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Abstract 

 

Products from many domains (art, music, engineering design, literature, etc.) are considered to 

be creative works, but there is a misconception that computer programs are limited by set 

expressions and thus have no room for creativity. To determine whether computer programs are 

creative works, we collected programs from 23 advanced graduate students that were written to 

solve simple and complex bioinformatics problems. These programs were assessed for their 

variability of expression using a new measurement that we designed. They were also evaluated 

on several elements of their creativity using a version of Cropley and Kaufman’s (2012) Creative 

Solution Diagnosis Scale that was modified to refer to programming. We found a high degree of 

variation in the programs that were produced, with 11 unique solutions for the simple problem 

and 20 unique solutions for the complex problem. We also found higher ratings of propulsion-

genesis and problematization for the complex problem than for the simple problem. This 

combination of variation in expression and differences in level of creativity based on program 

complexity suggests that computer programs, like many other products, count as creative works. 

Implications for the creativity literature, computer science education, and intellectual property 

law, particularly copyright, are discussed. 

Keywords: creativity, computer programming, copyright law, creative products  
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An Initial Examination of Computer Programs as Creative Works 

 

A common lay belief is that programming takes place in highly structured environments, 

relying solely on formal languages and standard techniques, with little or no room for 

creativity. (Kozbelt et al., 2012, p. 58) 

 

 Common definitions of creative works are that they are novel and useful (Sternberg & 

Lubart, 1999) or novel, effective, and whole (Wieth & Francis, 2018), what are known as 

standard definitions of creativity (Runco & Jaeger, 2012). In technical fields including 

engineering and computer programming, creators may emphasize the functionality of their work 

over its originality or aesthetic value (cf. Cropley & Kaufman, 2019). As Kozbelt et al.’s (2012) 

quote illustrates, there is a concern that products from some domains, such as computer 

programming, are not considered creative works. This exclusion is not without consequence, 

particularly in intellectual property law (IP). 

For computer programs, the law predominantly uses two IP systems to protect ownership 

-- patents and copyrights – but only the latter directly involves evaluations of creativity. IP 

makes the creativity of a program directly relevant to its copyrightability (Clifford, 2004; Feist 

Publications, Inc. v. Rural Telephone Service Company, Inc., 1991) but does not care about that 

for its patentability (Graham v. John Deere Co., 1966). At best, creativity is only indirectly 

referenced in patent law because the basic requirements for a patent are that the invention must 

be a “new and useful” and not an “obvious” extension of existing inventions (Patent Act of 1952, 

§§ 101-103). The court need not determine that the invention itself is “creative” or even that it 

resulted from a creative process by its human inventor; instead, it compares the newly claimed 

invention against all prior ones (called the “prior art”) to make sure that it is new and nonobvious 

(see Eibel Process Co. v. Minnesota & Ontario Paper Co., 1923; Graham v. John Deere Co., 

1966). Although one can easily posit that “creativity” is likely to be the driving force that allows 
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the creator to invent what did not previously exist, the law does not care about the motivation or 

source of the invention so long as it is appropriately different from the prior art. The U.S. 

Supreme Court expressly recognized this in the Graham case when it acknowledged that 

Congress, by adopting § 103, was repudiating the “flash of creative genius” test that had been 

required before the 1952 Patent Act was adopted (Graham v. John Deere Co., 1966, at 15). 

Copyright law differs. The courts are required to find that a “modicum of creativity” led 

to the expression contained in the work as the basic standard for determining copyright eligibility 

(Feist Publications, Inc. v. Rural Telephone Service Company, Inc., 1991, at 346 & 362; see also 

Clifford, 1997). In doing so, however, they have shown an inconsistent understanding of the 

nature of creativity underlying expressive works (Clifford, 2004; compare Boisson v. Banion, 

Ltd., 2001 with Satava v. Lowry, 2003). When computer programs are the subject of the 

modicum standard or its derivatives such as the idea-expression merger or filtration concepts 

(e.g., Computer Assoc. Int’l, Inc. v. Altai, Inc., 1992), the courts’ decision-making becomes even 

more indeterminate (Google LLC v. Oracle America, Inc., 2021, at 1197 (declining to address 

whether Oracle’s APIs are subject to copyright because, if they are, Google’s use of them was 

fair under the Copyright Act of 1976, § 107)). Of course, with little scientific evidence of 

whether programs are creative products, applying the modicum of creativity standard is unlikely 

to be based on fact. 

Our goal in the following paper, therefore, is to establish that computer programs are 

creative works. Beyond the direct scientific consequences of expanding knowledge about human 

creativity, the practical effect of establishing this will be significant as the distractive and 

expensive litigation over program creativity can be minimized. 

What Makes a Work Creative? 
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 Following Rhodes’ (1961) description of the 4 Ps of creativity, our focus is on the 

creative product. In psychology, creative products can take the form of responses on standard 

divergent tests such as the Torrance Tests of Creative Thinking (Torrance, 1974) or the 

Alternative Uses Task (Guilford, 1967), or can be domain-specific products, such as artistic 

works, musical scores, or engineering designs. Our focus is on domain-specific products because 

evaluation of these products is the “gold standard” of creativity assessment (Plucker & Makel, 

2010). 

