Data Visualization (DSC 530/CIS 602-01)

Marks & Channels

Dr. David Koop
D3 Introduction

- Ogievetsky has put together a nice set of interactive examples that show off the major features of D3
 - (Updated from original for D3 v4)
- Other references:
 - Murray’s book on Interactive Data Visualization for the Web
 - The D3 website: d3js.org
 - Ros's Slides on v4: https://iros.github.io/d3-v4-whats-new/
D3 Data Joins

- Two groups: data and visual elements
- Three parts of the join between them: enter, update, and exit
- enter: `s.enter()`, update: `s`, exit: `s.exit()`
D3 v4 vs. v3

• v4 breaks a lot of v3 code…
• v4 is more modular, can build libraries that include only the parts you care about
 - Why worry about this?
• Result is that there is a flat namespace now
 - d3.scale.linear => d3.scaleLinear
• More important change: selections are immutable now
 - Used to be that enter() modified the selection to include any appended items
 - Use merge to explicitly merge the enter and update selections
 - s.enter().append("rect")
 .merge(s)
 ...

D. Koop, DSC 530, Spring 2018
D3 v3 Selections

```javascript
var circleBinding = svg.selectAll("circle").data(data);

circleBinding.style("fill", "blue"); // UPDATE

circleBinding.enter()
  .append("circle") // ENTER; modifies UPDATE!
    .style("fill", "green");

circleBinding // ENTER + UPDATE
  .style("stroke", "black");
```
D3 v4 Selections

```javascript
var circleBinding = svg.selectAll("circle").data(data);
circleBinding.style("fill", "blue"); // UPDATE
circleBinding.enter()
  .append("circle") // ENTER; modifies UPDATE!
    .style("fill", "green");
  .merge(circleBinding) // ENTER + UPDATE
    .style("stroke", "black");
```
Merge

• Merge creates a new selection that includes the items from both selections
• If you want to update all elements (including those just added via enter), use merge!
Transitions

• Nested transitions (those that "hang off" of a parent transition) follow immediately after the parent transition
• In v3, they had to be delayed accordingly
Assignment 2

Data In Tableau

- Categorical data = Dimension
- Quantitative data = Measures
Project

• Choices:
 - [CreateVis] Create a complex, interactive visualization of a dataset
 - [Research] Research project that involves visualization (new technique, evaluation, etc.)

• Check with me if you're interested in the research project option

• Start:
 - [CreateVis] Looking for a dataset: Awesome Public Datasets, Kaggle, etc.
 - [Research] Surveying literature, identifying goals
Toward Reusable Charts

• D3 does not provide "standard" charts
• E.g. there is no barchart method
• What is a standard chart?
 - "Should you expose the underlying scales and axes, or encapsulate them with chart-specific representations?"
 - "Should your chart support interaction and animation automatically?"
 - "Should the user be able to reach into your chart and tweak some aspect of its behavior?"

[Towards Reusable Charts, M. Bostock, 2012]
Visual Encoding

- How should we visualize this data?

<table>
<thead>
<tr>
<th>Name</th>
<th>Region</th>
<th>Population</th>
<th>Life Expectancy</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>East Asia & Pacific</td>
<td>1335029250</td>
<td>73.28</td>
<td>7226.07</td>
</tr>
<tr>
<td>India</td>
<td>South Asia</td>
<td>1140340245</td>
<td>64.01</td>
<td>2731</td>
</tr>
<tr>
<td>United States</td>
<td>America</td>
<td>306509345</td>
<td>79.43</td>
<td>41256.08</td>
</tr>
<tr>
<td>Indonesia</td>
<td>East Asia & Pacific</td>
<td>228721000</td>
<td>71.17</td>
<td>3818.08</td>
</tr>
<tr>
<td>Brazil</td>
<td>America</td>
<td>193806549</td>
<td>72.68</td>
<td>9569.78</td>
</tr>
<tr>
<td>Pakistan</td>
<td>South Asia</td>
<td>176191165</td>
<td>66.84</td>
<td>2603</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>South Asia</td>
<td>156645463</td>
<td>66.56</td>
<td>1492</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Sub-Saharan Africa</td>
<td>141535316</td>
<td>48.17</td>
<td>2158.98</td>
</tr>
<tr>
<td>Japan</td>
<td>East Asia & Pacific</td>
<td>127383472</td>
<td>82.98</td>
<td>29680.68</td>
</tr>
<tr>
<td>Mexico</td>
<td>America</td>
<td>111209909</td>
<td>76.47</td>
<td>11250.37</td>
</tr>
<tr>
<td>Philippines</td>
<td>East Asia & Pacific</td>
<td>94285619</td>
<td>72.1</td>
<td>3203.97</td>
</tr>
<tr>
<td>Vietnam</td>
<td>East Asia & Pacific</td>
<td>86970762</td>
<td>74.7</td>
<td>2679.34</td>
</tr>
<tr>
<td>Germany</td>
<td>Europe & Central Asia</td>
<td>82338100</td>
<td>80.08</td>
<td>31191.15</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>Sub-Saharan Africa</td>
<td>79996293</td>
<td>55.69</td>
<td>812.16</td>
</tr>
<tr>
<td>Turkey</td>
<td>Europe & Central Asia</td>
<td>72626967</td>
<td>72.06</td>
<td>8040.78</td>
</tr>
</tbody>
</table>
Potential Solution

