification.

Currently, researches are concentrating on describing the formal semantics of Java bytecode instructions,

and trying to prove their soundness. Verifying Java bytecode by model checking is one of those works and

it’s different from the traditional theorem proving approach. Because there are many existing model

checking tools, such as SMV, it gives us a chance to concentrate ourselves on creating the model for Java

bytecode, and let the model checker do the rest of the work, such as security verification.  There are few

works on formal modeling the class loader, such as Goldberg’s work [9], and the formal modeling of Java

security manager remains untouched. However, those research areas are interesting and have realistic

significance. Our future work could be modeling Java security manager and verifying its soundness. This

work could be hard because security manager is a concurrent system, rather than a sequence of bytecode

instructions.
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