 What makes a product creative differs on the assessment that is used, although many 

researchers follow the standard definition (Runco & Jaeger, 2012) that creative products are 

novel and appropriate. The most popular assessment is Amabile’s (1982) consensual assessment 

technique (CAT), which involves a global rating of creativity by a group of experts within a 

particular domain. Amabile (1982) argued that the raters’ experience within the domain would 

guide them to similar decisions regarding the creativity of a product (see Baer & McKool, 2009, 

for a review of the CAT). Unfortunately, the CAT is often used to evaluate products generated 

by individuals with low domain knowledge, such as children or undergraduates from a research 

pool (cf. Amabile, 1982; Kaufman et al., 2013, Study 1; Storme et al., 2014), although there are 

exceptions in studies that focus on advanced students or domain experts (cf. Beaty et al,, 2013; 

Dunbar, 1997; Getzels & Csikzentmihalyi, 1976).  

 Other measurements have been developed to assess creative products generated by 

individuals with high domain knowledge, such as advanced engineering students or design 

professionals. For example, Charyton et al. (2008) developed the Creative Engineering Design 

Measurement (CEDA) to evaluate product design by using a team of expert raters. Similarly to 

the CAT, the CEDA asks judges to make an overall rating of a product’s creativity. An overall 
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rating of creativity was also used by Kershaw et al.’s (2019) Decision Tree for Originality 

Assessment in Design (DTOAD) to assess concepts that are produced during the ideation stage 

of engineering design, but Kershaw et al. (2019) used trained coders instead of domain experts. 

In contrast, Cropley and Kaufman’s (2012) Creative Solution Diagnosis Scale (CSDS) consists 

of a series of statements allowing for the evaluation of a creative product’s relevance and 

effectiveness, problematization, propulsion, elegance, and genesis. Not only does the CSDS 

capture novelty and appropriateness of the product, it also captures the aesthetic components of 

the product, which are important for evaluation of creativity in multiple domains, including 

computer programming (Kozbelt et al., 2012). In addition, the CSDS is a reliable, valid metric 

for the assessment of functional creativity, which focuses on novel products that serve a useful 

purpose. Several previous studies have indicated high inter-rater agreement with the CSDS 

(Cropley & Cropley, 2016; Cropley et al., 2011), and have indicated that self-ratings and expert 

ratings are similar (Kaufman et al., 2016). Our review of these different methodologies led us to 

adopt the CSDS as the primary evaluative technique for this study. Computer programs are 

clearly functional products which matches the test’s intended target. 

 Beyond novelty and appropriateness, variation in expression is also an important 

characteristic of creative products. The idea of variability contributing to creativity has a long 

history within creativity research, beginning with Campbell’s (1960) assertion that variability in 

behavior is necessary to discover novel solutions to problems (see also Simonton, 1999). Stokes 

(2001) has argued that high variability levels are a hallmark of divergent thinking and that 

variability within a domain can be learned during the early stages of skill acquisition (Stokes, 

1999). In addition to variability affecting the production of creative products, greater variability 

is also associated with higher judgments of creativity (Young & Racey, 2009).  
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 Variability is not necessarily just blind variation (cf. Campbell, 1960; Simonton, 1999), 

however. Rather, constraints are necessary to generate and sustain novelty (Stokes, 2007). 

Stokes’ (2007) constraint model of novelty proposes paired constraints which simultaneously 

limit search within a problem space to known solutions and expand search to unfamiliar 

solutions. Stokes (2007) provides support for this model through an analysis of Pop Art, but 

support for this model can also be found within functional creativity domains, such as 

engineering and computer programming. Cropley et al.’s (2017) description of functional 

creativity suggests that engineers must work within the constraints imposed by the intended 

function of their designs. Working from previous ideas (constrained to known solutions) is a 

common approach in functional creativity; Sternberg et al. (2002) suggest six ways in which 

creativity can propel a field by working from existing knowledge. Likewise, in computer 

programming, a programmer must meet constraints based on the programming language or 

computer system being used or on requirements from the problem or client, yet also can promote 

innovation within the field by choosing novel approaches for solving the particular processing 

needs or by writing implementations of known approaches in unconstrained ways. 

Creativity in Computer Programming 

 Programmers believe that they engage in creative acts by writing computer programs (cf. 

Glass, 2006; Knobelsdorf & Romeike, 2008). One of the most instrumental founders of academic 

computer science, Donald E. Knuth, argued that programming is “…an aesthetic experience 

much like composing poetry or music” (Knuth, 1973, p. v) and that computer programming was 

an art, rather than a science (Knuth, 1974). While aesthetics is important for creativity in many 

domains (cf. Kozbelt et al., 2012), there is unfortunately a dearth of empirical research on the 

creative process of programming or programs as creative products.  
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There is scant existing literature on creativity within computer programming, or more 

broadly within computer science. One review chapter primarily focused on a historical review of 

breakthrough innovations within the field (Saunders & Thagard, 2005). While the examination of 

case studies of Big C creativity is a common approach within the creativity literature (cf. 

Simonton, 2010), this methodology does not compare related products and cannot always reveal 

the process that led to a creative product, especially in the absence of documentation of the 

process by the creator (a concern raised by Barnett & Romeike, 2017). Another review chapter 

went beyond historical cases to discuss fundamental issues such as defining how creativity 

manifests within components of computer science, but again, does not provide any empirical 

data about the process or programs as creative products (Barnett & Romeike, 2017).   

