Proposal for bodk chaptersin Intelli gent Agent Sdtware Engineeing, March 2001 Page 1

Formal Methodsin Agent-Oriented Design and Analysis

Haiping Xu and Sol M. Shatz
Department of Eledricd Engineaingand Computer Science
The University of Illi nois at Chicago
Chicago, IL 60607
Email: {hxul, shatz} @eecs.uic.edu

Abstract

Intelli gent agents are becoming one of the most important topics in distributed and autonomous decantralized systems,
and there ae increasing attempts to use agent technologies to develop large-scde commercial and industrial software
systems. The mmplexity of such systems suggests a pressng reed for system modeling techniques to suppart reliable,
maintainable and extensible design. The misson of this proposed chapter isto describe an approach for using a formal
model in the design of agents. The gproad is based on G-nets, which are atype of Petri net defined to suppart system
modeling in terms of a set of independent and loosely-coupled modules. We austomize the basic G-net model to define
a so-cdled “agent-oriented G-net” that can serve & a generic model for agent design. To ill ustrate our formal modeling
technique for multi-agent systems, an example of an agent family in eledronic commerce is provided. Finaly, we
discussour future reseach plans.

1. AnIntroduction to Formal Methodsfor Agent Design

This sdion of the proposed chapter will i ntroduce the use of formal methods for agent design and highlight related
works. The followingis a mndensed version of this sdion.

Intelli gent agents can be mnsidered as adive objeds, or objeds with mental states [1]. However, intelli gent agents are
quite different from objeds in terms of communication medanisms and dedsion-making capabiliti es. As a result, the
objed-oriented methoddogies are not quite suitable for agent modeling. Espedally, they do not diredly suppart
asynchronous message-passng and autonomous behavior modeling. Therefore, agent-oriented methoddogies are
propased to provide guidelines for agent spedficaion and design. Examples of such work are the AAIl methodologies
[3] and the Gaia methoddogies [11]. Both of these two agent-oriented methoddogies are extensions of objed-oriented
methoddogies[12].

Although there ae many efforts aimed at developing agent-based systems, there is garse reseach on formal
spedfication and design of such systems. As agent technology begins to emerge & a viable solution for large-scde
industrial and commercia applicaions, there is an increasing real to ensure that the systems being developed are
robugt, reliable and fit for purpose [2]. Previous work on formal modeling agent systems includes the DESIRE model
[4], the IMARS model [5], and agent models based on Petri nets [6]. The DESIRE model provides a compositional
framework for modeling agents, and the dMARS model is based on Procedure Reasoning System (PRS), which
supparts formal reasoning. A typicd example of agent models based on Petri nets is Moldt and Wienberg's work, in
which they proposed a multi-agent system model based on colored Petri nets. The weeknessof these modelsis that they
do not explicitly model agent communications, which is one of the key isaues for intelli gent agent modeling. Another
problem is that they do not addressthe isaue of inheritance. Therefore, in our perspedive, these models are ggent-based
rather than agent-oriented.

Unlike the previous work, our proposed agent model supparts protocol-based agent communicaion. Meanwhile, by
introducing inheritance mechanisms, and separating the transitional objed-oriented feaures and reasoning mechanisms
in our proposed agent-oriented model, we show that reuse can be atieved in terms of functional units defined in an
agent model. Furthermore, since we uniformly use net-based formalism for agent modeling, our formal agent designs
could be analyzed by using existing Petri net toadls.

Proposal for bodk chaptersin Intelli gent Agent Sdtware Engineeing, March 2001 Page 2

2. A Net-based Approach for Agent-Oriented Design

This sdion of the proposed chapter will discuss our Petri net based approach for agent design. The following is a
condensed version of this sdion.

