
Analysis of Social Gameplay Macros
in the Foldit Cookbook

Seth Cooper1, Firas Khatib2, Ilya Makedon1, Hao Lu1, Janos Barbero1,
David Baker2, James Fogarty1, Zoran Popović1, and Foldit players3

1 Center for Game Science
Department of Computer Science & Engineering

University of Washington
{scooper,makedon,hlv,jbarbero,jfogarty,zoran}@cs.washington.edu

2 Department of Biochemistry
University of Washington

{firas,dabaker}@u.washington.edu

3 Worldwide

ABSTRACT
As games grow in complexity, gameplay needs to provide
players with powerful means of managing this complexity.
One approach is to give automation tools to players. In this
paper, we analyze an in-game automation tool, the Foldit
cookbook, for the scientific discovery game Foldit. The cook-
book allows players to write recipes that can automate their
strategies. Through analysis of cookbook usage, we ob-
serve that players take advantage of social mechanisms in
the game to share, run, and modify recipes. Further, play-
ers take advantage of both a simplified visual programming
interface and a text-based scripting interface for creating
recipes. This indicates that there is potential for using au-
tomation tools to disseminate expert knowledge, and that
it is useful to provide support for multiple authoring styles,
especially for games where the final game goal is unbounded
or hard to attain.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General – Games

1. INTRODUCTION
As games grow in complexity, gameplay needs to provide
players with powerful means of managing this complexity.
One approach is to give tools for automation to players.
This gives players the opportunity for customization and al-
lows them to approach the game at a higher level. World
of Warcraft [20] allows macro commands and also a rich
scripting language for creating addons. Second Life [15] has
a scripting language that allows users to define the behavior
of objects. Final Fantasy XII [7] introduced the gambit sys-
tem, which allowed players to automate many of the details
of battle.

The Foldit cookbook was developed to aid players in sys-
tematizing their strategies and integrating them into the
social environment of a scientific discovery game. In this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FDG’11, June 29-July 1, Bordeaux, France
Copyright 2011 ACM 978-1-4503-0804-5/11/06 ... $10.00

paper we show the potential of automation in a social con-
text for propagating the expert skills of top Foldit players
and increasing the overall collective problem solving skills
of the predominantly non-scientist Foldit player population.
In addition, we discuss our experience deploying the cook-
book to the Foldit community at large, present analyses of
two data sets gathered from players who used the cookbook,
and conjecture directions for future improvement of in-game
automation in scientific discovery games.

2. RELATED WORK
Programming generally requires sophisticated skills and train-
ing. Extensive prior work has presented new programming
languages to make the task easier and require less train-
ing. Among them, visual programming languages [2] have
been popular, particularly in educational contexts. They
often take the form of assembling blocks of code, such as
in Scratch [13] and StarLogo TNG [18]. Alice [4] is a vi-
sual programming language designed to teach students pro-
gramming through storytelling. Kodu [11, 12] is a visual
programming language designed for young children to de-
sign and program video games. The Foldit cookbook design
faces the same challenges in supporting user programming
and uses similar visual programming language techniques.
The recent language Toque [16] is particularly interesting
for its use of cooking metaphors, which the Foldit cookbook
also employs.

Analysis of data from online games is an expanding field,
giving insights into the dynamics of online games and the
communities around them. Recently, Lewis [9] gathered a
large data set on World of Warcraft by crawling web pages.
This data was used to answer questions about the game
world, such as which classes level faster or die more often.
Williams [19] was given access to a large amount of data on
EverQuest 2, which was used to discover the profiles of online
gamers. In this paper, we perform data analysis gathered
from Foldit players using the cookbook.

How users share their software customization and collabo-
rate in problem solving has also been studied in other do-
mains. Mackay [10] studied patterns of sharing customiz-
able software through a study of users at two research sites
working with two different kinds of customizable software.
Three groups of sharers were found: the experts who cre-
ated customization from scratch, the translators who cre-
ated simplified and more task-specific versions of the ex-

Figure 1: A screenshot of the cookbook editor for
a GUI recipe. The visual blocks that make up the
recipe take up the main section of the window. But-
tons for saving, loading, sharing, and other options
are along the bottom.

pert customizations, and the rest of the organization who
adopted customizations from the translators. Berlin and
Jeffries [1] studied interactions between experts and appren-
tices in learning and collaborative problem solving. One
primary strategy found in their work was “copy and experi-
ment”: the apprentices find something similar to what they
want, copy it, and then try to customize it to their specific
needs. In our Foldit cookbook, the sharing activities occur
in a much larger scale and in a much more distributed set-
ting. Our analyses discover some of these same behaviors in
scientific discovery games and also make new observations
about group-based sharing and ratings.