Two papers by Kozbelt and colleagues provided some empirical insight into the role of 

creativity in programming. Kozbelt et al. (2012) found that programmers did have aesthetic 

experiences while writing code, and that they believed aesthetics was an important characteristic 

of code (although not as important as the program’s functionality). Kozbelt et al. (2015) 

examined the creative process using verbal protocols that were collected while programmers 

improved a poorly-written program. Examination of these protocols revealed a higher level of 

secondary process thought (abstraction, social behavior, instrumental behavior, restraint, etc.) 

than the protocols of artists completing a drawing task, and a lower amount of emotion-related 

words than the artists. These papers were an important step in beginning to examine creative 

beliefs and the creative process within computer programming. However, they still do not 

establish that programs are creative works. 

The Current Study 
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 Our current study had the goal of establishing that computer programs are creative works. 

Given the dearth of research on creativity within computer programming, particularly on 

evaluation of programs, this study provides an important first step in the literature. Drawing from 

previous research establishing the novelty, appropriateness, aesthetic value, and variability that 

are common to creative products, we chose two ways of assessing computer programs. First, we 

chose the CSDS (Cropley & Kaufman, 2012), a reliable, valid instrument for measuring the 

relevance and effectiveness, problematization, propulsion, elegance, and genesis of programs. 

Second, as an adjunct to the CSDS, we developed a way to measure variability within 

computer programs (the Program Control and Descriptive Variables assessment, or PCDV). 

Most computer programs, including all of those within the study’s dataset, are written using a 

procedure-oriented language (see Sammet & Hemmendiger, 2000). There are many of these 

languages that have been created, but modern versions contain universally used control 

constructs to determine how the program functions (Cox & Hemmendiger, 2000). Because of the 

commonality in statement types, a program can be broken down into a single set of programming 

control and descriptive variables based on the number of times each these universally used 

coding statement was used regardless of the name that the particular language has chosen for the 

statement (some languages call an automatic loop with a counter a “for” loop, while others call it 

a “do” or “perform” loop, for example). Then, by concatenating the count of each type of 

statement together, a single descriptor code could be expressed that captures the algorithmic and 

expressive essence of a program. The PCDV allowed us to measure how much significant 

variation was found among the programming examples we studied. 

These assessments were applied to computer programs generated by computer science 

graduate students. All these students were competent programmers; indeed, they are 
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appropriately considered quasi-experts in the field. These coders each produced two programs 

which were designed to solve a simpler and a more complex bioinformatics problem. Other than 

needing to produce functioning programs that operated sufficiently quickly to process the large 

bioinformatic dataset within five minutes, the programmers were not provided with any 

additional constraints such as the length of the program or the programming language to use.  

Because variability is a hallmark of creative behavior (Campbell, 1960; Simonton, 1999; 

Stokes, 1999, 2001), we expected to see a wide variety of creative expressions within the 

programming choices made by the research subjects. In addition, we hypothesized greater 

variability for the more complex problem. Further, we predicted that there would be greater 

levels of novelty and aesthetic quality for the complex problem than for the simple problem. We 

did not expect any differences between the problems in their level of appropriateness (relevance 

and effectiveness, according to the CSDS) given the constraint that students had to produce 

functional programs. 

Method 

Participants 

 The programs used in this study were created by 29 graduate students who were enrolled 

in an Advanced Bioinformatics course at the University of Massachusetts Dartmouth during the 

Spring 2019 semester. One student was pursuing a Chemistry and Biochemistry Ph.D., another a 

Data Science Ph.D., and the remaining twenty-seven students were part of a Computer and 

Information Science M.S. program. The majority of the M.S. students were international 

students, but no additional demographic data were collected about the students. The prerequisite 

for this course included demonstrated competence in algorithms and data structures, so all 

students already knew how to code. Consequently, the lectures in the course focused on 



COMPUTER PROGRAMS AS CREATIVE WORKS 11 

 

bioinformatics while the assignments required the coding of relevant algorithms and no in-class 

time was necessary to teach programming. Because our data were collected from course 

assignments, we received exempt approval from the University’s I.R.B.  

 Some of the data provided by the students were excluded from the study. First, two 

students did not submit their code via the course management software. Second, four students 

submitted a program that was not functional. In both cases, these participants’ data were 

excluded from the study, leaving us with 23 proficient programmers. 

Materials 

Problems 

 Students were provided with different bioinformatics homework problems throughout the 

semester from the Rosalind website (http://rosalind.info/problems/locations/), including a 

simpler problem (http://rosalind.info/problems/ba1g) as well as a more complex one 

(http://rosalind.info/problems/ba3h). Rosalind was chosen because it accompanies the textbook 

for this Advanced Bioinformatics course and has specific problems that are discussed in each 

chapter: http://rosalind.info/problems/list-view/?location=bioinformatics-textbook-track. Another 

advantage of this website is that it will confirm if a solution is correct, and submissions can be 

made using any programming language. Programs also need to be reasonably quick as students 

are only given five minutes to run their algorithm and submit their answer, given a large 

bioinformatics dataset as input. 

 The simple problem, Compute the Hamming Distance Between Two Strings, takes two 

different strings of DNA as input (such as GGGCCGTTGGT and GGACCGTTGAC) and 

outputs the number of mismatches between them. This algorithm is particularly useful when 
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searching for mutations in DNA strings. In the above example, the correct answer is three, as 

they have three differences between them (bolded below): 

GGGCCGTTGGT 

GGACCGTTGAC 

 

The complex problem, Reconstruct a String from its k-mer Composition, takes in an 

integer k as input along with a set of k-mers of Patterns. For example: CTTA, ACCA, TACC, 

GGCT, GCTT, and TTAC would have k equal to four since these are 4-mers (they have length 

four). The goal of this more complicated problem is to reconstruct a string from its k-mer 

composition, where the k-mers overlap with one another by k-1 letters (three letters in our 

example: GGCT and GCTT both have GCT in common). This algorithm is important for 

genome assembly where long strands of DNA have been fragmented into shorter pieces (k-mers). 

