
1

04/17/01 Department of EECS, UIC 1

A Framework for Modeling Agent-Oriented Software

Haiping Xu and Sol M. Shatz

Department of Electrical Engineering and Computer Science
The University of Illinois at Chicago

Chicago, IL 60607
Email: {hxu1, shatz}@eecs.uic.edu

04/17/01 Department of EECS, UIC 2

Outline

• Introduction: Related work and our approach.

• Part 1: G-net background and the standard G-nets.

• Part 2: An agent-oriented G-net model.

• Part 3: Analysis of agent-oriented models.

• Part 4: Comments and future research plans.

2

04/17/01 Department of EECS, UIC 3

Why Formal Methods?

• To write formal requirements specification, which serves as
a contract between the user and the designer.

• To be used in software design. Design errors may be
caught in an early design stage.

• To support system analysis and verification.
– model checking

– theorem proving

04/17/01 Department of EECS, UIC 4

Agent-Oriented Approaches and Formal
Methods

• The agents can be considered as active objects, i.e.,
objects with a mental state.

• However, object-oriented methodologies do not address the
following aspects:
– asynchronous message-passing mechanism

– autonomous behavior modeling

• Agent-oriented approaches: provide guidelines for agent
specification and design.
– AAII methodologies: based on BDI model.

– Gaia methodologies: based on role modeling.

3

04/17/01 Department of EECS, UIC 5

Agent-Oriented Approaches and Formal
Methods (continue)

• Very little work on how to formally specify and design agents.
– DESIRE (DEsign and Specification of Interacting REasoning components) provides a

compositional framework for modeling agents.

– dMARS (distributed MultiAgent Reasoning System) is based on Procedure
Reasoning System (PRS) and supports formal reasoning.

– Agent models based on Petri nets, such as [Moldt and Wienberg 1997] [Merseguer et
al. 2000] [Xu and Deng 2000]

• However, they do not explicitly model agent interactions, and they do
not address the issue of inheritance.

• Unlike the previous work, our proposed agent models:

– support protocol-based agent interaction/communication.

– support reuse of functional units of our agent class models.

04/17/01 Department of EECS, UIC 6

Our Incremental Approach

Object-based G-nets (the original G-nets)

Standard G-nets (support class modeling)

Object-Oriented G-nets
(support inheritance)

Agent-based G-nets (support agent
modeling)

Agent-Oriented G-nets (support
inheritance)

4

04/17/01 Department of EECS, UIC 7

Advantages of Our Approach

• Based on the Petri net formalism, which is a mature formal
model in terms of both existing theory and tool support.

• Support reuse of object or agent designs.

• Provide a nature way for object-oriented software designers
to design agent systems.

• Support net-based modeling and analysis.
– provide a clean interface among objects or agents.

– do not use text-based formalism in our formal models.

– may unify the object-oriented G-nets and agent-oriented G-nets to
model complex software systems.

04/17/01 Department of EECS, UIC 8

Part 1: G-net Background and the
Standard G-nets

• Is a type of high-level Petri net.

• Defined to support modeling of systems as a set of
independent and loosely-coupled modules.

• Provide support for incremental design and successive
modification.

• Is not fully object-oriented due to a lack of support for
inheritance.

5

04/17/01 Department of EECS, UIC 9

An Example

Figure 1. G-net models of buyer and seller objects

GSP(Buyer)

ISP(Seller,
sellGoods())

 buyGoods() askPrice()

t1

t2

ISP(Seller,
returnPrice())

t3

t4

returnPrice()

calculate_
price

sell_
goods

sellGoods()

GSP(Seller)

t8

t7

t6

t5

BuyGoods();
askPrice();

returnPrice();
sellGoods();

04/17/01 Department of EECS, UIC 10

Extending G-nets to Support
Class Modeling

• Motivation: to support abstraction and inheritance.

• Interpret a G-net as a model of class.

• Instantiate a G-net G:
– generates a unique object identifier G.Oid

– initializes the state variables defined in G

– ISP method invocation becomes 2-tuple (G’.Oid, mtd)

6

04/17/01 Department of EECS, UIC 11

Formal Definitions of the Standard
G-net Model

Definition 2.1 G-net system

A G-net system (GNS) is a triple GNS = (INS, GC, GO), where INS is a set of initialization statements used to instantiate G-nets as G-net objects;

GC is a set of G-nets which are used to define classes; and GO is a set of G-net objects which are instances of G-nets.

Definition 2.2 G-net

A G-net is a 2-tuple G = (GSP, IS), where GSP is a Generic Switch Place (GSP) providing an abstraction for the G-net; and IS is the Internal

Structure, which is a set of modified Pr/T nets. A G-net is an abstract of a set of similarly G-net objects, and it can be used to model a class.

