
 1

Model-Based Development of Intelli gent Communicating
Agents for M ulti-Agent Systems1

Haiping Xu and Sol M. Shatz

Department of Computer Science

The University of Illi nois at Chicago

Chicago, IL 60607

Email: { hxu1, shatz} @cs.uic.edu

Abstract

An intelli gent communicating agent has both the properties of intelli gent agents and communicating

agents, which are autonomy, reactivity, proactiveness and sociabilit y. In this paper, we propose a model-

based approach to designing and implementing intelli gent communicating agents for multi -agent systems

(MAS). As background knowledge for our approach, we first briefly introduce the agent-oriented G-net

model, which is based on the G-net formalism. This formal agent model serves as both a specification and

a high-level design for the tool kit called ADK (Agent Development Kit) that supports developing

intelli gent communicating agents for multi -agent systems. Then the architectural design and detailed

design of intelli gent communicating agents, which closely follow the agent formal model, are described.

As a potential solution for automated software development, we summarize the procedure to generate a

model-based design of intelli gent communicating agents. Finally, to ill ustrate an application built on

ADK, we present an air-ticket trading example.

Keywords: agent-oriented G-net model, intelli gent communicating agent, multi -agent system, agent

development kit (ADK), model-based development.

1. Introduction

1 This material is based upon work supported by the U.S. Army Research Off ice under grant number DAAD19-01-
1-0672, and the U.S. National Science Foundation under grant number CCR-9988168.

 2

The development of agent-based systems offers a new and exciting paradigm for production of

sophisticated programs in dynamic and open environments, particularly in distributed domains such as

web-based systems and electronic commerce. Though there have been significant commercial and

industrial research and development efforts underway for some time, developments based on formal agent

frameworks are rare. In this paper, we present a development approach, including design and

implementation, for intelli gent communicating agents for multi -agent systems (MAS) [27]. The approach

is based on a formal agent model introduced in earlier work [4][5] and subsequently described in more

details, including examples of model checking for design properties [31]. The agent model serves as both

a specification and a high-level design for agent implementation, and it supports design modularization

and inheritance. To bridge the gap between modeling and implementation, we highlight a system that

provides a full class-library for the domain of intelli gent communicating agents for multi -agent systems.

We call the development system ADK (Agent Development Kit). The proposed formal agent model,

called agent-oriented G-net model, is based on the G-net formalism [2][3], which is a type of high-level

Petri net [1]. The significance of this model is that it explicitl y supports asynchronous message passing

among agents [4], and it supports inheritance for functional units defined in its internal structure [5]. The

functional units in this model not only include methods, as in the case of object-oriented paradigm, but

also include Message Processing Units (MPU), which are functional units defined for asynchronous

message passing. In addition, the agent-oriented G-net model can be translated into more “standard”

forms of a Petri net for design analysis, such as deadlock detection and model checking [31].

Previous efforts on narrowing the sizable gap between agent formal models and agent-based practical

systems can be summarized into three categories. In the first case, some researchers aim at constructing

directly executable formal agent models. For instance, Fisher’s work on Concurrent METATEM has

attempted to use temporal logic to represent individual agent behaviors where the representations can be

executed directly, verified with respect to logical requirement, or transformed into some refined

representation [6]. Vasconcelos and his colleagues have tried to provide a design pattern for skeleton-

based agent development [23], which can be automatically extracted from a given electronic institution.

The electronic institutions have been proposed as a formalism with which one can specify open agent

organizations [24]. These types of work seem to be an ideal way for seaming the gap between theories

 3

and implemented systems; however, an implementation automatically derived from a formal model tends

to be not practical. This is because a formal model is an abstraction of a real system, and thus an

executable formal model ignores most of the components and behaviors of a specific agent. Therefore, as

stated in paper [28], executable models based on formalisms, such as temporal logic, are quite distant

from agents that have actually been implemented, and at least for the time being, the gap between an

executable formal model and a practical agent implementation is still very large. In the second case,

researchers use agent theories or agent formal models as conceptual guidelines for agent implementation.

Examples of such work are li sted as follows. JAM is a hybrid intelli gent agent architecture that draws

upon the theories and ideas of the Procedural Reasoning System (PRS), Structured Circuit Semantics

(SCS), and Act plan interlingua [7]. Based on the BDI theories [8], which models the concepts of beliefs,

goals (desires), and intentions of an agent, JAM provides strong goal-achievement syntax and semantics

with support for homeostatic goals and a much richer, more expressive set of procedural constructs. The

JACK intelli gent agent framework by Agent Oriented Software brings the concept of intelli gent agents

into the mainstream of commercial software engineering and Java [9]. JACK is designed as a set of

lightweight components with high performance and strong data typing. Paradima has been implemented

to support the development of agent-based systems [10]. It relies on a formal agent framework, i.e., Luck

and d’ Inverno’s formal agent framework [11], and is implemented by using recent advances in Java

technology. Though all of the above agent developments rely on formal agent models, the relationships

between the implementations and their underlying formal agent models are loosely coupled.

As the third approach for bridging the gap between agent formal models and agent-based practical

systems, we use a formal agent model as an agent specification and high-level agent design. In particular,

we use the agent-oriented G-net model to define the agent structure, agent behavior, and agent

functionality for intelli gent communicating agents. A key concept in our work is that the agent-oriented

G-net model itself serves as a design model for an agent implementation. We will see that our

architectural design of intelli gent communicating agents closely follows the agent-oriented G-net model,

and the detailed design and implementation of ADK satisfies the requirements specified by the agent-

oriented G-net model. By supporting design reuse, our approach follows the basic philosophy of Model

Driven Architecture (MDA) [12] that is gaining popularity in many communities, for example UML.

 4

The rest of this paper is organized as follows. In Section 2, we briefly review the agent-oriented G-net

model, which has been previously proposed [5] and subsequently described in more details for design

analysis [31]. We also discuss the role of ADK, in serving as a bridge between the formal agent model

and the agent implementation platform. In Section 3, we describe the architectural design and detailed

design of intelli gent communicating agents. Section 4 summarizes the procedures to design and

implement intelli gent communicating agents for multi -agent systems, and uses an air ticket trading

example to ill ustrate the derivation of an application using the ADK approach. The generality of the

example supports the notion that our model-based approach is feasible and effective. In Section 5, we

provide conclusions and our future work.

