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An Enhanced Genetic Algorithm for Ab Initio
Protein Structure Prediction
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Abstract—In-vitro methods for protein structure determination
are time-consuming, cost-intensive, and failure-prone. Because of
these expenses, alternative computer-based predictive methods
have emerged. Predicting a protein’s 3-D structure from only
its amino acid sequence—also known as ab initio protein struc-
ture prediction (PSP)—is computationally demanding because
the search space is astronomically large and energy models are
extremely complex. Some successes have been achieved in predic-
tive methods but these are limited to small sized proteins (around
100 amino acids); thus, developing efficient algorithms, reducing
the search space, and designing effective search guidance heuris-
tics are necessary to study large sized proteins. An on-lattice
model can be a better ground for rapidly developing and measur-
ing the performance of a new algorithm, and hence we consider
this model for larger proteins (>150 amino acids) to enhance
the genetic algorithms (GAs) framework. In this paper, we for-
mulate PSP as a combinatorial optimization problem that uses
3-D face-centered-cubic lattice coordinates to reduce the search
space and hydrophobic-polar energy model to guide the search.
The whole optimization process is controlled by an enhanced GA
framework with four enhanced features: 1) an exhaustive gener-
ation approach to diversify the search; 2) a novel hydrophobic
core-directed macro-mutation operator to intensify the search;
3) a per-generation duplication elimination strategy to prevent
early convergence; and 4) a random-walk technique to recover
from stagnation. On a set of standard benchmark proteins, our
algorithm significantly outperforms state-of-the-art algorithms.
We also experimentally show that our algorithm is robust enough
to produce very similar results regardless of different parameter
settings.

Index Terms—Combinatorial optimization, face-centered-cubic
(FCC) lattice, genetic algorithms (GAs), HP model, macro-
mutation, protein structure prediction (PSP), random-walk.
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I. INTRODUCTION

PROTEINS are amongst the most important macro-
molecules in all living organisms. More than half of

the dry weight of a cell is protein [1], [2]. Proteins are the
sequential-chains of amino acids connected together by sin-
gle peptide bonds. These connected chains fold into their
functional 3-D structures [3] and regulate the cellular activ-
ities in living organisms to keep them alive. The function of
a protein greatly depends on its folded 3-D structure (also
known as native structure), which has the lowest possible free
energy—the approximation of interaction energies amongst
the amino acids in a protein [4]. There are, however, some
exceptions such as proteins of prion domain that have multiple
functional structures [5]. Many fatal diseases such as prion dis-
ease, Alzheimer’s disease, Huntington’s disease, Parkinson’s
disease, diabetes, and cancer are associated with the aggre-
gation of nonfunctional proteins due to misfolding [6]–[9].
The 3-D structures of proteins are decidedly important in
rational drug design [10], [11], protein engineering [12], [13],
and biotechnology [14], [15]; thus, the protein structure pre-
diction (PSP) has emerged as an important multidisciplinary
research problem.

Among the in-vitro methods, X-ray crystallography, nuclear
magnetic resonance spectroscopy, and electron microscopy are
widely used for determining protein structures. X-ray crys-
tallography, which is considered to be one of the available
relatively accurate methods, requires the target proteins to
undergo a complex crystallization process. As a result, X-ray
crystallography often remains less feasible for proteins which
are hard to crystallize such as membrane proteins [16]. In addi-
tion, these experimental methods are time consuming, cost-
intensive, and failure-prone and are not sufficient to fill the gap
between the number of known protein sequences (≈50M1) and
the number of solved structures (≈0.1M2). Therefore, develop-
ing efficient algorithms for the predictive methods is thought
to be a possible solution for bridging this gap. Again, pre-
dicting the 3-D structure of a protein from only its amino
acid sequence is computationally demanding [17] because the
search space is astronomically large and the confrontational-
energy space is hugely complex. Some successes are achieved
in high resolution predictive methods [18]–[22], but those are
limited to mostly of protein-length <100 amino acids and
some cases≈150 amino acids [23], [24]. However, the average
length of proteins could be more for some important domains

1The EBI: http://www.ebi.ac.uk/uniprot/TrEMBLstats/ (as of Jul. 22, 2015).
2The PDB: http://www.pdb.org/ (as of Jul. 22, 2015).
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to study, such as 270 ± 9 for archaeal, 330 ± 5 for bacte-
ria, and 449± 25 for eukaryotes [25], [26]. This limitation of
high resolution models eventually motivates us to consider low
resolution-based models for PSP. Because of the simplicity, a
lattice-based model helps develop and validate new algorithms
fast particularly for larger proteins (>150 amino acids). The
high performing algorithms on lattice models could then be
tested by implementing on high-resolution models. In a work,
Higgs et al. [27] applied a similar strategy by replacing the
Monte Carlo (MC) or conformational space annealing used in
Rosetta with a genetic algorithm (GA) and found improved
results.

According to Levinthal’s paradox [28], it is impossible for
a protein to go through all of its possible conformations to
reach the correct native state, since it would take an astro-
nomically large time, while in reality proteins take only a
few seconds or less to reach their native state. This implies
that there should be a folding pathway. In addition, Anfinsen’s
thermodynamic hypothesis [29] states that, at least for small
globular proteins, the native structure is determined only by the
protein’s amino acid sequence. This also states that, at normal
conditions (temperature, solvent concentration and compo-
sition, etc.), when folding occurs, the native structure is a
unique, stable, and kinetically accessible minimum of the free
energy.

Levinthal’s paradox and Anfinsen’s hypothesis are the bases
of formulating ab initio PSP as an optimization problem.
Given a protein’s amino acid sequence, the problem is to find
the 3-D structure of a protein such that the total interaction
energy amongst the amino acids in the sequence is minimized.
For this combinatorial optimization problem, we challenged
ourselves to propose an enhanced GA to find a combina-
tion of points on the 3-D face-centered-cubic (FCC) lattice
space to map the amino acids by minimizing the interaction
energy.

The state-of-the-art results on the FCC lattice-based
hydrophobic-polar (HP) energy model have been achieved by
local search (LS) methods in [30]–[33]. On the other hand,
GAs [34] and tabu search [35] found promising results on 2-D
and 3-D hexagonal lattice-based HP models. In general, the
success of either GA- or LS-based methods crucially depends
on the balance of the diversification and the intensification
of the sampling over the search space. Moreover, these algo-
rithms often get stuck in local minima and perform poorly on
large sized proteins. To progress further with these algorithms
will require us to address the aforementioned issues appropri-
ately, and an on-lattice low resolution model can provide such
a feasible paradigm to design efficient sampling algorithms.

In this paper, we propose a population-based algorithm
within the GA framework—named GAPlus based on our pre-
liminary work [36]—for backbone-only PSP with the hope of
studying larger proteins. We use an HP energy model and a
3-D FCC lattice to simplify the problem. In GAPlus, we intro-
duce: 1) an exhaustive generation approach to diversify the
search; 2) a novel hydrophobic core-directed macro-mutation
operator to intensify the search; 3) a per-generation duplica-
tion elimination strategy to prevent early convergence; and 4)
a random-walk technique to recover from stagnation. On a set

of benchmark proteins, the GAPlus significantly outperforms
state-of-the-art algorithms for PSP on the same models. In
conjunction with the comparative results, we present a detailed
empirical study on GA operators and GA parameters.

The rest of the paper is organized as follows. Section II
reviews background knowledge, Section III discusses related
work on PSP, Section IV describes our GAPlus framework,
Section V presents the experimental results and analyses,
Section VI presents a discussion on the enhanced features of
GAPlus and their suitability of adaptation in the other classes
of optimization problems, and finally, Section VII draws the
conclusion and outlines our future research.

II. BACKGROUND

The computer-based predictive methods are mostly available
for template-based modeling (TBM) and ab initio modeling.
In TBM, if a solved structure is found in the protein data
bank (PDB) that has a significant sequential identity (≥35%)
with the target [37], [38], it is taken as a template. Then, dif-
ferent algorithms [39]–[42] are applied to refine the template
to obtain the structure of the target protein.

