
Answering Question One in Google v. Oracle: The Creativity of
Computer Programmers

Ralph D. Clifford, Firas Khatib, Trina C. Kershaw, and Adnan El-Nasan*

70 J. COPYRIGHT SOC’Y – (expected 2023)

Abstract

There is a misconception that computer programs are extremely limited by set
expressions required by the computer system or the problem being coded and thus have
little room for creativity. Under this fallacy, some argue that copyright protection for
software is practically nonexistent as the Feist minimal creativity standard cannot be met.
Others, including Google in the recent Google v. Oracle case before the Supreme Court,
argue that even if the minimum creativity standard can be met, most aspects of software
constitute ideas rather than expressions so, again, copyright protection fails under the
merger doctrine.

Until recently, these factual assertions about the nature of computer programs and
their creation have not been empirically tested. The authors have now done so. In a
recently published, peer-reviewed study by the authors, the creativity leading to the writing
of a computer program was established; indeed, the creativity used by a computer
programmer is similar to that found in other disciplines that are acknowledged to be
creative. The study took examples of computer programs written by multiple programmers

*. Ralph D. Clifford is a Professor of Law at the University of Massachusetts School
of Law. He has a computer science degree and spent almost twenty years as a
professional programmer before becoming a professor.

Firas Khatib is an Associate Professor of Computer and Information Science at the
University of Massachusetts Dartmouth. He specializes in bioinformatics, citizen science,
gamification, and applying these fields to K-12 education.

Trina C. Kershaw is a Professor of Psychology at the University of Massachusetts
Dartmouth. One of her research specializations is measuring creativity in laboratory and
applied science (i.e., engineering, computer programming, etc.) situations.

Adnan El-Nasan is a Full Time Lecturer of Computer and Information Science at the
University of Massachusetts Dartmouth. His research interests include operating system
optimization and security; cybersecurity, privacy, forensics and reverse engineering; and
innovation and commercialization in emerging economies.

This article was supported by a writing grant from the University of Massachusetts
School of Law. The authors wish to thank Jessica Almeida of the Law School Library who
continues to be able to find the right materials based on the incomplete descriptions she
is given.

Pre-publication draft – 1 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

to perform identical functions and applied recognized psychology-based tests to measure
creativity. Although the study’s programs were not particularly complex, the programmers
found many significantly different and creative ways to code them. The study established
that software—at least that more complicated than the program needed to print “Hello,
world!”—vary greatly based on the creative expressions chosen by the program’s author.
This creative expression deserves full copyright protection.

Table of Contents

I. Introduction . 3

II. A Description of the Empirical Examination of Computer Programs that
Found Them to be Creative Products . 7
A. Computer Programs—Even Simple Ones—Result from Numerous

Expressive Choices Made by the Programmer (The PCDV) 11
B. Computer Programs—Even Simple Ones—Demonstrate Creativity

(The CSDS) . 12
C. Study Conclusion: Nontrivial Computer Programs Are Creative

Expressions . 15

III. The Legal Consequences that Result from the Finding that Programmers
Express Creativity . 16
A. The Feist Creativity Requirement in Copyright Law is Easily Satisfied

for the Vast Majority of Computer Software, Including the APIs in
Google v. Oracle . 16

B. As with Other Creative Expressions, the Merger Doctrine Needs to be
Limited to its Proper, Narrow Role . 19
1. Computer Software that Performs a Nontrivial Function Does

Not Merge . 23
2. Software that Creates a Programming Language Does Not

Merge . 25
C. Conclusion: Software is a Fully Expressive Work 28

IV. Applying the Idea/Expression Dichotomy to Computer Programs: Using the
Abstraction-Filtration-Comparison Approach Appropriately 29

1. A Non-Exhaustive List of Efficiency Definitions 32
2. The Use of Efficiency as a Measure of Copyrightability Fails

Causing Worthy Programs to be Unprotected. 42

V. Conclusion . 44

Pre-publication draft – 2 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

I. Introduction

In Google LLC v. Oracle America Inc.,1 an appeal concerning the enforceability of

Oracle’s2 Java API3 software copyrights, the Supreme Court determined that the case

could be resolved exclusively on a finding of fair use.4 This left the first question posed in

the case5—whether the computer code in question was even copyrightable—in limbo.6 It

1. 141 S. Ct. 1183 (2021).

2. The software in question was developed by a predecessor corporation to Oracle,
Sun Microsystems. Id. at 1190. Because all proprietary rights to this software are now
owned by Oracle, Oracle will be called the author of the software in this article as the
successor to Sun Microsystems.

3. “API” stands for Application Programmer Interface. See id. at 1191. These allow
programmers the ability to achieve commonly needed functions without having to write a
program for each. See id.

The general concept of an API has existed by that name since at least the 1990s.
See MARY SWEENEY, VISUAL BASIC FOR TESTERS 211 (2001) (discussing the “APIs” used in
Microsoft Windows); Harold W. Thimbleby, Java in ENCYCLOPEDIA OF COMPUT. SCI. 937,
940 (Anthony Ralston et al eds., 4th ed. 2000) (describing APIs in Java). Of course, the
concept without the name existed for decades before that. See Macro Assemblers,
ENCYCLOPEDIA OF COMPUT. SCI. 99–100 (Anthony Ralston et al. ed. 4th ed. 2000)
(describing achieving standard programming tasks by using the macro system available
with 1960–1980-era IBM computers); IBM CORP., OS/VS-VM/370 ASSEMBLER PROGRAM-
MER’S GUIDE 69 (5th ed. 1982) (defining “library macro definition” as “IBM-supplied ...
macro definitions”).

In the Google v. Oracle case, the APIs that Oracle developed as part of its Java
language were in litigation. See generally, Thimbleby, supra. For a current, comprehensive
list of these APIs, see Java Platform, Standard Edition & Java Development Kit Version 20
API Specification (Draft 20-ea+1-3 ed. 2022), https://download.java.net/java/early_ac-
cess/jdk20/docs/api/ [hereinafter Java APIs].

4. 141 S. Ct. at 1190 (“we assume, for argument’s sake, that the material was
copyrightable [b]ut we hold that the copying here at issue ... constituted a fair use.”).

5. See Brief of the Petitioner at i, Google LLC v. Oracle Am. Inc., 141 S. Ct. 1183
(2021) (No. 18-956), 2020 WL 104836 [hereinafter Google’s Brief].

6. See Google, 141 S. Ct. at 1190; Adam Mossoff, Declaring Computer Code
Uncopyrightable with a Creative Fair Use Analysis, 20 CATO SUP. CT. R. 237, 238–39

Pre-publication draft – 3 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

https://download.java.net/java/early_access/jdk20/docs/api/
https://download.java.net/java/early_access/jdk20/docs/api/

remains an important question, however, as the almost 400 billion dollar industry in annual

market sales7 is highly dependent on copyright to protect proprietary rights in software.8

As a practical matter, the lack of an answer to the first question by the Supreme

Court leaves a critical gap in the legal foundation of software proprietary rights because so

many challenge the appropriateness or comprehensiveness of copyrights for computer

code.9 Some of these question whether any computer software is creative enough to clear

the Feist creativity requirement10 while others may not directly question the existence of

(2020-21) . The lower appellate court had found that the APIs were protected by copyright.
See Oracle Am., Inc. v. Google LLC, 886 F.3d 1179, 1210–11 (Fed. Cir. 2018), rev’d on
other grounds, 141 S. Ct. 1183 (2021).

7. See Grand View Research, Market Analysis Report (Apr., 2021),
https://www.grandviewresearch.com/industry-analysis/business-software-services-market.

8. See, e.g., Rich Stim, Copyrighting Your Software—Why Bother?,
https://fairuse.stanford.edu/overview/faqs/software/ (last visited Jan. 13, 2022) (“If you
publish computer software, the single most important legal protection available to you is
the federal copyright law.”).

9. See Google’s Brief, supra note 5, at 18 (arguing that the software APIs were
uncopyrightable as “one of only a few possible means of expression” of the underlying idea
of the APIs); Michael D. Murray, Copyright, Originality, and the End of the Scènes à Faire
and Merger Doctrines for Visual Works, 58 BAYLOR L. REV. 779, 815 (2006) (accepting that
“[t]echnical and practical requirements, design standards, and appropriate methods of
operation dictate programming choices rather than the creative input of the creator....”);
Aaron Kozbelt, Scott Dexter, Melissa Dolese, & Angelika Seidel, The Aesthetics of
Software Code: A Quantitative Exploration, PSYCH. OF CREATIVITY, AESTHETICS, AND THE

ARTS, Feb., 2012, at 57, 58 (“A common lay belief is that programming takes place in
highly structured environments, relying solely on formal languages and standard
techniques, with little or no room for creativity.”) [hereinafter Kozbelt (2012)].

10. See Michael D. Murray, supra note 9; Justin Hughes, Restating Copyright Law’s
Originality Requirement, 44 COLUM. J.L. & ARTS 383, 409 n.64 (2021) (noting that the
courts have not defined creativity under Feist); Ralph D. Clifford, Random Numbers, Chaos
Theory and Cogitation: A Search for the Minimal Creativity Standard in Copyright Law, 82
DENV. U. L. REV. 259, 268 (2004) (same). See generally Feist Pub., Inc. v. Rural Tel. Serv.
Co., 499 U.S. 340, 345 (1991); 17 U.S.C. § 102(b) (2020); Baker v. Selden, 101 U.S. 99

Pre-publication draft – 4 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

https://fairuse.stanford.edu/overview/faqs/software/

underlying creativity, but assert that software can only be expressed in one way, triggering

copyright unprotectability through the merger doctrine.11 Of course, even where software

is acknowledged to be copyrightable in theory, courts have mandated disqualifying tests

for programs that prevent copyright protection in fact: the tests under the guise that an

“efficient” piece of code is an idea rather than an expression, being the prime example.12

Similarly, courts often engage in a post hoc analysis of the copyrightability of a program,

ultimately rejecting protection because the code can no longer be considered creative

because the market has so preferred that particular expression that it has become an

industry standard.13

The fault for this does not rest solely with the judicial system not understanding the

technology; instead, at least part of the confusion in all these cases stems from the lack

(1880).

11. See Google’s Brief, supra note 5, at 18 (arguing that the software APIs were “one
of only a few possible means of expression” of the underlying idea of the APIs). See
generally, Michael D. Murray, supra note 9 (declaring that “[t]echnical and practical
requirements, design standards, and appropriate methods of operation dictate program-
ming choices rather than the creative input of the creator....”).