2. A Framework for Agent-Or iented Software

2.1 G-Net Model Background

A widely accepted software engineering principle is that a system should be composed of a set of

independent modules, where each module hides the internal details of its processing activities and

modules communicate through well -defined interfaces. The G-net model provides strong support for this

principle [2][3]. G-nets are an object-based extension of Petri nets, which is a graphically defined model

for concurrent systems. Petri nets have the strength of being visually appealing, while also being

theoretically mature and supported by robust tools. We assume that the reader has a basic understanding

of Petri nets [1]. But, as a general reminder, we note that Petri nets include three basic entities: place

nodes (represented graphically by circles), transition nodes (represented graphically by solid bars), and

directed arcs that can connect places to transitions or transitions to places. Furthermore, places can

contain markers, called tokens, and tokens may move between place nodes by the “firing” of the

associated transitions. The state of a Petri net refers to the distribution of tokens to place nodes at any

particular point in time (this is sometimes called the marking of the net). We now proceed to discuss the

basics of the G-net models.

 5

A G-net system is composed of a number of G-nets, each of them representing a self-contained module or

object. A G-net is composed of two parts: a special place called Generic Switch Place (GSP) and an

Internal Structure (IS). The GSP provides the abstraction of the module, and serves as the only interface

between the G-net and other modules. The IS, a modified Petri net, represents the design of the module.

An example of G-nets is shown in Figure 1. Here the G-net models represent two objects – a Buyer and a

Seller. The generic switch places are represented by GSP(Buyer) and GSP(Seller) enclosed by elli pses,

and the internal structures of these models are represented by round-cornered rectangles that contain four

methods: buyGoods(), askPrice(), returnPrice() and sellGoods(). The functionality of these methods are

defined as follows: buyGoods() invokes the method sellGoods() defined in G-net Seller to buy some

goods; askPrice() invokes the method returnPrice() defined in G-net Seller to get the price of some

goods; returnPrice() is defined in G-net Seller to calculate the latest price for some goods and sellGoods()

is defined in G-net Seller to wait for the payment, ship the goods and generate the invoice. A GSP of a G-

net G contains a set of methods G.MS specifying the services or interfaces provided by the module, and a

set of attributes, G.AS, which are state variables. In G.IS, the internal structure of G-net G, Petri net

places represent primitives, while transitions, together with arcs, represent connections or relations among

those primitives. The primitives may define local actions or method calls. Method calls are represented by

special places called Instantiated Switch Places (ISP). A primitive becomes enabled if it receives a token,

and an enabled primitive can be executed. Given a G-net G, an ISP of G is a 2-tuple (G’ .Nid, mtd), where

G’ could be the same G-net G or some other G-net, Nid is a unique identifier of G-net G’ , and mtd ∈

G’.MS. Each ISP(G’ .Nid, mtd) denotes a method call mtd() to G-net G’ . An example ISP (denoted as an

elli psis in Figure 1) is shown in the method askPrice() defined in G-net Buyer, where the method

askPrice() makes a method call returnPrice() to the G-net Seller to query about the price for some goods.

Note that we have highlighted this call i n Figure 1 by the dashed-arc, but such an arc is not actually a part

of the static structure of G-net models. In addition, we have omitted all function parameters for simplicity.

From the above description, we can see that a G-net model essentially represents a module or an object

rather than an abstraction of a set of similar objects. In a recent paper [25], we defined an approach to

extend the G-net model to support class modeling. The idea of this extension is to generate a unique

object identifier, G.Oid, and initiali ze the state variables when a G-net object is instantiated from a G-net

 6

G. An ISP method invocation is no longer represented as the 2-tuple (G’ .Nid, mtd), instead it is the 2-

tuple (G’ .Oid, mtd), where different object identifiers could be associated with the same G-net class

model.

 GSP(Buyer)

ISP(Seller,
sellGoods())

 buyGoods()

Figure 1. G-net models of buyer and seller objects

askPrice()

t1

t2

ISP(Seller,
returnPrice())

t3

t4

returnPrice()

calculate_
price

sell_
goods

sellGoods()

GSP(Seller)

t8

t7

t6

t5

The token movement in a G-net object is similar to that of original G-nets [2][3]. A token tkn is a triple

(seq, sc, mtd), where seq is the propagation sequence of the token, sc ∈ { before, after} is the status color

of the token and mtd is a triple (mtd_name, para_list, result). For ordinary places, tokens are removed

from input places and deposited into output places by firing transitions. However, for the special ISP

places, the output transitions do not fire in the usual way. Recall that marking an ISP place corresponds to

making a method call . So, whenever a method call i s made to a G-net object, the token deposited in the

ISP has the status of before. This prevents the enabling of associated output transitions. Instead the token

is “processed” (by attaching information for the method call), and then removed from the ISP. Then an

identical token is deposited into the GSP of the called G-net object. So, for example, in Figure 1, when

the Buyer object calls the returnPrice() method of the Seller object, the token in place ISP(Seller,

returnPrice()) is removed and a token is deposited into the GSP place GSP(Seller). Through the GSP of

the called G-net object, the token is then dispatched into an entry place of the appropriate called method,

 7

for the token contains the information to identify the called method. During “execution” of the method,

the token will reach a return place (denoted by double circles) with the result attached to the token. As

soon as this happens, the token will return to the ISP of the caller, and have the status changed from

before to after. The information related to this completed method call i s then detached. At this time,

output transitions (e.g., t4 in Figure 1) can become enabled and fire.

Notice that the example we provide in Figure 1 follows the Client-Server paradigm, in which a Seller

object works as a server and a Buyer object is a client. Further details about G-net models can be found in

references [2][3][25].

2.2 Agent-Or iented G-Net Model

Although the G-net model works well i n object-based design, it is not suff icient in agent-oriented design

for the following reasons. First, agents that form a multi -agent system may be developed by different

vendors independently, and those agents may be widely distributed across large-scale networks such as

the Internet. To make it possible for those agents to communicate with each other, it is desirable for them

to have a common communication language and to follow common protocols. However the G-net model

does not directly support protocol-based language communication between agents. Second, the

underlying agent communication model is usually asynchronous, and an agent may decide whether to

perform actions requested by some other agents. The G-net model does not directly support asynchronous

message passing and decision-making, but only supports synchronous method invocations in the form of

ISP places. Third, agents are commonly designed to determine their behavior based on individual goals,

their knowledge and the environment. They may autonomously and spontaneously initiate internal or

external behavior at any time. The G-net models can only directly support a predefined flow of control.

To support agent-oriented design, we need to extend a G-net to support modeling an agent class2 [4][5].

This extension is made in three steps. First, we introduce five special modules to a G-net to make an agent

autonomous and internally motivated. As shown in Figure 2, the five special modules are the Goal

2 We view the abstract of a set of similar agents as an agent class, and we call an instance of an agent class an agent
or an agent object.

 8

module, the Plan module, the Knowledge-base module, the Environment module and the Planner module.

