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Predicting protein structures with a multiplayer
online game
Seth Cooper1, Firas Khatib2, Adrien Treuille1,3, Janos Barbero1, Jeehyung Lee3, Michael Beenen1,
Andrew Leaver-Fay2{, David Baker2,4, Zoran Popović1 & Foldit players

People exert large amounts of problem-solving effort playing com-
puter games. Simple image- and text-recognition tasks have been
successfully ‘crowd-sourced’ through games1–3, but it is not clear if
more complex scientific problems can be solved with human-
directed computing. Protein structure prediction is one such
problem: locating the biologically relevant native conformation
of a protein is a formidable computational challenge given the
very large size of the search space. Here we describe Foldit, a
multiplayer online game that engages non-scientists in solving
hard prediction problems. Foldit players interact with protein
structures using direct manipulation tools and user-friendly
versions of algorithms from the Rosetta structure prediction
methodology4, while they compete and collaborate to optimize
the computed energy. We show that top-ranked Foldit players
excel at solving challenging structure refinement problems in
which substantial backbone rearrangements are necessary to
achieve the burial of hydrophobic residues. Players working
collaboratively develop a rich assortment of new strategies and
algorithms; unlike computational approaches, they explore not
only the conformational space but also the space of possible search
strategies. The integration of human visual problem-solving and
strategy development capabilities with traditional computational
algorithms through interactive multiplayer games is a powerful
new approach to solving computationally-limited scientific
problems.

Although it has been known for over 40 years that the three-
dimensional structures of proteins are determined by their amino acid
sequences5, protein structure prediction remains a largely unsolved
problem for all but the smallest protein domains. The state-of-the-art
Rosetta structure prediction methodology, for example, is limited
primarily by conformational sampling; the native structure almost
always has lower energy than any non-native conformation, but the
free energy landscape that must be searched is extremely large—even
small proteins have on the order of 1,000 degrees of freedom—and
rugged due to unfavourable atom–atom repulsion that can dominate
the energy even quite close to the native state. To search this landscape,
Rosetta uses a combination of stochastic and deterministic algo-
rithms: rebuilding all or a portion of the chain from fragments;
random perturbation to a subset of the backbone torsion angles;
combinatorial optimization of protein side-chain conformations;
gradient-based energy minimization; and energy-dependent accept-
ance or rejection of structure changes6–8.

We hypothesized that human spatial reasoning could improve
both the sampling of conformational space and the determination
of when to pursue suboptimal conformations if the stochastic ele-
ments of the search were replaced with human decision making while

retaining the deterministic Rosetta algorithms as user tools. We
developed a multiplayer online game, Foldit, with the goal of pro-
ducing accurate protein structure models through gameplay (Fig. 1).
Improperly folded protein conformations are posted online as puz-
zles for a fixed amount of time, during which players interactively
reshape them in the direction they believe will lead to the highest
score (the negative of the Rosetta energy). The player’s current status
is shown, along with a leader board of other players, and groups of
players working together, competing in the same puzzle (Fig. 1,
arrows 8 and 9). To make the game approachable by players with
no scientific training, many technical terms are replaced by terms in
more common usage. We remove protein elements that hinder struc-
tural problem solving, and highlight energetically frustrated areas of
the protein where the player can probably improve the structure
(Fig. 1, arrows 1–5). Side chains are coloured by hydrophobicity
and the backbone is coloured by energy. There are specific visual cues
depicting hydrophobicity (‘exposed hydrophobics’), interatomic
repulsion (‘clashes’) and cavities (‘voids’). The players are given
intuitive direct manipulation tools. The most immediate method
of interaction is directly pulling on the protein. It is also possible
to rotate helices and rewire b-sheet connectivity (‘tweak’). Players are
able to guide moves by introducing soft constraints (‘rubber bands’)
and fixing degrees of freedom (‘freezing’) (Fig. 1, arrows 6 and 7).
They are also able to change the strength of the repulsion term to
allow more freedom of movement. Available automatic moves—
combinatorial side-chain rotamer packing (‘shake’), gradient-based
minimization (‘wiggle’), fragment insertion (‘rebuild’)—are Rosetta
optimizations modified to suit direct protein interaction and simplified
to run at interactive speeds.