12. Computer Assoc. Int’l, Inc. v. Altai, Inc., 982F.2d 693, 708 (2d Cir. 1992) (“While,
hypothetically, there might be a myriad of ways in which a programmer may effectuate
certain functions within a program,—i.e., express the idea embodied in a given
subroutine—efficiency concerns may so narrow the practical range of choice as to make
only one or two forms of expression workable options.”). As is discussed in part IV infra,
this conception of computer efficiency is not based on the reality of computer software
works or on how programs are written.

13. See Jack E. Brown, “Analytical Dissection” of Copyrighted Computer Soft-
ware—Complicating the Simple and Confounding the Complex, 25 ARIZ. ST. L.J. 801,
811–29 (1993) (discussing cases); Google, 141 S. Ct. at 1203 (allowing fair use copying
because it “allow[ed] programmers to call upon those tasks without discarding a portion of
a familiar programming language and learning a new one.”).

Pre-publication draft – 5 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

of a scientific understanding of how computer programmers write code. Until recently, the

basic question—”Are programmers creative when they write code?”—had not been

answered empirically as only limited scientific studies of the discipline of coding had been

done.14 Unfortunately, these early foundational studies of programming are either based

on a non-empirically-based assertion that such creativity is used to code,15 or by

determining that programmers feel that what they do is creative without subjecting these

feelings to an empirical verification.16

Recently, the four authors completed the first empirical study that directly examines

whether the coding process is creative.17 As is more fully described in the next section, the

short answer is “Yes, programmers are creative when they write code.” In addition, both

the merger doctrine and the efficiency-equals-idea limitations asserted against computer

14. See P.J. Barnett & R. Romeike, Creativity Within Computer Science in CAMBRIDGE

HANDBOOK OF CREATIVITY ACROSS DOMAINS 299 (J.C. Kaufman, V.P. Glãveanu, & J. Baer
eds. 2017); R.L. GLASS, SOFTWARE CREATIVITY 2.0 (2006); M. Knobelsdorf, & R. Romeike,
Creativity as a Pathway to Computer Science, in ITICSE ‘08: PROC. OF THE 13TH ANN.
CONF. ON INNOVATION AND TECH. IN COMPUT. SCI. EDUC. 286 (J. Amillo, C. Laxer, E.
Menasalvas, & A. Young eds., 2008); Kozbelt (2012), supra note 9; Aaron Kozbelt, Scott
Dexter, Melissa Dolese, Daniel Meredith & Justin Ostrofsky, Regressive Imagery in
Creative Problem-Solving: Comparing Verbal Protocols of Expert and Novice Visual Artists
and Computer Programmers, 49 J. OF CREATIVE BEHAV. Dec., 2015, at 263 [hereinafter
Kozbelt (2015)]; D. Saunders & P. Thagard, Creativity in Computer Science in CREATIVITY

ACROSS DOMAINS: FACES OF THE MUSE 171 (J.C. Kaufman & J. Baer eds. 2005).

15. See DONALD E. KNUTH, FUNDAMENTAL ALGORITHMS at v (2d ed. 1973); Donald E.
Knuth, Computer Programming as an Art, 17 COMM. OF THE ACM 667 (1974).

16. See Kozbelt (2012), supra note 9; Kozbelt (2015), supra note 14.

17. Trina C. Kershaw, Ralph D. Clifford, Firas Khatib, & Adnan El-Nasan, An Initial
Examination of Computer Programs as Creative Works, PSYCH. OF AESTHETICS, CREATIVITY,
AND THE ARTS (Jan. 27, 2022), http://dx.doi.org/10.1037/aca0000457 (peer-reviewed)
[hereinafter Programming Creativity].

Pre-publication draft – 6 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

http://dx.doi.org/10.1037/aca0000457

software copyrights are likely to be of limited usefulness as the reality of how programs are

created demonstrate the factual inapplicability of both. After these study findings are

summarized, the final section of this article will discuss the appropriate—and factually-

based—contours of these copyright doctrines as they are applied to computer software.

Through the discussion, it will become clear that the answer to question one in Google v.

Oracle should have been “Yes, computer software is a type of creatively-based expression

of ideas that obtains copyright protection, including the APIs in question in the case.”18

II. A Description of the Empirical Examination of Computer Programs that Found
Them to be Creative Products

To investigate whether computer programmers are creative when they write

software, the authors designed an empirical study.19 Two scales were used to assess

creativity.20 The first scale, known as the “Creative Solution Diagnosis Scale” or “CSDS”

is an existing, well-regarded psychological measurement of the human creativity involved

in creating functional products such as engineering designs and computer software.21 It

18. This article does not examine the appropriateness of the fair use finding in Google.
This is consistent with the authors’ position in their amicus brief in the case. See Brief of
Amicus Curiae Interdisciplinary Research Team on Programmer Creativity in Support of
Respondent at 4, Google LLC v. Oracle Am. Inc., 141 S. Ct. 1183 (2021) (No. 18-956).

19. See Programming Creativity, supra note 17. This law review article will summarize
the methodology and findings of the peer-reviewed Programming Creativity study, but will
not present the full details of the empirical approach used nor of the statistical analysis
done. For a more comprehensive understanding of these aspects of the study including
a comprehensive presentation of the statistical methods used, please consult the scientific
work. See id.

20. See id. at 3.

21. See id. at 2. The CSDS was designed to measure the creativity involved in building
functional products. See David H. Cropley & James C. Kaufman, Measuring Functional
Creativity: Non-Expert Raters and the Creative Solution Diagnosis Scale, J. OF CREATIVE

Pre-publication draft – 7 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

evaluates creativity using a defined set of factors that have been found to be associated

with different aspects of creativity.22 To use the CSDS, the product is examined by

individuals who have the expertise to understand it and how it works.23 For the Program-

ming Creativity study, the software examples were appraised by expert-, peer-, and self-

evaluators.24

As a supplement to the CSDS and to provide a more objective measurement of the

expressive variation within the code, the authors defined a second scale known as the

“Program Control and Descriptive Variables” or “PCDV” evaluation.25 This scale involved

the analysis of the source code produced in the study to determine the number of times

each fundamental control statement (such as “IF” or “FOR”) was used.26 Each program

was examined by our research assistants (who were trained in computer science, not law)

who counted the number of each kind of control statement it contained.27 By combining the

seven counts into a single descriptive numeric code, a fourteen-digit number was created

BEHAVIOR, June, 2012, at 119, 120–22.

22. See Programming Creativity, supra note 17, at 4.

23. See Cropley & Kaufman, supra note 21, at 123–26.

24. See Programming Creativity, supra note 17, at 4. The expert evaluator was
Professor El-Nasan; the students evaluated their own program as well as programs written
by other students. Id.

25. See id. at 4–5.

26. Id. The statements chosen for analysis are universal as all computer languages
capable of implementing a defined procedure contain them, either with its common name,
i.e., “FOR” statement, or with a variant, i.e., “DO” or “PERFORM.” For examples of the
PCDV in operation, see id. at 12–13.

27. See id. at 5.

Pre-publication draft – 8 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

that captured the essence of the expression of the algorithm being implemented while

excluding trivial variations such as differences among them in the names chosen for

variables.28 If two independently developed computer programs have the same code, the

PCDV supports the conclusion that there is no meaningful variation in expression between

the two programs.29 If, on the other hand, the PCDV code is different, a nontrivial variation

exists.30 To determine the overall variation within a set of programs, the total number of

unique PCDV codes can be divided by the total number of programs, giving a single

number (the “PCDV Ratio”) that establishes the percentage of variation among the code

samples.31

28. See id. This is not to imply that the choice of variable names is irrelevant to
measuring creativity as choosing variable names “that mean something” has long been
recommended as part of good programming practice. BRIAN W. KERNIGHAN & P.J. PLAUGER,
THE ELEMENTS OF PROGRAMMING STYLE 145 (2d ed. 1978). Of course, what “means
something” to one person might be undecipherable by another. See Alvaro Videla,
Meaning and Context in Computer Programs, COMM. OF THE ACM, May, 2022, at 56.
Consequently, the choice of a variable name is likely to be creative, too. After all,
Hemingway could have named his novel “The Bull Fight,” but doing so could easily change
the nature of the work.

As the Programming Creativity study was done, no achievable way to measure the
difference between variable names objectively was found. If it was simply added to the
PCDV statistic, all programs would be found to be unique. At the detail level, however, one
needs to decide if calling a variable i is different and creative from calling it j or n.
Consequently, the decision was made to not measure this variation among the program
samples submitted as this lessens the quantity of variation that would be found.

29. See Programming Creativity, supra note 17, at 5.

30. See id.

31. See id. A small number would indicate little or no variation (the smallest possible
number is the reciprocal of the sample size); a large number indicates more variation (the
largest possible number is one which indicates every example program is unique). See id.

Pre-publication draft – 9 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

We used graduate-level students, all of whom were experienced programmers, to

obtain the data used in the study.32 Each student, as part of their homework assignment

in the course being taught by Professor Khatib, was required to create several programs

that implemented bioinformatics algorithms.33 The assignments used in the study required

the students to solve two coding problems both correctly and using no more than five

minutes of execution time.34 Other than these minimal instructions, each student was free

to choose how to solve the problem.35

Twenty-three students produced code that solved the two problems.36 Each of these

programs were evaluated using both the PCDV and CSDS scales.37 The primary findings

of the study are presented in the next two sections. As the PCDV’s analysis of expressive

32. See id. at 3–4.

33. See id. at 4.

34. See Id. The simpler problem used in the study computed the Hamming distance
between two strings. Id. This algorithm is useful in studying mutations in DNA. Id. The more
complex problem used was to reconstruct a string from its k-mer composition. Id. “This
algorithm is important for genome assembly where long strands of DNA have been
fragmented into shorter pieces (k-mers).” Id.

The five minute limit of time was significant as the quantity of data being processed
by the students was large. Id. It was impossible for a student to solve the problem without
using a computer program. Id.

35. See id. This freedom included the choice of programming language to use.

36. See id. Several students could not produce functional code for the two problems.
Id. at 3–4. As the students were all graduate students with significant exposure to
programming, this serves as an indication of the nontrivial nature of the coding required.
See id.

37. Id. at 4–5.

Pre-publication draft – 10 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

variations is a critical predecessor to finding creativity, it will be discussed first, followed by

the CSDS.