The Goal, Plan and Knowledge-base module are based on the BDI agent model proposed by Kinny and

his colleagues [8], while the Environment module is an abstract model of the environment, i.e., the model

of the outside world of an agent. The Planner module represents the heart of an agent that may decide to

ignore an incoming message, to start a new conversation, or to continue with the current conversation. In

the Planner module, committed goals are achieved, and the Goal, Plan and Knowledge-base modules of

an agent are updated after the processing of each communicative act that defines the type and the content

of a message [29][30], or if the environment changes. Second, different from the semantic of a G-net as

an object or a module, we view the extended G-net, we call it an agent-oriented G-net, as a class model,

i.e., the abstract of a set of similar agent objects. Third, we define the instantiation of the agent-oriented

G-net as follows: when an agent-oriented G-net A is instantiated, we generate an agent identifier A.Aid for

the resulting agent object AO; meanwhile, the state of AO, i.e., any state variables defined in A, is

initiali zed.

GSP(G)

action

incoming message

Figure 2. A generic agent-oriented G-net model

Plan

public service

serv-
ice_k

 outgoing message

action_1 action_m

Environment

 Planner

MSP(self) MSP(self) MSP(G’ .Aid) MSP(G’ .Aid)

action_1 action_n service_1 service_k

serv-
ice_1

 return return return return

util ity method

utilit y_1 utilit y_p

…

…

…

…

…

…

…

…

utili -
ty_1

utili -
ty_p

Notes: G’ .Aid = messageToken.body.msg.receiver

Goal Knowledge-base

action action action

 9

The Internal Structure (IS) of an agent-oriented G-net consists of four sections: incoming message,

outgoing message, public service, and utilit y method. The incoming/outgoing message section defines a

set of Message Processing Units (MPU), which corresponds to a subset of communicative acts. Each

MPU, labeled as action_i in Figure 2, is used to process incoming/outgoing messages and execute any

necessary actions before or after the message being processed. The public service section defines a set of

methods that provide services to other agents, and it makes an agent work as a server. Note that this

section is optional, and it is not necessary that an agent must provide public services to the outside world.

Similarly, the utilit y method section defines a set of methods that can only be called by the agent itself.

Although both objects (passive objects) and agents use message-passing to communicate with each other,

message-passing for objects is a unique form of method invocation, while agents distinguish different

types of messages and model these messages frequently as speech-acts and use complex protocols to

negotiate [13][14]. In particular, these messages must satisfy the format of the standardized

communicative (speech) acts, e.g., the format of communicative acts defined in the FIPA agent

communication language, or KQML [15][29][30]. Note that in Figure 2, each named MPU action_i refers

to a communicative act, and the agent-oriented G-net model supports an agent communication interface

through the GSP place. In addition, agents analyze these messages and can decide whether to execute the

requested action. As stated before, agent communications are typically based on asynchronous message

passing. Since asynchronous message passing is more fundamental than synchronous message passing, it

is useful for us to introduce a new mechanism, called Message-passing Switch Place (MSP), to directly

support asynchronous message passing [4]. When a token reaches an MSP (represented as an elli psis in

Figure 2), the token is removed and deposited into the GSP of the called agent. But, unlike with the G-net

ISP mechanism, the calli ng agent need not wait for the token to return before it can continue to execute its

next step.

The Planner module has the functionality of message dispatching and decision-making. In addition, the

Planner module also includes a sensor, which may capture internal or external events, and invoke certain

plans correspondingly. To support agent-oriented design, the Planner module has been designed in such a

 10

way that it supports inheritance for MPUs and methods defined in the internal structure of an agent-

oriented G-net model. Due to the size limitation of this paper, we do not discuss further for the Planner

module. A detailed description for this module can be found in earlier work [4][5]. It is worth noting that

G-nets can be used to model the Knowledge-base module and the decision-making units in the Planner

module due to their support for knowledge representation and reasoning [26].

2.3 From Formal Agent Model to Agent Implementation

ADK (Agent Development Kit) is intended to provide the necessary faciliti es for agent implementation

based on the formal agent model described previously. Thus, the development of ADK is not ad hoc, but

results from a model-based development process. The agent-oriented G-net model, as an operational

model, provides the specification and high-level design for intelli gent communicating agents.

Specifically, the key components or mechanisms defined in the agent-oriented G-net model serve as

building blocks of our agent development kit, and the agent-oriented G-net model itself becomes a high-

level design model for intelli gent communicating agents.

As Figure 3 shows, the role of ADK is to serve as a bridge between the formal agent model and the agent

implementation platform. The key components and mechanisms defined for an intelli gent communicating

agent, as shown on the left hand side of the figure, are li sted as follows. First, the modularization of the

agent design provides the formal agent architecture that makes an agent autonomous, reactive, proactive

and sociable. For instance, the Goal, Plan, and Knowledge-base modules are based on the BDI agent

model [8] that is a conceptual model for intelli gent agents. The Planner module is used for decision-

making, message dispatching and event capturing. And the Internal Structure is a container for methods

and MPUs, where methods are defined for method invocation, and MPUs support asynchronous message

passing. Second, the message passing mechanisms are defined in two cases: the synchronous message

passing and asynchronous message passing. Synchronous message passing is usually used for method

invocation, and it is realized through the ISP mechanism, while asynchronous message passing is vital for

agent communication, and it is achieved by the MSP mechanism [4]. Recall that in the case of

asynchronous message passing, when a MSP is called, the agent does not need to wait for the result to

 11

come back, and it may proceed to execute other functionality. Third, the formal agent model defines the

functional units as inheritable components. As methods are defined as inherited units in object-oriented

design, both methods and MPUs could be inherited from an agent superclass to an agent subclass.

Modular ization
GSP, Goal, Plan, Knowledge-
base, Planner, Internal
Structure

Message Passing Mechanism
Asynchronous: MSP
Synchronous: ISP

Functional Units
MPU, Methods

Formal Agent Framework
Implementation Platform

Middleware
Jini/JavaSpaces/RMI

Java Vir tual Machine
JVM, Java Swing etc.

Network Communication
TCP/IP, UDP

Design &
Implementation

ADK
(Agent

Development
 Kit)

Figure 3. The role of ADK between formal agent model and implementation platform

As shown on the right hand side of Figure 3, the implementation platform provides the standard

technologies, such as the Jini middleware [16][17] and the Java Virtual Machine (JVM), for agent

implementation. We choose Java as our programming language because applications developed on JVM

are platform independent, and they are suitable for web-based applications such as electronic commerce.

In addition, we use the Jini middleware to simpli fy our development process for agent communication. In

this case, we do not need to take care of the low-level communication protocols, such as the TCP/IP and

UDP protocols, which can be automatically handled by the Jini middleware, and can concentrate on high-

level communication protocols, such as price-negotiation protocol. Finally, In the middle of this figure,

ADK represents the design and implementation, and it provides the framework and the class library for

developing intelli gent communicating agents in multi -agent systems. A multi -agent system built upon

ADK can be realized by deriving the required specific agent classes from a template, which is the Agent

 12

class defined in ADK. We will see that it is straightforward to augment the agent framework with

application-specific functionality to meet system requirements.