3. OVERVIEW
3.1 Foldit
Foldit is a multiplayer online game in which players compete
to find well-folded protein structures. See [6] for a more de-
tailed description of Foldit’s design. In Foldit, protein struc-
tures are posted online as puzzles, accessible for fixed periods
of time, usually one week, during which players compete to
achieve the highest scoring solution structures. Players in-
teract with the protein in a variety of ways: they can pull on
it directly, place bands to pull indirectly, and freeze pieces
to prevent them from moving. They can also launch opti-
mizations, called shake and wiggle, that will computationally
improve their protein. The score of the player’s solution is
updated in realtime. Foldit is organized as a competition,
and a leaderboard of all other players and their scores is dis-
played. Players can form groups, which can work together
and share their solutions. Groups compete on a separate
group leaderboard.

Foldit uses biochemical modeling, evaluation, and optimiza-
tion routines from the Rosetta package [14] for scientific ac-
curacy. It has been shown that Foldit and its players are
capable of solving hard structural biochemistry problems,
especially those that are known to be problematic for state-
of-the-art computational methods [5].

3.2 Cookbook
Soon after Foldit’s release, the players created a wiki [8].
One section of the wiki was devoted to player strategies;
players began requesting the addition of automation tools

Figure 2: The cookbook. Recipes are divided into
sections based on whether they have been shared.
When the mouse hovers over a recipe name, buttons
for running, editing, and deleting appear.

so that they could more easily carry out their strategies. It
was out intention as well to infer optimal strategies from
the Foldit players and use them to improve fully automatic
approaches. Rather than performing machine learning on
gameplay traces of Foldit players, we decided that the play-
ers themselves would likely be much better at systematic
abstraction of their strategies. For this reason we added
the cookbook to Foldit. The cookbook allowed players to
write, share, and run recipes, which were automated version
of their strategies.

The initial interface for writing recipes was a simple block-
based visual programming interface, illustrated in Figure 1.
Using this interface, a recipe is created by adding steps from
a pulldown menu. Steps include game moves such as shak-
ing, wiggling, adding bands, freezing, or restoring saved so-
lutions. Steps can be deleted or reordered as desired. Each
step may have some number of ingredients, parameters that
need to be specified. It is worth noting that this interface
does not have support for conditionals or loops. Recipes
created with this interface are called GUI recipes.

After the addition of the cookbook with GUI recipes, players
additionally requested the expressive power of a full script-
ing language. We therefore added an alternative text-based
interface, using the Lua scripting language [17]. The base
Lua language was augmented with custom functions to exe-
cute game moves and query game state. The Lua interface
has many more available moves and the ability to control the
flow of the recipe, allowing much more expressive recipes to
be written. Recipes created with this interface are called
script recipes.

Players are able to upload their recipes to the game servers
to share with other players. They can share a recipe glob-
ally with all players or only with players in their group.
The Foldit website has an interface for players to search for
shared recipes. Each recipe has a webpage with information
about the recipe, including its title, description, author, and
comments. Each recipe additionally has a five-star rating.
Players can rate a recipe on its webpage and are also re-
minded to rate, if they have not yet, when running a recipe
in-game. If a recipe has been created by modifying a previ-
ous recipe, the recipe it is derived from (its parent) is listed
on the webpage; any derived recipes (its children) are also
listed. There is a button on the webpage that will add the
recipe to the player’s cookbook. The player who shared a
recipe can make new revisions of it after it has been up-
loaded. These revisions will be considered the same recipe,
and only the newest revision can be downloaded.

Puzzles 56
Recipes 5488
Recipes run >= 10 times 1139
Recipes run >= 100 times 233
Recipes run >= 1000 times 26
Recipes run >= 10000 times 1
Total times recipes were run 158682
Players 3590
Players who ran a recipe 771
Players who wrote a recipe 568
Recipes written during CASP9 5202

Table 1: Overview of data from the CASP9 data set.

