M odel-Based Development of Intelligent Communicating
Agentsfor M ulti-Agent Systems'

Haiping Xu and Sol M. Shatz
Department of Computer Science
The University of Illinois at Chicago
Chicago, IL 60607
Email: {hxul,shatz} @cs.uic.edu

Abstract

An intelligent communicaing agent has both the properties of intelligent agents and communicating
agents, which are aitonamy, readivity, proadivenessand sociability. In this paper, we propose amodel-
based approacdh to designing and implementing intelli gent communicating agents for multi-agent systems
(MAYS). As badkgroundknowledge for our approach, we first briefly introduce the agent-oriented G-net
model, which is based onthe G-net formalism. Thisformal agent model serves as both a spedficaionand
a high-level design for the tod kit caled ADK (Agent Development Kit) that suppats developing
intelli gent communicating agents for multi-agent systems. Then the achitedural design and cetailed
design of intelligent communicaing agents, which closely follow the agent formal model, are described.
As a potential solution for automated software development, we summarize the procedure to generate a
model-based design of intelligent communicating agents. Finally, to illustrate an applicaion bdlt on

ADK, we present an air-ticket trading example.

Keywords. agent-oriented G-net model, intelligent communicating agent, multi-agent system, agent
development kit (ADK), model-based devel opment.

1. Introduction

! This material is based upon work supparted by the U.S. Army Reseach Office under grant number DAAD19-01-
1-0672 and the U.S. National Science Foundation under grant number CCR-9988168

The development of agent-based systems offers a new and exciting paradigm for produwction o
sophisticaed programs in dynamic and open environments, particularly in distributed damains sich as
web-based systems and eledronic commerce Though there have been significant commercial and
indwstrial reseach and devel opment eff orts underway for some time, developments based onformal agent
frameworks are rare. In this paper, we present a development approad, including design and
implementation, for intelli gent communicaing agents for multi-agent systems (MAS) [27]. The gproach
is based ona formal agent model introduced in ealier work [4][5] and subsequently described in more
detail s, including examples of model chedking for design properties[31]. The agent model serves as bath
a spedfication and a high-level design for agent implementation, and it suppats design moduarization
and inheritance To bridge the gap between modeling and implementation, we highlight a system that
provides afull classlibrary for the domain o intelligent communicating agents for multi -agent systems.
We cdl the development system ADK (Agent Development Kit). The propased formal agent model,
cdled agent-oriented G-net model, is based onthe G-net formalism [2][3], which is a type of high-level
Petri net [1]. The significance of this model is that it explicitly suppats asynchronows message passng
among agents [4], and it suppatsinheritance for functional units defined initsinternal structure [5]. The
functional units in this model not only include methods, as in the cae of objed-oriented paradigm, bu
aso include Message Processng Units (MPU), which are functional units defined for asynchronous
message passng. In addition, the agent-oriented G-net model can be translated into more “standard”

forms of a Petri net for design analysis, such as deadlock detedion and model cheding [31].

Previous efforts on rarrowing the sizable gap between agent formal models and agent-based pradicd
systems can be summarized into three caegories. In the first case, some researchers aim at constructing
diredly exeautable formal agent models. For instance Fisher’'s work on Concurrent METATEM has
attempted to use temporal logic to represent individual agent behaviors where the representations can be
exeaited dredly, verified with resped to logicd requirement, or transformed into some refined
representation [6]. Vasconceos and his coll eagues have tried to provide adesign pattern for skeleton
based agent development [23], which can be aittomaticdly extraded from a given eledronic institution.
The dedronic ingtitutions have been proposed as a formalism with which ore can spedfy open agent

organizations [24]. These types of work sean to be an ided way for seaming the gap between theories

and implemented systems; however, an implementation automaticadly derived from aformal model tends
to be not pradicd. This is because aformal model is an abstradion d a red system, and thus an
exeautable formal model ignores most of the componrents and kehaviors of a spedfic agent. Therefore, as
stated in paper [28], exeautable models based onformalisms, such as temporal logic, are quite distant
from agents that have adually been implemented, and at least for the time being, the gap between an
exeautable formal model and a pradicd agent implementation is till very large. In the second case,
reseachers use ayent theories or agent formal models as conceptual guidelines for agent implementation.
Examples of such work are listed as follows. JAM is a hybrid intelli gent agent architecure that draws
upon the theories and ideas of the Procedural Reasoning System (PRS), Structured Circuit Semantics
(SCS), and Act plan interlingua [7]. Based onthe BDI theories [8], which models the ancepts of beli efs,
goals (desires), and intentions of an agent, JAM provides grong goal-achievement syntax and semantics
with suppat for homeostatic goals and a much richer, more expressve set of procedural constructs. The
JACK intelli gent agent framework by Agent Oriented Software brings the concept of intelli gent agents
into the mainstrean of commercial software engineeing and Java [9]. JACK is designed as a set of
lightweight comporents with high performance and strong data typing. Paradima has been implemented
to suppat the development of agent-based systems [10]. It relies on aformal agent framework, i.e., Luck
and dInverno's formal agent framework [11], and is implemented by using recent advances in Java
techndogy. Though al of the &ove ggent developments rely on formal agent models, the relationships

between the implementations and their underlying formal agent models are loosely couped.

As the third approach for bridging the gap between agent formal models and agent-based pradicd
systems, we use aformal agent model as an agent spedfication and high-level agent design. In particular,
we use the gent-oriented G-net model to define the gent structure, agent behavior, and agent
functionality for intelli gent communicating agents. A key concept in ou work is that the agent-oriented
G-net model itself serves as a design model for an agent implementation. We will see that our
architedural design o intelli gent communicating agents closely follows the agent-oriented G-net model,
and the detailed design and implementation d ADK satisfies the requirements gedfied by the agent-
oriented G-net model. By suppating design reuse, our approach foll ows the basic philosophy of Model
Driven Architedure (MDA) [12] that is gaining popuarity in many communiti es, for example UML.

The rest of this paper is organized as follows. In Sedion 2,we briefly review the agent-oriented G-net
model, which has been previously proposed [5] and subsequently described in more detail s for design
analysis [31]. We dso discussthe role of ADK, in serving as a bridge between the formal agent model
and the ayent implementation datform. In Sedion 3, we describe the achitedural design and cetailed
design o intelligent communicating agents. Sedion 4 summarizes the procedures to design and
implement intelligent communicating agents for multi-agent systems, and wses an air ticket trading
example to ill ustrate the derivation d an applicaion wing the ADK approach. The generadity of the
example suppats the nation that our model-based approach is feasible and effedive. In Sedion 5,we

provide conclusions and our future work.

2. A Framework for Agent-Oriented Software

2.1 G-Net Model Background

A widely acceted software engineaing principle is that a system shoud be compaosed of a set of
independent modues, where eath modue hides the internal details of its processng adivities and
modues communicate through well-defined interfaces. The G-net model provides grong suppat for this
principle [2][3]. G-nets are an oljed-based extension d Petri nets, which is a graphicaly defined model
for concurrent systems. Petri nets have the strength of being visualy appeding, while dso being
theoreticaly mature and suppated by robust tods. We asaume that the reader has a basic understanding
of Petri nets [1]. But, as a general reminder, we note that Petri nets include three basic entities: place
nodes (represented graphicdly by circles), transition nodks (represented graphicdly by solid bars), and
direded arcs that can conred places to transitions or transitions to places. Furthermore, places can
contain markers, cdled tokens, and tokens may move between place nodes by the “firing” of the
asciated transitions. The state of a Petri net refers to the distribution d tokens to placenodes at any
particular paint in time (this is sometimes cal ed the marking of the net). We now proceed to discussthe

basics of the G-net models.

