
1

Modeling and Analyzing Search/Insert/Delete Problem byModeling and Analyzing Search/Insert/Delete Problem by

Petri NetsPetri Nets

Haiping Xu

{email: hxu1@eecs.uic.edu}

Electrical Engineering and Computer Science Department

The University of Illinois at Chicago

 Chicago, IL 60607 USA

1. Problem Statement1. Problem Statement

Search/Insert/Delete Problem Search/Insert/Delete Problem [1] Three kinds of processes share access to a single-linked list: searchers,

inserter, and deleters. Searchers merely examine the list; hence they can execute concurrently with each

other. Inserters add new items to the end of the list; insertions must be mutually exclusive to prelude two

inserters from inserting new items at about the same time. However, one insert can proceed in parallel with

any number of searches. Finally, deleters remove items from anywhere in the list. At most one deleter

process can access the list at a time, and deletion must also be mutually exclusive with searches and

insertions.

2.2. Modeling Search/Insert/Delete Problem by Modeling Search/Insert/Delete Problem by Petri NetsPetri Nets

Assuming we have totally k searcher, inserter and deleter, we can model the above search/insert/delete

problem by the Petri net shown in Figure 1. This Petri net models a search/insert/delete synchronization,

where the k tokens in place P1 represents k processes which may search, insert and delete a singly-linked

list. The number of tokens in place P2, P4 and P6 represent the number of processes as searchers, deleters

and inserters respectively, which are currently running. Place P3 provides mutual exclusion between

searcher and deleter, while k tokens in place P3 means that at most k processes can be running as

searcher/deleter at the same time. Place P5 provides mutual exclusion between deleter and inserter, while

one token in place P6 means only one process can be running as deleter/inserter at any time. There are no

any mutual exclusion between searchers and inserter, so searchers and inserter can be running at the same

time, however only one inserter is allowed to access the singly-linked list.

2

A major strength of Petri nets is their support for analysis of many properties and problems associated with

concurrent system. Two types of properties can be studied with a Petri net model: those which depend on

the initial marking, and those which are independent of the initial marking. The former type of properties is

called behavioral properties, while the latter one is called structural properties. In the following sections,

we analyze both structural and behavioral properties of this Petri net, and give as many explanations as

possible for the real search/insert/delete synchronization problem.

3.3. Structural Properties AnalysisStructural Properties Analysis

Structural properties are independent of the initial marking M0, which means these properties hold for any

initial marking. To compute most of the structural properties, it’s helpful to compute the minimal support

S-invariants and T-invariants of the Petri net first. The incidence matrix of the Petri net in Figure 1 is given

as follows:

 Figure 1. Petri Net for Search/Insert/Delete Problem

k

k

t1 t3

t2 t4

t5

t6

P5P4P3P2

P1

P6

Searcher Deleter
Inserter

k

k

3

 An m-vector y of integers is called an S-invarient if Ay = 0, so the S-invariants can be computed by

solving the equation Ay = 0.

We get the following minimal support S-invariants, which serve as a generator of all S-invariant:

y1 = (1 1 0 1 0 1)T whose minimal support || y1 || is {P1, P2, P4, P6}

y2 = (0 1 1 k 0 0)T whose minimal support || y2|| is {P2, P3, P4}

y3 = (0 0 0 1 1 1)T whose minimal support || y3 || is {P4, P5, P6}

Similarly, an n-vector x of integers is called an T-invariant is ATx = 0, so the T-invariants can be computed

by solving the equation ATx = 0.

We get the following minimal support T-invariants, which serve as a generator of all T-invariants:

x1 = (1 1 0 0 0 0)T whose minimal support || x1|| is {t1, t2}

x2 = (0 0 1 1 0 0)T whose minimal support || x2 || is {t3, t4}

x3 = (0 0 0 0 1 1)T whose minimal support || x3 || is {t5, t6}

Assume M0 = (k 0 k 0 1 0)T, the physical interpretation of these invariants are as follows:

(1) Since y1TM = y1TM0 for every M in R(M0), we have

M(P1) + M(P2) + M(P4) + M(P6) = k

 i.e., the total number of processes in place P1, P2, P4 and P6 as an searcher/delelter/inserter is an

 invariant, which is always equal to k.