However, ab initio modeling depends only on the amino
acid sequence of the protein. The high resolution ab initio
models [18], [43] consider all atoms of the backbone with
their side chains, a complex energy model (such as molecu-
lar dynamics), and an internal or angular coordinates in 3-D
space. On the other hand, the low resolution models [30]–[33]
consider an amino acid with its side-chain as one residue
of the backbone, a relatively simpler energy function (such
as HP), and on-lattice or off-lattice representation. Our work
is based on low resolution ab initio modeling that uses the
HP energy model for evaluating the structures and the FCC
lattice points on 3-D space for mapping the structures main-
taining a self-avoiding-walk constraint within an enhanced GA
framework.

A. Self-Avoiding Walk

In lattice-based protein representations, the amino acids of
a given sequence are mapped on lattice points to build the pro-
tein backbone satisfying a self-avoiding-walk constraint. This
constraint ensures no revisitation of any lattice point during
the sequence mapping.

B. 3-D FCC Lattice

The FCC lattice has the highest packing density com-
pared to the other existing lattices [44]. The hexagonal closed
pack (HCP) lattice—known as cuboctahedron [34]—also has
12 neighbors corresponding to 12 basis vectors with real-
numbered coordinates that causes the loss of structural preci-
sion during structure mapping. Therefore, we do not consider
the HCP lattice in this paper.

1) Topological Neighbors of 3-D FCC Lattice Point: In
FCC lattice space, each lattice point has 12 neighbors with
corresponding 12 basis vectors as shown in Fig. 1. The fol-
lowing 12 basis vectors, which are the topological neighbors
of the origin (0, 0, 0), are the building blocks (genes) of our
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Fig. 1. 3-D FCC lattice space with 12 basis vectors on the Cartesian
coordinates.

Fig. 2. DOF in 3-D FCC lattice space. The backbone mapping of a 4-residue
(HPHH) sequence segment is shown by the thicker lines. �C, �K, and �J are the
basis vectors as stated in Section II-B. The encoded string for the segment is
CKJ. The encoding and decoding procedures are discussed in Section IV-B2.

encoded solutions (chromosomes or individuals):

A = (1, 1, 0) B = (−1,−1, 0) C = (−1, 1, 0) D = (1,−1, 0)
E = (0, 1, 1) F = (0,−1,−1) G = (0, 1,−1) H = (0,−1, 1)
I = (−1, 0,−1) J = (1, 0, 1) K = (−1, 0, 1) L = (1, 0,−1).

We map the conformations on the 3-D FCC lattice points using
a sequence of basis vectors (see Fig. 2).

2) Degree of Freedom and Computational Complexity: The
local degree of freedom (DOF) on 3-D FCC lattice points
varies based on the amino acid positions in the sequence.
Starting from a random point (any of the 12 FCC lattice
points), the DOF of the first and the second amino acid in
the series is 12. However, the DOF for all other amino acids
starting from 3 onward is 11 (see Fig. 2). For sampling all
possible conformations of a sequence with N amino acids,
an algorithm needs to explore a search space that consists of
122 × 11(N−2) ≈ 11N valid combinations.

C. HP Energy Model

The 20 primary constituent amino acids of proteins are
broadly divided into two categories, based on the hydrophobic-
ity: 1) the hydrophobic amino acids are denoted as H (Gly, Ala,
Pro, Val, Leu, Ile, Met, Phe, Tyr, Trp) and 2) the hydrophilic or
polar amino acids are denoted as P (Ser, Thr, Cys, Asn, Gln,
Lys, His, Arg, Asp, Glu). In the HP model [45], when two

Fig. 3. (a) HP energy model [45]. (b) H–H contacts in HP model for a
random sequence HPHPPHPH on a 2-D triangular lattice for convenience of
depiction.

Algorithm 1: Genetic Algorithm

1 initialize population and evaluate individuals;
2 while (!stopCondition) do
3 select the best-fit individuals for reproduction;
4 breed new individuals through crossover and

mutation operations;
5 evaluate new generated individuals;
6 replace least-fit individuals with the new better

individuals;

nonconsecutive hydrophobic amino acids become topologi-
cal neighbors, they contribute a certain amount of negative
energy, which, for simplicity, is shown as −1 in Fig. 3(a). The
total energy (E) of a conformation based on the HP model is
the sum of the contributions from all pairs of nonconsecutive
hydrophobic amino acids as shown in (1). In Fig. 3(b), the
number of such H–H contacts is 5. Therefore, the fitness of
the structure of the sequence HPHPPHPH is −5 in the HP
energy model

E =
∑

i<j−1

cij × eij. (1)

Here, cij = 1 if amino acids i and j are nonconsecutive neigh-
bors on the lattice, otherwise 0; and eij = −1 if the ith and jth
amino acids are hydrophobic, otherwise 0. Note that (1) is used
as the minimization function for our GA-based combinatorial
optimization.

D. Genetic Algorithms

A GA maintains a set of solutions known as population
(line 1 in Algorithm 1). In each generation, the GA generates
a new population from the current population using a given set
of genetic operators known as crossover and mutation (line 4
in Algorithm 1). The algorithm then replaces the inferior solu-
tions with the newly generated superior solutions to get a
better current population (line 6 in Algorithm 1). A typical
crossover operator splits two solutions at a randomly selected
crossover point and exchanges parts between them [Fig. 4(a)].
Conversely, a typical mutation operator alters a solution at a
random point [Fig. 4(b)]. Here the conformations are regarded
as the individuals (chromosomes) of the GA population.

III. RELATED WORK

In the brief history of ab initio predictive methods, some
successes have been achieved for high resolution-based real
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Fig. 4. Typical (a) crossover and (b) mutation operators.

protein modeling [18]–[21]. However, these successes are lim-
ited to the small sized proteins. Our low-resolution model is
designed to target large sized proteins and therefore, we did
not compare our outcomes with the high resolution models at
this stage.

Different types of meta-heuristics have been used in solv-
ing the PSP problem. These include MC simulation [46],
simulated annealing [47], GAs [48], [49], tabu search with
GA [35], tabu search with hill climbing [50], ant colony opti-
mization [51], particle swarm optimization [52], [53], immune
algorithms [54], tabu-based stochastic LS [30], [32], and
constraint programming [31], [55].

Cebrián et al. [30] used tabu-based LS, and
Shatabda et al. [32] used memory-based LS with tabu-
based heuristics and achieved state-of-the-art results.
However, Dotu et al. [31] used constraint programming and
found promising results. To develop the constraint-based
PSP (CPSP) tools, Mann et al. [55] applied an exact and
complete algorithm for conformational search. The CPSP
tools can find the optimal solution if the target protein has a
matching hydrophobic-core stored in the CPSP database.

Amongst the population-based approaches,
Unger and Moult [48] applied GAs to PSP and found
their method to be more promising than MC-based meth-
ods [46]. GAs have been used by Hoque et al. [34] for cubic
and 3-D HCP lattices. A twin-removal operator was intro-
duced in [56] to remove duplicates from the GA population.
The few other simplified methods for PSP are also avail-
able [57]–[60] but they use different energy models [61], [62]
and thus, we keep these methods out of our comparisons.

In 3-D FCC lattice and HP energy-based PSP, the recent
state-of-the-art results have been achieved by tabu-guided LS
algorithms [30], [32], [33] and by memetic algorithms [63].
In order to confirm the efficacy of our proposed algorithm, we
have compared our results with the results of these state-of-
the-art approaches.

IV. OUR APPROACH

In this section, we present an enhanced GA (GAPlus)
with detailed implementation of: 1) an exhaustive genera-
tion approach to diversify the search; 2) a novel hydrophobic
core-directed macro-mutation operator to intensify the search;
3) a per-generation duplication elimination strategy to prevent
early convergence; and 4) a random-walk technique to recover
from stagnation.

A. GA Variants

The relations amongst the GA variants are shown in
Fig. 5. We have implemented five variants of GA for PSP

Fig. 5. Relations amongst the GA variants. The RGA is the typical
implementation of GA with random generation approach; the EGA inher-
its all of the features of the RGA with an additional exhaustive generation
approach; the MGA inherits all of the features of the EGA with an addi-
tional macro-mutation operator; the WGA inherits all of the features of the
EGA with an additional random-walk-based stagnation recovery technique;
and the GAPlus inherits all of the features of the EGA with the addi-
tional macro-mutation operator and random-walk-based stagnation recovery
technique.

to demonstrate the effectiveness of the enhanced features as
listed below.

