Data Visualization (DSC 530/CIS 568)

Filtering & Aggregation

Dr. David Koop
Design Space of Composite Visualization

- Composite visualization views (CVVs)
 - Includes Coordinated multiple views (CMV)
 - + More!

- Design Patterns:
 - Juxtaposition: side-by-side
 - Superimposition: layers
 - Overloading: vis meshed with another
 - Nesting: vis inside a vis (recursive vis)
 - Integration: "merge" views + links

[W. Javed and N. Elmqvist, 2012]
Which strategy?
Juxtaposition

[ComVis, K. Matkovic et al., 2008]
Which strategy?

Temperature (ºF)

- Austin
- New York
- San Francisco

Temperature graphs for different cities over the year 2012-2013.
Superimposition

[Graph showing temperature trends for New York, Austin, and San Francisco from October 2012 to September 2013. The y-axis represents temperature in °F, and the x-axis represents the months from October 2012 to September 2013. The graph shows the temperature trends for three cities: New York (blue), Austin (green), and San Francisco (orange).]
Which Strategy?

- Bederson et al.
- Plaisant et al.
- Shneiderman et al.
- PARC
- Eick et al.
- Berkeley
- CMU- Roth et al.

[NodeTrix, N. Henry et al., 2007]
Nesting
Which Strategy?

"best statistical graphic ever"

(Napoleon’s March to Moscow, C. J. Minard, 1869)

(later known as a Sankey Diagram)
Integration

"best statistical graphic ever"

(Napoleon’s March to Moscow, C. J. Minard, 1869)

(later known as a Sankey Diagram)
Which Strategy?

Figure 6: Mapgets [38] (Superimposed Views). Presentation stack, with superimposed layers for rivers, borders, and labels, in Mapgets.

Figure 7: GeoSpace [22] (Superimposed Views). A crime data layer superimposed on a geographical map of the Cambridge, MA area.

Superimposed views overlay two or more visual spaces on top of each other (Figures 6 and 7). The resulting visualization becomes the visual combination of the component visualizations, often using transparency to enable seeing all views. Superimposed views are generally used to highlight spatial relations in the component visualizations. In other words, the spatial linking present in these views is one-to-one, i.e., all the overlay visualizations share the same underlying visual space. Line graph visualizations with several data series, where more than one graph is superimposed in a single chart (e.g., [19]), is a very commonly used example of this design pattern. The spatial linking in the superimposed views allows for easy comparison across different datasets because the user does not have to split their attention between different parts of the visual space. Furthermore, the fact that visualizations are stacked means that they can each use the full available space in the view. However, because the composition simply adds the component visualizations together, the visual clutter may become significant, and it is also likely to cause conflicts arising from one visualization occluding another.

5.1 Mapgets

Mapgets [38] is a geographic visualization system that allows users to interactively perform map editing and querying of geographical datasets. The maps generated using Mapgets are built on an underlying presentation stack that superimposes multiple dataset layers on top of each other. The users can dynamically select the dataset to use for each layer and the total number of layers to compose. Different layers in the presentation stack allow users to independently interact with each of the associated visualization and control the layer attributes. The technique also allows the users to reorder layers in the presentation stack to achieve the desirable map result. Figure 6 shows an example of a European map generated in Mapgets. The presentation stack associated with this map consists of three layers: the bottom layer visualizes rivers, the center layer is used to depict the country borders, and the topmost layer is used to display the country labels.

5.2 GeoSpace

GeoSpace [22] allows users to interactively explore complex visual spaces using superimposed views. It permits progressively overlaying different datasets, based on the user queries, in a single view. Beyond allowing users to explore datasets through dynamic queries, GeoSpace also supports pan and zoom operations for navigation. Figure 7 shows GeoSpace system being used for exploring crime around the Cambridge, MA area. The figure shows a 2D view of the visualization, where red dots that are spatially coupled to the underlying layer show the reported crime cases in the region.

Figure 8: SPPC [45] (Overloaded Views). This tool overloads points into the region bounded by two axes in the parallel coordinate plot.