To engage players with no previous exposure to molecular biology,
it was essential to introduce these concepts through a series of intro-
ductory levels (Supplementary Fig. 1 and Supplementary Table 1):
puzzles that are always available, and can be completed by reaching a
goal score. These levels teach the game’s tools and visualizations, and
certain strategies. We have found the game to be approachable by a
wide variety of people, not only those with a scientific background
(Supplementary Fig. 2)—in fact, few top-ranked players are profes-
sionally involved in biochemistry (Supplementary Fig. 3).

To evaluate players’ abilities to solve structure prediction pro-
blems, we posted a series of prediction puzzles. Puzzles in this series
were blind, in the sense that neither the target protein nor homolog-
ous proteins had structures contained within publicly available data-
bases for the duration of the puzzles. Detailed information for these
ten blind structures, including comparisons between the best-scoring
Foldit predictions and the best-scoring Rosetta predictions using the
rebuild and refine protocol7, is given in Table 1. We found that Foldit
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players were particularly adept at solving puzzles requiring substan-
tial backbone remodelling to bury exposed hydrophobic residues
into the protein core (Fig. 2). When a hydrophobic residue points
outwards into solvent, and no corresponding hole within the core is
evident, stochastic Monte Carlo trajectories are unlikely to sample
the coordinated backbone and side-chain shifts needed to bury the
residue properly in the core. By adjusting the backbone to allow the
exposed hydrophobic residue to pack properly in the core, players
were able to solve these problems in a variety of blind scenarios
including a register shift and a remodelled loop (Fig. 2a, b), a rotated
helix (Fig. 2c), two remodelled loops (Fig. 2d), and a helix rotation
and remodelled loop (Fig. 2e).

Players were also able to restructure b-sheets to improve hydro-
phobic burial and hydrogen bond quality. Automated methods have
difficulty performing major protein restructuring operations to
change b-sheet hydrogen-bond patterns, especially once the solution

has settled in a local low-energy basin. Players were able to carry out
these restructuring operations in such scenarios as strand swapping
(Fig. 3) and register shifting (Fig. 2a). In one strand-swap puzzle,
Foldit players were able to get within 1.1 Å of the native structure,
with the top-scoring Foldit prediction being 1.4 Å away. A superposi-
tion between the starting Foldit puzzle, the top-scoring Foldit solu-
tion, and model 1 of the native NMR structure 2kpo (Protein Data
Bank) are shown in Fig. 3b. Rosetta’s rebuild and refine protocol,
however, was unable to get within 2 Å of the native structure (Fig. 3a,
yellow points). This example highlights a key difference between
humans and computers. As shown in Fig. 3c, solving the strand-swap
problem required substantially unravelling the structure (Fig. 3c,
bottom), with a corresponding unfavourable increase in energy
(Fig. 3c, top). Players persisted with this reconfiguration despite the
energy increase because they correctly recognized that the swap could
ultimately lead to lower energies. In contrast, although the Rosetta
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Figure 1 | Foldit screenshot illustrating tools and visualizations. The
visualizations include a clash representing atoms that are too close (arrow 1);
a hydrogen bond (arrow 2); a hydrophobic side chain with a yellow blob
because it is exposed (arrow 3); a hydrophilic side chain (arrow 4); and a
segment of the backbone that is red due to high residue energy (arrow 5). The
players can make modifications including ‘rubber bands’ (arrow 6), which
add constraints to guide automated tools, and freezing (arrow 7), which

prevents degrees of freedom from changing. The user interface includes
information about the player’s current status, including score (arrow 8); a
leader board (arrow 9), which shows the scores of other players and groups;
toolbars for accessing tools and options (arrow 10); chat for interacting with
other players (arrow 11); and a ‘cookbook’ for making new automated tools
or ‘recipes’ (arrow 12).

