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Why Formal Methods?

• To write formal requirements specification, which serves as 
a contract between the user and the designer.

• To be used in software design. Design errors may be 
caught in an early design stage.

• To support  system analysis and verification. 
– model checking

– theorem proving
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Agent-Oriented Approaches and Formal 
Methods

• The agents can be considered as active objects, i.e., 
objects with a mental state.

• However, object-oriented methodologies do not address the 
following aspects:
– asynchronous message-passing mechanism

– autonomous behavior modeling

• Agent-oriented approaches: provide guidelines for agent 
specification and design.
– AAII methodologies: based on BDI model.

– Gaia methodologies: based on role modeling.
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Agent-Oriented Approaches and Formal 
Methods (continue)

• Very little work on how to formally specify and design agents.
– DESIRE (DEsign and Specification of Interacting REasoning components) provides a 

compositional framework for modeling agents.

– dMARS (distributed MultiAgent Reasoning System) is based on Procedure 
Reasoning System (PRS) and supports formal reasoning.

– Agent models based on Petri nets, such as [Moldt and Wienberg 1997] [Merseguer et 
al. 2000] [Xu and Deng 2000]

• However, they do not explicitly model agent interactions, and they do 
not address the issue of inheritance.

• Unlike the previous work, our proposed agent models:

– support protocol-based agent interaction/communication.

– support reuse of functional units of our agent class models.
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Our Incremental Approach

Object-based G-nets (the original G-nets)

Standard G-nets (support class modeling)

Object-Oriented G-nets 
(support inheritance)

Agent-based G-nets (support agent 
modeling)

Agent-Oriented G-nets (support 
inheritance)
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Advantages of Our Approach

• Based on the Petri net formalism, which is a mature formal 
model in terms of both existing theory and tool support.

• Support reuse of object or agent designs.

• Provide a nature way for object-oriented software designers 
to design agent systems.

• Support net-based modeling and analysis.
– provide a clean interface among objects or agents.

– do not use text-based formalism in our formal models.   

– may unify the object-oriented G-nets and agent-oriented G-nets to 
model complex software systems.
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Part 1: G-net Background and the 
Standard G-nets

• Is a type of high-level Petri net.

• Defined to support modeling of systems as a set of 
independent and loosely-coupled modules.

• Provide support for incremental design and successive 
modification.

• Is not fully object-oriented due to a lack of support for 
inheritance.
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An Example

Figure 1. G-net models of buyer and seller objects 
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Extending G-nets to Support 
Class Modeling

• Motivation: to support abstraction and inheritance.

• Interpret a G-net as a model of class.

• Instantiate a G-net G:
– generates a unique object identifier G.Oid

– initializes the state variables defined in G

– ISP method invocation becomes 2-tuple (G’.Oid, mtd)
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Formal Definitions of the Standard
G-net Model

Definition 2.1 G-net system

A G-net system (GNS) is a triple GNS = (INS, GC, GO), where INS is a set of initialization statements used to instantiate G-nets as G-net objects;

GC is a set of G-nets which are used to define classes; and GO is a set of G-net objects which are instances of G-nets.

Definition 2.2 G-net

A G-net is a 2-tuple G = (GSP, IS), where GSP is a Generic Switch Place (GSP) providing an abstraction for the G-net; and IS is the Internal

Structure, which is a set of modified Pr/T nets. A G-net is an abstract of a set of similarly G-net objects, and it can be used to model a class.

Definition 2.3 G-net object

A G-net object is an instantiated G-net with a unique object identifier. It can be represented as (G, OID, ST), where G is a G-net, OID is the unique

object identifier and ST is the state of the object.

Definition 2.4 Generic Switching Place (GSP)

A Generic Switch Place (GSP) is a triple of (NID, MS, AS), where NID is a unique identifier (class identifier) of a G-net G; MS is a set of methods

defined as the interface of G-net G; and AS is a set of attributes defined as a set of instance variables.