Figure 9: Links on treemaps [14] (Overloaded Views). The tool identifies a tree structure in a graph and visualizes it using a treemap.

[Links on Treemaps, J.-D. Fekete et al., 2003]
Overloading

Superimposed views overlay two or more visual spaces on top of each other (Figures 6 and 7). The resulting visualization becomes the visual combination of the component visualizations, often using transparency to enable seeing all views. Superimposed views are generally used to highlight spatial relations in the component visualizations. In other words, the spatial linking present in these views is one-to-one, i.e., all the overlay visualizations share the same underlying visual space. Line graph visualizations with several data series, where more than one graph is superimposed in a single chart (e.g., [19]), is a very commonly used example of this design pattern. The spatial linking in the superimposed views allows for easy comparison across different datasets because the user does not have to split their attention between different parts of the visual space. Furthermore, the fact that visualizations are stacked means that they can each use the full available space in the view. However, because the composition simply adds the component visualizations together, the visual clutter may become significant, and it is also likely to cause conflicts arising from one visualization occluding another.

5.1 Mapgets

Mapgets [38] is a geographic visualization system that allows users to interactively perform map editing and querying of geographical datasets. The maps generated using Mapgets are built on an underlying presentation stack that superimposes multiple dataset layers on top of each other. The users can dynamically select the dataset to use for each layer and the total number of layers to compose. Different layers in the presentation stack allow users to independently interact with each of the associated visualization and control the layer attributes. The technique also allows the users to reorder layers in the presentation stack to achieve the desirable map result. Figure 6 shows an example of a European map generated in Mapgets. The presentation stack associated with this map consists of three layers: the bottom layer visualizes rivers, the center layer is used to depict the country borders, and the topmost layer is used to display the country labels.

5.2 GeoSpace

GeoSpace [22] allows users to interactively explore complex visual spaces using superimposed views. It permits progressively overlaying different datasets, based on the user queries, in a single view. Beyond allowing users to explore datasets through dynamic queries, GeoSpace also supports pan and zoom operations for navigation. Figure 7 shows GeoSpace system being used for exploring crime around the Cambridge, MA area. The figure shows a 2D view of the visualization, where red dots that are spatially coupled to the underlying layer show the reported crime cases in the region.
Which Strategy?

Fig. 13. A software system and its associated call graph (caller = green, callee = red). (a) and (b) show the system with bundling strength $\beta = 0.85$ using a balloon layout (node labels disabled) and a radial layout, respectively. Bundling reduces visual clutter, making it easier to perceive the actual connections than when compared to the non-bundled versions (figures 2a and 11a). Bundled visualizations also show relations between sparsely connected systems more clearly (encircled regions); these are almost completely obscured in the non-bundled versions. The encircled regions highlight identical parts of the system for (a), (b), and figure 15.

Fig. 14. Using the bundling strength β to provide a trade-off between low-level and high-level views of the adjacency relations. The value of β increases from left-to-right; low values mainly provide low-level, node-to-node connectivity information, whereas high values provide high-level information as well by implicit visualization of adjacency edges between parent nodes that are the result of explicit adjacency edges between their respective child nodes.

Changing the bundling strength β and by switching between different tree layouts. The participants from academia were our fellow researchers, PhD students and MSc students from the Computer Science department of the Technische Universiteit Eindhoven. They all had experience with either software development, software visualization, or information visualization in general. Participants from industry were representatives of the Software Improvement Group (SIG) in Amsterdam, which delivers insight in the structure and technical quality of software portfolios, and representatives of FEI Company Eindhoven, which produces software to operate with FEI’s range of electron microscopes.

The majority of the participants regarded the technique as useful for quickly gaining insight in the adjacency relations present in hierarchically organized systems. In general, the visualizations were also regarded as being aesthetically pleasing. SIG and FEI Company Eindhoven are currently supporting further development by providing us with additional data sets and feedback regarding the resulting visualizations.