Definition 2.3 G-net object

A G-net object is an instantiated G-net with a unique object identifier. It can be represented as (G, OID, ST), where G is a G-net, OID is the unique

object identifier and ST is the state of the object.

Definition 2.4 Generic Switching Place (GSP)

A Generic Switch Place (GSP) is a triple of (NID, MS, AS), where NID is a unique identifier (class identifier) of a G-net G; MS is a set of methods

defined as the interface of G-net G; and AS is a set of attributes defined as a set of instance variables.

Definition 2.5 Internal Structure (IS)

The internal structure of G-net G (representing a class), G.IS, is a net structure, i.e., a modified Pr/T net. G.IS consists of a set of methods.

Definition 2.6 Method

A method is a triple (P, T, A), where P is a set of places with three special places called entry place, ISP place and goal place. Each method can

have only one entry place and one goal place, but it may contain multiple ISP places. T is a set of transitions, and each transition can be associated

with a set of guards. A is a set of arcs defined as: ((P-{goal place}) x T) ∪ ((T x (P-{entry place}).

04/17/01 Department of EECS, UIC 12

Part 2: An Agent-Oriented G-net Model

• Becomes one of the most important topics in distributed
and autonomous decentralized systems.

• Multi-agent systems (MAS): autonomous, reactive and
internally-motivated agents.

• However, the standard G-net model is not sufficient for
agent modeling because:
– Do not support a common communication language and common

protocols among agents.

– Do not support asynchronous message passing directly.

– Be awkward to model agent’s mental state, such as goals, plans
and knowledge.

7

04/17/01 Department of EECS, UIC 13

An Agent-Oriented G-net Model

GSP(G)

message_
processing

incoming message

Figure 2. A generic agent-oriented G-net model

Goal

 outgoing message

action_1 action_m

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(G’.Aid) MSP(G’.Aid)

action_1 action_n

message_
processing

message_
processing

message_
processing

 return return

private utility

utility_1 utility_p

…

…

…

…

…

…

utility_1 utility_p

Plan Environment

Notes: G’.Aid = mTkn.body.msg.receiver

04/17/01 Department of EECS, UIC 14

A Template for the Planner Module
(initial design)

GSP(G)

Figure 3. A template for the Planner module (initial design)

Goal Knowledge-base

make_
decision

start_a_
conver_
sation

…

…

…

…

…

continue

external internal

to place “Goal”
to place “Plan”
to place “Knowledge base”

from transition
“update”

update_
goal/plan/kb

check_
primary

dispatch_
outgoing_
message

dispatch_
incoming_
message

dispatch_
private_
utility

private

Plan

bypass

ASP(super)

ignore

next_
action

sensor

automatic_
update

new_
action

ASP(super)

ASP(super)

update

outgoing messages

private utilities

incoming messages

autonomous unit

Environment

syn
<e>

<e>

<e>

8

04/17/01 Department of EECS, UIC 15

Definitions of the Message Token: mTkn

struct Message{

int sender; // the identifier of the message sender
int receiver; // the identifier of the message receiver
string protocol_type; // the type of contract net protocol

string name; // the name of incoming/outgoing messages
string content; // the content of this message

};

enum Tag {internal, external};

struct MtdInvocation {
Triple (seq, sc, mtd); // as defined in Section 2.1

}

if (mTkn.tag ∈ {internal, external})
then mTkn.body = struct {

Message msg; // message body
}
else mTkn.body = struct {

Message msg; // message body
Tag old_tag; // to record the old tag: internal/external
MtdInvocation miv; // to trace method invocations

}

04/17/01 Department of EECS, UIC 16

Formal Definitions of Agent-Oriented
G-net Model

Definition 3.1 Agent-Oriented G-net

An agent-based G-net is a 7-tuple AG = (GSP, GL, PL, KB, EN, PN, IS), where GSP is a Generic Switch Place providing an abstract for the agent-
based G-net, GL is a Goal module, PL is a Plan module, KB is a Knowledge-base module, EN is an Environment module, PN is a Planner module,

and IS is an internal structure of AG.

Definition 3.2 Planner Module

A Planner module of an agent-based G-net AG is a colored sub-net defined as a 7-tuple (IGS, IGO, IPL, IKB, IEN, IIS, DMU), where IGS, IGO,

IPL, IKB, IEN and IIS are interfaces with GSP, Goal module, Plan module, Knowledge-base module, Environment module and internal structure of

AG, respectively. DMU is a set of decision-making unit, and it contains three abstract transitions: make_decision, sensor and update.