(2) Since y2TM = y2TM0 for every M in R(M0), we have

M(P2) + M(P3) + k*M(P4) = k or M(P2) = M(P3) = 0 when M(P4) = 1

 i.e., while an deleter is processing the list, no searchers can search the list.

 P1 P2 P3 P4 P5 P6

 t1 -1 1 -1 0 0 0
 t2 1 -1 1 0 0 0
 t3 -1 0 -k 1 -1 0
 A = t4 1 0 k -1 1 0
 t5 -1 0 0 0 -1 1
 t6 1 0 0 0 1 -1

4

(3) Since y3TM = y3TM0 for every M in R(M0), we have

M(P4) + M(P5) + M(P6) = 1

i.e., either none of deleter/inserter is processing the list or only one of them is in place P4/P6.

(4) Since M = M0 + ATx1 = M0, the T-invariant x1=(1 1 0 0 0 0)T says that the initial marking M0 is

reachable from the same M0 after firing t1 and t2 once. This is true in Figure 1, and it means a searcher

searched the list and returned back to place P1 after done.

(5) Since M = M0 + ATx2 = M0, the T-invariant x1=(0 0 1 1 0 0)T says that the initial marking M0 is

reachable from the same M0 after firing t3 and t4 once. This is true in Figure 1, and it means that a

deleter deleted an element from the list and returned back to place P1 after done.

(6) Since M = M0 + ATx1 = M0, the T-invariant x1=(0 0 0 0 1 1)T says that the initial marking M0 is

reachable from the same M0 after firing t5 and t6 once. This is true in Figure 1, and it means that an

inserter inserted an element to the list and returned back to place P1 after done.

The following equation gives an upper bound on the number of tokens that place P can ever have, here the

minimum is taken over all nonnegative minimal-support S-invariants yi:

M(P) ≤ Min [M0
Tyi / yi(P)]

For instance,

M(P2) ≤ Min[M0
Ty1 / y1(P2), M0

Ty2 / y2(P2), M0
Ty3/ y3(P2)]

 = Min[k / 1, k / 1, 1 / 0]

 = k

which means k searchers can search the list concurrently;

M(P4) ≤ Min[M0
Ty1 / y1(P4), M0

Ty2 / y2(P4), M0
Ty3/ y3(P4)]

 = Min[k / 1, k / k, 1 / 1]

 = 1

which means only one deleter can process the list at any time;

M(P6) ≤ Min[M0
Ty1 / y1(P6), M0

Ty2 / y2(P6), M0
Ty3/ y3(P6)]

 = Min[k / 1, k / 0, 1 / 1]

 = 1

which means only one inserter can process the list at any time.

5

All these boundedness properties are consistent with the nature of our Search/Insert/Delete problem. Now,

lets summarize ten structural properties for the Petri net shown in Figure 1.

Structural Structural BoundednessBoundedness

Since we have y = y1 + y2 + y3 = (1 2 1 k+2 1 1 2)T > 0 and Ay = 0 ≤ 0, this Petri net is structurally

bounded. It means that each place in this Petri net is bounded for any finite initial marking M0.

ConservativenessConservativeness

Since we have y = (1 2 1 k+2 1 1 2)T > 0, and Ay = 0, this Petri net is conservative. It means that there

exists a positive integer y(P) for every place P such that the weighted sum of tokens, MTy = M0
Ty is a

constant for every M ∈ R(M0) and for any fixed initial marking M0.

Partial Partial ConservativenessConservativeness

Since we have y = (1 2 1 k+2 1 1 2)T >≠ 0, and Ay = 0, this Petri net is partially conservative. It means that

there exists a positive integer y(P) for some place P such that the weighted sum of tokens, MTy = M0
Ty is a

constant for every M ∈ R(M0) and for any fixed initial marking M0. Actually, this net must be partially

conservative because it is conservative.