2.1 The G-net Mode€

A widely accepted software engineeing principle is that a system should be composed of a set of independent modules,
where eath module hides the internal detail s of its procesgng adiviti es and modules communicate through well -defined
interfaces. The G-net model provides grong suppart for this principle [9]. G-nets are an objed-based extension of Petri
nets [8], which is a graphicaly defined model for synchronous concurrent systems. A G-net system is compased of a
number of G-nets, ead of them representing a self-contained module or objed. A G-net is composed dof two parts. a
spedal place cded Generic Swnitch Place (GSP) and an Internal Structure (1S). The GSP provides the abstradion of the
module, and serves as the only interfacebetween the G-net and other modules. The IS, a modified Petri net, represents
the detailed design of the module. A GSP of a G-net G contains a set of methods G.MS spedfying the services or
interfaces provided by the module, and a set of attributes, G.AS, which are state variables. In G.IS, the internal structure
of G-net G, Petri net places represent primitives, whil e transiti ons, together with arcs, represent connedions or relations
among those primitives. The primitives may define locd adions or method cdls. Method cals are represented by
speda places cdled Instantiated Snitch Places (I1SP). A primitive becomes enalded if it recaves a token, and an
enabled primitive can be exeauted.

The G-net model supparts the Client-Server paradigm, and it is slitable for objed-based design, however, it is not
sufficient for agent design because the G-net model does not diredly suppart the following feaures. First, intelli gent
agents in multi-agent systems are usually developed by different vendors independently, therefore it is essentia for
them to have a @mmon communicaion language and to follow common protocols. Seand, the underlying agent
communication model is usually asynchronous, and an agent may dedde whether to perform adions requested by some
other agents. Third, agents are cmmonly designed to determine their behavior based on individual goals, their
knowledge and the environment. They may autonomously and spontaneoudly initiate internal or external behavior at
any time.

2.2 A Framework for Agent-Oriented Modeling

To suppart agent-oriented design, we first nead to extend a G-net to suppart classmodeling [14][15]. This can be simply
done by interpreting a G-net as a model of agent class meanwhile we need to define the instantiation of a G-net with
the following two steps. to generate aunique aent identifier G.Aid, and to initialize the mental state of the resulting
agent objed. In addition, at the dasslevel, five speda modules are introduced to make an agent autonomous and
internally-motivated. They are the Goal module, the Plan module, the Knowledge-base module, the Environment
module and the Planner module. The template for an agent-oriented G-net model is sown in Figure 1. The Goal, Plan
and Knowledge-base module ae based on the BDI agent model [3], whil e the Environment module is an abstrad model
of the environment, i.e., the model of the outside world of an agent. The Planner module represents the heat of an
agent that may dedde to ignore an incoming message, to start a new conversation, or to continue with the airrent
conversation. In the Planner module, committed plans are adieved, and the Goal, Plan and Knowledge-base modules
of an agent are updated after each communicaive ad [10] or if the environment changes. The internal structure (1S) of
an agent-oriented G-net consists of three sedions. incoming message, outgoing message, and private utility. The
incoming/outgoing message sedion defines a set of message processng urits (MPU), which correspond to a subset of
communicative ads. Each MPU, labeled as action_i in Figure 1, is used to processincoming/outgoing messages, and
may use | SP-type modeling for cdlsto methods defined in its private utility sedion.

Although both objeds (passve objeds) and agents use message-passng to communicate with ead other, message-
passng for objeds is a unigue form of method invocaion, while agents distingush different types of messages and
model these messages frequently as geedrads and use mmplex protocols to negotiate [2]. In particular, these
messages must satisfy standardized communicative (speed) ads, which define the type and the mntent of the message
(e.q., the FIPA agent communication language, or KQML) [10]. Note that in Figure 1, ead named MPU action_i refers
to a ommunicdive ad, thus our agent-oriented model supparts an agent communicaion interface In addition, agents
analyze these messages and can dedde whether to exeaute the requested adion. As we stated before, agent
communications are typicdly based on asynchronous message passng. Since aynchronous message passng is more

Proposal for bodk chaptersin Intelli gent Agent Sdtware Engineeing, March 2001 Page 3

fundamental than synchronous message passng, it is useful for us to introduce anew medanism, cadled Message-
passng Switch Place (MSP), to dredly suppart asynchronous message passng.