A G-net system is composed of anumber of G-nets, ead of them representing a self-contained modue or
objed. A G-net is composed o two parts. a speda place cded Generic Switch Place (GSP) and an
Internal Structure (1S). The GSP provides the @stradion d the modue, and serves as the only interface
between the G-net and aher modues. The IS, a modified Petri net, represents the design o the modue.
An example of G-netsis shown in Figure 1. Here the G-net models represent two oljeds— aBuyer and a
Sler. The generic switch places are represented by GSP(Buyer) and GSP(Saller) enclosed by elli pses,
and the internal structures of these models are represented by roundcornered redangles that contain four
methods: buyGoods(), askPricg(), returnPrice() and sell Goods(). The functionality of these methods are
defined as follows: buyGoods() invokes the method sell Goods() defined in G-net Seller to buy some
goods; askPricg)) invokes the method returnPrice() defined in G-net Seller to get the price of some
goodks; returnPrice() is defined in G-net Sell er to caculate the latest pricefor some goods and sell Goods()
isdefined in G-net Seller to wait for the payment, ship the goods and generate the invoice A GSP of a G-
net G contains a set of methods G.MS spedfying the services or interfaces provided by the modue, anda
set of attributes, G.AS, which are state variables. In G.IS the internal structure of G-net G, Petri net
places represent primiti ves, whil e transiti ons, together with arcs, represent conredions or relations among
those primitives. The primitives may define locd adions or methodcdls. Methodcdl s are represented by
spedal places cdled Instantiated Switch Places (1SP). A primitive becomes enalled if it receves atoken,
and an enabled primitive can be exeauted. Given aG-net G, an ISP of G isa 2-tuple (G'.Nid, mtd), where
G’ could be the same G-net G or some other G-net, Nid is a unique identifier of G-net G’, and mtd O
G’ .MS Ead ISP(G'.Nid, mtd) denates a method cdl mtd() to G-net G'. An example ISP (denoted as an
ellipsis in Figure 1) is $own in the method askPrice) defined in G-net Buyer, where the method
askPrice() makes amethodcdl returnPricg)) to the G-net Seller to query abou the price for some goods.
Note that we have highlighted this cdl in Figure 1 by the dashed-arc, but such an arcis not adually a part

of the static structure of G-net models. In addition, we have omitted all function parameters for simpli city.

From the @ove description, we can seethat a G-net model essentially represents a modue or an ohjed
rather than an abstradion o a set of similar objeds. In a recent paper [25], we defined an approac to
extend the G-net model to suppat class modeling. The idea of this extension is to generate aunique

objed identifier, G.Oid, and initi ali ze the state variables when a G-net objed is instantiated from a G-net

G. An ISP method invocdion is no longer represented as the 2-tuple (G'.Nid, mtd), instead it is the 2-
tuple (G'.0Oid, mtd), where different objed identifiers could be assciated with the same G-net class
model.

buyGoods() askPrice() ‘ /retumPrice() sell Goods() \\

t5 t7
ISRSeller |sp(3eu e,
sell Goods() returnPrice()) caculate_ sall_
price goods
t6 t8

Figure 1. G-net models of buyer and seller objects

The token movement in a G-net objed is smilar to that of original G-nets [2][3]. A token tkn is atriple
(seq, sc, mtd), where seq is the propagation sequence of the token, sc [1 { before, after} isthe status color
of the token and mtd is a triple (mtd_name, para_list, result). For ordinary places, tokens are removed
from inpu places and deposited into ouput places by firing transitions. However, for the spedal ISP
places, the output transitions do nd fire in the usual way. Recdl that marking an ISP place orresponds to
making a method cdl. So, whenever a method cdl is made to a G-net objed, the token depaosited in the
ISP has the status of before. This prevents the enabling of associated output transitions. Instead the token
is “processed” (by attadching information for the method cdl), and then removed from the ISP. Then an
identicd token is deposited into the GSP of the cdled G-net objed. So, for example, in Figure 1, when
the Buye objeda cdls the returnPricg() method d the Seller oljed, the token in pace ISP(Sler,
returnPriceg)) is removed and a token is deposited into the GSP placeGSP(&ll er). Through the GSP of
the cdled G-net objed, the token is then dispatched into an entry placeof the gopropriate cdled method,

for the token contains the information to identify the cdled method. During “exeaution” of the method,
the token will read areturn place(denoted by doule drcles) with the result attached to the token. As
soon as this happens, the token will return to the ISP of the cdler, and have the status changed from
before to after. The information related to this completed method cdl is then detached. At this time,
output transitions (e.g., t4 in Figure 1) can become enabled andfire.

Notice that the example we provide in Figure 1 follows the Client-Server paradigm, in which a Seller
objed works as a server and aBuyer oljed isa dient. Further detail s abou G-net models can be foundin

references [2][3][25)].

2.2 Agent-Oriented G-Net Model

Although the G-net model works well in oljed-based design, it is not sufficient in agent-oriented design
for the following reasons. First, agents that form a multi-agent system may be developed by different
vendas independently, and those agents may be widely distributed aaosslarge-scde networks sich as
the Internet. To make it possble for those agents to communicate with ead ather, it is desirable for them
to have a ommon communication language and to follow common protocols. However the G-net model
does not diredly suppat protocol-based language communicaion ketween agents. Seoond, the
underlying agent communicaion mode is usualy asynchronous, and an agent may dedde whether to
perform adions requested by some other agents. The G-net model does nat diredly suppat asynchronows
message passng and dedsion-making, bu only suppats s/nchronows methodinvocations in the form of
ISP places. Third, agents are commonly designed to determine their behavior based onindividual goals,
their knowledge and the environment. They may autonamously and sportaneously initiate internal or

external behavior at any time. The G-net models can only diredly suppat a predefined flow of control.

To suppat agent-oriented design, we need to extend a G-net to suppat modeling an agent class [4][5].
This extensionis madein threesteps. First, we introducefive spedal moduesto a G-net to make an agent

autonamous and internally motivated. As own in Figure 2, the five spedal modues are the Goal

2 We view the @stract of a set of similar agents as an agent class and we cadl an instance of an agent classan agent
or an agent objed.

modue, the Plan modu e, the Knowledge-base modue, the Environment module and the Planner modue.
The Goal, Plan and Know edge-base modue ae based onthe BDI agent model propaosed by Kinny and
his coll eagues [8], whil e the Environment modu e is an abstrad model of the environment, i.e., the model
of the outside world of an agent. The Planner modue represents the heat of an agent that may dedde to
ignore an incoming message, to start a new conversation, a to continue with the airrent conversation. In
the Planrer modue, committed goals are adieved, and the Goal, Plan and Knowledge-base modues of
an agent are updated after the procesgng of eady communicaive ad that defines the type and the mntent
of a message [29][30], or if the environment changes. Seaond, dfferent from the semantic of a G-net as
an oljed or amodule, we view the extended G-net, we cdl it an agent-oriented G-net, as a dassmodel,
i.e., the astrad of a set of similar agent objeds. Third, we define the instantiation d the ayent-oriented
G-net as foll ows: when an agent-oriented G-net A is instantiated, we generate an agent identifier A.Aid for
the resulting agent objed AO; meanwhile, the state of AQ, i.e., any state variables defined in A, is
initi ali zed.