RepetitivenessRepetitiveness

Since we have x = x1 + x2 + x3 = (1 1 1 1 1 1)T > 0, and ATx = 0 >= 0, this Petri net is repetitive. It means

that there exists an initial marking M0 and a firing sequence σ from M0 such that every transition occurs

infinitely often in σ. In our example, we have the firing sequence σ = <<t1, t2, t3, t4, t5, t6>∞> in which

every transition occurs infinitely often.

Partial RepetitivenessPartial Repetitiveness

Since we have x = x1 + x2 + x3 = (1 1 1 1 1 1)T >≠ 0, and ATx = 0 >= 0, this Petri net is partially repetitive.

It means that there exists an initial marking M0 and a firing sequence σ from M0 such that some transition

occurs infinitely often in σ. Actually, this Petri net must be partially repetitive because it is repetitive.

ConsistencyConsistency

Since we have x = x1 + x2 + x3 = (1 1 1 1 1 1)T > 0, and ATx = 0, this Petri net is consistent. It means that

there exists an initial marking M0 and a firing sequence σ from M0 back to M0 such that every transition

occurs at least once in σ. In our example, we have the firing sequence σ = <t1, t2, t3, t4, t5, t6>. By firing

σ, the initial marking M0 can be reproduced and every transition occurs at least once in σ.

6

Partial ConsistencyPartial Consistency

Since we have x = x1 + x2 + x3 = (1 1 1 1 1 1)T >≠ 0, and ATx = 0, this Petri net is partially consistent. It

means that there exists an initial marking M0 and a firing sequence σ from M0 back to M0 such that some

transition occurs at least once in σ. Actually, this net must be partially consistent because it is consistent.

ControllabilityControllability

Since marking M = (0 1 1 0 0 0)T is not reachable from the initial marking M0 = (k 0 k 0 1 0)T, this Petri

net is not completely controllable.

Structural Structural LivenessLiveness

Since there exists a live initial marking M0 = (k 0 k 0 1 0)T for this Petri net, it is structurally live.

Actually, this property can be drawn from the following theorem (remains to be proved):

Theorem:Theorem: A Petri net is structurally live if every siphon has a trap.

In Figure 1, we have the following set of siphons and traps:

Siphons:

S1 = {P2, P3, P4} minimal, basis

S2 = {P4, P5, P6} minimal, basis

S3 = {P1, P2, P4, P6} minimal, basis

S4 = {P2, P3, P4, P5, P6} = S1 ∪ S2

S5 = {P1, P2, P3, P4, P5, P6} = S1 ∪ S2 ∪ S3

Traps:

Q1 = {P2, P3, P4} minimal, basis

Q2 = {P4, P5, P6} minimal, basis

Q3 = {P1, P2, P4, P6} minimal, basis

Q4 = {P2, P3, P4, P5, P6} = Q1 ∪ Q2

Q5 = {P1, P2, P3, P4, P5, P6} = Q1 ∪ Q2 ∪ Q3

Since each siphon in the Petri net of Figure 1 has a trap, from the above theorem, we know that this Petri

net is structurally live.

7

Structural B-FairnessStructural B-Fairness

Since there are more than one reproduction vectors and this Petri net is structurally bounded and consistent,

we know that it is not structural B-fair. Actually, for initial marking M0 = (k 0 k 0 1 0)T, we have an infinite

firing sequence { <t1, t2>∞ }, and transitions t3 and t5 are never fired.

We have computed ten structural properties for the Petri net in Figure 1. In the next section, we will talk

about the behavior properties for this Petri net.

4.4. Behavioral Properties AnalysisBehavioral Properties Analysis

Behavioral properties are marking dependent properties. In this section, we will analyze seven types of

behavioral properties for the Petri net in Figure 1. These properties are: reachability, boundedness, liveness,

reversibility, coverability, persistence and fairness.

ReachabilityReachability

A marking Mn is said to be reachable from a marking M0 if there exists a sequence of firings that

transforms M0 to Mn. The reachability of a Petri net can be analyzed by drawing its reachability graph. To

make the graph looks simple and sufficient for our behavioral properties analysis, we assume k = 2. The

reachability graph for the Petri net in Figure 1 is shown in Figure 2.