A. Computer Programs—Even Simple Ones—Result from Numerous
Expressive Choices Made by the Programmer (The PCDV)

The amount of variation found in the Programming Creativity study was surprising,

particularly for the simpler of the two programs. For the simpler problem, the calculated

PCDV Ratio was 0.478 indicating that almost half of the students submitted code that

differed from the programs submitted by others.38 For the more complex problem the

PCDV Ratio was significantly higher at 0.870 establishing that only a few students

submitted code that was expressively similar to another student’s program while most

created software that was measurably different from anyone else’s code.39

Based on this, the conclusion is that programmers exercise considerable variation

in the way they write programs. As the Programming Creativity study concluded,

This result demonstrates that there is a large variation of programming
expressions that can be used to solve even simple coding problems. For
more complex programs, almost every version created was measurably
different from the others. Because the programs within each data set solved
an identical problem and had been shown to function correctly, the
differences in the coding solutions cannot be due to a need that is dictated
by the algorithm being implemented. We believe that the variations found are
due to the exercise of individual creativity by the different programmers.40

38. Id. at 7.

39. Id.

40. Id.

Pre-publication draft – 11 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

Of course, variation alone does not establish creativity although it is certainly a precursor

for it.41 This is why the study included a second evaluation scale, the CSDS, which is

designed to measure whether creativity itself is demonstrated in the programs being

examined.

B. Computer Programs—Even Simple Ones—Demonstrate Creativity (The
CSDS)

The purpose of the CSDS is to measure whether human creativity is present in a

product.42

[The CSDS] consists of a series of statements allowing for the evaluation of
a creative product’s relevance and effectiveness, problematization,
propulsion, elegance, and genesis. Not only does the CSDS capture novelty
and appropriateness of the product, but it also captures the aesthetic
components of the product, which are important for evaluation of creativity
in multiple domains, including computer programming.43

“Relevance and effectiveness” means that the “[program] displays knowledge of existing

facts and principles and satisfies the requirement in the problem statement.”44 Both “prob-

lematization” and “propulsion” measure aspects of the program’s novelty.45 “Problemati-

zation” determines whether the program “draws attention to problems in what already

exists,” while “Propulsion” evaluates whether the program “adds to existing knowledge,”

41. See id. at 2.

42. See id; Cropley & Kaufman, supra note 21, at 123–26.

43. Programming Creativity, supra note 17, at 2.

44. Cropley & Kaufman, supra note 21, at 124 (Table 2, Line 1).

45. Compare id. at 124 (Table 2, line 2, column “indicators”) with id. at 133 (Table 7,
columns “Problematization” and “Propulsion”).

Pre-publication draft – 12 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

and whether it “develops new knowledge.”46 Elegance addresses whether the “[program]

strikes observers as beautiful (external elegance) [and] is well worked out and hangs

together (internal elegance).”47 Finally, “genesis” measures whether the program contains

“ideas [that] go beyond the immediate situation.”48

In the Programming Creativity study, each CSDS factor was measured for the

collected computer software.49 Relevance and effectiveness—did the example computer

program solve the problem it was designed to implement and did it work within the

constraints allowed?—were mostly confirmed automatically because the students could

not submit their code unless it generated the correct answer within the allowed time-

frame.50 To determine relevancy and effectiveness beyond the minimum, expert-, peer-,

and self-evaluations were collected.51 Similarly for novelty, some of the analysis was easily

completed as the problem to be solved was fully defined in the homework assignment

which minimized the importance of problematization. That reduced the question of novelty

to a simpler inquiry—did the code contain anything that the evaluators found to be

unexpected or unique?52 In the study, this component of novelty was measured using

46. Id. at 124 (Table 2, Line 2); id. at 133 (Table 7, columns “Problematization” and
“Propulsion”).

47. Id. at 125 (Table 2, line 3).

48. Id. (Table 2, Line 4).

49. See Programming Creativity, supra note 17, at 6.

50. See id. at 4 (describing the Rosalind website).

51. See id. at 3–4.

52. Indeed, for statistical reasons, the factor analysis performed merged the propulsion
and genesis factors into one. See id. at 6 (“Due to the multicollinearity between these

Pre-publication draft – 13 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

expert-, peer-, and self-evaluation of each program.53 Evaluating elegance within each

code sample was nothing less than an examination of Professor Knuth’s “art” factor54—did

the code look special either superficially or in its internal workings?55 Again, the study used

a multi-rater analysis protocol to evaluate this.56 Finally, genesis-propulsion required an

analysis of whether the programmer engaged in broader problem-solving—did the

programmer go beyond the bare minimum needed to satisfy the homework assignment?

This scale, too, used a multi-rater analysis protocol.57

The study included consistency confirmations as the evaluations needed by the

CSDS were subjective. First, raters who submitted facially defective evaluations (by rating

every programmer “excellent” in every evaluation point, for example) were removed from

the data.58 Then, the evaluation of the remaining participants were shown to be highly

consistent with each other using the statistical methods that are designed to confirm this.59

The CSDS findings of the Programmer Creativity study are clear. The study’s

hypothesis posited that if creativity is a significant factor in the development of a computer

variables and the convergence of the scree plot for a four-factor solution, Factors 1 and 5
were averaged into a single factor (propulsion-genesis) for further analyses.”).

53. Id.

54. See supra authorities cited note 15.

55. Programming Creativity, supra note 17, at 4

56. Id.

57. Id.

58. See id. at 5.

59. See id. at 5–6 (discussing results of Cronbach’s alpha, Guttman’s lambda, and
McDonald’s omega).

Pre-publication draft – 14 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

program, the CSDS rankings would show this directly60 and it would be expected that a

more complex problem would be more highly rated on the CSDS problematization and

propulsion-genesis scales than a simple one.61 The study confirmed both findings.62

C. Study Conclusion: Nontrivial Computer Programs Are Creative
Expressions

There is significant expressive creativity used to express a computer program, even

simple ones like the easier problem used in Programmer Creativity. The PCDV Ratio of

0.478 demonstrated that there were a multitude of ways to express even a somewhat

simple program.63 As code becomes more complex, the possible variants grow quickly as

demonstrated by the PCDV Ratio of 0.870 on the more complex program. “Our results

support the idea that even within structured environments, there is still room for

creativity—the high degree of variation of expression seen within the programs in our study

supports assertions that variability in behavior is a key contributor to creativity.”64 Further,

60. See id. at 2.

61. Id. at 3 & 7 (discussing second principle hypothesis). An analogy to this would be
to compare a “normal” highway bridge with one that crosses a major waterway. Most
bridges are fairly mundane and would not be described by most as creative, but some gain
fame and are considered beautiful and creative, e.g., the Golden Gate or George
Washington bridges, partially because of the complexity of the engineering problem that
has to be solved. Similarly, a more complicated computer program is more likely to allow
its programmer to achieve something that is special.

62. Id. at 7 & Table 5.

63. Id. at 7.

64. Id. at 7–8.

Pre-publication draft – 15 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

as problems get more complex, more creativity is expressed.65 To apply this in the Google

case, telling multiple programmers to write the code needed to define the APIs for Java

would result in a PCDV Ratio near the maximum of one because of the complexity of this

task.

When the CSDS is combined with the PCDV, the conclusion that programmers are

creative is inescapable. Unfortunately, as the next part of this article explores, the legal

system has failed to appreciate this.

III. The Legal Consequences that Result from the Finding that Programmers
Express Creativity

A. The Feist Creativity Requirement in Copyright Law is Easily Satisfied
for the Vast Majority of Computer Software, Including the APIs in
Google v. Oracle

The Supreme Court has defined a minimal qualification for any expression to be

protected by copyright. To be copyrightable, an expression must

possess[] at least some minimal degree of creativity. To be sure, the
requisite level of creativity is extremely low; even a slight amount will suffice.
The vast majority of works make the grade quite easily, as they possess
some creative spark, “no matter how crude, humble or obvious” it might be.
Originality does not signify novelty; a work may be original even though it
closely resembles other works so long as the similarity is fortuitous, not the
result of copying.66

65. Id. at 7 (finding that both variation as measured by the PCDV Ratio and creativity
factors as measured by the CSDS increase with complexity).

66. Feist Publ’s, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 345 (1991).

Pre-publication draft – 16 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

As the Court held, the requisite established by this standard is an “extremely low” one;

indeed, if multiple expressions of an idea are possible, the choice of one over the other

constitutes an exercise of creativity.67

When applied to computer software, the Feist test is easily cleared. As the authors’

Programming Creativity study established, programmers make numerous choices as they

write programs.68 Most of these choices of expression are the programmer’s own and are

not dictated by external factors or supposed efficiency considerations.69 Even the Supreme

Court seemed to acknowledge that multiple versions of software was possible, including

the Java APIs in litigation.70 Indeed, to appropriate Oracle’s APIs, Google “copied roughly

11,500 lines of code from the Java SE program.”71 The programs studied in Programming

Creativity were radically shorter and consequently more limited in possible variation than

Oracle’s API code. The simpler programs involved in the study had as few as six, and no

more than twenty-six lines of code.72 Despite the minuscule size of these programs created

67. See id. at 348; Clifford, supra note 10, at 295–96; Programming Creativity, supra
note 17, at 2; supra section II.A.

68. See Programming Creativity, supra note 17, at 7 (“[The study] result[s] demon-
strates that there is a large variation of programming expressions that can be used to solve
even simple coding problems.”); supra section II.A.

69. See Programming Creativity, supra note 17, at 3 (imposing an identical execution
speed maximum requirement on all programmers); infra section IV (discussing the fallacy
of using computer efficiency in copyright analysis). See also authorities cited, supra note
14.

70. See Google, 141 S. Ct. at 1194.

71. Id. at 1191.

72. See files in the directory “Spring 2019 data\homework info\HWK3 Prob 2-2 code”
on file with the authors.

Pre-publication draft – 17 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

within the study, eleven unique solutions were created for them.73 With 11,500 lines of

code, the possible variations from which to choose in creating this system would have been

massively larger than the choices available in the authors’ study. The direct conclusion of

this is that the APIs in litigation in the Google case demonstrated far more creativity in their

creation than is required by Feist.

Expanding from the Oracle v. Google case, any argument that asserts that a

nontrivial computer program lacks the modicum of creativity demanded by Feist74 should

be treated with disdain. Writing a program, even one as short as one with ten lines of code,

involves numerous creative choices that are sufficient to clear the “extremely low”75

copyright creativity requirement.76 Any program involved in litigation will most certainly be

longer than this.