Goal Plan Knowledge-base Environment

Planner
mcoml ng message outgoing message pubdic service utility method
act|on 1 action_m action_1 action_n service 1 service k utility_1 utility_p

action action action action Serv- Serv- utili - utilr>
ice_1 ice_k ty 1 ty p

w(self) MSP(seIf) MSP(G'.Aid) MSP(G'.Aid) return return return retly

Notes: G'.Aid = messageToken.body.msg.receiver

OO,

Figure 2. A generic agent-oriented G-net model

The Internal Structure (IS of an agent-oriented G-net consists of four sedions: incoming message,
outgoing message, pulbic service, and utility method The incoming/outgoing message sedion cefines a
set of Message Processng Units (MPU), which corresponds to a subset of communicative ads. Each
MPU, labeled as action_i in Figure 2, is used to processincoming/outgoing messages and exeaute ay
necessry adions before or after the message being processed. The pullic service sedion defines a set of
methods that provide services to ather agents, and it makes an agent work as a server. Note that this
sedionisoptional, andit is not necessary that an agent must provide pulbic servicesto the outside world.

Similarly, the utility method sedion cefines a set of methods that can only be cdled by the ayent itself.

Although bah oljeds (passve objeds) and agents use message-passng to communicate with ead aher,
message-passng for objeds is a unique form of method invocation, while agents distinguish dfferent
types of messages and model these messages frequently as geedr-ads and use complex protocols to
negotiate [13][14]. In perticular, these messages must satisfy the format of the standardized
communicaive (speed) ads, eg., the format of communicdive ads defined in the FIPA agent
communicationlanguage, or KQML [15][29][30]. Note that in Figure 2, ead named MPU action i refers
to a ommunicaive ad¢, and the gyent-oriented G-net model suppats an agent communicdion interface
through the GSP place In additi on, agents analyze these messages and can dedde whether to exeaute the
requested adion. As dated before, agent communicaions are typicdly based onasynchronows message
passng. Since aynchronows message passng is more fundamental than synchronous message passng, it
is useful for us to introduce anew medanism, cdled Message-passng Switch Place (MSP), to diredly
suppat asynchronows message passng [4]. When a token reades an MSP (represented as an ellipsisin
Figure 2), the token is removed and depaosited into the GSP of the cdl ed agent. But, urlike with the G-net
| SP medhanism, the cdli ng agent need na wait for the token to return beforeit can continue to exeauteits

next step.

The Planrer modue has the functionality of message dispatching and dedsion-making. In addition, the
Planrer modue dso includes a sensor, which may capture internal or external events, and invoke cetain

plans correspondngly. To suppat agent-oriented design, the Planner modu e has been designed in such a

way that it suppats inheritance for MPUs and methods defined in the internal structure of an agent-
oriented G-net model. Due to the size limitation d this paper, we do nd discussfurther for the Planner
modue. A detailed description for this modue can be foundin ealier work [4][5]. It isworth naing that
G-nets can be used to model the Knowledge-base modue and the dedsion-making units in the Planrer

modu e due to their suppat for knowledge representation and reasoning [26)].

2.3 From Formal Agent Model to Agent Implementation

ADK (Agent Development Kit) is intended to provide the necessary fadliti es for agent implementation
based onthe formal agent model described previously. Thus, the development of ADK isnaot ad hac, bu
results from a model-based development process The ajent-oriented G-net model, as an operational
model, provides the spedficaion and Hgh-level design for intelligent communicaing agents.
Spedficdly, the key comporents or mechanisms defined in the agent-oriented G-net model serve &
building blocks of our agent development kit, and the agent-oriented G-net model itself beames a high-

level design model for intelli gent communicating agents.

As Figure 3 shows, the role of ADK isto serve a a bridge between the formal agent model and the agent
implementation datform. The key comporents and mechanisms defined for an intelli gent communicaing
agent, as hown onthe left hand side of the figure, are listed as follows. First, the moduarization o the
agent design provides the formal agent architedure that makes an agent autonamous, readive, proadive
and sociable. For instance the Goal, Plan, and Knowledge-base modues are based onthe BDI agent
model [8] that is a conceptual model for intelli gent agents. The Planner modue is used for dedsion
making, message dispatching and event cgpturing. And the Internal Structure is a cntainer for methods
and MPUs, where methods are defined for methodinvocaion, and MPUs suppat asynchronows message
passng. Seamnd, the message passng mecdhanisms are defined in two cases: the synchronous message
passng and asynchronows message passng. Synchronous message passng is usualy used for method
invocaion, andit is redized through the | SP medhanism, while asynchronows message passng is vital for
agent communicdion, and it is acieved by the MSP medchanism [4]. Recdl that in the cae of

asynchronows message passng, when a MSP is cdled, the agent does nat neal to wait for the result to

10

come badk, and it may proceel to exeaute other functionality. Third, the formal agent model defines the
functional units as inheritable comporents. As methods are defined as inherited untsin oljed-oriented
design, bah methods and MPUs could be inherited from an agent superclassto an agent subclass

Formal Agent Framework)
I mplementation Platform

Modularization

GSP, Goal, Plan, Knowledge-
base, Planner, Interna
Structure

Middleware
Jini/JavaSpaes/RM|

Design &
I mplementation

ADK

(Agent
Devel opment
Kit)

M essage Passing M echanism
Asynchronous: MSP
Synchronous: ISP

Java Virtual Machine
JVM, Java Swing etc.

Functional Units Network Communication
MPU, Methods TCP/IP, UDP

Figure 3. Therole of ADK between formal agent model and implementation platform

As sown on the right hand side of Figure 3, the implementation datform provides the standard
techndogies, such as the Jini middeware [16][17] and the Java Virtual Macdiine (JVM), for agent
implementation. We dhocse Java & our programming language becaise gopli caions developed onJVM
are platform independent, and they are suitable for web-based applications sich as eledronic commerce
In addition, we use the Jini middieware to simplify our development processfor agent communication. In
this case, we do nd nedl to take cae of the low-level communicaion protocols, such as the TCP/IP and
UDP protocols, which can be aittomaticdly handed by the Jini middleware, and can concentrate on Hgh-
level communicaion protocols, such as price-negotiation protocol. Finally, In the midde of this figure,
ADK represents the design and implementation, and it provides the framework and the dasslibrary for
developing intelligent communicating agents in multi-agent systems. A multi-agent system built upon

ADK can be redized by deriving the required spedfic agent classes from atemplate, which is the Agent

11

class defined in ADK. We will seethat it is draightforward to augment the agent framework with

applicaion-spedfic functionality to meed system requirements.

3. Design of Intelligent Communicating Agents

3.1 Middleware Support for Agent Communication

As we mentioned before, the Jini middleware can be used to simplify the development processfor agent
communication. The Jini architedure is intended to resolve the problem of network administration by
providing an interfacewhere diff erent comporents of the network can join o lease the network at any
time [16][17]. Such a mlledion d services is cdled a Jini community, and the services within the Jini
community represent service providers or service @nsumers. The heat of the Jini system is a trio of
protocols cdled discovery, join, and lookup. Discovery occurs when a service is looking for a lookup
servicewith which to register. Join occurs when a service has located alookup service and wishesto join
it. And lookup occurs when a dient or user neals to locate and invoke aservice described by itsinterface

type and pasbly, other attributes.

In designing the ADK, we use Jini as amiddieware for agents to find ead ather. Each agent is designed
as both a service provider and a service mnsumer. However the only servicethat an agent may provideis

to let other agents snd asynchronows messages to that agent.

