Data Visualization (DSC 530/CIS 602-01)

Tabular Data

Dr. David Koop
D3 Key Features

• Supports data as a core piece of Web elements
 - Loading data
 - Dealing with changing data (joins, enter/update/exit)
 - Correspondence between data and DOM elements
• Selections (similar to CSS) that allow greater manipulation
• Method Chaining
• Integrated layout algorithms, axes calculations, etc.
• Focus on interaction support
 - Straightforward support for transitions
 - Event handling support for user-initiated changes
D3 Information and Examples

• Ogievetsky has put together a nice set of interactive examples that show off the major features of D3

• http://vadim.ogievetsky.com/IntroD3/

• Other references:
 - Murrary’s book on Interactive Data Visualization for the Web
 - The D3 website: d3js.org
D3 Data Joins

- Two groups: data and visual elements
- Three parts of the join between them: enter, update, and exit
- enter: \(s\.enter() \), update: \(s \), exit: \(s\.exit() \)
D3 Updates

- Deal with data items with no visual element (enter)
- Deal with visual elements with no data items (exit)
- Update visual elements based on changes in data (update)
- Enter+update:
 - `s.enter().append("rect");`
 - `s.attr("height", function(d) { return d; });`
 - Appending to the enter selection adds the new pairs to the update part of the selection!
- Even if the number of data items and visual elements stays the same, a change to the update selection can cause major changes
- Generally end with the same number of data items and visual elements
Example: Line Chart in D3

- Part 3b of Assignment 1 in D3
- Start: http://codepen.io/dakoop/pen/Ywogrp
- Important Features:
 - Margin Convention
 - Axis Helper
 - Selections and Classes
- Potential Solution: http://codepen.io/dakoop/pen/eJwbaW
Assignment 2

- www.cis.umassd.edu/~dkoop/dsc530/assignment2.html
- Use D3!
- 2016 Campaign Finance Data
 - Changes from mid- to end-2015
 - Including SuperPAC receipts
 - Extra Credit: Transitions
- Cheating
- Questions?
Tables