It should be noted that the number of lines of code is not a very precise calculation.
Among the expressive tools available to a programmer is how the lines of code are
entered. For most modern languages, a single computer command can be entered across
multiple lines. By breaking the command into multiple lines, and typically indenting some
parts of it, the programmer can make the code more easily understood by a human reader
without impacting the operation of the program. See KERNIGHAN & PLAUGER, supra note 28,
at 1–3 & 146–50. Similarly, programmers are encouraged to include “comments” within
their code to explain what the code does. See id. at 141–45. As these comments are
generally not considered to be “lines of code,” they have been omitted from the count
given. In reality, what is being counted is the number of commands used, not the physical
number of lines.

73. Programming Creativity, supra note 17, at 7.

74. Feist, 499 U.S. at 346.

75. Id. at 345.

76. See Clifford, supra note 10, at 295–96.

Pre-publication draft – 18 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

B. As with Other Creative Expressions, the Merger Doctrine Needs to be
Limited to its Proper, Narrow Role

Just because a computer program is the result of creative expression does not

mean that all aspects of the software are protected under the Copyright Act. Congress, in

section 102(b),77 codified the long-recognized dichotomy between expressions that are

within the ambit of copyright and the underlying ideas that are not.78 Of course, as has

been recognized for almost as long, splitting an idea from its expression is not a trivial

undertaking;79 indeed, this process has been particularly challenging for computer

software.80 Unfortunately, the misconceptions about computer software being addressed

in this article and by the authors’ Programming Creativity study too often form the basis of

the difficulty.81 If the courts—often based on the expressed views of commentators82—fail

77. 17 U.S.C. § 102(b) (2020).

78. H. REP. NO. 94-1476, at 57 (1976), as reprinted in 1976 U.S.C.C.A.N. 5659, 5670
(“Section 102(b) in no way enlarges or contracts the scope of copyright protection under
the present law.”). The basic statement of the idea-expression dichotomy can be found in
Baker v. Selden, 101 U.S. (11 Otto) 99 (1879), and the hundreds of cases that have
interpreted it.

79. See, e.g., Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (1930) (L. Hand,
C.J.).

80. E.g., Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 836 (10th Cir.
1993) (“Distinguishing between ideas and the expression of those ideas is not an easy
endeavor....”). Compare Computer Assoc. Int’l, Inc. v. Altai, Inc., 982F.2d 693, 703–06 (2d
Cir. 1992) with Whelan Assocs., Inc. v. Jaslow Dental Lab’y, Inc., 797 F.2d 1222, 1235–37
(3d Cir. 1986). See generally, Clifford, supra note 10, at 282–89.

81. See, e.g., Computer Assoc. at 707–10.

82. The copyright expertise of both Melville Nimmer (original author of NIMMER ON

COPYRIGHT) and David Nimmer (current author) is appropriately and widely recognized.
See, e.g.,MacLean Assocs., Inc. v. Wm. M. Mercer-Meidinger-Hansen, Inc., 952 F.2d 769,
778 (3d Cir. 1991); Galiano v. Harrah’s Operating Co., 416 F.3d 411, 419 (5th Cir. 2005);

Pre-publication draft – 19 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

to understand the nature of computer software and its creation, the resulting decisions

become problematic.

Bateman v. Mnemonics, Inc.83 provides a good example of this. The court, relying

on the Computer Assoc. v. Altai case for key factual conclusions (which in turn had quoted

NIMMER ON COPYRIGHT), stated that “in many instances it is virtually impossible to write a

program to perform particular functions in a specific computing environment without

employing standard techniques.”84 In reality, the opposite is true.85 Given the same task

and programming environment, the programmers in the authors’ study produced widely

divergent code.86 The simpler coding task showed a variation in expression of almost 50%

with eleven unique solutions from twenty-three programmers while the more complicated

VMG Salsoul, LLC v. Ciccone, 824 F.3d 871, 880 (9th Cir. 2016). Neither, however, have
computer science training or experience. See David Nimmer, IRELL & MANELLA LLP (last
visited June 12, 2022, 10:15 AM), https://www.irell.com/professionals-david-nimmer.
Unfortunately, the factual misconception disproved by Programming Creativity is stated as
a definitive fact in NIMMER ON COPYRIGHT, 4 DAVID NIMMER, NIMMER OF COPYRIGHT §
13.03[F][3] (2022) (“it is virtually impossible to write a program to perform particular
functions in a specific computing environment without employing standard techniques.”);
indeed, this provision has been quoted in the case law to establish that proposition. See,
e.g., Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 709 (2d Cir. 1992).

When the authorities cited in NIMMER ON COPYRIGHT for this factual conclusion are
examined, they turn out to be exclusively legal authorities. DAVID NIMMER at § 13.03[F][3],
n.312. Of course, the legal authorities cited in NIMMER ON COPYRIGHT typically use that
authority for so ruling. Consequently, these citations establish a circle of authorities as
many of the cases cited in the footnote are authorities that relied on—indeed, often
quoted—the misstatement in NIMMER. It is time for this to be corrected.

83. 79 F.3d 1532 (11th Cir. 1996).

84. Id. at 709 (quoting Computer Associates v. Altai which in turn was quoting NIMMER

ON COPYRIGHT). See supra note 82 (establishing the circular nature of this authority).

85. Supra section II.A.

86. See id.

Pre-publication draft – 20 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

https://www.irell.com/professionals-david-nimmer.

software had a variation of about 85% with twenty unique solutions from the twenty-three

programmers.87 Asserting that it is “impossible” to write code to accomplish the same thing

in different ways is demonstrably wrong; in fact, for nontrivial programs, expressive

differences will almost always happen.

Unfortunately, once the factual misstatement is accepted and widely circulated, a

compounding misapplication of the copyright merger doctrine can occur.88 The doctrine

operates when

it is so difficult to distinguish between an idea and its expression that the two
are said to merge. Thus, when there is essentially only one way to express
an idea, copying the expression will not be barred, since protecting the
expression in such circumstances would confer a monopoly of the idea upon
the copyright owner free of the conditions and limitations imposed by the
patent law. By denying protection to an expression that is merged with its
underlying idea, we prevent an author from monopolizing an idea merely by
copyrighting a few expressions of it.89

But as the authors’ Programming Creativity study establishes—other than for unrealistically

simplistic “print ‘Hello, World’”-type programs—there are always a multitude of different

expressions possible to implement any computer program.90 Consequently, each new

programmer can re-express the underlying programming ideas (because this is always

possible as a practical matter) and, if the coding is done without violating the first

87. Programming Creativity, supra note 17, at 7.

88. See, e.g., Herbert Rosenthal Jewelry Corp. v. Kalpakian, 446 F.2d 738, 742 (9th Cir.
1971) (“When the idea and its expression are thus inseparable, copying the expression will
not be barred....” (quotation marks omitted)).

89. Mason v. Montgomery Data, Inc., 967 F.2d 135, 138 (5th Cir. 1992) (emphasis
added) (quotation marks and citations omitted).

90. Programming Creativity, supra note 17, at 7.

Pre-publication draft – 21 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

programmers rights against copying and derivation under of the Copyright Act, the new

programmer’s code will not be infringing.91 This would be true even in the unlikely event

that the second programmer produces identical code.92 In summary, as with most other

copyrighted works, the merger doctrine is the rare exception for computer programs so

courts should hesitate before applying it.93

Of course, Google attempted to raise merger as a reason not to allow copyright

remedies in the Google v. Oracle case.94 Specifically, Google asserted that the appropri-

ated code had to be copied “[b]ecause no other instructions can perform the declarations’

91. See 17 U.S.C. §§ 106(1) & 106(2) (2020) (establishing the rights against copying
and derivation).

92. See Mazer v. Stein, 347 U.S. 201, 217–18 (1954) (holding that two people may
independently create identical works which would entitle both of them to copyrights). Some
courts fail to limit proof of substantial similarity to its proper role in copyright litigation,
triggering confusion about this possibility. See, e.g., Universal Athletic Sales Co. v. Salkeld,
511 F.2d 904, 907 (3d Cir. 1975) (requiring proof of substantial similarity to prove
infringement). More appropriately, proof of substantial similarity, when combined with
access to the first author’s work, raises a presumption that copying occurred. See Keeler
Brass Co. v. Cont’l Brass Co., 862 F.2d 1063, 1065 (4th Cir. 1988) (“As most courts have
recognized, persuasive direct evidence of copying is seldom available to a plaintiff in an
infringement controversy. For that reason, courts have generally accepted circumstantial
evidence to create a presumption of copying. To raise this presumption, the plaintiff must
show that the alleged copier had access to the material and that the original material and
the alleged copy are substantially similar.”). The difference is significant as presumptive
proof can be rebutted by evidence that contradicts the ultimate conclusion that copying
occurred. See id. at 1066. Without this rebuttal being possible, Mazer’s independent
creation would be impossible.

93. See, e.g., Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 838 (10th Cir.
1993) (“The merger doctrine is applied as a prophylactic device to ensure that courts do
not unwittingly grant protection to an idea by granting exclusive rights to the only, or one
of only a few, means of expressing that idea.”).

94. See Google’s Brief, supra note 5, at 14.

Pre-publication draft – 22 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

function, [so] merger excludes them from copyright protection.”95 To examine this assertion

both the nature of the code taken and the nature of the function it performed must be

examined.

1. Computer Software that Performs a Nontrivial Function Does Not
Merge

The software involved in the case was far from simple or trivial. All told, Google

appropriated approximately 11,500 lines of code.96 These lines of code defined the APIs

that create a set of pre-written functions that a programmer can use without having to write

the needed operative code.97 Some of these routines are simple like the “maximum” API

discussed by the Supreme Court98 but most APIs are far more complicated, allowing a

programmer to create a new window on the screen, sort data into order, retrieve data from

a database, or implement security protocols as examples.99

It is important to note that the lines of code taken were not just an alphabetical list

of available APIs; instead, they were an organized list where Oracle had placed each API

95. Id.

96. Google, 141 S. Ct. at 1191. In comparison, the simpler program in the authors’
Programming Creativity study had tens of lines of code. See supra text accompanying note
72.

97. See Google at 1191. Google only copied the definitional code, not the operational
code, see id., so its copying was not comprehensive—a vast majority of the needed code
to reproduce the APIs was independently created. See supra note 92. See generally supra
note 3.

98. See Google at 1192. It must be noted that there are 154 different “maximum”
functions defined within the Oracle APIs, each achieving a different processing task. See
Java APIs, supra note 3 (searching for “maximum”).

99. See Thimbleby, supra note 3, at 940; Java APIs, supra note 3.

Pre-publication draft – 23 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

into a deliberately created structure that it felt would make each API easier to find by the

programmer, thus making its Java language easier to use.100 This structure, being the

creative expression of Oracle, is also within the ambit of copyright protection as databases

can be protected by copyright based on the creativity used to select items for inclusion and

for the overall organization imposed on them.101 This expressive aspect of the Oracle APIs

was copied by Google, also.