3. Design of Intelli gent Communicating Agents

3.1 Middleware Suppor t for Agent Communication

As we mentioned before, the Jini middleware can be used to simpli fy the development process for agent

communication. The Jini architecture is intended to resolve the problem of network administration by

providing an interface where different components of the network can join or leave the network at any

time [16][17]. Such a collection of services is called a Jini community, and the services within the Jini

community represent service providers or service consumers. The heart of the Jini system is a trio of

protocols called discovery, join, and lookup. Discovery occurs when a service is looking for a lookup

service with which to register. Join occurs when a service has located a lookup service and wishes to join

it. And lookup occurs when a client or user needs to locate and invoke a service described by its interface

type and possibly, other attributes.

In designing the ADK, we use Jini as a middleware for agents to find each other. Each agent is designed

as both a service provider and a service consumer. However the only service that an agent may provide is

to let other agents send asynchronous messages to that agent.

In the agent-oriented G-net model, the GSP (Generic Switch Place) is defined as the only interface among

agents [4][5]. Thus, we design the schema for an agent interface as follows:

public interface G SP extends Remote {

 public void asynMessagePassing(Message message) throws RemoteException;

}

public class MiddlewareSupport implements GSP {

 // agent interface

 13

 public void asynMessagePassing(Message message) {

 System.err.println("T his method should be overridden by an agent class!");

 }

 // find lookup services and join the Jini community

 public void setup(String[] groupsToJoin) {…}

 …

}

The class MiddlewareSupport implements the GSP interface, where an abstract method

asynMessagePassing() is defined. However, in class MiddlewareSupport, the implementation of this

method is again deferred to subclasses of the MiddlewareSupport class because we want that the class

MiddlewareSupport only defines the functionality to deal with the Jini community, such as discovering

lookup service on the network, registering with the Jini community and searching for other agents in the

Jini community. Here the method setup() is defined to let the GSP find a lookup service and joins the Jini

community. As we will see in Section 3.2, the Agent class, which is defined as a subclass of the

MiddlewareSupport class, actually implements the method asynMessagePassing(), and inherits all the

functionality defined in class MiddlewareSupport.

 Discovery Service Lookup Service Join Manager

AirTicket
Seller

AirTicket
Seller

AirTicket
Buyer

AirTicket
Buyer

Jini Community

 GSP
 GSP

 GSP GSP

…
 …

Figure 4. The Jini community with agents of AirTicketSeller and AirTicketBuyer

 14

As an example, consider the design of an electronic marketplace in which seller agents and buyer agents

may find each other and communicate with each other asynchronously through the Jini community. The

design is ill ustrated in Figure 4, where both air ticket seller agents and air ticket buyer agents register their

GSP interfaces with the Jini community, and they may find each other by the agent attribute, for instance,

an agent name called "Seller".

3.2 A Pattern for Intelli gent Communicating Agents

An intelli gent communicating agent has both the properties of intelli gent agents and communicating

agents. An intelli gent agent is defined as an agent that at least has the following characteristics:

autonomy, reactivity, and proactiveness, while the definition of a communicating agent emphasizes on its

sociabilit y. Agent autonomy is akin to human free will and enables an agent to choose its own actions,

while agent proactiveness requires an agent to behave in a goal-directed fashion. Agent proactiveness is

usually considered in relation to planning, and is strengthened with agent autonomy. We call an

autonomous and proactive agent a goal-driven agent. A reactive agent is defined as an agent that has the

abilit y to perceive and to response to a changing environment. In the Jini community, whenever a new

event occurs, an agent should be automatically notified by the system. For instance, when a seller agent

joins or leaves the Jini community, the buyer agents need to be notified; thus, the buyer agents can always

keep an up-to-date li st of the seller agents that are currently in the community. We call a reactive agent an

event-driven agent, and an event could be any environment change that may influence an agent's

execution. The sociabilit y of an agent refers to the abilit y of an agent to converse with other agents. The

conversations, normally conducted by sending and receiving messages, provide opportunities for agents

to coordinate their activities and cooperate with each other, if needed. An agent is different from an object

in that agents usually do not use method invocations to communicate with each other. On the contrary,

agents distinguish different types of messages and use complex protocols to negotiate. In addition, agents

analyze these messages and can decide whether to execute the requested action [13]. To meet this

requirement, the design of agents needs to support asynchronous message passing. We call an agent that

supports asynchronous message passing a message-triggered agent.

 15

Figure 5 shows the architectural design for intelli gent communicating agents. Compared with the agent-

oriented G-net model in Figure 2, an obvious variation in Figure 5 is that the GSP place of an agent now

becomes a part of the environment module, which is the Jini community. This variation shows a simple

design of the environment module in ADK, in which case, the only external events of concern are those

related to agent entering and/or leaving the Jini community. In future design versions, it is possible to

extend the environment module to include other events, such as network topology changes and user

interventions.

 Goal Plan Knowledge

message
from GSP

SellerGSP BuyerGSP

BuyerGSP SellerGSP

…
 …

Figure 5. The architectural design of intelligent communicating agents

Agent

 Jini Community
 (Environment)

message
to GSP

internal
event

external
event

decision-
making units

message
dispatcher sensor

Planner

incoming message
(MPUs)

outgoing message
(MPUs)

utility method
(methods)

Internal Structure

Similarly, data changes in Goal, Plan and Knowledge-base modules may act as internal events and trigger

the sensor in the Planner module. To simpli fy matters, in our current version of ADK, the sensor in the

Planner module is implemented to only capture external events.

 16

Figure 5 also shows that, when an agent A wants to converse with another agent B, it sends a message to

the GSP of agent B in the Jini community. Then the message will be sent to the Planner module of agent

B. After the message is dispatched into a MPU in the incoming message section, the message will be

processed, e.g., decoded, and sent back to the Planner module. Now the message goes to the decision-

making units, where decisions may be made to ignore the message, or to continue with the conversation.

If the conversation is to be continued, a new outgoing message is generated, and dispatched into a MPU

defined in the outgoing message section. The outgoing message will be processed and certain actions may

be executed before the message is sent to the GSP of agent A.

In addition, an intelli gent communicating agent will not work as a server. Therefore, we have not

included the public service section in the Planner module. The MPUs and the methods, which are defined

in the incoming/outgoing message section and utilit y method section respectively, can be inherited by

agent subclasses, and can only be accessed or called by the agent itself.

The goal of the above architectural design is to derive an architectural rendering of a system, which serves

as a framework from which more detailed design activities are conducted. Based on the architectural

design ill ustrated in Figure 5, we now proceed to describe the detailed design of intelli gent

communicating agents. This design is expressed in the form of a pattern or class template.