[Gapminder, Wealth & Health of Nations]
Another Solution

Size: Population, total

[Gapminder, Wealth & Health of Nations]
What about change over years?
Another Solution showing trends over time

Income per person (GDP/capita, PPP$ inflation-adjusted)

D. Koop, DSC 530, Spring 2018
Visual Encoding

• How do we encode data visually?
 - **Marks** are the basic graphical elements in a visualization
 - **Channels** are ways to control the appearance of the marks

• Marks classified by dimensionality:

 🔄 Points 🔄 Lines 🔄 Areas

• Also can have surfaces, volumes
• Think of marks as a mathematical definition, or if familiar with tools like Adobe Illustrator or Inkscape, the path & point definitions
Bertin’s Original Visual Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>changes in the x, y location</td>
<td>Diagram showing geometric shapes varying in position</td>
</tr>
<tr>
<td>Size</td>
<td>change in length, area or repetition</td>
<td>Diagram showing bars, squares, and grids varying in size</td>
</tr>
<tr>
<td>Shape</td>
<td>infinite number of shapes</td>
<td>Diagram showing various geometric shapes</td>
</tr>
<tr>
<td>Value</td>
<td>changes from light to dark</td>
<td>Diagram showing squares in various shades</td>
</tr>
<tr>
<td>Colour</td>
<td>changes in hue at a given value</td>
<td>Diagram showing squares in various colors</td>
</tr>
<tr>
<td>Orientation</td>
<td>changes in alignment</td>
<td>Diagram showing patterns in various orientations</td>
</tr>
<tr>
<td>Texture</td>
<td>variation in ‘grain’</td>
<td>Diagram showing various textures</td>
</tr>
</tbody>
</table>
Visual Channels

- **Position**
 - Horizontal
 - Vertical
 - Both

- **Color**

- **Shape**

- **Tilt**

- **Size**
 - Length
 - Area
 - Volume

[Munzner (ill. Maguire), 2014]
Visual Attributes Survey

Table of Visual Attributes

<table>
<thead>
<tr>
<th>Transform</th>
<th>Position</th>
<th>Length</th>
<th>Size (Area)</th>
<th>Orientation</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
<td>Shape</td>
<td>Angle</td>
<td>Curvature</td>
<td>Mark</td>
<td>Line Ending</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information Visualization Researchers</th>
<th>Vision Rsch</th>
<th>Shape Rsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berlin 1967</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cleveland 1985</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mackinlay 1986</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MacEachren 1995</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Wilkinson 1999</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ware 2000</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Maaza 2003</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Iliinsky 2003</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Chien, Floridi 2013</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

[Brath 2009/2011]

D. Koop, DSC 530, Spring 2018
More Visual Attributes

<table>
<thead>
<tr>
<th>Table of Visual Attributes</th>
<th>Information Visualization Researchers</th>
<th>Vision Rsch</th>
<th>Shape Rsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection</td>
<td>X</td>
<td></td>
<td>Brath 2009/2011</td>
</tr>
<tr>
<td>Containment</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blur</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Transparency</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stereo Depth</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Concavity</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Light Direction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shadow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial occlusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flicker</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerosity</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spatial Grouping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrangement</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artistic Effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text Labels</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Richard Brath
v. Sept 2013
Channels

• Usually map an attribute to a single channel
 - Could use multiple channels but…
 - **Limited** number of channels

• Restrictions on size and shape
 - Points are nothing but location so size and shape are ok
 - Lines have a length, cannot easily encode attribute as length
 - Maps with boundaries have area, changing size can be problematic
Cartograms

[Election Results by Population, M. Newman, 2012]
Channel Types

• Identity => what or where, Magnitude => how much

Magnitude Channels: Ordered Attributes
- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes
- Spatial region
- Color hue
- Motion
- Shape

[Munzner (ill. Maguire), 2014]
Mark Types

- Can have marks for items and **links**
 - Connection => pairwise relationship
 - Containment => hierarchical relationship

Marks as Items/Nodes
- Points
- Lines
- Areas

Marks as Links
- Containment
- Connection

[Munzner (ill. Maguire), 2014]