More specifically, most of the participants particularly valued the fact that relations between items at low levels of the hierarchy were automatically lifted to implicit relations between items at higher levels by means of bundles. This quickly gave them an impression of the high-level connectivity information while still being able to inspect the low-level relations that were responsible for the bundles by interactively manipulating the bundling strength. This is illustrated in figure 14, which shows visualizations using different values for the bundling strength β. Low values result in visualizations that mainly provide low-level, node-to-node connectivity information. High values result in visualizations that provide high-level information as well by implicit visualization of adjacency edges between parent nodes that are the result of explicit adjacency edges between their respective child nodes.

Another aspect that was commented on was how the bundles gave an impression of the hierarchical organization of the data as well, thereby strengthening the visualization of the hierarchy. More specifically, a thick bundle shows the presence of two elements at a fairly
Superimposition: Hierarchical Edge Bundles

Fig. 13. A software system and its associated call graph (caller = green, callee = red). (a) and (b) show the system with bundling strength $\beta = 0.85$ using a balloon layout (node labels disabled) and a radial layout, respectively. Bundling reduces visual clutter, making it easier to perceive the actual connections than when compared to the non-bundled versions (figures 2a and 11a). Bundled visualizations also show relations between sparsely connected systems more clearly (encircled regions); these are almost completely obscured in the non-bundled versions. The encircled regions highlight identical parts of the system for (a), (b), and figure 15.

Fig. 14. Using the bundling strength β to provide a trade-off between low-level and high-level views of the adjacency relations. The value of β increases from left-to-right; low values mainly provide low-level, node-to-node connectivity information, whereas high values provide high-level information as well by implicit visualization of adjacency edges between parent nodes that are the result of explicit adjacency edges between their respective child nodes.

Changing the bundling strength β and by switching between different tree layouts. The participants from academia were our fellow researchers, PhD students and MSc students from the Computer Science department of the Technische Universiteit Eindhoven. They all had experience with either software development, software visualization, or information visualization in general. Participants from industry were representatives of the Software Improvement Group (SIG) in Amsterdam, which delivers insight in the structure and technical quality of software portfolios, and representatives of FEI Company Eindhoven, which produces software to operate with FEI’s range of electron microscopes.

The majority of the participants regarded the technique as useful for quickly gaining insight in the adjacency relations present in hierarchically organized systems. In general, the visualizations were also regarded as being aesthetically pleasing. SIG and FEI Company Eindhoven are currently supporting further development by providing us with additional data sets and feedback regarding the resulting visualizations.

More specifically, most of the participants particularly valued the fact that relations between items at low levels of the hierarchy were automatically lifted to implicit relations between items at higher levels by means of bundles. This quickly gave them an impression of the high-level connectivity information while still being able to inspect the low-level relations that were responsible for the bundles by interactively manipulating the bundling strength.

This is illustrated in figure 14, which shows visualizations using different values for the bundling strength β. Low values result in visualizations that mainly provide low-level, node-to-node connectivity information. High values result in visualizations that provide high-level information as well by implicit visualization of adjacency edges between parent nodes that are the result of explicit adjacency edges between their respective child nodes.

Another aspect that was commented on was how the bundles gave an impression of the hierarchical organization of the data as well, thereby strengthening the visualization of the hierarchy. More specifically, a thick bundle shows the presence of two elements at a fairly
Multiple Views

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Subset</td>
<td>None</td>
</tr>
<tr>
<td>Same</td>
<td>Redundant</td>
<td>Overview/Detail</td>
<td>Small Multiples</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Different</td>
<td>Multiform</td>
<td>Multiform, Overview/Detail</td>
<td>No Linkage</td>
</tr>
</tbody>
</table>

[Munzner (ill. Maguire), 2014]
Multiform

[Improvise, Weaver, 2004]
Overview-Detail View
Small Multiples

- Same encoding, but different data in each view (e.g. SPLOM)
Partitioned Views

• Split dataset into groups and visualize each group
• Extremes: one item per group, one group for all items
• Can be a hierarchy
 - Order: which splits are more "related"?
 - Which attributes are used to split? usually categorical
Example: Grouped Bar Chart

Population

65 Years and Over
45 to 64 Years
25 to 44 Years
18 to 24 Years
14 to 17 Years
5 to 13 Years
Under 5 Years

[CA] [TX] [NY] [FL] [IL] [PA]
Matrix Alignment

In Figure 2 there are 6 panels, 1 column, 6 rows, and 1 page. Later, we will show a Trellis display with more than one page. We refer to the rectangular array as the trellis because it is reminiscent of a garden trelliswork.