Looking at the example above, the solution would be the following string: GGCTTACCA. 

Specifically, six different 4-mers can reconstruct that string as follows: 

GGCT 

 GCTT 

  CTTA 

   TTAC 

    TACC 

     ACCA 

Creative Solution Diagnosis Scale (CSDS) 

 The CSDS (Cropley & Kaufman, 2012) is a scale designed to provide consensual 

assessment for functional creativity using non-expert judges. The scale shows a high degree of 

reliability (Cronbach’s alpha = .96). It is composed of five subscales corresponding to five 

factors identified by Cropley and Kaufman (2012): relevance and effectiveness, 

problematization, propulsion, elegance, and genesis. We used the 21-item version of the CSDS 

(Cropley & Cropley, 2016) and modified the items for the assessment of computer programs to 
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use the phrase the program rather than the output. For example, item 1 from the relevance and 

effectiveness subscale was reworded from “The output accurately reflects conventional 

knowledge and/or techniques” to “The program accurately reflects conventional knowledge 

and/or techniques.”    

Procedure 

 Students from the graduate Advanced Bioinformatics course completed the programs as 

homework assignments for their course, where they were given two weeks for each assignment. 

The simple problem was given earlier in the semester, whereas the complex one was given later 

in the course. Once students successfully submitted their correct program, they were required to 

upload and share their code with other students on the Rosalind website. This code was only 

accessible to students who successfully submitted that specific Rosalind problem. 

 Students provided self and peer ratings of the programs, using the CSDS as part of a class 

assignment. So as to not add the pressure of rating on top of having to complete a functional 

program, students provided the ratings as part of the assignment subsequent to the one in which 

they completed one of the target programs. They were instructed to complete a multiple-choice 

survey about the code and were provided with the statements from our program-focused version 

of the CSDS as part of their instructions. For peer ratings, students were asked to rate programs 

produced by the student before and after them on a class list. Thus, programs were rated by 

different peers; each student only rated two programs. Having multiple raters only evaluate a 

selection of products is a procedure followed in other research (cf. Green et al., 2014; Kudrowitz 

& Wallace, 2013; Runco et al., 1994) to reduce the potential of rater fatigue in comparing 

creative products (cf. Cseh & Jeffries, 2019).  
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The expert rater, the fourth author, is a computer science faculty member with a computer 

engineering-based Ph.D. having approximately 17 years of experience in the computer industry. 

He did not teach the course from which the data were obtained. First, the expert rater reviewed 

the CSDS instrument with the first and third authors and reviewed the assignment instructions 

given to the students with the third author. He then completed CSDS ratings for every program. 

Analysis 

Program Control and Descriptive Variables (PCDV) 

 The second author developed a coding scheme to describe how a programmer chose to 

implement a problem solution that could provide an objective estimate of fluency within the 

programs. These programming control and descriptive variables were chosen because they would 

capture the overall structure of the software based on determining the number of times each 

universal-used programming control methodology had been used by the programmer, while 

excluding trivial variations such as the program’s variable names. Further, the PCDV functions 

regardless of the source language used by the programmer so long as it is a modern procedure-

based language. Table 1 shows each variable and how it was operationally defined. All defined 

variables were used except the case variable which was dropped from further analysis because it 

was not present in the data. 

 Two research assistants viewed the coding scheme with the authors, then applied it to the 

programs generated for the simple and complex problems (n = 23). Inter-rater agreement was 

calculated using intra-class correlations; a mean-rating (k = 2), absolute agreement, two-way 

mixed effects model was applied. Average ICC for the simple problem was .94 (95% CI = .88-

.97) and average ICC for the complex problem was .99 (95% CI = .986-.998). Any coding 

disagreements were resolved by the third author. 
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 Once each of the programs had been analyzed by the research assistants, a single 

descriptive code was created. The program’s code is a sequence of digits created by 

concatenating the number of times each programming control and descriptive variable was used 

in the program. For our study, as no programming control statement was used more than 99 

times within a program, each of the seven programming control statements described in Table 1 

is represented by the necessary two digits giving it a possible count range from not used (e.g. 00) 

to used for up to 99 times. The two digits that represent each programming control variable have 

a fixed relative location in the overall 14-digit descriptive code that represents the program and 

captures its structure. Table 2 shows the order of the programming controls, examples of their 

repetitions for different program samples, and the resulting PCDV for each sample. The 

Appendix contains a demonstration of the PCDV coding scheme for four sample programs that 

solve the simple problem used in our study. 

 The final step in the analysis was to determine the number of unique descriptive codes 

found within the simple and complex data sets. Because the descriptive code for two programs 

would be the same if the code was substantially identical, a difference in the code indicates the 

presence of some form of expressive variation within the program samples, a relevant measure 

under current legal precedents such as Feist Publications, Inc. v. Rural Telephone Service 

Company, Inc. (1991; see also Clifford, 1997; 2004; 2018). To measure the approximate size of 

these variations, the number of unique descriptive codes was divided by the sample size to create 

a variation statistic which could range from 1/n (which would indicate no variation) and 1.000 

(which would indicate complete variation). The range of values of the variation statistic indicates 

increasing differences in coding as it goes from small to large. 