<table>
<thead>
<tr>
<th>REMOTE</th>
<th>STATION</th>
<th>FF</th>
<th>SEN/DIS</th>
<th>7-D AFAS UNL</th>
<th>D AFAS/RMF</th>
<th>JOIN RR TKT</th>
<th>7-D UNL</th>
<th>30-D UNL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R011 42ND STREET & 8TH AVENUE</td>
<td>00228985</td>
<td>00008471</td>
<td>00000441</td>
<td>00001455</td>
<td>00000134</td>
<td>00033341</td>
<td>00071255</td>
</tr>
<tr>
<td>2</td>
<td>R170 14TH STREET-UNION SQUARE</td>
<td>00224603</td>
<td>00011051</td>
<td>00000827</td>
<td>00003026</td>
<td>00000660</td>
<td>00089367</td>
<td>00199841</td>
</tr>
<tr>
<td>3</td>
<td>R046 42ND STREET & GRAND CENTRAL</td>
<td>00207758</td>
<td>00007908</td>
<td>00000323</td>
<td>00001183</td>
<td>00003001</td>
<td>00040759</td>
<td>00096613</td>
</tr>
<tr>
<td>4</td>
<td>R012 34TH STREET & 8TH AVENUE</td>
<td>00188311</td>
<td>00006490</td>
<td>00000498</td>
<td>00001279</td>
<td>00003622</td>
<td>00035527</td>
<td>00067483</td>
</tr>
<tr>
<td>5</td>
<td>R293 34TH STREET - PENN STATION</td>
<td>00168768</td>
<td>00006155</td>
<td>00000523</td>
<td>00001065</td>
<td>00005031</td>
<td>00030645</td>
<td>00054376</td>
</tr>
<tr>
<td>6</td>
<td>R033 42ND STREET/TIMES SQUARE</td>
<td>00159382</td>
<td>00005945</td>
<td>00000378</td>
<td>00001205</td>
<td>00000690</td>
<td>00058931</td>
<td>00078644</td>
</tr>
<tr>
<td>7</td>
<td>R022 34TH STREET & 6TH AVENUE</td>
<td>00156008</td>
<td>00006276</td>
<td>00000487</td>
<td>00001543</td>
<td>00000712</td>
<td>00058910</td>
<td>00110466</td>
</tr>
<tr>
<td>8</td>
<td>R084 59TH STREET/COLUMBUS CIRCLE</td>
<td>00155262</td>
<td>00009484</td>
<td>00000589</td>
<td>00002071</td>
<td>00000542</td>
<td>00053397</td>
<td>00113966</td>
</tr>
<tr>
<td>9</td>
<td>R020 47-50 STREETS/ROCKEFELLER</td>
<td>00143500</td>
<td>00006402</td>
<td>00000384</td>
<td>00001159</td>
<td>00000723</td>
<td>00037978</td>
<td>00090745</td>
</tr>
<tr>
<td>10</td>
<td>R179 86TH STREET-LEXINGTON AVE</td>
<td>00142169</td>
<td>00010367</td>
<td>00000470</td>
<td>00001839</td>
<td>00000271</td>
<td>00050328</td>
<td>00125250</td>
</tr>
<tr>
<td>11</td>
<td>R023 34TH STREET & 6TH AVENUE</td>
<td>00134052</td>
<td>00005005</td>
<td>00000348</td>
<td>00001112</td>
<td>00000649</td>
<td>00031531</td>
<td>00075040</td>
</tr>
<tr>
<td>12</td>
<td>R029 PARK PLACE</td>
<td>00121614</td>
<td>00004311</td>
<td>00000287</td>
<td>00000931</td>
<td>00000792</td>
<td>00025404</td>
<td>00065362</td>
</tr>
<tr>
<td>13</td>
<td>R047 42ND STREET & GRAND CENTRAL</td>
<td>00100742</td>
<td>00004273</td>
<td>00000185</td>
<td>00000704</td>
<td>00001241</td>
<td>00022808</td>
<td>00068216</td>
</tr>
<tr>
<td>14</td>
<td>R031 34TH STREET & 7TH AVENUE</td>
<td>00095076</td>
<td>00003990</td>
<td>00000232</td>
<td>00000727</td>
<td>00001459</td>
<td>00024284</td>
<td>00038671</td>
</tr>
<tr>
<td>15</td>
<td>R017 LEXINGTON AVENUE</td>
<td>00094655</td>
<td>00004688</td>
<td>00000190</td>
<td>00000833</td>
<td>00000754</td>
<td>00020018</td>
<td>00055066</td>
</tr>
<tr>
<td>16</td>
<td>R175 8TH AVENUE-14TH STREET</td>
<td>00094313</td>
<td>00003907</td>
<td>00000286</td>
<td>00001144</td>
<td>00000256</td>
<td>00038272</td>
<td>00074661</td>
</tr>
<tr>
<td>17</td>
<td>R057 BARCLAYS CENTER</td>
<td>00093804</td>
<td>00004204</td>
<td>00000454</td>
<td>00001386</td>
<td>00001491</td>
<td>00039113</td>
<td>00068119</td>
</tr>
<tr>
<td>18</td>
<td>R138 WEST 4TH ST-WASHINGTON SQ</td>
<td>00093562</td>
<td>00004677</td>
<td>00000251</td>
<td>00000965</td>
<td>00000127</td>
<td>00031628</td>
<td>00074458</td>
</tr>
</tbody>
</table>
Visualization of Tables

• Items and attributes

• For now, attributes are not known to be positions

• Keys and values
 - **key** is an independent attribute that is unique and identifies item
 - **value** tells some aspect of an item

• Keys: categorical/ordinal

• Values: +quantitative

• Levels: unique values of categorical or ordered attributes

[Munzner (ill. Maguire), 2014]
Arrange Tables

Express Values

Separate, Order, Align Regions

Separate

Order

Align

1 Key

2 Keys

3 Keys

Many Keys

List

Recursive Subdivision

Volume

Matrix

Rectilinear

Parallel

Radial

Dense

Space-Filling

[Munzner (ill. Maguire), 2014]
Express Values: Scatterplots

• Data: two quantitative values
• Task: find trends, clusters, outliers
• How: marks at spatial position in horizontal and vertical directions

• Correlation: dependence between two attributes
 - Positive and negative correlation
 - Indicated by lines
• Coordinate system (axes) and labels are important!
The plot shows an empty region around a residual of 1.5. So somewhat arbitrarily, we’ll select for the number of deaths, these points represent the diseases which depart the most from the pattern. This is particularly easy to see the pattern when we add the line of best fit from a variability decreases with sample size. But on the log-log scale, Figure