Pl
ay

er
 c

ou
nt

100

100

200

807060504030 90 10020

pr
od

uc
ed

 n
o

re
ci

pe
s

us
ed

 o
nl

y
ow

n

Own recipes used (%)

250

50

150

w
ro

te
 n

o
re

ci
pe

s

us
ed

 o
nl

y
ow

n

Figure 3: Histogram of recipe users by the percent-
ages of recipes used that they wrote themselves for
recipes in the CASP9 data set. The lighter bar on
the left shows players who used only other players’
recipes; the presence of this bar indicates that the
expertise of players who write recipes can be used
by players who do not write recipes. The lighter bar
on the right shows players who used only their own
recipes.

While playing Foldit, a list of the recipes in a player’s cook-
book are given in a collapsible sidebar in the game, shown
in Figure 2. As an introduction for players, the cookbook
comes with four example GUI recipes and a button that links
to a video introducing the cookbook. There is also documen-
tation available for the steps and function calls, as well as
text bubbles that appear explaining each step the first time
it is used. The player can easily run, edit, or delete recipes
from the cookbook. While running, the cookbook is replaced
by text that gives the progress of the current recipe. Indi-
vidual steps within the recipe can be canceled, or the entire
recipe can be canceled.

4. CASP9 ANALYSIS
To understand the social aspects of the cookbook, we an-
alyzed data gathered from the puzzles run for CASP9 [3].
CASP is a biannual event in which teams compete to most
accurately predict protein structures. Foldit ran a series of
CASP9 related structure prediction puzzles over a period of
several months, from May 6 to August 19 in 2010. Basic in-
formation about the puzzles, players, and recipes used can
be found in Table 1. In order to ignore recipes that were
used a very small number of times, our CASP9 analyses
consider only the recipes that were run at least 10 times.

0K 5K 10K 15K 20K 25K 30K

1

2

3

Public

Private

Group

0 5K 30K25K20K15K10K

shared

shared

Own recipe uses

Figure 4: Sharing status of recipes run by players
who run only their own recipes in the CASP9 data
set. Most of the recipe uses are of private recipes,
indicating that there is room to improve incentives
for sharing recipes.

1

10

100

1000

0 1 2 3 4 5 6 7 8 9 10

Re
ci
pe

s

Descendants

Public
shared

Group
shared

Private

Figure 5: A histogram of the number of recipes
from the CASP9 data set by number of descen-
dants. There were 9 public shared, 3 group shared,
and 4 private recipes with more than 10 descen-
dants. While most recipes have no descendants,
some recipes led to a variety of modifications and
customizations, creating many descendants.

4.1 Recipe Sharing
As Foldit players are able to share recipes with other players,
we were interested in observing the patterns of use of recipes
written by other players. This would allow us to determine
if, and how, players were sharing recipes and using shared
recipes.

In order to understand how players use shared recipes, we
analyzed the patterns of use of recipes written by players
themselves and those written by other players. We consid-
ered all players that either used a recipe during CASP9 or
wrote a recipe that was used. For each of these players we
computed the following statistics: total number of recipes
used, total number of recipes written, number of times the
players used recipes written by others, and number of times
other players used recipes written by the player.

This led us to identify two distinct classes of recipe users:
those who mostly used recipes that they wrote, and those
who mostly used recipes written by others. We calculated
what percentage of total recipe uses by each player were
recipes written by that player. Figure 3 shows the histogram
of the usage of a player’s own recipes by 10% bins.

The large number of players in the leftmost bin correspond
to players who primarily used recipes written by other play-
ers. The gray area identifies the number of pure consumers,

a) b)

e)

d)

c)

1

2

1

1

1

1

2

3

4

Public shared Group shared Private Same author Different author

Figure 6: Example hierarchy of recipe descendants from the CASP9 data set. A child is created when a
player edits a previously existing recipe. Size is logarithm of number of uses of a recipe. The ability to
modify recipes shared by other players led to a variety of interesting modification patterns.

players who wrote no recipes at all. Combined, these 246
players used recipes over 36,000 times. It is worth noting
that 13 of the pure consumers account for more than half of
these uses.

The rightmost bin corresponds to players who mostly used
recipes they wrote themselves. Looking more closely at play-
ers who ran only their own recipes, Figure 4 shows the num-
ber of times that recipes were used by their authors, broken
down by their sharing status. Clearly, these players tend to
have an arsenal of recipes that they keep to themselves.