m—

[| [on | [roosrmrs]
3 i i

‘ enmer ‘

incoming message outgoing message private utility
action_1 action_m action_1 action_n utility_1 utility_p

messge_ message_ messge_ messge_ utility_1 Utility_p
processing processing processing processing

\\MS:’(S#) MSP(self) MSP(G'.Aid) MSP(G'.Aid) return relurn/

Notes: G'.Aid = miTkn.body.msg.recéver

Figure 1. A generic agent-oriented G-net model

A template of the Planner module is sown in Figure 2*. The modules Goal, Plan, Knowledge-base and Environment
are represented as four speda places (denoted by double dlipses in Figure 2), eat of which contains a token that
represents a set of goals, a set of plans, a set of beliefs and a model of the environment, respedively. These four
modules conned with the Planner module through abstrad transitions, denoted by shaded redanges in Figure 2 (e.g.,
the astract transition make dedsion). Abstrad transitions represent abstrad units of dedsion-making or mental-state-
updating. At a more detailed level of design, abstrad transitions would be refined into sub-nets. We will give detail ed
description of the Planner module in our proposed chapter.

internal | L]
i

external

from transition
* update’

dispatch_

incoming,
jutonomous unit

sensor

new_
action

private

dispatch_
private_
utility

automatic_
update

incoming messages

—a

dispatch_
outgoing_
message

AP(super)
to place* Goal”

to place* Plan’
to place* Knowledge base”

private utilities

outgoing messages

Figure 2. A template for the planner modue (initial design)

To suppat agent-oriented design, we dso need to incorporate some inheritance modeling capabilities [16]. But
inheritance in agent-oriented design is more complicaed than in objed-oriented design. Unlike an objed (passve
ohjed), an agent objed has mental states and reasoning mechanisms. Therefore, inheritance in agent-oriented design
invokes two isaues: an agent subclass may inherit an agent superclasss knowledge, goals, plans, the model of its
environment and its reasoning mechanisms; on the other hand, as in the cae of objed-oriented design, an agent
subclass may inherit all the services that an agent superclass may provide, such as private utility functions. There is
existing work on agent inheritance with resped to knowledge, goals and pans [7]. However, we believe that since
inheritance happens at the dasslevel, an agent subclass may be initialized with an agent superclasss initial mental

! Actually, this module purposely contains a somewhat subtle design error that is used to demonstrate the value of automated verification later.

Proposal for bodk chaptersin Intelli gent Agent Sdtware Engineeing, March 2001 Page 4

state, but new knowledge aquired, new plans made, and new goals generated in a individual agent objed (as an
instance of an agent superclasg, can not be inherited by an agent objed when creaing an instance of an agent subclass
For simplicity, we assume that an instance of an agent subclass(i.e., a subclass agent) always uses its own reasoning
medanisms, and thus the reasoning mecdhanisms in the gyent superclass $iould be disabled in some way. On the other
hand, to reuse the services (i.e., MPUs and methods) defined in a subagent (i.e., a part of the agent objed that
corresponds to the agent superclass model), we neel to introduce anew mecdhanism cdled Asynchronows Superclass
switch Place (ASP). An ASP (denoted by an elli psisin Figure 2) is smilar to a MSP, but with the difference that an ASP
is used to forward a message or a method cdl to a subagent rather than to send a message to an agent objed. When a
message/method is not defined in an agent subclass model, the dispatching mecdhanism will deposit the message token
into a corresponding ASP(super). Consequently, the message token will be forwarded to the GSP of a subagent, and it
will be ayain dispatched. This processcan be repeaed until the root subagent is readed.