[Wickham, 2014]
Log-Log Plot

We are interested in points that have high unusually high values. The blue line is a robust line of best fit. Variability decreases with sample size. But on the log-log scale, Figure

[Wickham, 2014]
Bubble Plot

[Gapminder, Wealth & Health of Nations]
Scatterplot

• Data: two quantitative values
• Task: find trends, clusters, outliers
• How: marks at spatial position in horizontal and vertical directions
• **Scalability**: hundreds of items

• Cool recent result from Harrison et al., *"Ranking Visualizations of Correlation Using Weber’s Law"*, 2014:
 - Correlation perception can be modeled via Weber’s Law
 - Scatterplots are one of the best visualizations for both positive and negative correlation
 - Further analysis: M. Kay and J. Heer, *"Beyond Weber's Law"*, 2015
Separate, Order, and Align: Categorical Regions

- Categorical: =, !=
- Spatial position can be used for categorical attributes
- Use **regions**, distinct contiguous bounded areas, to encode categorical attributes
- Three operations on the regions:
 - Separate (use categorical attribute)
 - Align (use some other ordered attribute)
 - Order
- Alignment and order can use same or different attribute
List Alignment: Bar Charts

• Data: one quantitative attribute, one categorical attribute
• Task: lookup & compare values
• How: line marks, vertical position (quantitative), horizontal position (categorical)
• What about length?
• Ordering criteria: alphabetical or using quantitative attribute
• Scalability: distinguishability
 - bars at least one pixel wide
 - hundreds

[Munzner (ill. Maguire), 2014]
Stacked Bar Charts

[Bostock, 2012]
Stacked Bar Charts

- Data: multidimensional table: one quantitative, **two** categorical
- Task: lookup values, part-to-whole relationship, trends
- How: line marks: position (both horizontal & vertical), subcomponent line marks: length, color
- Scalability: main axis (hundreds like bar chart), bar classes (<12)
- Orientation: vertical or horizontal (swap how horizontal and vertical position are used.)
Streamgraphs

- Include a time attribute
- Data: multidimensional table, one quantitative attribute (count), one ordered key attribute (time), one categorical key attribute
- + derived attribute: layer ordering (quantitative)
- Task: analyze trends in time, find (maxmial) outliers
- How: derived position+geometry, length, color
- Scalability: more categories than stacked bar charts

[Byron and Wattenberg, 2012]
NYTimes “Ebb and Flow of Movies"
Dot and Line Charts

- Data: one quantitative attribute, one ordered attribute
- Task: lookup values, find outliers and trends
- How: point mark and positions

- Line Charts: add connection mark (line)
- Similar to scatterplots but allow ordered attribute

[Munzner (ill. Maguire), 2014]
Proper Use of Line and Bar Charts

[Zacks and Tversky, 1999, Munzner (ill. Maguire), 2014]
Proper Use of Line and Bar Charts

[Zacks and Tversky, 1999, Munzner (ill. Maguire), 2014]
Aspect Ratio

- Trends in line charts are more apparent because we are using angle as a channel
- Perception of angle (and the relative difference between angles) is important
- Initial experiments found people best judge differences in slope when angles are around 45 degrees (Cleveland et al., 1988, 1993)
Multiscale Banking

Sunspot Cycles
Aspect Ratio = 3.96

[Heer and Agrawala, 2006]
Multiscale Banking

PRMTX Mutual Fund

Aspect Ratio = 4.23

Aspect Ratio = 14.55

[Heer and Agrawala, 2006]
Expanding the Study

- Cleveland et al. did not study the entire space of slope comparisons and 45 degrees was at the low end of their study (blue marks on right).
- Talbot et al. compared more slopes and found that people do better with smaller slopes.
- Baselines may aid with this.

[Talbot et al., 2013]
Heatmaps

- Data: Two keys, one quantitative attribute
- Task: Find clusters, outliers, summarize
- How: area marks in grid, color encoding of quantitative attribute
- Scalability: number of pixels for area marks (millions), <12 colors
- Red-green color scales often used
 - Be aware of colorblindness!

