
Proposal for book chapters in Intelli gent Agent Software Engineering, March 2001 Page 1

Formal Methods in Agent-Or iented Design and Analysis

Haiping Xu and Sol M. Shatz
Department of Electrical Engineering and Computer Science

The University of Illi nois at Chicago
Chicago, IL 60607

Email: { hxu1, shatz} @eecs.uic.edu

Abstract

Intelli gent agents are becoming one of the most important topics in distributed and autonomous decentralized systems,
and there are increasing attempts to use agent technologies to develop large-scale commercial and industrial software
systems. The complexity of such systems suggests a pressing need for system modeling techniques to support reliable,
maintainable and extensible design. The mission of this proposed chapter is to describe an approach for using a formal
model in the design of agents. The approach is based on G-nets, which are a type of Petri net defined to support system
modeling in terms of a set of independent and loosely-coupled modules. We customize the basic G-net model to define
a so-called “agent-oriented G-net” that can serve as a generic model for agent design. To ill ustrate our formal modeling
technique for multi -agent systems, an example of an agent family in electronic commerce is provided. Finally, we
discuss our future research plans.

1. An Introduction to Formal Methods for Agent Design

This section of the proposed chapter will i ntroduce the use of formal methods for agent design and highlight related
works. The following is a condensed version of this section.

Intelli gent agents can be considered as active objects, or objects with mental states [1]. However, intelli gent agents are
quite different from objects in terms of communication mechanisms and decision-making capabiliti es. As a result, the
object-oriented methodologies are not quite suitable for agent modeling. Especially, they do not directly support
asynchronous message-passing and autonomous behavior modeling. Therefore, agent-oriented methodologies are
proposed to provide guidelines for agent specification and design. Examples of such work are the AAII methodologies
[3] and the Gaia methodologies [11]. Both of these two agent-oriented methodologies are extensions of object-oriented
methodologies [12].

Although there are many efforts aimed at developing agent-based systems, there is sparse research on formal
specification and design of such systems. As agent technology begins to emerge as a viable solution for large-scale
industrial and commercial applications, there is an increasing need to ensure that the systems being developed are
robust, reliable and fit for purpose [2]. Previous work on formal modeling agent systems includes the DESIRE model
[4], the dMARS model [5], and agent models based on Petri nets [6]. The DESIRE model provides a compositional
framework for modeling agents, and the dMARS model is based on Procedure Reasoning System (PRS), which
supports formal reasoning. A typical example of agent models based on Petri nets is Moldt and Wienberg’s work, in
which they proposed a multi -agent system model based on colored Petri nets. The weakness of these models is that they
do not explicitly model agent communications, which is one of the key issues for intelli gent agent modeling. Another
problem is that they do not address the issue of inheritance. Therefore, in our perspective, these models are agent-based
rather than agent-oriented.

Unlike the previous work, our proposed agent model supports protocol-based agent communication. Meanwhile, by
introducing inheritance mechanisms, and separating the transitional object-oriented features and reasoning mechanisms
in our proposed agent-oriented model, we show that reuse can be achieved in terms of functional units defined in an
agent model. Furthermore, since we uniformly use net-based formalism for agent modeling, our formal agent designs
could be analyzed by using existing Petri net tools.

Proposal for book chapters in Intelli gent Agent Software Engineering, March 2001 Page 2

2. A Net-based Approach for Agent-Or iented Design

This section of the proposed chapter will discuss our Petri net based approach for agent design. The following is a
condensed version of this section.

2.1 The G-net Model

A widely accepted software engineering principle is that a system should be composed of a set of independent modules,
where each module hides the internal details of its processing activities and modules communicate through well -defined
interfaces. The G-net model provides strong support for this principle [9]. G-nets are an object-based extension of Petri
nets [8], which is a graphically defined model for synchronous concurrent systems. A G-net system is composed of a
number of G-nets, each of them representing a self-contained module or object. A G-net is composed of two parts: a
special place called Generic Switch Place (GSP) and an Internal Structure (IS). The GSP provides the abstraction of the
module, and serves as the only interface between the G-net and other modules. The IS, a modified Petri net, represents
the detailed design of the module. A GSP of a G-net G contains a set of methods G.MS specifying the services or
interfaces provided by the module, and a set of attributes, G.AS, which are state variables. In G.IS, the internal structure
of G-net G, Petri net places represent primitives, while transitions, together with arcs, represent connections or relations
among those primitives. The primitives may define local actions or method calls. Method calls are represented by
special places called Instantiated Switch Places (ISP). A primitive becomes enabled if it receives a token, and an
enabled primitive can be executed.