Each panel of a trellis display shows a subset of the values of panel variables; these values are formed by conditioning on the values of conditioning variables. In Figure 1 the panel variables are variety and yield, and the conditioning variables are site and year. On each panel, values of yield and variety are displayed for one combination of year and site.
Recursive Subdivision

[Slingsby et al., 2009]
Project Designs

• Due April 15

• Use interaction!

• Provide at least three different designs
 - Either iterations or three separate ideas
 - At least one must be prototyped in code (if others are not prototyped, turn in detailed sketches)
 - Be creative! (more inspiration)
Test 2

• Wednesday, April 10
• Similar Format
• Covers material since the beginning of class but with an emphasis on the material covered since Test 1
• Includes ideas from papers outside the textbook
Reducing Complexity

- Too many items or attributes lead to visual clutter
- Interaction and Multiple Views can help, but often lose the ability to start understanding an entire dataset at first glance
- **Reduction** techniques show less data to reduce complexity
- Can reduce items or attributes (both are **elements**)
- **Filtering**: eliminate elements from the current view
 - "out of sight, out of mind"
- **Aggregation**: replace elements with a new element that represents the replaced elements
 - summarization is often challenging to design
- Another method is **focus+context**: show details in the context of an overview
Overview

Reducing Items and Attributes

- **Filter**
 - Items
 - Attributes

- **Aggregate**
 - Items
 - Attributes

Reduce

- **Filter**
- **Aggregate**
- **Embed**

[Munzner (ill. Maguire), 2014]
Filtering

• Just don't show certain elements
• Item filtering: most common, eliminate marks for filtered items
• Attribute filtering:
 - attributes often mapped to different channels
 - if mapped to same channel, allows many attributes (e.g. parallel coordinates, star plots), can filter
• How to specify which elements?
 - Pre-defined rules
 - User selection
Filter vs. Query

• Queries start with an empty set of items and **add** items
• Filters start with all items and **remove** items
Example: NYC Health Dept. Restaurant Ratings

Restaurant locations are derived from the New York City Department of Health and Mental Hygiene database. Due to the limitations of the Health Department’s database, some restaurants could not be placed.

By JEREMY WHITE

© 2013 The New York Times Company
Dynamic Filters

• Interaction need not be with the visualization itself
• Users interact with **widgets** that control which items are shown
 - Sliders, Combo boxes, Text Fields
• Often tied to attribute values
• Examples:
 - All restaurants with an "A" Grade
 - All pizza places
 - All pizza places with an "A" Grade
Scented Widgets

Occupation
- Artist / Art Teacher
- Athlete
- Auctioneer
- Author
- Baggage
- Baker
- Bank Teller
- Barber / Beautician
- Bartender
- Bill Collector
- Blacksmith
- Blaster
- Boarding House Keeper
- Boatman
- Boilermaker
- Bookbinder
- Bookkeeper
- Bootblack
- Building Manager
- Bus Driver
- Buyer - Farm
- Buyer - Store
- Cabinet Maker
- Car Washer
- Carpenter

Scale
- Total People Count
- % of Work Force
- # of times viewed

Results: Unique Discoveries

We analyzed the data to check if scented widgets help us make unique discoveries. Our hypotheses were that scented widgets would increase the likelihood that users would visit views that were not previously visited. The results showed that the correlations of visits between conditions were more likely to have unique discoveries, especially for Barnett, which is a stereotypically male job. The evidence either for or against the current task hypothesis was mixed, but there was a trend indicating that at least two of the observations had to be unique findings on views not yet visited.