1) RGA (R denotes randomness) is a typical implemen-
tation of a GA. It uses crossover and mutation opera-
tors. The crossover operator includes only single-point
crossovers. The mutation operators include rotation,
diagonal moves, pull moves, and tilt moves. The oper-
ator selection process is random. The crossover and
mutation points are also selected randomly. RGA has a
duplicate elimination policy (see Section IV-B5). Further
details are in Section IV-B.

2) EGA (E denotes exhaustiveness) inherits all of the
features of the RGA. Additionally, a novel exhaus-
tive generation approach is used. In EGA, the random
selection of crossover and mutation points is replaced
with an exhaustive selection approach as described in
Algorithms 9 and 10. The EGA is the base of WGA,
MGA, and GAPlus. This variant demonstrates the effec-
tiveness of our exhaustive generation approach. Further
details are in Section IV-C2.

3) MGA (M denotes macro-mutation) inherits all of the fea-
tures of the EGA. Additionally, a novel macro-mutation
operator is applied. The macro-mutation operator is
used as a new mutation operator like other muta-
tion operators [see Fig. 6(b)–(e)]. The macro-mutation
operator helps form hydrophobic-cores that hide the
hydrophobic amino acids from water and expose the
polar amino acids to the surface to be in contact
with the surrounding water molecules [64]. This variant
demonstrates the effectiveness of our hydrophobic-core
directed macro-mutation operator. Further details are
in Section IV-C3.

4) WGA (W denotes random-walk) inherits all of the
features of the EGA. Additionally, at the point of stag-
nation, a novel random-walk-based stagnation recovery
technique is applied. This variant demonstrates the effec-
tiveness of our random-walk-based stagnation recovery
approach. Further details are in Section IV-C4.

5) GAPlus inherits all of the features of EGA. Additionally,
it includes the hydrophobic-core directed macro-
mutation operator and the random-walk-based stagnation



RASHID et al.: ENHANCED GA FOR AB INITIO PSP 631

(a) (b) (c) (d) (e)

Fig. 6. Operators that are used in our GAPlus on 3-D FCC lattice space. For simplification, the figures are presented in 2-D space. The solid circles represent
the hydrophobic amino acids and the hollow circles represent the hydrophilic amino acids. (a) Crossover. (b) Rotation. (c) Diagonal. (d) Pull. (e) Tilt.

recovery technique. The inclusion of these enhanced fea-
tures helps our GAPlus produce state-of-the-art results
(see Section V-A) for lattice-based PSP. The further
details are presented in Section IV-C6.

The executable binaries of the GA variants are available online
at http://cs.uno.edu/∼tamjid/Software.html, under the heading:
GAPlus.

B. RGA Framework

A typical randomized GA framework is implemented and
denoted as the RGA. The pseudocode of RGA is presented in
Algorithm 2. The RGA starts by generating an initial pop-
ulation (line 6). The operator selection process is random
in the RGA (line 8). For mutation operators, each individ-
ual undergoes the offspring generation process (line 10). For
the crossover operator, the two parents are selected randomly
(line 16). The mutation (line 11) and crossover (line 17)
points are also selected randomly. The randomized muta-
tion or crossover operators are applied at line 12 or line 18
respectively. The duplicate elimination process is performed in
line 13 or line 19. No explicit stagnation recovery technique is
implemented in the RGA. The implementation details of the
RGA are presented below.

1) Implementation of the Primitive Operators: In our GA,
we implemented one primitive crossover operator and four
primitive mutation operators (see Fig. 6). The mutation opera-
tors are rotation, diagonal moves, pull moves, and tilt moves.
The primitive operators are described below.

a) Crossover operators: The crossover operators are
applied on two selected parent conformations to exchange their
parts to generate child conformations. At a given crossover
point [dotted circle in Fig. 6(a)], two parent conformations
exchange their parts and generate on the two child confor-
mations. The success rate of the crossover operator decreases
with increasing the compactness of the structure.

b) Mutation operators: The mutation operators are
applied on a single conformation. The alteration can occur
either on a single amino acid or on a series of amino acids of

Algorithm 2: RGA()

1 //op: Operators; c, c′: Conformations

2 //opR: Operator selection rate

3 //curP, newP: Current & new population

4 //N: No. of amino acids in the sequence

5 //pos: Mutation or crossover point

6 curP←initialize(repeat);
7 foreach (generation until timeout) do
8 selectOperator(op, opR);
9 if (mutation(op)) then

10 foreach (c∈ curP) do
11 pos←randMutationPoint(0,N − 1);
12 c′ ←mutate(c, pos);
13 add(newP, c′)
14 else
15 while (¬ full(newP)) do
16 c1, c2 ← randConfs(curP);
17 pos←randCrossoverPoint(1,N − 2);
18 c′1, c′2 ← crossOver(c1, c2, pos);
19 add(newP,c′1, c′2)
20 curP← newP
21 return bestConformation(curP)

the conformation. The primitive mutation operators [as shown
in Fig. 6(b)–(e)] are described below.

1) Rotation: One part of a given conformation is rotated
around a selected point [Fig. 6(b)]. This move is mostly
effective at the beginning of the search.

2) Diagonal Move: Given three consecutive amino acids at
lattice points A,B, and C, a diagonal move at position B
takes the corresponding amino acid diagonally to a free
position [Fig. 6(c)]. Diagonal moves are very effective
on FCC lattice [30], [31] points.

3) Pull Moves: The amino acids at points A and B are
pulled to the free points [Fig. 6(d)] and the connected
amino acids are pulled as well to get a valid conforma-
tion. Pull moves [65] are local, complete, and reversible.

http://cs.uno.edu/~tamjid/Software.html
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Algorithm 3: encode(c)

1 //c: Conformation;AA: Amino acid array

2 //S: Encoded string;s: Vector symbol

3 //N: No. of amino acids in the sequence

4 S← {}//the length of S is (N − 1);
5 AA←getAminoAcid(c);
6 for (i← 1 to N − 1) do
7 vec←getAbsoluteVector(AA[i],AA[i− 1]) ;
8 s←getSymbol(vec) ;
9 S←concat(S, s);

10 return S

Algorithm 4: decode(S)

1 //c: Conformation;AA: Amino acid array

2 //S: Encoded string;s: Vector symbol

3 //N: No. of amino acids in the sequence

4 N ← Length(S)+ 1;
5 AA[0]← (0, 0, 0);
6 for (i← 1 to N − 1) do
7 s←getSymbol(S, i);
8 vec←getAbsoluteVector(s);
9 point←getNextPoint(point,vec);

10 AA[i]← point;
11 c←buildConformation(AA);
12 evaluate(c);
13 return c ;

Pull moves are very effective when the conformation
becomes compact.

4) Tilt Moves: Two or more consecutive amino acids con-
nected in a straight line are moved by a tilt move to
immediately parallel lattice positions [49]. Tilt-moves
pull the conformation from both sides until a valid con-
formation is found. In Fig. 6(e), the amino acids at points
C and D are moved and, subsequently, other amino acids
from both sides are moved as well.