The G-net model supports the Client-Server paradigm, and it is suitable for object-based design, however, it is not
suff icient for agent design because the G-net model does not directly support the following features. First, intelli gent
agents in multi -agent systems are usually developed by different vendors independently, therefore it is essential for
them to have a common communication language and to follow common protocols. Second, the underlying agent
communication model is usually asynchronous, and an agent may decide whether to perform actions requested by some
other agents. Third, agents are commonly designed to determine their behavior based on individual goals, their
knowledge and the environment. They may autonomously and spontaneously initiate internal or external behavior at
any time.

2.2 A Framework for Agent-Or iented Modeling

To support agent-oriented design, we first need to extend a G-net to support class modeling [14][15]. This can be simply
done by interpreting a G-net as a model of agent class; meanwhile we need to define the instantiation of a G-net with
the following two steps: to generate a unique agent identifier G.Aid, and to initialize the mental state of the resulting
agent object. In addition, at the class level, five special modules are introduced to make an agent autonomous and
internally-motivated. They are the Goal module, the Plan module, the Knowledge-base module, the Environment
module and the Planner module. The template for an agent-oriented G-net model is shown in Figure 1. The Goal, Plan
and Knowledge-base module are based on the BDI agent model [3], while the Environment module is an abstract model
of the environment, i.e., the model of the outside world of an agent. The Planner module represents the heart of an
agent that may decide to ignore an incoming message, to start a new conversation, or to continue with the current
conversation. In the Planner module, committed plans are achieved, and the Goal, Plan and Knowledge-base modules
of an agent are updated after each communicative act [10] or if the environment changes. The internal structure (IS) of
an agent-oriented G-net consists of three sections: incoming message, outgoing message, and private utilit y. The
incoming/outgoing message section defines a set of message processing units (MPU), which correspond to a subset of
communicative acts. Each MPU, labeled as action_i in Figure 1, is used to process incoming/outgoing messages, and
may use ISP-type modeling for calls to methods defined in its private utilit y section.

Although both objects (passive objects) and agents use message-passing to communicate with each other, message-
passing for objects is a unique form of method invocation, while agents distinguish different types of messages and
model these messages frequently as speech-acts and use complex protocols to negotiate [2]. In particular, these
messages must satisfy standardized communicative (speech) acts, which define the type and the content of the message
(e.g., the FIPA agent communication language, or KQML) [10]. Note that in Figure 1, each named MPU action_i refers
to a communicative act, thus our agent-oriented model supports an agent communication interface. In addition, agents
analyze these messages and can decide whether to execute the requested action. As we stated before, agent
communications are typically based on asynchronous message passing. Since asynchronous message passing is more

Proposal for book chapters in Intelli gent Agent Software Engineering, March 2001 Page 3

fundamental than synchronous message passing, it is useful for us to introduce a new mechanism, called Message-
passing Switch Place (MSP), to directly support asynchronous message passing.

GSP(G)

message_
processing

incoming message

Figure 1. A generic agent-oriented G-net model

Goal

 outgoing message

action_1 action_m

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(G’.Aid) MSP(G’.Aid)

action_1 action_n

message_
processing

message_
processing

message_
processing

 return return

private util ity
utility_1 utility_p

…

…

…

…

…

…

utility_1 utility_p

Plan Environment

Notes: G’ .Aid = mTkn.body.msg.receiver

A template of the Planner module is shown in Figure 21. The modules Goal, Plan, Knowledge-base and Environment
are represented as four special places (denoted by double elli pses in Figure 2), each of which contains a token that
represents a set of goals, a set of plans, a set of beliefs and a model of the environment, respectively. These four
modules connect with the Planner module through abstract transitions, denoted by shaded rectangles in Figure 2 (e.g.,
the abstract transition make_decision). Abstract transitions represent abstract units of decision-making or mental-state-
updating. At a more detailed level of design, abstract transitions would be refined into sub-nets. We will give detailed
description of the Planner module in our proposed chapter.

GSP(G)

Figure 2. A template for the planner module (initial design)

Goal Knowledge-base

make_
decision

start_a_
conver_
sation

…

…

…

…

…

continue

external internal

to place “ Goal”
to place “ Plan”
to place “ Knowledge base”

from transition
“ update”

update_
goal/plan/kb

check_
primary

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

dispatch_
private_
utility

private

Plan

bypass

ASP(super)

ignore

next_
action

sensor

automatic_
update

new_
action

ASP(super)

ASP(super)

update

outgoing messages

private utilities

incoming messages

autonomous unit

Environment

syn
<e>

<e>

<e>

To support agent-oriented design, we also need to incorporate some inheritance modeling capabiliti es [16]. But
inheritance in agent-oriented design is more complicated than in object-oriented design. Unlike an object (passive
object), an agent object has mental states and reasoning mechanisms. Therefore, inheritance in agent-oriented design
invokes two issues: an agent subclass may inherit an agent superclass’s knowledge, goals, plans, the model of its
environment and its reasoning mechanisms; on the other hand, as in the case of object-oriented design, an agent
subclass may inherit all the services that an agent superclass may provide, such as private utilit y functions. There is
existing work on agent inheritance with respect to knowledge, goals and plans [7]. However, we believe that since
inheritance happens at the class level, an agent subclass may be initialized with an agent superclass’s initial mental

1 Actually, this module purposely contains a somewhat subtle design error that is used to demonstrate the value of automated verification later.