Definition 3.3 Internal Structure (IS)

An internal structure (IS) of an agent-based G-net AG is a triple (IM, OM, PU), where IM/OM is the incoming/outgoing message section, which

defines a set of message processing units (MPU); and PU is the private utility section, which defines a set of methods.

Definition 3.4 Message Processing Unit (MPU)

A message processing unit (MPU) is a triple (P, T, A), where P is a set of places consisting of three special places: entry place, ISP and MSP. Each

MPU has only one entry place and one MSP, but it may contain multiple ISPs. T is a set of transitions, and each transition can be associated with a

set of guards. A is a set of arcs defined as: ((P-{MSP}) x T) ∪ ((T x (P-{entry}).

Definition 3.5 Method

A method is a triple (P, T, A), where P is a set of places with three special places: entry place, ISP and return place. Each method has only one entry

place and one return place, but it may contain multiple ISPs. T is a set of transitions, and each transition can be associated with a set of guards. A is a
set of arcs defined as: ((P-{return}) x T) ∪ ((T x (P-{entry}).

9

04/17/01 Department of EECS, UIC 17

Examples of Agent-Oriented Design
(class hierarchy)

Shopping agent

Customer agent

Buying agent Selling agent

Retailer agent Auctioneer agent

Figure 4. The class hierarchy diagram of agents
in an electronic marketplace

04/17/01 Department of EECS, UIC 18

Examples of Agent-Oriented Design
(contract net protocol)

shopping agent facilitator agent

request-registration

• refuse

request-info
x

• confirm

(a) (b)

Figure 5. Contract net protocols (a) A template for the registration
protocol (b) A template for the price-negotiation protocol (c) An
example of the price-negotiation protocol

supply-info

x
accept-info *

buying agent selling agent

request-price

• refuse

x

accept-proposal

reject-proposalx

propose

propose

accept-proposal

reject-proposal
x

• confirm

• refuse

buying agent selling agent

request-price

propose

reject-proposal

propose

accept-proposal

• confirm

(c)

10

04/17/01 Department of EECS, UIC 19

Examples of Agent-Oriented Design
(shopping agent class)

GSP(SC)

mesg_pr-
ocessing

incoming messages

Figure 6. An agent-based G-net model for shopping agent class (SC)

Goal

 outgoing messages

request-info refuse

t4

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(self) MSP(self)

accept_info confirm request-registration supply-info

mesg_pr-
ocessing

mesg_pr-
ocessing

mesg_pr-
ocessing

 return return

private utilities

utility_1 utility_p

…

…

utili-
ty_1

utili-
ty_p

mesg_pr-
ocessing

MSP(G’.Aid) MSP(G’.Aid)

mesg_pr-
ocessing

Plan Environment

04/17/01 Department of EECS, UIC 20

Examples of Agent-Oriented Design
(buying agent class)

 GSP(BC)
BC extends SC

message_
processing

incoming messages

Figure 7. An agent-based G-net model for buying agent class (BC)

Goal

 outgoing messages

propose request-price

Knowledge-base

 Planner

MSP(self) MSP(G’.Aid) MSP(G’.Aid) MSP(G’.Aid)

accept-proposal reject-proposal

message_
processing

message_
processing

message_
processing

 return return

private utilities

utility_1 utility_p

…

…

utility_1 utility_p

Plan Environment

11

04/17/01 Department of EECS, UIC 21

Part 3: Analysis of Agent-Oriented
Models

• To help ensure a correct design that meets certain
specifications.

• To meet certain requirements such as liveness, deadlock
freeness and concurrency.

• Use Petri net tool: INA (Integrated Net Analyzer)
– verifying structural properties

– verifying behavioral properties

– modeling checking (CTL formulas)

04/17/01 Department of EECS, UIC 22

A Transformed Model of One Buying Agent and Two Selling Agents

GSP(Shopping)

Figure 8. A transformed model of one buying agent and two selling agents

(goal/plan/kb_1)

(make_
decision_1)

(start_a_
conversation_1)

(continue_1)

(external_1)
(internal_1)

(update_
goal/plan/kb_1)

(check_
primary_1)

(dispatch_
outgoing_
message_1)

(dispatch_
incoming_
message_1)

GSP(Selling_2)

(bypass_1)

(ignore_1)

(next_
action_1)

(sensor_1)

(automatic_
update_1)

(new_
action_1)

(update_1)

outgoing messages

incoming messages

(environment_1)

(dispatch_
incoming_
message_1)

GSP(Selling_1)

GSP(Buying)

ASP(Super)

(ignore_2)

(continue_2)

(goal/plan/kb_2) (environment_2)

(bypass_2) (sensor_2)

(internal_2)

(external_2)