Consequently, for Google to argue that merger applies to the APIs is nonsense.

With over 2,000 APIs defined, all of which would operate just as effectively were they to

be placed into a different methods, classes, and packages, Oracle’s arrangement is

patently not the only choice available. There could also be substantial variations in the

names of the actual APIs. The “maximum” API discussed by the Supreme Court102 could

have just as easily been named “max,” “larger,” “bigger,” or anything else that captures a

comparison of relative size. While on a single API, this variation would likely be determined

to be de minimus,103 when applied over the thousands of APIs defined within Java each of

100. See Google at 1191 (“[E]ach individual task is known as a ‘method.’ The API groups
somewhat similar methods into larger ‘classes,’ and groups somewhat similar classes into
larger ‘packages.’”).

101. See Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., Inc., 499 U.S. 340, 348–49 (1991);
Infogroup, Inc. v. Database LLC, 956 F.3d 1063, 1066 (8th Cir. 2020) (finding database
creatively selected and organized).

102. See Google at 1192.

103. See, e.g., Sandoval v. New Line Cinema Corp., 147 F.3d 215, 217 (2d Cir. 1998)
(defining “de minimus” by holding that “the alleged infringer must demonstrate that the
copying of the protected material is so trivial as to fall below the quantitative threshold of
[copyright].”) (quotation marks and citation removed).

Pre-publication draft – 24 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

which could similarly be renamed, the variation becomes significant enough for copyright

protection.

Of course, Google argued that these APIs are not “normal” software because they

are part of the Java language.104 As the next section discusses, however, this does not

make a difference.105

2. Software that Creates a Programming Language Does Not Merge

It must be noted that Java is not a natural thing.106 Before Oracle’s employees

expressed the programming language in the mid 1990s,107 there was nothing known as

Java. Further, Java is expressed as a computer program108 so, because it was intended

“to be used directly ... in a computer in order to bring about a certain result,” copyright

protection was expressly intended by Congress.109

Despite this, it seems that Google considers the Java language itself as a fact.110

The reality is different, however, as programming languages, including Java, are brought

104. See Google’s Brief, supra note 5, at 20.

105. Again, a fair use analysis is not being done. See supra note 18.

106. Cf. Castle Rock Ent., Inc. v. Carol Pub. Grp., Inc., 150 F.3d 132, 138–39 (2d Cir.
1998) (“each [Seinfeld television show] trivia question is based directly upon original,
protectable expression in Seinfeld. As noted by the district court, The [defendant] did not
copy ... unprotected facts, but, rather, creative expression.”).

107. Thimbleby, supra note 3, at 937.

108. See id. at 937 & 940.

109. 17 U.S.C. § 101 (2020) (defining “computer program”).

110. See Google’s Brief, supra note 5, at 3–4 & 19–20.

Pre-publication draft – 25 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

into existence when their authors/programmers creatively express them.111 In Java’s case,

its author first fixed it in 1995.112 In copyright parlance, therefore, Java computer program

is the “work of authorship” that has been fixed and is owned by Oracle.113 For merger to

apply to Java, it would have to be unique, not in comparison to itself as all works of

authorship are identical to themselves, but in comparison to the environment of similar

expressions. In other words, can an author express additional computer languages—or

even more strictly an object-oriented computer language—or has Oracle monopolized the

field with Java.114 The facts clearly demonstrate that no such monopoly of expression

exists.

To begin, there are a vast number of programming languages that have been

created both before and after the time Java was created. A commonly referenced list of

“significant” languages (as of 2000) included fifty different ones,115 extracted “from among

the over 1,000 high-level implemented languages ... that have been defined since work in

111. An analogy to computer programming languages is the Klingon “language” created
as part of the Star Trek franchise. See Klingon Language in WIKIPEDIA (last edited May 29,
2022 1:31 (UTC)), https://en.wikipedia.org/wiki/Klingon_language. Many fans of Star Trek
have spent time exploring this area and can even speak Klingon, but acknowledge as they
are doing so that they are an “authorized user” of the copyright that belongs to Paramount
Pictures. See Klingon Language Inst. (last visited June 20, 2022 5:02 PM),
https://www.kli.org/.

112. See Thimbleby, supra note 3, at 937.

113. See 17 U.S.C. §§ 102(a) & 201(a)-(b) (2020).

114. See Mason v. Montgomery Data, Inc., 967 F.2d 135, 138 (5th Cir. 1992).

115. Jean E. Sammet, Appendix VI in ENCYCLOPEDIA OF COMPUT. SCI. 1937, 1939–43.
(Anthony Ralston et al eds., 4th ed. 2000)

Pre-publication draft – 26 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

computing started.”116 Of course, programming languages did not stop developing in 2000.

Since then, while many “older” languages are still used,117 many significant new languages

have been created.118 Based on the list of what is currently used, Java may be among the

most popular language in use today, but it clearly not the only programming language.119

Consequently, with over 1,000 expressed programming languages, no one of them merges

as there are clearly more ways to express one.

It should be obvious, also, that there is nothing unique about Java that should cause

it to merge when other programming languages do not. From a technical perspective, Java

is an object-oriented language,120 but so are many others.121 Java allows the creation of

116. Id. at 1937.

117. COBOL, a language created in the late 1950s which operates in a significantly
different way than modern programming languages, still has a significant presence in the
computer world. See Patrick Stanard, Today’s Business Systems Run on COBOL,
TECHCHANNEL (Mar. 10, 2021), https://techchannel.com/Enterprise/03/2021/business-
systems-cobol. It is estimated that there are over 200 billion lines of COBOL code in
current use, often for core business systems, with over a billion more lines added annually.
See id.

118. See Brian Eastwood, The 10 Most Popular Programming Languages to Learn in
2022 (June 18, 2020), https://www.northeastern.edu/graduate/blog/most-popular-
programming-languages/. Most of the subjects in the authors’ Programming Creativity
study chose from this list using mostly Python, but Swift was also present within the
dataset.

119. Cf. id. (listing more programming jobs in Java than any other language).

120. See KEN ARNOLD, JAMES GOSLING, & DAVID HOLMES, THE JAVA PROGRAMMING

LANGUAGE (4th ed. 2005). See generally, Peter Wegner, Why Interaction is More Powerful
than Algorithms, COMM. OF THE ACM, May, 1997, at 80 (describing the advantages of
decreasing focus on algorithms).

121. See Trung Tran, Top 6 Object-Oriented Programming Languages, ORIENT (Dec. 17,
2021), https://www.orientsoftware.com/blog/list-of-object-oriented-programming-languages/
(listing Java along with C#, Python, Ruby, PHP, and TypeScript).

Pre-publication draft – 27 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

APIs,122 but so do many others.123 From the computer science perspective, Java is a

member—granted, a very popular member—of a pack of other similar languages. As it is

imminently possible for a new author to express a language like Java (because several

already have), merger does not operate.

C. Conclusion: Software is a Fully Expressive Work

It is not surprising that the Feist case addressed the copyrightability of a telephone

book’s white pages.124 Clearly that database of the last century lived just off the edge of

human expression. As the Court determined, taking all data points (the names and phone

numbers) and putting them into the only logical order available (alphabetical) expressed

nothing that can fairly be called “creative.”125 Directly, Feist removes straight-forward

databases and other similar non-expressively creative works from the ambit of copyright.

A computer program is not a database, however, nor is it like one. Software is not

comprised of a list of mandatorily chosen data items placed into a predefined order;

instead, it is a creatively written expression designed, ultimately, to be operable on a

computer system (while also explaining the details of its operation to those who read its

code).126 The fact that programs can operate on a computer does not mean that they lack

122. See supra text accompanying notes 96–99.

123. See, e.g., James Briggs, The Right Way to Build an API with Python, TOWARDS

DATA SCIENCE (Sep. 11, 2020), https://towardsdatascience.com/the-right-way-to-build-an-
api-with-python-cd08ab285f8f; Ajit Mungale, C# and API, C#CORNER (Dec. 30, 2005),
https://www.c-sharpcorner.com/article/C-Sharp-and-api/; supra note 3.

124. Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., Inc., 499 U.S. 340, 342 (1991).

125. See id. at 345.

126. See supra section II.

Pre-publication draft – 28 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

https://www.c-sharpcorner.com/article/C-Sharp-and-api/;

in copyrightable content, however. As one court said, “Although processes themselves are

not copyrightable, an author’s description of that process, so long as it incorporates some

originality, may be protectable.”127 As the Programming Creativity study established, all

nontrivial computer programs do this. In other words, a computer program is a description

of a process to be achieved that required creativity by its programmer for its existence. It

is not, therefore, a question of how little of a program is protectable by copyright; it is a

question of how little of it is an idea. This, in turn, requires a careful application of the

methods used to dissect the ideas from the expression in computer software.

IV. Applying the Idea/Expression Dichotomy to Computer Programs: Using the
Abstraction-Filtration-Comparison Approach Appropriately

As discussed above, all nontrivial computer programs are expressive and should

obtain copyright protection as a result. Having done so, of course, does not answer all of

the questions raised by computer software copyrights. Section 102(b)’s idea/expression

dichotomy still requires exclusion of some aspects of all computer programs (and all other

works of authorship, for that matter).128 Fundamentally, copyright requires that the ideas

underlying the expressed code remain available despite the claimed copyright.129

127. Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 837 (10th Cir. 1993).

128. See, e.g., 17 U.S.C. § 102(b) (2020); Computer Assoc. Int’l, Inc. v. Altai, Inc., 982
F.2d 693 (2d Cir. 1992); Whelan Assocs., Inc. v. Jaslow Dental Lab’y, Inc., 797 F.2d 1222
(3d Cir. 1986).

129. See 17 U.S.C. § 102(b) (2020).

Pre-publication draft – 29 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

Courts have been addressing this issue in software over the last decades.130 Not

surprisingly, most courts have relied on specialized version of the typical copyright

deconstruction analysis131—the abstraction-filtration-comparison test132—to coordinate this.