In the agent-oriented G-net model, the GSP (Generic Switch Place) is defined asthe only interface anong

agents [4][5]. Thus, we design the schema for an agent interface & foll ows:

public interface G SP extends Remote {

public void asynMessagePassing(Message message) throws RemoteException;

}

public class MiddlewareSupport implements GSP {

/I agent interface

12

public void asynMessagePassing(Message message) {

System.err.printin("T his method should be overridden by an agent class!");
}
/I find lookup services and join the Jini community

public void setup(String[] groupsToJoin) {...}

The dass MiddewareSuppot implements the GSP interface where a abstrad method
asynMessagePassng() is defined. However, in class MiddlewareSuppot, the implementation o this
method is again deferred to subclasses of the MiddewareSuppaot class becaise we want that the dass
MiddewareSuppaot only defines the functiondlity to ded with the Jini community, such as discovering
lookup service on the network, registering with the Jini community and seaching for other agents in the
Jini community. Here the method setup() is defined to let the GSP find a lookup service and joins the Jini
community. As we will seein Sedion 3.2,the Agent class which is defined as a subclass of the
MiddewareSuppat class adually implements the method asynMessagePassng(), and inherits all the
functionality defined in classMiddlewareSuppot.

‘ Discovery Service ‘ ‘LookupService‘ ‘ Join Manager

AirTicket
Seller

Jini Community

> o

——C= D e e

AirTicket
Buyer

AirTicket 4
Buyer

Az AirTicket
! Seller

Figure 4. The Jini community with agents of AirTicketSeller and Air TicketBuyer

13

As an example, consider the design of an eledronic marketplacein which seller agents and buer agents
may find ead ather and communicate with ead ather asynchronously through the Jini community. The
designisill ustrated in Figure 4, where both air ticket sell er agents and air ticket buyer agents register their
GSP interfaces with the Jini community, and they may find ead ather by the agent attribute, for instance,

an agent name cdled "Seller".

3.2 A Pattern for Intelligent Communicating Agents

An intelligent communicaing agent has both the properties of intelligent agents and communicating
agents. An intelligent agent is defined as an agent that at least has the following charaderistics:
autonamy, readivity, and poadiveness while the definition d a communicaing agent emphasizes onits
sociability. Agent autonamy is akin to human freewill and enables an agent to chocse its own adions,
while ayent proadiveness requires an agent to behave in a goal-direded fashion. Agent proadivenessis
usually considered in relation to planning, and is drengthened with agent autonamy. We cdl an
autonamous and proadive agent a god-driven agent. A readive agent is defined as an agent that has the
ability to perceve and to resporse to a changing environment. In the Jini community, whenever a new
event occurs, an agent shoud be automaticdly natified by the system. For instance, when a seller agent
joins or leaves the Jini community, the buyer agents need to be natified; thus, the buyer agents can always
keep an upto-date list of the sell er agents that are aurrently in the community. We cdl areadive agent an
event-driven agent, and an event coud be awy environment change that may influence an agent's
exeadtion. The sociability of an agent refers to the aility of an agent to converse with ather agents. The
conversations, namally conducted by sending and receving messages, provide oppatunities for agents
to coordinate their adiviti es and cooperate with ead ather, if needed. An agent is diff erent from an ojed
in that agents usually do nd use method invocations to communicate with ead ather. On the ontrary,
agents distinguish dfferent types of messages and use complex protocols to negotiate. In addition, agents
analyze these messages and can dedde whether to exeaute the requested adion [13]. To med this
requirement, the design of agents neeals to suppat asynchronows message passng. We cdl an agent that

suppats asynchronous message passng a message-triggered agent.

14

Figure 5 shows the achitedural design for intelli gent communicaing agents. Compared with the agent-
oriented G-net model in Figure 2, an olbvious variationin Figure 5 is that the GSP placeof an agent now
becomes a part of the ewvironment modue, which is the Jini community. This variation shows a simple
design of the environment modue in ADK, in which case, the only external events of concern are those
related to agent entering and/or leaving the Jini community. In future design versions, it is possble to
extend the environment modue to include other events, such as network topdogy changes and user

interventions.

Agent

‘ Goal ‘ ‘ Plan ‘ ‘ Knowledge ‘

ewent
message Planrer «

fromGSP "
» decision- message
i ; i sensor «
making units dispatcher external
event

A
Internal Structure

incoming message| outgoing message | utility method
(MPUs) (MPUs) (methods)

message
to GSP

T Jini Community

(Environment)
SdlerGSP . BuyerGSP

»

BuyerGSP SellerGSP

Figure 5. The achitectural design of intelligent communicating agents

Similarly, data dhangesin Goal, Plan and Knowledge-base modues may ad asinternal events and trigger
the sensor in the Planrer modue. To simplify matters, in ou current version d ADK, the sensor in the

Planrer modueisimplemented to only capture external events.

15

Figure 5 also shows that, when an agent A wants to converse with ancther agent B, it sends a message to
the GSP of agent B in the Jini community. Then the message will be sent to the Planner modue of agent
B. After the message is dispatched into a MPU in the incoming message sedion, the message will be
processed, e.g., deaded, and sent bad to the Planner modue. Now the message goes to the dedsion
making units, where dedsions may be made to ignore the message, or to continue with the conversation.
If the conversationisto be mntinued, a new outgoing message is generated, and dspatched into a MPU
defined in the outgoing message sedion. The outgoing message will be processed and certain adions may

be exeauted before the message is snt to the GSP of agent A.

In addition, an intelligent communicaing agent will not work as a server. Therefore, we have not
included the public servicesedionin the Planrer modue. The MPUs and the methods, which are defined
in the incoming/outgoing message sedion and uility method sedion respedively, can be inherited by
agent subclasses, and can orly be accesd or cdled hy the agent itself.

The goal of the @ove achitedura designisto derive an architedural rendering of a system, which serves
as a framework from which more detailed design adivities are conduwcted. Based onthe achitedural
design illustrated in Figure 5, we now proceel to describe the detailed design of intelligent

communicating agents. This design is expressed in the form of a pattern or classtemplate.

Since the gent-oriented G-net model suppats inheritance, we will follow this design schema. In an
objed-oriented system, design petterns can be used with either inheritance or compasition. Using
inheritance, an existing design pattern becomes a template for a new subclass and the atributes and
operations that exist in the pattern become part of the subclass [18]. Similarly, in an agent-oriented
system, a pattern of an agent superclasscan serve & atemplate for an agent subclass and a spedfic agent
subclass such as an air ticket seller agent class can be derived from an agent superclassby augmenting

the template to med system requirements.

The Agent classdefined in ADK provides sich a pattern for agent implementation. The pattern in aform

of Java pseudacode is shown in Figure 6.