CSDS Scoring 
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 As described in the Procedure, CSDS scores were provided for each program by the 

student who wrote the program (self rating), at least one classmate (peer rating), and the fourth 

author (expert rating). Different types of raters have been used in past research (Moneta et al., 

2010). The inter-rater consistency, scale validity, and factor structure of the CSDS were assessed 

following the procedures used by the original authors of the instrument, Cropley and Kaufman 

(2012). 

 Inter-Rater Reliability. Inter-rater reliability was assessed using Cronbach’s (1951) 

coefficient alpha, following the guidelines established by Cropley and Kaufman (2012). For the 

simple problem, we had 74 valid ratings (17 self, 34 peer, and 23 expert ratings). Ten additional 

ratings (3 self and 7 peer) were removed due to low item-total correlations or lack of variation in 

the individual’s ratings (ex. choosing 0s for every item). For the complex problem, we had 72 

valid ratings (17 self, 35 peer, and 20 expert ratings). Sixteen additional ratings (3 self, 10 peer, 

and 3 expert) were removed due to low item-total correlations or lack of variation in the 

individual’s ratings. The average Cronbach’s coefficient alpha was .70 (range .36-.92), which is 

an acceptable level (Nunnally & Bernstein, 1994; Tavakol & Dennick, 2011). For comparison, 

past research has reported inter-rater reliabilities between expert and novice raters ranging from 

κ = .2-.9 (Green et al., 2014) and between self, peer, and expert raters ranging from r = .27-.56 

(Moneta et al., 2010). Based on the acceptable level of inter-rater reliability that we obtained, 

and on procedures used in previous research (Green et al., 2014; Moneta et al., 2010; Runco et 

al., 1994), self, peer, and expert ratings were averaged to create one score for each item for each 

program.  

 Scale Reliability. Scale reliability was assessed using several measures. Following the 

guidelines from Cropley and Kaufman (2012), we report Cronbach’s (1951) coefficient alpha. 
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Given the issues with using coefficient alpha as a measure of scale reliability (cf. Bendermacher, 

2010; Dunn et al., 2013; Graham, 2006), and the correlations among the scale factors described 

below, we also report Guttman’s (1945) λ2 and McDonald’s (1999) ώ. Scale reliability was 

calculated for each problem based on the valid CSDS ratings across the twenty-one CSDS items. 

Based on the 74 valid ratings for the simple problem, we obtained the following reliability 

estimates: α = .94, λ2 = .95, ώ = .95. Based on the 72 valid ratings for the complex problem, we 

obtained the following reliability estimates: α = .95, λ2 = .95, ώ = .95. These obtained values 

were nearly identical and indicate excellent scale reliability (Nunnally & Bernstein, 1994; 

Tavakol & Dennick, 2011; Watkins, 2017). 

 Factor Structure. Following Cropley and Kaufman (2012), a principal axis factor 

analysis was conducted on the 21 items of the revised CSDS (Cropley & Cropley, 2016) with 

oblique rotation (direct oblimin) to allow the factors to correlate. The number of factors was set 

to five, as Cropley and Kaufman (2012) found five factors. For the purposes of establishing the 

factor structure of the CSDS within our dataset, and to ensure sufficient data for analysis, ratings 

for both the simple and complex problem were included. The Kaiser-Meyer-Olkin Measure of 

Sampling Adequacy for the analysis was .93, and Bartlett’s Test of Sphericity resulted in χ2 (210, 

N = 146) = 2819.87, p < .001, indicating that the data were suitable for factor analysis. 

Five identifiable components were extracted that corresponded to the five factors 

identified by Cropley and Kaufman (2012), accounting for 74.95% of the variance in the CSDS 

data. Table 3 shows the factor loadings after rotation. The items that cluster on the same factor 

indicate that factor 1 represents how well the program applies to other situations (genesis), factor 

2 represents the beauty and cohesiveness of the program (elegance), factor 3 represents how well 

the program displays knowledge and satisfies the requirements (relevance and effectiveness), 
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factor 4 represents how well the program draws attention to problems in what already exists 

(problematization), and factor 5 represents how well the program propels the field (propulsion). 

As shown in Table 3, factor 5 (propulsion) had an eigenvalue of .41 and a high correlation of r = 

-.78 with factor 1 (genesis). Due to the multicollinearity between these variables and the 

convergence of the scree plot for a four-factor solution, factors 1 and 5 were averaged into a 

single factor (propulsion-genesis) for further analyses.  

Results 

Program Control and Descriptive Variables (PCDV) 

 A series of paired-samples t-tests were conducted to examine differences between the 

simple and complex problems. As shown in Table 4, the complex problem contained more 

subroutines, for loops, while loops, if statements, else statements, and goto statements. These 

increasing values from a simple to a more complex problem are consistent with a non-empirical 

evaluation that would posit that more program control constructs would be needed in a more 

complex program.  