Proposal for book chapters in Intelli gent Agent Software Engineering, March 2001 Page 4

state, but new knowledge acquired, new plans made, and new goals generated in a individual agent object (as an
instance of an agent superclass), can not be inherited by an agent object when creating an instance of an agent subclass.
For simplicity, we assume that an instance of an agent subclass (i.e., a subclass agent) always uses its own reasoning
mechanisms, and thus the reasoning mechanisms in the agent superclass should be disabled in some way. On the other
hand, to reuse the services (i.e., MPUs and methods) defined in a subagent (i.e., a part of the agent object that
corresponds to the agent superclass model), we need to introduce a new mechanism called Asynchronous Superclass
switch Place (ASP). An ASP (denoted by an elli psis in Figure 2) is similar to a MSP, but with the difference that an ASP
is used to forward a message or a method call to a subagent rather than to send a message to an agent object. When a
message/method is not defined in an agent subclass model, the dispatching mechanism will deposit the message token
into a corresponding ASP(super). Consequently, the message token will be forwarded to the GSP of a subagent, and it
will be again dispatched. This process can be repeated until the root subagent is reached.

2.3 Examples of Agent-Or iented Design

Consider an agent family in an electronic marketplace domain. Figure 3 shows the agents in a UML class hierarchy
notation. A shopping agent class is defined as an abstract agent class that has the abilit y to register in a marketplace
through a facilit ator, which serves as a well -known agent in the marketplace. Instances of both the buying agent class
and selli ng agent class, as subclasses of an shopping agent class, may reuse the functionality of a shopping agent class
by registering themselves as a buying agent or a selli ng agent through a facilit ator. Furthermore, a retailer agent class is
defined as a subclass of both the buying agent class and the selli ng agent class, and a customer/auctioneer agent class is
defined as a subclass of a buying/selli ng agent class.

 Shopping agent

Customer agent

Buying agent Selli ng agent

Retailer agent Auctioneer agent

Figure 3. The class hierarchy diagram of agents in an electronic marketplace

Based on the communicative acts (e.g., request-registration, refuse, etc.) needed for the contract net protocol between
the shopping agent and the facilit ator agent, we may design the shopping agent class and the facilit ator agent class by
using our agent-oriented G-net model. Similarly, based on the communicative acts (e.g., request-price, propose, etc.)
needed for the contract net protocol between the selli ng agent and the buying agent, we may also design the selli ng and
buying agent class.

With inheritance, a buying agent class, as a subclass of a shopping agent class, may reuse MPUs/methods defined in a
shopping agent class’s internal structure. Similarly, a selli ng agent class inherits all MPU/methods of the shopping agent
class, and a retailer agent class inherits all MPU/methods of both the buying agent class and the selli ng agent class. We
will show how the reuse of these functional units can be achieved in our proposed chapter.

2.4 Analysis of Agent-Or iented Models

One of the advantages of building a formal model for agents in agent-oriented design is to help ensure a correct design
that meets certain specifications. A correct design of agent should meet certain key requirements, such as liveness,
deadlock freeness and concurrency. Also certain properties, such as the inheritance mechanism, need to be verified to
ensure its correct functionality. Petri nets offer a promising, tool-supported technique for checking the logic correctness
of a design. Here, we will use a Petri tool, called INA (Integrated Net Analyzer) [13], to analyze and verify our agent
models.

The interaction of one buying agent and two selli ng agents can be modeled and folded into ordinary Petri nets. By
inputting our net model into the INA tool, the result shows that our net model is not live, and the dead reachable states

Proposal for book chapters in Intelli gent Agent Software Engineering, March 2001 Page 5

indicate a deadlock. By tracing the firing sequence for those dead reachable states, we find that the deadlock is due to a
missing arc from transition start_a_conversation to place syn (Figure 2). After the correction, we can again evaluate the
revised net model by using the INA tool. At this time, the result shows that our net model is live.

To further prove additional behavioral properties of our revised net model, we use some model checking capabiliti es
provided by the INA tool. Model checking is a technique in which the verification of a system is carried out by using a
finite representation of its state space. The INA tool allows us to state properties in the form of CTL formulae [13].
Using this notation, we can specify and verify some key properties of our revised net model, such as concurrency,
mutual exclusion, and proper inheritance behavior.