Since the agent-oriented G-net model supports inheritance, we will follow this design schema. In an

object-oriented system, design patterns can be used with either inheritance or composition. Using

inheritance, an existing design pattern becomes a template for a new subclass, and the attributes and

operations that exist in the pattern become part of the subclass [18]. Similarly, in an agent-oriented

system, a pattern of an agent superclass can serve as a template for an agent subclass, and a specific agent

subclass, such as an air ticket seller agent class, can be derived from an agent superclass by augmenting

the template to meet system requirements.

The Agent class defined in ADK provides such a pattern for agent implementation. The pattern in a form

of Java pseudocode is shown in Figure 6.

 17

 publ i c class Agent e xtends M i ddlewar eSupport {

 priv ate stat i c final String PRODUCT = "Agent " ;
 private static f i nal Str i ng MANUFACTURER = "CSSL@UIC";
 private static f i nal Str i ng VERSI ON = "A DK 1.0";
 …

 / ******* * ******* * ******* * **

 * A gent Int erface -- GSP *

 ******* * ******* * ******* * **/

 public v oid asyn MessageP assing(M essage m essage) {

 Threa d messageProcess Thread = new Thr ead(new Runnable () {

 public vo i d run() {

 dispa t chMessa ge(messa ge); // -- message - trig gered

 }

 });

 messageProces sThread. start();

 }

 / ******* * ******* * ******* * ******* * ******* * ******* *

 * Class Variabl es for K nowledge , Goal a nd Plan *

 / ******* * ******* * ******* * ******* * ******* * **** **** /

 Goal[]: myGoals; // a li st of co mmitted goals

 Plan[]: myPlans; // a se t of pla ns

 Knowledg e: myKno wledge; / / a kno wledge - base

 …

 / ******* * ***

 * P l anner *

 ******* * ***/

 priv ate clas s Sensor extends Listene r {
 …
 publ i c void notify(R emoteEve nt ev) {
 i f (!(ev instanc eof Serv i ceEvent)) retur n;
 updateSe r vices() ;
 i nvokePl an(ev); / / -- eve nt - driv en
 }
 }
 prot ected vo i d disp atchMess age(Mess age mess age) {…}

 prot ected Me ssage ma keDecisi on(Messa ge messa ge) {…}

 protecte d void u pdateMen t alState () {…)

 …

 / ******* * ******* * ******

 * Inter nal Stru cture *

 ******* * ******* * ******/

 / / incom i ng mess age sec tion – a s et of me ssage pr ocessing units

 protecte d void M PU_In_1(Message message) {…}

 …

 / / outgo i ng mess age sect i on – a s et of me ssage pr ocessing units

 protecte d void M PU_Out_1 (Message outgoin gMessage) {…}

 …

 / / utili t y metho d sectio n – a s et of pr i vate ut i lity me t hods

 protecte d void M ethod_1() {…}
 …

 public s t atic vo i d main(String[] args) {

 init Agent(ar gs);

 auto nomousRun(); / / -- goa l - driv en

 }

}

Figure 6. A pattern for intell igent communicating agents

 18

As shown in Figure 6, the Agent class is defined as a subclass of MiddlewareSupport (as defined in

Section 3.1) to reuse the functionality of discovering a lookup service, registering with the Jini

community, and searching for other agents. More importantly, an agent object may communicate with

other agent objects asynchronously through the GSP interface. This functionality makes an agent

sociable. To simulate the asynchronous message passing, we have used the thread technique to generate a

new thread called messageProcessThread. Upon receiving an incoming message, the

messageProcessThread of the message receiver (the callee) dispatches the message to a MPU and returns

immediately. This ends up the messageProcessThread quickly, and therefore, the message sender (the

caller) does not need to wait for the message to be processed and may proceed to execute other tasks.

Corresponding to the three modules (Goal, Plan and Knowledge) in the architectural design of intelli gent

communicating agents (Figure 5), the Agent class defines a li st of committed goals myGoals, a set of

plans myPlans, each of which is associated with a goal or a subgoal, and a knowledge-base

myKnowledge. The Goal, Plan and Knowledge class define the basic properties and behaviors for an

intelli gent agent, and may be refined if an application-specific agent requires further functionality. Refer

to Figure 7 for the definitions of the Goal, Plan and Knowledge class. For brevity, other class variables,

such as theGoalSet – a set of goals from which the goal li st myGoals is generated – are omitted in Figure

6.

The reactivity of an agent can be designed through the Jini's notification facilit y. In Figure 6, we can see

that the Sensor class is defined as a private inner class in the Agent class, and is derived as a subclass from

the Listener class, which is defined by Jini. Thus, an application class, such as a seller agent class or a

buyer agent class, can be defined as a subclass of the Agent class, and can be notified by the Jini

community whenever an event occurs, as long as the corresponding agent object has instantiated a Sensor

object and has registered it with the Jini community.

Based on the architectural design of intelli gent communicating agents in Figure 5, the Planner module in

the Agent pattern defines a method called dispatchMessage(), which is used to dispatch messages to the

appropriate MPU defined in the incoming/outgoing message section. Examples of methods defined as

 19

decision-making units in the Planner module are the methods makeDecision() and updateMentalState().

In method makeDecision(), decisions are made to ignore an incoming message, to start a new

conversation, or to continue with the current conversation. In method updateMentalState(), the mental

state of the agent, i.e., the goal, plan, and knowledge-base are updated whenever a decision is made or a

new event occurs. The Internal Structure module includes three sections, i.e., the incoming message

section, outgoing message section, and utilit y method section. Each section defines a set of MPUs or

methods, which are depicted as MPU_In_i(), MPU_Out_j() or Method_k() in Figure 6. The autonomy and

proactiveness of an agent are related with the Goal, Plan, Knowledge-base, Planner and Internal

Structure modules of an agent. To connect them together, we define the control as the method

autonomousRun(), which includes a li st of committed goals to be achieved based on the agent’s mental

state. Each goal is defined as a goal tree that is traversed in depth-first order, and selected plans associated

with each goal or subgoal are invoked accordingly. The method autonomousRun() is invoked in the

method main(), as shown in Figure 6, and is executed after the agent is initiali zed with the method

initAgent().