Definition 2.5 Internal Structure (IS)

The internal structure of G-net G (representing a class), G.IS, is a net structure, i.e., a modified Pr/T net. G.IS consists of a set of methods.

Definition 2.6 Method

A method is a triple (P, T, A), where P is a set of places with three special places called entry place, ISP place and goal place. Each method can

have only one entry place and one goal place, but it may contain multiple ISP places. T is a set of transitions, and each transition can be associated

with a set of guards. A is a set of arcs defined as: ((P-{goal place}) x T) ∪ ((T x (P-{entry place}). 
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Part 2: An Agent-Oriented G-net Model

• Becomes one of the most important topics in distributed 
and autonomous decentralized systems. 

• Multi-agent systems (MAS): autonomous, reactive and 
internally-motivated agents.

• However, the standard G-net model is not sufficient for 
agent modeling because:
– Do not support a common communication language and common 

protocols among agents.

– Do not support asynchronous message passing directly.

– Be awkward to model agent’s mental state, such as goals, plans 
and knowledge. 
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An Agent-Oriented G-net Model

GSP(G)

message_
processing

incoming message

Figure 2. A generic agent-oriented G-net model
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A Template for the Planner Module 
(initial design)

GSP(G)

Figure 3. A template for the Planner module (initial design)
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Definitions of the Message Token: mTkn

struct Message{

int sender;             // the identifier of the message sender
int receiver;           // the identifier of the message receiver  
string protocol_type;   // the type of contract net protocol

string name;            // the name of incoming/outgoing messages
string content;         // the content of this message

}; 

enum Tag {internal, external};

struct MtdInvocation {
Triple (seq, sc, mtd);  // as defined in Section 2.1

} 

if (mTkn.tag ∈ {internal, external}) 
then mTkn.body = struct {

Message msg;            // message body
}
else mTkn.body = struct {

Message msg;            // message body
Tag old_tag;            // to record the old tag: internal/external
MtdInvocation miv;      // to trace method invocations  

} 
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Formal Definitions of Agent-Oriented 
G-net Model

Definition 3.1 Agent-Oriented G-net

An agent-based G-net is a 7-tuple AG = (GSP, GL, PL, KB, EN, PN, IS), where GSP is a Generic Switch Place providing an abstract for the agent-
based G-net, GL is a Goal module, PL is a Plan module, KB is a Knowledge-base module, EN is an Environment module, PN is a Planner module,

and IS is an internal structure of AG. 

Definition 3.2 Planner Module

A Planner module of an agent-based G-net AG is a colored sub-net defined as a 7-tuple (IGS, IGO, IPL, IKB, IEN, IIS, DMU), where IGS, IGO,

IPL, IKB, IEN and IIS are interfaces with GSP, Goal module, Plan module, Knowledge-base module, Environment module and internal structure of

AG, respectively. DMU is a set of decision-making unit, and it contains three abstract transitions: make_decision, sensor and update. 

Definition 3.3 Internal Structure (IS)

An internal structure (IS) of an agent-based G-net AG is a triple (IM, OM, PU), where IM/OM is the incoming/outgoing message section, which

defines a set of message processing units (MPU); and PU is the private utility section, which defines a set of methods.

Definition 3.4 Message Processing Unit (MPU)

A message processing unit (MPU) is a triple (P, T, A), where P is a set of places consisting of three special places: entry place, ISP and MSP. Each

MPU has only one entry place and one MSP, but it may contain multiple ISPs. T is a set of transitions, and each transition can be associated with a

set of guards. A is a set of arcs defined as: ((P-{MSP}) x T) ∪ ((T x (P-{entry}). 