By breaking the software down in multiple ways, the line between idea and expression can

be drawn.133 What does not work, however, is assuming that there is a simple way to do

this, or that examining one aspect of a computer program will result in an accurate

placement of the line. The primary example of courts doing this in an inappropriate and

destructive way is when they conflate “efficiency” with a lack of creative expression.134

Under this approach, if “efficiency” is found within the software, the program is to be

treated as an idea rather than an expression under section 102(b).135

130. E.g. Whelan Assocs., Inc. v. Jaslow Dental Lab’y, Inc., 797 F.2d 1222 (3d Cir.
1986); Computer Assoc. Int’l, Inc. v. Altai, Inc., 982 F.2d 693 (2d Cir. 1992); Gates Rubber
Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823 (10th Cir. 1993); Lotus Dev. Corp. v. Borland
Int’l, Inc., 49 F.3d 807 (1st Cir. 1995), aff’d by an equally divided court, 516 U.S. 233
(1996); MiTek Holdings, Inc. v. Arce Eng’g Co., 89 F.3d 1548 (11th Cir. 1996); Dun &
Bradstreet Software Servs., Inc. v. Grace Consulting, Inc., 307 F.3d 197 (3d Cir. 2002);
Gen. Universal Sys., Inc. v. Lee, 379 F.3d 131 (5th Cir. 2004).

131. See, e.g., Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (1930) (L. Hand,
C.J.).

132. See, e.g., Computer Assoc. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 706–12 (2d Cir.
1992).

133. See id.

134. See Computer Assoc. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 708 (2d Cir. 1992);
Merch. Transaction Sys., Inc. v. Nelcela, Inc., No. CV02-1954-PHX-MHM, 2009 WL
723001, at *14 (D. Ariz. Mar. 18, 2009); CSS, Inc. v. Herrington, No. 2:16-CV-01762, 2017
WL 3381444, at *9 (S.D. W. Va. Aug. 4, 2017).

135. See authorities cited, supra note 134.

Pre-publication draft – 30 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

The reality is that this use of what the courts call “efficiency” is based on a false

assumption: that there is such a thing as a singular most efficient computer program to

solve a particular problem.136 In reality, efficiency itself is an amorphous concept—indeed,

a utopian goal, at best—within all engineering-based disciplines including computer

science.137 As Professor Petroski describes it, “Designing anything, from a fence to a

factory, involves satisfying constraints, making choices, containing costs, and accepting

compromises.”138 There is no single point of efficiency for any engineered project, including

software.

Unfortunately, when examining use of efficiency within the case law examining

computer software, the existence of “constraints, ... choices, ... costs, and ...

compromises”139 in creating the program are not incorporated into the decision-making.140

136. Even the legal literature has long acknowledged that computational efficiency is not
the primary goal of most computer software creation. See Peter S. Menell, An Analysis of
the Scope of Copyright Protection for Application Programs, 41 STAN. L. REV. 1045, 1052
(1989). What has not been recognized, however, is that efficiency, itself, is unobtainable.

137. See HENRY PETROSKI, SMALL THINGS CONSIDERED 4–13 (2003); David Hemmen-
dinger, Procedure-Oriented Languages in ENCYCLOPEDIA OF COMPUTER SCI. 1441 (Anthony
Ralston et al eds., 4th ed. 2000) (describing how these “higher-level” languages make
coding faster and allow for less hardware dependency—both forms of efficiency—even
though assembly language would operate more directly and speedily—an alternate form
of efficiency). See generally SHERIF D. EL WAKIL, PROCESSES AND DESIGN FOR MANUFACTUR-
ING 10–12 (2d ed. 2002) (describing engineering trade-offs and stating that “the most
efficient design ... is ... the one that would be favored by the customers and/or the society
as a whole”); Code Efficiency, TECHOPEDIA (MAR. 14, 2017), https://www.techo-
pedia.com/definition/27151/code-efficiency.

138. PETROSKI, supra note 137, at 13.

139. Id.

140. See Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 708 (2d Cir. 1992).

Pre-publication draft – 31 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

The court, often triggered by the party challenging the copyright, determines that the

program is efficient so it must be an idea under section 102(b).141 To both avoid this and

understand why it can never succeed, the complexity of defining efficiency within a

computer program must be appreciated.142 In fact, efficiency within a program can be

defined in numerous, but inconsistent ways, the more common of which are described

next.

1. A Non-Exhaustive List of Efficiency Definitions

Speed of Execution: Most times, judicial discussions of finding efficiency in a

computer program appears to be alluding to a determination that would calculate the

number of computer instructions that will need to be executed to complete its task.143

Apparently, if this number is smaller than other ways of programming the computer, this

version of the program would be found to be the most efficient and would be excluded from

copyright protection under the determination that it is an idea.144

In reality, doing this cannot work. Simply counting the number of instructions

executed by a program is not meaningful as different basic instructions (such as

multiplication and addition) take a different amount of time to execute.145 Even if this were

141. See id.

142. See Patricia B. Van Verth, Software Metrics in ENCYCLOPEDIA OF COMPUT. SCI. 1627,
1628–30 (Anthony Ralston et al eds., 4th ed. 2000) (describing multiple ways of
“measur[ing] ... software”).

143. See, e.g., Computer Assocs., 982 F.2d at 708.

144. See id.

145. See Is multiplication slower than addition on modern CPUs?, RESEARCHGATE (Feb.
23, 2018), https://www.researchgate.net/post/Is-multiplication-slower-than-addition-on-

Pre-publication draft – 32 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

not true, there is no easy way to determine how many instructions will need to be executed

just by examining the algorithm. For most—except the most trivial ones—it is mathemati-

cally impractical (or, for some algorithms, impossible) to calculate the number of steps that

will be needed.146 As importantly, for many algorithms, the actual data being processed will

affect the number of execution steps needed, potentially radically.147 Thus, as a general

matter, any calculation of the speed in this way will be accurate only for the particular

variation of data to be processed.148

To avoid this problem, a proxy for speed of execution could be obtained by

determining the amount of clock-time that is needed for the program to complete known

modern-CPUs (comparing the speed of adding and multiplying numbers and estimating
that multiplication takes three times longer). See generally Dennis J. Frailey, Computer
Architecture in ENCYCLOPEDIA OF COMPUT. SCI. 304, 313–15 (Anthony Ralston et al eds.,
4th ed. 2000) (discussing the various ways computers have been designed); Shmuel
Winograd, How Fast Can Computers Add?, SCI. AM., Oct., 1968, at 93 (detailing how the
electronics underlying mathematical operations work).

146. See DONALD E. KNUTH, FUNDAMENTAL ALGORITHMS 7 (2d ed. 1973); id. at 10–92
(describing the mathematical methods needed to evaluate an algorithm); id. at 94–102
(analyzing the average execution speed of a simple method of determining the largest
number in a list).

147. See id. at 95–96.

148. See id. at 96 (stating that the determination of execution speed of an algorithm will
result in a minimum, maximum, and average value determined by the dataset being
processed); DONALD E. KNUTH, SORTING AND SEARCHING 73–75 (1973) (stating that about
twenty-five methods of putting data into a set order will be discussed, each having its own
“advantages and disadvantages”). As an example, using an “insert-sort” algorithm (the
technique most card players use to order their hand by suit and rank) is generally
considered one of the slowest ways for a computer to place information in order, but it will
excel if the data are already highly ordered. See id. at 110.

Pre-publication draft – 33 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

as “bench-marking,”149 but this produces inconsistent results for two primary reasons. First,

as before, the data used in the bench-marking attempt will affect the results, often

dramatically.150 Second, the multitasking nature of the modern computer will affect the

accuracy of the results.151 With a multitasking computer, the other processes that are active

during each bench-marking attempt will produce widely variable bench-marking results.152

Dedicating the computer to a particular task to avoid this leads to an equally unreliable

result as modern computers are always multitasking,153 so the measured benchmark will

be significantly different than reality, particularly if the program being measured used a

commonly needed secondary resource—the main data storage disk being the primary

example— as the competition for this resource will significantly raise the bench-marked

result.154

149. See Rudi Eigenmann, Benchmarks in ENCYCLOPEDIA OF COMPUT. SCI. 137 (Anthony
Ralston et al eds., 4th ed. 2000).

150. See id. at 139.

151. See id. at 137–39.

152. See Walter F. Tichy, Multitasking in ENCYCLOPEDIA OF COMPUT. SCI. 1210 (Anthony
Ralston et al eds., 4th ed. 2000) (describing how a multitasking computer shares its
resources among various programs that appear to be running simultaneously). Almost all
modern computers, from cell phones to super computers, multitask. See id.

153. Many modern computers have multiple processors which can avoid competition at
that level unless more tasks are active than the number of processors. Id. at 1210. When
this happens, one or more of the processors must be shared, called “multiplexing.” Id. If
multiplexing is needed, the bench-marking results will be much higher. See Id.

154. See id. This problem results particularly if a physical, spinning hard disk is used as
the latencies cause by disk rotation and head movement are significant limitations on
execution speed. See David N. Freeman, Access Time in ENCYCLOPEDIA OF COMPUT. SCI.
8, 8–9 (Anthony Ralston et al eds., 4th ed. 2000). The issue also comes up, although it is
of smaller magnitude, for the newer silicon “disks” that have no rotational or head-seek

Pre-publication draft – 34 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

In addition to being very difficult to measure, the basic speed of execution is most

often irrelevant in the real world of software design. Unless a developed program operates

too slowly, the other “efficiency” considerations discussed below are of higher import.155 As

long as the program is “fast enough,” there is no concern about increasing the speed more.

Technology Needed: In most ways, the decision about what technology (particularly

hardware) is available on which to execute the software will be more determinative of

overall program speed than anything else. If the hardware that is available is primitive, the

software written for it will need to be highly limited in its functionality or it will operate at

unacceptably slow speeds.156 Equally, if the hardware is powerful, much more enabled

delays because the interface they use to be compatible with all software introduce
significant delays as does the slower operating speed of the memory chips used. See
Stephen J. Rogowski, Hard Disk in ENCYCLOPEDIA OF COMPUT. SCI. 767, 768 (Anthony
Ralston et al eds., 4th ed. 2000).

155. In the study of computer programmer creativity report on above, for example, each
programmer was required to produce code that would provide an answer within a
maximum of five minutes of computer clock-time, but had no incentive to produce code that
was faster than this. Programming Creativity, supra note 17, at 4. In the computer science-
trained authors’ collective experience, this is a common approach to execution speed,
particularly in commercial software development. All users want their software to be faster,
but none seem willing to pay the price that would be needed for the speed to be provided.