2) Conformation Encoding and Decoding: We represent
conformations with 3-D coordinates and relative encodings.
Each time, when a valid conformation is generated by apply-
ing genetic operators, we encode the conformation in a string
of 12 different characters [A–L] representing the 12 absolute
directions on a 3-D FCC lattice space (see Section II-B). For
each valid conformation, we store both the coordinates of the
amino acids and the encoded string. While the coordinates
help us determine whether a point on the lattice is free or not,
the relative encodings help validate conformations and identify
and eliminate duplicate ones.

a) Conformation encoding: In our implementation, we
denote encoding as the procedure of generating a string to
present a conformation using character notations, where each
notation is the position of an amino acid in a 3-D space. The
first character of the encoded string will be the absolute direc-
tion of the second amino acid from the first amino acid. The
second character of the encoded string will be the absolute
direction of the third amino acid from the second amino acid,

Algorithm 5: initialize(repeat)

1 //c: Conformation;AA: Amino acid array

2 //initP: Initial population

3 //N: No. of amino acids in the sequence

4 while (¬ full(newP)) do
5 AA[0]← AminoAcid(0,0,0);
6 while (try ≤ repeat) do
7 for (i← 1 to N − 1) do
8 k← getRandom(1,12);
9 point← AA[i-1]+ basisVec[k − 1];

10 if (¬ free(point)) then break;
11 AA[i]← AminoAcid(point);
12 if (mapping succeeded) then
13 c←buildConformation(AA);
14 else
15 c←deterministicConformation();
16 encode(c);
17 evaluate(c);
18 add(initP, c);
19 return initP;

and so on. The length of the encoded string will be one less
than the number of amino acids in the sequence (i.e., N − 1).
Fig. 7 presents a simplified encoding procedure in 2-D space.
Algorithm 3 presents the encoding procedure.

b) Conformation decoding: In our implementation, we
denote decoding as the procedure of extracting the coor-
dinates of each amino acid from the encoded string.
Considering (0, 0, 0) as the coordinate of the first amino
acid of the sequence, the first character of the encoded string
will provide the absolute direction of the second amino acid
and hence the coordinate of the second amino acid is deter-
mined. The second character of the encoded string will provide
the absolute direction of the third amino acid and hence the
coordinate of the third amino acid is determined, and so on.
Algorithm 4 presents the decoding procedures.

3) Initializing the RGA Population: The RGA starts with
an initial population, which is a set of feasible conformations.
We generate initial conformations following a self-avoiding
walk on the FCC lattice points. The pseudocode of the ini-
tialization algorithm is presented in Algorithm 5. It places
the first amino acid at (0, 0, 0) (line 5) and randomly selects
a basis vector to place the next amino acid at a neighbor-
ing free lattice point (lines 8–11). The amino acid position
mapping continues until a self-avoiding walk is found for the
whole protein sequence within a given number of iterations.
The conformation is encoded (line 16), evaluated (line 17),
and added into the initial population list (line 18) if it does
not exist in the list. If no valid conformation is found within
the given number of iterations, a deterministic structure—an
amino acid chain with unidirectional growth (e.g., AAAA. . . as
the encoded chromosome)—is built (line 15).

4) Evaluating the Solutions: For each iteration, the con-
formation is evaluated by calculating the number of contacts
(topological neighbors), where the two amino acids are non-
consecutive and are both hydrophobic. The pseudocode in
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Fig. 7. Chromosome encoding procedures. For simplification, the figure is presented in 2-D space with four possible vectors A-right, B-top, C-left, and
D-bottom. In the chart, the Pos, Curr, Vec, and Next represent the amino acid positions, current amino acids, basis vectors, and next amino acids, respectively.
The next position [e.g., P2(1, 0)] is obtained adding the next direction vector [e.g., A(1, 0)] with the coordinates of the current amino acid [e.g., H1(0, 0)].

Algorithm 6: evaluate(c)

1 //c: Conformation;AA: Amino acid array

2 //N: No. of amino acids in the sequence

3 AA←getAminoAcid(c);
4 fitness← 0;
5 for (i← 0 to N − 1) do
6 for (j← i+ 2 to N − 1) do
7 if (AcidType[i] = AcidType[i] =′ H′) then
8 pointI← AA[i];
9 pointJ← AA[j];

10 sqrD← getSqrDist(pointI, pointJ);
11 if (sqrD = 2) then
12 fitness← fitness− 1;
13 update(c, fitness);
14 return c;

Algorithm 6 presents the procedure for calculating the con-
tact energy of a given conformation. The contact potentials
are found in the HP energy model as shown in Fig. 3. The
algorithm calculates the contacts based on (1). The Euclidean
distance between two topological neighbors on the FCC lattice
space is

√
2. Therefore, all H amino acids which are noncon-

secutive and are
√

2 lattice distance apart are counted (line 12)
to get the fitness of the conformation.

5) Removing the Duplicate Solutions: In our implementa-
tion, no duplicate solution is allowed in the population in any
instant of the search. Every time the RGA generates a solu-
tion, it is compared with the new population to check if it
already exists. The new solution is included in the list if and
only if the solution does not exist in the new population. In
Algorithm 2, line 13 or line 19 prevents the identical—100%
similar—solutions from being added to the new population by
using Algorithm 7. This is how the duplicate-free new popu-
lation becomes the current population in the next generation
of the RGA (line 20).

6) Selecting the RGA Operators: The probability distribu-
tion to select operators is chosen intuitively. The crossover
and mutation operators are selected with the probabilities of

Algorithm 7: add(pop, c)

1 //pop: population, c, c′: Conformations

2 exist←false;
3 foreach (c′ ∈ pop) do
4 if (c′ = c) then
5 exist←true;
6 break;
7 if (¬exist) then pop←add(conf )

20% and 80%, respectively. The four implemented primitive
mutation operators are rotation, diagonal-move, pull-move,
and tilt-move. For a particular generation, only one mutation
operator is selected randomly from the four with a probability
of 80%. At this stage of experimentation, we do not consider
the optimality of operator selection probabilities. We present
operator profiling in detail in Section V.

7) Choosing the RGA Population Size: The population size
is chosen intuitively. For the time being, we use 100, 80, 60,
and 50 as the population sizes for the protein sequences having
≤ 50, ≤ 100, ≤ 200, and ≤ 300 amino acids, respectively. At
this stage of experimentation we do not consider the optimality
of GA population size. We present a rigorous study on GA
population size in Section V.

8) Housekeeping Between Generations: The globally best
(i.e., top elite) solution is always preserved. At the end of
building a new generation, before shifting the new population
to the current population, the best solution of the current pop-
ulation is compared with the globally best solution in terms
of the free energy level. If the free energy of the current best
is better than that of the globally best, then the globally best
solution is replaced by the current best solution.

C. GAPlus Framework

We make three major enhancements on typical GAs: 1) an
exhaustive generation to diversify population; 2) a macro-
mutation operator to intensify the population; and 3) a random-
walk for stagnation recovery. We call the enhanced GA,
GAPlus. The pseudocode of GAPlus is shown in Algorithm 8.
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Algorithm 8: GAPlus()

1 //op: Operators, c, c′: Conformations

2 //opR: Operator selection probabilities

3 //curP, newP: Current & new populations

4 //rwT: Non-improving generation counter

5 curP←initialize(repeat);
6 foreach (generation until timeout) do
7 selectOperator(op, opR);
8 if (mutation(op)) then
9 foreach (c ∈ curP) do

10 if (¬ isMacro) then
11 c′ ←mutConf(c);
12 else
13 c′ ←macroMutation(c, repeat) ;
14 add(newP, c′)
15 else
16 while (¬ full(newP)) do
17 c1, c2 ← randomConfs(curP);
18 c′1, c′2 ←crossConf(c1, c2);
19 add(newP,c′1, c′2)
20 if (¬ improved(newP,rwT)) then
21 curP←randomWalk(newP)
22 else
23 curP← newP
24 return bestConformation(curP)

Algorithm 9: mutConf(c)

1 // c: Conformation; pos: Mutation point

2 addToList(list, c);
3 for (pos← 0 to N − 1) do
4 c′ ←applyOperator(c, pos);
5 addToList(list, c′);
6 return bestConformation(list)

Algorithm 10: crossConfs(c1, c2)

1 // c1, c2, c′1, c′2: Conformations; pos: Crossover point

2 addToList(list, c1, c2);
3 for (pos← 1 to N − 2) do
4 c′1, c′2 ←applyOperator(c1, c2, pos);
5 addToList(list, c1, c2, c′1, c′2);
6 return bestTwoConformations(list)

Note that our GAPlus is different from a typical GA (e.g.,
RGA) in a number of ways. The distinguishable difference
between RGA and GAPlus are listed below.

1) At lines 11 and 18, the GAPlus applies crossover or
mutation operators exhaustively at each amino acid posi-
tion (line 3 in Algorithm 9, line 3 in Algorithm 10). This
exhaustiveness is the core feature of EGA.