This data shows that the recipe sharing system is being used
by the players and that there are distinct patterns of use
among players. The high number of pure consumers indi-
cates that recipes are being used by players who do not write
them, and thus have the potential to facilitate the exchange
of expertise from players who are writing recipes. However,
there are a number of players who are running recipes that
they have not shared. More could be done to more to en-
courage these players to share their recipes, potentially by
enabling players to earn points for others using their recipes.

4.2 Inheritance Relationships
Given that players were using and sharing recipes, we wanted
to observe if players were modifying those recipes and what
patterns of inheritance they produced. When a player shares
a recipe, any player can then modify that recipe and create a
new recipe that becomes a child of the original. Players can
also modify their own private recipes to produce children.
This allows for different variations of a similar concept to
be produced, and it provides an opportunity for others to
improve on a player’s creation.

To observe patterns of how players were modifying other
recipes, we looked at the number of descendants for each
recipe. A descendant is any recipe that can be traced back
to through its parents an original recipe. It is worth noting

that it is possible for someone to take a shared recipe, rewrite
it from scratch (with or without modifications), and call it
their own. This would not show up as a descendant in our
data set. Most recipes in the data set had no descendants,
but there were over 250 recipes with one or more of them
and 16 recipes with over ten descendants (Figure 5).

To investigate further, we looked at the inheritance hier-
archies for the recipes with the most descendants. Several
interesting patterns are shown in Figure 6. Panel (a) in Fig-
ure 6 is an example of the most-used recipe during CASP9,
Blue Fuse v1.1 (a, 2), which was derived from another pub-
lic recipe, Acid Tweeker v0.5 (a, 1). Blue Fuse v1.1 has
many descendants, but almost half of them are from the
same author of Blue Fuse v1.1 (shown as solid lines). The
same is true for the Loop Rebuild family of recipes shown
in panel (b). Loop Rebuild 1.0 (b, 1) and Loop Rebuild 1.1
(b, 2) were heavily used recipes during CASP9, with many
other players creating different versions of both (shown as
dotted arrows). The author of Loop Rebuild 1.0 produced
many descendants of it, sharing two of them with his group
along the way (shown in cyan, such as Loop Rebuild 1.9 (b,
3)) before finally sharing Loop Rebuild 2.0 (b, 4) with the
entire Foldit community. The hierarchy for Blue Fuse v1.1
is broad, showing experimentation from a common start-
ing point, while the hierarchy for Loop Rebuild 1.0 is deep,
showing iteration and refinement.

Some recipe writers publicly share their creation and do not
create any modifications afterward. Panel (c) in Figure 6
shows an example of a popular recipe with many direct chil-
dren, none of which were written by the original author.
Quake (c, 1), which was the second most-used recipe during
CASP9, has many different descendants, yet none of these
modifications were made public. Many of these Quake de-
scendants were shared within groups, but not with the rest of
the Foldit community. The recipe simple wiggle by ones (d,
1) has many publicly shared descendants that ended up be-

0 40 80 120 160 200
us ers

0

20

40

60

80

v_
co

un
t

Distinct users

Vo
te

s
ca

st

200120 16080400
0

80

60

40

20

Figure 7: Number of distinct users of a recipe and
number of votes they cast for recipes in the CASP9
data set. The line shows where points would be if
every user rated. The average number of votes cast
per user of a recipe was 0.25. Many recipe users do
not rate recipes that they run.

ing used even more than the original parent during CASP9.
The recipe Lua EAR 3-5 LSR (e, 1) was shared with the
author’s group and led to the creation of more group shared
recipes.

Through this analysis it appears that players are taking ad-
vantage of the ability to modify and adapt the recipes of
other players. Publicly shared recipes have the potential to
create many more descendants with wide inheritance hier-
archies, but keeping recipes private also provided value to
players and allowed more localized refinement.

4.3 Ratings
The Foldit cookbook gives players the option of rating the
recipes they use. Players can rate on the webpage for a
recipe or in game via a popup. We wanted to determine if
players were rating the recipes they used and what kind of
ratings they were giving.

The number of users of a recipe who rated the recipe is
shown in Figure 7. We found that it was difficult to get
Foldit players to rate each other’s recipes. While recipes
with more unique users have more ratings, many users did
not rate the recipes they used. Even with a pop-up to solicit
ratings after using a new recipe several times, many users
still did not rate the recipes.

We used a 5 star rating system, with 5 being the highest rat-
ing. However, we found those who did rate recipes mostly
rated them with 5 stars (Figure 8). It is possible that play-
ers simply stop using recipes that they do not like, with-
out bothering to rank them. Another possible explanation
is that players do not want to negatively rate other players’
creations, for fear that it might cause an author to no longer
share their future recipes.