156. A simple comparison between the processing done by a standard piece of
consumer electronics (a PC, cell phone, or automobile interface, as examples) and the
kind of technology used by online businesses is illuminating. Most have been surprised by
the predictive technology that attempts to determine what other music, movie, or other
product we would like to buy or, similarly, shows an advertisement that seems to know
what we have been doing recently. The computer processing necessary to do this is
intensive, usually required large arrays of multiple computers so that the billions on lines
of data can be processed quickly enough. Cf. Top 18 Advertising Analytics Software, PAT

R E S E A R C H (l a s t v i s i t e d J u l y 2 3 , 2 0 2 2 1 1 : 4 8 A M) ,
https://www.predictiveanalyticstoday.com/top-advertising-analytics-software/. If an attempt
were made to do this on consumer-level computer technology, it would take too long to
finish. The automobile interface would be particularly bad at this as, it seems, most
systems do not have the capacity to activate a back-up camera and turn off the music

Pre-publication draft – 35 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

software becomes possible.157 Consequently, the computer system’s maximum capability

is more determinative of execution speed than how the programmer has chosen to write

the software.158

Of course, the decision point for what hardware is available can be reduced to a

common problem: the amount of money available for the project. Very capable hardware

carries a large price tag.159 Consequently, rather than being a way of distinguishing

between an expression and its underlying idea, establishing computer program efficiency

may be better appreciated as merely a measurement of the wealth of the entity producing

or running it.

system at the same time.

157. This increase in capabilities is often accompanied by a decrease in the speed of
execution. See Niklaus Wirth, A Plea for Lean Software, 28 COMPUTER, Feb., 1995, at 64.

158. Cf. id. Also, this is not a stable determination over time. Programs that are run
routinely today—machine learning or weather forecasting, as examples—would be
incapable of operation on the computers of the last century. Cf. NAT’L RSCH. COUNCIL, THE

FUTURE OF COMPUTING PERFORMANCE: GAME OVER OR NEXT LEVEL at 55 (2011) (showing
thousand-fold increase in computer performance between 1985 and 2010). Likewise the
software developed for the first generation of widely available personal computers would
be seen today as amusing examples of incompetence even though the execution speed
would be quick. For example, it is hard to imagine that Wordstar; an early (and market
dominating) non-WYSIWYG, micro-based word processor; would successfully process the
complexities of a typical law review article, particularly if the user of the software is not
sophisticated in the operation of a computer. See Winword, WordStar 0.x/1.x,
https://winworldpc.com/product/wordstar/0x1x (last visited Apr. 18, 2022).

159. Cf. Paul E. Ceruzzi, Digital Computers Since 1950 in ENCYCLOPEDIA OF COMPUT. SCI.
552 (Anthony Ralston et al eds., 4th ed. 2000).

Pre-publication draft – 36 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

https://winworldpc.com/product/wordstar/0x1x

Cost of Producing the Code: Another way to measure the efficiency of computer

code is to evaluate the cost of producing it.160 If developing the program is beyond the

resources of a company, no other efficiency has meaning other than looking for ways to

minimize or eliminate these costs; indeed, one can posit that this was a motivation of

Google in the Google v. Oracle case.161 Google knew that programmers could be hired who

already knew how to use Oracle’s Java system with its APIs.162 By appropriating these

APIs, the efficiency of creating the Android programs were greatly enhanced, making it

more “efficient” than other options by being significantly cheaper to produce.163 This, of

course, had nothing to do with how well the APIs operated and seems to be completely

irrelevant to whether the APIs are expressions or ideas.164

Another example of this factor was the development of the “very high level

languages” (“VHLL”) and other nonprocedural programming techniques starting in the late

1960s and early 1970s.165 These programs were designed to simplify programming by

160. See FREDERICK P. BROOKS, JR., THE MYTHICAL MAN-MONTH (Anniversary ed. 1995).
As Professor Brooks discusses, even defining these costs are extraordinarily difficult. See,
e.g., id. at 4.

161. See Google LLC v. Oracle America Inc., 141 S. Ct. 1183, 1190 (2021).

162. See id. (“Google wanted millions of programmers, familiar with Java, to be able
easily to work with its new Android platform....”).

163. See id.

164. The reality is, of course, that the APIs, like all other copyrighted works, are a
combination of both. See, e.g., Nichols v. Univ. Pict. Corp., 45 F.2d 119 (1930) (L. Hand).

165. See Burton M Leavenworth, Jean E. Sammet, & David Hemmendinger, Non-
procedural Languages in ENCYCLOPEDIA OF COMPUT. SCI. 1244 (Anthony Ralston et al eds.,
4th ed. 2000).

Pre-publication draft – 37 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

removing any concern for the details of the underlying machine’s operation, being problem-

oriented rather than procedurally-oriented.166 Some of these VHLLs keep the basic

procedural predicates that have been used since the early years of computer programming

but remove the need for the programmer to understand how the underlying computer

hardware works167 while others remove the predicates, too, and just require English-like

statements of the desired result.168 But there is a dark side to these VHLLs: the operating

program will be significantly slower in operation and require significantly more hardware

capability than a similar program written in a harder to use language.169 In other words,

coding ease and efficiency comes at the expense of operational efficiency: if you have one

you cannot have the other.

166. See id.; C. WILLIAM GEAR, COMPUTER ORGANIZATION AND PROGRAMMING 14–16
(1969).

167. A popular example here would be Java which places its procedural aspects within
“methods” which are then easily reused. See Thimbleby, supra note 3, at 937.

168. See Leavenworth, supra note 165, at 1245. A prime example here is Focus, see
Focus, WIKIPEDIA (Feb. 13, 2022 14:28 UTC), https://en.wikipedia.org/wiki/FOCUS, but the
command structure found within Excel would also qualify; indeed, the automated voice
response systems such as Alexa/Assistant/Cortana could also be considered the ultimate
goal of this kind of software. For a general discussion of the current status of computers
understanding spoken language, see Hang Li, Language Models: Past, Present and
Future, COMM. OF THE ACM, July, 2022, at 56.

169. See Mark Gibbs, A High-Level Language Worthy of Your Tool Kit, NETWORK WORLD,
June 14, 1999, at 44 (“if you want raw speed, [VHLL] aren’t the way to go.”). For
Alexa/Assistant/Cortana, the needed computer power is somewhat hidden from the user
as the real processing power, being well beyond anything located in most people’s house,
is handled by a cloud-based (what used to be called distributed) computing service. See
Richard Baguley & Colin McDonald, Appliance Science: Alexa, how does Alexa work? The
science of the Amazon Echo, CNET (Aug. 4, 2016 5:00 AM PT),
https://www.cnet.com/home/smart-home/appliance-science-alexa-how-does-alexa-work-
the-science-of-amazons-echo/.

Pre-publication draft – 38 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

https://en.wikipedia.org/wiki/FOCUS

Ease of Modification: Another way of defining efficiency is to determine how easy

it is to modify the software for new or changing purposes.170 Most modern software is

revised on a regular basis.171 A good example of this would be any of the tax preparation

software that is on the market.172 As tax laws change on a regular basis, making it possible

to easily incorporate the new laws becomes an efficiency consideration for the company;

indeed, this consideration is likely to be predominant than other efficiency factors.173 Most

times, however, this ease of modification results in a computer program that is

computationally slower.174

Reducing Software Bugs: A recurrent problem in computer science is developing

ways that error-free software can be produced.175 Among the techniques discussed by

170. See Marvin Zelkowitz, Perspectives of Software Engineering, 10 COMPUTING

SURVEYS 197 (1978) (discussing the life-cycle of computer software systems); Videla,
supra note 28, at 56–58; Benjamin Mittman & Jean E. Sammet, Problem-Oriented
Languages in ENCYCLOPEDIA OF COMPUT. SCI. 1433 (Anthony Ralston et al eds., 4th ed.
2000) (discussing the advantages of programming approaches that emphasize non-
technical coding to enable ease of programming).

171. See, e.g., Microsoft Word, MICROSOFT WIKI (last visited Apr. 20, 2022 10:42 AM),
https://microsoft.fandom.com/wiki/Microsoft_Word (listing at least 30 versions of the Word
program). Cf. supra note 117 (discussing the current use and modification of business
software).

172. See, e.g., Manually Update TurboTax Business Software, TURBOTAX (last visited
June 22, 2022 2:07 PM), https://ttlc.intuit.com/turbotax-support/en-us/help-article/update-
products/manually-update-turbotax-business-software/L3WqYBBgc_US_en_US
(describing annual updates).

173. Cf. id.

174. See Mittman & Sammet, supra note 170 (recognizing that non-technical coding
produces programs that often take significantly longer to execute).

175. See BROOKS, supra note 160, at 142–50.

Pre-publication draft – 39 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

https://microsoft.fandom.com/wiki/Microsoft_Word

Professor Brooks is the use of top-down design and structured programming to develop

new software.176 By imposing these artificial organizations on the developing code, many

mistakes in coding can be avoided in the first place or, at least, made easier to find and

repair as the development continues.177 Similarly, the recent development and use of

object-oriented programming, including Java, further abstracts the coding process by

defining specific fields with their associated attributes combined with methods for

processing the data.178 The ability to program at this higher level of abstraction is not free,

however, as the implemented code will almost certainly need more clock-time to operate.179

Interoperability: An early and continuing issue in developing computer programs was

the lack of interoperability. A program that was written to run on an IBM mainframe would

not operate on another company’s machine, e.g., Honeywell or Digital Equipment.180

176. Id. at 143–44.

177. See id. These techniques have provided some help in producing error-free code,
but the problem persists, partially because computer languages, like other human-created
languages, contain fundamental ambiguities. See Alvaro Videla, Meaning and Context in
Computer Programs, COMM. OF THE ACM, May, 2022, at 56.

178. See Peter Wegner, Object-Oriented Programming (OOP) in ENCYCLOPEDIA OF

COMPUT. SCI. 1279 (Anthony Ralston et al eds., 4th ed. 2000).

179. See BROOKS, supra note 160, at 143 (discussing top-down design’s use of
modules); Luca Cardelli, Bad Engineering Properties of Object-Oriented Languages, ACM
COMPUT. SURV., Dec., 1996, at 28 (discussing object-oriented coding). To implement these
programming approaches, multiple subroutine calls are normally used. See Adrienne Bloss
& J.A.N. Lee, Subprogram in ENCYCLOPEDIA OF COMPUT. SCI. 1708 (Anthony Ralston et al
eds., 4th ed. 2000). Each call has a small execution speed overhead which can be
significant if the module is used often. See Edwin D. Reilly, Calling Sequence in
ENCYCLOPEDIA OF COMPUT. SCI. 193, 194 (Anthony Ralston et al eds., 4th ed. 2000)
(describing the process steps needed to pass a parameter to a subroutine).

180. See Paul E. Ceruzzi, History of Digital Computers Since 1950 in ENCYCLOPEDIA OF

COMPUT. SCI. 552, 554–55 (Anthony Ralston et al eds., 4th ed. 2000).