2) Besides primitive GA operators, at line 13, the GAPlus
introduces a macro-mutation operator (Algorithm 11) in
a similar fashion of the other mutation operators. This
macro-mutation is the core feature of MGA.

3) Besides duplicate elimination, at line 21, the GAPlus
uses a random-walk algorithm (Algorithm 12) to recover
from stagnation. This random-walk is the core feature
of WGA.

1) Different Selection Strategies in GAPlus: All of the
following processes in the GAPlus framework involve their
purpose-specific selection strategies.

a) Population size selection: For the time being,
we choose the population size as used in RGA (see
Section IV-B7). We present a detailed analysis on the GA
population size in Section V.

b) Operator selection: In our implementation, we intu-
itively assign a 20% selection probability for one crossover
operator and 80% for five mutation operators (including the
macro-mutation) with equal selection probabilities (20% of
the remaining 80% for each mutation operator). Only the
selected operator is applied to build the population for the
next generation.

c) Parent selection: If the selected operator is muta-
tion then every individual in the population has been passed
through the mutation operator to build the population for
the next generation. However, for the crossover operator, two
parents are selected randomly until all individuals in the pop-
ulation have been passed through the crossover operator to
build the population for the next generation.

d) Point of operation selection: The point of operation
is chosen exhaustively starting from the first to the last amino
acid of the sequence for the mutation operator and from the
second to the second-last amino acid of the sequence for the
crossover operator until finding the acceptable children.

e) Next generation selection: The fitness is the measure
of selecting a solution for the next generation. When mutation
is chosen to build the next generation, the parent and all the
children resulting from the exhaustive mutation are added to a
list. The fittest solution from the list then replaces the parent.
Similarly, when crossover is chosen, the two parents and all
the children resulting from the exhaustive crossover are added
to a list. The two best fit solutions from the list then replace
the two parents.

f) Random-walk timing selection: We evaluate and com-
pare the current best solution with the so-far global-best
solution at the end of each generation. When the global-best
solution remains the same for a certain number of generations
(a random value between 5 and 10 inclusive is considered), a
random-walk is triggered.

2) Exhaustive Generation-Based Approach: To reduce the
randomness, we introduce an exhaustive generation approach
in the parent selection as well as in the mutation and crossover
point selection.

a) Exhaustive mutation: For mutation operators, our
algorithm adds one resultant conformation to the new popula-
tion for each of the conformations in the current population. In
Algorithm 9, the child conformations are generated by apply-
ing the genetic operator at each of the positions of the parent
conformation (line 4). The resultant conformation of a muta-
tion operation is either the parent conformation itself or a
child depending on the quality (fitness and structure) of the
conformations.
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TABLE I
ENERGY VALUES OBTAINED BY RUNNING RGA AND EGA TO

DEMONSTRATE THE EFFECTIVENESS OF THE EXHAUSTIVE

GENERATION. COLUMN LB-FE PRESENTS THE LOWER

BOUND OF FREE ENERGIES

b) Exhaustive crossover: For crossover operators, two
resultant conformations are added to the new population for
the two randomly selected parents from the current pop-
ulation. Crossover operators (Algorithm 10) generate child
conformations by exhaustively selecting the crossover points
on the parent conformations. In the GAPlus, a number of
child conformations are generated and listed (line 5). The
two best conformations in the list then become the resultant
conformations (line 6 in Algorithm 10).

c) Effectiveness of exhaustive generation: To show the
effectiveness of exhaustive generation experimentally, we
tested our approach on ten small and medium sized benchmark
proteins taken from the literature. In Table I, we present the
results obtained from two variants of GA: 1) RGA that uses the
random selection approach and 2) EGA that uses the exhaus-
tive generation approach. From the experimental results, it is
clear that the EGA significantly outperforms the RGA and, in
some cases, the EGA is able to reach the lower bound of the
free energy as denoted by “�” in column best, under the header
EGA. In Table I, we present the global minimum energies
in column best, the average of minimum energies in column
Mean, and the standard deviation of the minimum energies
in column STD. These values are obtained from 50 different
trials in identical settings for all proteins. For both cases, the
EGA performs better than RGA. This consistent performance
demonstrates the effectiveness of the exhaustive generation.

3) Hydrophobic-Core Directed Macro-Mutation: In this
section, we present a macro-mutation operator guided by the
hydrophobic property of amino acids. The macro-mutation
operator compresses the conformation and quickly forms the
hydrophobic-core. In GAPlus, the macro-mutation operator is
applied in a similar manner of the primitive mutation operators
(line 13 in Algorithm 8).

a) Hydrophobic-core: Protein structures have
hydrophobic-cores that hide the hydrophobic amino acids
from water and expose the polar amino acids to the surface
to be in contact with the surrounding water molecules [64].
The hydrophobic-core formation is an important objective of
HP energy model-based PSP.

b) Hydrophobic-core center: The hydrophobic-core cen-
ter is a virtual point in a 3-D space which is the centroid
of the core formed by the hydrophobic amino acids in a
given protein sequence. In the macro-mutation (Algorithm 11),

Algorithm 11: macroMutation(c, repeat)

1 // c: Conformation

2 hAA←listHydrophobicAminoAcid(c);
3 pAA←listPolarAminoAcid(c);
4 for (i← 1to repeat) do
5 if (bernoulli(p)) then
6 T ← P
7 else
8 T ← H
9 if (T = P) then

10 foreach (aa ∈ pAA) do
11 point←findFreePoint(aa);
12 if (¬empty(point)) then
13 applyDiagonalMove(aa, point);
14 updateConf(c, aa, point);
15 break;
16 else
17 hcc← findHCC();
18 foreach (aa ∈ hAA) do
19 dold ←getDistance(aa, hcc);
20 point←findFreePoint(aa);
21 if (¬empty(point)) then
22 dnew ←getDistance(point, hcc);
23 if (dnew ≤ dold) then
24 applyDiagonalMove(aa, point);
25 updateConf(c, aa, point);
26 break;
27 encode(c);
28 evaluate(c);
29 return c;

the hydrophobic core center (HCC) is calculated by finding the
arithmetic means of x, y, and z coordinates of all hydrophobic
amino acids as shown in the following equation:

xhcc = 1

nh

nh∑

i=1

xi, yhcc = 1

nh

nh∑

i=1

yi, zhcc = 1

nh

nh∑

i=1

zi (2)

where nh is the number of H amino acids in the protein.
The HCC is used to calculate the Euclidean distance of all

H amino acids using

di =
√
(xi − xhcc)

2 + (yi − yhcc)
2 + (zi − zhcc)

2 (3)

where di is the Euclidean distance of the ith amino acid at
(xi, yi, zi) from the HCC at (xhcc, yhcc, zhcc).

c) Macro-mutation operator: The macro-mutation oper-
ator is a composite operator that performs a series of diagonal
moves on a given conformation to build the hydrophobic-core
around the HCC as shown in Fig. 8. The pseudocode of the
macro-mutation operator is shown in Algorithm 11.

The diagonal moves are applied repeatedly either at each
P- or H-type amino acid position. Whether to apply the
diagonal move on P- or H-type amino acids is determined
by using a Bernoulli distribution (line 5) with probability p
(intuitively we use p = 20% for P-type amino acids). For
a P-type amino acid, the first successful diagonal move is
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Fig. 8. Macro-mutation operator comprising a series of diagonal moves.
For simplification, the figures are presented in 2-D space.

TABLE II
ENERGY VALUES OBTAINED BY RUNNING EGA AND MGA TO

DEMONSTRATE THE EFFECTIVENESS OF THE MACRO-MUTATION

OPERATOR. COLUMN LB-FE PRESENTS THE LOWER

BOUND OF FREE ENERGIES

considered (line 13). However, for an H-type amino acid, the
first successful diagonal move (line 24) that does not increase
the Euclidean distance (line 23) of the amino acid from the
HCC, is taken. All the amino acids are traversed and the suc-
cessful moves are considered as a single composite move. In
this way, the macro-mutation operator compresses the confor-
mation and quickly forms the hydrophobic-core by repeating
the procedure (line 4).

d) Effectiveness of macro-mutation: In Table II, we
present the results obtained from two variants of GA: 1) EGA
that uses an exhaustive generation approach only and 2) MGA
that uses all features of EGA along with the macro-mutation
operator. From the experimental results, it is clear that the
MGA significantly outperforms the EGA. In Table II, we
present the global minimum energy (column Best), the average
of minimum energies (column Mean), and the standard devia-
tion of the minimum energies (column STD) obtained from 50
different runs of identical settings for all proteins using these
two GA variants. For both cases, the MGA performs better
than the EGA. This consistent performance demonstrates the
effectiveness of the macro-mutation operator in GA.