For each task, we instructed subjects to make at least seven observations that provided evidence relevant to the task hypothesis. The task hypotheses were intended to include twenty subjects with one of three scenting conditions. The study involved asking subjects to complete three tasks: the number and variety of jobs, the number of jobs stereotypically male, and the number of jobs that have diminished greatly since the 1800s. The study employed a 3 (Task) x 3 (Scent) between subjects design. Task and scent pairings and presentation order were counter balanced using a Latin Square. All tests were carried out in a laboratory environment using standard desktop PCs connected to a web server hosting the visualization and usage data. After completing the tasks, subjects filled out a survey that asked them to comment scent impressions on views not yet visited. To test this hypothesis, we created three vectors, each representing the number of visits to each view in each scenting condition. We presented three visualization application with social navigation scent cues. We gave them an introductory tutorial to the system, and then subjects filled out a survey that asked them to comment scent impressions on views not yet visited. To test this hypothesis, we created three vectors, each representing the number of visits to each view in each scenting condition. We presented three visualization application with social navigation scent cues. We gave them an introductory tutorial to the system, and then subjects filled out a survey that asked them to comment scent impressions on views not yet visited.

We presented the data to the subjects, and they were asked to comment scent impressions on views not yet visited. To test this hypothesis, we created three vectors, each representing the number of visits to each view in each scenting condition. We presented three visualization application with social navigation scent cues. We gave them an introductory tutorial to the system, and then subjects filled out a survey that asked them to comment scent impressions on views not yet visited.
Scented Widgets

Table 1: Scent Encodings Supported by Scented Widgets

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hue</td>
<td>Varies the hue of the widget (or of a visualization embedded in it)</td>
<td> </td>
</tr>
<tr>
<td>Saturation</td>
<td>Varies the saturation of the widget (or of a visualization embedded in it)</td>
<td> </td>
</tr>
<tr>
<td>Opacity</td>
<td>Varies the saturation of the widget (or of a visualization embedded in it)</td>
<td> </td>
</tr>
<tr>
<td>Text</td>
<td>Inserts one or more small text figures into the widget</td>
<td> </td>
</tr>
<tr>
<td>Icon</td>
<td>Inserts one or more small icons into the widget</td>
<td> </td>
</tr>
<tr>
<td>Bar Chart</td>
<td>Inserts one or more small bar chart visualizations into the widget</td>
<td> </td>
</tr>
<tr>
<td>Line Chart</td>
<td>Inserts one or more small line chart visualizations into the widget</td>
<td> </td>
</tr>
</tbody>
</table>

[Willett et al., 2007]
Star Plots (aka Radar Charts)

Aberfeldy
- Malty
- Fruity
- Floral
- Body
- Sweetness
- Smoky

Aberlour

AnCnoc

Ardbeg

Ardmore
- Malty
- Fruity
- Floral
- Body
- Sweetness
- Smoky

ArranIsleOf

Auchentoshan

Auchroisk
Star Plot / Radar Chart

• Use:
 - Compare variables
 - Similarities/differences of items
 - Locate outliers

• Considerations:
 - Order of axes
 - Too many axes cause problems

[S. Ribecca]
Attribute Filtering on Star Plots

[Grey et al., 2003]
Attribute Filtering

• How to choose which attributes should be filtered?
 - User selection?
 - Statistics: similarity measures, attributes with low variance are not as interesting when comparing items

• Can be combined with item filtering
Aggregation

• Usually involves derived attributes

• Examples: mean, median, mode, min, max, count, sum

• Remember expressiveness principle: still want to avoid implying trends or similarities based on aggregation