One advantage of our model-based approach is its support for the principle of “separation of concerns,” in

particular the separation of agent intelli gence and agent communication mechanisms. Therefore, it is

possible for us to choose some existing implementation schema of intelli gent agents to design and

implement intelli gent communicating agents for multi -agent systems. For instance, we can choose the

Task Representation Language (TRL) to support knowledge representation and agent reasoning [19], or

we can use Petri nets to model the mental state of agents for multi -agent simulation [22]. Alternatively,

we can, and do, use a more commonly used intelli gent agent model – the Belief-Desire-Intention (BDI)

model [8]. A BDI architecture includes and uses an explicit representation for an agent's beliefs, desires

and intentions. The BDI implementations, such as The Procedural Reasoning System (PRS), the

University of Michigan PRS, and JAM, all define a new programming language and implement an

interpreter for it [20]. The advantage of this approach is that the interpreter can stop the program at any

time, save state, and execute some other plan, or intention, if it needs to. In this paper, we use a simpli fied

implementation of the BDI agent model based on previous work, and show how to integrate it into ADK

in developing intelli gent communicating agents

 20

The relationships between the key classes defined for communicating agents and intelli gent agents are

ill ustrated in Figure 7. As shown in this figure, two key classes for a communicating agent are the Agent

class and the Message class, and an Agent object may send or receive Message objects through its GSP

interface. Meanwhile, the three key classes for an intelli gent BDI agent are the Goal, Plan and Knowledge

class. A Goal object is defined as a goal tree, and a goal or a subgoal associates with a set of plans. When

a goal or a subgoal is to be achieved, the most appropriate plan, for instance, the plan with the highest

priority, is selected and executed. As a result of the execution of a plan, a Knowledge object may be

updated. Both a Goal object or a Plan object may use the Knowledge object for its own purpose, e.g., to

select the right plan to achieve a goal or a subgoal.

Agent Message

Goal Knowledge

Plan

Figure 7. Relationship between classes defined for communicating agents and intelligent agents

Goal[]: myGoals
Plan[]: myPlans
Knowledge: myKnowledge

initAgent()
autonousmousRun()

ServiceID: senderID
ServiceID: receiverID
String: content

String: goalName
Goal[]: subGoal
Plan[]: associatedPlans

String: planName
Int: priority
Boolean: conditions
String: associatedGoalName

AgentInfo: thisAgent
AgentInfo[]: remoteAgents

achieveGoal()

send/receive

achieve

use/update

use/update

execute

initialize

 communicating agent

intelligent agent

initKnowledge()
update()

startPlan()
stopPlan()

toString()

The Agent class defines a li st of committed goals myGoals, a set of plans myPlans that associate with a

goal or a subgoal, and a knowledge-base myKnowledge. The li st of committed goals and the set of plans

 21

may be updated at run time. For instance, when a goal is achieved, it may be deleted from the goal li st,

and new goals may be added into the goal li st if needed. In addition, the myKnowledge object is initiali zed

by the Agent object, and may be updated at run time by a Goal or Plan object. The intelli gent

communicating agent is so-called goal-driven, because in the method automousRun(), goals defined in the

goal li st are achieved one by one through a loop. When all the goals are achieved, the Agent object waits

for new committed goals to be added into the goal li st.

4. Implementation of Multi-Agent Systems

4.1 An Agent Development Process

The purpose of the proposed agent design architecture is to ease the programmer's effort to develop

applications of intelli gent communicating agents for multi -agent systems. As we mentioned before, a

specific agent, such as an air ticket seller agent, could be defined as an agent subclass of the Agent class.

To ill ustrate this idea, we present a class hierarchy for an electronic marketplace in Figure 8. In this

figure, all the classes above the dashed line are provided as an agent framework or a class library – these

classes define the ADK environment, which supports developing intelli gent communicating agents for

multi -agent systems. The classes below the dashed line are derived classes that represent specific

intelli gent communicating agents in a multi -agent system. Since the Agent class shown in Figure 6

provides the basic functionality of intelli gent communicating agents as well as the agent implementation

framework, what we need to do for developing a specific intelli gent communicating agent is to inherit the

functional units and the behaviors of the Agent superclass and fill out certain sections in the pattern for

intelli gent communicating agents, such as the incoming/outgoing message section (Figure 6). In addition,

we need to define subclasses of the Goal, Plan, and Knowledge classes defined in ADK to meet certain

behavioral requirements of agent intelli gence.

 22

 MiddlewareSupport

 Domestic
Air Ticket Seller

Agent

Plan

Book Seller Air Ticket Buyer

Figure 8. The class hierarchy diagram of agents in an electronic marketplace

 GSP (interface)

Book Buyer Air Ticket Seller

 International
Air Ticket Seller

Textbook Buyer Literature Book Buyer … …

Class Library (ADK)

Derived Classes

Knowledge Goal Message

Send / Receive

 * * * *

As a summary, we now briefly describe the generic procedure to develop a specific intelli gent

communicating agent for multi -agent systems. In Section 4.2, we cast the procedure into more specific

terms by way of an example. The 6-step procedure is defined as follows:

1. Define a set of goals Φ as the class variable theGoalSet, where each goal is defined as a goal tree Γ. A

goal tree could consist of just a root, which means a goal may or may not have a number of subgoals.

2. Define a goal li st Ω as the class variable myGoals (Figure 6) and initiali ze the goal li st Ω with any

committed goal gc ∈ Φ. The goal li st Ω is dynamic, which means achieved goals may be deleted from

Ω and newly committed goals could be added into Ω at run time.

3. Define a set of plans P as the class variable myPlans (Figure 6). Each plan p ∈ P has a priority and a

set of conditions, and is associated with a particular goal or subgoal. The plan php ∈ P, which has the

highest priority and whose conditions are evaluated to true, will be executed to achieve the associated

goal or a subgoal.

4. Each plan p corresponds to a contract net protocol ρ [21], which serves as a template for agent

conversation. From the contract net protocol, we define a set of MPUs Ψ, where each MPU

 23

corresponds to a method MPU_In_i() or MPU_Out_j() as shown in Figure 6. Refer to [4][5] for a

detailed description for transforming from ρ to ψ.

5. Refine the Knowledge class if the application-specific agent requires additional types of knowledge

beyond the basic properties and behaviors predefined in Figure 7, and initiali ze the knowledge-base

myKnowledge (Figure 6) for that agent.

6. Refine the decision-making units defined in the Agent class, if needed. Examples of decision-making

units include functions li ke makeDecision(), updateMentalState() and invokePlan().

The decision-making units serve as the reasoning engine for the agent. The major functionality of the

decision-making units includes the following tasks:

• For each goal or subgoal, choose the most appropriate plan to execute.

• Create outgoing messages and send them out through MPUs.

• Upon receiving incoming messages, decide to ignore or continue with the conversations.

• Decide when to update the agent's mental state.

• Upon capturing new events, update the goal li st and invoke certain plans.

It should be mentioned that the above procedures may be automated, or partiall y automated by providing

a development environment, to ease the programmers' work. This is also one of the major motivations of

our ADK project. An Agent Development Environment (ADE), which encompasses the ADK, is

envisioned as a future, and more ambitious research direction.