4) Random-Walk-Based Stagnation Recovery: Search-
based optimization algorithms often suffer from stag-
nancy [66]–[68]. For population-based algorithms, it occurs
when the algorithms fail to build new individuals [69]. While
exploring a search landscape, stagnation occurs when a search
algorithm gets stuck or stalls in a local minimum, gets trapped
in a valley, or gets lost in a plateau. This happens often in solv-
ing hard optimization problems such as PSP, particularly for

Algorithm 12: randomWalk(pop)

1 // pop: Population; c: Conformation

2 foreach (c ∈ pop) do
3 isFound← false;
4 while (¬isFound) do
5 for (pos← 0 to N − 1) do
6 applyPullMove(c, pos);
7 isFound← checkDiversity(c);
8 updatePopulation(pop,c);
9 return pop;

TABLE III
ENERGY VALUES OBTAINED BY RUNNING EGA AND WGA TO

DEMONSTRATE THE EFFECTIVENESS OF RANDOM-WALK-BASED

STAGNATION RECOVERY TECHNIQUE. COLUMN LB-FE
PRESENTS THE LOWER BOUND OF FREE ENERGIES

large sized proteins. Therefore, developing an effective stag-
nation recovery technique is crucial for the conformational
search.

a) Random-walk: We define a random-walk as a process
of exploring feasible solutions in the vicinity of a base solution
with minimal changes made to it. Both good and bad solutions
are taken into consideration during those changes. The process
is repetitive and increases the dissimilarity of the new solution
with the base solution.

b) Stagnation in GA: As the search progresses, the GA
population becomes richer and richer from one generation to
the next. From experimental results, it has been found that
after a certain number of generations, a significant portion of
the individuals in the population become identical or almost
identical. At this situation, the GA operators fail to generate
new improved solutions from similar or almost similar par-
ents. Therefore, the search gets stuck and stagnation arises.
We evaluate and compare the current best solution with the
so-far global-best solution at the end of each generation. When
the global-best solution found remains the same for a num-
ber of generations (line 20 in Algorithm 8), we consider this
stagnation.

c) Random-walk at stagnation: In a stagnation situation,
a random-walk technique is applied to perform unconditional
pull moves [see Fig. 6(d)] on each conformation of the new
population to diversify the population. The pseudocode of
the random-walk is shown in Algorithm 12. A local min-
imum or relative minimum in PSP is encountered when a
premature hydrophobic-core is formed. To break the prema-
ture hydrophobic-core, we apply a random-walk algorithm.
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TABLE IV
FOR SMALL SIZED PROTEINS, THE EXPERIMENTAL RESULTS OF GA VARIANTS, AND THE LS ALGORITHM. THE COLUMNS SIZE AND LBFE PRESENT

THE LENGTH OF THE AMINO ACID SEQUENCES AND LOWER BOUND OF FREE ENERGIES, RESPECTIVELY

TABLE V
FOR LARGE SIZED PROTEINS, THE EXPERIMENTAL RESULTS OF GA VARIANTS, AND THE LS ALGORITHM. THE COLUMNS SIZE AND LBFE PRESENT

THE LENGTH OF THE AMINO ACID SEQUENCES AND LOWER BOUND OF FREE ENERGIES, RESPECTIVELY

In random-walk, we use pull-moves (line 6). During pulling,
energy levels and structural diversification are observed to
maintain a balance among the two. In a controlled random-
walk (line 7), we allow the energy level to change between
5% and 10% and structural change between 10% and 75%
of the original. We accept the conformation that has the mini-
mum differential energy level, but has the maximum structural
diversity with respect to the original one.

d) Effectiveness of random-walk: In Table III, we present
the results obtained from two variants of GA: 1) the EGA and
2) the WGA. From the experimental results, it is clear that
the WGA significantly outperforms the EGA. In Table III, we
present the global minimum energy (column Best), the average
of minimum energies (column Mean), and the standard devia-
tion of the minimum energies (column STD) obtained from 50
different runs of identical settings for all proteins using these
two GA variants. For both the cases, the WGA performs bet-
ter than EGA. This consistent performance demonstrates the
effectiveness of the random-walk-based stagnation recovery
technique within the GA framework.

5) Housekeeping Between Generations: As mentioned in
Section IV-B8, if an improvement has occurred, the nonim-
proving time tracker and nonimproving generation counter are
reset. Conversely, if the current best solution is worse or com-
parable to the globally best one, the nonimproving time tracker
and nonimproving generation counter are incremented. Finally,
if the nonimproving time tracker or nonimproving generation
counter reach their threshold values, the random-walk process
is activated to create diversity in the population.

6) Combined Efforts of all of the Enhancements: In our
multistep enhancement, the final outcome is GAPlus. The
GAPlus inherits all features of the EGA. Additionally, it
includes the hydrophobic-core directed macro-mutation oper-
ator and the random-walk-based stagnation recovery tech-
nique. The inclusion of the exhaustive generation approach,
the random-walk technique, and the macro-mutation operator
helps our GAPlus produce the state-of-the-art results in HP
based on-lattice PSP.

7) Effectiveness of the Enhanced Features: In
Tables IV and V, we present the results obtained from
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Fig. 9. Activities while GAPlus is in operation. The figure presents the
progressive search of a sample run of 1000 generation for Protein R1.

Fig. 10. Performance hierarchy within the GA variants. The higher the
position the better the performance.

four variants of GA: 1) EGA; 2) WGA; 3) MGA; and
4) GAPlus. From the experimental results, it is clear that
the GAPlus significantly outperforms the other variants. The
GAPlus performs better than others in terms of the global
minimum free energy and the average free energy for all
of the 35 benchmark proteins. This consistent performance
demonstrates the effectiveness of the combined efforts
of the exhaustive generation, the random-walk, and the
macro-mutation operator in GA.

8) Observing GAPlus Features: In Fig. 9, when random-
walk occurs the population becomes more diversified. Because
of this, the average free energy for the specific generation
increases. Similarly, when the macro-mutation applied, the
average quality of the individuals improves quickly. Because
of this, the average free energy for the specific generation
decreases.

D. Performance Hierarchies Amongst the GA Variants

The performance hierarchies amongst the GA variants are
presented in Fig. 10. Because of the exhaustive generation
technique, the EGA performs better than the RGA. Because
of the exhaustive generation in combination with the macro-
mutation operator, the MGA performs better than the RGA and
the EGA. Because of the exhaustive generation in combination
with the random-walk-based stagnation recovery technique,
the WGA performs better than the RGA, the EGA, and
the MGA. Finally, because of the combination of all three
enhancements, the GAPlus performs better than the others.

For further investigation, we perform rigorous analysis on
the results obtained from the GA variants and also compare
our experimental results with the state-of-the-art approaches
for the same models in Section V.

V. DETAILED EXPERIMENTATION AND ANALYSES

In this section, we evaluate the performance of the GAPlus
by comparing the results with that of the state-of-the-
art approaches. We also perform an extensive experimental
study on the GAPlus parameters to find an optimum set of
parameters.

A. Experimental Settings

Our implementation is based on the Java programming lan-
guage. We ran the experiments on the NICTA [70] cluster.
This cluster consists of a number of identical Dell PowerEdge
R415 computers, each equipped with 2× AMD 6-core Opteron
4184 processors, 2.8 GHz clock speed, 3M L2/6M L3 cache,
and 64 GB memory and running Rocks OS (a Linux variant
for cluster).