 As described in the Method section, a PCDV variation statistic was calculated based on 

the descriptive code assigned to each program within the simple and complex data sets. For the 

simple programs, with 11 unique solutions found within the 23 programs submitted, the statistic 

was 0.478 out of a range between 0.043 (all programs have the same descriptive code) and 1.000 

(no two programs have the same descriptive code). This figure is surprisingly high considering 

the relative simplicity of the code being produced. Not unexpectedly, as the second program was 

computationally more complex than the first, the variation statistic for it was much higher at 

0.870 (out of a range between 0.043 and 1.000), with 20 unique solutions found within the 23 

programs submitted. 
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Creative Solution Diagnosis Scale (CSDS) 

 We conducted a series of paired-samples t-tests comparing the simple and complex 

problems on the four facets of the CSDS: propulsion-genesis, elegance, relevance and 

effectiveness, and problematization. As shown in Table 5, the problems were significantly 

different on two of these factors, with the complex problem having higher ratings than the simple 

problem for propulsion-genesis and problematization, and marginally higher ratings for elegance 

(due to the Bonferroni correction for multiple comparisons; Field, 2017). The problems did not 

significantly differ for ratings of relevance and effectiveness. 

Discussion 

 We found greater variability in problem solutions for the complex problem than the 

simple problem, in support of our first hypothesis. Of our 23 participants, 11 unique programs 

were produced for the simple problem and 20 unique programs were produced for the complex 

problem. This result demonstrates that there is a large variation of programming expressions that 

can be used to solve even simple coding problems. For more complex programs, almost every 

version created was measurably different from the others. Because the programs within each data 

set solved an identical problem and had been shown to function correctly, the differences in the 

coding solutions cannot be due to a need that is dictated by the algorithm being implemented. 

We believe that the variations found are due to the exercise of individual creativity by the 

different programmers.  

 We also found differences between the simple and complex problem on subjective ratings 

of creativity via the CSDS. As hypothesized, the complex problem had higher ratings of elegance 

and propulsion-genesis. The latter result represents the higher level of novelty we expected for 

programs that were produced to solve the complex problem and helps to establish that variation 
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in the generated solutions can be explained by programmer creativity. Also as hypothesized, we 

found no differences between the simple and complex problems on ratings of relevance and 

effectiveness. This is not a surprising result because participants were required to produce 

functional programs. Additionally, in computer science, as well as in engineering fields, 

functionality is considered to be a critical aspect of design (Cropley & Kaufman, 2019; Kozbelt 

et al., 2012).  

 Overall, our results provide initial support for the claim that computer programs are 

creative works. Programs are a form of functional creativity (Cropley et al., 2017) which are 

novel and appropriate. Like other creative works, programs have aesthetic value; indeed, as 

noted by Knuth (1974), computer programming is a form of art. Our results support the idea that 

even within structured environments, there is still room for creativity – the high degree of 

variation of expression seen within the programs in our study supports assertions that variability 

in behavior is a key contributor to creativity (Campbell, 1960; Stokes, 2001). Further, our results 

go beyond existing research on creativity in computer programming that has focused on 

historical cases (Saunders & Thagard, 2005) or the aesthetic experience of programming 

(Kozbelt et al., 2012).  

 While our research has helped to advance the currently scant literature on creativity 

within computer programming, there are several limitations to our work. First, the programs in 

our study were written by graduate students, who, although being fully competent programmers, 

may be at best considered quasi-experts in the field. For example, most are likely not to be fluent 

in multiple programming languages and may have yet to work within the large teams of 

programmers that are typical in the professional programming world. As shown in multiple 

studies in non-programming disciplines, people with expertise in a field approach problems 
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differently than less experienced practitioners (cf. Chi et al., 1981) and apply different perceptual 

processes (cf. Chase & Simon, 1973). Level of expertise may affect creativity as well, including 

how skilled performance is impacted by varying creativity instructions (Rosen et al., 2017). 

Consequently, we cannot eliminate the possibility that our results were influenced by our 

research subjects’ level of experience rather than reflecting programming in general. However, it 

is important to note that knowledge within computer science can become obsolete quickly due to 

the demands of a dynamic discipline, and “expertise” may not be reflected in years of experience 

(Sonnentag et al., 2006). Instead, the amount of experience, such as the number of programs 

written, could be considered (cf. Rosen et al., 2017), or, as recommended by Sonnentag et al. 

(2006), expertise in computer programming could be conceptualized as high performance rather 

than years of experience. Future research should prescreen potential programmers for their level 

of programming skill. 

 A second limitation is our use of a combination of self, peer, and expert ratings for the 

CSDS. Although our level of inter-rater agreement was acceptable, and this procedure has been 

followed in past research (Moneta et al., 2010), other research has shown mixed evidence as to 

whether novices and experts rate creative products similarly. Some research has shown high 

levels of agreement between experts and novices (Freeman et al., 2015), but sometimes 

agreement is better when the novices have some prior knowledge (Kaufman et al., 2013, Study 1; 

Plucker et al., 2009). Other studies have shown disagreement between experts and novices (Katz- 

Buonincontro et al., 2020; Kaufman et al., 2013, Study 2). Most research on creativity uses 

expert raters, and we recommend that practice is followed in future research, although experts 

can disagree with each other as well (cf. Cseh & Jeffries, 2019; Jeffries, 2017).  
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 A third limitation of the present research is that all programs were written in response to 

bioinformatics problems. Though unlikely, as bioinformatics problems are not the most 

representative tasks for computer programmers, coding them may involve different levels of 

creativity than other programming tasks. For future research, we recommend using problems that 

are more representative of typically produced software, such as optimization-based problems 

(often used for such things as controlling just-in-time inventory and package delivery) and data 

searching problems (commonly used in online searching, operating system control, and 

scheduling tasks). 