16

publ i c class

Agente xtends M i ddlewar eSupport {

priv ate stat i c final String PRODUCT= "Agent ";

static f inal Str i ng MANUFACTURER = "CéSL@JIC";

private
private staticf inalStr ingVERSION="A DK 1.0
/ * * * kk
A gentint erface - GSP
* * ***/
publicv oid asyn MessageP assing(M essage m essage) {
Threa d messageProcess Thread = new Thr ead(new Runnable (){
publicvo idrun() {
dispa t chMessage(messa ge); /I -- message-trig gered
}
PR
messageProces sThread. start();
}
/ * * * * * *
*Class Variabl esforK nowledge , Goala ndPlan *
/ * * * * * kkkk *kkk /
Goall]: nyGoals; // ali stofco mmitted goals
Plan[]: nyPlans; // aset ofpla ns

Knowledg e: myKno wledge; //akno wledge - base

| FHrrEk

* kK

*P | anner *

hkkkkkk

* xxk |

priv ate clas s Sensor extends Listene r {

[.).L.Jbl i cvoid notify(R emoteEve nt ev) {

}

i f(l(ev instanc eof Serv i ceEvent))retur n;
updateSe rvices() ;
i nvokePl an(ev); [/l -- event-driv en

prot ectedvo id disp atchMess age(Mess age mess age) {...}

prot ected Me ssage ma keDecisi on(Messa ge messa ge) {...}

protecte d voidu pdateMentalState (){...)
/ *kkkkkk * kkkkkkk * kkkkkk
*Inter nal Stru cture *
*kkkkkk * kkkkkkk * ******/
//incom ingmess agesec tion — as etofme ssagepr ocessing units
protecte d void M PU_In_1(Message nessage){...}
//outgo ingmess agesect ion — as etof me ssage pr ocessing units
protecte d void M PU_Out_1(Message outgoin gMessage) {...}
/1 utili tymetho d sectio n — as etofpr ivateut ilityme thods
protecte d void M ethod_1() {...}
publics taticvo idmain(String[] args) {
init Agent(ar gs);
auto nomousRun(); // -- goal-driv en
}

Figure 6. A pattern for intelligent communicating agents

17

As dhown in Figure 6, the Agent classis defined as a subclass of MiddlewareSuppaot (as defined in
Sedion 3.) to reuse the functionality of discovering a lookup service registering with the Jini
community, and seaching for other agents. More importantly, an agent objed may communicae with
other agent objeds asynchronowly through the GSP interface This functionality makes an agent
sociable. To simulate the asynchronols message passng, we have used the thread technique to generate a
new thread cdled messageProcessThread. Upon recaéving an incoming messge, the
messageProcessThread of the message receaver (the cdl eé dispatches the message to a MPU and returns
immediately. This ends up the messageProcessThread quickly, and therefore, the message sender (the

cdler) does not neal to wait for the message to be processed and may proceed to exeaute other tasks.

Correspondng to the threemodues (Goal, Plan and Knowedge) in the achitedural design dof intelli gent
communicating agents (Figure 5), the Agent class defines a list of committed goals myGoals, a set of
plans myPlans, eatch of which is associated with a goal or a subgoal, and a knowledge-base
myKnowledge. The Goal, Plan and Knowledge class define the basic properties and kehaviors for an
intelli gent agent, and may be refined if an applicaion-spedfic agent requires further functionality. Refer
to Figure 7 for the definitions of the Goal, Plan and Knowledge class For brevity, other classvariables,
such as theGoal Set — a set of goals from which the goal li st myGoals is generated — are omitted in Figure
6.

The readivity of an agent can be designed through the Jini's natificaion faality. In Figure 6, we can see
that the Sensor classis defined as a private inner classin the Agent class andis derived as a subclassfrom
the Listener class which is defined by Jini. Thus, an applicaion class such as a seller agent classor a
buyer agent class can be defined as a subclass of the Agent class and can be natified by the Jini
community whenever an event occurs, as long as the correspondng agent objed has instantiated a Sensor

objed and hes registered it with the Jini community.

Based onthe achitedura design of intelli gent communicaing agentsin Figure 5, the Planrer moduein

the Agent pattern defines a method cdled dispatchMessage(), which is used to dispatch messages to the
appropriate MPU defined in the incoming/outgoing message sedion. Examples of methods defined as

18

dedsion-making units in the Planner modue ae the methods makeDedsion() and updaeMental State().
In method makeDedsion(), dedsions are made to ignore an incoming messge, to start a new
conversation, a to corntinue with the airrent conversation. In method updaeMental State(), the mental
state of the agent, i.e., the goal, plan, and knowledge-base ae updated whenever adedsionis made or a
new event occurs. The Internal Sructure modue includes three sedions, i.e., the incoming message
sedion, ougoing message sedion, and uility method sedion. Each sedion dcefines a set of MPUs or
methods, which are depicted as MPU _In_i(), MPU_Out_j() or Method k() in Figure 6. The auitonomy and
proadiveness of an agent are related with the Goal, Plan, Knowledge-base, Planrer and Internal
Structure modues of an agent. To conred them together, we define the ntrol as the method
autonamousRun(), which includes a list of committed goals to be adieved based onthe aent’s mental
state. Each goal is defined as agoal treethat istraversed in depth-first order, and seleded plans associated
with ead goal or subgoa are invoked acwrdingly. The method autonamousRun() is invoked in the
method main(), as shown in Figure 6, and is exeauted after the aent is initialized with the method
initAgent().

One advantage of our model-based approach isits suppat for the principle of “separation o concerns,” in
particular the separation d agent intelligence and agent communicaion mecdhanisms. Therefore, it is
possble for us to chocse some eisting implementation schema of intelligent agents to design and
implement intelli gent communicaing agents for multi-agent systems. For instance, we can chocse the
Task Representation Languag (TRL) to suppat knowledge representation and agent reasoning [19], or
we can use Petri nets to model the mental state of agents for multi-agent simulation [22]. Alternatively,
we can, and do, e amore commonly used intelli gent agent model — the Belief-Desire-Intention (BDI)
model [8]. A BDI architedure includes and uses an explicit representation for an agent's beliefs, desires
and intentions. The BDI implementations, such as The Procedural Reasoning System (PRS), the
University of Michigan PRS, and JAM, al define anew programming language and implement an
interpreter for it [20]. The advantage of this approadch is that the interpreter can stop the program at any
time, save state, and exeaute some other plan, a intention, if it needsto. In this paper, we use asimplified
implementation d the BDI agent model based on previous work, and show how to integrate it into ADK

in developing intelli gent communicaing agents

19

The relationships between the key classes defined for communicaing agents and intelli gent agents are
illustrated in Figure 7. As shown in this figure, two key classes for a cmmmunicating agent are the Agent
classand the Message class and an Agent oljed may send a receve Message oljeds through its GSP
interface Meanwhil g, the threekey classes for an intelli gent BDI agent are the Goal, Planand Knowledge
class A Goa objed is defined as agoal treg and agoal or a subgoal associates with a set of plans. When
agoa or asubgoa isto be adieved, the most appropriate plan, for instance, the plan with the highest
priority, is sleded and exeauted. As a result of the exeaution d a plan, a Knomedge objed may be
updated. Both a Goal ohjed or a Plan objed may use the Knowledge oljed for its own pupose, e.g., to
seled the right plan to achieve agoal or a subgoal.

String: godName

Agent Message
Goal[]: myGoals) ServicelD: senderlD
Plan[]: myPlans sendreceive | ServicelD: receiverlD
Knowledge: myKnowledge String: content
initAgent() toString()
autonousmousRun()
communicating agent
achieve initialize intelligent agent
Yy
God Knowledge

Int: priority
Boolean: conditions
String: associatedGoalName

Goal[]: subGoal use/update
Plan[]: associatedPlans 7]
achieveGoal ()
execute
Plan
String: planName use/update

Agentinfo: thisAgent
AgentInfo[]: remoteAgents

initknowledge()
update()

A

startPlan()
stopPlan()

Figure 7. Relationship between classes defined for communicating agents and intelligent agents

The Agent classdefines alist of committed goals myGoals, a set of plans myPlans that associate with a
goal or a subgoal, and a knowledge-base myKnowledge. The list of committed goals and the set of plans

20

may be updated at run time. For instance, when a goal is achieved, it may be deleted from the goal list,
and rew goals may be alded into the god li st if needed. In additi on, the myKnowledge objed isinitiali zed
by the Agent ohjed, and may be updated at run time by a Goa or Plan objed. The intelli gent
communicating agent is $-cdl ed god-driven, because in the method automousRun(), goals defined in the
godl list are atieved ore by one through aloop. When al the goals are atieved, the Agent oljed waits
for new committed goalsto be alded into the goal list.