 M0 = (2 0 2 0 1 0)

 M1 = (1 1 1 0 1 0) M4 = (1 0 2 0 0 1)

 M5 = (1 0 0 1 0 0)

 M2 = (0 2 0 0 1 0) M3 = (0 1 1 0 0 1)

 Figure 2. Reachability Graph for the Perti Net in Figure 1

t2

t1

t5 t6

t5

t6

t3

t4

t2

t1

8

From the above reachability graph, we can see that any marking Mn ∈ R(M0) is reachable from any

marking Mn ′∈ R(M0). For instance, marking M5 = (1 0 0 1 0 0) can be reached from M3 = (0 1 1 0 0 1) by

firing t6, t2 and t3 once. Also, we observed the following properties:

M(P2) + M(P4) ≤ 1 for any marking M ∈ R(M0)

M(P4) + M(P6) ≤ 1 for any marking M ∈ R(M0)

This is because of the mutual exclusion between searcher and deleter, and similarly between deleter and

inserter as well. However, we have M3(P2) + M3(P6) = 2. This property means that searcher and inserter

can process the list concurrently. Finally, we have M(P4) ≤ 1 and M(P6) ≤ 1 for any M ∈ R(M0), however

we have M2(P2) = 2, which indicates that two searchers can process the list at the same time, while only

one deleter/inserter is allowed to process the list at any time.

BoundednessBoundedness

The boundedness of this Petri net is obvious by investigating the reachability graph in Figure 2. In the case

of k = 2, we find that M(P) ≤ 2 for every place P in the net and for every marking M ∈ R(M0), so this Petri

net is 2-bounded. In the case of k being any fixed positive number, it’s easy for us to conclude that this

Petri net is k-bounded.

LivenessLiveness

Since the Petri net N in Figure 1 is structural live, we must have an initial marking M0 for N, such that (N,

M0) is live. This behavioral property guarantee deadlock-free operations. No matter what firing sequence is

chosen, the searcher/deleter/inserter problem will never be deadlocked.

ReversibilityReversibility

A Petri net (N, M0) is said to be reversible if, for each marking M in R(M0), M0 is reachable from M. From

the reachability graph in Figure 2, it’s easy to see that M0 = (2 0 2 0 1 0) is reachable from any marking M

∈ R(M0), so this Petri net is reversible. Similarly, this Petri net is also reversible in the case of M0 = (k 0 k

0 1 0), where k > 2.

CoverabilityCoverability

A marking M in a Petri net (N, M0) is said to be coverable if there exists a marking M1 in R(M0) such that

M1(P) ≥ M(P) for each P in the net. Let Mmin be the minimum marking needed to enable a transition t in

(N, M0), it’s easy to see that t is L1-live in (N, M0) if and only if Mmin is coverable.

9

In our example, we still assume k = 2, since for transition t1, Mmin = (1 0 1 0 0 0), and it can be covered by

M1 = (1 1 0 1 0), so transition t1 is L1-live. Similarly, transition t3 is L1-live because its Mmin = (1 0 2 0 1

0) can be covered by M0 = (2 0 2 0 1 0). All other transitions in this Petri net can be proved to be L1-live in

the same way.

PersistencePersistence

This Petri net (N, M0), where M0 = (k 0 k 0 1 0) , is not persistent because two enabled transitions t3 and t5,

the firing of one transition will disable the other one.

This is because transitions t3 and t5 have a common input place P1, they are called in a structural conflict;

moreover, this pair of transitions is also in a behavioral conflict because for a reachable marking M = (k 0 k

0 1 0), both are enabled, but firing one disables the other. We have the conclusion that a Petri net is

nonpersistent if and only if it has a pair of transitions in a behavioral conflict.

FairnessFairness

This Petri net is not bounded fair (BF), unconditionally fair (UF) and strongly fair (SF) because we have

an infinite firing sequence σ = < <t1, t2>∞ >, where t3 and t5 are enabled infinitely often, however they are

never fired.

When k = 1, this Petri net is weakly fair (WF) because no transitions in the net is enabled continuously.