 A final limitation of our research is a focus on the creative product; in this case, the 

programs that were produced. As noted by Corazza (2016), a complete understanding of 

creativity needs to take into account the process that leads to a product. The drafts of code that 

our participants wrote, and the programming choices that they made, also have the potential to be 

creative. Beyond the measurement of programming creativity contained within the product that 

is captured by the PCDV and CSDS, we recommend that future research examines the creative 

process of computer programming. Future investigators can do so by using techniques such as 

building on Kozbelt et al.’s (2015) use of verbal protocols to record programmers’ thoughts and 

choices online or through the use of questionnaires to capture programming decisions and the 

application of relevant mental processes.   

 Even when accounting for the limitations in the current study, important lessons can be 

derived from it. Our preliminary research suggests that common assumptions about how 

programmers work are inaccurate. If programmers are consistently demonstrating creativity, as 

our study suggests, the approaches used to teach students how to code should be examined to 

allow computer science education to enhance this creativity (cf. Good et al., 2016; Romeike, 
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2007, Xu et al., 2018). Similarly, as the management of creative-exercising workers differs 

greatly from the techniques used with employees in less inventive occupations (Brooks, 1995; 

Sawyer, 2001), business studies may be needed to establish the most appropriate management 

techniques for programmers. 

 Most importantly, as discussed above, the legal system is dependent on a finding of 

creativity in establishing copyright protection for computer programs (Feist Publications, Inc. v. 

Rural Telephone Service Company, Inc., 1991; Clifford, 1997). The current study establishes that 

the Feist requirement of having multiple ways of expressing the material is satisfied by all 

software, excepting only non-realistically trivial programs such as the code that can print “Hello, 

world.” Further, the discovery of the degree of variation in expression that is found in even the 

most basic computer software should foreclose the current inappropriate use of legal doctrines—

such as the merger or singularity of efficiency doctrines that have been developed for computer 

programs in copyright law (Computer Assocs. Int'l, Inc. v. Altai, Inc., 1992)—that are used to 

argue for an overly restrictive scope of protection for programs (Google LLC v. Oracle America, 

Inc., 2021, at 1197). 
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Table 1 

Program Control and Descriptive Variables (PCDV) Coding Scheme 

 

Variable Description 

Subroutines A count of the number of internal subroutines written by the programmer. 

For Loops A count of the number of “for” loops (using automated counters) 

While Loops A count of the number of “while” loops (using automated comparison) 

If A count of the number of “if” statements 

Else A count of the number of “else” statements 

Case A count of the number of “case” or “switch” statements 

Go To A count of the number of “go to” or “break” statements (causing a branch 

to occur) 
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Table 2 

 

Demonstration of the PCDV for Different Program Samples 

  

Program 

Sample 
Subroutines 

For 

Loops 

While 

Loops 
If Else Case 

Go 

To 
Resulting PCDV 

A 00 02 00 01 01 00 00 00 02 00 01 01 00 00 

B 01 00 01 04 03 00 02 01 00 01 04 03 00 02 

C 02 00 00 02 00 01 00 02 00 00 02 00 01 00 
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Table 3 

Summary of Factor Loadings for Oblimin Principal Axis Factor Analysis of the Modified 

Creative Solutions Diagnosis Scale: Communalities, Eigenvalues, and Percentages of Variance 

Factor loading 

Item 1 2 3 4 5 Communality 

Correctness   .75   .67 

Performance   .75   .61 

Appropriateness   .93   .82 

Diagnosis    .59  .79 

Prescription    .74  .82 

Prognosis    .38 -.31 .51 

Redirection     -.53 .70 

Reinitiation     -.79 .78 

Redefinition     -.69 .76 

Generation .31    -.57 .83 

Convincingness  .65    .72 

Pleasingness  .95    .90 

Completeness  .83    .76 

Gracefulness  .91    .82 

Harmoniousness  .58    .57 

Foundationality .68     .78 

Transferability .85     .81 

Germinality .66     .74 

Seminality .88     .82 

Vision .83     .79 

Pathfinding .88     .74 

Eigenvalue 10.29 3.02 1.24 .79 .41  

% of variance 48.99 14.36 5.91 3.74 1.96  

Factor correlations 

Factor 1 -      

Factor 2 .38 -     

Factor 3 .15 .44 -    

Factor 4 .46 .24 .11 -   

Factor 5 -.78 -.39 -.20 -.46 -  
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Table 4 

Differences between the Simple and Complex Problem on the PCDV 

PCDV category Simple 

Program 

Complex 

Program 

t (22) p Cohen’s d 

Subroutines .61 (.50) 2.65 (2.72) t = -3.69 .001 .770 

For .83 (.39) 8.87 (10.11) t = -3.85 .001 .803 

While .17 (.39) 1.39 (.99) t = -5.01 < .001 1.000 

If 1.30 (.56) 5.96 (5.48) t = -3.93 .001 .819 

Else .17 (.49) 1.13 (1.32) t = -3.01 .006 .629 

Go To .71 (.55) 3.96 (3.56) t = -4.47 < .001 .911 

 

Note. PCDV = Program Control and Descriptive Variables. Descriptive data are in the form of M 

(SD). The PCDV category Case is not shown because it was not found in the data. Using the 

Bonferroni correction for multiple comparisons, any p-value smaller than .008 is statistically 

significant. 
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Table 5 

Differences between the Simple and Complex Problem on the CSDS 

CSDS category Simple 

Program 

Complex 

Program 

t (22) p Cohen’s d 

Propulsion-Genesis 1.90 (.42) 2.44 (.36) -4.89 < .001 1.000 

Elegance 3.13 (.35) 3.43 (.45) -2.38 .027 .496 

Relevance and 

Effectiveness 

3.64 (.24) 3.62 (.36) .28 .784 .058 

Problematization 2.34 (.45) 2.82 (.35) -5.13 < .001 1.000 

 

Note. CSDS = Creative Solution and Diagnosis Scale. Descriptive data are in the form of M(SD). 