4. Implementation of Multi-Agent Systems

4.1 An Agent Development Process

The purpose of the proposed agent design architedure is to ease the programmer's effort to develop
applicaions of intelligent communicaing agents for multi-agent systems. As we mentioned before, a
spedfic agent, such as an air ticket seller agent, could be defined as an agent subclassof the Agent class
To illustrate this ideg we present a dass hierarchy for an eledronic marketplacein Figure 8. In this
figure, all the dasses above the dashed line ae provided as an agent framework or a dasslibrary — these
classes define the ADK environment, which suppats developing intelli gent communicating agents for
multi-agent systems. The dasss below the dashed line ae derived classs that represent spedfic
intelligent communicating agents in a multi-agent system. Since the Agent class fiown in Figure 6
provides the basic functionality of intelli gent communicaing agents as well as the ayent implementation
framework, what we need to dofor developing a spedfic intelli gent communicating agent isto inherit the
functional units and the behaviors of the Agent superclassand fill out certain sedions in the pattern for
intelli gent communicating agents, such as the incoming/outgoing message sedion (Figure 6). In addition,
we need to define subclasses of the Goal, Plan, and Knowledge classes defined in ADK to med certain

behavioral requirements of agent intelli gence

21

| GSP(interface) |

| | MiddlewareSupport | |Know|edge | | Message

* *

Send/ Receive

Class Library (ADK)

| Derived Classes

Air Ticket Seller | | Book Seller | | Air Ticket Buyer | | Book Buyer |

T

Domestic
Air Ticket Seller

International
Air Ticket Seller

I%IIZFI F%ﬁ

| Textbook Buyer | | Literature Book Buyer

Figure 8. The dass hierarchy diagram of agentsin an eledronic marketplace

As a summary, we now briefly describe the generic procedure to develop a spedfic intelli gent

communicating agent for multi-agent systems. In Sedion 4.2,we cat the procedure into more spedfic

terms by way of an example. The 6-step procedure is defined as foll ows:

1. Define aset of goals @ asthe dassvariable theGoa Set, where eab goal is defined asagoal treel’. A
goal tree ould consist of just aroat, which means agoa may or may not have anumber of subgoals.

2. Define agoal list Q as the dassvariable myGoals (Figure 6) and initialize the goal list Q with any
committed goal g. 0 ®. The god list Q is dynamic, which means achieved goals may be deleted from

Q and rewly committed goals could be added into Q at runtime.

3. Define aset of plans P as the dassvariable myPlans (Figure 6). Each pan pO P has a priority and a
set of condtions, and is associated with a particular goal or subgoal. The plan py, [P, which has the
highest priority and whose ondtions are evaluated to true, will be exeauted to achieve the assciated
goal or asubgoal.

4. Eadc plan p corresponds to a mntrad net protocol p [21], which serves as a template for agent

conversation. From the cntrad net protocol, we define a set of MPUs W, where eath MPU

corresponds to a method MPU_In_i() or MPU_Out_j() as shown in Figure 6. Refer to [4][5] for a
detail ed description for transforming from p to .

5. Refine the Knowledge classif the gplicaion-spedfic agent requires additional types of knowledge
beyond the basic properties and kehaviors predefined in Figure 7, and initi ali ze the knowledge-base
myKnowledge (Figure 6) for that agent.

6. Refine the deasion-making units defined in the Agent class if needed. Examples of dedsion-making
units include functions li ke makeDedsion(), updaeMental Sate() and invokePlan().

The dedsion-making units srve & the reasoning engine for the agent. The major functionaity of the

dedsion-making units includes the foll owing tasks:

For ead goal or subgoal, chocse the most appropriate plan to exeaute.

Crede outgoing messages and send them out through MPUSs.

Uponreceaving incoming messages, dedde to ignore or continue with the conversations.
» Deddewhen to upchte the agent's mental state.

» Uponcapturing new events, updite the god li st and invoke catain plans.

It shoud be mentioned that the éove procedures may be automated, o partially automated by providing
a development environment, to ease the programmers work. Thisis also ore of the major motivations of
ou ADK projed. An Agent Devdopment Environment (ADE), which encompasss the ADK, is

envisioned as afuture, and more anbiti ous research diredion.

4.2 A Multi-Agent System Example: Air-Ticket Trading

As an example for intelli gent communicaing agents, suppase we wish to design and implement a muilti-
agent system for air ticket trading. The multi-agent-agent system will i nclude two types of agents, air
ticket seller agents and air ticket buyer agents. According to the procedures described above, a set of
goalswill beidentified for both the ar ticket sell ers and the ar ticket buyers. For instance, the goal li st for

asimplified air ticket buyer may include the goal “buy air ticke,” and the goal “buy air tickd” may have

23

subgoals of “find seller,” “ checkprice” “ buy tickd,” and “wait for recapt,” as s1own onthe right hand
side of Figure 9. The dr ticket seller has a similar goal li st for the purpose of selling air tickets. For ead
goal or subgoal, we define aset of plans. For instance, for the subgoa “find seller”, we have two plans,
which are plan_FindSler and plan_BeFoundBySdller. The plan plan_FindStller can be exeaited to
seach for air ticket sellers in the Jini community, whil e the plan plan_BeFoundBySeller is exeauted to
wait to be found ly air ticket sellers. Which plan will be exeauted to achieve the subgoal “find seller” is
determined by adual situations. For instance, the buyer may want to wait and ke mntaded by air ticket

sellersinitialy. However, if the subgoal canna be adieved in a period d time, the buyer can change its

mindto search for air ticket sellers by itself.

1]
Eg_"iAilTicketBuyel agent knowledge-base [Part 1) [&3 AirTicketBuyer agent goal and plan module M= B
File Edit File Edit
@ AirTicketBuyer (ID: BA_3h19) @ AirTicketBuyer (ID: BA_3b19)
Air Ticket Info
? IGjoatanrea?r tie ket for Finding Sellex s
From (city) Chicagn Departure Ti... [12:00pm g _
; A . [find seller Plan_{: plan_FindSeller

To (city) Dayton Arrival Time [12:00pm @ [check price Plan_2: plan_BeFoundBySeller

Date 12108 Airline United Airline D ask price

No. of Tickets |2 Already Bought|s [negotiate price || Expianation:

[} compare price || mere ave two plems associated with the goal "find

Choices (3 coniiem price || sedtar”, which are:

[buy ticket 1. plan_FindSeller: to find the seller agents by the
) Lowest Fare (default) (' Shortest Travel Time [wait for receipt Juper Heelf,
& goal-2 2. plan_BeFoundBySeller: to wait and to be found
Buttons @ [goal-3