4.2 A Multi-Agent System Example: Air -Ticket Trading

As an example for intelli gent communicating agents, suppose we wish to design and implement a multi -

agent system for air ticket trading. The multi -agent-agent system will i nclude two types of agents, air

ticket seller agents and air ticket buyer agents. According to the procedures described above, a set of

goals will be identified for both the air ticket sellers and the air ticket buyers. For instance, the goal li st for

a simpli fied air ticket buyer may include the goal “buy air ticket,” and the goal “buy air ticket” may have

 24

subgoals of “ find seller,” “ check price,” “ buy ticket,” and “wait for receipt,” as shown on the right hand

side of Figure 9. The air ticket seller has a similar goal li st for the purpose of selli ng air tickets. For each

goal or subgoal, we define a set of plans. For instance, for the subgoal “ find seller” , we have two plans,

which are plan_FindSeller and plan_BeFoundBySeller. The plan plan_FindSeller can be executed to

search for air ticket sellers in the Jini community, while the plan plan_BeFoundBySeller is executed to

wait to be found by air ticket sellers. Which plan will be executed to achieve the subgoal “ find seller” is

determined by actual situations. For instance, the buyer may want to wait and be contacted by air ticket

sellers initiall y. However, if the subgoal cannot be achieved in a period of time, the buyer can change its

mind to search for air ticket sellers by itself.

Figure 9. User Interface of the Knowledge-base, Goal and Plan module

The contract net protocols correspond to the above two plans are fairly simple. For the plan

plan_FindSeller, the buyer asks the sellers in the Jini community if they sell air tickets, then the sellers

may reply with "Yes" or "No", or simply ignore the conversation. If a seller replies with “Yes,” the buyer

may ask further questions to check if the air ticket seller has enough certain types of air tickets. For

instance, the buyer may ask if the seller has tickets from “Dayton” to “Chicago.” If the seller has the type

of air tickets that the buyer wants, the subgoal may be achieved or partiall y achieved (if the seller has the

 25

type of tickets but not enough). Then, in the next step, the seller continues to achieve the subgoal “check

price.”

This gives some examples of how to “ fill out” certain sections of the implementation pattern provided by

the Agent class. Now we li st a few MPUs that correspond to the above two plans:

// incoming message section

// plan_FindSeller

protected void MPU_In_SellerYesOrNo(Message message) {}

…

// plan_BeFoundBySeller

protected void MPU_In_BeFoundBySeller(Message message) {}

// outgoing message section

// plan_FindSeller

protected void MPU_Out_FindSeller(Message outgoingMessage) {}

…

// plan_BeFoundBySeller

protected void MPU_Out_BuyerYesOrNo(Message outgoingMessage) {}

…

The Knowledge-base of a seller or buyer agent includes two parts, which provides information about the

agent itself and information about other agents. For instance, the Knowledge-base of the buyer agent

should include ticket information for the type of tickets that the buyer agent wants to buy (as shown on

the left hand side of Figure 9), and ticket information for the type of tickets that other seller agents may

hold. Other information, such as the state of the agent itself and other agents, may also be stored in the

Knowledge-base of that agent. We do not show these types of knowledge in our ill ustrated figures.

Finally, for the decision-making units for this air ticket trading application, we simply reuse those that are

predefined in ADK.

 26

The user interface of a seller agent is designed as a console window as shown in Figure 10. In the agent

console window, the content for the agent communication is displayed. Meanwhile, a li st of agents,

including the agent itself and those agents with which that agent communicates, is displayed on the left

hand side of the window. The user interface will also provide a set of tools, such as to lookup existing

services, to test message sending/receiving, and to edit agent properties. Figure 10 shows an example of

air ticket trading process. In Figure 10, a buyer agent, with an agent ID of BA_3b19, first asks if the seller

agent SA_16fb sells air tickets. After the seller agent SA_16fb confirms with “Yes” , the buyer agent

BA_3b19 continues to ask if the seller agent SA_16fb has the type of air tickets it wants. After the seller

agent SA_16fb confirms with “Yes” again (although it does not have enough tickets), the buyer agent

BA_3b19 begins to bargain price with the seller. Finally, the conversation between agent SA_16fb and

agent BA_3b19 ends up with a confirmation message that the buyer agent BA_3b19 buys all the 5 tickets

from the seller agent SA_16fb with the price of $180.0 for each ticket.

Figure 10. User interface of the seller agent SA_16fb

 27

In this example, the agent ID for the seller agent or the buyer agent is defined by a prefix of SA (seller

agent) or BA (buyer agent) with the last four digits of the service ID of that agent, where the service ID is

a 32 digits hexadecimal number provided by the Jini community when the agent is registered [16][17].

Figure 11. User interface of the buyer agent BA_3b19

In Figure 11, we show the user interface for the air ticket buyer agent. In this figure, we can see that the

buyer agent BA_3b19 concurrently communicates with two seller agents: SA_bf8f and SA_16fb, and buys

5 tickets from the seller SA_16fb and 3 tickets from the seller SA_bf8f with the lowest fare criteria.

5. Conclusions and Future Work

Although a number of agent-oriented systems have been built i n the past few years, there is very littl e

work on bridging the gap between theory, systems, and application. The contribution of this paper is to

use the agent-oriented G-net model, which is a formal agent model, as a specification and a high-level

design for agent development. Based on the architectural design and the detailed design of a generic

 28

intelli gent communicating agent, we developed the ADK as a class library that supports designing and

implementing applications of intelli gent communicating agents for multi -agent systems. An air ticket

trading example was presented to ill ustrate the derivation of a multi -agent application using the ADK

approach. The generality of the example supports the notion that our model-based approach is feasible

and effective. For future work, we will formalize the design procedure for developing specific intelli gent

communicating agents, and based on the ADK class library, we will partiall y automate the

implementation process to reduce the programming-level tasks. In future versions of this project, we plan

to develop an Agent Development Environment (ADE) to support the development process.

References:

[1] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE, vol. 77,

no. 44, April 1989, pp. 541-580.

[2] A. Perkusich and J. de Figueiredo, “G-Nets: A Petri Net Based Approach for Logical and Timing

Analysis of Complex Software Systems,” Journal of Systems and Software, vol. 39, no. 1, 1997, pp.

39-59.

[3] Y. Deng, S. K. Chang, A. Perkusich and J. de Figueredo, “ Integrating Software Engineering

Methods and Petri Nets for the Specification and Analysis of Complex Information Systems,”

Proceedings of the 14th International Conference on Application and Theory of Petri Nets,

Chicago, June 21-25, 1993, pp. 206-223.

[4] H. Xu and S. M. Shatz, “An Agent-Based Petri Net Model with Application to Seller/Buyer Design

in Electronic Commerce,” Proceedings of the Fifth International Symposium on Autonomous

Decentralized Systems (ISADS 2001), March 26-28, 2001, Dallas, Texas, USA, pp. 11-18.