However, when k > 1, for the infinite firing sequence σ = < <t1, t2>∞ >, t3 and t5 are enabled continuously,

but they are never fired, so σ is not weakly fair, which implies that the Petri net (N, M0), where M0 = (k 0 k

0 1) and k > 1, is not weakly fair.

In our real problem, the unfairness of our Petri net means that searcher/deleter/inserter may starve to death.

We have talked about the behavioral properties of this Petri net. In the last section, we will investigate the

preservation of structural liveness and boundedness through net reduction.

5.5. Preservation of Structural LB through Net ReductionPreservation of Structural LB through Net Reduction

The two linear dependence rules for net reduction are listed as follows[2]:

Rule1: The reduction rule Rule1: The reduction rule φφP: P: This transformation is the removal of a nonnegatively linearly dependent

place p together with it’s incident arcs.

10

Rule2: The reduction rule Rule2: The reduction rule φφT: T: This transformation is the removal of a nonnegatively linearly dependent

transition t together with it’s incident arcs.

In addition to these two rules, for our purpose, we also need to use the six simple reduction rules which

preserve liveness, safeness and boundedness for any unrestricted Petri net. These simple reduction rules are

described in Prof. Tadao Mutata’s lecture notes[2], which are Fusion of Series Places (FSP), Fusion of

Series Transitions (FST), Fusion of Parallel Places (FPP), Fusion of Parallel Transitions (FPT), Elimination

of Self-loop Places (ESP), and Elimination of Self_lop Transitions (EST).

The following theorem is now advanced but it still remains to be proved:

Theorem: Theorem: Any structurally live and bounded Petri net N with a live marking M0 can be reduced to an

structurally live and bounded Petri net N’ with a living marking M0’ by the application of some rules of the

set {φP, φT, FSP, FST, FPP, FPT, ESP, EST}.

By examining our example, we may verify the above theorem by net reduction with the structural liveness

and boundedness properities preserved.

The incidence matrix of the Petri net in Figure 1 is rewritten as follows:

Since c(P1) = c(P2) + 2*c(P3) + 2k*c(P4) + c(P5), by using reduction rule φP, we can remove place P1,

and the resulting Petri net is shown in Figure 3.

Now we can use FST to merge t1 and t2, t5 and t6, and use EST to eliminate two self-loop transitions,

which are t12 and t56. The result of our reduced Petri net is shown in Figure 4. Finally, by firing t3, and

then use FPP k times, we get our final version of our reduced net model shown in Figure 5. Obviously, the

Petri net in Figure 5 is structural live and bounded, and the theorem advanced above was verified as so.

 P1 P2 P3 P4 P5 P6

 t1 -1 1 -1 0 0 0
 t2 1 -1 1 0 0 0
 t3 -1 0 -k 1 -1 0
 A = t4 1 0 k -1 1 0
 t5 -1 0 0 0 -1 1
 t6 1 0 0 0 1 -1

11

 Figure 3. Petri Net for Search/Insert/Delete Problem reduced by rule φP

k

t1 t3

t2 t4

t5

t6

P5P4P3P2
P6

k

k

 Figure 4. Petri Net for Search/Insert/Delete Problem reduced by φP, FST and EST

k

t3

t4

P5P4P3

k

k

12

6.6. ConclusionConclusion

Petri nets are powerful for modeling concurrent, non-determinism, synchronization and mutual exclusion.

In this paper, we first modeled the searcher/deleter/inserter problem by Petri net, then we summarized the

structural properties and behavioral properties for this Petri net model. Finally, a theorem for net reduction

was advanced and verified by our chosen problem.

Reference:Reference:

[1] G.R. Andrews, Concurrent Programming: principles and practice, Addison-Wesley Publishing

Company, 1991.

[2] Tadao Murata, Petri Net Modeling and Analysis of Concurrent Systems , EECS 564 Lecture Notes,

University of Illinois at Chicago, 1999.

 Figure 5. Petri Net for Search/Insert/Delete Problem reduced by φP, FST, EST and FPP

t3

t4

P35P4