To improve feedback from ratings, we could require play-
ers to rate a recipe after using it many times before they
are allowed to use it again or delete it. Perhaps a simple
question, such as “Do you like this recipe?” with “Yes” and
“No” buttons, or a “Like” feature might have yielded more
ratings. A simple choice might have made it easier for play-

20 40 60 80 100

0

200

400

600

800

N
um

be
r

of
 R

ec
or

ds

Vo
te

s
ca

st

Vote value

600

0

200

400

800

Figure 8: Distribution of votes by rating for recipes
in the CASP9 data set. Most players who cast votes
gave 5 stars. Players did not take advantage of the
full range of ratings available, indicating a simpler
rating system could have been used.

ers to decide how to rate. It might also be possible to have
the option to vote always available in game while a recipe is
running, rather than only popping up occasionally.

5. SCRIPT RECIPE ADOPTION ANALYSIS
We analyzed data around the time of the introduction of
script recipes to discover how the introduction of script recipes
impacted the existing GUI recipes. Script recipes give play-
ers the option to write recipes based on the Lua scripting
language in addition to the original GUI recipes, and were
released several months later. The cookbook editor defaults
to creating a GUI recipe, and there are two “New” buttons
(one for each type of recipe). This data was gathered from
July 2009 to April 2010.

Figure 9 shows numbers for recipes written and used during
this time. We can see that script recipes quickly became
popular to use. However, it took many weeks before their
popularity overtook the popularity of GUI recipes. In ad-
dition, it appears the use of GUI recipes remained popular
and did not decline. Further, both script and GUI recipes
continued to be authored at this point.

This indicates that GUI recipes continue to be useful even
though the more powerful script recipes have been intro-
duced. Therefore, it can be useful to provide both simpler
visual methods and more advanced automation capabilities
in scientific discovery games.

6. CONCLUSION
Foldit tackles a difficult scientific problem, requiring play-
ers to master many different skills in order to successfully
fold protein structures. Players have come up with various
strategies to perform well in Foldit. Allowing Foldit players
to create and run recipes was a method of codifying these
strategies, and including the ability to share recipes has
been instrumental in disseminating player strategies. Fa-
cilitating the sharing and modification of other’s recipes is
a method of distributing expertise. Players are easily able
to run shared recipes without the prerequisite of being able
to write them and may come up with different fruitful ways
of using them that the authors may not have considered.
Conversely, a player may not be the best at folding proteins

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

ng
_c

W
rit

te
n

.10

.05

.00

GUI
Script

GUI
Script

a)

b)

20
64

20
65

20
66

20
67

20
68

20
69

20
70

20
71

20
72

20
73

20
74

20
75

20
76

20
77

20
78

20
79

20
80

20
81

20
82

20
83

20
84

20
85

20
86

20
87

20
88

20
89

20
90

20
91

20
92

20
93

20
94

20
95

20
96

20
97

20
98

20
99

21
00

21
01

21
02

21
03

0

1

2

3

4

5

6

7

8

9

10

11

12

13

ng
_u

U
se

d

0

12

6

Time (weeks)

Time (weeks)

Figure 9: Comparison of GUI and script recipes
around the time of the introduction of scripting,
binned by week and normalized by number of unique
competing players. Shown are a) number of recipes
written and b) number of recipes run. The first
vertical bar indicates when script recipes were intro-
duced. The second indicates a refinement of the web
interface for recipes. Even after the introduction of
script recipes, GUI recipes continued to be written
and used, indicating that both interfaces were use-
ful.

but is a valuable asset to other Foldit players if they produce
useful recipes.

We have found that although most recipes have no descen-
dants, there are still many shared recipes that have been
modified by other players, often leading to more descen-
dants. One way to increase these numbers would be to in-
centivize recipe sharing. This could be done by allowing
players to earn points for others using their recipes, but this
would require hiding the details of another players’ recipe or
they could easily be copied.

Despite the use of shared recipes, we found it difficult to
get players to rate recipes they used. If players did rate,
they was typically positive ratings. We would like to exper-
iment with different incentives to encourage players to rate
recipes they use, and simplify the rating system to reflect
these usage patterns.