B. Benchmark Proteins Used in GAPlus Evaluation

In our experiment, the protein instances that we use as
benchmarks are taken from the literature. The H, F90, S,
F180, and R instances are taken from the Peter Clote labo-
ratory website [71]. These benchmarks are used in [30]–[33]
to test their algorithms. Additionally, we also use another six
large sized sequences that are taken from the critical assess-
ment of PSP (CASP) competition [72]. The CASP9 targets are
3mse, 3mr7, 3mqz, 3no6, 3no3, and 3on7 which are also used
in [32] and [33]. To fit in the HP model, the CASP targets are
converted into the HP sequences based on the hydrophobic
properties (see Section II-C) of the constituent amino acids.

C. State-of-the-Art Methods Used to Evaluate GAPlus

In order to measure the efficiency of our enhanced GA
framework (GAPlus), we compare the results with a tabu-
guided LS algorithm [30] which is denoted as TLS, a memory-
based tabu-guided LS [32] which is denoted as MLS1, an
enhanced memory-based tabu-guided LS [33] which is denoted
as MLS2, and a population-based memetic algorithm [63]
which is denoted as MA in the rest of the sections. We tried
to run the algorithm proposed in [31], but, unfortunately for
most of the proteins, the program aborted showing the mem-
ory related errors. Any effective comparison in this case is
therefore not possible.

D. Comparative Analyses for Evaluation

We ran the five variants of GA: 1) RGA; 2) EGA; 3) MGA;
4) WGA; and 5) GAPlus (see Section IV-A for details). For
each protein, we run each algorithm 50 times with identi-
cal experimental settings and with the time limits specified
in Tables IV and V under column Time.

1) Comparing Our Results With the State of the Art Results:
Based on the size of the protein sequences, we present
the comparative results in two different tables: 1) Table IV
presents the small sized proteins (size < 100) and 2) Table V
presents the large sized proteins (size > 100). The lower
bounds of the free energy (LBFE) values (column LBFE in
Tables IV and V) are obtained from [30] and [32]; however,
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TABLE VI
COMPARATIVE RESULTS OF GAPLUS WITH THE RECENTLY PUBLISHED

REPORTED RESULTS USING MEMETIC ALGORITHM OVER

8 SMALL SIZED PROTEINS

there are some unknown values of LBFE for larger sequences
(presented as u/k in Table V).

a) Comparing on small sized benchmark proteins: The
experimental results in Table IV show that for H instances
(size = 48): amongst the GA variants, the EGA is able to
achieve the LBFE for 8 proteins out of 10 and the WGA,
MGA, and GAPlus are able to hit the LBFE for all 10
proteins. Moreover, the average energy obtained by GAPlus
demonstrates that our final version of GA is able to reach
native energy levels in almost every single run for H instances.
On the other hand, for F90 instances (size = 90): amongst the
GA variants, WGA and GAPlus performs better than the state-
of-the-art approaches, however, only the GAPlus is able to hit
the LBFE for all five proteins. The performances of the MGA
and the TLS are very similar.

b) Comparing on large sized benchmark proteins: Notice
that the GAPlus, which benefits from all our three novel tech-
niques, clearly outperforms RGA, EGA, MGA, and WGA.
Nevertheless, we observe that the results obtained by GAPlus
are better than those of TLS and MLS1 with wide margins
for all (16 out of 16) benchmark proteins. TLS and MLS1 are
also outperformed by WGA, but they outperform EGA and
RGA; the results of TLS and MGA are very close. On the
other hand, MLS2 produces competitive results for few cases
(3 out of 16), but is outperformed by the GAPlus for the rest
of the cases.

Furthermore, as shown in Table VI, we ran GAPlus for
another set of benchmark proteins taken from [63]. We com-
pared our results with the reported values in [63] produced
by an MA. For a set of very small proteins (size < 50), the
MA produces competitive results but fails to compete with the
GAPlus for a slightly larger set of proteins (size > 50).

2) Relative Improvement: As the predicted energy
approaches the LBFE, further improvement becomes more
difficult. The relative improvement (RI) explains how close
the predicted results (target) are to the LBFEs with respect
to the energy values scored by the state-of-the-art (reference)
approaches. In Table VII columns RI, we present a comparison
of (%) improvements on the average conformation quality. We
compare target GAPlus with references RGA, TLS, MLS1, and
MLS2. For each protein, the RI of the target (t) with respect
to the reference (r) is calculated using (4). We present the RIs
only for the proteins having known LBFE

RI = Et − Er

El − Er
∗ 100% (4)

TABLE VII
RIS (RI COLUMNS) OF GAPLUS OVER RGA, TLS, AND MLS2.

THE VALUES ARE CALCULATED USING THE FORMULA

EXPLAINED IN EQUATION (4). COLUMN LBFE
PRESENTS THE LOWER BOUND OF FREE ENERGIES

Fig. 11. Performance hierarchy within the GA variants and the
state-of-the-art: TLS, MLS1, and MLS2 methods. The higher the position,
the better the performance.

where Et and Er denote the average energies of the target and
the reference algorithms and El is the LBFE.

3) Performance Hierarchy: The performance hierarchy
amongst the GA variants and the state-of-the-art approaches is
presented in Fig. 11. Experimentally, we show that the three
variants of GA— the MGA, WGA, and GAPlus—outperform
the LS TLS and MLS1. However, another memory-based LS,
MLS2, outperforms the MGA and WGA but is outperformed
by GAPlus.

4) Search Progress: To demonstrate the search progress,
we periodically find the best energy values obtained so far
in each run for all approaches. For a given period, we then
calculate the average energy values obtained for that period
over 50 runs. We used 20 min time intervals to take the
average energy values. Fig. 12 presents the chart of search
progress with progressive time in terms of average energy
values obtained by each algorithm for the protein R1.

We observe that after very small initial progress, the
EGA and RGA become flat with almost no improvements.
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Fig. 12. Search progress of different approaches for Protein R1.

Fig. 13. Effect of population size on number of generations.

The MGA achieves very good progress initially compared to
the others, but becomes almost flat later on. The WGA, the
TLS, and the MLS1 perform equally initially compared to
each other, but later the WGA makes more progress than the
TLS and MLS1. The progress of MLS2 is better than that of
TLS, MLS1 and other GA variants except GAPlus. Initially,
the GAPlus achieves the same progress as the MGA, and
later it mostly benefits from the random-walk. The combined
positive efforts of the macro-mutation and the random-walk
make GAPlus the most efficient conformational search frame-
work. The difference between the performances of WGA
and GAPlus remains roughly the same as the initial boosted
progress made by the macro-mutation operator.

E. Parameter Tuning for GAPlus

In this section, we work with GAPlus parameters. We exper-
imentally try to work out an optimal population size for
GAPlus. We also try to find out the optimal rate of using
crossover and mutation operators.

1) Tuning GAPlus Population Size: To observe the effect
of population size, we ran GAPlus by setting population sizes
10, 50, 100, 150, 200, 250, 300, 400, and 500. We trace the
number of generations, the total number of solutions explored,
the total number of stagnations, and the minimum energy level
achieved for each population size. We present the average out-
comes for the traced values over 50 different runs with further
analysis.

a) Population size versus the number of gener-
ations: We run GAPlus with different population sizes for
proteins F180 and R. We calculate the average number of
generations for different population sizes over 50 different
runs of identical settings (such as computer, period of running)
for each protein. We plot the average number of generations
with corresponding population sizes as shown in Fig. 13.

Fig. 14. Effect of population size on explored conformations.

Fig. 15. Effect of population size on average number of stagnations.