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>10.0</td>
<td>8.04</td>
<td>10.0</td>
<td>9.14</td>
</tr>
<tr>
<td>10.0</td>
<td>7.46</td>
<td>8.0</td>
<td>6.58</td>
</tr>
<tr>
<td>8.0</td>
<td>6.95</td>
<td>8.0</td>
<td>6.77</td>
</tr>
<tr>
<td>13.0</td>
<td>7.58</td>
<td>13.0</td>
<td>8.74</td>
</tr>
<tr>
<td>9.0</td>
<td>8.81</td>
<td>9.0</td>
<td>7.11</td>
</tr>
<tr>
<td>11.0</td>
<td>8.33</td>
<td>11.0</td>
<td>7.81</td>
</tr>
<tr>
<td>14.0</td>
<td>9.96</td>
<td>14.0</td>
<td>8.84</td>
</tr>
<tr>
<td>6.0</td>
<td>7.24</td>
<td>6.0</td>
<td>6.08</td>
</tr>
<tr>
<td>4.0</td>
<td>4.26</td>
<td>4.0</td>
<td>5.39</td>
</tr>
<tr>
<td>12.0</td>
<td>10.84</td>
<td>12.0</td>
<td>8.15</td>
</tr>
<tr>
<td>7.0</td>
<td>4.82</td>
<td>7.0</td>
<td>6.42</td>
</tr>
<tr>
<td>5.0</td>
<td>5.68</td>
<td>5.0</td>
<td>5.73</td>
</tr>
</tbody>
</table>
Aggregation

- Usually involves **derived** attributes
- Examples: mean, median, mode, min, max, count, sum
- Remember expressiveness principle: still want to avoid implying trends or similarities based on aggregation

```
<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>10.0</td>
<td>8.04</td>
<td>10.0</td>
<td>9.14</td>
<td>10.0</td>
</tr>
<tr>
<td>8.0</td>
<td>6.95</td>
<td>8.0</td>
<td>8.14</td>
<td>8.0</td>
</tr>
<tr>
<td>13.0</td>
<td>7.58</td>
<td>13.0</td>
<td>8.74</td>
<td>13.0</td>
</tr>
<tr>
<td>9.0</td>
<td>8.81</td>
<td>9.0</td>
<td>8.77</td>
<td>9.0</td>
</tr>
<tr>
<td>11.0</td>
<td>8.33</td>
<td>11.0</td>
<td>9.26</td>
<td>11.0</td>
</tr>
<tr>
<td>14.0</td>
<td>9.96</td>
<td>14.0</td>
<td>8.10</td>
<td>14.0</td>
</tr>
<tr>
<td>6.0</td>
<td>7.24</td>
<td>6.0</td>
<td>6.13</td>
<td>6.0</td>
</tr>
<tr>
<td>4.0</td>
<td>4.26</td>
<td>4.0</td>
<td>3.10</td>
<td>4.0</td>
</tr>
<tr>
<td>12.0</td>
<td>10.84</td>
<td>12.0</td>
<td>9.13</td>
<td>12.0</td>
</tr>
<tr>
<td>7.0</td>
<td>4.82</td>
<td>7.0</td>
<td>7.26</td>
<td>7.0</td>
</tr>
<tr>
<td>5.0</td>
<td>5.68</td>
<td>5.0</td>
<td>4.74</td>
<td>5.0</td>
</tr>
</tbody>
</table>
```

- Mean of x: 9
- Variance of x: 11
- Mean of y: 7.50
- Variance of y: 4.122
- Correlation: 0.816
Anscombe's Quartet

[F. J. Anscombe]
Aggregation: Histograms

- Very similar to bar charts
- Often shown without space between (continuity)
- Choice of number of bins
 - Important!
 - Viewers may infer different trends based on the layout

[Munzner (ill. Maguire), 2014]
Aggregation: Histograms

Observed ranks of posts by subreddit

"The reddit Front Page is Not a Meritocracy", T. W. Schneider
Common Distributions

- Uniform
- Bernoulli
- Hypergeometric
- Binomial
- Geometric
- Poisson
- Exponential
- Negative Binomial
- Log Normal
- Normal (Gaussian)
- Chi-Squared
- Weibull
- Student’s t
- Gamma
- Beta
Binning Scatterplots

- At some point, cannot see density
- Blobs on top of blobs
- 2D Histogram is a histogram in 2D encoded using color instead of height
- Each region is aggregated
Hexagonal Binning