Ly the seller agents,

| Save || Clear || Exit |

Figure 9. User Interfaceof the Knowledge-base, Goa and Plan modue

The mntrad net protocols correspond to the @ove two pans are fairly simple. For the plan
plan_Find<ler, the buyer asks the sellers in the Jini community if they sell air tickets, then the sellers
may reply with "Yes' or "No", or simply ignore the mnversation. If a seller replies with “Yes,” the buyer
may ask further questions to ched if the dr ticket seller has enough certain types of air tickets. For
instance, the buyer may ask if the sell er has tickets from “Dayton” to “Chicago.” If the seller has the type
of air tickets that the buyer wants, the subgoal may be adieved or partially achieved (if the sell er has the

24

type of tickets but not enough). Then, in the next step, the sell er continues to adhieve the subgoal “check

price”

This gives me examples of how to “fill out” certain sedions of the implementation pattern provided by

the Agent class Now we list afew MPUsthat correspondto the dove two plans:

/I incoming message section
/I plan_FindSeller

protected void MPU_In_SellerYesOrNo(Message message) {}

/I plan_BeFoundBySeller

protected void MPU_In_BeFoundBySeller(Message message) {}

/I outgoing message section
/I plan_FindSeller

protected void MPU_Out_FindSeller(Message outgoingMessage) {}

/I plan_BeFoundBySeller

protected void MPU_Out_BuyerYesOrNo(Message outgoingMessage) {}

The Knowledge-base of a sell er or buyer agent includes two parts, which provides information abou the
agent itself and information abou other agents. For instance the Knowledge-base of the buyer agent
shoud include ticket information for the type of tickets that the buyer agent wants to bwy (as $rown on
the left hand side of Figure 9), and ticket information for the type of tickets that other sell er agents may
hold. Other information, such as the state of the agent itself and aher agents, may also be stored in the
Knowledge-base of that agent. We do nd show these types of knowledge in ou illustrated figures.
Finally, for the dedsion-making units for this air ticket trading appli cation, we simply reuse those that are

predefined in ADK.

25

The user interfaceof a seller agent is designed as a console window as siown in Figure 10. In the gent
console window, the @ntent for the agent communicaion is displayed. Meanwhile, a list of agents,
including the agent itself and those agents with which that agent communicaes, is displayed onthe left
hand side of the window. The user interfacewill also provide a set of todls, such as to lookup existing
services, to test message sending/recaving, and to edit agent properties. Figure 10 shows an example of
air ticket trading process In Figure 10, a buyer agent, with an agent ID of BA 3b19 first asksif the seller
agent SA 16b sdls air tickets. After the seller agent SA_16&b confirms with “Yes’, the buyer agent
BA 3bl19cortinues to ask if the seller agent SA_16b has the type of air tickets it wants. After the sell er
agent SA_16fb confirms with “Yes’ again (athough it does not have enouwgh tickets), the buyer agent
BA 3b19begins to bargain price with the seller. Finaly, the cnversation between agent SA 16b and
agent BA 3b19ends up with a cmnfirmation message that the buyer agent BA 3b19buys all the 5 tickets
from the sell er agent SA_16b with the price of $180.0for ead ticket.

E%AilTickelSeller agent console . [O) x|
File Edit Run Tool
@ AirTicketSeller Agent {ID: SA&_16h)
(ngem List |/Current Log |
@ S5A_16fh d5tartingPrice: 300.0 LowestPrice: 180.0
@ BA_3h19 o[SoldTickets: 0 AvailableTickets: 5
A|BA_30h149: Do you sell air tickets?
§§ SA_16fh (o BA_3b19): Yes, [do. | am an airticket seller.
BA_3h19: Do you sell tickets from Chicago to Dayton?
§§ SA_ 16 o BA_3b19): Yes, | sell tickets from Chicago to Dayton,
BA_3h19: Iwantto buy 8 airtickets an 12005501,
§§ SA_16f o BA_3b19): Butl only have & airtickets on 12/05/01.
BA_ 3013 How much does the air ticket cost?
§§ SA_1 6 (o BA_3b19): The airticket costs $300.0.
BA_3h19: May | have a better price?
§§ S8 16 (to BA_3h19): The lowest price is §180.0
BA_3h19; Ok, 'l take 5 air tickets from you.
BA_3h19: [Confirmation] 'l buy 5 air tickets from Chicago o

: Dayton on 1205501 far $180.0 each.
L] |f:f:§:

[b

-

:f:[|]

Figure 10. User interfaceof the seller agent SA 16b

26

In this example, the agent ID for the seller agent or the buyer agent is defined by a prefix of SA (seller
agent) or BA (buyer agent) with the last four digits of the service ID of that agent, where the service D is
a 32 dgits hexadeamal number provided by the Jini community when the agent is registered [16][17].

E%-_?,AilTickelBuyer agent conszole Hi=] E3
File Edit Bun Tool
@ AirTicketBuyer Agent {(ID: BA_3b19)
rngent List rCurrem Log |
@ BA_3h14 41BA_3h19 (to SA_bfan: May | have a better price?
=5 54 _ifar :[SA_TEMD: The lowest price is $180.0.
@ oo 16t §§ SA_hfBf: The lowest price is $200.0.
- synchronizing 2 selling agents .
§§ BA_3h19 o SA_16f): Ok, 'l take & airtickets from you.
BA_3h14 {to SA_bfEN: Ok, Il take 3 air tickets from you.
gi synchronizing 2 selling agents .
§§ BA_3h19 o SA_16): [Confirmatian] 11 buy & air tickets from
Chicagoto Dayton on 12705701 for $180.0 each.
g@ BA_30193 (to 5A_hfaf: [Confirmation] Ml boy 3 airtickets from
: Chicago to Dayton an 12705701 for $200.0 each.

[»

Congratulations! The goal has heen achieved I

[+ [EE

=

Figure 11. User interfaceof the buyer agent BA 3b19

In Figure 11, we show the user interfacefor the dr ticket buyer agent. In this figure, we can seethat the
buyer agent BA_3b19concurrently communicates with two sell er agents: SA_bf8f and SA_16h, and bwys
5 tickets from the seller SA_16b and 3tickets from the seller SA_bf8f with the lowest fare criteria.

5. Conclusionsand Future Work
Although a number of agent-oriented systems have been built in the past few yeas, there is very little
work on lridging the gap between theory, systems, and applicaion. The contribution d this paper is to

use the agent-oriented G-net model, which is a formal agent model, as a spedfication and a high-level

design for agent development. Based onthe achitedural design and the detailed design of a generic

27

intelli gent communicating agent, we developed the ADK as a dasslibrary that suppats designing and
implementing applicaions of intelligent communicaing agents for multi-agent systems. An air ticket
trading example was presented to ill ustrate the derivation d a multi-agent applicaion wing the ADK
approach. The generality of the example suppats the nation that our model-based approacd is feasible
and effedive. For future work, we will formali ze the design procedure for developing spedfic intelli gent
communicating agents, and hbesed on the ADK class library, we will partialy automate the
implementation processto reduce the programming-level tasks. In future versions of this projed, we plan

to develop an Agent Devdopment Environment (ADE) to suppat the development process

References:

[1] T. Murata, “Petri Nets: Properties, Analysis and Applicaions,” Procealings of the IEEE, vol. 77,
no. 44 April 1989, pp. 545680.

[2] A. Perkusich and J. de Figueiredo, “G-Nets: A Petri Net Based Approach for Logicd and Timing
Analysis of Complex Software Systems,” Journal of Systems and Sdtware, vol. 39, no. 1, 1997, pp.
39-59.