Pre-publication draft – 40 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

Similarly, programs developed for the first microcomputers that were based on the

8080/Z80 family of chips and the CP/M operating system would not operate on the

8088/8086 hardware family using PC-DOS (and now Windows) that was found in IBM-

branded microcomputers.181 Of course, if programs routinely could operate on alternate

hardware, the efficiency of not having to reprogram the application for each hardware

platform would be gained.

Indeed, the Java language underlying the Google case became popular

substantially because it overcomes much of the interoperability problem.182 One powerful

part of Java is know as the Java Virtual Machine.183 Until this century, most computer

languages would compile into the native machine language for a particular computer or

would be interpreted by software that could only run on a particular type of hardware.184

More recently, languages such as Java do not do this, producing instead an “intermediate

181. See Larry D. Wittie, Microprocessors and Microcomputers in ENCYCLOPEDIA OF

COMPUT. SCI. 1161, 1166 (Anthony Ralston et al eds., 4th ed. 2000). To a certain extent,
this incompatibility was artificially created as a marketing decision when the IBM PC was
first released to help IBM capture a majority of the developing microcomputer marketplace
but also owed its origin, as many business decisions do, to happenstance. See Jeremy
Reimer, Total Share: 30 Years of Personal Computer Market Share Figures, ARSTECHNICA

(Dec. 15, 2005, 12:00 AM), https://arstechnica.com/features/2005/12/total-share/.

182. See Thimbleby, supra note 3, at 937. This is not to minimize the importance of its
object-oriented approach to programming that makes it easier to develop the code,
particularly Internet- and Web-based programs, in the first place. See id. at 938–39.

183. Id. (describing the Java Virtual Machine).

184. See, e.g., IBM SYSTEM/360 OPERATING SYSTEM PL/I (F) COMPILER: PROGRAM LOGIC

MANUAL 13–15 (1966), www.bitsavers.org/pdf/ibm/360/ pli/ Y28-6800-
1_PL1(F)_PLM_Sep66.pdf.

Pre-publication draft – 41 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

http://www.bitsavers.org/pdf/ibm/360/

language” version.185 This allowed new parties who wished to use Java on different

hardware to write their own version of the Virtual Machine—a much smaller programming

task than rewriting all of Java—which could then execute any Java code on the different

computer.186 Java’s efficiency, therefore—indeed, maybe its key efficiency—is its high level

of interoperability. The required trade-off is also there: no one has ever accused Java of

executing quickly.187

2. The Use of Efficiency as a Measure of Copyrightability Fails
Causing Worthy Programs to be Unprotected

These examples of the different kinds of efficiency that can be found in computer

software demonstrates the fallacy in asking whether a piece of software is “efficient.” Even

that question standing alone is nonsensical. Going farther and attempting to use it to

separate computer software expression from idea compounds the problem.

A similar type of question would be to ask whether a particular bridge across a river

is the most “efficient” way of building one.188 Its designers certainly had to consider traffic

(both quantity and weight) using the crossing, but also had to incorporate a wide range of

185. See Ron Cytron, Intermediate Languages in ENCYCLOPEDIA OF COMPUT. SCI. 910
(Anthony Ralston et al eds., 4th ed. 2000). Importantly, of course, other languages other
than Java have used the intermediate language technique without appropriating any of the
Java Virtual Machine language. See, e.g., PETER TRÖGER, PYTHON (2.5) VIRTUAL MACHINE:
A GUIDED TOUR, (Apr., 2008), http://www.troeger.eu/teaching/pythonvm08.pdf.

186. See Cytron, supra note 185.

187. See When Is Java Faster Than C++?, FORBES (May 26, 2015, 01:26 PM),
https: / /www.forbes.com/si tes/quora/2015/05/26/when-is- java-faster- than-
c/?sh=20e2f17e3100 (estimating that Java executes three times slower than C++).

188. In literature, the same point can be raised by asking if Ernest Hemingway’s writing
is an idea while James Joyce’s is not because Hemingway writes more “efficiently” by
using fewer words than Joyce does.

Pre-publication draft – 42 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

other consideration—often including concerns not dictated by the engineering such as local

and national politics—before a design could be established. Similarly, programs, like other

engineering projects, can only be measured against the criteria individually established for

them. As all engineering requires different characteristics, advantages, and costs to be set-

off against each other,189 there is no single way to measure “efficiency.” To make

measuring “efficiency” a critical component of determining the nature of computer software,

therefore, is ridiculous.

Also, this again demonstrates the complexity of expression that underlies a

computer program. Programmers do not seek some mystical point of efficiency; instead,

like all other engineers, they seek to find the balance of considerations that produce a

functioning program (as defined by the user) within the bounds of the numerous

technological factors under which they operate.

The protocol of using the levels of abstraction within a computer program to find the

magical copyright line between an idea and its expression is beyond reproach. It has

worked for most copyrighted works and will work for programs. To expect this analysis to

be factually simple and reducible to a single factor is not realistic. Computer software is like

other copyrighted works that require considerable effort to separate the ideas from the

protected expression. Short-changing the effort by only focusing on a false notion of

efficiency will leave important parts of the software expression unprotected.

189. See PETROSKI, supra note 137, at 13.

Pre-publication draft – 43 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

V. Conclusion

Determining what aspects of a computer program are copyright protected and what

ones are not will present factually hard problems. This, of course, has been true for most

other copyrighted works, too. For a work of literature, for example, the actual words used

in the work clearly are protected in their literal form while the bare plot upon which it is

based is not.190 Any author can decide to write a work based on the “wrong two people

meet and come to tragic ends” plot but they cannot grab the latest romance novel version

of this plot and engage in wholesale verbatim copying.191 The factually difficult questions

come when the second author does not copy verbatim, but does copy enough of the first

author’s expression so that the essence of the expression has been appropriated.192 In the

same way, the programmer who creates a system of APIs certainly should obtain

protection for the literal code but cannot complain if another programmer independently

creates another API system.193 If the second programmer takes the expressive essence

of the first programmer’s API system and recreates that, non-literal copying has occurred

and copyright liability would seem to be appropriate.194

190. PAUL GOLDSTEIN, GOLDSTEIN ON COPYRIGHT § 9.1.1 (3d ed. 2022-2 supp. 2022)
(establishing infringement as being clear when “the defendant’s 300-page novel track[s]
the plaintiff’s 300-page novel word for word”).

191. See Mazer v. Stein, 347 U.S. 201, 217–18 (1954).

192. See, e.g., Salinger v. Random House, Inc., 811 F.2d 90, 98 (2d Cir.), opinion
supplemented on denial of reh’g, 818 F.2d 252 (2d Cir. 1987).

193. Cf. id. (involving non-software).

194. See, e.g., Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173,
1175–76 (9th Cir. 1989).

Pre-publication draft – 44 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

Most contested copyright litigation is not easy. In literature-based cases, for

example, the whole work is not taken verbatim; instead, more details are added (or, more

likely, left in place) to the common plot by the second author so that the new work seems

to be a continuation of the old one.195 At some point in this kind of process, too much of the

original expression will be taken so that infringement will be found.196 For computer

software, this same difficulty occurs. A programmer is free to express another object-

oriented computer language that relies greatly on APIs, but if it is too directly appropriated

from an existing expression—Oracle’s Java, for example—infringement occurs.197

It is a mistake, however, to conclude that the second programmer should be allowed

to appropriate the literal code created by the first because section 102(b) (or the merger

doctrine) always requires that result. Although computer programs are expressive of

procedures to accomplish particular results,198 they are not procedures in themselves. As

has now been established, the reality of programming is such that there are many ways

to express each computer procedure or algorithm, so requiring the second author to do so

independently is consistent with Congress’s intent to provide copyright protection for

195. Cf. Warner Bros. Ent. Inc. v. RDR Books, 575 F. Supp. 2d 513, 536 (S.D.N.Y. 2008)
(finding that a lexicon of “fictional facts” that had been created by the plaintiff was
infringing).

196. See Penguin Random House LLC v. Colting, 270 F. Supp. 3d 736, 747 (S.D.N.Y.
2017) (“copy[ing] substantial aspects of the themes, characters, plots, sequencing, pace,
and settings of plaintiffs’ Novels” infringes); GOLDSTEIN, supra note 190, at § 9.1.2 (“the
hardest case is the one in which the defendant’s work reflects only structural similarities
to the plaintiff’s—similarities in plot, incident and character in literary works....”).

197. See Johnson Controls, 886 F.2d at 1175-76. Again, this analysis does not factor in
the fair use defense.

198. See 17 U.S.C. § 101 (2020) (defining “computer program”).

Pre-publication draft – 45 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

computer programs.199 This means that courts should treat programs in a way that is

similar to “regular” copyrighted work. When doing that kind of analysis, the court does not

start with an assumption that the work is an idea unless it can establish itself as something

more; it goes the other way and only excludes something as an idea if it is established as

one.200 So too should a program be treated as an expression, with the court only

eliminating aspects of it that are within the exclusion of section 102(b).

199. See supra section II.

200. See Nichols v. Univ. Pict. Corp., 45 F.2d 119 (1930) (L. Hand).

Pre-publication draft – 46 – 70 J. Copyright Soc’y –

Electronic copy available at: https://ssrn.com/abstract=4267334

	I. Introduction
	II. A Description of the Empirical Examination of Computer Programs that Found Them to be Creative Products
	 A. Computer Programs—Even Simple Ones—Result from Numerous Expressive Choices Made by the Programmer (The PCDV)
	 B. Computer Programs—Even Simple Ones—Demonstrate Creativity (The CSDS)
	 C. Study Conclusion: Nontrivial Computer Programs Are Creative Expressions

	III. The Legal Consequences that Result from the Finding that Programmers Express Creativity
	 A. The Feist Creativity Requirement in Copyright Law is Easily Satisfied for the Vast Majority of Computer Software, Including the APIs in Google v. Oracle
	 B. As with Other Creative Expressions, the Merger Doctrine Needs to be Limited to its Proper, Narrow Role
	 1. Computer Software that Performs a Nontrivial Function Does Not Merge
	 2. Software that Creates a Programming Language Does Not Merge

	 C. Conclusion: Software is a Fully Expressive Work

	IV. Applying the Idea/Expression Dichotomy to Computer Programs: Using the Abstraction-Filtration-Comparison Approach Appropriately
	 1. A Non-Exhaustive List of Efficiency Definitions
	 2. The Use of Efficiency as a Measure of Copyrightability Fails Causing Worthy Programs to be Unprotected

	V. Conclusion