- Hexagonal bins are more circular
- Distance to the edge is not as variable
- More efficient aggregation around the center of the bin
Spatial Aggregation

In cartography, changing the boundaries of the regions used to analyze data can yield dramatically different results.
Spatial Aggregation

In cartography, changing the boundaries of the regions used to analyze data can yield dramatically different results.
Spatial Aggregation

In cartography, changing the boundaries of the regions used to analyze data can yield dramatically different results.
Modifiable Areal Unit Problem

• How you draw boundaries impacts the type of aggregation you get
• Similar to bins in histograms
• Gerrymandering

[Wonkblog, Washington Post, Adapted from S. Nassi]
Congressional districts drawn to be compact while trying to respect county borders

How often we'd expect a party to win each of the nation's 435 seats over the long term — not specifically the 2018 midterms — based on historical patterns since 2006

[A. Bycoffe et al., 538]
Drawing Different Maps

<table>
<thead>
<tr>
<th>MAP</th>
<th>USUALLY DEM. DISTRICTS</th>
<th>HIGHLY COMPETITIVE</th>
<th>USUALLY REPUBLICAN</th>
<th>EXPECTED SEAT SPLIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Democratic gerrymander</td>
<td>263</td>
<td>27</td>
<td>145</td>
<td>250.6 184.4</td>
</tr>
<tr>
<td>Proportionally partisan</td>
<td>174</td>
<td>82</td>
<td>179</td>
<td>214.0 221.0</td>
</tr>
<tr>
<td>Majority minority</td>
<td>169</td>
<td>82</td>
<td>184</td>
<td>209.8 225.2</td>
</tr>
<tr>
<td>Highly competitive</td>
<td>94</td>
<td>242</td>
<td>99</td>
<td>209.4 225.6</td>
</tr>
<tr>
<td>Compact (borders)</td>
<td>155</td>
<td>99</td>
<td>181</td>
<td>203.9 231.1</td>
</tr>
<tr>
<td>Compact (algorithmic)</td>
<td>151</td>
<td>104</td>
<td>180</td>
<td>202.8 232.2</td>
</tr>
<tr>
<td>Current</td>
<td>168</td>
<td>72</td>
<td>195</td>
<td>200.6 234.4</td>
</tr>
<tr>
<td>Republican gerrymander</td>
<td>139</td>
<td>21</td>
<td>275</td>
<td>171.3 263.7</td>
</tr>
</tbody>
</table>

[A. Bycoffe et al., 538]
Boxplots

- Show **distribution**
- Single value (e.g. mean, max, min, quartiles) doesn't convey everything
- Created by John Tukey who grew up in New Bedford!
- Show **spread** and **skew** of data
- Best for **unimodal** data
- Variations like vase plot for multimodal data
- Aggregation here involves many different marks
Aggregation: Boxplots

How to read

- 10th percentile
- 25th percentile
- Median annual earnings
- 75th percentile
- 90th percentile

Harvard

UPenn

Princeton

Columbia

Cornell

Dartmouth

Yale

Brown

[$0 \$20k \$40k \$60k \$80k \$100k \$120k \$140k \$160k \$180k \$200k \$220k \$240k$]

[Washington Post, 2015]
Four Distributions, Same Boxplot...

Normal

Bimodal

Peaked

Skewed

Box plot

[C. Choonpradub and D. McNeil, 2005]
Hierarchical Parallel Coordinates

Figure 4: This image sequence shows a Fatal Accident data set of 230,000 data elements at different levels of detail. The first image shows a cut across the root node. The last image shows the cut chaining all the leaf nodes. The rest of the images show intermediate cuts at varying levels of detail. (See Color Plates).

Figure 6: Left image shows Iris data set without proximity-based coloring. Right image shows Iris data set with proximity-based coloring revealing three distinct clusters depicted by concentrations of blue, green and pink lines. (See Color Plates).

[Fua et al., 1999]
D3 Multiple Views and Interaction

- https://codepen.io/dakoop/pen/oQxxmx