We found that both the visual GUI recipes and text-based
script recipes were written and used despite vast differences
in interface and expressiveness. This indicates that support
for multiple authoring styles can be beneficial. We would
like to further examine why players choose one interface over
another and what kinds of recipes or styles of writing are
best supported by each interface.

7. ACKNOWLEDGMENTS
We would like to acknowledge the members of the Foldit
team for their help designing and developing the game and
all the Foldit players who have made this work possible. This
work was supported by NSF grants IIS0811902 and 0906026,
DARPA grant N00173-08-1-G025, the DARPA PDP pro-
gram, the Howard Hughes Medical Institute (D.B.), and Mi-
crosoft. This material is based upon work supported by the

National Science Foundation under a grant awarded in 2009.

8. REFERENCES
[1] L. M. Berlin and R. Jeffries. Consultants and apprentices:

observations about learning and collaborative problem
solving. In Proceedings of the 1992 ACM conference on
Computer-supported cooperative work - CSCW ’92, pages
130–137, New York, New York, USA, Dec. 1992. ACM
Press.

[2] M. Boshernitsan and M. Downes. Visual Programming
Languages: A Survey, 2010.

[3] CASP. http://predictioncenter.org/.

[4] M. Conway, S. Audia, T. Burnette, D. Cosgrove, and
K. Christiansen. Alice: lessons learned from building a 3D
system for novices. In Proceedings of the SIGCHI
conference on Human factors in computing systems - CHI
’00, pages 486–493, New York, New York, USA, Apr. 2000.
ACM Press.

[5] S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee,
M. Beenen, A. Leaver-Fay, D. Baker, Z. Popović, and
F. Players. Predicting protein structures with a multiplayer
online game. Nature, 466(7307):756–760, August 2010.

[6] S. Cooper, A. Treuille, J. Barbero, A. Leaver-Fay, K. Tuite,
F. Khatib, A. C. Snyder, M. Beenen, D. Salesin, D. Baker,
and Z. Popović. The challenge of designing scientific
discovery games. In Proceedings of the Fifth International
Conference on the Foundations of Digital Games, FDG ’10,
pages 40–47, New York, NY, USA, 2010. ACM.

[7] Final Fantasy XII. http://www.finalfantasyxii.com/.
[8] Foldit Wiki. http://foldit.wikia.com/.

[9] C. Lewis and N. Wardrip-Fruin. Mining game statistics
from web services: a world of warcraft armory case study.
In Proceedings of the Fifth International Conference on the
Foundations of Digital Games, FDG ’10, pages 100–107,
New York, NY, USA, 2010. ACM.

[10] W. E. Mackay. Patterns of sharing customizable software.
CSCW ’90. ACM Press, New York, New York, USA, 1990.

[11] M. MacLaurin. Kodu: end-user programming and design for
games. In Proceedings of the 4th International Conference
on Foundations of Digital Games - FDG ’09, page xviii,
New York, New York, USA, Apr. 2009. ACM Press.

[12] M. B. MacLaurin. The design of kodu: a tiny visual
programming language for children on the xbox 360.
SIGPLAN Not., 46:241–246, January 2011.

[13] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and
E. Eastmond. The scratch programming language and
environment. Trans. Comput. Educ., 10:16:1–16:15,
November 2010.

[14] C. A. Rohl, C. E. Strauss, K. M. Misura, and D. Baker.
Protein structure prediction using Rosetta. Methods
Enzymol, 383:66–93, 2004.

[15] Second Life. http://secondlife.com/.

[16] S. Tarkan, V. Sazawal, A. Druin, E. Golub, E. M.
Bonsignore, G. Walsh, and Z. Atrash. Toque: designing a
cooking-based programming language for and with
children. In Proceedings of the 28th international
conference on Human factors in computing systems, CHI
’10, pages 2417–2426, New York, NY, USA, 2010. ACM.

[17] The Programming Language Lua. http://www.lua.org/.
[18] K. Wang, C. McCaffrey, D. Wendel, and E. Klopfer. 3d

game design with programming blocks in starlogo tng. In
Proceedings of the 7th international conference on Learning
sciences, ICLS ’06, pages 1008–1009. International Society
of the Learning Sciences, 2006.

[19] D. Williams, N. Yee, and S. E. Caplan. Who plays, how
much, and why? debunking the stereotypical gamer profile.
Journal of Computer-Mediated Communication,
13(4):993–1018, 2008.

[20] World of Warcraft. http://us.battle.net/wow/en/.