Table 1 | Blind data set

Puzzle ID Foldit Ca r.m.s.d. Rebuild and refine Ca
r.m.s.d.

Native Method Number of residues Figure(s)

986875 1.4 4.5 2kpo NMR 99 3a–c, Supplementary 4

986698 1.8 3.7 2kky NMR 102 3d, e
986836 5.7 6.6 3epu X-ray 136 2c, Supplementary 6d
987088 3.5 4.3 2kpt NMR 116 2a, b, Supplementary 6a, b
987162 4.5 5.2 3lur X-ray 158 Supplementary 6c
987076 3.3 3.5 2kpm NMR 81 2e, Supplementary 5c
986629 3.5 3.3 2kk1 NMR 135 Supplementary 5b
987145 2.6 2.3 3nuf X-ray 105 2d, Supplementary 5a
986844 6.9 5.8 2ki0 NMR 36 Supplementary 10a
986961 10.6 5.7 2knr NMR 118 Supplementary 10b

A listing of all the Foldit puzzles run in the blind data set. A Ca r.m.s.d. comparison to the native structure is given between the best-scoring model produced by Foldit players and the best-scoring
model produced by the Rosetta rebuild and refine protocol, given the same starting model(s). Solutions considerably better with one method than the other are indicated in bold. The solved
structures (which were released after each puzzle ended) are represented by their Protein Data Bank (PDB) codes. Results from these Foldit puzzles can be accessed on the Foldit website by
replacing ID with the corresponding Foldit puzzle ID in http://fold.it/portal/node/ID. 2kky, 2kpt, 2kpm, 2kk1 and 2knr were taken from the CASD-NMR experiment10. 2kpo was provided by N. Koga
and R. Koga. 2ki0 and 3epu were found by searching for unreleased structures on the PDB website (http://www.rcsb.org/pdb/search/searchStatus.do). 3lur and 3nuf were provided by the Joint
Center for Structural Genomics (JCSG). The location of figures containing results for each puzzle are provided in the last column.

NATURE | Vol 466 | 5 August 2010 LETTERS

757
Macmillan Publishers Limited. All rights reserved©2010

http://fold.it/portal/node/ID
http://www.rcsb.org/pdb/search/searchStatus.do


b ca ed

Figure 2 | Structure prediction problems solved by Foldit players.
Examples of blind structure prediction problems in which players were
successfully able to improve structures. Native structures are shown in blue,
starting puzzles in red, and top-scoring Foldit predictions in green. a, The
red starting puzzle had a register shift and the top-scoring green Foldit
prediction correctly flips and slides the b-strand. b, On the same structure as
above, Foldit players correctly buried an exposed isoleucine residue in the
loop on the bottom right by remodelling the loop backbone. c, The

top-scoring Foldit prediction correctly rotated an entire helix that was
misplaced in the starting puzzle. d, The starting puzzle had an exposed
isoleucine and phenylalanine on the top, as well as an exposed valine on the
bottom left. The top-scoring Foldit prediction was able to correctly bury
these exposed hydrophobic residues. e, Another successful Foldit helix
rotation along with a remodelled loop that correctly buries an exposed
phenylalanine. Images were produced using PyMOL software11.
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Figure 3 | Puzzles in which human predictors significantly outperformed
the Rosetta rebuild and refine protocol. a–c, Puzzle 986875. d, e, Puzzle
986698. a, Comparison of Foldit player solutions (green) to the low-energy
structures sampled in Rosetta rebuild and refine trajectories (yellow) for
blind Foldit puzzle 986875 based on the recently determined structure of
2kpo. The x axis is the all-atom r.m.s.d. to 2kpo, and the y axis is the Rosetta
energy. The starting Foldit puzzle was 4.3 Å away from the native structure
(shown by the black dot on the plot); Foldit players sampled many different
conformations, with the top-scoring submission (the lowest scoring Rosetta
energy) 1.4 Å away from the native structure, whereas the automated Rosetta
protocol did not sample below 2 Å. The blue dots and lines correspond to the
trajectory of a single Foldit player in c. b, Superposition of the top-scoring
Foldit prediction in green with the experimentally determined NMR model 1
in blue. The starting puzzle is in red, where the terminal strand is incorrectly
swapped with its neighbour; 8% of all Foldit players were able to swap these
strands correctly (Supplementary Table 2). c, A score trajectory with selected
structures for the top-scoring player in puzzle 986875 over a 2-h window,
showing how the player explores through high-energy conformations to