2.3 Examples of Agent-Oriented Design

Consider an agent family in an eledronic marketplace domain. Figure 3 shows the aents in a UML class hierarchy
notation. A shopping agent classis defined as an abstrad agent classthat has the aility to register in a marketplace
through a fadlit ator, which serves as a well-known agent in the marketplace Instances of both the buying agent class
and selling agent class as subclasses of an shopping agent class may reuse the functionality of a shoppng agent class
by registering themselves as a buying agent or a selli ng agent through a fadlit ator. Furthermore, a retailer agent classis
defined as a subclassof both the buying agent classand the selling agent class and a austomer/auctionee agent classis
defined as a subclassof a buying/selling agent class

Shopping agent

N

‘ Buying agent ‘ Selling agent

i i

Figure 3. The dass hierarchy diagram of agentsin an eledronic marketplace

Based on the ommunicdive ads (e.g., request-registration, refuse, etc.) needed for the @ntrad net protocol between
the shopping agent and the fadlit ator agent, we may design the shopping agent classand the fadlit ator agent classby
using our agent-oriented G-net model. Similarly, based on the communicative ads (e.g., request-price, propacse, €etc.)
needed for the wntrad net protocol between the selli ng agent and the buying agent, we may also design the selling and
buying agent class

With inheritance, a buying agent class as a subclassof a shopping agent class may reuse MPUs/methods defined in a
shopping agent classsinternal structure. Similarly, a selling agent classinherits all MPU/methods of the shoppng agent
class and aretailer agent classinherits all MPU/methods of bath the buying agent classand the selli ng agent class We
will show how the reuse of these functional units can be adieved in our propased chapter.

2.4 Analysis of Agent-Oriented Models

One of the alvantages of building a formal model for agents in agent-oriented design is to help ensure a orred design
that meds certain spedficaions. A corred design of agent should mee certain key requirements, such as liveness
dealock freenessand concurrency. Also certain properties, such as the inheritance mechanism, neel to be verified to
ensure its corred functionality. Petri nets offer a promising, tool-supparted technique for cheding the logic corredness
of a design. Here, we will use aPetri todl, cdled INA (Integrated Net Analyzer) [13], to analyze and verify our agent
models.

The interadion of one buying agent and two selling agents can be modeled and folded into ordinary Petri nets. By
inputting our net model into the INA todl, the result shows that our net model is not live, and the dead reatable states

Proposal for bodk chaptersin Intelli gent Agent Sdtware Engineeing, March 2001 Page 5

indicate adeadlock. By tradng the firing sequence for those deal readable states, we find that the deadlock is dueto a
missng arc from transition start_a_conversation to placesyn (Figure 2). After the corredion, we can again evaluate the
revised net model by using the INA toadl. At thistime, the result shows that our net model islive.

To further prove aditional behavioral properties of our revised net model, we use some model cheding capabiliti es
provided by the INA tool. Model chedingis a technique in which the verificaion of a systemis carried out by using a
finite representation of its gate space The INA tod allows us to state properties in the form of CTL formulae[13].
Using this notation, we can spedfy and verify some key properties of our revised net model, such as concurrency,
mutual exclusion, and proper inheritance behavior.

3. Future Research Plans

In addition to proving key behavioral properties of our agent model by using existing Petri net theories and existing
Petri net tools, our forma method approach is also o value in creaing a dea understanding of the structure of an
intelli gent agent, and ensuring the crreaness of further detailed design for a particular multi-agent system. For our
future research, we plan to implement an agent development toolkit to help software engineers to design agents. In this
toolkit, while adetailed design is produced, for instance, the @strad transitions in the planner module is refined, we
may again use Petri net tools to capture further design errors. Furthermore, we will aso try to use our agent framework
for mobile ayent design. We will model both mobile ggents and hostile agents, and to study diff erent forms of attacks.

References

[1] Yoav Shoham, “Agent-Oriented Programming,” Artificial Intelli gence, 60(1): 51-92, March 1993

[2] CarlosArgel Iglesias, Mercedes Garrijo, José Centeno-Gonzdez, “A Survey of Agent-Oriented Methoddogies,” Proceelings of
the Fifth Internationd Workshop onAgent Theories, Architecures, andLanguage (ATAL-98), 1998 pp. 317-330.