Definition 3.5 Method

A method is a triple (P, T, A), where P is a set of places with three special places: entry place, ISP and return place. Each method has only one entry

place and one return place, but it may contain multiple ISPs. T is a set of transitions, and each transition can be associated with a set of guards. A is a
set of arcs defined as: ((P-{return}) x T) ∪ ((T x (P-{entry}).
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Examples of Agent-Oriented Design 
(class hierarchy)

Shopping agent

Customer agent

Buying agent Selling agent

Retailer agent Auctioneer agent

Figure 4. The class hierarchy diagram of agents
in an electronic marketplace
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Examples of Agent-Oriented Design
(contract net protocol)
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x
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Figure 5. Contract net protocols (a) A template for the registration
protocol (b) A template for the price-negotiation protocol (c) An
example of the price-negotiation protocol

supply-info

x
accept-info *

buying agent selling agent

request-price

• refuse

x

accept-proposal

reject-proposalx

propose

propose

accept-proposal

reject-proposal
x

• confirm

• refuse

buying agent selling agent

request-price

propose

reject-proposal

propose

accept-proposal

• confirm

(c)



10

04/17/01 Department of EECS, UIC 19

Examples of Agent-Oriented Design
(shopping agent class)
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mesg_pr-
ocessing

incoming messages

Figure 6. An agent-based G-net model for shopping agent class (SC)
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Examples of Agent-Oriented Design
(buying agent class)

   GSP(BC)
BC extends SC

message_
processing

incoming messages

Figure 7. An agent-based G-net model for buying agent class (BC)
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Part 3: Analysis of Agent-Oriented 
Models

• To help ensure a correct design that meets certain 
specifications.

• To meet certain requirements such as liveness, deadlock 
freeness and concurrency.

• Use Petri net tool: INA (Integrated Net Analyzer)
– verifying structural properties

– verifying behavioral properties

– modeling checking (CTL formulas) 
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A Transformed Model of One Buying Agent and Two Selling Agents
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Figure 8. A transformed model of one buying agent and two selling agents
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Experiment Result -1

Computation of the reachability graph

States generated: 8193

Arcs generated: 29701

Dead states:

484, 485,8189

Number of dead states found: 3

The net has dead reachable states.

The net is not live.

The net is not live and safe.

The net is not reversible (resetable).

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:

7, 9, 14, 15, 16, 17, 20, 27, 28, 32, 33

The net has dead transitions at the initial marking.
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Redesign of the Planner Module

GSP(G)

Figure 9. A template for the Planner module
(revised design)
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Experiment Result - 2

Computation of the reachability graph

States generated: 262143

Arcs generated: 1540095

The net has no dead reachable states.

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:

7, 9, 14, 15, 16, 17, 20, 28

The net has dead transitions at the initial marking.

Liveness test:

Warning: Liveness analysis refers to the net where all dead transitions 
are ignored.

The net is live, if dead transitions are ignored.

The computed graph is strongly connected.

The net is reversible (resetable).

04/17/01 Department of EECS, UIC 26

Property Verification by Using Modeling 
Checking

• Concurrency

EF(P5 &(P13 &(P22 &P28)))     Result: The formula is TRUE

• Mutual Exclusion

EF(P27 &P30) V (P29 &P30))    Result: The formula is FALSE

• Inheritance Mechanism (decision-making in subagent)

AG(-P12 &(-P14 &-P15))        Result: The formula is TRUE

• Inheritance Mechanism (ASP message forwarding I)

A[(P26 VP34)B(P5 VP6)]        Result: The formula is TRUE

• Inheritance Mechanism (ASP message forwarding II)

A[P26 BP5]VA[P34 BP6]         Result: The formula is FALSE
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Part 4: Concluding Comments

• There is an increasing need to ensure that complex 
software systems being developed are robust, reliable and 
fit for purpose.

• Petri nets are an excellent formalism for formal specification
because they tend to provide a visual, and thus easy to 
understand, model. 

• Extending G-nets to support inheritance in object-oriented 
design and agent-oriented design provides an effective way 
for modeling complex software systems.
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Future Research Plans

• A unified model for object-oriented and agent-oriented 
software design.
– complex software systems with both objects and agents. 

– object-object, agent-agent, and object-agent interactions.

• Extending agent-oriented G-net model for mobile agent 
design.
– incorporate mobility into our agent models.

– with application to electronic marketplace.

• Security issues in mobile agent design.