reach the native state. The y axis shows the Rosetta energy and the x axis the
elapsed time in hours. The starting structure had a Rosetta energy of 2243.
Each point in the plot represents a solution produced by this player. The first
structure (1) is near the starting puzzle structure, shown as the black dot in
panel a. The following structures (2–6) are shown as blue dots in panel a. In
structures 2–4, the player must explore higher energies to move the strand
into place, shown by the blue lines. In structures 5 and 6, the player refines
the strand pairing. d, Comparison of Foldit player solutions (green) to the
low-energy structures sampled in Rosetta rebuild and refine trajectories
(yellow) for blind Foldit puzzle 986698 based on the recently determined
structure of 2kky. Foldit players were able to get the best Foldit score by
correctly picking from multiple alternative starting Rosetta models (black)
the model that was closest to the native structure. e, The native structure is
shown in blue with the top-scoring Foldit prediction shown in green. The
top-scoring Rosetta rebuild and refine prediction given the same ten starting
models (shown in yellow) was unable to sample as close to the native
structure as the Foldit players.
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rebuild and refine protocol did sample some partially swapped con-
formations (Fig. 3a, leftmost yellow point), these were not retained in
subsequent generations owing to their relatively high energies, result-
ing in the top-scoring Rosetta prediction being further from the
native than the starting structure (Supplementary Fig. 5).

Human players are also able to distinguish which starting point
will be most useful to them. Figure 3d, e shows a case where players
were given ten different Rosetta predictions to choose from. Players
were able to identify the model closest to the native structure, and to
improve it further. Given the same ten starting models, the Rosetta
rebuild and refine protocol was unable to get as close to the native
structure as the top-scoring Foldit predictions.

Foldit players performed similarly to the Rosetta rebuild and refine
protocol for three of the ten blind puzzles (Supplementary Fig. 6).
They outperformed Rosetta on five of the puzzles (Fig. 3 and
Supplementary Figs 5 and 7), including the two above cases where
players performed significantly better. A larger set of successful solu-
tions for similar, although non-blind, puzzles are described in
Supplementary Figs 8–10. For two of the ten blind puzzles, the
top-scoring Rosetta rebuild and refine prediction was numerically
better than the Foldit solution (Table 1) but still basically incorrect
(root mean squared deviation (r.m.s.d.) to native structure .5.7 Å)
(Supplementary Fig. 11).

Despite the promising results described above, there exists room
for improvement. For one particularly difficult class of problems,
players are only given an extended protein chain to start from.
Although the Foldit tools are sufficient to reach the native conforma-
tion from this unfolded start (Supplementary Fig. 12), players can
have trouble reaching it from so far away (Supplementary Fig. 11a).
This indicates the need to find the right balance between humans and
computational methods: players guided by visual cues perform better
in resolving incorrect features in partially correct models than ‘blank
slate’ de novo folding of an extended, featureless protein chain.

As interesting as the Foldit predictions themselves is the complexity,
variation and creativity of the human search process. Foldit gameplay
supports both competition and collaboration between players. For
collaboration, players can share structures with their group members,
and help each other out with strategies and tips through the game’s
chat function, or across the wiki. The competition and collaboration
create a large social aspect to the game, which alters the aggregate search
progress of Foldit and heightens player motivation. As groups compete
for higher rankings and discover new structures, other groups appear
to be motivated to play more (Supplementary Fig. 14a), and within
groups the exchange of solutions can help other members catch up to
the leaders (Supplementary Fig. 14b).