[3] D. Kinny, M. Georgeff, and A. Rao, “A Methoddogy and Modeling Technique for Systems of BDI Agents,” In W. Van de
Velde and J. W. Perram, editors, Agents Breaking Away: Procealings of the Seventh European Workshop on Modeling
Autonamous Agents in aMulti-Agent World, (LNAI Volume 1038, pages 56-71, Springer-Verlag: Berlin, Germany, 1996

[4] Brazer, F.M.T., Dunin Keplicz, B., Jennings, N., and Treur, J., “DESIRE: Modeling Multi-Agent Systems in a Compasitional
Forma Framework”, Internationd Journal of Cooperative Information Systems, vol. 6, Spedal Issie on Forma Methods in
Cooperative Information Systems: Multi-Agent Systems, (M. Huhrs and M. Singh, eds.), 1997, pp. 67-94.

[5] M. dinverno, D. Kinny, M. Luck and M. Wooldridge, “A Forma Spedficaion d dMARS,” In Intelligent Agents IV:
Procealings of the Fourth Internationd Workshop on Agent Theories, Architedures and Languags, Singh, Rao and
Wooldridge (eds.), Leaure Notes in Artificial Intelli gence, 1365 155176, Springer-Verlag, 1998

[6] Daniel Moldt and Frank Wienberg, “Multi-Agent-Systems based onColoured Petri Nets,” Proceelings of the 18th Internationd
Conferenceon Application andTheory of Petri Nets, Toulouse, June 23-27, 1997

[7] Lobel Crnogorac Anand S. Rao, Kotagiri Ramamohanarao, “Anadysis of Inheritance Medanisms in Agent-Oriented
Programming,” 1JCAI (1) 1997 647-654.

[8] T.Murata, “Petri Nets: Properties, Analysis and Applicaions,” Procealings of the IEEE, 77(4): 541-580, April 1989

[9] A. Perkusich and J. de Figueiredo, “G-nets: A Petri Net Based Approach for Logicd and Timing Analysis of Complex Software
Systems,” Journal of Systemsand Sdtware, 39(1): 39-59, 1997

[10] Tim Finin, Yannis Labrou, and James Mayfield, “KQML as an agent communicdion language,” in Jeff Bradshaw (Ed.),
Sdtware Agents, MIT Press Cambridge, 1997

[11] M. Woadldridge, N. R. Jennings, and D. Kinny, “The GaiaMethoddogy for Agent-Oriented Analysisand Design,” Internationa
Journal of Autonamous Agents and Multi-Agent Systems, 3(3), 200Q pp. 285-312

[12] M. Wodldridge and P. Ciancarini, “Agent-Oriented Software Engineging: The State of the Art,” To appea in the Handbod of
Sdtware Engineeing andKnowledge Engineaing, World Scientific Publishing Co., 2001

[13] S. Roch and P. H. Starke, INA:Integrated Net Analyzer, Version 22, Humboldt-Universitét zu Berlin, Ingtitut fir Informatik,
April 1999 http://www.informatik.hu-berlin.de/l ehrstuehl e/automaten/inal

[14] H. Xu and S. M. Shatz, "Extending G-Nets to Suppat Inheritance Modeling in Concurrent Objed-Oriented Design,”
Procealings of the IEEE Internationd Conference on Systems, Man, and Cybernetics (SMIC), October 2000 Nashvill e,
Tennesee USA, pp. 31283133

[15] H. Xu and S. M. Shatz, “An Agent-based Petri Net Model with Applicaion to Seller/Buyer Design in Eledronic Commerce”
Proc. of the 5" Internationa Symposium on Autonamous Decentrali zed Systems (1SADS), March 2001, Dall as, Texas, pp.11-18.

[16] H. Xu and S. M. Shatz, “A Framework for Modeling Agent-Oriented Software,” To appea in the Proc. of the 21% Internationd
Conferenceon Distributed Computing Systems (ICDCS), April 2001, Phoenix, Arizona.