[3] Y. Deng, S. K. Chang, A. Perkusich and J. de Figueredo, “Integrating Software Engineeing
Methods and Petri Nets for the Spedfication and Analysis of Complex Information Systems,”
Procedalings of the 14th Internationd Conference on Application and Theory of Petri Nets,
Chicago, June 21-25, 1993, pp. 20€223.

[4] H.XuandS. M. Shatz, “An Agent-Based Petri Net Model with Applicaionto Seller/Buyer Design
in Eledronic Commerce” Procealings of the Fifth Internationd Symposium on Autonamous
Deceantralized Systems (ISADS 2001), March 2628, 2001 Dallas, Texas, USA, pp. 1118.

[5] H.XuandS. M. Shatz, “A Framework for Modeling Agent-Oriented Software,” Proceeadings of the
21st Internationd Conference on Distributed Computing Systems (ICDCS-21), April 16-19, 2001,
Phoenix, Arizona, USA, pp. 5764.

[6] M. Fisher, “Representing and Exeauting Agent-Based Systems,” Intelli gent Agents -- Procealings
of the Internationd Workshop onAgent Theories, Architedures, and Languags, M. Wodl dridge,

28

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

and N. Jennings, eds., Ledure Notes in Computer Science vol. 890, Springer-Verlag, 1995, pp.
307-323.

M. Huber, “JAM: a BDI-Theoretic Mobile Agent Architedure,” Proceelings of Internationd
Conference on Autonamous Agents, 1999, pp. 23@43.

D. Kinny, M. Georgeff, and A. Rao, “A Methoddogy and Modeling Tedhnique for Systems of BDI
Agents,” Agents Breaking Away: Procealings of the Seventh European Workshop onModeling
Autonamous Agents in a Multi-Agent World, W. Van de Velde and J. W. Perram, eds., LNAI vol.
1038, Springer-Verlag: Berlin, Germany, 1996, pp. 5&/1.

N. Howden, R. Ronngust, A. Hodgson, and A. Lucas, “JACK Intelli gent Agents — Summary of an
Agent Infrastructure,” Procealings of the 5" Internationd Conference on Autonamous Agents,
2001.

R. Ashri and M. Luck, “Paradigma: Agent Implementation through Jini,” Proceelings of the
Elevaith Internationd Workshop onDatabase and Expert Systems Applications, A. M. Tjoa and R.
R. Wagner and A. Al-Zobaidie, eds., IEEE Computer Society, 2000, pp. 453157.

M. Luck and M. dInverno,“A Formal Framework for Agency and Autonamy,” Procealings of the
First Internationd Conference on Multi-Agent Systems, AAA| Press/ MIT Press 1995, pp. 254
260.

J. Siegel, and the OMG Staff Strategy Group, “Developing in OMG's Model Driven Architedure
(MDA),” OMG White Paper, Objed Management Group, November 2001.

M. Woddridge, N. R. Jennings, and D. Kinny, “The Gaia Methoddogy for Agent-Oriented
Analysis and Design,” Journal of Autonamous Agents and Multi-Agent Systems, vol. 3, no. 3, 2000,
pp. 285312.

C. A. Iglesias, M. Garrijo, J. Centeno-Gonzdlez, “A Survey of Agent-Oriented Methoddogies,”
Procedlings of the Fifth Internationad Workshop onAgent Theories, Architedures, andLanguag
(ATAL-98), 1998, pp. 31B30.

J. Odell, H. Van Dyke Parunak, and B. Bauer, “Representing Agent Interadion Protocolsin UML,”
Agent-Oriented Sdtware Engineaing, Paolo Ciancarini and Michad Woddridge, eds., Springer-
Verlag, Berlin, 2001, pp. 124140.

28

[16]

[17]

[18]

[19)

[20]

[21]

[22]

[23]

[24]

[23]

[26]

[27]

W. K. Edwards, Core Jni, The Sun Microsystems Press Prentice Hall PTR, Upper Saddle River,
NJ, 1999.

K. Arndd, B. O'Sullivan, R. W. Scheifler, J. Waldo, and A. Wollrath, The Jni Spedfication,
AddisonWesley, 1999.

R. S. Presgnan, Sdtware Engineing: A Practiti oner’s Approach, 5" Edition, McGraw-Hill , 2001.
T. R. loerger, R. A. Volz, and J. Yen, “Modeling Cooperative, Readive Behaviors onthe Battlefield
Using Intelligent Agents,” Proceadings of the Ninth Conference on Computer Generated Forces
(9th CGF), 2000, pp. 123.

J. M. Vidal, P. A. Buhler, and M. N. Huhnrs, “Inside an Agent,” IEEE Internet Computing, vol. 5,
no. 1,January-February 2001.

R.A. Flores and R.C. Kremer, “Formal Conversations for the Contrad Net Protocol,” Multi-Agent
Systems and Applications I, V. Marik, M. Luck & O. Stepankova, eds., Ledure Notes in Computer
Science, Springer-Verlag, 2001.

J. Yen, J. Yin, T.R. loerger, M. Miller, D. Xu, and R.A. Volz, “CAST: Collaborative Agents for
Simulating Teanwork,” Proceelings of the Seventeenth Internationd Joint Conference on Artificial
Intelli gence (IJCAI-01), Sedtle, WA, August 2001, pp. 1138.142.

W. Vasconcdos, J. Sabater, C. Sierra and J. Querol, “Skeleton-based Agent Development for
Eledronic Ingtitutions,” Proceealings of the First Internationd Joint Conference on Autonamous
Agents and Multi -Agent Systems (AAMAS), Italy, July 2002.

J. A. Rodriguez-Aguilar, F. J. Martin, P. Garcia, P. Noriega and C. Sierra, “Towards a Formal
Spedficdion d Complex Socia Structuresin Multi-agent Systems,” Collabaration ketween Human
andArtificial Saieties, J. Padget, ed., LNAI, vol. 1624,Springer-Verlag, 1999, pp. 284800.

H. Xu and S. M. Shatz, “Extending G-Nets to Suppat Inheritance Modeling in Concurrent Objed-
Oriented Design,” Proceealings of the IEEE Internationd Conference on S$stems, Man, and
Cybernetics (SMC 2000, October 2000,Nashvill e, Tennessee USA, pp. 31283133.

Y. Deng and S. K. Chang, “A G-Net Model for Knowledge Representation and Reasoning,” IEEE
Transactions on Knowledge and Data Engineging, vol.2, no. 3 .September 1990, pp. 29810.

M. Wooldridge, An Introduction to Multiagent Systems, JohnWiley and Sons, Ltd., 2002.

30

(28]

[29)

[30)

[31]

M. dlnverno, M. Fisher, A. Lomuscio, M. Luck, M. de Rijke, M. Ryan, and M. Wodldridge,
“Formalisms for Multi-Agent Systems,” The Knowledge Engineaing Revew, vol. 12, no. 3, 1997.
T. Finin, Y. Labrou, and J. Mayfield, “KQML as an agent communicaion language,” Sdtware
Agents, Jeff Bradshaw, ed., MIT Press Cambridge, 1997.

M. J. Huber, S. Kumar, P. R. Cohen, and D. R. McGee “A Formal Semantics for Proxy
Communicdive Acts,” Procealings of the Eighth Internationd Workshop on Agent Theories,
Architedures, andLanguags (ATAL-200]), Sedtle, Washington, USA, August 1-3, 2001.

H. Xu and S. M. Shatz, “A Framework for Model-Based Design of Agent-Oriented Software,” To

appea in IEEE Transactions on Sdtware Engineging, 2002.

31