<table>
<thead>
<tr>
<th>balls</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.503</td>
<td>0.492</td>
<td>0.431</td>
</tr>
<tr>
<td>1</td>
<td>0.538</td>
<td>0.518</td>
<td>0.450</td>
</tr>
<tr>
<td>2</td>
<td>0.560</td>
<td>0.552</td>
<td>0.508</td>
</tr>
<tr>
<td>3</td>
<td>0.543</td>
<td>0.690</td>
<td>0.512</td>
</tr>
</tbody>
</table>

- fastpitchanalytics.com
Bertin Matrices

- Must we only use color?
 - What other marks might be appropriate?

[C.Perrin et al., 2014]
Bertin Matrices

• Must we only use color?
 - What other marks might be appropriate?

[C.Perrin et al., 2014]
Bertin’s Encodings

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grayscale</td>
<td></td>
</tr>
<tr>
<td>Circle</td>
<td></td>
</tr>
<tr>
<td>Dual bar chart</td>
<td></td>
</tr>
<tr>
<td>Bar chart</td>
<td></td>
</tr>
<tr>
<td>Line</td>
<td></td>
</tr>
<tr>
<td>Black and white bar chart</td>
<td></td>
</tr>
<tr>
<td>Average bar chart</td>
<td></td>
</tr>
</tbody>
</table>

QUANTITY OF INK ENCODINGS

POSITIONAL ENCODING

MEAN-BASED ENCODINGS

[C.Perrin et al., 2014]
Matrix Reordering

[Bertin Exhibit (INRIA, Vis 2014), Photo by Robert Kosara]
Cluster Heatmap

[File System Similarity, R. Musăloiu-E., 2009]
Cluster Heatmap

• Data & Task: Same as Heatmap
• How: Area marks but matrix is ordered by cluster hierarchies
• Scalability: limited by the cluster dendrogram
• Dendrogram: a visual encoding of tree data with leaves aligned
Scatterplot Matrix (SPLOM)

• Data: Many quantitative attributes
• Derived Data: names of attributes
• Task: Find correlations, trends, outliers
• How: Scatterplots in matrix alignment
• Scale: attributes: ~12, items: hundreds?

• Visualizations in a visualization: at high level, marks are themselves visualizations...

[Iris Data (red=setosa, green=versicolor, blue=virginica)]
Spatial Axis Orientation

• So far, we have seen the vertical and horizontal axes (a rectilinear layout) used to encode almost everything

• What other possibilities are there for axes?

[Munzner (ill. Maguire), 2014]
Spatial Axis Orientation

• So far, we have seen the vertical and horizontal axes (a \textit{rectilinear} layout) used to encode almost everything
• What other possibilities are there for axes?
 - Parallel axes

[Paralel Coordinates
Math Physics Dance Drama
100
90
80
70
60
50
40
30
20
10
0
Parallel Coordinates
Math Physics Dance Drama

[Munzner (ill. Maguire), 2014]
Spatial Axis Orientation

• So far, we have seen the vertical and horizontal axes (a rectilinear layout) used to encode almost everything

• What other possibilities are there for axes?
 - Parallel axes
 - Radial axes

[Munzner (ill. Maguire), 2014]
Parallel Coordinates

• Data: **many** quantitative attributes
• Task: Find trends, extremes, correlation
• How: vertical spatial position for each attribute, connection marks for identity, axes horizontally spaced
• Scalability: <40 attributes, hundreds of values

• Connection marks help visualize trends between particular values
• **Ordering** the horizontal axes is important
• Not as well-known, often requires learning
Comparing SPLOMs and Parallel Coordinates

Scatterplot Matrix

Parallel Coordinates

[Munzner (ill. Maguire), 2014]
Correlation in Parallel Coordinates

[Wegman, 1990]
Overdraw in Parallel Coordinates

[Fua et al., 1999]
Hierarchical Parallel Coordinates

Figure 4: This image sequence shows a Fatal Accident data set of 230,000 data elements at different levels of detail. The first image shows a cut across the root node. The last image shows the cut chaining all the leaf nodes. The rest of the images show intermediate cuts at varying levels of detail. (See Color Plates).

Figure 6: Left image shows Iris data set without proximity-based coloring. Right image shows Iris data set with proximity-based coloring revealing three distinct clusters depicted by concentrations of blue, green and pink lines. (See Color Plates).

[Fua et al., 1999]