The experimental results show that the number of generations
is proportionately decreasing when increasing the population
sizes. Because of the exhaustive generation approach, the total
number of conformations explored in each generation are
O(P×N), where P is the population size and N is the number
of amino acids in the protein sequence.

b) Population size versus explored conformations:
We plot the average number of explored conformations
(in millions) with corresponding population sizes as shown
in Fig. 14. The experimental results show that the number of
explored conformations does not vary much with the popu-
lation sizes. Because the exhaustive generation approach in
GAPlus does not remember the previously explored solutions,
it may re-explore early explored conformations throughout the
period of running. Nevertheless, it is notable that the number
of explored conformations is consistently at a minimum for
population size 50.

c) Population size versus the number of stagnations:
We plot the average number of stagnations with correspond-
ing population sizes as shown in Fig. 15. The experimental
results show that the number of occurred stagnations is pro-
portionately decreasing with increasing the population sizes.
The result is expected because at stagnation random-walk is
applied and the population is diversified. Therefore for larger
population size, it takes more time to reach the stagnation
situation by intensifying the population again. The frequency
of occurring stagnation decreases while the population size
increases.

d) Population sizes versus free energy levels: We plot
the average energy values with corresponding population sizes
as shown in Fig. 16. The experimental results show that the
levels of average free energies do not vary much with the
population sizes. However, it is notable that for population
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Fig. 16. Effect of population size on average energy values.

size 10 (very small), the average energy value for each pro-
tein is consistently the minimum amongst the population sizes.
Because, for a very small population size, the diversifica-
tion amongst the individuals is narrow in comparison to other
reasonably large population sizes.

In conclusion, observing the effect of population sizes, it
is notable that the number of generations and the number
of stagnation situations decrease proportionately with increas-
ing population sizes; the impacts on the number of explored
conformations with the change of population size is not sig-
nificant; and the impact of population size on the lower energy
level is interesting—for population size 10, the GAPlus per-
forms poorly (due to insufficient diversity) for each protein,
however, for other population sizes, the results are very close
for each protein.

2) Profiling GAPlus Operators: In this section, we experi-
mentally tried to work out an optimal crossover (or mutation)
rate for GAPlus. We run GAPlus for crossover rates 0%, 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% (cor-
responding mutation rates are 100%, 90%, 80%, 70%, 60%,
50%, 40%, 30%, 20%, 10%, and 0%). We have observed
the variations on average energy levels achieved for different
crossover or mutation rates in the experimental results.

We further trace some characteristics during operation: in
the case of mutation operators, we use all primitive mutation
operators such as rotation, diagonal moves, pull moves, and tilt
moves (see Fig. 6) and present the combined results under the
mutation operator. All primitive mutation operators are chosen
with equal selection probability.

a) Effects of crossover rates on energy levels: From our
experimental results on 11 different crossover rates, we plot
a chart of average energy levels with the crossover rates as
shown in Fig. 17. The chart shows a clear impact of crossover
rates on average energy levels. The smaller sizes of crossover
rates are more effective than that of the larger sizes. In our
experiment, the crossover rate in the range of 10%−20% (i.e.,
mutation rates: 80%−90%) produces better results in GAPlus.

b) Effects of crossover rates on other factors: Other GA
factors such as operator selection, success of operator appli-
cation, impact of the applied operator, and total usages of any
operator are traced and the summarized results are presented
in Table VIII. For each operator, we observed the number
of times an operator is selected to apply (column Attempt),
how many times the attempts are successful (column Succeed),
how many times it improves locally (column Gain), and how

Fig. 17. Average energy values corresponding to crossover rates.

TABLE VIII
EFFECT OF THE APPLICATIONS OF OPERATORS IN THEIR VARIOUS

RATES. THE COLUMN XO DENOTES CROSSOVER

much time the operator consumed throughout the life of the
run (column Usage). The presented averages are the outcomes
over 30 different runs. The experiments are conducted with
the population size 100.

Table VIII shows that successful attempts and local energy
gain on successful attempts are significantly higher for
crossover in comparison to mutation. However, from the exper-
imental results, it is observed that these local energy gains have
little or no impact on the global minimum energy. Another
important observation from the experimental results is that
crossover consumes almost double operational-time than muta-
tion operators. The time consumption of the crossover operator
is reasonable because the crossover operator generates two
resultant solutions but mutation generates one.

Observing the experimental results obtained by using
different crossover rates (and therefore different mutation
rates) in GAPlus, we can conclude that the small crossover
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rates (i.e., high mutation rates) are better for finding lower
energy structures on FCC lattice models.

F. Summary of the Study

After implementing the proposed new features within GA
framework and studying the GA parameters, we have the
following finding:

1) Feature Enhancement: The exhaustiveness of individ-
ual generation helps improve over random individ-
ual generation. The macro-mutation operator and the
random-walk technique separately obtain more improve-
ments, with their combination obtaining even further
improvements.

2) Parameter Tuning: Using any population size > 10,
the performance of GAPlus does not vary much. The
crossover consumes more operational time in compari-
son to mutation and leads to poorer performance when
high crossover rates (>20%) are used in GAPlus.

VI. DISCUSSION

The proposed GAPlus framework is initially tested on
lattice-based PSP. The problem is chosen because it is a hard
combinatorial optimization problem with an astronomically
large search space. However, the enhanced features could eas-
ily be adopted by other branches of optimization problems
such as scheduling, traveling salesman, and vehicle routing.
The following discussion would be the future directions of
this paper.

1) The exhaustive generation strategy implemented in
GAPlus is not a complete or full exhaustive sampling.
In contrast, this approach selects successively one amino
acid at a time and explores exhaustively in the vicinity
of the selected amino acid. It does not sample all pos-
sible combinations considering all the amino acids at a
time (see Section IV-C2 for details). This strategy might
be adopted in any optimization problem that uses some
sort of randomness in exploring neighbor solutions.

2) The macro-mutation operator quickly improves an indi-
vidual by applying multiple mutations in a single pass.
This operator could be applied in other classes of
optimization problems to improve a solution either by
considering a segment of the solution or by consider-
ing the solution as a whole. This operator is guided
by a separate heuristic—distance from the HCC—other
than the objective function (energy function for PSP).
Thus, designing a problem specific heuristic is a key to
implement this operator.

3) The random restarting procedure could replace the
random-walk technique regardless of the class of opti-
mization problem. Handling stagnation or dealing with
local minima is an integral part of an optimization
algorithm. Random-restart is an effective strategy in
such situations; however, we experimentally showed
that the random-walk is more effective for the GAPlus
framework.

4) By encoding the conformation with angular coor-
dinates (φ and ψ), the GAPlus might be applied
in high-resolution PSP. While the minimizing energy

function is highly complex (such as molecular dynam-
ics), a simple guidance heuristic (such as hydropho-
bic property or exposed surface area) could be used
to guide the macro-mutation operator. Within GAPlus
framework, the macro-mutation operator could be
applied optimizing the segments of secondary structures
(α—helix and β—sheet).

5) More realistic models with complicated energy functions
increase the complexity of the problem, however, our
approach has a macro-mutation operator that performs
as a local optimizer. Based on this, our approach can
easily divide the whole optimization process into two
stages guided by two energy models with different com-
plexities. The macro-mutation operator can be guided by
simpler energy models such as distance from hydropho-
bic core, exposed surface area, hydrophobicity of amino
acids, hydropathy index of the amino acids, and so on.
Conversely, the main objective function can be more
realistic such as molecular dynamics-based energy mod-
els. This two-stage optimization will reduce the overall
computational complexities. As a result, our framework
has a good chance to succeed in more realistic models
even for large sized proteins.

6) The on-lattice PSP problem can be applied directly
to the other classes of optimization problems such as
computer organization [73], very large scale integra-
tion design [74], and network topology designing [75]
where nodes or processors are connected in a daisy chain
but a subset of those need to be topologically compact
or closer to have efficient dedicated connections. The
PSP application can also be extended to solve quadratic
assignment problems using lattice model encoding in
genetic algorithms [76], solving job shop scheduling
problems in a multiagent environment [77], and so on.

VII. CONCLUSION

In this paper, we presented five variants of GAs that individ-
ually and in a combined way use three different enhancement
techniques: 1) an exhaustive generation approach; 2) a novel
hydrophobic-core directed macro-mutation operator; and 3) a
random-walk-based stagnation recovery technique. We found
that our final algorithm, GAPlus, which uses a combination
of all the enhancement techniques, significantly outperforms
all current approaches to simplified PSP. We also showed that
our algorithm is robust enough to produce very similar results
under different parameter settings. In the future, we intend to
apply GAPlus in high resolution PSP. In particular, we want
to configure GAPlus within the Rosetta Codebase so that it
could be used as a separate protocol in place of the MC simu-
lation method. We also aim to test GAPlus for other branches
of optimization such as scheduling, traveling salesman, and
vehicle routing.
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