3. Future Research Plans

In addition to proving key behavioral properties of our agent model by using existing Petri net theories and existing
Petri net tools, our formal method approach is also of value in creating a clear understanding of the structure of an
intelli gent agent, and ensuring the correctness of further detailed design for a particular multi -agent system. For our
future research, we plan to implement an agent development toolkit to help software engineers to design agents. In this
toolkit, while a detailed design is produced, for instance, the abstract transitions in the planner module is refined, we
may again use Petri net tools to capture further design errors. Furthermore, we will also try to use our agent framework
for mobile agent design. We will model both mobile agents and hostile agents, and to study different forms of attacks.

References

[1] Yoav Shoham, “Agent-Oriented Programming,” Artifi cial Intelli gence, 60(1): 51-92, March 1993.
[2] Carlos Argel Iglesias, Mercedes Garrijo, José Centeno-González, “A Survey of Agent-Oriented Methodologies,” Proceedings of

the Fifth International Workshop on Agent Theories, Architectures, and Language (ATAL-98), 1998, pp. 317-330.
[3] D. Kinny, M. Georgeff , and A. Rao, “A Methodology and Modeling Technique for Systems of BDI Agents,” In W. Van de

Velde and J. W. Perram, editors, Agents Breaking Away: Proceedings of the Seventh European Workshop on Modeling
Autonomous Agents in a Multi -Agent World, (LNAI Volume 1038), pages 56-71, Springer-Verlag: Berlin, Germany, 1996.

[4] Brazier, F.M.T., Dunin Keplicz, B., Jennings, N., and Treur, J., “DESIRE: Modeling Multi -Agent Systems in a Compositional
Formal Framework” , International Journal of Cooperative Information Systems, vol. 6, Special Issue on Formal Methods in
Cooperative Information Systems: Multi -Agent Systems, (M. Huhns and M. Singh, eds.), 1997, pp. 67-94.

[5] M. d'Inverno, D. Kinny, M. Luck and M. Wooldridge, “A Formal Specification of dMARS,” In Intelli gent Agents IV:
Proceedings of the Fourth International Workshop on Agent Theories, Architectures and Languages, Singh, Rao and
Wooldridge (eds.), Lecture Notes in Artificial Intelli gence, 1365, 155-176, Springer-Verlag, 1998.

[6] Daniel Moldt and Frank Wienberg, “Multi -Agent-Systems based on Coloured Petri Nets,” Proceedings of the 18th International
Conference on Application and Theory of Petri Nets, Toulouse, June 23-27, 1997

[7] Lobel Crnogorac, Anand S. Rao, Kotagiri Ramamohanarao, “Analysis of Inheritance Mechanisms in Agent-Oriented
Programming,” IJCAI (1) 1997: 647-654.

[8] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE, 77(4): 541-580, April 1989.
[9] A. Perkusich and J. de Figueiredo, “G-nets: A Petri Net Based Approach for Logical and Timing Analysis of Complex Software

Systems,” Journal of Systems and Software, 39(1): 39–59, 1997.
[10] Tim Finin, Yannis Labrou, and James Mayfield, “KQML as an agent communication language,” in Jeff Bradshaw (Ed.),

Software Agents, MIT Press, Cambridge, 1997.
[11] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia Methodology for Agent-Oriented Analysis and Design,” International

Journal of Autonomous Agents and Multi -Agent Systems, 3(3), 2000, pp. 285-312.
[12] M. Wooldridge and P. Ciancarini, “Agent-Oriented Software Engineering: The State of the Art,” To appear in the Handbook of

Software Engineering and Knowledge Engineering, World Scientific Publishing Co., 2001.
[13] S. Roch and P. H. Starke, INA:Integrated Net Analyzer, Version 2.2, Humboldt-Universität zu Berlin, Institut für Informatik,

April 1999. http://www.informatik.hu-berlin.de/lehrstuehle/automaten/ina/
[14] H. Xu and S. M. Shatz, "Extending G-Nets to Support Inheritance Modeling in Concurrent Object-Oriented Design,"

Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), October 2000, Nashvill e,
Tennessee, USA, pp. 3128-3133.

[15] H. Xu and S. M. Shatz, “An Agent-based Petri Net Model with Application to Seller/Buyer Design in Electronic Commerce,”
Proc. of the 5th International Symposium on Autonomous Decentralized Systems (ISADS), March 2001, Dallas, Texas, pp.11-18.

[16] H. Xu and S. M. Shatz, “A Framework for Modeling Agent-Oriented Software,” To appear in the Proc. of the 21st International
Conference on Distributed Computing Systems (ICDCS), April 2001, Phoenix, Arizona.