Using the Bonferroni correction for multiple comparisons, any p-value smaller than .01 is 

statistically significant. 
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Appendix 

 

Demonstration of the Program Control and Descriptive Variables (PCDV) Coding Scheme 

with Sample Programs 

 

All of the following sample programs were designed to solve the problem Compute the 

Hamming Distance Between Two Strings from the Rosalind website 

(http://rosalind.info/problems/ba1g/). This problem is the simple problem referred to throughout 

the study. 

As shown in Table A1, there are multiple ways to write a computer program to solve 

even simple problems. However, different approaches written in different languages can still lead 

to the same descriptive code, as demonstrated with the C-For and Perl programs (see Figure A1). 

These two programs—written in different programming languages—receive the same descriptive 

code using the PCDV: 00010002000000. The top program is written in C and has no 

subroutines, while, else, case, or go to statements, but contains two if statements and one for 

loop. The exact same is true for the Perl program below.  

Likewise, writing a program in the same language can lead to different descriptive codes, 

as demonstrated with the C-While and C-Function programs (see Figure A2). These two 

programs—both written in the same programming language, C—received different descriptive 

codes, despite both solving the same algorithmic problem. The top program has no subroutines, 

for, else, case, or go to statements, but has two if statements and one while loop. The bottom 

program in Figure A2 has no for, else, case, or go to statements, but has one subroutine, two if 

statements and one while loop. 
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Table A1 

 

Program Control and Descriptive Variables Analysis for Four Sample Programs 

 

Program Subroutines For While If Else Case Go To Descriptive Code 

Perl 00 01 00 02 00 00 00 00010002000000 

C-For 00 01 00 02 00 00 00 00010002000000 

C-While 00 00 01 02 00 00 00 00000102000000 

C-Function 01 00 01 02 00 00 00 01000102000000 
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Figure A1 

Illustration of the PCDV: Two Programs Written in Different Languages that Received the Same 

Descriptive Code 
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#!/usr/bin/perl -w 
if ($#ARGV < 1) { 
    print STDERR "2 inputs: seq1 and seq2\n"; 
    exit -1; 
} 
my $seq1 = $ARGV[0]; 
my $seq2 = $ARGV[1]; 
my $n = length ($seq1);            
my $hamDist = 0; 
for (my $i=0; $i <= $n; ++$i)  
{ 
   if (substr($seq1, $i, 1) ne substr($seq2, $i, 1)) { 
      $hamDist++; 
   } 
}  
print "Hamming Distance is: $hamDist\n"; 

1 “for” 2 “if” 

#include <stdio.h> 
#include <stdlib.h> 

#include <string.h> 
#define MAX_STR_LENGTH 1024 
int main(int argc, char **argv) 
{ 
  char *str1, *str2; 
  int strLength, charIndex, hammingDistance = 0; 
  if(argc != 3) { 
    printf("USAGE: HD <str1> <str2>\n"); 
    return 0; 
  } 
  str1 = argv[1]; 
  str2 = argv[2]; 
  strLength = strlen(str1); 
  for(charIndex = 0; charIndex < strLength; charIndex++) 
  { 
    if(*str1++ != *str2++) 
      hammingDistance++; 
  } 
  printf("Distance = %d\n", hammingDistance); 
  return 0; 
} 

1 “for” 2 “if” 
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Figure A2 

Illustration of the PCDV: Two Programs Written in C that Received Different Descriptive Codes 
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#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#define MAX_STR_LENGTH 1024 
int main(int argc, char **argv) 
{ 
  char *str1, *str2; 
  int strLength, charIndex, hammingDistance = 0; 
  if(argc != 3) { 
    printf("USAGE: HD <str1> <str2>\n"); 
    return 0; 
  } 
  str1 = argv[1]; 
  str2 = argv[2]; 
  strLength = strlen(str1); 
  while(charIndex < strLength)  

  { 
    if(*str1++ != *str2++) 
      hammingDistance++; 
    charIndex++; 
  } 
  printf("Distance = %d\n", hammingDistance); 
  return 0; 
} 

1 “while” 
2 “if” 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#define MAX_STR_LENGTH 1024 
int HammingDistance(char * str1, char *str2) 
{ 
  int strLength, charIndex = 0, hammingDistance = 0; 
  strLength = strlen(str1); 
  while(charIndex < strLength)  
  { 
    if(*str1++ != *str2++) 
      hammingDistance++; 
    charIndex++; 
  } 
  return hammingDistance; 
} 
int main(int argc, char **argv) 
{ 
  char *str1, *str2; 
  if(argc != 3) { 
    printf("USAGE: HD <str1> <str2>\n"); 

    return 0; 
  } 
  str1 = argv[1]; 
  str2 = argv[2]; 
  printf("Distance = %d\n", HammingDistance(str1, str2)); 
  return 0; 

} 

1 “while” 

2 “if” 

1 “subs” 