[5] H. Xu and S. M. Shatz, “A Framework for Modeling Agent-Oriented Software,” Proceedings of the

21st International Conference on Distributed Computing Systems (ICDCS-21), April 16-19, 2001,

Phoenix, Arizona, USA, pp. 57-64.

[6] M. Fisher, “Representing and Executing Agent-Based Systems,” Intelli gent Agents -- Proceedings

of the International Workshop on Agent Theories, Architectures, and Languages, M. Wooldridge,

 29

and N. Jennings, eds., Lecture Notes in Computer Science, vol. 890, Springer-Verlag, 1995, pp.

307-323.

[7] M. Huber, “JAM: a BDI-Theoretic Mobile Agent Architecture,” Proceedings of International

Conference on Autonomous Agents, 1999, pp. 236-243.

[8] D. Kinny, M. Georgeff , and A. Rao, “A Methodology and Modeling Technique for Systems of BDI

Agents,” Agents Breaking Away: Proceedings of the Seventh European Workshop on Modeling

Autonomous Agents in a Multi -Agent World, W. Van de Velde and J. W. Perram, eds., LNAI vol.

1038, Springer-Verlag: Berlin, Germany, 1996, pp. 56-71.

[9] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas, “JACK Intelli gent Agents – Summary of an

Agent Infrastructure,” Proceedings of the 5th International Conference on Autonomous Agents,

2001.

[10] R. Ashri and M. Luck, “Paradigma: Agent Implementation through Jini,” Proceedings of the

Eleventh International Workshop on Database and Expert Systems Applications, A. M. Tjoa and R.

R. Wagner and A. Al-Zobaidie, eds., IEEE Computer Society, 2000, pp. 453-457.

[11] M. Luck and M. d'Inverno, “A Formal Framework for Agency and Autonomy,” Proceedings of the

First International Conference on Multi -Agent Systems, AAA I Press / MIT Press, 1995, pp. 254-

260.

[12] J. Siegel, and the OMG Staff Strategy Group, “Developing in OMG's Model Driven Architecture

(MDA),” OMG White Paper, Object Management Group, November 2001.

[13] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia Methodology for Agent-Oriented

Analysis and Design,” Journal of Autonomous Agents and Multi -Agent Systems, vol. 3, no. 3, 2000,

pp. 285-312.

[14] C. A. Iglesias, M. Garrijo, J. Centeno-González, “A Survey of Agent-Oriented Methodologies,”

Proceedings of the Fifth International Workshop on Agent Theories, Architectures, and Language

(ATAL-98), 1998, pp. 317-330.

[15] J. Odell , H. Van Dyke Parunak, and B. Bauer, “Representing Agent Interaction Protocols in UML,”

Agent-Oriented Software Engineering, Paolo Ciancarini and Michael Wooldridge, eds., Springer-

Verlag, Berlin, 2001, pp. 121–140.

 30

[16] W. K. Edwards, Core Jini, The Sun Microsystems Press, Prentice Hall PTR, Upper Saddle River,

NJ, 1999.

[17] K. Arnold, B. O'Sulli van, R. W. Scheifler, J. Waldo, and A. Woll rath, The Jini Specifi cation,

Addison-Wesley, 1999.

[18] R. S. Pressman, Software Engineering: A Practitioner’s Approach, 5th Edition, McGraw-Hill , 2001.

[19] T. R. Ioerger, R. A. Volz, and J. Yen, “Modeling Cooperative, Reactive Behaviors on the Battlefield

Using Intelli gent Agents,” Proceedings of the Ninth Conference on Computer Generated Forces

(9th CGF), 2000, pp. 13-23.

[20] J. M. Vidal, P. A. Buhler, and M. N. Huhns, “ Inside an Agent,” IEEE Internet Computing, vol. 5,

no. 1, January-February 2001.

[21] R.A. Flores and R.C. Kremer, “Formal Conversations for the Contract Net Protocol,” Multi -Agent

Systems and Applications II , V. Marik, M. Luck & O. Stepankova, eds., Lecture Notes in Computer

Science, Springer-Verlag, 2001.

[22] J. Yen, J. Yin, T.R. Ioerger, M. Mill er, D. Xu, and R.A. Volz, “CAST: Collaborative Agents for

Simulating Teamwork,” Proceedings of the Seventeenth International Joint Conference on Artifi cial

Intelli gence (IJCAI-01), Seattle, WA, August 2001, pp. 1135-1142.

[23] W. Vasconcelos, J. Sabater, C. Sierra and J. Querol, “Skeleton-based Agent Development for

Electronic Institutions,” Proceedings of the First International Joint Conference on Autonomous

Agents and Multi -Agent Systems (AAMAS), Italy, July 2002.

[24] J. A. Rodriguez-Aguilar, F. J. Martin, P. Garcia, P. Noriega and C. Sierra, “Towards a Formal

Specification of Complex Social Structures in Multi -agent Systems,” Collaboration between Human

and Artifi cial Societies, J. Padget, ed., LNAI, vol. 1624, Springer-Verlag, 1999, pp. 284-300.

[25] H. Xu and S. M. Shatz, “Extending G-Nets to Support Inheritance Modeling in Concurrent Object-

Oriented Design,” Proceedings of the IEEE International Conference on Systems, Man, and

Cybernetics (SMC 2000), October 2000, Nashvill e, Tennessee, USA, pp. 3128-3133.

[26] Y. Deng and S. K. Chang, “A G-Net Model for Knowledge Representation and Reasoning,” IEEE

Transactions on Knowledge and Data Engineering, vol.2, no. 3, September 1990, pp. 295-310.

[27] M. Wooldridge, An Introduction to Multiagent Systems, John Wiley and Sons, Ltd., 2002.

 31

[28] M. d'Inverno, M. Fisher, A. Lomuscio, M. Luck, M. de Rijke, M. Ryan, and M. Wooldridge,

“Formalisms for Multi -Agent Systems,” The Knowledge Engineering Review, vol. 12, no. 3, 1997.

[29] T. Finin, Y. Labrou, and J. Mayfield, “KQML as an agent communication language,” Software

Agents, Jeff Bradshaw, ed., MIT Press, Cambridge, 1997.

[30] M. J. Huber, S. Kumar, P. R. Cohen, and D. R. McGee, “A Formal Semantics for Proxy

Communicative Acts,” Proceedings of the Eighth International Workshop on Agent Theories,

Architectures, and Languages (ATAL-2001), Seattle, Washington, USA, August 1-3, 2001.

[31] H. Xu and S. M. Shatz, “A Framework for Model-Based Design of Agent-Oriented Software,” To

appear in IEEE Transactions on Software Engineering, 2002.