Humans use a much more varied range of exploration methods
than computers. Different players use different move sequences, both
according to the puzzle type and throughout the duration of a puzzle
(Fig. 4a). For example, some players prefer to manually adjust side
chains; some will forego large amounts of continuous minimization at
the beginning of a puzzle, but increase it as the puzzle progresses; and
some prefer a more direct approach and use more rubber bands when
the puzzle begins from an extended chain. Within teams, there is often
a division of labour: some players specialize in early-stage openings,
others in middle- and end-game polishing. Our informal investiga-
tion revealed a fascinating array of thought processes, insights and
previously unexplored methodologies developed solely through
Foldit gameplay (see Supplementary Text, ‘Player Testimonials’
section and Supplementary Table 3 for more information). More
in-depth analysis of player strategies should provide further insight
into the basis for human achievement with Foldit and could lead to
improved automated algorithms for protein structure prediction.

In designing Foldit we sought to maximize both engagement by a
wide range of players (a requirement common to all games) and the
scientific relevance of the game outcomes (unique to Foldit). We
fine-tuned the game through continuous iterative refinement based
on observations of player activity and feedback, taking approaches

from players who did well and making them accessible to all players.
Most of the tools available to players today are a product of this
refinement. They either did not initially exist or have undergone
major revision. The introductory levels were also iteratively tuned
to reduce player attrition due to difficulty or lack of engagement. Just
as Foldit players gained expertise by playing Foldit, both individually
and collectively, the game itself adapted to players’ best practices and
skill sets. We suspect that this process of co-adaptation of game and
players should be applicable to similar scientific discovery games.
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side-chain optimization
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side-chain modification
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Figure 4 | Player move preferences. a, Different Foldit players take
different approaches to solving the same problem. Each circle represents the
move type frequencies used in the top-scoring solution produced by each
player in different time frames: the inner circle denotes the first hour; the
middle circle denotes the first day; and the outer circle denotes the puzzle’s
entire duration. Each colour represents a different type of move that can be
made in the game. The left column reflects player move types for puzzles that
start relatively close to the native topology. The right column reflects player
move types for puzzles that start from a fully extended conformation. Each
row represents a different Foldit player. Each player’s preferred move types
across each puzzle class are distinct from one another, yet a player’s
preferences are similar for both classes of puzzles. Also note that the move
preferences change over the lifetime of a puzzle; local wiggle is heavily
preferred by the end of puzzles but not by all players at the beginning. The
move type preferences are very different from Rosetta’s current best
automated protocol, rebuild and refine, shown in b.
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To attract the widest possible audience for the game and encourage
prolonged engagement, we designed the game so that the supported
motivations and the reward structure are diverse, including short-
term rewards (game score), long-term rewards (player status and
rank), social praise (chats and forums), the ability to work individually
or in a team, and the connection between the game and scientific
outcomes. A survey of Foldit players (Supplementary Fig. 4) revealed
that although the purpose of contributing to science is a motivating
factor for many players, Foldit also attracts players interested in
achievement through competition and point accumulation, social
interaction through chat and web-based communication, and immer-
sion through engaging gameplay and exploration of protein shapes9.
We expect generally that future scientific discovery games will also
benefit from varied motivation sets.

The solution of challenging structure prediction problems by
Foldit players demonstrates the considerable potential of a hybrid
human–computer optimization framework in the form of a mas-
sively multiplayer game. The approach should be readily extendable
to related problems, such as protein design and other scientific
domains where human three-dimensional structural problem solv-
ing can be used. Our results indicate that scientific advancement is
possible if even a small fraction of the energy that goes into playing
computer games can be channelled into scientific discovery.
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