(automatic_
update_2)

(new_
action_2)

(start_a_
conversation_2)

(make_
decision_2)

(update_
goal/plan/kb_2)

(update_2)

(next_
action_2)

Shopping: Shopping Subagent
Buying : Buying Primary Subagent
(Buying Agent Class extends
Shopping agent Class)
Selling_1: Selling Agent_1
Selling_2: Selling Agent_2

List of message processing units
=========================

P8: request_info
P9: refuse
P10: accept_info
P11: confirm
P16: request-registration
P17: supply_info
P25: propose
P31: request-price
P32: accept-proposal
P33: reject-proposal

outgoing messages

incoming messages

to superclass
ASP(Super)

to superclass

(dispatch_
outgoing_
message_2)

(check_
primary_2)

P1 P2
P3 P4

P5
P6

P8 P9 P10 P11

P12
P13

P14

P15

P16 P17

P18 P19
P20 P21

P22
P23

P25 P26

P27
P28

P29

P30

P31 P33P32
P34

P36

P35

t1
t2

t3 t4 t5 t6 t7 t8
t9

t10
t16

t12 t13 t14
t15

t11
t17

t18 t19

t20

t21
t22

t23 t24

t25 t26 t27
t28

t29

t30
t31

t32 t33 t34 t35

t36
t37 t38

t40

t41
t42 t43 t44

t46

t45

(syn_1)

(syn_2)

P7

P24

t39

(inhib_arc_1)

(inhib_arc_2)

12

04/17/01 Department of EECS, UIC 23

Experiment Result -1

Computation of the reachability graph

States generated: 8193

Arcs generated: 29701

Dead states:

484, 485,8189

Number of dead states found: 3

The net has dead reachable states.

The net is not live.

The net is not live and safe.

The net is not reversible (resetable).

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:

7, 9, 14, 15, 16, 17, 20, 27, 28, 32, 33

The net has dead transitions at the initial marking.

04/17/01 Department of EECS, UIC 24

Redesign of the Planner Module

GSP(G)

Figure 9. A template for the Planner module
(revised design)

Goal Knowledge-base

make_
decision

start_a_
conver_
sation

…

…

…

…

…

continue

external internal

to place “Goal”
to place “Plan”
to place “Knowledge base”

from transition
“update”

update_
goal/plan/kb

check_
primary

dispatch_
outgoing_
message

dispatch_
incoming_
message

dispatch_
private_
utility

private

Plan

bypass

ASP(super)

ignore

next_
action

sensor

automatic_
update

new_
action

ASP(super)

ASP(super)

update

outgoing messages

private utilities

incoming messages

autonomous unit

Environment

syn
<e>

<e>

<e>

13

04/17/01 Department of EECS, UIC 25

Experiment Result - 2

Computation of the reachability graph

States generated: 262143

Arcs generated: 1540095

The net has no dead reachable states.

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:

7, 9, 14, 15, 16, 17, 20, 28

The net has dead transitions at the initial marking.

Liveness test:

Warning: Liveness analysis refers to the net where all dead transitions
are ignored.

The net is live, if dead transitions are ignored.

The computed graph is strongly connected.

The net is reversible (resetable).

04/17/01 Department of EECS, UIC 26

Property Verification by Using Modeling
Checking

• Concurrency

EF(P5 &(P13 &(P22 &P28))) Result: The formula is TRUE

• Mutual Exclusion

EF(P27 &P30) V (P29 &P30)) Result: The formula is FALSE

• Inheritance Mechanism (decision-making in subagent)

AG(-P12 &(-P14 &-P15)) Result: The formula is TRUE

• Inheritance Mechanism (ASP message forwarding I)

A[(P26 VP34)B(P5 VP6)] Result: The formula is TRUE

• Inheritance Mechanism (ASP message forwarding II)

A[P26 BP5]VA[P34 BP6] Result: The formula is FALSE

14

04/17/01 Department of EECS, UIC 27

Part 4: Concluding Comments

• There is an increasing need to ensure that complex
software systems being developed are robust, reliable and
fit for purpose.

• Petri nets are an excellent formalism for formal specification
because they tend to provide a visual, and thus easy to
understand, model.

• Extending G-nets to support inheritance in object-oriented
design and agent-oriented design provides an effective way
for modeling complex software systems.

04/17/01 Department of EECS, UIC 28

Future Research Plans

• A unified model for object-oriented and agent-oriented
software design.
– complex software systems with both objects and agents.

– object-object, agent-agent, and object-agent interactions.

• Extending agent-oriented G-net model for mobile agent
design.
– incorporate mobility into our agent models.

– with application to electronic marketplace.

• Security issues in mobile agent design.

